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ABSTRACT 

The water vapour sorption properties of several commercial tropical 

hardwoods and temperate softwood species as well as thermally modified wood 

and acetylated wood has been studied. A dynamic vapour sorption apparatus was 

used for this investigation to give data on the sorption isotherms under equilibrium 

conditions as well as sorption kinetic behaviour. Small differences in the sorption 

isotherms were found between the wood species, but modification resulted in 

substantial changes to the sorption isotherms. The sorption isotherms were 

analysed using the Hailwood-Horrobin model. Sorption kinetics behaviour was 

found to be accurately described using the parallel exponential kinetics (PEK) 

model. This model has only recently been applied to wood and this work 

represents a much more comprehensive study of the applicability of the model. 

Until now the favoured approach has been based upon Fickian models. The 

conventional interpretation of the PEK model relies upon the idea of different 

types of sorption sites, but his work has shown (partly based upon Hailwood-

Horrobin analyses of the isotherms) that this interpretation is not applicable. 

Instead, an interpretation based upon relaxation limited kinetics has been adopted. 

These ideas are commonly employed in the polymer science literature, but have 

hardly been used in wood science. The model employed was that involving two 

Kelvin-Voigt elements in series, from which cell wall moduli and viscosities have 

been determined. The values of the moduli appear sensible, but the model is only 

tentative at this stage. The kinetic data has also been used to determine activation 

energies, entropies and Gibbs free energy of sorption. This is the first time that the 

entropy and Gibbs free energy of sorption have been studied. The purpose of this 

work was to understand the phenomenon of sorption hysteresis and in particular to 

examine if there was a link between sorption hysteresis and sorption kinetics. 
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Figure 5.7 A comparison of the cumulative MCs in plots versus the 

RH. The data are associated with the PEK model in terms 

of fast (MC1) and (MC2) slow processes for A.mangium 

(a - d) and E.malaccense (a’ – d’). For comparsison, the 

polylayer and monolayer curves calculated by the H-H 

model are included. a/a’ untreated wood; b/b’ heat 

treatment 180 
o
C -3 h; c/c’ heat treatment 200 

o
C-3 h; 

d/d’ heat treatment 220 
o
C-3 h. 
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Figure 5.8 Variation of characteristic times with change in RH for 

the fast t1 exponential kinetic processes for adsorption 

and desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 5.9 Variation of characteristic times with change in RH for 

the fast t2 exponential kinetic processes for adsorption 

and desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 5.10 Variation of characteristic times with change in RH for 

the slow t1 exponential kinetic processes for adsorption 

and desorption for A.mangium (a - d) and E.malaccense 

(a’ – d’). a/a’ untreated wood; b/b’ heat treatment 180
o
C -

3 h; c/c’ heat treatment 200
o
C-3 h; d/d’ heat treatment 
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 xx 

220
o
C-3 h. 

 

Figure 5.11   Variation of characteristic times with change in RH for 

the slow t2 exponential kinetic processes for adsorption 

and desorption for A.mangium (a - d) and E.malaccense 

(a’ – d’). a/a’ untreated wood; b/b’ heat treatment 180
o
C -

3 h; c/c’ heat treatment 200
o
C-3 h; d/d’ heat treatment 

220
o
C-3 h. 
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Figure 5.12 A comparison of the cumulative moisture contents 

associated with the fast adsorption and desorption 

kinetics processes on six hardwoods: (a) 

Neobalanocarpus heimii, (b) Dryobalanops spp., (c) 

Dipterocarpus spp., (d) Gonystylus spp., (e) A. mangium 

and (f) E. malaccense. 
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Figure 5.13 A comparison of the cumulative moisture contents 

associated with the slow adsorption and desorption 

kinetics processes on six hardwoods: (a) chengal,  

(b) kapur, (c) keruing, (d) ramin, (e) A. mangium and  

(f) E. malaccense. 
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Figure 5.14 Congruence of the slow sorption and desorption 

isotherms suggesting the existence of ‘extra water’ 

