Development of behaviour-based measurement tool with defined intervention level for assessing acute pain in cats

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Small Animal Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JSAP-2014-0265.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Pain, Feline, Measurement Tools, Analgesia, Validation</td>
</tr>
</tbody>
</table>
ABSTRACT

OBJECTIVES: To develop a Composite Measure Pain Scale - Feline (CMPS-F) tool to assess acute pain in cats and derive an intervention score.

METHODS: To develop the prototype CMPS-F, words describing painful cats were collected, grouped into behavioural categories and ranked. To assess prototype validity two observers independently assigned CMPS-F and numerical rating scale (NRS) scores to 25 hospitalised cats before and after analgesic treatment. Following interim analysis the prototype was revised (rCMPS-F). To determine intervention score two observers independently assigned rCMPS-F and NRS scores to 116 cats. A further observer, a veterinarian, stated whether analgesia was necessary. Statistical tests included Wilcoxon, Mann-Whitney, 95% confidence intervals (CI), general linear model ANOVA and linear discriminant analysis (p < 0.05).

RESULTS: Mean ± SD decrease in rCMPS-F and NRS scores following analgesia were 2.4 ± 2.87 and 1.9 ± 2.34, respectively (95% CI for mean change in rCMPS-F between 1.21 and 3.6). Changes in rCMPS-F and NRS were significantly correlated (r = 0.8) (p<0.001). Intervention level score of ≥4/16 was derived for rCMPS-F (26.7% misclassification) and ≥3/10 for NRS (14.5% misclassification).

CLINICAL SIGNIFICANCE: A valid instrument with a recommended analgesic intervention level has been developed to assess acute clinical pain in cats.

Keywords

Pain, Validation, Reliability, Pain Assessment Tools, Cats
INTRODUCTION

The cornerstone of effective pain management is the availability of valid, reliable and responsive pain assessment tools. Validity (content, criterion and construct) provides evidence that the instrument is able to measure what it was designed to measure and responsiveness demonstrates that the instrument is sensitive enough to detect differences in health status that are clinically important. In clinical veterinary practice, the usefulness of a pain assessment instrument is markedly enhanced if the score can be linked to an intervention level which is informative as to whether or not an animal requires analgesic treatment (Reid et al., 2007). Additionally, an instrument should have utility. Even if an instrument is valid and reliable, it may not be useful if it requires lengthy training, is time-consuming to administer, or if scoring is complex (Strayer 1993).

Few pain scales have been developed for the cat. These include the Colorado State University Feline Acute Pain Scale\(^1\) and the French Association for Animal Anaesthesia and Analgesia pain scoring system, 4A-Vet\(^2\) for dogs and cats, neither of which can claim to be both valid and reliable. More recently a multidimensional composite pain scale for assessing acute postoperative pain in cats was developed by Brondani and colleagues (2011) and subsequently translated into English (Bondani et al. 2013). Although criteria for utility are unlikely to be met, both language versions have been shown to be valid, reliable and responsive and an intervention level derived when used in cats undergoing ovariohysterectomy.

The psychometric approach to scale design, well established in human medicine for the measurement of complex and intangible constructs such as pain and quality of life, encompasses an established process of item selection, questionnaire construction and testing for validity, reliability and responsiveness. The Glasgow Composite Measure Pain Scale for the assessment of acute pain in the dog (CMPS) was the first tool in veterinary medicine designed using psychometric principles, (Holton et al. 2001). Subsequently a short form (CMPS-SF) was derived for routine clinical use where the emphasis was on ease of use and speed of completion (Reid et al. 2007) and an intervention level

\(^1\) ivapm.evetsites.net/refId,20467/refDownload.pml
\(^2\) http://www.medvet.umontreal.ca/4avet/

\(^{a}\)http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf
was determined to aid clinical decision making. The aim of this study was to develop a similar scale for the cat to assess acute pain, arising from a broad range of clinical conditions, and to derive an intervention level score.

MATERIALS AND METHODS

Following development of the prototype CMPS-F (see below) two studies were carried out simultaneously in two locations. Study 1 - Validity Testing, proved evidence of construct validity and Study 2 - Derivation of an Analgesic Intervention Level, identified an analgesic intervention level for both the CMPS-F and Numerical Rating Scale (NRS) with concurrent criterion validity also determined. Analysis of study 1 and user feedback led to revision of the scale (rCMPS-F). In the revision process, statements were combined and no information was lost, making possible the derivation of rCMPS-F scores from CMPS-F scores in studies 1 and 2, allowing analysis of pooled data in study 2.

