
Approaches to Storing and Querying Structural
Information in Botanical Specimen Descriptions

Trevor Paterson and Jessie B. Kennedy

School of Computing, Napier University, Edinburgh, EH10 5DT, U.K.
{t.paterson, j.kennedy}@napier.ac.uk

Abstract. We are developing an ontology as a defined terminology for the
taxonomic description of botanical specimens. To allow these descriptions to
unambiguously refer to a given plant structure, the ontology specifies composi-
tional relationships between anatomical structures, as well as providing textual
definitions for structural terms. We are testing a variety of approaches for rep-
resenting this compositional hierarchy in a relational database, so that descrip-
tions can refer to the compositional context (path) of any structure being
described. We compare the relative advantages of storing and querying path in-
formation in an XML representation or as a materialized string.

1 Introduction: An Ontology for Plant Character Description

Taxonomy is founded on the classification of living organisms into groups (taxa) on
the basis of perceived shared characteristics, to form a taxonomic hierarchy reflecting
evolutionary relationships between these groups. The accurate description of the char-
acters exhibited by 'specimen' organisms is therefore integral to the taxonomic proc-
ess [1]. We have developed a conceptual model for composing plant descriptions,
where each descriptive 'character' is decomposed into an anatomical structure, a prop-
erty and a (state) score, which can be either numerical or a qualitative state [2]. In
order to improve the accuracy and compatibility of plant descriptions we have pro-
posed that such 'description elements' be composed using a well defined, agreed ter-
minology, in which each descriptive term is unambiguously defined.

Initially it may only be practical to create a description ontology for a restricted
taxonomic group, as there may be irreconcilable differences in terminology between
disparate plant groups. We have developed a demonstration ontology for the domain
of flowering plants (i.e. angiosperms) that consists of defined terms (i.e. structures,
properties and states) and relationships between theses terms [2,3]. The relationships
between terms define which states and properties can describe a given structure, and
how structures can relate to other structures.

Purely textual definitions of structure terms cannot capture information about the
precise context of a given structure – which may become relevant when comparing
apparently similar structures. For example, a hair may be adequately defined as 'An
epidermal outgrowth composed of a single elongated cell' but hairs may occur in
many structural contexts, on leaves, on petals, on filaments etc., and for some taxo-
nomic comparisons it may not be useful to consider these occurrences as equivalent

2 T. Paterson & J. B. Kennedy.

hair structures. Therefore it would be useful if the definition of hair could be extended
to include its structural context. That is, to refer to the hierarchy of superstructures
that a given structure is part-of.

All structures on a plant have a structural context, as a plant is composed of a mul-
titude of substructures. Each instance of a structure therefore has a path of superstruc-
tures that it is part-of, up to the 'root' superstructure (which will be the whole plant).
Our ontology specifies a single asymmetric compositional relationship for structures,
which we have named 'part-of' for convenience, but which might be interpreted se-
mantically loosely to include less rigid composition relationships. In effect the 'part-
of' relationships in the ontology define a template specimen comprising all the poten-
tial composition relationships that might be found on any given specimen plant,
which can be represented as a hierarchy of possible structural relationships.

Such a hierarchy forms a directed acyclic graph, where each structure has one or
more potential 'parent' structure. However, taxonomists can work more intuitively if
this graph is represented as a tree hierarchy, where nodes with more than one parent
are replicated to give nodes with unique parents [4]. This is illustrated in Figure 1.
Here androecium can appear as part-of five structures and each of these can in turn
have two structural contexts (i.e. two parents), dependent upon whether florets are
present, giving ten possible context paths that can be chosen for androecium. Each
node in the expanded tree hierarchy can be uniquely identified by its compositional
path (Figure 1c). Only when one of these contexts is chosen and used in a taxonomic
description will that particular structural context be affirmed.

Figure 1. Representing the 'part-of' hierarchy as (a) a Directed Acyclic Graph (b) a Tree Hier-
archy (c) a dot separated string of structure IDs detailing the Hierarchical Path.

