DECLARATION

I herby declare that this thesis together with work contained herein was produced entirely by myself, and contains no materials that have been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due acknowledgment to others has been made.

Signature:

Salem A. Abukersh

ABSTRACT

Sustainable development is gaining popularity around the globe nowadays. Governments are under pressure, on many fronts, to embed sustainable development in policies, practice, and operations to secure the planet's future. Adding to this, increased populations, and the need for more infrastructures, have unfortunately led to the unacceptable depletion of raw materials, increasing amounts of construction and demolition waste (C&DW) and accelerated deterioration of the natural environment in many places worldwide.

For the conservation of natural resources, reuse and recycling of C&DW is the most obvious way to achieve sustainability in the construction sector. Currently, recycled aggregate (RA) is produced from C&DW in modern recycling facilities, under good quality control provisions which could lead to improve its performance compared with the earlier days of recycling. In addition to C&DW, large amounts of industrial and mining by-products such as fly ash, slag, limestone powders, aggregate dust, *etc.* are dumped in landfills. Fly ash has been used successfully in concrete for a long time due to its numerous advantages across a wide range of properties, including aspects of durability. A concrete produced with the combination of PFA and RA *i.e.* recycled aggregate concrete (RAC) is obviously more sustainable and economical than conventional natural aggregate concrete (NAC).

To date, statistics show that a considerable proportion of the world's RA is used for low-utility applications due to perceived risks and uncertainty over their performance formed as a result of previous history of use when RA was produced manually and low strength cement and higher water to cement ratios were used. Despite the advances in recycling, materials and concreting technologies, this impression prevails. However, to increase the use of RA, it is believed that the quality of RAC should be improved by chemical and mineral additives. For cost effectiveness, quality-improving additives should be abundant, safe, and inexpensive; PFA and new generation polymer-based superplasticizer (SP) are deemed to be a good option.

The aims of this study are to investigate the possibility of producing good quality RAC that could be used as a substitute for NAC in normal strength concrete members, and to study its fundamental properties. An attempt has been made to create superplasticized RAC concretes, in which new generation polymer-based SP and PFA produced to the latest European standards were used. PFA was used to partially replace fine aggregate and cement in ordinary and self-compacting concretes. The thesis also includes an investigation into the potential of utilising an aggregate by-product (red granite dust (RGD) in producing environmentally beneficial RAC.

The findings show that good performance RAC can be produced with the help of SP and PFA. The study also revealed that it is possible to utilise RGD to substitute up to 30% of cement without substantially influencing the performance of concrete, while also providing cost savings. Strengths and stifnesses of the ensuing RAC either with SP, PFA, or RGD were comparable, or better than, a wide range of counterpart NACs. The author's produced RAC concretes *can* replace NAC concrete used unnecessarily for many applications including structural concrete.

DEDICATION

This study has been started in September 2005 under the guidance and supervision of Dr Fouad Khalaf who sadly passed away on 26 June 2008.

During the course of the study, Dr Khalaf had given me so much invaluable advice, encouragement, and support; the author is indeed indebted to him. This work is dedicated to Dr Khalaf's spirit, meanwhile asking Allah (God) to be kind and merciful with him on the day of judgment.

The author S. Abukersh

ACKNOWLEDGEMENT

I would like to express my deep gratitude and sincere appreciation to the supervision team: Dr Ian Smith, Professor Charlie Fairfield and Dr David Reid for their help and advice. In particular, a very big thank you to Professor Fairfield for his invaluable advice and comments on the text of the thesis.

Thanks are also extended to all staff members of the School of Engineering and the Built Environment at Edinburgh Napier University, in particular, the technical staff of the concrete laboratory. Special gratitude is expressed to Willie Laing and Alan Barber. Thanks also to Bill Brownlee, of the advanced material laboratory for his assistance in producing the scanning electron micrographs.

I would also like to thank both Bowhill recycling plant in Fife and the Cloburn Quarry in Lanark for providing access to their sites and also for supplying the materials used in this study. Thanks are also due to ScotAsh Company and Fosroc, UK, for supplying the fly ash (PFA) and superplasticizers (SPs) respectively.

