
TEACHING MULTITASKING TO ELECTRONICS AND COMPUTING STUDENTS

A.F. Armitage

Faculty of Engineering & Computing, Napier University, Edinburgh, Scotland

a.armitage@napier.ac.uk

ABSTRACT

Although widely used in the solution of engineering problems, multitasking is conceptually as

complicated as parallel processing. A simple system that covers the key features of multitasking in a

short time is presented. A description is given of its use with a final year undergraduate class of

electronics students who take computing options.
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INTRODUCTION

Engineers who will be working with real-time systems, embedded microprocessors and computer

interfaces have to be conversant with the hardware and software of the systems they will be dealing

with. There is a tendency for this area to fall between the topics normally taught in an electronics

degree and a computing degree. At Napier University, students on the four-year Electronics and

Electrical Engineering degree take a common first two years before specialising. Some go on to do

two years of Electronics and Computing. This produces a graduate able to cope with the specialised

area of the interface between hardware and software in computer systems. These graduates find

employment in a variety of roles, especially in telecommunications companies, companies using

embedded microprocessors, and companies using computers directly interfaced to hardware for

control, test and measurement.

In the final year (the fourth year of the Scottish degree), these students take a module

intended to introduce the basic concepts of multitasking. The purpose of this article is to describe



the reasons for teaching this topic, where it fits into the course, the methods used, and some of the

successes and problems we have encountered.

WHY TEACH MULTITASKING?

Multitasking programs behave effectively as if they were made up of parallel tasks operating

independently. This leads to complications compared with ordinary serial code (deadlock,

communication between tasks, and so on). Why then do we feel it to be important to teach this

topic?

The main reason is that many students from this course go on to jobs where they are writing

multitasking code. This is often for embedded processors that interact directly with hardware (one

of the main areas of employment for graduates with expertise in electronics and computing). Also,

PC based systems are increasingly using multitasking. For instance, the good old DOS that used to

run PCs couldn’t multitask. Windows 3.1 (of about ten years ago) could multitask poorly. Windows

98 does it reasonably well, NT 4.0 does it better, and Windows 2000 does it extremely well.

Consequently, students equipped with an understanding of multitasking are more able to cope with

programming effectively in these environments. Newer languages, such as Java, also use

multithreading, a lightweight form of multitasking. Writing efficient Java code requires an

understanding of this process.

Even those who might not program in the conventional sense might come across

multitasking systems. It is now common for test software to be written, not with a traditional

programming language, but with a graphical programming language, such as LabVIEW, or HP-

VEE. This allows test and measurement software to be constructed by connecting together blocks in

graphical wiring diagrams. The latest release of LabVIEW (version 5) has just incorporated

multithreading.

The future belongs not just to multitasking/multithreading applications running to single

processor, but to parallel code running on multiple processors. Ten years ago we were teaching



Occam in the sure and certain knowledge that Occam and transputers were the way of the future. As

it happened, this is not how things worked out. Although Occam is still a wonderful educational

language, the transputer has died the death of a revolutionary processor that did not have the

backing of a major company such as Intel or Motorola. What has happened instead is that

‘mainstream’ processors have taken about a decade to catch up in the level of parallelism supported.

However, they have now reached this level, to the extent that Windows 2000 Server comes in

different versions depending on how many processors you want to support. To cope with these

changes, it is important that students working in the area between electronics and computing

become at least familiar with some form of multitasking or parallelism (conceptually the two are

almost identical).

WHERE DOES IT FIT INTO A DEGREE COURSE?

The four-year Honours degree at Napier University is based on a modular, semester system.

Typically, the student takes four modules per semester with two lectures per week and two hours of

laboratory/tutorial time per week for each module. Each semester lasts 15 weeks, with two weeks at

the end given over to revision and exams. In the first two years, common to all electrical and

electronic students, one computing module is taken per year. Although there is more that could be

taught, the crowded syllabus limits the time that can be devoted to microprocessor and computing

topics. The first year module is a general introduction to PCs, and can be taught in any general-

purpose PC lab. The second year module covers interfacing. A dedicated hardware lab is used, with

20 PC workstations connected to motors, sensors and so on via interface hardware (ADCs & DACs,

digital I/O etc.). Student numbers are such that the lab has to be repeated a number of times during

the week, but the cost of the special interfacing hardware is high, and we can only maintain a single

dedicated laboratory (general-purpose PC labs with no interface hardware are much cheaper to

maintain).



The third and fourth years are taken only by students on the Computing & Electronics route.