Development of a prototype scale (CMPS-F)

A psychometric approach was adopted to ensure content validity as described previously in dogs (Holton et al. 2001; Morton et al. 2005). Words describing cats in acute pain were collected from 30 individuals (13 veterinary surgeons, 10 veterinary nurses, 2 breeders, 2 rescue workers and 3 owners), each of whom completed a questionnaire consisting of 2 parts. First they were asked to list all the words they would use to describe a cat in acute pain in the following categories; posture, comfort, vocalisation, attention to any painful area, demeanour/response to people, mobility and response to touch. The second part of the questionnaire listed the descriptive words in each category that appeared in the dog acute pain instrument and respondents were asked to indicate whether or not these words applied to the cat.

One hundred and fifteen words were considered for inclusion in the prototype cat acute pain tool. Subsequent consideration by an expert group of veterinary pain specialists reduced that number to 40, which were then grouped into 6 behavioural categories - vocalisation, activity/posture, attention to wound, response to people, response to touch and demeanour (Appendix 1). The categories were

http://csuanimalcancercenter.org/assets/files/csualcute_pain_scale_feline.pdf
placed in this sequence in order to follow a defined protocol for interaction with the cat. Finally, the
words within each category were ranked in order of increasing pain intensity using a technique of
paired comparisons. Six hundred and thirty English speaking veterinary surgeons from 23 countries
responded to an online survey in which they were presented with all possible combinations of word
pairs and asked which one of each pair represented the most pain. These results informed the
ordering of items within each category and provided a scoring mechanism based on ranks.

To fulfill completion of the questionnaire observers were asked to choose the word in each category
that best described the observed cat and the final score was the sum of these scores from all
categories.

Revision of the CMPS-F

Analysis of the CMPS-F data from 25 cats (Study 1) indicated questions 1 and 3 were contributing
little to the total score (see results section below). These findings suggested that these questions were
not sensitive indicators of pain, or alternatively that these behaviours did not occur commonly.
Furthermore, user feedback indicated difficulties with interpretation in these categories. A revised
version, rCMPS-F (Appendix 2), was created as follows. Question 1 was reduced from four
descriptors to two composite descriptors, while retaining all the words; ‘silent, purring, meowing’ and
‘crying, growling, groaning’ combined into another, so that relevant information was not lost. Question
3 was reduced to two descriptors; ‘ignoring any wound or painful area’ and ‘attention to wound’. The
remainder of the CMPS-F was not altered. The consequence of these changes resulted in the total
score of 22 being reduced to 16.

Study 1 - Validity testing

Construct validity was determined by testing the hypothesis that appropriate analgesic treatment
would produce an improvement in pain state and reduce pain scores. Concurrent criterion validity was
assessed by comparing the test scores with scores derived simultaneously from a NRS.

Cats (n=25) hospitalised for surgery, traumatic or medical conditions within either of two participating
centres and deemed by the attending veterinary surgeon to be requiring analgesic treatment were

recruited to the study. No restrictions in patient status, age or breed were made. All cats were scored
for sedation using a simple descriptive scale (SDS) modified from Lascelles and colleagues (1994)
and those with a sedation score of 2 or 3 excluded (n=0) to ensure that residual anaesthetic drugs did
not interfere with the assessment procedure.

A veterinary nurse scored pain using the CMPS-F while a second veterinary surgeon observed the
cat's response. Blinded to the CMPS-F score, this veterinary surgeon allocated a pain score for the
cat using an 11-point NRS; 0 representing no pain and 10 representing worst possible pain. An
analgesic (methadone [Comfortan; Dechra], morphine [Morphine Sulphate; Wockhardt] or
buprenorphine [Vetergesic; Alstoe Animal Health) was then administered in accordance with the
practice / hospital protocol irrespective of the pain score allocated so cats with pain scores of zero
still received analgesia as per the attending clinician instructions. Within 2 hours the same nurse and
veterinary surgeon repeated the scoring procedure. At that time the veterinary surgeon also recorded
a clinical judgement as to whether or not the cat's change in pain was clinically relevant (n=16).

Following feedback from users and discussions with an expert panel this question was subsequently
replaced with a simple descriptive scale (SDS) to evaluate clinical change and veterinary surgeons
were asked if the cat's pain status was much improved, improved, unchanged, worse or much worse
(n=7).

rCMPS-F scores were derived from CMPS-F scores. Statistical analysis included analysis of the
change in pain score (after-before analgesia) using paired analysis, and a general linear model (with
change in pain score after analgesia as response) and pain score before, and other potential
variables as covariates to explore the variability (and hence sensitivity) of the pain scoring system.