Deep gratitude is expressed to my lovely wife, Fatma for her unlimited patience, encouragement, and love. I am deeply indebted to her continuous support and extraordinary efforts to take the full responsibility of all shopping and home duties including supporting our four kids, Safa, Ahmed, Samah, and Malek. My sincere gratitude also goes to my great parents, brothers, and sisters who always wished me every success.

CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Contents	v
List of Figures	xi
List of Tables	xvi
List of abbreviations	xxi

CHAPTER 1 INTRODUCTION

1.1	BACKGROUND		
	a.	Recycled aggregate	1
	b.	Pulverized fuel ash in concrete	3
	c.	The use of superplasticizers in concrete	5
1.2	RE	SEARCH OBJECTIVES	6
1.3	GO	OD QUALITY RA	7
1.4	SIC	SNIFICANCE OF THE STUDY	7
1.5	STI	RUCTURE OF THE THESIS	8

CHAPTER 2 MOTIVATION FOR THE RESEARCH: RECYCLING AND CONCRETING ASPECTS

2.1	BA	CKGR	OUND	11
2.2	SCA	ALE O	F WASTE MATERIALS AND THE NEED FOR	13
	RE	CYCL	ING	
	a.	Gene	eral	13
	b.	Cons	struction and demolition waste	15
	c.	Fly a	sh	21
	d.	Red	granite dust	23
2.3	PRO	OCESS	SING OF C&DW MATERIALS	24
	a.	Bow	hill aggregate recycling facility	27
		i.	Types of equipment in Bowhill facility	27
		ii.	Recycling process at Bowhill facility	29
2.4	FAG	CTOR	S CONTRIBUTING TO STRENGTH AND PERFORMANCE	32

	a.	Water to cement ratio	32
	b.	Blending RA with good quality NA	33
	c.	Use of mineral admixtures	33
	d.	Use of chemical admixtures	34
	e.	Use of higher cement content	35
2.5	TH	E NEED FOR MORE RESEARCH WORK ON RAC	35

CHAPTER 3 LITERATURE REVIEW

3.1	INT	TRODUCTION			
3.2		E USE RSPEC	OF RA IN NEW CONCRETE: A HISTORICAL TIVE	38	
3.3			IES IN RECYCLED AGGREGATES	41	
5.5			ar	42	
	a. h			42	
	b.		nen		
	c.		sum	43	
	d.	Ū	nic materials	44	
	e.	Chlo	rides and sulphates	44	
	f.	Glass	5	45	
3.4			L DIFFERENCES BETWEEN RECYCLED AND L AGGREGATES	45	
3.5	CL	ASSIF	ICATION OF RECYCLED AGGREGATES	48	
3.6	BA	RRIER	S TO RECYCLING	51	
3.7	EC	ONOM	IICS OF RECYCLING	53	
3.8	PRI	EVIOU	IS RESEARCH ON THE PROPERTIES OF RAC	55	
	a.	Worl	cability, strength and durability of RAC	55	
	b.	Stres	s-strain relationship of RAC	59	
3.9	UT	ILISAT	FION OF PFA IN CONCRETE	62	
	a.	General			
	b.	PFA-	-cement reaction and strength development	66	
	c.	PFA	and the heat of hydration	67	
	d.		use of PFA in concrete	68	
		i.	PFA replacing cement	68	
		ii.	PFA replacing fine aggregate	73	
		iii.	PFA replacement level	77	

3.10	CLASSIFICATION OF CONCRETE	80
3.11	SUMMARY	81

CHAPTER 4		E R 4	HYPOTHESIS, METHODOLOGY AND MATERIAL CHARACTERISATION			
4.1	BA	CKGR	OUND			
4.2	HY	РОТН	ESIS			
4.3	ME	ETHOD	OLOGY			
4.4	MA	ATERIA	ALS USED IN THE STUDY			
	a.	Natu	ral aggregate			
	b.	Recy	cled aggregate			
	c.	Fine	aggregate			
	d.	Cem	ent			
	e.	Pulve	erized fuel ash			
	f.	Supe	rplasticizers			
	g.	Red	granite dust			
	h.	Wate	er			
4.5	MA	TERIA	AL TESTING			
	a.	Testi	ng of aggregate			
		i.	Grading of coarse aggregate			
		ii.	Grading of fine aggregate			
		iii.	Impurities in RA			
		iv.	Aggregate impact value			
		v.	Unit weight of aggregate			
		vi.	Porosity of aggregate			
		vii.	Drying of aggregate and absorption capacity of aggregate			
	b.	Testi	ng cement, PFA, and RGD			
		i.	Wet sieve analysis of cement			
		ii.	Wet sieve analysis of PFA			
		iii.	Wet sieve analysis of RGD			
		iv.	Chemical analysis of cement, PFA and RGD			
	c.	Scan	ning electron microscopy of cement, PFA, and RGD samples			
		i.	SEM of cement			
		ii.	SEM of PFA			
		iii.	SEM of RGD			
4.6	DE	SIGN (OF CONCRETE MIXES			