 (a)
288
288.239
288.239.243
288.239.243.51
288.239.243.52
288.239.243.52.51
288.239.243.55
288.239.243.55.51
288.239.243.156
288.239.243.156.51
288.239.243.271
288.239.243.271.51
288.243
288.243.51
288.243.52
288.243.52.51
288.243.55
288.243.55.51
288.243.156
288.243.156.51
288.243.271
288.243.271.51

(c) (b)

Structural Information in Botanical Specimen Descriptions 3

Our initial core ontology for the description of angiosperms [2] is composed of 143
structure terms that are related by 160 optional part-of relationships. However, in
order to retain simplicity this core hierarchy excluded many small, frequently occur-
ring microstructures (e.g. hairs, scales, pores etc.) and regions (e.g. base, apex, upper-
surface etc.). We reasoned that such structures and regions could potentially be added
to virtually any structure in the ontology, and that to explicitly record these relation-
ships would be redundant and make the hierarchy overly complex. In practice tax-
onomists will add these minor structures to the hierarchy as required for individual
description projects, thereby creating project-specific structural trees. The paths of
such additional structures, being extensions to the end of existing paths, will be com-
patible with paths in the core ontology.

We are currently developing a relational database both for recording the terms and
relationships in our demonstration ontology and for recording plant specimen descrip-
tions according to our conceptual model using terms defined in the angiosperm ontol-
ogy. In order to store descriptive data compliant with our description ontology we
wish to be able to capture the full semantics of terms as defined in the ontology. In the
case of the structure terms this requires that we capture not only the textual definition
of a term, but the precise contextual usage of the term in each description instance, i.e.
the actual compositional relationships of a structure. In terms of Figure 1 this infor-
mation would distinguish each of the 10 possible contexts for androecium.

It is necessary that these structural contexts are valid and comparable between
specimen descriptions, even if the ontology expands to include additional structures
and part-of relationships, or project-specific additions of regions or microstructures
are used (as described above). For example, if one taxonomist refers to hairs on the
androecium of a flower, which is not part-of a floret, and another taxonomist refers to
hairs on the androecium of a flower that is part-of a floret the contextual paths created
for these hairs would explicitly express this difference. Such a mechanism will allow
specific queries on properties of androecium hairs to consider or ignore differences in
context as considered appropriate by taxonomists.

A further requirement of our path specification mechanism is to allow for the
replication (or 'cloning') of any structure. This is necessary if, in a particular project, a
taxonomist wishes to refer to several types of a structure that are identical in terms of
definition and structural context. For example, a particular group of plants may ex-
hibit several clearly distinguishable leaf types on the same specimen; perhaps oval
leaves at the base and lanceolate leaves at the apex. It would be impossible to prede-
fine all the potential types of a structure in the ontology, but multiple types can be
distinguished and scored separately at a project level if the (leaf) structure is dupli-
cated in the hierarchy. A related requirement is to score multiple instances of a struc-
ture on a single specimen, for example to record concrete measurements for a number
of different leaves on a single specimen. Whilst some taxonomists might score an
average or range of (abstract) length measurements for all the leaves on a specimen,
others may choose to score the actual (concrete) score of a number of individual leaf
instances. The contextual definition of the leaves would in these cases be identical,
but the latter case would require the ability to refer to multiple instances of the same
structure.

4 T. Paterson & J. B. Kennedy.

2 Approach: Representing Compositional Paths for Plant
Structures

2.1 Storing Hierarchical Trees in Relational Databases

The representation and querying of hierarchical tree structures in relational databases
is a well-studied problem [5-7]. The part-of relations specifying the composition hier-
archy in Figure 1a can be stored in a simple adjacency list of termID versus parentID,
representing the edges of a directed graph. However, whilst adequately recording all
of the information required for programmatic generation of the graph or a tree repre-
sentation of the hierarchy, such a relationship table is not amenable to standard SQL
query (without procedural/programming extensions to provide recursion) as it does
not exhibit transitive closure, nor are paths through the table unique, as some nodes
have more than one parent. In order to provide the specific path information that we
require to characterize a node we need to expand the graph into the tree structure
shown in Figure 1b, by replicating structures that have more than one parent.

Each node in the expanded tree must now be assigned an identity that will allow
recovery of the compositional context of the structure (i.e. the node path), as well as
the identity of the defined structure (i.e. the structure term ID, e.g. '243' for flower).
By referring to this node identity, descriptions will now be able to distinguish differ-
ent instances of androecium according to their structural context.

