
A VECTOR CHEBYSHEV ALGORITHM

D. E. Roberts
Department of Mathematics

Napier University
219 Colinton Road

Edinburgh
EH14 1DJ

Abstract

We consider polynomials orthogonal relative to a sequence of vectors and
derive their recurrence relations within the framework of Clifford algebras. We
state sufficient conditions for the existence of a system of such polynomials.
The coefficients in the above relations may be computed using a cross-rule
which is linked to a vector version of the quotient-difference algorithm, both
of which are proved here using designants. An alternative route is to employ a
vector variant of the Chebyshev algorithm. This algorithm is established and
an implementation presented which does not require general Clifford elements.
Finally, we comment on the connection with vector Padé approximants.

Keywords: Clifford algebras, orthogonal polynomials, quotient-difference algo-
rithm, Chebyshev algorithm, vector Padé approximants, designants.

1 Introduction

In the study of rational approximation to power series whose coefficients are vec-
tors Clifford algebras provide a useful framework for the derivation of results using
methods of proof analogous to those employed in the corresponding scalar theory
[7,15].

One particular area of current interest is the search for algorithms to construct
these approximants which may be implemented without requiring general elements
in the algebra [5,16,17]. For example, a vector version of the quotient-difference
algorithm has been developed, which requires only vector operations [18]. Once these
vectors have been computed we may form recurrence relations by means of which the
polynomials connected with an approximant may be determined. If the coefficients
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of the power series being considered are the vectors obtained from matrix iteration
then the vectors involved in the new algorithm are related to the eigenvectors of the
matrix [18].

In the scalar theory of rational approximation the Chebyshev algorithm provides
an alternative to the quotient-difference algorithm to calculate the recurrence rela-
tion coefficients as well as the polynomials [2,3,4,21]. We propose a vector version of
the Chebyshev algorithm which uses only vectors and square matrices of the same
dimension in its implementation.

In order to mirror the scalar development, we begin by considering the theory
of polynomials orthogonal relative to a sequence of vectors without assuming any
results from the theory of vector Padé approximation. The connection with this
latter topic is given in section 5. Wynn [22], whose interest was also in vector rational
approximation [23], was the first to consider a non-commutative q-d algorithm and
related orthogonal polynomials. We derive three-term recurrence relations for these
polynomials and at the same time establish the Clifford nature of the coefficients
involved. As a by-product, the above-mentioned vector quotient-difference algorithm
is proved using designants, which replace determinants in non-commutative algebras.

We are then in a position to discuss the Chebyshev algorithm in a Clifford
algebraic setting. After establishing this algorithm we reformulate it in such a way
that no general Clifford elements are needed in its implementation.

In the last section we state briefly the link with vector Padé approximants and
derive expressions for the first two terms of the error in the [n− 1/n] approximant.

2 Algebraic Preliminaries

The real Clifford algebra of IRd , C`d , is the associative algebra over IR generated by
the orthonormal basis of IRd , {e1, e2 · · · ed} , obeying the anti-commutation relations

eiej + eiej = 2δi,j i, j = 1, 2 · · · , d (2.1)

where the algebra identity is 1 [13,14]. We also require the universality property
which is guaranteed if e1e2 · · · ed 6= ±1 . In this case C`d is a linear space of
dimension 2d spanned by the basis elements

eI = ei1i2···ik = ei1ei2 · · · eik (2.2)

where I = {i1, i2, · · · , ik} and 1 ≤ i1 < i2 < · · · ik ≤ d for k = 1, 2 · · · , d . The
identity element corresponds to the empty set. A general element of C`d is given
by

a =
∑

I

aIeI aI ∈ IR (2.3)
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where the summation is over the 2d different ordered multi-indices I . We shall
require the anti-isomorphism of C`d :a 7→ ã called reversion obtained by reversing
the order of factors in eI ; hence ãb = b̃ã .

We identify each vector (v1, v2, · · · , vd) ∈ IRd with an element,
∑d

i=1 viei , of C`d ,
using the common label v . The anti-commutation relations, (2.1), imply

uv + vu = 2(u · v) (2.4)

where u · v indicates the usual scalar product,
∑d

i=1 uivi , and

uvu = 2(u · v)u− (u · u)v ∈ IRd (2.5)

We note that
ṽ = v (2.6)

and
vv = v · v, v ∈ IRd. (2.7)

Although C`d is not a division algebra for d > 0 , we observe that non-zero vectors
are invertible:

v−1 =
v

v · v , v ∈ IRd. (2.8)

This is identical to the Moore-Penrose generalised inverse of a real vector used in
the axiomatic definition of vector rational interpolants, see e.g. [6].

