
Solving a Real-World Problem Using an
Evolving Heuristically Driven Schedule
Builder

Emma Hart
Department of Artificial Intelligence
University of Edinburgh
5 Forrest Hill
Edinburgh E H l 2QL
emmah@dai.ed.ac.uk

Jeremy Nelson
Department of Artificial Intelligence
University of Edinburgh
5 Forrest Hill
Edinburgh EH1 2QL
jeremyn@dai.ed.ac.uk

Peter Ross
Department of Artificial Intelligence
University of Edinburgh
5 Forrest Hill
Edinburgh EH1 2QL
peter@dai.ed.ac.uk

Abstract
This work addresses the real-life scheduling problem of a Scottish company that must pro-
duce daily schedules for the catching and transportation of large numbers of live chickens.
The problem is complex and highly constrained. We show that it can be successfully
solved by division into two subproblems and solving each using a separate genetic algo-
rithm (GA). We address the problem of whether this produces locally optimal solutions
and how to overcome this. We extend the traditional approach of evolving a “permutation
+ schedule builder” by concentrating on evolving the schedule builder itself. This results
in a unique schedule builder being built for each daily scheduling problem, each individ-
ually tailored to deal with the particular features of that problem. This results in a robust,
fast, and flexible system that can cope with most of the circumstances imaginable a t the
factory. We also compare the performance of a GA approach to several other evolution-
ary methods and show that population-based methods are superior to both hill-climbing
and simulated annealing in the quality of solutions produced. Population-based methods
also have the distinct advantage of producing multiple, equally fit solutions, which is of
particular importance when considering the practical aspects of the problem.

Evolving schedule builder, heuristics, constraints.
Keywords

1. Introduction

Studies of the application of evolutionary methods to a variety of benchmark scheduling
problems have produced solid evidence that such techniques can be fast and efficient ways
of solving many types of scheduling problems, for instance (Lin, Goodman, & Punch, 1997;
Cleveland & Smith, 1989; Fang, Ross, & Corne, 1993; Mott, 1990).

@ 1998 by the Massachusetts Institute of Technology Evolutionary Computation 6(1): 61-80

E. Hart, P. Ross, and J. Nelson

However, when attempting to scale these techniques up to tackle some of the real prob-
lems faced in industry, we often discover that a number of additional factors and constraints
must be incorporated to successfully model the real world, which can complicate the issue
considerably. Here we study a very highly constrained problem for a chicken-processing
factory that must schedule the arrival times of lorry loads of birds to two factories on a daily
basis, scheduling teams of chicken-catching squads, lorries, and drivers in the process. The
problem is described in detail in Section 2 . The goal is to produce an a u t o m a t e d scheduling
system that produces practical schedules quickly, similar to those currently produced by hand
a t the factory. Against the grain of most scheduling work, we are not interested in optimizing
any particular objective while producing the schedules, but in producing a fast and robust
system that can produce high-qualih pr~~-ticnl schedules that satisfj a large number of con-
straints. In ti-ying to formulate a definition of “practical” we are required to add many more
constraints to the system, significantly increasing the complexity of the problem. We believe
that this problem is coninion to a large number of industrial scheduling problems, and it
is this factor that may hinder the success of many of the techniques successhlly proven on
artificial problem when applying them to real problems.

An automated scheduling system can be exploited in many ways to directly and indirectly
provide beliefits to the company. For example, a system that closely replicates current
working practices can quickly gain the confidence of its users and perhaps then be used as an
exploratory tool to investigate the effects of making changes to current practices. Changing
established practice may not, in many cases, be cost-effective in the short-term, and hence
;i coinpany may be reluctant to implement change. In this case, the automated system is
intended to bring an immediate, direct cost benefit to the company by freeing up human
resources to be put to better use elsewhere.

3‘he following section describes the scheduling task in more detail. Sections 3 , 4, and
5 describe the evolutionary approach we have adopted and the reasoning behind it. This is
followed by a set of results found using eight test cases supplied by the factory.

2. Problem Description

The conipany catches up to 1 . 3 million live birds a week a t fiamms spread across Scotland and
processes them a t two factories. The aim is to schedule the catching and delivery of birds
using a fixed resource of squads and lorries so as to keep the fiactories supplied with birds at
a constant rate. Each day, a set of orxie7-s must be processed a t each of the two factories.