This means that numbers are smaller, and it is possible to include more modules on computing and

microprocessor subjects. In the third year, two modules are taken. One covers software subjects and

software engineering. The other is concerned with embedded processor systems and microprocessor

hardware. Microprocessor circuitry is covered in some depth, building on digital electronics

subjects taken in the first two years. For the embedded processor, we use an Analog Devices 2100

series microprocessor, which has DSP features useful for other sections of the course. Finally, a

fourth year module covers some advanced computer architecture issues and the multitasking that is

the subject of this article. Because the module covers general computer architecture issues as well

as multitasking, the time available for the multitasking is severely limited. One lecture per week,

and about 8 weeks of laboratory work are scheduled. The practical work (very important for

reinforcing concepts) culminates in a practical exercise that counts for 40% of the module marks.

There is then a small section on this topic in the end of semester exam, though the bulk of the exam

is devoted to the more theoretical computer architecture. Although lab work is found to be useful

for reinforcing learning, it also worth mentioning that lab work is important to engage the students

interest and make the subject appear relevant.

WHAT TO TEACH

There are a number of key concepts that have to be introduced when covering multitasking or

parallel computing. Most students have been exposed to serially executing code, and will find some

of the ideas very unfamiliar. This is the area where practical lab work comes in, as this is the most

effective way of instilling deep learning. For instance, one problem encountered is deadlock, a

situation where two or more processes cannot progress because each is waiting for another. It does

not matter how much this is explained in the classroom; until the student has experienced it for

herself in the lab (and had to work out how to cure it) the concept will not be grasped.



In the limited time available, we feel that there are three main areas that need to be covered.

These are mutual exclusion, synchronisation, and. communication between tasks. Additionally, the

idea of design for multitasking/parallelism can be introduced. Relatively speaking this is an area

that is poorly served by design tools and in a short course this area is only lightly touched on.

However, as the aim is to produce engineers who have a good systems approach, rather than just

programmers, it is important to give at least an introduction to design methods.

Mutual Exclusion

Tasks in a multitasking system run independently. Occasionally, these tasks will need to access

resources that are shared. These could be blocks of memory, or input and output devices. Problems

can be encountered if more than one task can access a shared resource at the same time. Of course,

on a single processor the access cannot really be simultaneous, since only one process runs at any

one time. In practice execution can be switched between tasks at any time, and to all intents and

purposes the system behaves as if the tasks were running in parallel. In some situations it becomes

essential to enforce Mutual Exclusion. In other words, while one task accesses a shared resource,

other tasks have to be denied access to the resource (though they can continue running if they do not

need access to that particular resource). Semaphores are a common way of implementing Mutual

Exclusion, and this is an important feature to teach. In fact, the first laboratory given to the students

involves running two simple tasks that both try to access the screen at the same time, resulting in

garbled output. Once semaphores are added to enforce mutual exclusion, the output becomes clear.

Synchronisation

Tasks may need to synchronise for a number of reasons. For instance, a consumer task may be

designed to use data produced by another task. Obviously, the consumer cannot run until the other

task has produced the data. Or a master task may ‘farm’ out work to a number of other tasks. Until

all these tasks are complete, the master task must not proceed. Obviously, there must be some way



of synchronising tasks so that progress in task A can be halted until task B has reached a certain

stage. There are several methods for doing this, such as wait-signal pairs. In practice, the

semaphores mentioned in the previous section can be used for this, and we have found that students

who have been using semaphores for mutual exclusion soon get the hang of using them for

synchronisation.

Communication

In a multitasking system, tasks are scheduled at run time. This means that, at the time they are

written, the order of running is not known. This complicates inter-task communication: when one

task wants to send data to another, the sending task does not know what stage the receiving has got

to. There are a number of ways round this problem, involving mechanisms such as the ADA

rendezvous, Tony Hoare’s Communicating Sequential Processes, and the use of dedicated

communications links, such as mailboxes, buffers and shared memory areas. We have found that

only one or two of these methods should be covered in detail in lectures: it is best to let the student

get experience in using at least one method practically, rather than exposing them briefly to too

many alternatives in the lectures. Having said that, it is important to make the students aware of the

range of communication alternatives available in commercial systems.

HOW TO TEACH

Some possibilities

As has already been mentioned, lab work is an essential part of the educational process when

teaching this subject. Lectures on this subject are relatively straightforward, labs less so. Part of the

problem is that there are many ways of introducing multitasking in lab work, but some are complex

and not suitable for a short course.

Originally, we investigated the use of commercial operating systems. There are a large

number of these, and many provide useful information and demos via their websites (see



references). The problem we found with these operating systems was that they were too complex to

learn quickly.  For example, the call to create a process under OS-9 (a Unix-like operating system)

looks like this:

Os9fork(modname,parmsize,parmptr,type,lang,datasize,prior)

Where modname is a pointer to the module name, parmsize is the size of the parameter list, parmptr

is a pointer to the parameter list, type is the type of module, lang is the module language, datasize is

the additional memory for the process in bytes, and prior is the initial priority of the process.