(Kohler 2003). 
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Figure 5.15   Plots of cumulative moisture contents associated with the 

fast (MC1) exponential kinetic processes versus the RH 

for A.mangium (a - d) and E.malaccense (a’ – d’). a/a’ 

untreated wood; b/b’ heat treatment 180
o
C -3 h; c/c’ heat 

treatment 200
o
C-3 h; d/d’ heat treatment 220

o
C-3 h. 
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Figure 5.16 Plots of cumulative moisture contents associated with the 

slow (MC2) exponential kinetic processes versus the RH 

for A.mangium (a - d) and E.malaccense (a’ – d’). a/a’ 

untreated wood; b/b’ heat treatment 180
o
C -3 h; c/c’ heat 

treatment 200
o
C-3 h; d/d’ heat treatment 220

o
C-3 h. 
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Figure 5.17 Cumulative moisture content associated with the fast 

(MC1) and slow (MC2) exponential kinetics processes in 

water vapour adsorption and desorption runs for cotton 

(a), filter paper (b), flax (c), hemp (d), jute (e), and sisal 

(f), respectively (Xie et al. 2011). 
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Figure 6.1 The PEK sorption kinetics is interpreted as two K-V 

elements in series representing the viscoelastic behaviour 
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 xxi 

of the inter-microfibril matrix. 

 

 

Figure 6.2 Variation in cell wall modulus for the fast sorption 

kinetic process under conditions of adsorption and 

desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 6.3 Variation in cell wall modulus for the slow sorption 

kinetic process under conditions of adsorption and 

desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 6.4 Variation in cell wall viscosity for the fast sorption 

kinetic process under conditions of adsorption and 

desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 6.5 Variation in cell wall viscosity for the slow sorption 

kinetic process under conditions of adsorption and 

desorption on six hardwoods: (a) Neobalanocarpus 

heimii, (b) Dryobalanops spp., (c) Dipterocarpus spp., 

(d) Gonystylus spp., (e) A. mangium and (f) E. 

malaccense. 
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Figure 6.6 The relationship between the modulus and the viscosities; 

associated with the fast process E1 (a) and η1 (b) and slow 

process E2 (c) and η2 (d) with RH for A. mangium. For 

comparison under conditions of adsorption and 

desorption, control (Ctrl) and thermally modified wood 

(TMW) at 220 
o
C-3h. 
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Figure 6.7   The relationship between the modulus and the viscosities; 

associated with the fast process E1 (a) and η1 (b) and slow 

process E2 (c) and η2 (d) with RH for E. malaccense. For 

comparison under conditions of adsorption and 

desorption, control (Ctrl) and thermally modified wood 

(TMW) at 220 
o
C-3h. 
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Figure 6.8 The relationship between the modulus associated with the 

fast (E1) and slow (E2) sorption processes and relative 
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humidity for two isotherm temperatures (20 and 38 
o
C) 

for A. mangium (a-b) and E. malaccense (a’-b’) under 

adsorption and desorption conditions. 

 

Figure 6.9 The relationship between the viscosities associated with 

the fast (η1) and slow (η2) sorption processes and relative 

humidity for two isotherm temperatures (20 and 38 
o
C) 

for A. mangium (a-b) and E. malaccense (a’-b’) under 

adsorption and desorption conditions. 
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Figure 6.10   Cooperative domains within the matrix, where relaxation 

exist with the cooperation of neighbouring molecule. 
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Figure 7.1 Two examples of Arrhenius plots for the fast adsorption 

kinetic process for a RH step change of 35% to 40% for 

A. mangium) (a) and 10% to 15% for E. malaccense (b). 
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Figure 7.2 Variation in activation energy (Ea) in 5% RH steps over 

the hygroscopic range for the fast adsorption (a) and 

desorption (b) and slow process of A. mangium and the 

fast and slow adsorption (c) and desorption (d) processes, 

as derived from PEK fits to the sorption data. 
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Figure 7.3 Variation in activation energy (Ea) in 5% RH steps over 

the hygroscopic range for the fast adsorption (a) and 

desorption (b) and slow process of E. malaccense and the 

fast and slow adsorption (c) 

 and desorption (d) processes, as derived from PEK fits to 

the sorption data. 

 

196 

Figure 7.4 Variation in entropy of activation (ΔSa) in 5% RH steps 

over the hygroscopic range for the fast and slow 

adsorption (a) and desorption (b) process of A. mangium 

and the fast and slow adsorption (c) and desorption (d) 

processes of E. malaccense. 
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Figure 7.5 Variation in the Gibbs free energy of activation (ΔGa) in 

5% RH steps over the hygroscopic range for the fast and 

slow adsorption and desorption (a) process of A. 

mangium and the fast and slow adsorption and desorption 

(b) processes of E. malaccense. 
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