In this work we need to consider systems of linear algebraic equations in which the
coefficients are elements of C`d ; in fact they are vectors. The role of determinants in
studying linear systems in a non-commuting algebra may be played by designants,
which were invented by Heyting in 1927 and revived more recently by Salam. For
an introduction and detailed study of these constructs the reader is referred to these
authors [12,19]. We give a brief account of those properties needed for our purposes.
Consider the homogeneous system of linear equations :

a11y1 + a12y2 · · · a1n+1yn+1 = 0
...

...
...

...
an1y1 + an2y2 · · · ann+1yn+1 = 0

(2.9)

in which each aij ∈ C`d . The use of designants allows us to eliminate y1, y2, · · · , yn−1 ,
in the given order, to obtain

B(n−1)
n,n yn + B

(n−1)
n,n+1yn+1 = 0 (2.10)

where B(m)
p,q is the left designant of order (m + 1) with rows 1, 2, · · · ,m, p and

columns 1, 2, · · · ,m, q with p, q > m , [12] p474,

B(m)
p,q =

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1m a1q
...

...
...

am1 · · · amm amq

ap1 · · · apm apq

∣∣∣∣∣∣∣∣∣∣
l

(2.11)
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In the Appendix we quote an analogue of Sylvester’s identity for determinants which
may be used to express a designant of order n+1 in terms of designants of order n .
The lowest order designant, B

(0)
1,1 , is given by a11 , thus allowing, in principle, the

computation of any designant. Heyting [12] shows that the designant B(n−1)
n,n exists

if each of the designants B(m−1)
m,m exists and is invertible for m = 1, 2, · · · , n− 1 .

For the inhomogeneous system

a11x1 + a12x2 · · · a1nxn = b1
...

...
...

...
an1x1 + an2x2 · · · annxn = bn

(2.12)

we may write

xn = yn[yn+1]
−1 = −[B(n−1)

n,n ]
−1

B
(n−1)
n,n+1

=

∣∣∣∣∣∣∣∣

a11 · · · a1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣∣

−1

l

∣∣∣∣∣∣∣∣

a11 · · · a1n−1 b1
...

...
...

an1 · · · ann−1 bn

∣∣∣∣∣∣∣∣
l

(2.13)

Hence, the above expression for xn is valid if B(m−1)
m,m is invertible for m = 1, 2, · · · , n .

Finally,we point out some properties of designants corresponding to those of the
matrices of coefficients. If we represent the left designant B(n−1)

n,n by |A|l where A
is the array [aij] , then from the nature of equations (2.9) we obtain

|̃A|l = |Ã|r = |A|r = |At|l (2.14)

if Ã = A , using |A|r = |At|l [12,19], where the superscript t denotes the transpose.
Hence, if At = A then

|̃A|l = |A|l. (2.15)

3 Polynomials orthogonal relative to a vector se-

quence

We follow and adapt Wall [21] in constructing a sequence of monic polynomials
{BJ

n(u), n = 0, 1, · · ·} orthogonal relative to a given sequence of vectors {cn ∈
IRd, n = J, J + 1, · · ·} . Instead of using the formal integral approach of Wall we use
the bilinear functional

c(J) : C`d[u]× C`d[u] 7→ C`d (3.1)

defined by
c(J)[bum, aun] := bcJ+m+na for a, b ∈ C`d (3.2)
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and extended to all pairs of polynomials over C`d by linearity in each of the two
variables. An alternative is to use left and right functionals — i.e. the pre- and
post- processes of Wynn [21,22]; see Salam [20] in this context.

The condition of orthogonality relative to the vector sequence {cJ , cJ+1, cJ+2 · · ·}
is given by

c(J)[ ˜BJ
m(u), BJ

n(u)] = 0 for m 6= n (3.3)

which implies

c(J)[um, BJ
n(u)] = 0 for m = 0, 1, · · · , n− 1. (3.4)

It follows from the definition of c(J) that

c(J)[λp(u), q(u)µ] = λc(J)[p(u), q(u)]µ (3.5)

where λ, µ ∈ C`d and p(u), q(u) ∈ C`d[u] . If we describe BJ
n(u) as follows:

BJ
n(u) = un + b

(n,J)
n−1 un−1 + b

(n,J)
n−2 un−2 + · · ·+ b

(n,J)
1 u + b

(n,J)
0 (3.6)

in which the coefficients belong to C`d , then the conditions (3.4) lead to the system
of linear equations

cJb
(n,J)
0 +cJ+1b

(n,J)
1 + · · · cJ+n−1b

(n,J)
n−1 = −cJ+n

cJ+1b
(n,J)
0 +cJ+2b

(n,J)
1 + · · · cJ+nb

(n,J)
n−1 = −cJ+n+1

...
...