Each factory runs its own fleet of lorries, which are available in two different sizes,
holding either 2 2 modules or 24 modules of birds. Certain types of birds require a large
lor? for delivery, whereas others can fit in either size. Although a lorry may deliver loads
to either of the factories during the day, it must deliver its last load to its base factory in the
evening.

-ln or-cler- consists of m modules of birds, of type t , weight zt, to be collected from a {arm
f and delivered to a factory F. The work defined by the orders must be allocated to teams of
catching squads. Lorries and drivers then must be scheduled to meet each load a t a farm as
it is caught and deliver it to a fiactory. The factories must be continually supplied with birds
throughout the day - however, there are strict regulations governing the period of time the
live birds can remain outside the factory before being processed; hence the birds must arrive
only at the same rate as the factory can process them. Figure 1 illustrates an example of this
process for one factory. A squad leaves its base factory at the beginning of a shift, travels

62 E\ olutionar! Computation Volume 6, Numher 1

Real-World Scheduling Using a Schedule Builder

0 Farm
~ Squad trip
_. ~ ~r Lorry trip

Figure 1. Illustration of squad and lorry schedules for two squads collecting work for a factory.

between a set of farms, catches a variable number of birds at each farm, and returns to its
base factory only at the end of the shift.

A squad is based at one of the factories and works either part or full time. It rotates
between three shifts, classified as early, jloating, or late, depending on the time of day the
shift begins. There are contractual requirements specifymg the minimum and maximum
number of modules a squad can catch in one day, and also in one week, and the maximum
length of the shifts they can work. Some farms have their own catching squads, and there
are restrictions on the order in which squads can visit certain farms due to the prevention of
spread of diseases existing at some farms.

Drivers must also be assigned to each lorry trip-a lorry driver can work a maximum of
a 13-hour shift, of which only 9 hours can actually be driving. If necessary, contract drivers
and/or lorries can be hired to do any extra work, although of course it is preferable to avoid
this.

3. Evolving a Scheduler

An often-cited approach to tackling scheduling problems (Syswerda & Palmucci, 1991) is
to use a simple chromosome that represents a permutation of tasks to be scheduled, plus a
schedule builder that transforms the chromosome into a schedule. This section describes
related work that uses this approach, and based on this, discusses some of the factors that
must be taken into account when designing both the chromosome and the schedule builder
in this particular case.

3.1 The Chromosome Encoding
In general, each chromosome represents a permutation of the order in which tasks to be
scheduled are to be considered by the schedule builder (SB) (Bierwith, 1995). For example, in
a 5 x 5 job-shop schedulingproblem, each chromosome could simplyrepresent a permutation
of the 25 operations that must be scheduled (Mattfeld, 1996).

Evolutionary Computation Volume 6, Number 1 63

E. Hart, P. Ross, and J. Nelson

Coarse

Fine

Figure 2. Levels of order: split granularity.

In the problem presented here, however, there is no clear notion of an opet-ution or task.
At the highest level, we have a collection oforders to schedule (e.g., Fig. 2 , levels 1 and 2). An
order itself cannot he scheduled in a single step: Each order represents several arrivals a t a
factory that may be caught by several different squads (e.g., Fig. 2 , levels 3 and 4); therefore,
each order must be broken down into schedulable tasks. Evolving permutations of or-den to
present to the SB requires that the SB itself must split each whole order into schedulable
tasks. These tasks may themselves require ordering to produce good schedules, and hence
the SB must do too much work - evolution is taking place a t too high a level.

The most obvious candidate for a tilsk is a complete lorry load of birds (ix., 2 2 or 24
modules), depending on bird type and lorry size (e.g., Fig. 2 , level 3) . However, scheduling
tasks of this size may preclude some of the best solutions. For example, a part-time squad
has a maximum load of 64 modules. Assigning two tasks to a part-time squad will result in
an undeworked squad, catching with 44 or 48 modules, whereas assigning three tasks to the
squad will cause it to become overworked. If the task size is reduced to try to resolve this,
for example, to half a lorry load (level 4 in Fig. 2) , the size of the search space dramatically
increases; moreover, the possibility o f producing impractical schedules increases also. As
up to 60 lorry loads per day may arrive a t the factories, even scheduling complete lorry
loads results in 60! possible permutations. Man!- of these permutations are likely to lead to
highly impractical schedules, for instance, with squads collecting small loads of birds at many
different farms, rather than collecting large loads a t few farms. This can be counteracted i n
a fitness function by introducing penalties to penalize such schedules, but given an already

64 Evolutionar) Computation \Tohime 6, Nuniber 1

Real-World Scheduling Using a Schedule Builder

highly constrained problem, this is not desirable (see Section 6.1.2 for a full discussion of
the effects of the choice of task size).