Node identity for the tree could be assigned programmatically in a variety of fash-
ions and these node IDs stored in a child/parent adjacency list. In order to be amena-
ble to standard SQL query, transitive closure could be calculated for this table, or, the
table could be recursively queried using proprietary tree traversal SQL extensions
such as Oracle's 'Connect By' clause [8].

Various procedures have been described for labeling nodes to represent trees in re-
lational databases in a manner amenable to standard SQL query, such as numbering
systems based on nested sets or nested intervals [5,6]. However, as with transitive
closure, these can involve complicated or expensive maintenance costs if the tree
structure is dynamic, not static. In our case we require that the ontology tree is future-
proof and can be expanded by the addition of new structures and paths, and that at a
project level additional microstructures and regions can be added on an ad hoc basis.
An alternative approach to node numbering as a label is to use the materialized path
of a node as its identity, which can be represented in binary form or as a dot-separated
string of the structure term IDs comprising the path (as in Figure 1c). Again tree in-
formation could be stored in an adjacency list of node versus parent node identifiers.
However, as the materialized path is actually encoded within the node identifier
string, it is amenable to the string parsing functions typically provided in database
functionality. Therefore storage of the materialized path alone provides full reference
to the context of given node.

In our application using a dot separated string representation of the materialized
path has many advantages: (1) the encoded path is a simple, readable concatenation of
structure term IDs; (2) the encoding is not volatile, but will remain valid even if fur-
ther nodes and paths are added to the relationship table; (3) this allows for multiple
versions of the tree hierarchy (e.g. if the ontology is extended over time, with new

Structural Information in Botanical Specimen Descriptions 5

structures and paths added to later versions); (4) it allows addition of regions and
microstructures in project specific versions of the hierarchy (as described above).

 In our prototype database application we programmatically build the structural
composition tree from the part-of relationships stored in the ontology, and use this to
calculate node identities and paths as shown in Table 1. This information can be
stored in a standard relational table, which therefore provides several access routes for
traversing the tree: adjacency lists stored as NodeID versus ParentNodeID, or Path
versus ParentPath, or via the Materialized Path itself. The NodeIDs may be volatile
and difficult to maintain between versions of the ontology, and would require exten-
sion to handle project specific additions to the hierarchy. On the other hand use of the
ParentPath is redundant, as this merely duplicates information encoded in the full
Materialized Path. As traversing paths through subtrees will rapidly get less efficient
as the subtree size increases (as nodes are 'blind' to their children), recovering and
querying path information by string parsing offers an attractive alternative solution
which can be further enhanced by indexing the string data. The efficiency of path
query might be further enhanced by encoding the paths as bits or integers rather than
strings [9,10], but for our application a native representation of the path as concate-
nated structure term IDs seems more intuitive and potentially more useful.

Table 1. Adjacency list of child-parent pairs as NodeID and Materialized Path The tree
representation of the compostional hierarchy is created programatically, and each node of the
tree assigned a node identifier (NodeID). The Structure (TermID) represented at each node is
recorded, and the Parent Node and Parent Structure Term identified. The path to each node is
then calculated and represented as a (materialized) string of concatenated StructureTermIDs.

Description data for specimens (i.e. records of individual 'description elements' re-

cording observations on individual characters for a particular specimen) may hence
refer to the materialized path of the particular structure being described. Furthermore,
description elements could also store extended paths, where for example a microstruc-
ture has been added to an ontology node (e.g. a hair added to Node 22, would have its
path stored as 288.243.271.51.2334). By storing the materialized paths in the descrip-
tion elements themselves any dependence upon ontology version is removed, al-
though the storage requirements will escalate. Such path strings could be modified to

Node
ID

Structure
TermID

Parent
TermID

Parent
NodeID

Materialized
Path

Materialized
ParentPath

1 288 - - 288 -

2 239 288 1 288.239 288

3 243 239 2 288.239.243 288.239

4 51 243 3 288.239.243.51 288.239.243

5 52 243 2 288.239.243.52 288.239.243

6 51 52 5 288.239.243.52.51 288.239.243.52

...