...
...

...

cJ+n−1b
(n,J)
0 +cJ+nb

(n,J)
1 + · · · cJ+2n−2b

(n,J)
n−1 = −cJ+2n−1





(3.7)

We shall find it convenient to introduce two Clifford elements as follows:

UJ
n := c(J)[un, BJ

n(u)] (3.8)

i.e.
cJ+nb

(n,J)
0 + cJ+n+1b

(n,J)
1 + · · · cJ+2n−1b

(n,J)
n−1 −UJ

n = −cJ+2n (3.9)

and
T J

n := c(J)[un+1, BJ
n(u)] (3.10)

i.e.

cJ+n+1b
(n,J)
0 + cJ+n+2b

(n,J)
1 + · · ·+ cJ+2nb

(n,J)
n−1 − T J

n = −cJ+2n+1 (3.11)

Theorem 3.1 below justifies the vector notation for UJ
n . From (2.13) above and

(6.2) in the Appendix it may be seen that UJ
n is given by a designant reminiscent

of a Hankel determinant – see e.g. [10].

UJ
n =

∣∣∣∣∣∣∣∣∣

cJ cJ+1 · · · cJ+n−1 cJ+n

· · · · · · ·
cJ+n−1 cJ+n · · · cJ+2n−2 cJ+2n−1

cJ+n cJ+n+1 · · · cJ+2n−1 cJ+2n

∣∣∣∣∣∣∣∣∣
l

(3.12)

5



and, since this array is symmetric, (2.15) implies that

ŨJ
n = UJ

n. (3.13)

The following theorem constitutes the main result of this section.
Theorem 3.1 The Clifford elements UJ

n are vectors in IRd and satisfy the five-point
cross-rule

UJ
n+1 = UJ+2

n + UJ+1
n [(UJ+2

n−1)
−1 − (UJ

n)−1]UJ+1
n (3.14)

with the initialisations

UJ
−1 := ∞ , J = 2, 3 · · · and UJ

0 := cJ , J = 0, 1, 2 · · · (3.15)

Proof From the system composed of (3.7) and (3.11) T J
n is given by

T J
n =

∣∣∣∣∣∣∣∣∣

cJ cJ+1 · · · cJ+n−1 cJ+n

· · · · · · ·
cJ+n−1 cJ+n · · · cJ+2n−2 cJ+2n−1

cJ+n+1 cJ+n+2 · · · cJ+2n cJ+2n+1

∣∣∣∣∣∣∣∣∣
l

(3.16)

using (2.13) and (6.2).

Schwein’s identity (6.3) applied to [UJ
n]
−1

T̃ J
n yields

[UJ
n]
−1

T̃ J
n = [UJ+1

n−1]
−1

T̃ J+1
n−1 + [UJ

n]
−1

UJ+1
n .

Hence, if

W J
n := −[UJ

n]
−1

T̃ J
n (3.17)

then
W J+1

n−1 −W J
n = [UJ

n]
−1

UJ+1
n =: qJ

n+1 (3.18)

anticipating a link established later in this paper.
Applying the analogue of Sylvester’s identity (6.1) to UJ

n+1 , we obtain

UJ
n+1 = XJ

n − T J
n [UJ

n]
−1

T̃ J
n (3.19)

in which

XJ
n :=

∣∣∣∣∣∣∣∣∣

cJ cJ+1 · · · cJ+n−1 cJ+n+1

· · · · · · ·
cJ+n−1 cJ+n · · · cJ+2n−2 cJ+2n

cJ+n+1 cJ+n+2 · · · cJ+2n cJ+2n+2

∣∣∣∣∣∣∣∣∣
l

(3.20)

Applying Schwein’s identity (6.3) to [T J
n ]
−1

XJ
n yields

[T J
n ]
−1

XJ
n = [UJ+1

n−1]
−1

T̃ J+1
n−1 + [T J

n ]
−1

T J+1
n . (3.21)
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If T J
n is not invertible then the relationship (3.21) should be rephrased by multi-

plying on the left by T J
n . We remind the reader that any non-zero vector in IRd is

invertible.
Eliminating XJ

n from (3.19) and (3.21) produces

UJ
n+1 = T J+1

n + T J
n {[UJ+1

n−1]
−1

T̃ J+1
n−1 − [UJ

n]
−1

T̃ J
n } (3.22)

which, with (3.17),(3.18),(3.13) and reversion, finally yields

W J
n −W J+1

n = [UJ+1
n ]