4.7	SEI	LECTION OF SP TYPE	111
	a.	General	111
	b.	Setting times of the binder paste	111
	c.	Influence of SP and PFA on water demand of the paste	116
	d.	Slump loss of RAC mixes	118
4.8		LECTION OF APPROPRIATE WATER REDUCTION FOR RTAIN SP	124
	a.	Slump of control mix (0%WR)	126
	b.	Slump measurements for 15% WR	127
	c.	Slump measurements for 20%WR	128
	d.	Slump measurements for 25%WR	128
	e.	Relationship between water reduction and slump	129
4.9	SUI	MMARY	132

CHAPTER 5 RECYCLED AGGREGATE CONCRETE MADE WITH SUPERPLASTICIZER

5.1	BACKGROUND 1		
5.2	SOI	ME CONCRETE ASPECTS: AN OVERVIEW	135
	a.	Modes of failure of concrete elements	135
	b.	Compressive strength	136
	c.	Splitting tensile strength	136
	d.	Flexural strength	138
	e.	Modulus of elasticity	139
	f.	RAC: the use of SPs	141
5.3	RA	C PRODUCED WITH SUPERPLASTICIZERS	141
	a.	Compressive strength	143
	b.	Splitting tensile strength	146
	c.	Density of hardened concrete	149
5.4	Mix	tes made with blended aggregates	1
5.5	SUI	MMARY	151

CHAPTER 6 RECYCLED AGGREGATE CONCRETE MADE WITH PARTIAL REPLACEMENT OF FINE AGGREGATE BY PFA

6.1	INTRODUCTION	153
6.2	PROPERTIES OF RAC MADE WITH PARTIAL REPLACEMENT OF	154
	FINE AGGREGATE WITH PFA	

	a.	Gene	eral: superplasticizers, PFA and cement	154
	b	RAC	C concrete mixes	155
		i.	Workability of fresh concrete	158
		ii.	Compressive strength	161
		iii.	Splitting tensile strength	169
	c.	Dens	sity of hardened concrete	171
6.3	SUN	MMAR	ΩΥ	172
CHA	APTE	R 7	RAC PRODUCED BY CEMENT REPLACEMENT	
7.1	INT	RODU	JCTION	175
7.2	RA	CON	ICRETE PRODUCED WITH PFA PARTIALLY	176
	REF	PLACI	NG CEMENT	
	a.		eral	176
	b.	Sele	ction of the best mixing option	176
		i.	Workability of no PFA mixes	178
		ii.	Compressive, tensile, and flexural strength of no PFA mixes	178
		iii.	Selection of the best mixing option	180
	c.	Con	crete mixes with PFA replacing cement	181
		i.	General	181
		ii.	Workability of concrete when PFA replaces cement	183
		iii.	Compressive strength of concrete when PFA replaces cement	183
		iv.	Tensile strength of concrete when PFA replaces cement	186
		v.	Modulus of elasticity of concrete when PFA replaces cement	190
		vi.	Modulus of elasticity of concrete when PFA replaces cement estimated by other empirical methods	197
		vii.	Density and pulse velocity of concrete when PFA replaces cement	198
		viii.	Relationship between density and compressive strength	200
7.3			ICRETE PRRODUCED WITH RGD PARTIALLY NG CEMENT	202
	a.	Intro	duction	202
	b.	Sele	ction of the best RGD cement replacement level	204
		i.	Workability of mixes used for selection of optimal RGD cement replacement level	205
		ii.	Mechanical properties of mixes used for selection of optimal RGD cement replacement level	207
		iii.	Density and pulse velocity of mixes used for selection of	210