22 51 271 21 288.243.271.51 288.243.271

6 T. Paterson & J. B. Kennedy.

allow the cloning of structures as discussed above, by adding a parenthetical clone
number to the concatenated termIDs forming the path (e.g. 288.239(1).243 would
refer to a flower on clone 1 of a floret, and 288.239(2).243 to a flower on a different
clone of the floret). Further specification of multiple instances of a structure, which
might itself be cloned, could be provided by a further parenthetical count (e.g.
288.239(2).243[1], 288.239(2).243[2], 288.239(2).243[3] etc. representing three in-
stances of a flower on a specimen). However, such complex representations will add
complexity to the string parsing functions required for path queries.

 2.2 Representing Trees and Paths as XML

In addition to saving ontology specifications and description data to a relational data-
base we are using XML as an interchange format for documenting global and project
level ontology specifications (as outputs of our ontology editor and inputs to our
taxonomic description interface), and for completed specimen descriptions [2,11].
The nested hierarchical structure of an XML document lends itself to a native repre-
sentation of our compositional hierarchy. For example, Table 1 above can be repre-
sented:

<STRUCTURE_TREE>
 <Node ID="1" ParentID="0" Path="288" TermID="288">
 <Node ID="2" ParentID="1" Path="288.239" TermID="239">
 <Node ID="3" ParentID="2" Path="288.239.243" TermID="243">
 <Node ID="4" ParentID="3" Path="288.239.243.51" TermID="51" />
 <Node ID="5" ParentID="3" Path="288.239.243.52" TermID="52" >
 <Node ID="6" ParentID="5" Path="288.239.243.52.51" TermID="51" />

 . . .
 <Node ID = "22" ParentID="21" Path="288.243.271.51" TermID="51" />
 </Node>
 </Node>
 </Node>
</STRUCTURE_TREE>

This allows explicit definition of the hierarchical tree, recording full details for

each node as calculated programmatically by our ontology editor application. The
ontology can then be saved in XML format, with optional conformance to a DTD or
schema specification. This representation has included the programmatically calcu-
lated NodeIDs to label each node in the tree; however, these node labels will again
fail to handle a dynamic tree structure.

Efficient node numbering schemes have been developed to facilitate structural
searches of XML documents stored in databases; however, the combination of persis-
tent identifiers for nodes with structural identifiers (which might change with docu-
ment version) is still an area for research (e.g. [12,13]). Object-Relational (e.g. Oracle
[14]) or Native XML (e.g. Xyleme [15]) databases can index XML tree structures,

Structural Information in Botanical Specimen Descriptions 7

using the individual node labels, and creating hash indexes of a node's relationships to
other nodes, however, such indexes may also be volatile for a non-static tree. Hence,
whilst the XML format may be a convenient format to represent the tree hierarchy, it
does not solve our requirement to reference structural context information in descrip-
tion data in a fashion that is not affected by ontology version and project-extensions.

It is also possible to represent the materialized path of any structure in the ontology
as an XML fragment. These paths can be calculated for each structure in the ontology,
and stored as an additional column of XML datatype in Table 1. For example the path
of Node 3 can be represented in XML as:

<Path nodeID="3">
 <Term IDREF="288" >
 <Term IDREF="239" >
 <Term IDREF="243" />
 </Term>
 </Term>
</Path>

Description data could then reference these Materialized XML Paths, which would
be amenable to XPath-based query [16-18] as an alternative to string parsing of the
path as described above. Again, description elements could explicitly record the mate-
rialized path for the structure being described, which would readily allow the insertion
of project specific microstructures into paths stored as description data, without re-
quiring this information (and node identity) to be created in the parent ontology. Fur-
thermore, as any number of attributes can now be added to either the 'Path' or 'Term'
elements we can readily store information about cloned structures, and repeat in-
stances of structures in the XML fragment stored for a given description element (as
was described above using parenthetical additions to the materialized path string,
§2.1). For example, if the taxonomist wants to refer to more than one type of the
structure NodeID 3, he would create versions with distinguishing clone numbers, and
he could score any number of instances of a structure by specifying an instance count.