We resolve this problem by using a genetic algorithm (GA) that encodes, for every
order, a choice of heuristic that should be used to split that order into schedulable tasks. The
reasoning behind this is that, wherever possible, the search space is reduced by using a coarse-
grained split, with a corresponding increase in the practicality of the schedules. By allowing
the GA to increase the size of the search space if necessary, we hope to find an acceptable
trade-off between the optimality of the schedule (in terms of satisfymg constraints) and the
practicality of the schedule.

3.2 The SB
The function of the SB is to transform the chromosome into an actual schedule and is a crucial
step in the performance of the whole system. The SB itself can be used to enforce constraints,
as well as to produce the actual schedules from the chromosome. Bagchi, Uckun, Miyabe,
and Kawamura (1991) note, however, that the schedules produced by an SB are optimal
locally (i.e., the schedules produced are constrained by the plans in the SB). More recently,
other work has investigated the effect of using some degree of choice within the SB itself to
counteract this problem of local optimality. Langdon (1996) used a genetic programming
approach to evolve the heuristic to use for a fixed order of tasks. Shaw and Fleming (1997)
found that implementing a degree of flexibility into the SB, producing a compromise between
a rigrd SB and one that assigns tasks randomly, can improve results when trying to optimize
costs of schedules in production scheduling.

Other people have reported successful use of a GA to evolve heuristic choice in schedul-
ing applications. For example, Dorndorf and Pesch (1995) describe a “priority-rule based
genetic algorithm,” where the ith gene in a chromosome denotes a dispatch rule used to
resolve conflicts in the ith iteration of a scheduling algorithm. In a similar vein, Fang, Ross,
and Corne (1993) and Fang (1993) investigated “evolving heuristic choice” for open-shop
problems, in which they evolve the choice of heuristic to decide which operation of the job
defined in the permutation should be scheduled next, with promising results. Norenkov and
Goodman (1 997) extend this approach in an algorithm called the “heuristic combination
method,” in which a GA is used to optimize the choice and sequence of application of a set
of heuristic rules for schedule synthesis.

In this case, as we aim to produce a system that replicates a human scheduler, it is
obviously vital to include as much of hidher knowledge as possible in the SB. The potential
problem of producing suboptimal schedules by exactly reflecting factory decision malung is
irrelevant in this case, as we wish to produce schedules that look like those currently made
by hand. The crux of the problem lies with accurately formulating the heuristics used by the
human. Often, the reasoning behind why a particular decision was taken cannot be easily
encapsulated - it comes with years of experience and an “intuition” that cannot be expressed
on paper. We resolve this problem by expressing as much information as we can glean from
current factory practice as a set of rules and by exploiting the searching capabilities of the
GA to combine these rules into a sensible SB that fits the features of the problem being
considered. A sequence of heuristic choices is evolved that dictates which heuristic to use to
place a task into the partially built schedule.

In summary, we shall use a GA to evolve a strategy for producing schedules, rather than
the schedule itself. We circumvent the inherent problems of the “permutation+SB” approach
by evolving the optimal method of dividing the high-level work into schedulable tasks and
then evolving a unique SB for each test case. This is described in detail in Sections 5 and 6.

Evolutionary Computation Volume 6, Number 1 65

E. Hart, P. Ross, and J. Nelson

Pairs of (Order,Quantity) used to satisfy
fixed criteria

I1
f-- Permutation of N orders

Il11 A i c ~ 5 1 I - - Choiceof Heuiisttcs for splitting the load

IVI D 1 D I A - Choice of Heuri\tic\ for assigning the load

Figure 3. T h e chromosome representation for GA('4rJzgn).

4. Dividing Into Subtasks

Tqing to evolve an SB that assigns tasks to squads and simultaneously schedules lorries,
dril ers, and factory arrivals in one step is extremely complex. M% can simplify the problem
somewhat by brealung it down into two stages:

1. Split each order into tasks, according to a specific heuristic for each order, and assign
those tasks to squads in a manner that minimizes the number of constraint violations,
using the evolved heuristic choice-GA(il.~.rign).

2 . Llssign start times to each of those squads in a manner that optimizes the arrival times
of loads to the factory and minimizes the number of lorries required-GA(Tinwr).