	RGD cement replacement lev	el
--	----------------------------	----

	c.	Co	ncrete mixes with RGD replacing cement	21
		i.	General	213
		ii.	Workability of concrete mixes without and with 30% RGD replacing cement	21
		iii.	Compressive, tensile, and flexural strength of concrete with 30% RGD replacing cement	21
		iv.	Modulus of elasticity of concrete made with 30% RGD	22
	d.	Co	mparison between PFA and RGD concrete	22
		i.	Comparison between PFA and RGD concrete on the basis of strengths and elasticity modulus	22
		ii.	Comparison of the measured strength and estimated mechanical properties of concrete made by PFA and RGD	22
7.4	SUN	MMA	RY	22
CHA	PTER	8	RECYCLED SELF-COMPACTING CONCRETE MADE WITH PFA OR RGD	
8.1	INT	ROD	PUCTION	23
8.2	OB.	ECT	IVES OF THE INVESTIGATION	23
8.3	SCO	C: A I	REVIEW	23
	a.	Puł	blished literature	23
	b.	Bri	tish Standard and EFNARC guidelines for SCC	23
		i.	British Standards and Concrete Society practice	23
		ii.	EFNARC Guidelines	23
8.4		DUU	MENTAL INVESTIGATION: RECYCLED SCC	23
	a.		neral	23
	b.		sting methods	24
		i.	Slump flow	24
		ii.	Spreading times of concrete (T ₅₀₀ and T _{final})	24
		iii.	L-box test	24
		iv.	Trial mixes and fresh concrete results	24
8.5	SUN	v. MMA	Mechanical properties of RAC-SCC concreteRY	25 26
CHA	PTER	9	COMMENTS, CONCLUSIONS, AND RECOMMENDATIONS	
9.1	GEI	NERA	AL	26
9.2	COI	MME	NTS	26

9.3	CONCLUSIONS	263
9.4	RECOMMENDATIONS	266
	REFERENCES	268
	APPENDIXES	283

List of Figures

CHAPTER 1

Figure 1.1	Thesis structure	10
------------	------------------	----

CHAPTER 2

Figure 2.1	Source of weakness of RA	12
Figure 2.2	Life cycle of construction materials	13
Figure 2.3	Samples of buildings under demolition in Edinburgh	14
Figure 2.4	Tuning C&DW to recycled aggregate of different sizes	16
Figure 2.5	The variability in shape, texture and origin of the RA	16
Figure 2.6	Waste arising in the UK	17
Figure 2.7	Estimated annual UK arisings (Defra 2009)	18
Figure 2.8	Utilisation of PFA in the construction industry in Europe in 2004	22
Figure 2.9	Estimated total quantities of mining and quarrying by-products in the UK	24
Figure 2.10	Fixed recycling facility	25
Figure 2.11	Processing of demolition wastes	26
Figure 2.12	Aggregate screen	28
Figure 2.13	Powerscrub 120R crushing machine	29
Figure 2.14	Removing fines by washing with water	30
Figure 2.15	Bowhill produced RA	30
Figure 2.16	Red granite (NA)	31
Figure 2.17	Production plant for recycled aggregates (Kiyoshi 2007)	31
Figure 2.18	Factors contributing to increased RAC strength and performance	32

Figure 3.1	Typical stress-strain (σ - ϵ) curves of RAC	60
0	Variation of compressive strength with the level of PFA and age of curing	69

Figure 3.3	Compressive strength of NAC concrete with various levels of PFA	70
Figure 3.4	Compressive strength ratio versus fine aggregate replacement with fly ash	74