−1
UJ

n+1 =: eJ
n+1 (3.23)

Using equations (3.18) and (3.23) to express the nominated quantities in terms of
differences in W elements, we observe that

eJ
n+1 + qJ

n+1 = eJ+1
n + qJ+1

n+1 . (3.24)

Fig.1 illustrates the relationships between the Clifford elements qJ
n , eJ

n and W J
n

using definitions (3.18) and (3.23). Each element is the difference of the connected
W -elements.

W J+1
n−1 − qJ

n+1 − W J
n

| |
eJ+1

n eJ
n+1

| |
W J+2

n−1 − qJ+1
n+1 − W J+1

n

Figure 1: Elements related by (3.18) and (3.23)

Again using (3.18) and (3.23), but this time choosing the expressions in terms
of the vectors U , we obtain

[UJ+1
n ]

−1
UJ

n+1 + [UJ
n]
−1

UJ+1
n = [UJ+2

n−1]
−1

UJ+1
n + [UJ+1

n ]
−1

UJ+2
n (3.25)

which, after multiplying on the left by UJ+1
n establishes the cross-rule eqn(3.14).

It is clear from the solution for UJ
n in eqn(3.12) that the initialisation UJ

0 = cJ is
valid for non-negative J . The rest of the initialisation follows from the observation
that

UJ
1 =

∣∣∣∣∣
cJ cJ+1

cJ+1 cJ+2

∣∣∣∣∣
l

= cJ+2 − cJ+1[cJ ]−1cJ+1 J ≥ 0 (3.26)

may be derived from the cross-rule if we set

UJ
−1 := ∞
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for J > 1 . 2

We note that Theorem 3.1, together with (2.5) and (2.8), not only proves that UJ
n

is a vector, but provides a means of calculating the designant without employing
general Clifford elements. As explained in [18] the vectors UJ

m may be arrayed in
a table, as in Figure 2, the first two columns of which are initialised using (3.15).
Other entries are calculated, working from left to right, see Figures 3 and 4, with
the help of (2.5) and (2.8), thus avoiding Clifford products.

U0
0

U2−1
U1

0
U0

1

U3−1
U2

0
U1

1
U0

2

U4−1
U3

0
U2

1
U1

2
U0

3

. . . . . .

Figure 2: Part of the U -table

N

W C E

S

≡

UJ
m

UJ+2
m−1 UJ+1

m UJ
m+1

UJ+2
m

Figure 3: Template for cross-rule

We now comment on the definitions (3.18) and (3.23). In the scalar, i.e. com-
muting case, Henrici [10] derives the well-known Hankel determinantal expressions
for the qJ

n and eJ
n continued fraction elements which result from writing them as

ratios of the leading coefficients of the Padé error (using the Baker convention c.f.
equation(5.2)). These coefficients are denoted in this paper by UJ

n as in equation

E = S + C
[

W
−1 − N

−1
]

C

Figure 4: Cross rule relating elements of Fig.3
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(3.9). As far as the vector case is concerned, it is demonstrated in [18] that analogous
expressions for qJ

n and eJ
n are valid. These expressions are embodied in equations

(3.18) and (3.23), and reduce to the usual Hankel formulae for the scalar theory,
using the connection between determinants and designants derived in [12,19].

The qJ
n and eJ

n elements may be arrayed in a table as in the scalar case – see e.g.
[9]. The connection between neighbouring entries is given by the non-commuting
rhombus rules as stated in :
Corollary 3.2 Vector Quotient-difference algorithm

eJ
n+1 + qJ

n+1 = qJ+1
n+1 + eJ+1

n (3.24)

eJ
n+1q

J
n+2 = qJ+1

n+1e
J+1
n+1 (3.27)

for n = 0, 1, 2, · · · and J = 0, 1, 2 · · · , with

eJ
0 = 0 for J = 1, 2 · · ·

qJ
1 = [cJ ]−1cJ+1 for J = 0, 1, 2 · · ·

}
(3.28)

as initial conditions.
Proof The result (3.24) has been derived above while (3.27) is simply a
consequence of the definitions (3.18) and (3.23). The initialisations of Theorem 3.1
for UJ