<Path nodeID="3" >
 <Term IDREF="288" clone="1" >
 <Term IDREF="239" clone="2" >
 <Term IDREF="243" clone="1" instance="3" />

 </Term>
 </Term>
</Path>

Such a rich method of recording structural context would allow accurate and un-

ambiguous description records to be recovered easily, and would be amenable to
XPath query functions which could consider or ignore this extra information as con-
sidered relevant for a given task. Materialized XML paths therefore share the advan-
tages noted above for materialized string representations, with the hierarchical

8 T. Paterson & J. B. Kennedy.

structure of XML fragments lending itself easily to our requirements. Furthermore,
databases that implement XPath query functions provide simple SQL extension func-
tions for traversing XML documents and fragments to recover path information.

The extended Object-Relational features of Oracle allow columns in relational ta-
bles to store XML datatypes either as CLOBs, or as structured data if the XML is
validated to an XML Schema. However, the 'shredding' of XML documents into rela-
tions is complex where the XML Schema is recursive (reviewed [19]) and Oracle
cannot use schemas which include undefined nesting of elements to structure XML
datatypes. As our data contains unbounded nesting of Term elements in materialized
paths, we cannot benefit from the reported improved query performance achieved by
Oracle's structuring of XML data [18], but can still utilize XPath querying and index-
ing, and indexed text querying of the CLOB storage type.

3 Evaluation

Having created and stored the alternative representations of our compositional hi-

erarchy as illustrated in Table 1, extended by an additional column recording the
materialized XML path for each node, we have investigated the flexibility and effi-
ciency of different approaches to querying test data collected in our Oracle database
(Oracle 9.2.0.1.0). To facilitate this, 25 plant specimen descriptions were recorded,
using various project-specific adaptations of our angiosperm ontology (i.e. using 6
separate project 'proformas' with various additional microstructures, regions and
cloned structures). Each specimen description consists of a set of 'description ele-
ments' each of which references a structure, property and state or numerical score:
representing an individual 'character' for the specimen. In addition each description
element stores the materialized path for the structure being scored in both formats:
XML and String. Some of these paths will be common to all descriptions composed
with this ontology and are listed in an ontology table equivalent to Table 1, whilst
other paths containing project specific additions, clone information and instance
counts are not present in the table of paths present in the ontology, but are only ever
found in actual data instances. In total, our trivial test database contained 250 Descrip-
tion Element records, representing less than 1MB of data.

We analyzed the performance of two representative queries using Oracle's SQL
Scratchpad and TopSQL resource consumption monitor. The first, simple query (I)
returned all the description elements that record anything about flowers or flower
parts, and the second, more involved, query (B) returned occurrence details on any
structure that definitely possesses 'Scales' (a 'microstructure'). Table 2 summarizes
data comparing the efficiency of performing these two queries via the path material-
ized in String or XML format. The XML datatype was queried without indexing, or
using various OracleText indexes, an XPath index, or a combination of both index
types.

Structural Information in Botanical Specimen Descriptions 9

Table 2. Comparing Query Efficiencies. As described in the text, simple (A) and
complex (B) queries were designed to retrieve contextual information from either (1)
the XML representation of the path using Oracle XML functions (with (ii) or without
(i) a ctxxpath index) or 'Oracle Text' query tools (indexed as indicated, iii - v) or (2)
the materialized path using string parsing functions (vi). Metrics were averaged over
50 executions. Oracle's record of CPU processing time (in microseconds) is also
expressed relative to the value for string querying [in brackets].

Simple Query (A) Complex Query (B)

Query
Method

Initial /
Subsequent
Speed
(secs.)

Buffer
Gets
(per
exec.)

CPU
Time
(µs per
exec.)

[ratio]

Query
Method

Initial /
Subsequent
Speed
(secs.)

Buffer
Gets
(per
exec.)

CPU
Time
(µs per
exec.)