For each stage, we run a separate (24. The best assignment found by GA(Assign) is
used as input to GA(Tim7*), which evolves a start time for each squad. In the general case,
hierarchical decomposition o f a problem in this manner runs the risk ofproducing suboptimal
solutions, where the performance of the second stage, in this case GA(Tzmer), is constrained
by the output of the preceding stage [i.e., GL4(A.r.rig?7)]. Ryu, Hwang, Choi, and Cho (1997)
tackle this problem by using an iterative process in which the cycle of steps is repeated
until no further improvement in performance can be obtained. We investigate thoroughly
the extent to which GA(Time7.) is actually constrained by GA(,.l.r.rign) and whether such an
iterative approach is necessav or beneficial in this particular instance.

5. GA(Assign)

Thic section describes the chromosome representation adopted and explains in detail the
steps taken to deal with the constraints associated with the problem. Although the final
representation appears highly problem specific, the principles underlying its design have
much more general applicabilit). to other problems. In particular, the methodology used
to handle constraints (described in Section 5.2) is extendible to other highly constrained
prohlerns, and the manner in which domain knowledge is dealt with (see Section 5.3), is
transferable to other real-world applications. Figure 3 shows the structure used to indirectly
represent how the orders should be split into tasks and assigned to squads for a single factory.
Each chromosome consists of two identical structures, one for each factory. A detailed
espl:iiiation of each part of the representation is given in the following sections.

Real-World Scheduling Using a Schedule Builder

5.1 Constraints
GAS that are based on constraint satisfaction or penalty functions can often be hard to get
to work as desired (Richardson, Palmer, Leipin, & Hilliard, 1989; Michalewicz & Janikow,
1991). Michalewicz and Janikow (1991) provide a mechanism for constraint satisfaction that
does not allow infeasible chromosomes to exist in the population. In this case this mechanism
is neither necessary nor desirable: In this problem generation of feasible solutions is not
difficult (see Section 6.2; Section 6.1.1 and Table 4; and Table 12); and as Richardson et al.
(1989) point out

The foundations of GA theory, however, say that GAS optimise by combining
partial information from all the population. Therefore, the infeasible solutions
should provide information and not just be thrown away.

Richardson et al. (1989) provide a generic technique for constructing a penalty function.
This method cannot be applied to this problem as it requires either a priori knowledge of
the search space or a t least certain features of it to be calculable (Michalewicz & Janikow,
1991). We approached the problem by simplifymg the constraints and manually assigning
penalty function weights.

5.2 Handling Constraints
We deal with the potentially large number of constraints in three ways: handle the unavoidable
criteria; simplify by removal of constraints; and incorporate the hard and soft constraints
into a penalty function.

5.2.1 Dealing With Unavoidables Several of the constraints concern events that must
happen in the schedule; for instance, “a full-time squad must deliver a large load of roaster
birds to factory A to open the factory.” We can guarantee that such constraints are met by
encoding on the chromosome the manner in which the constraint should be satisfied. Thus,
in section I, pairs of genes specify an order and quantity for satisfymg each of the unavoidable
criteria. Thus, we retain some flexibility by allowing the GA to evolve the method by which
each criterion is specified. In Figure 3 , the first pair of genes (4, k) in section I specifies that
criterion (1) is met by using k modules of birds from order 4.

5.2.2 Removal Through Interpretation Several constraints can be removed by in-
terpreting the schedule in a certain manner-this applies especially to those constraints
introduced to preserve the “practicality” of schedules. For instance, the constraint that a
squad should not be allowed to “double-back” (i.e., visit two farms in the sequence A, B, A)
can be removed by scheduling all work done at farmf by squad s in a contiguous block.

5.2.3 The remaining constraints are incorporated into a penalty func-
tion that penalizes each violation of a constraint in a schedule. These constraints may be
classified as “hard” or “soft)) and are suitably weighted to reflect this. The penalties used,
and their associated weights, are defined in Table 1. A schedule must satisfy all the hard con-
straints (e.g., [OVERLOAD] and [UNDERLOAD]) and attempts to minimize violations of
the soft constraints. Afeasible schedule must satisfy all hard constraints, and it is preferable
to minimize the number of violations of soft constraints incurred by a solution. A schedule
cannot be accepted by the factory unless it is at least feasible.

Penalty Function

Evolutionary Computation Volume 6, Number 1 67

E. Hart, P. Ross, and J. Nelson

Table 1. T h e penalties applied in the fitness function for C;,?(As.rZp).