Study 2 - Derivation of an analgesic intervention level

Cats (n=116) undergoing post-operative care or having been admitted for any acutely painful trauma
or medical condition in multiple locations (small animal general practices and university veterinary
schools) were recruited to the study. No restrictions were placed on the breed, age or sex of the cats,

http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf
or on the type of surgical procedure, trauma or medical condition however all cats were evaluated for sedation as before and any with a score >1 excluded (n=0).

Analgesia was administered according to standard clinical practice by veterinary surgeons carrying out treatment orders, routine post-operative examinations, or responding to a nurse's concern that a cat was in pain. Prior to analgesia administration, a veterinary nurse scored pain in cats (n=57) using the CMPS-F. Thereafter, blinded to the CMPS-F score, the veterinary surgeon allocated a pain score using an 11 point NRS as described previously and then responded to the question ‘Do you think this animal requires analgesia? Yes/No’. A further population of cats (n=59) were scored for pain in an identical manner using the revised tool (rCMPS-F). Scores from the first 57 cats were converted to rCMPS-F scores.

Statistical analysis of data from all 116 cats comprised descriptive statistics to show how pain scores varied for cats considered to require analgesia compared with those that did not. Formal analysis involved Wilcoxon, Mann-Whitney tests and 95% confidence intervals for medians. Linear discriminant analysis was used to identify the optimum pain score cut-off to maximise the number of cats correctly assigned to their clinician-allocated group (in need of analgesia, not in need of analgesia).

RESULTS

Revision of the CMPS-F

Analysis of the CMPS-F data from 25 cats (Study 1) indicated questions 1 and 3 were contributing little to the total score, with 80% of cats being awarded a score of 0 for question 1 (vocalization) and 88% of cats being awarded a score of 0 for question 3 (attention to wound). These findings suggested that these questions were not sensitive indicators of pain, or alternatively that these behaviours did not occur commonly. A revised version, rCMPS-F (Appendix 2), was subsequently created. To evaluate the utility of the rCMPS-F for assessing pain, a further 20 cats were scored. User feedback

and determination of the frequency of use of each descriptor indicated that no further changes were
necessary.

Study 1

Demographic details of all 25 cats are shown in Table 1. The median pre-analgesia CMPS-F and
NRS scores were 8/22 and 6/10 compared to median post-analgesia scores of 3/22 and 3/10
respectively. Following conversion of the scores from CMPS-F to rCMPS-F the median pre-analgesia
score was 8/16 compared to a median post-analgesia score of 3/16. The mean +/- SD changes in
rCMPS-F and NRS scores following analgesia administration were 2.4 +/- 2.87 and 1.9 +/- 2.34
respectively. The rCMPS-F declined on average between 1.21 and 3.6 (95% confidence interval for
mean change (pre-post) following analgesia. There was a statistically significant correlation of 0.8
(p<0.0001) between the changes in rCMPS-F and NRS (Figure 1).

Of the 18 cats, where the change in analgesia status was described as clinically relevant or not the
question was answered in 16. Of these, in 12 (75%) the change was deemed clinically relevant with a
mean +/- SD decrease in score of 4.17 +/- 3.49 and in the remaining 4 it was not, mean +/- SD
decrease in score of 1.75 +/- 1.71. However the difference between the groups was not clinically
significant (p = 0.094). Details of these and the remaining 7 cats are shown in Table 2.

Study 2

Observers comprised veterinary nurses (general, emergency critical care, and specialist disciplines)
and veterinary surgeons with varying levels of expertise (interns, residents and European/American
boarded specialists).

Demographic details and surgical status for the 57 cats scored with the CMPS-F and the 59 cats
scored with the rCMPS-F are shown in Tables 3 and 4 respectively. Cats identified as requiring
analgesia (n=60) had a median pain score of 6 (range, 0 - 15), and for those not requiring analgesia
(n=56), the median score was 2 (range, 0 – 10). For the NRS equivalent values were 4 (range 0 – 10)
and 1 (range 0 – 9) respectively. Figures 2a and b show the distribution of NRS and rCMPS-F scores

respectively for all cats in the study. Based on these results, an intervention level score of 4 or higher was proposed for the rCMPS-F (26.7% misclassification) and 3 or higher for the NRS (14.5% misclassification). Figure 3 shows the relationship between the NRS and rCMPS-F with a correlation value of 0.68 (p<0.01).

4. DISCUSSION

Following the success of the behaviour based Glasgow CMPS-SF for dogs, now generally accepted as a clinical standard for the measurement of acute pain in that species, a cat tool was constructed using similar psychometric methodology.