Figure 4.1	Cloburn quarry near Lanark	89
Figure 4.2	Grading of natural coarse granite aggregate	92
Figure 4.3	Grading of recycled coarse aggregate	92
Figure 4.4	Grading of fine concrete aggregate	93
Figure 4.5	Impurities in the RA	94
Figure 4.6	Density testing apparatus (weight-in-air, weight-in-water method	99
Figure 4.7	Porosity testing apparatus	100
Figure 4.8	Drying of NA over time	102
Figure 4.9	Drying of RA over time	102
Figure 4.10	SEM image of cement specimen	107
Figure 4.11	Spectrum of the energy of characteristic X-rays emitted from the cement specimen	107
Figure 4.12	SEM image of PFA specimen	108
Figure 4.13	Spectrum of the energy of characteristic X-rays emitted from the PFA specimen	109
Figure 4.14	SEM image of RGD specimen	109
Figure 4.15	Spectrum of the energy of characteristic X-rays emitted from the RGD specimen	110
Figure 4.16	Influence of SP type on binder's IST	114
Figure 4.17	Influence of SP type on binder's FST	114
Figure 4.18	IST of mixes at different level of PFA and SP with respect to standard mix	115
Figure 4.19	IST of mixes at different level of PFA and SP with respect to standard mix	116
Figure 4.20	Influence of SP type and PFA on water demand of binder paste	117
Figure 4.21	Influence of SP type on slump loss at 30 minutes for mixes with 50% PFA replacement	122
Figure 4.22	Influence of PFA content on the rate of slump loss of NAC made SP A	123
Figure 4.23	Influence of PFA content on the rate of slump loss of RAC made with SP A	123
Figure 4.24	Slump against SP relationship for control mix (0% WR)	127

Figure 4.25	Slump against SP relationship for control mix (15% WR)	127
Figure 4.26	Slump against SP relationship for control mix (20% WR)	128
Figure 4.27	Slump against SP relationship for control mix (25% WR)	129
Figure 4.28	Relationship between slump and WR for 0.6% SP	130
Figure 4.29	Relationship between slump and WR for 0.8% SP	130
Figure 4.30	Relationship between slump and WR for 1.0% SP	130
Figure 4.31	Relationship between slump and WR for 1.2% SP	131
Figure 4.32	Relationship between slump and WR for 1.4% SP	131

Figure 5.1	Loading arrangement for tensile splitting strength	137
Figure 5.2	Loading of a cube for tensile splitting testing (L) and cube alignment (R)	137
Figure 5.3	Arrangement of loading test piece (two point loading)	139
Figure 5.4	Concrete cubes prepared for modulus of elasticity test	140
Figure 5.5	Development of compressive strength of RAC as compared to NAC concrete	144
Figure 5.6	Compressive strength for NAC and RAC mixes produced with SP type A	145
Figure 5.7	Splitting tensile strength for NAC and RAC mixes of different grades	146
Figure 5.8	Fracture surface of samples (a) NAC 40-A and (b) RAC 40-A	147
Figure 5.9	Fracture surface of samples (a) NAC 50-A and (b) RAC 50-A	148
Figure 5.10	Fracture surface of samples (a) NAC 60-A and (b) RAC 60-A	148
Figure 5.11	Fracture surface of NA50-RA50 (blended aggregate concrete)	151

Figure 6.1a	Development of compressive strength of RAC with PFA replacing fine aggregate at different levels (SP A used) compared to the control mix	163
Fig. 6.1b	Variation of the 28 day compressive strength of RAC with PFA content	163
Figure 6.2	Influence of PFA level in sand on compressive strength ratio	164
Figure 6.3	Compressive strength of RAC concrete produced with different PFA levels and SP A at early (7 days) and later age (90 days)	165
Figure 6.4	Compressive strength of RAC concretes produced with 50% PFA and different SP types compared with the control mix	165

Figure 6.5	The 28 day compressive strengths of concrete produced with different PFA contents (SP A used)	166
Figure 6.6	Influence of PFA content on the compressive strength of concrete	166
Figure 6.7	Compressive strength of RAC concrete as compared with mix design values	167
Figure 6.8	The shape of crushed RAC and NAC concrete samples	168
Figure 6.9	The 28 day tensile strengths produced with different levels of PFA and SP A	170
Figure 6.10	Influence of PFA content on the density of concrete	172