Unfortunately, this level of complexity is far too great for our students to handle. It would

take the best part of a lecture just to cover this one call. Having looked at a number of these

commercial systems over a number of years, it was decided that they were all too complex for a

short course. This has not always been the case. In discussing a multitasking lab at Purdue

University, Schultz[1] describes the use of DCX, a small real-time executive for early Intel

microcontrollers. This had the advantage of only having 10 system calls. Unfortunately from an

educational point of view, this sort of executive has now been replaced by much more sophisticated

systems designed to make full use of current microcontrollers and microprocessors.

More recently, Windows itself has become a possibility for teaching multitasking. Version

3.1 used co-operative multitasking in a rather inefficient way (it was very prone to crashing).

However, recent versions of Windows multitask in a more sophisticated manner. Also, Windows

CE has been released for the embedded market. It has not yet achieved the dominance in the

embedded environment that other versions have achieved in the PC environment (and probably

never will). However, it uses essentially the same programming environment as its desktop

relatives. It was certainly worth investigating. If the students could learn some embedded Windows

programming, and be able to apply that directly to desktop programming, that would be a huge



bonus. On closer inspection, this advantage is completely outweighed by the complexity of the

environment. For instance, the description in the manual of the process call to create a new process

(the equivalent of the OS-9 fork above) is:

BOOL CreateProcess (LPCTSTR lpApplicationName, LPTSTR lpCommandLine, NULL, NULL,

FALSE, DWORD dwCreationFlags, NULL, NULL, NULL, LPPROCESS_INFORMATION

lpProcessInformation);

This is then followed in the manual by a detailed description of all the parameters and their use. I do

not need to reproduce them here to convey the idea that this is a complicated system! While it is

useful in the lectures to illustrate to students the complexities of some real systems, the various

versions of Windows are not ideal teaching tools.

A simple system

Obviously, what is needed is a simpler system that can be used to let the students practise some

multitasking without getting involved in the complexities of a full commercial operating system. It

is possible to write a multitasking  kernel, as has been done at Queen’s University [2]. Such a

system was introduced in an article some years ago by Craig Lindley [3]. He produced a small

multitasking system as an add-on to Borland’s Turbo Pascal. As this was the main teaching

language we were using at the time, we looked at it, and decided it worked admirably as a teaching

tool (and had the added advantage that it was free). It is very limited in scope, as it uses co-

operative multitasking without priority. However it is beautifully simple, having 3 initialisation

procedures and 9 function calls. To create a new task called Task1, for example, the code is

fork;

if child_process then Task1;



The call to fork takes no parameters, all that needs to be done is that the value of the variable

child_process has to be checked to ensure the creation of the new process was successful. Other

functions are:

yield; --voluntarily yield this task to let others run

pause(n); --pause for n quarter second ticks

wait;   send; --synchronise tasks by sending a signal

put_byte(byte_val,buffer_name); --send data to a buffer

byte_val := get_byte(buffer_name); --get data from a buffer

alloc(semaphore_name); --book a semaphore

dealloc(semaphore_name) --release a semaphore

This simple set of multitasking constructs is perfectly adequate to let the students explore some of

the more interesting features of multitasking, without getting too bogged down in details. Using this

system, the students explore communication, synchronisation and mutual exclusion through a

sequence of short laboratory exercises. Having worked through these labs, the students are then

given an extended assignment over a number of weeks. In past years, these systems have included

data acquisition systems, d.c. motor control systems, and the control of multiple stepper motors.

This last exercise has been particularly useful at showing the advantages of multitasking. Having

developed the code for one stepper motor, it is relatively simple to duplicate the task, with a few

minor changes, to control another stepper motor. In fact, the assignment become so simple that we

have had to make it more challenging by specifying different control strategies (position and

velocity control) for different motors.



Limitations of the simple system

Some limitations (such as a lack of priority) are inherent to the system. However, there are other

limitations. For instance, it is not a true multitasking kernel or operating system, but an add-on to

Turbo Pascal. To switch from one task to another, a few special calls, such as yield and wait, are

added. These are function calls that use a small amount of assembly language to mess around with

the stack. Instead of returning to the calling function, these jump to the next task in a list of ready

tasks. This manipulation of the stack has some unfortunate side effects: a slight decrease in

reliability, and the inability of the debug tools to decipher what is going on. This can make the

multitasking code harder to debug. Another unfortunate side effect is that the original system

(designed for version 3.0 of Turbo Pascal) needed some modification to work with later versions.

This was because the parameter passing to functions, using the stack, changed between versions.

The current version works with version 5.0 of Turbo Pascal. This is not the most recent version of

the language, but it is the one we happen to have installed in our interfacing/embedded system

laboratory.