Content validity of the CMPS-F was established by the psychometric methods used during scale construction. Since the scale items were not altered in the revision of the scale, content validity was unchanged in the rCMPS-F.

The psychometric approach encompasses an established process of item selection, questionnaire construction and testing for validity, reliability and responsiveness. Item selection resulted in a final list of 40 word descriptors grouped into 6 behavioural categories. Many of the items in the CMPS-F and rCMPS-F were similar to those described in the Colorado State University (CSU) Feline Acute pain scale and the UNESP-Botucatu Multidimensional Composite Pain Scale (Brondani et al 2013) and the behavioural categories – vocalisation, activity/posture, attention to wound, response to people, response to touch and demeanour – were common to these scales also. Thus the rCMPS-F has good overlap and commonality with other tools in common usage, providing further evidence for its content validity.

Other similarities between the scale reported here and the UNESP-Botucatu scale include the ranking of the items within each category according to pain intensity and the provision of a protocol which ensures consistency of the assessment procedure.

Concurrent criterion validity establishes the effectiveness of the scale’s measurement through comparison with a pre-existing gold standard applied simultaneously. However in the absence of a

gold standard for the measurement of pain, Holton et al. (1998) suggested that, of the scales available, the NRS is the most appropriate choice. A statistically significant correlation of 0.8 \((p<0.0001) \) between the changes in rCMPS-F and NRS scores pre and post analgesia in study 1 confirmed concurrent criterion validity. In study 2 the correlation was lower (0.68), but still achieved statistical significance.

Construct validity can be demonstrated in a variety of ways including the creation of hypotheses regarding the scale items, which are then supported or discredited through experiment. Hypotheses used for testing construct validity of pain scales include 1) the prediction of change in pain scores following the administration of proven analgesics and 2) ‘known groups’ validity where the instrument should be able to distinguish correctly between groups that would be expected to have different scores. In study 1 the median CMPS-F scores changed from 8/22 pre-analgesia to 3/22 post-analgesia. It is interesting to note that these values did not change when the scores were converted to rCMPS-F, lending weight to the fact that the revisions to the original CMPS-F were appropriate. There was a mean +/- SD change in rCMPS-F scores of 2.4 +/- 2.87 with 95% confidence interval for mean change (pre-post) following analgesia of 1.2 to 3.6, thus proving the hypothesis 1. Hypothesis 2 was upheld in study 2 when the tool demonstrated a statistically significant difference in pain scores between those cats that required analgesia and those that did not.

In general when clinicians reported whether the change pre and post-analgesia (study 1) was clinically significant or not, this was supported by the change in pain scores, providing some evidence for responsiveness of the scale. However due to the small numbers clinical significance was not reached.

In study 2, intervention levels of 4/16 and 3/10 were derived for the rCMPS-F and NRS respectively. To the authors’ knowledge an intervention level has not been reported for the NRS and since the scale remains in use in veterinary practice this represents a useful clinical advancement.

Linear discrimination analysis resulted in a misclassification rate of 26.7% for the rCMPS-F which was poorer than that of the NRS (14.5%). The data from this study were interesting as 10 of the cats had

relatively high rCMPS-F scores (>9/16), driven largely by high corresponding scores in the
demeanour/general impression category; 5 cats had scores of 2 and 5 had scores of 4 for the
individual general impression category, yet low NRS scores and were identified as not requiring
analgesia. Perhaps, when using the NRS, observers attributed any change in demeanour to
temperament rather than pain and accordingly awarded a lower score. Also the veterinary surgeon
making the judgement as to whether or not the cat required analgesia did so immediately after using
the NRS. Consequently this judgement, intended as a global impression, may have been influenced
by the NRS score.

Brondani et al (2013) used similar methods to determine validity (criterion and construct),
responsiveness of the English version of their scale and to define an intervention level. However
there were marked differences in experimental design compared with the studies described here. All
58 cats underwent a strictly standardised soft tissue procedure (ovariohysterectomy) of moderate
severity and scoring was performed by observers trained in anaesthesia. Five observers scored
videotapes and 3 scored in a hospital clinical environment. According to Brondani et al (2013) the
Multidimensional Composite Pain Scale (MCPS) is a valid, reliable, responsive scale for assessing
acute pain in cats undergoing ovariohysterectomy when used by anaesthesiologists and anaesthesia
technicians. However it may not perform as well in a wider population of cats suffering a diverse
range of painful conditions, both medical and surgical.

In contrast, the rCMPS-F was designed to be used in a clinical environment where acute pain would
arise from a varied source including post-surgical, trauma and medical cases and where its
assessment would be undertaken by observers of varying levels of experience, hence the inclusion of
a broad range of cases and observers.