n together with equations (3.18) and (3.23) imply (3.28). 2

4 Vector Chebyshev algorithm

One disadvantage of using the cross-rule (3.14) is that, if we wish to calculate only
those vectors corresponding to a particular system of orthogonal polynomials, un-
desired parts of the U -table have to be computed. Instead of using this approach
to construct the {UJ

n : n = 0, 1, · · ·} , for constant J , we may resort to a vector
variant of Chebyshev’s algorithm [2,3,4,21]. We begin by describing this algorithm
within the context of Clifford algebras and then show how it may be implemented
using vectors only.
Theorem 4.1 Given a sequence of vectors {cn ∈ IRd : n = 0, 1, · · ·} such that,
for fixed J , the (vectorial) designants {UJ

n : n = 0, 1, · · · , N} defined by (3.12), do
not vanish, then there exist unique monic polynomials {BJ

n(u), n = 0, 1 · · · , N + 1}
satisfying

c(J)[ ˜BJ
m(u), BJ

n(u)] = 0 for m 6= n. (4.1)

These vector orthogonal polynomials may be constructed using the three-term recur-
rence relation

BJ
n+1(u) = BJ

n(u)[u + bJ
n+1]−BJ

n−1(u)aJ
n BJ

−1(u) := 0, BJ
0 (u) := 1 (4.2)
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where the recurrence coefficients are given by

aJ
n = [UJ

n−1]
−1

UJ
n (4.3a)

and
bJ
n+1 = W J

n −W J
n−1 (4.3b)

in which the W J
n are defined by (3.10) and (3.17) i.e.

W̃ J
n := −c[un+1, BJ

n(u)][UJ
n]
−1

(4.4)

Proof Given any monic polynomial of degree n + 1 over C`d , we may express
it as a linear combination of the monic polynomials BJ

m(u), m = 0, 1 · · · , n . In
particular, for BJ

n+1(u) we write

BJ
n+1(u) = BJ

n(u)[u + bJ
n+1]−BJ

n−1(u)aJ
n +

n−2∑

l=0

BJ
l (u)kJ

l (4.5)

in which it is important to note that the monic nature of the orthogonal polynomials
on the right-hand side allow the new Clifford coefficients to be calculated, without
requiring any divisions, in terms of the given coefficients of BJ

n+1(u) , in the order
bJ
n+1, a

J
n, kJ

n−2, · · · , kJ
0 , by comparing powers of u in descending order. We impose

the conditions
c(J)[um, BJ

n+1(u)] = 0 for m = 0, 1, · · · , n (4.6)

which, using (4.5), become

c(J)[um+1, BJ
n(u)] + c(J)[um, BJ

n(u)]bJ
n+1 − c(J)[um, BJ

n−1(u)]aJ
n+

n−2∑

l=0

c(J)[um, BJ
l (u)]kJ

l = 0 (4.7)

For m = 0, 1 · · · , n− 2 we may show by induction that the orthogonality properties
of the polynomials {BJ

l (u), l = 0, 1 · · · , n− 2} imply that

kJ
0 = kJ

1 = · · · = kJ
n−2 = 0

provided UJ
m, i.e. c[um, BJ

m(u)] , m = 0, 1 · · · , n − 2 are invertible i.e. none of
them vanish. For m = n− 1 we obtain

UJ
n = UJ

n−1a
J
n.

Hence, if UJ
n−1 6= 0 , then

aJ
n = [UJ

n−1]
−1

UJ
n. (4.8)
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For m = n eqn(4.7) yields

0 = T J
n + UJ

nbJ
n+1 − T J

n−1a
J
n (4.9)

We show that there is a vector VJ
n+1 ∈ IRd such that

W J
n −W J

n−1 = [UJ
n]
−1

VJ
n+1 (4.10)

by noting that

W J
n−1 −W J

n = eJ
n + qJ

n+1 = [UJ
n]
−1{UJ+1

n + UJ
n[UJ+1

n−1]
−1

UJ
n}. (4.11)

using (3.18) and (3.23). Hence,

VJ
n+1 = −{UJ+1

n + UJ
n[UJ+1

n−1]
−1

UJ
n} ∈ IRd (4.12)

using (2.5).
Employing this result and (3.17), (4.9) then yields

UJ
nbJ

n+1[U
J
n]
−1

= W̃ J
n − W̃ J

n−1 = VJ
n+1[U

J
n]
−1

= b̃J
n+1.