The language of the system, Pascal, is excellent for teaching. However, the final year of the

course hosts a number of direct entry students from Continental European countries. These students

tend not to be familiar with Pascal. We have therefore been re-writing the multitasking system in C,

a language many of the direct-entry students are familiar with. This is an on-going project, but the

hope is that for the next academic session, students will be able to pick C or Pascal as they prefer,

but work with essentially the same multitasking commands.

Looking ahead

Inevitably (but regrettably), Pascal is going to fade out of our labs as we bow to the continuing

pressure to move to C/C++. The limitations of the current system are such that, as we look to

changing our language, we are also looking at alternative multitasking systems. One, which looks

very promising, is the Tempo kernel developed at Carleton University in Canada, and described in



the book by Buhr and Bailey [4]. This is a small real-time kernel based on a subset of C++. The

source code is freely available [5], together with some examples. We have not yet used it in

undergraduate laboratories, but it appears to have many of the features we are looking for. Most

importantly, it is relatively simple, with only 23 calls. Using the call to create a new task for

comparison with previously discussed systems, we find that it is simple:

Pid = create_process(root_function, priority);

It is slightly more complicated than the Pascal system currently in use, in that it needs an initial

priority. However, it is possible to miss even that out if the user wishes to bypass the priority

system. All in all, this looks like being a very useful system for teaching at this level.

DESIGN METHODS

This is a difficult area to cover in an undergraduate course. In general, parallel processing and

multitasking is an area of software engineering that is relatively poorly supported by design tools

and methods. At low levels, Petri nets can be useful for analysing the design of a multitasking

system Bennett [6]. Data flow diagrams can give a useful overview of the parallel flows of data

within a system. These diagrams form a mainstay of traditional structured analysis methods. In the

real-time world, the most widely used structured methods have been variants of the Yourdon

method. Two particular variants, Ward-Mellor, and Hatley-Pirbhai (also referred to as Boeing-

Hatley), are widespread enough to be supported by CASE (Computer Aided Software Engineering)

tools from a number of vendors. For instance, we have been using EasyCASE, an inexpensive

CASE tool that supports both of these methods [7]. An Advantage of these methods is that they

naturally incorporate state transition diagrams, a modelling tool used in sequential logic design, and

hence familiar to many electronics engineers. The use of such CASE tools in Electronic

Engineering Education has been described by Cooling [8].



More recently though, the main debate in methodologies has been whether to switch to

object oriented methods. These methods, particularly when used with languages such as C++ and

Java, have become widespread in many areas of software engineering. However, they are perhaps

not as well suited to embedded systems (for instance they tend to be memory-hungry). A recent

article by Alan Moore [9] highlights the difficulties of trying to get a multitasking problem to fit

into an object oriented methodology. Having said that, it looks like the Unified Modelling Language

(UML) is going to be widely adopted in the object oriented community. Although not specifically

aimed at real-time systems, it does include some valuable tools, such as very comprehensive

support of state diagrams. The interested reader is referred to the book by Douglass [10] for further

details.

TEACHING RESOURCES

For those interested in reading further on this subject, I have found a number of sources useful. The

websites of the major commercial real-time/embedded software organisations listed in the

references provide the most up-to-date information. A number of books cover the area. There are a

lot of books on operating systems (for instance, Tanenbaum, Milenkovic, Silberschatz) [11,12,13].

Unfortunately, many of them are written from the point of view of a computing science course,

often using Unix as an illustration. This is not very helpful for a course specialising in the sort of

embedded systems most likely to be of relevance to electronics engineers.  Milenkovic is good at

covering real-time systems, but is now rather dated. Silberschatz has a good section on Process (i.e.

task) management, and considers real-time systems, if somewhat briefly. This book also takes a

detailed look at Java, including multiple threads. Although Java has not yet been widely adopted as

a real-time language, this may change over the next few years. It will certainly be a popular

development tool for internet enabled embedded systems.

Several books that are definitely aimed more at the electronics engineer working with

computer systems are Bennett [6], and Olsson & Piani [14]. Bennett has several chapters that are



particularly relevant. As well as several chapters on real-time systems, he is one of the few authors

to cover design methodologies for real-time systems. He chooses the most widely used real-time

variants of the Yourdon structured analysis method, and Mascot, as used in UK defence work

(though not so widely nowadays). Olsson & Piani have less of relevance to this subject area, but do

have a good chapter on real-time and multitasking considerations. They devote more space to

control aspects and interfacing than Bennett does. The multitasking Pascal system referred to in this

article is not a commercial product, but the author would be happy to hear from people who would

be interested in using it.
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Websites of commercial real-time software suppliers

www.qnx.com

www.lynx.com

www.microware.com

www.enea.com

www.hiware.com

www.express.logic.com

www.smxinfo.com

www.ghs.com

www.avocetsystems.com

www.wrs.com