User feedback was positive regarding ease of use of the rCMPS-F and the time taken for completion
and computation of scores was short, indicating good utility. This is in contrast to the UNESP-
Botucatu which in addition to being more time-consuming contains blood pressure measurement
which requires the use of specialised equipment and technical expertise and so limits its usefulness.

http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf
According to Teasdale and Jennett (1974), for a scale to be generally accepted as universal, it must be practical to use in a wide range of locations and by staff without special training.

In summary, the rCMPS-F has been shown to be a valid scale for the measurement of acute pain in cats in general veterinary practice with some evidence for its responsiveness presented. Users should consider the administration of analgesia if scores are equal to or >4/16. Further development of the scale will include the incorporation of a facial expression component (paper submitted to this journal) with the intention of improving sensitivity of the scale.

http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf
References

http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf

http://csuanimalcancercenter.org/assets/files/csu_acute_pain_scale_feline.pdf
Table 1: Validation Study (Study 1) Demographics (n=25 cats)

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Breed</th>
<th>Analgesia Status</th>
<th>Analgesia Administered</th>
<th>Time Between Scoring (Before and After)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: 5 Years 8 Month</td>
<td>Male</td>
<td>Pedigree</td>
<td>Naive</td>
<td>Buprenorphine 0.001-0.002mg/kg</td>
<td>n=15</td>
</tr>
<tr>
<td>8 Month (8 weeks – 19</td>
<td>Neutered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years)</td>
<td>n=14</td>
<td>Domestic Long-Hair</td>
<td></td>
<td>Methadone 0.2-0.3mg/kg</td>
<td>n=9</td>
</tr>
<tr>
<td>Female</td>
<td>Male</td>
<td></td>
<td>Analgesia within previous 12 hours</td>
<td>Morphine 0.2-0.3mg/kg</td>
<td>n=1</td>
</tr>
<tr>
<td>Neutered</td>
<td>n=12</td>
<td>Domestic Short-Hair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>n=5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Scatterplot of the change in NRS and rCMPS-F scores in cats following analgesia administration; N = 25
<table>
<thead>
<tr>
<th>Cat number</th>
<th>Pre-analgesia CMPS Score</th>
<th>Post-analgesia CMPS Score</th>
<th>Clinically relevant Y/N</th>
<th>Change in pain status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>9</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>Not recorded</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>8</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>9</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>8</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>5</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10</td>
<td>Not recorded</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>3</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>6</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>2</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>Much Improved</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>8</td>
<td>Unchanged</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>2</td>
<td>Worse</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>0</td>
<td>Improved</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Study 1 Pre-analgesia and post-analgesia CMPS-F scores and clinical relevance (n= 25)
Table 3: Intervention Level CMPS-F (Study 2) Demographics (n=57 cats)

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Breed</th>
<th>Analgesia Status</th>
<th>Previous Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male Neutered</td>
<td>Pedigree</td>
<td>Analgesia within previous 12 hours</td>
<td>YES n=14 (sedation score of zero)</td>
</tr>
<tr>
<td>Mean: 6 Years 3 Month (4 months – 18 years)</td>
<td>Male</td>
<td>Domestic Long-Hair</td>
<td>Analgesia within previous 12 hours</td>
<td>NO n=9</td>
</tr>
<tr>
<td></td>
<td>Female Neutered</td>
<td>Domestic Short-Hair</td>
<td>Analgesia within previous 12 hours</td>
<td>YES n=6 (sedation score of zero)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td></td>
<td>Naive</td>
<td>NO n=27</td>
</tr>
</tbody>
</table>

Table 3: Intervention Level CMPS-F (Study 2) Demographics (n=57 cats)
<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Breed</th>
<th>Analgesia Status</th>
<th>Previous Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: 5 Years 5 Month (9 weeks – 22 years) (age unknown in 4 cats)</td>
<td>Male Neutered</td>
<td>Pedigree</td>
<td>n=8</td>
<td>Analgesia within previous 12 hours</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>Domestic Long-Hair</td>
<td>n=9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female Neutered</td>
<td>Domestic Short-Hair</td>
<td>n=42</td>
<td>Naive</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td></td>
<td>n=1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Intervention Level rCMPS-F (Study 2) Demographics (n=59 cats)
Figure 2a): Distributions of NRS scores for cats in intervention level study 2 (n=116); analgesia required (Y or N)
Figure 2b): Distribution of rCMPS-F scores for cats in intervention level study 2 (n=116); analgesia required (Y or N)
Figure 3: Scatterplot of rCMPS-F and NRS scores for 116 cats in intervention level study 2