[ratio]

(i)
XML 0.80 /0.26 213

776363

[247]

(i)
XML 1.85 /1.41 422

1251304

[24]

(ii)
XML
(indexed)

0.41 /0.25 172

533928
[170]

(ii)
XML
(indexed)

1.55 /0.65 266

625471
[12]

(iii)
XML with
OracleText
(pathsection)

0.16 /0.02 71

26895
[9]

(ii+iii) XML
(indexed)
with Ora-
cleText
(pathsection)

0.85 /0.44 864

417229
[8]

(iv)
OracleText
(xmlsection)

0.42 /0.02 62

19411
[6]

(v)
OracleText
(autosection)

0.17 /0.02 55

18000
[6]

(iii)
XML with
OracleText
(pathsection)

1.17 /0.44 861

415517
[8]

(vi)
String
Parsing

0.02 /0.01 39

3134
[1]

(vi)
String
Parsing

0.19 /0.07 710

53125
[1]

Ignoring the details and the trivial task of obtaining the appropriate ontology ID for

Flowers ('243') (information which might be stored locally in the application or could
be retrieved by interpolating a sub-query or variable) we can obtain all flower infor-
mation using a simple string comparison (query Avi):

where DE.structurepath like '%.243.%' (i.e. flower within the path)
or DE.structurepath like '%.243(.%' (i.e. a clone of flower in the path)
or DE.structurepath like '%.243' (i.e. flower at the end of a path)

For the second query all description elements referring to Scales ('504') are ob-

tained in a similar fashion, and then each path that is returned is parsed to get the
parent structure of scale. Of course various filters are necessary to discount duplicate
or negative data, more importantly, to obtain each parent from the set of paths re-

10 T. Paterson & J. B. Kennedy.

turned is best handled by a recursive function. In our case we provide a simple recur-
sive parsing function in PL/SQL, getParent(structureTerm, structurepath), which can
be called in SQL query Bvi.

A further complication is that the user may want to see the path details on any
structure returned by a query. This would require recursive look up of details for each
structure ID in the path. The need to recursively look up each name corresponding to
each ID in the path could be circumvented if an additional string which concatenates
the name of each structure in the path is stored in Table 1 (and/or the actual descrip-
tion elements). In the results this name string could be returned alongside the ID
string (e.g. Plant. Inflorescence. Flower. Androecium for 288.239.243.51).

With the path stored as an XML datatype we can obtain all flower information us-
ing an XPath expression in Oracle's SQL/XML Query language [18] (queries Ai &
Aii):

where existsNode(path, '//Term[@ID="243"]') = 1

The OracleText 'contains' function uses different syntax depending on the manner of
indexing, for example a path_section index uses XPath syntax (query Aiii):

where contains(path, 'HASPATH(//[@ID="243"])') >0

Whilst with xml_section or auto_section indexing the query might resemble (queries
Aiv or Av):

where contains(path, '243 WITHIN TermIDattr') >0

or where contains(path, '243 WITHIN Term@ID') >0

XPath expressions allow traversal up and down the tree in one query, so that for the
second query the parent of scale can be extracted by (queries Bi & Bii):

extractValue(PATH, '//Term[@ID="504"]/..@ID') from DE
where existsnode(PATH, '//Term[@ID="504"]') = 1
and existsnode(PATH, '//Term[@ID="504"]/Term') = 0

where the second part of the query selects the nodes ending in 'Scales'. In fact this
second part of the query can be performed more efficiently using OracleText indexing
(see Table 2, compare queries Bii and Bii+iii).

For both queries A and B the most efficient strategy is to parse the materialized
path (queries Avi and Bvi). The simple query (A) was processed almost 250 fold faster
via string parsing (Avi) than by unindexed XPath querying (Ai). Creating an XPath
index (Aii) almost doubled XML query efficiency, however, using OracleText in-
dexes on the XMLType column was still more efficient (Aiii-v). XPath querying
became relatively much less inefficient for more complex queries, which require path
traversal. The second query (B) was performed only 24 fold less efficiently using
XPath query of XML compared to parsing the string path (Bi compared to Bvi), again
indexing the XML (Bii) or combining with OracleText indexing (Biii) further in-
creased efficiency, but was still at least 8-fold slower than the query utilising string
parsing functions on the materialized path (Bvi).

Structural Information in Botanical Specimen Descriptions 11

 4 Discussion and Future Work

We have created an ontology of descriptive terms for describing angiosperms, which
includes compositional relationships for anatomical structures. We are using the rela-
tionships in the ontology to automatically generate data entry interfaces for recording
plant descriptions [11]. In order to represent contextual information in these descrip-
tions we have found it convenient to store a materialized representation of the
compositional path for each structure being described. Our results show that this path
is queried most efficiently in our database if stored as a string and queried using string
comparison functions. However, storing the materialized path as an XML fragment
provides an attractive alternative that allows more straightforward query design and
might allow a richer and more readable representation of the information.