Figure 7.1	Beams and cubes kept in water tank at $20 \pm 2^{\circ}C$	179
Figure 7.2	Compressive strength of NAC mixes with PFA at different ages compared to control mixes	184
Figure 7.3	Compressive strength of RAC mixes with PFA at different ages compared to control mixes	185
Figure 7.4	Comparison of compressive strength of concrete with PFA at different ages	185
Figure 7.5	Tensile strength of RAC with and without PFA compared to control mixes	187
Figure 7.6	Tensile splitting and flexural strength of mixes (NAC and RAC) with PFA compared to control mixes	187
Figure 7.7	Fracture surfaces of concrete samples	188
Figure 7.8	A stack subjected to two cycles of loading controlled by a computer before crushing	191
Figure 7.9	Testing for the concrete modulus of elasticity: a sample under compression up to failure	192
Figure 7.10	Typical stress-strain curve for NAC specimen (NAC-CM)	194
Figure 7.11	Typical stress-strain curve for RAC specimen (RAC-CM)	194
Figure 7.12	Influence of PFA cement replacement on the bulk density of NAC concrete	199
Figure 7.13	Influence of PFA cement replacement on the bulk density of RAC concrete	200
Figure 7.14	Density of RAC mixes with admixtures at different ages against the corresponding compressive strength	201
Figure 7.15	RGD, cement and fly ash samples	203
Figure 7.16	Effect of RGD content on workability of NAC mixes	206
Figure 7.17	Concrete cubes with different RGD content	208
Figure 7.18	Compressive strength of RGD concretes at 28 days	209

Figure 7.19	Compressive strength of different RGD concretes at different ages	209
Figure 7.20	Tensile strength of different RGD concretes at different ages	210
Figure 7.21	Variation of concrete bulk density with binder RGD content	211
Figure 7.22	Variation of pulse velocity of concrete with the level of RGD cement substitution	212
Figure 7.23	Surface finish of RGD compared to cement and PFA concrete	216
Figure 7.24	Fracture surface of concrete samples with 30% RGD substitution	217
Figure 7.25	Comparison of compressive strength of mixes with RGD at different ages	218
Figure 7.26	Development of compressive strength of concrete mixes made with 30% RGD	219
Figure 7.27	Stress-strain curve for RGD specimen (NAC-30RGD)	221
Figure 7.28	Stress-strain curve for RGD specimen (RAC-30RGD)	222
Figure 7.29	Comparison of 28 day compressive strength of mixes with PFA and RGD	224
Figure 7.30	Comparison of tensile splitting strength of mixes with PFA and RGD and the 28 day control mix	224
Figure 7.31	Comparison of flexural strength of mixes with PFA and RGD and the 28 day control mix	225
Figure 7.32	Comparison of modulus of elasticity of mixes with PFA and RGD and the 28 day control mix	225

Figure 8.1	Dimensions and marking of the base plate (EFNARC 2005)	241
Figure 8.2	Slump cone located on the inner circle above the base plate	241
Figure 8.3	Dimensions and typical design of L-box (EFNARC 2005)	243
Figure 8.4	L-box apparatus	244
Figure 8.5	Concrete flow into the bottom tank of the L-box	245
Figure 8.6	Blockages behind reinforcing bars	245
Figure 8.7	Concrete failing the flow test	248
Figure 8.8	Failed mixes due to segregation between coarse aggregate and cement paste although the mix passed the flow test	250
Figure 8.9	Measuring flow diameter of a successful SCC mix	250
Figure 8.10	Concretes failing to complete an L-box test having passed the flow test	251
Figure 8.11	Samples of concrete successfully passing slump flow test	252

Figure 8.12	Samples of concrete successfully passing slump flow and L- box tests	253
Figure 8.13	Slump against time	256
Figure 8.14	Flow diameter against time	256
Figure 8.15	Fracture surface of SCC samples	259

List of Tables

CHAPTER 1

CHAPTER 2

There are no tables in Chapter 2

CHAPTER 3

Table 3.1	Requirements for recycled aggregates (BS 8500-2:2002)	41
Table 3.2	Classification of recycled coarse aggregates for concrete (RILEM 1994)	49
Table 3.3	Classification of the constituents of coarse recycled aggregates (BS EN 12620:2002+A1:2008)	50
Table 3.4	Classification of RA (Vivian 2007)	51
Table 3.5	Comparison of standards for fly ash	65
Table 3.6	PFA replacement level in concrete	79
Table 3.7	Classes of concrete based on compressive strength	80
Table 3.8	Concrete mixes commonly used for various type of work	81

Table 4.1	Typical sieve analysis result of NA and RA coarse aggregates	91
Table 4.2	Grading limits for coarse aggregate (from BS 882-1983)	91
Table 4.3	Typical sieve analysis result of fine aggregate	93
Table 4.4	Grading limits for fine aggregate (from BS 882)	93
Table 4.5	Average percentages of impurities present in RA	94
Table 4.6	Typical result for the estimation of percentage of bitumen-coated RA	95
Table 4.7	Typical impact value test for NA and RA	96
Table 4.8	Relative density of coarse NA	97
Table 4.9	Relative density of coarse RA	98