The result (4.3b) then follows. The uniqueness of BJ
n+1 is a consequence of the

general nature of the expansion (4.5) for a monic polynomial of degree n + 1. 2

We point out that bJ
n+1 may be computed using

bJ
n+1 = [UJ

n]
−1

VJ
n+1 (4.13)

provided UJ+1
n−1 6= 0 , where the vector VJ

n+1 is given by eqn(4.12).
We also note that from eqns(4.11),(3.18) and (3.23)

aJ
n = qJ

neJ
n (4.14a)

and
bJ
n+1 = W J

n −W J
n−1 = −(eJ

n + qJ
n+1) (4.14b)

corresponding to the usual theory , e.g. [10] chapter 12. Furthermore,

UJ
n = aJ

0aJ
1 · · · aJ

n (4.15a)

and
W J

n = bJ
1 + bJ

2 + · · ·+ bJ
n+1 (4.15b)

— c.f. Wall [21] chapter XI.
However, since implementation of Theorem 4.1 requires Clifford multiplication

we seek another approach which does not have this disadvantage.
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For ease of exposition, since J remains constant, we drop the superscript and
discuss the computation of the monic polynomials corresponding to J = 0, denoted
by Bn(u) , with other quantities labelled similarly. The other systems of orthogonal
polynomials may be composed in like manner.

We begin by defining two new polynomials as follows

Qn(u) := ˜Bn(u)Bn(u) (4.16)

which is monic of exact degree 2n , and, if Un−1 6= 0

Ωn(u) := un−1
˜Bn−1(u)Bn(u) , un−1 :=

Un−1

|Un−1| (4.17)

of exact degree 2n − 1 . We prove below that Qn(u) ∈ IR[u] and Ωn(u) ∈ IRd[u] ,
and derive recurrence relations for them.
We also require the following definitions

vn+1 :=
Vn+1

|Un| βn :=
|Un|
|Un−1| (4.18)

and the antisymmetric matrices An, n ≥ 1, of order d whose (i, j)th entry is

[An]ij := 2[(un−1)i(vn)j − (un−1)j(vn)i] (4.19)

In the following theorem we assume that Un 6= 0, n = 0, 1, · · · .
Theorem 4.2 A Vector Chebyshev algorithm.

Qn(u) ∈ IR[u] , Ωn(u) ∈ IRd[u] , n ≥ 0 (4.20)

Initialisation:
Q−1(u) = 0 , Q0(u) = 1 , Ω 0(u) = 0 (4.21)

Iteration: for n = 0, 1, · · ·
Un = c[1, Qn(u)] (4.22)

Vn+1 = [
n∑

k=1

Ak]Un − c[u,Qn(u)] (4.23)

Ωn+1(u) = Qn(u)[uun + vn+1] + βn Ωn(u)− 2βnun(un · Ωn(u)) (4.24)

Qn+1(u) = 2Ωn+1(u) · [uun + vn+1]−Qn(u)[uun + vn+1]
2 + Qn−1(u)βn

2 (4.25)

The summation in (4.23) is understood to vanish if n = 0.
Proof We prove (4.24) and (4.25) by induction. For n = 0, 1 · · · we note that

bn+1 = unvn+1 , an = βnun−1un (4.26)
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using (4.3a) and (4.13). From (4.2) we have, for J = 0,

B1(u) = u + b1 = u0[uu0 + v1] (4.27)

since u0 is a unit vector. Therefore,

Ω 1(u) = u0B̃0(u)B1(u) = uu0 + v1 (4.28)

using the initialisation for B0(u) = 1 . Similarly,

Q1(u) = B̃1(u)B1(u) = [uu0 + v1]
2. (4.29)

We make the induction assumption that Qm(u) ∈ IR[u] , Ωm(u) ∈ IRd[u] , for
m = 0, 1 · · · , n . This assumption holds for m = 1. It is also true that Q0(u) is a
scalar quantity. For m = n + 1, (4.2) and (4.26) yield

Ωn+1(u) = un
˜Bn(u){Bn(u)[u + unvn+1]− βnBn−1(u)un−1un}. (4.30)

Hence, since Qn(u) is assumed to be scalar,

Ωn+1(u) = Qn(u)[uun + vn+1]− βnun Ω̃n(u)un. (4.31)

Eqn(4.24) then follows from (2.5) and (2.6), since Ωn(u) is assumed to be a vector.
Turning to Qn+1(u) we may use the recurrence relations for Bn+1(u) to write