Whereas the facility to store and query XML datatypes is database dependent,
string-parsing functions are provided as part of most database systems, including the
open source MySQL. Furthermore strategies for XML query and indexing of data-
bases is implementation dependent and still evolving. Optimization of queries and
careful choice of indexing strategy is clearly critically important to avoid huge penal-
ties when querying XML data, although in many respects the syntax of XPath queries
allows simpler query formulation than parsing the string path. These considerations
will be critical when deciding whether it will be feasible to design a free querying
interface in our taxonomic description application, or whether 'canned', prewritten and
optimized queries are more suitable. At this time it appears that both representations
of the path may be useful for different purposes within our application: string paths
for efficient querying, and XML paths to hold detailed clone and structure informa-
tion. We plan to collect a number of real description data sets using our database
implementation, and represent structure path information in both formats. Only when
we collect a significant volume of data and experiment with real taxonomic queries
will we be able to compare the real efficiency and versatility of each approach.

We would like to acknowledge BBSRC for funding of this research, and the Royal
Botanic Gardens, Edinburgh for their help in evaluation and development.

References

1. Colless, D. H.: On ‘character’ and related terms. Systematic Zoology 34 (1985) 229-233
2. Paterson, T., Kennedy, J.B., Pullan, M.R., Cannon, A., Armstrong, K., Watson, M.F.,

Raguenaud, C., McDonald, S.M., Russell, G.: A Universal Character Model and Ontology
of Defined Terms for Taxonomic Description. Proc. Data Integration in the Life Sciences
(DILS2004) (ed. E. Rahm) in: Lecture Notes in Bioinformatics 2994 (2004) pp63-78.

3. The Prometheus Project.: URL: www.prometheusdb.org
4. Graham, M., Watson, M. F., Kennedy, J. B.: Novel visualisation techniques for working

with multiple, overlapping classification hierarchies. Taxon 51 (2) (2002) 351-358
5. Celko, J.: SQL for Smarties (2nd edition). Morgan Kaufmann. (1999).
6. Tropashko, V.: Trees in SQL: Nested Sets and Materialized Path.

URL: www.dbazine.com/tropashko4.shtml

12 T. Paterson & J. B. Kennedy.

7. Mackey, A.: Relational Modeling of Biological Data: Trees and Graphs. (2002).
URL: www.oreillynet.com/pub/a/network/2002/11/27/bioconf.html

8. Oracle.: 'Hierarchical Queries' in Oracle9i SQL Reference Release 2 (9.2)
URL: otn.oracle.com/documentation

9. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001) 547-556

10. Alstrup, S., Rauhe, T.: Improved labeling scheme for ancestor queries. Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2002) 947-953

11. Cannon, A., Kennedy, J.B., Paterson, T., Watson, M.F.: Ontology-Driven Automated Gen-
eration Of Data Entry Interfaces To Databases. to appear in BNCOD21 Proceedings (2004)

12. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-Centric Management of Ver-
sions in an XML Warehouse. Proc. VLDB 27. (2001) 581-590

13. Cohen, E., Kaplan, H., Milo, T.: Labeling Dynamic XML Trees. Proc. Principles of Data-
base Systems (PODS) (2002) 271-281

14. http://www.oracle.com
15. http://www.xyleme.com
16. W3C Recommendation: 'XML Path Language (XPath) Version 1.0 (1999)

URL: http://www.w3.org/TR/xpath
17. W3C Working Draft: 'XQuery 1.0 and XPath 2.0 Formal Semantics' (2004)

URL: http://www.w3.org/TR/2004/WD-xquery-semantics-20040220/
18. Oracle.: Oracle9i XML Database Developer's Guide - Oracle XML DBRelease 2 (9.2)

http://otn.oracle.com/documentation
19. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: XML-SQL Query Translation Literature:

The State of the Art and Open Problems. XML Symposium 2003. LNCS 2824 (2003) 1-18.