Constraint
OVERLOAD

UNDERLOAD
BOTH SIDES

TOTAL FARMS

Description
A squad must not collect more than mzxr
modules
X squad must collect a t least mint modules
X squad should not work on north and
south of the Forth Estuary in the same

Minimize the total number of farms a
squad visits
A squad should collect a t least I modules
from each $arm it visits

day

Importance
Hard

Hard
sofi

soft

Hard

Weight
10

10
3

1

10

T h e values of the penalties above were arrived at somewhat arbitrarily. Values that
worked were easy to find, and those that worked best were adopted. T h e actual fitness of a
solution is given by (I + x:z> r,Y,)-', where N is the number of violations of constraint i,
and xi is its associated penalty; hence, a solution that incurs no penalty has fitness 1.

5.3 Evolving Heuristic Choice
In FiLgure 3 , section I1 of the chromosome represents a permutation of the N orders that
must arrive at facton. f ; and determines the order in which they will be scheduled. T h e
chromosome sections ;marked 111 and K in Figure 3 encode the heuristics that should be
used to split and assign each order, respectively. Ifre interpret this as meaning that the ith
order in section TI should be split according to the heuristic denoted by the ith gene in
section 111 and scheduled according to the heuristic denoted by the ith gene in section n!
Tables 2 and 3 define the sets of heuristics used. These heuristics were chosen to represent
the rules used by the human scheduler when constructing schedules. For example, Table 2
defines heuristics that cover all ways in which we know the human scheduler currently splits
orders, and E b l e 3 tries to capture some of the rules used by the human scheduler (somewhat
intuitively) to ensure that schedules are practical. For instance, heuristics E and F in Table 3
implicitly minimize the total time spent in traveling by a squad (note, however, that this is
not always desirable, as it could result in loads arriving a t the factory too closely spaced).

5.4 Feasibility and Repair
T h e choice of assignment heuristic indicated at locus i may not be feasible as a method of
splitting order i for m-o reasons. First, the choice of o d e ? - and number of wzodliles (0, m) used
to satisfy the fixed criteria in section I takes precedence when constructing an assignment and
hence may lead to an infeasible heuristic being assigned in section I11 to split the remaining
loatls of order o. Second, the chosen splitting heuristic may be incompatible with the size of
the order under consideration - for example, an order containing more than 110 modules
cannot be split by heuristic A. Before the chromosome is interpreted, it is checked for such
anomalies, and any invalid assignments are repaired by randomly selecting another valid
heuristic and altering the chromosome to represent this.

However, an assignment of work to squads constructed from the strategy represented
by part I\' of the chromosome map still be i74i.crsilde; for instance, a squad may be overworked

68 Evolutionary Computation Ib lun ie 6, Nuinher 1

Real-World Scheduling Using a Schedule Builder

Table 2. Heuristics for splitting an order.

Heuristic
A
B
C
D
E
F
G
H
I
J

Heuristic
A
B

C
D
E
F
G

Description
If farm order <= 110, use all this
Split into single loads of 22 (but split first load into 10 + 12)
Split into tasks of size 44
1 task of size 66, split rest into single loads
Split into tasks of size 66 66
1 task of size 88, split rest into single loads
Split into tasks of size 88
I task size 110, split rest into single loads
If order == 110, split into 56 and 54
If order == 110, sd i t into 66 and 44

Table 3. Heuristics for assignment.

Description
Assign each part-load to the first squad found that satisfies all the constraints
Try and assign the load to a squad that is already doing this type of work
(taking into account constraints)
Assign the load to an unused squad (if possible)
Assign the load to a squad already worlung (if possible)
Assign the load to a squad already going to this farm
Assign the load to a squad already going to the same complex
Assign the loads randomly

as a result of too many tasks being assigned to it. The chromosome is not repaired to correct
this-the resulting assignment is simply heavily penalized via the penalty function. Repairing
the chromosome in this case is judged too costly, as the infeasibility of the choice of assign-
ment heuristic does not become clear until the preceding operations have been assigned.
Others (e.g., Smith & Tate, 1993) have noted that maintaining infeasible chromosomes in
the population can ensure that parts of the search space are not cut off. Smith and Tate used
an adaptive penalty function that gradually reduced the number of infeasible chromosomes
allowed-in this case, we find that a feasible population is rapidly produced, and hence this
is not necessary.