Qn+1(u) = Qn(u)[uun + vn+1]
2 + βn

2Qn−1(u) −
βn{Ω ′

n(u)[uun + vn+1] + [uun + vn+1]Ω
′
n(u)}

(4.32)
where

Ω ′
n(u) := un Ωn(u)un = 2un(un · Ωn(u))− Ωn ∈ IRd[u] (4.33)

using (2.5). From (4.31) we obtain an expression for Ω ′
n(u) , which, together with

(2.4) yields the required recurrence relation (4.25).
The induction assumption implies that Ωn+1(u) is a vector of polynomials, and

that Qn+1(u) is a scalar.
To demonstrate (4.22) and (4.23) we begin by proving

Qn(u) = ˜Bn(u)Bn(u) = Bn(u) ˜Bn(u). (4.34)

By construction Qn(u), n ≥ 0, is monic. Hence, since it is not the zero poly-
nomial we can find α ∈ IR such that Qn(α) 6= 0. Then, since Qn(α) ∈ IR , Bn(α)
has a left inverse. From e.g. Herstein [11] chapter 6, it follows that, since C`d is
finite-dimensional, Bn(α) is invertible with identical left and right inverses. Hence,
(4.34) is true for u = α . By an argument based on expanding polynomials about
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u = α , it may be shown that the (4.34) holds if α is a zero of Qn(u) . In passing we
note that in [18] it is demonstrated that, for real u , Bn(u) belongs to the Lipschitz
group and therefore may be written as a product of vectors, from which fact (4.34)
readily follows. Since Qn(u) and Bn(u) are monic polynomials, we use (4.34) and
(3.5) to obtain

c[1, Qn(u)] = c[1, Bn(u) ˜Bn(u)] = c[un, Bn(u)] = Un (4.35)

using the orthogonality properties of Bn(u) .
To prove (4.23) we first of all note that it is straightforward, using the recurrence

relations (4.2), to show by induction that

Bn(u) = un + un−1Wn−1 + · · · . (4.36)

Therefore, using this result and the orthogonality properties of Bn(u) with (3.10),(3.17),
(4.10) and (4.35)

c[u,Bn(u) ˜Bn(u)] = c[un+1, Bn(u)] + c[un, Bn(u)]W̃n−1

= [Un, W̃n−1]− −Vn+1 (4.37)

in which [a, b]± := ab ± ba . In the usual theory (d = 1) this commutator vanishes
leaving {−Vn+1} , in which case the results (4.22) and (4.23) agree with Theorem
1 of [4] ; i.e. using the notation of [4]

π2n ≡ Un π2n+1 ≡ −Vn+1.

We note that the anti-commutation relations (2.1) imply that, for a,b, c ∈ IRd ,

[a,bc]− = 2{(a · b)c− (a · c)b} = Aa (4.38)

where A is the anti-symmetric matrix

Ai,j := 2{bicj − bjci}. (4.39)

The result (4.23) then follows on observing that each bk = uk−1vk in (4.15b) . 2

5 Vector Padé approximants

The vector orthogonal polynomials BJ
n are linked to the [J + n− 1/n] vector Padé

approximants to the power series

f(z) =
∞∑

i=0

ciz
i ci ∈ IRd. (5.1)
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This connection may be established by developing (5.1) as a right continued fraction
[18]

J−1∑

i=0

ciz
i + zJcJ [1− zqJ

1 [1− zeJ
1 [1− zqJ

2 [1− zeJ
2 [1− · · ·]−1]−1]−1]−1]−1 (5.2)

whose even convergents are

J−1∑

i=0

ciz
i + zJaJ

0 [1− zbJ
1 − z2aJ

1 [1− zbJ
2 − z2aJ

2 [· · ·]−1]−1]−1 (5.3)

where aJ
n and bJ

n are given by equations (4.14a, b) . The even convergents CJ
2n(z) =

p(J)
n (z)[q(J)

n (z)]
−1

are the [J + n − 1/n] vector Padé approximants to f(z) . Here,
p(J)

n (z) and q(J)
n (z) are polynomials in z over C`d of degrees J + n − 1 and n

respectively, such that the Maclaurin expansion of CJ
2n(z) agrees with the first

J + 2n terms of f(z) and q(J)
n (0) = 1 , adopting the Baker convention. From the

system of equations (3.7) and (4.36) we deduce that

q(J)
n (z) ≡ znBJ

n(
1

z
) = 1 + zW J

n−1 + · · · . (5.4)