Table 4.10	Initial water content of aggregate samples	101
Table 4.11	Wet sieve analysis of Cement	103
Table 4.12	Wet sieve analysis of PFA	103
Table 4.13	Wet sieve analysis of RGD	104
Table 4.14	Chemical composition of cement, PFA and RGD	105
Table 4.15	Other properties of cement	105
Table 4.16	Other properties of PFA	105
Table 4.17	Normal consistency and setting times of binding paste with different percentages of PFA and different types of SP	113
Table 4.18	Mix proportions of standard mix for slump monitoring purpose	119
Table 4.19	Adjusted mix proportions used for slump monitoring purpose	119
Table 4.20	Influence of SP and PFA on slump loss over time of NAC and RAC mixes	121
Table 4.21	Mix proportions of standard mixes used for the selection of WR	125
Table 4.22	Slump for different SP percentage for control mix (0% WR)	126
Table 4.23	Slump for different SP percentage at 15% WR	127
Table 4.24	Slump for different SP percentage at 20% WR	128
Table 4.25	Slump for different SP percentage at 25% WR	128
Table 4.26	Relationship between slump and WR of trial mixes at different SP percentages	129
Table 4.27	The percentage of SP and the corresponding WR	131
CHAPTE	R 5	
Table 5.1	Mixes proportions of concrete grades 40, 50 and 60	143
Table 5.2	Standard mixes and the successful trial mixes with SP	143
Table 5.3	Compressive strength of concrete mixes with SP	144
Table 5.4	Splitting tensile strength of concrete mixes with SP (without PFA)	146
Table 5.5	Bulk density of hardened concrete mixes with SP (without PFA)	149
Table 5.6	Strengths of blended RAC	151
CHAPTE	R 6	
Table 6.1	Mixes in which PFA replaces fine aggregate, SP type and content	156
Table 6.2	Mix proportions of standard mixes	156
Table 6.3	Mix proportions for mixes when PFA replaces fine aggregates at	157

different levels Adjusted mix proportions for mixes used to produce NAC and RAC concrete 158 Table 6.4

Table 6.5	Amounts of SP used in the mixes	159
Table 6.6	Measured slump of concrete mixes	159
Table 6.7	Compressive strength of NAC and RAC concrete in which PFA replaces fine aggregates at different levels	161
Table 6.8	Relative compressive strengths	164
Table 6.9	Tensile splitting strength of NAC and RAC concrete in which PFA replaces fine aggregates at different levels	170
Table 6.10	Bulk density of hardened concrete with PFA	171

Table 7.1	Concrete mixes without PFA (Mixes 1 to 8)	177
Table 7.2	Mix proportion of standard mixes (Mixes 1 and 2)	177
Table 7.3	Workability without PFA (Mixes 1 to 8)	178
Table 7.4	Compressive strength of mixes without PFA (Mixes 1 to 8)	178
Table 7.5	Tensile strength of mixes without PFA (Mixes 1 to 8)	179
Table 7.6	Density and pulse velocity of no PFA concrete (Mixes 1 to 8)	180
Table 7.7	Concrete mixes with PFA (Mixes 9 to 12)	182
Table 7.8	Mix proportion mixes contains 30% PFA (Mixes 9 and 10)	182
Table 7.9	Workability of mixes with PFA replacing cement	183
Table 7.10	Compressive strength of mixes without and with PFA replacing cement	184
Table 7.11	Tensile splitting and flexural strength of mixes with PFA replacing cement	186
Table 7.12	Modulus of elasticity measurements for NAC specimen (NAC-CM)	193
Table 7.13	Modulus of elasticity measurements for RAC specimen (RAC-CM)	193
Table 7.14	Modulus of elasticity and Poisson's ratio of mixes when PFA replacing cement	195
Table 7.15	Measured and estimated E_s values for NAC concrete samples	197
Table 7.16	Measured and estimated E_s values for RAC concrete samples	198
Table 7.17	Density and pulse velocity of concrete made without and with PFA replacing cement	199
Table 7.18	Influence of PFA on the density and compressive strength of concrete	200
Table 7.19	Compressive strength and density of mixes	201
Table 7.20	Measured and estimated F_{cu} values for RAC concrete samples	202
Table 7.21	Standard mixes with RGD at different levels	205