5.5 output of GA(Assign)
The result of applying GA(Assipz) is thus a complete assignment of squads to work. The
sequence in which a squad visits the farms assigned to it is also implicitly determined by this
GA via the permutation in part 11: The first farm V;) that is assigned to a squad s as the
chromosome is interpreted from left to right is the first farm it visits; the next new farm to
be assigned to this squad (i.e., different from$) is visited second; and so on. If at iteration t
an order is assigned to a squad from a farm it is already visiting, the modules from this order
are merely added to the modules already due to be collected at this farm.

Evolutionary Computation Volume 6 , Number 1 69

E. Hart, P. Ross, and J. Nelson

Table 4. Results of experiments using GA(Assigli) averaged over 10 trials.

Minimum
Fitness
0.200
0.250
0.500
0.500
0.125
0.250
0.111
0.083

Aver age
Fitness
0.200
0.250
0.500
0.500
0.137
0.316
0.113
0.117

,Maximum
Fitness
0.200
0.250
0.500
0.500
0.167
0.333
0.125
0.125

% of Feasible
Chromosomes in Initial Population

29
19
10

5
15
11
6

16.5

6. Experiments

Experiments were performed in eight test cases provided by the factory. Cases 1 to 4 were
deemed “easy” to solve by the current scheduling expert, whereas cases 5 to 8 were found to
be very difficult to solve by hand. Experiments with each test case were repeated 10 times and
the results averaged. Experiments were repeated using a GA, a simple hill-climber (EIC), a
population-based hill-climber (Pop-HC), and simulated annealing (SA). For GA(Assign) and
the Pop-HC, the population size was 100. Crossover and mutation operators were applied
independently to each section of the chromosome. A two-point crossover operator was
applied to sections I, 111, and l3’ of the chromosome and PMX crossover to the permutation
in section I1 (Mott, 1990). ,Mutation was applied with a probability 0.02 to each gene in each
ofsections I, 111, and K-an order-based mutation operator, that picks two loci a t random and
exchanges their alleles, was applied to the permutation of orders. All experiments were run
for 10,000 evaluations, with a steady-state reproduction strategy. For the HC experiments,
mutation was applied with probability 0.2, with the resulting solution accepted if it was fitter
or of equal fitness to the current solution.

6.1 Results
The average, best, and minimum fitness found in 10 trials of GA(Asszgn) are shown in Table 4.
In mwy case a feasible schedule is found, and in every case the assignments are judged to
be acceptable by the expert. Here we define “acceptable” to mean that the schedules were
similar to those currently produced by hand a t the factory and could be employed in practice.
Yote that the iiiaximum fitness is always unknown and differs from case to case. In each
case, the final penalty results only from the unavoidable fact that at least one squad must visit
more than one farm and hence can never be zero. T h e average fitness found by GA(Assign)
is contrasted with that found using the SX, EIC, and Pop-I-IC in Table 5. For SA, I-IC, and
Pop-FIC, the number in parentheses gives the probability that the result is n o t significantly
different from the result found by the GA, calculated using Student t-tests.

Closer analysis of the results highlights the following facts.

6.1.1 Although a good solution is always found,
the ease with which each case is solved varies quite considerably across the probleni set.
Problenis 1 to 4 are solved reliably, whereas problems 5 to 8 appear to be solved with more

Variation in Difficulty of Test Cases

70 F5olutionary Computation Volume 6, Nuinhcr 1

Real-World Scheduling Using a Schedule Builder

Table 5. Average results obtained over 10 trials. Numbers in parentheses show the probability that
the null hypothesis is true; that the result is not significant.

Test Case

0.250
0.500
0.500
0.137
0.3 17
0.113
0.117

HC
0.200
0.2 50
0.500
0.250 (0.331)
0.111 (0.547)
0.167 (0.062)
0.113
0.091 (0.10)

SA
0.200
0.237 (0.166)
0.500
0.43 1 (0.092)
0.128 (0.215)
0.270 (0.050)

0.120 (0.822)
0.1 11 (0.431)

0.250
0.500
0.500
0.128 (0.215)
0.308 (0.628)
0.121 (0.124)
0.124 (0.495)

difficulty, as shown in Table 4. Examining the number of feasible solutions produced on
average in the initial populations shows that, in fact, in all casesfeasible solutions can be
randomly generated, although in all cases the fitness of these solutions is improved through
search. The search is clearly more difficult in some cases; for example, see Figure 4, which
shows the average and best fitness of the population as GA(Assi') runs, for cases 1 and 6. It
also depicts the number of feasible chromosomes present in the population and the stepwise
nature of the improvements in fitness.