We may obtain information on the leading terms of the Padé error. From (3.9) and
(3.11), we have

f(z)q(J)
n (z)− p(J)

n (z) = zJ+2n[UJ
n + zT J

n + O(z2)]. (5.5)

Hence,

f(z)− p(J)
n (z)[q(J)

n (z)]
−1

= zJ+2n[UJ
n + z(T J

n + T̃ J
n ) + O(z2)]

which for the case of J = 0 becomes

f(z)− [n− 1/n](z) = z2n[Un + zU′
n + O(z2)]

where

U′
n := −{2Vn+1 + [

n∑

k=1

Dk]Un}

with the square matrix Dk of order d defined in terms of the skew-symmetric matrix
Ak and the unit matrix I by

Dk := Ak + 2(uk−1 · vk)I.

Here, use has been made of the following identity

abc + cba = [a,bc]− + [b, c]+a = Aa + 2(b · c)a
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established with the help of (2.4) and (4.38).
In the scalar case a power series or its corresponding Padé table is said to be

normal [1] if, for each and every approximant, the numerator and denominator
polynomials are of full nominal degree. If we adopt the same terminology for the
vector case then f(z) is normal if UJ

n 6= 0 for J, n ≥ 0 . Since UJ
n ∈ IRd , the

requirement of normality guarantees that these vectors are invertible, thus validating
all the operations in this paper.

6 Appendix – Two designant identities

We state two identities for designants whose proofs may be found in [12,19] for (i)
and [19] for (ii). These references provide arguments for right-handed designants,
but the results quoted for the left-handed version readily follow.

(i) Analogue of Sylvester’s identity.

B(n−1)
n,n =

∣∣∣∣∣
B

(n−2)
n−1,n−1 B

(n−2)
n−1,n

B
(n−2)
n,n−1 B(n−2)

n,n

∣∣∣∣∣
l

:= B(n−2)
n,n −B

(n−2)
n,n−1[B

(n−2)
n−1,n−1]

−1
B

(n−2)
n−1,n

i.e.

∣∣∣∣∣∣∣∣

a11 · · · a1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣∣
l

=

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−2 a1n
...

...
...

an−21 · · · an−2n−2 an−2n

an1 · · · ann−2 ann

∣∣∣∣∣∣∣∣∣∣
l

−

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−2 a1n−1
...

...
...

an−21 · · · an−2n−2 an−2n−1

an1 · · · ann−2 ann−1

∣∣∣∣∣∣∣∣∣∣
l

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−2 a1n−1
...

...
...

an−21 · · · an−2n−2 an−2n−1

an−11 · · · an−1n−2 an−1n−1

∣∣∣∣∣∣∣∣∣∣

−1

l

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−2 a1n
...

...
...

an−21 · · · an−2n−2 an−2n

an−11 · · · an−1n−2 an−1n

∣∣∣∣∣∣∣∣∣∣
l

(6.1)
We note that

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−1 0
...

...
...

an−11 · · · an−1n−1 0
an1 · · · ann−1 1

∣∣∣∣∣∣∣∣∣∣
l

=

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n−2 0
...

...
...

an−21 · · · an−2n−2 0
an1 · · · ann−2 1

∣∣∣∣∣∣∣∣∣∣
l

= · · · =
∣∣∣∣∣

a11 0
a21 1

∣∣∣∣∣
l

= 1

(6.2)
since the last column of the last designant of (6.1) is always composed of zeroes.

16



(ii) Analogue of Schwein’s identity.

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n g1
...

...
...

an1 · · · ann gn

an+11 · · · an+1n gn+1

∣∣∣∣∣∣∣∣∣∣

−1

l

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n h1
...

...
...

an1 · · · ann hn

an+11 · · · an+1n hn+1

∣∣∣∣∣∣∣∣∣∣
l

=

∣∣∣∣∣∣∣∣

a12 · · · a1n g1
...

...
...

an2 · · · ann gn

∣∣∣∣∣∣∣∣

−1

l

∣∣∣∣∣∣∣∣

a12 · · · a1n h1
...

...
...

an2 · · · ann hn

∣∣∣∣∣∣∣∣
l

+

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n g1
...

...
...

an1 · · · ann gn

an+11 · · · an+1n gn+1

∣∣∣∣∣∣∣∣∣∣

−1

l

∣∣∣∣∣∣∣∣

a12 · · · a1n g1 h1
...

...
...

...
an+12 · · · an+1n gn+1 hn+1

∣∣∣∣∣∣∣∣
l

(6.3)
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