Table 7.22	Workability of mixes used to determine the best RGD percentage	205
Table 7.23	Strengths of mixes used to determine the best RGD percentage	207
Table 7.24	Density and pulse velocity of mixes used to determine the best RGD percentage	211
Table 7.25	Classification of the quality of concrete on the basis of pulse velocity	213
Table 7.26	Concrete mixes without and with 30% RGD replacing cement	214
Table 7.27	Workability of mixes with 30% RGD replacing cement	214
Table 7.28	Compressive strength of mixes with 30% RGD replacing cement and reference mixes	217
Table 7.29	Tensile splitting and flexural strength of mixes with 30% RGD replacing cement and reference mixes	218
Table 7.30	Relative compressive strength of concrete with 30% RGD	220
Table 7.31	Modulus of elasticity measurements for NAC-30RGD	221
Table 7.32	Modulus of elasticity measurements for RAC-30RGD	221
Table 7.33	Modulus of elasticity of mixes with RGD replacing cement	222
Table 7.34	Compressive, tensile and flexural strength and modulus of elasticity of concrete made with 30% PFA or 30% RGD	223
Table 7.35	Major components in PFA, RGD and GBFS	226
Table 7.36	Comparison of strength of concrete made with 30% PFA and 30% RGD	226
Table 7.37	Models used to estimate concrete properties from the compressive strength	228
Table 7.38	Modulus of elasticity E_s (GPa) obtained by different models and the measured E_s for NAC mixes made with PFA and RGD	228
Table 7.39	Modulus of elasticity E_s (GPa) obtained by different model and the measured E_s for RAC mixes	228
Table 7.40	Modulus of rupture (F_r) obtained by different model and the measured F_r for NAC mixes	229
Table 7.41	Modulus of rupture (F_r) obtained by different model and the measured F_r for RAC mixes	229
CHAPTE	R 8	
Table 8.1	Mix proportions of standard mixes for SCC (control mixes)	239
Table 8.2	Mix proportions of standard mixes for SCC with 30% PFA or RGD	239
Table 8.3	List of mixes selected to produce RAC-SCC with SP, PFA, and RGD	247
Table 8.4	Adjusted mix proportions of SCC concrete standard mixes	247
Table 8.5	The amounts of SP and WR found to meet SCC criteria for the given mix	254

Table 8.6	Mix proportions of SCC concrete (all mixes)	254
Table 8.7	The w/c and w/b ratio of SCC mixes	255
Table 8.8	Workability of successful mixes of RAC-SCC	255
Table 8.9	Slump and flow of SCC mixes at different times	256
Table 8.10	Strengths of the SCC mixes	258

List of abbreviations

ASR	Alkali silica reaction	PA	Passing ability of SCC
C&DW	Construction and demolition waste	RGD	Red granite dust
C _u	Uniformity coefficient of coarse aggregate	RD	Relative density of aggregate
EDXA	Energy dispersive X-ray analysis	PFA	Pulverised fuel ash
E_s	Modulus of elasticity of concrete	RAC	Recycled aggregate concrete
FST	Final setting time of the paste	SCC	Self-compacting concrete
\mathbf{F}_{cu}	Cube strength of concrete	SCC-NAC	Natural aggregate self- compacting concrete
F _{cy}	Cylindrical strength of concrete	SCC-RAC	Recycled aggregate self- compacting concrete
\mathbf{f}_{ct}	Tensile splitting strength of concrete	SEM	Scanning electron microscope
$\mathbf{f}_{\mathbf{r}}$	Flexural strength of concrete	T ₅₀₀	Time taken by a concrete to spread 500 mm
GGBS	Ground granulated blast furnace slag (slag)	$\mathrm{T}_{\mathrm{final}}$	Time taken by a concrete to cease spreading
HSC	High strength concrete	VMA	Viscosity modifying agent
IST	Initial setting time	w/b	Water to binder ratio
NC	Normal consistency	w/c	Water to cement ratio
NAC	Natural aggregate concrete	μ	Poisson's ratio