6.1.2 Table 6 shows the distribution
in the frequency with which a splitting heuristic was chosen across all the orders for each test
case. The most commonly used heuristic in each case is shown in boldface (see Table 2 for
the actual heuristics). The distribution is clearly not random and highlights the importance
of selecting a suitable task size. In general, the most common choice is to use a coarse-
grained split.' As briefly mentioned in Section 3.1, there is a trade-off between the level
of granularity of the order split and the amount of work that has to be done in searching
the space of possible task assignment: The finer the granularity, the more choices there are
of possible assignments, hence the more work that has to be done in exploring the possible
combinations (see Fig. 2) .

Benefit From Evolving Choice of Split Heuristic

1 Regardless of the split heuristic used for the purpose of assigning work to squads, ultimately (at the timing stage) single lorry
loads have to be scheduled (i.e., a lorry load is the atomic unit).

Evolutionary Computation Volume 6 , Number 1 71

E. EIart, P. Ross, and J. Selson

% of Heuristic Beii

Table 6. Frequency of application of splitting heuristic.

: Applied to S Test Case

1 Test Case
1

1 2
3
4
5
6
7
8

GA
0.200
0.250
0.500
0.500
0.137
0.317
0.113
0.1 17

A
84
78
44
35

50
79
47
43

__

~

B
3
6
6
4

10
12
29
3 3

__

~

C
11
2
38
43

1’)
9
14
3

-
-
D
1
1
0
1

1
0
0
9

__

-

::
0 0

0

~

G
1
0
10
3

0
0
6
2

~ “i
10 0 0

1 0 0

Table 7. Contrast in performance between C,-l(,-tx.r@z) and modifications of CA(A.mzp) in which the
split heuristic and the permutation were fixed

GA+FixSplit (single lorryload)
0.167
0.139
0.458
0.188
0.091
0.152
0.111
0.099

0.250
0.500
0.500
0.123
0.250
0.1 11
0.122

For example, Table 7 contrasts the results found when GA(Assigr2) is forced to fix the
order split granularity a t a single lorry load with those of allowing the GA(Assign) to evolve
a choice of split granularity (as described above). In only two cases, (cases 7 and 3) are the
average results comparable in quality, and we find that for these cases, the evolved choice of
split is often the fine-grained split (see also Table 2).

Again, we emphasize the advantages of a flexible scheduler for a system in which the
work to be scheduled can vary so much from day to day.

6.1.3 T h e distribution in
frequency for the choice of assignment heuristic in Table 8 shows a less distinct preference
for choice. In this case, the frequencies are more evenly distributed and do not deviate
significantly frotn the 14% frequency that would be expected if the choice were completely
ranitoin.

Benefit From Evolving Choice of Assignment Heuristic

6.1.4 permutation of Orders Table 7 also contrasts the results using a version of
CL~(,~JSZK./I) in which the permutation of orders to be considered by the SB was fixed through-
out the (;A run. J4’e see that for 50% of the cases, this has no effect. Of the remaining cases,

7 2 Evolutionary Computation \.i)lume 6 , Nnmber 1

Real-World Scheduling Using a Schedule Builder

Table 8. Frequency of application of assignment heuristic.

Test Case

1
2
3
4

S
6
7
8

% of Heuristic Beir
~

A
1s
8
16
21

8
14
17
26

-
~

B
19
14
16
16

22
18
21
16

-
~

C
12
13
10
4

1s
18
8
10

-
-
D
15
13
13
25

9
12
14
1s

~

Apl
E
14
13
18
13

23
1 3
18
11

-

ied to Assign an Order
~

F
13
28
16
10

16
13
11
10

-

-
G
11
12
11
11

7
14
11
12

evolving a permutation is beneficial in three (cases 5, 6, and 7), whereas in case 8, a better
result is obtained by using a fixed permutation. This last case is rather surprising, suggesting
that the choice of permutation of orders used to test the effect of a fixed permutation was
rather fortuitous and that the GA failed to evolve a permutation of equal quality. This varia-
tion in result also highlights the variation in problem difficulty from day to day. On balance,
we conclude that treating orders in a flexible manner by using a permutation is advantageous,
as it produces an equal or superior result in seven of the eight cases investigated.

6.1.5 Choice of Evolutionary Technique Table S compares the performance of a range
of evolutionary techniques in the eight cases. The SA appears to perform the most poorly
when loolung at the test set as a whole and the two population-based methods, that is,
GA(As1igz) and Pop-HC show the best overall performance. The GA and Pop-HC give
equivalent results on the easier cases 1 to 4, and we find that the GA outperforms Pop-
H C in cases S and 6, whereas Pop-HC outperforms GA(AsSign) in cases 7 and 8. Closer
analysis of the assigments produced shows that all four methods always produce feasible
assignments; however, those produced by SA and HC were often rejected by the human
scheduler as “impractical.” Thus, although these schedules could be used by the factory, the
better solutions produced by GA(Assigz) and/or H C were always preferred.

We conclude that a population-based approach is advantageous; however, further work
is required to determine whether a GA has any significant advantage over a simple H C
approach. A population-based approach also has the advantage of being able to produce
multiple solutions with the same fitness: Analyzing the final population a t the end of each
test showed that in a single population many different solutions, each with the same fitness,
existed. This allows the possibility of human input in choosing among equally fit schedules
and, as discussed in Section 3.2, can have an important bearing on the quality of the results
produced by GA(Timer).

6.2
It is important to ask whether a GA is actually doing any work (i.e., that the problem is
nontrivial); the purpose of this section is to illustrate that this is the case in this instance.

One hundred random solutions were generated for each case (see Table 9). Note that for
case 1, random generation produces as good a solution as GA(Assign). Also, for cases 3,4,7,
and 8 the fitness of the best randomly generated solution is SO% or greater of the maximum

Is 01(AsSign) Solving a Nontrivial Problem?

Evolutionary Computation Volume 6, Number 1 7 3

E. Hart, P. Ross, and J. Nelson

1
2
3
4

6
7
8

3

Table 9. Contrast in performance between randomly generated solutions and those evolved using
GA(,-fxx/p).

‘Ll’orst (Fitness)
0.0008
0.0005
0.001
0.001
0.0008
0.001
0.0006
0.001

Test Case 1 1 Generate 100 Solutions Randomlv / / After Evolution
Best (Fitness)

0.2
0.091
0.250
0.250
0.07 1
0.1 11
0.067
0.07 1

J

Best Solution (Fitness)
0.2
0.25
0.5
0.5
0.267
0.333
0.12s
0.125

evolved fitness for each case. This could explain why SA and HC (see start of Section 6)
all found comparable solution fitnesses: Because random initialization could discover them,
fitnesses of that sort of level are not all that difficult to find.

It can be seen that in most cases the GA improves the fitnesses of the populations, and
hence the search procedure is worthwhile. Although occasionally the problem is straightfor-
ward, mostly it is nontrivial; this demonstrates the need for a flexible system-the advantage
of evolved strategies over solutions.

It should be noted that although in most initial randomly generated populations there
are members that are nioderately fit, the density of good solutions is low, and the spread
of solution fitnesses and variance in the population is high. This is illustrated by Figure 5.
T h e charts in Figure 5 show a bar for each unique fitness value that members of the initial
population have. In each there is a wide spread ofvalues, with no more than five members
of a population having the same fitness value.

7. GA(Timer)

T h e G A (7 i 7 ~ e ~) takes the output from GL4(il.r.r@7) and attempts to formulate a factory sched-
ule, by assigning a time a t which each load is to be caught. T h e process is considerably
simplified by the factory rules that a squad must continue working without a break once it
has begun its shift. This means that it is only necessary to assign a start time for a squad-
then, for a fixed sequence of fiarms (.fi . . .f;,), given the number of loads to be caught at each
farm, the travel time between farms, the travel time from farm to factory, and the catching
time required for each load, we have all the necessary information to calculate the arrival
time of each load a t the factorl;. T h e sequence in which farms are considered is determined
by GL.i(14s.r2gn), that is, the first farm assigned to a squad by GA4(As.rign) is the first farm visited,
and so on. T h e process for a single squad is illustrated in Figure 6.

A straightforward direct representation is used in which the chromosome has N genes,
one for every squad taking part in the schedule. factory arrivals are timed to the nearest
15 minutes. Each gene thus has an integer value n in the range 0 to 88, which is interpreted
as meaning that the squad starts work a t (15*a) minutes after midnight. T h e latest time a
squad can start work is 22:OO hours, hence the upper limit on the value of n is 88, i.e., 1320
minutes after midnight.

7 1 E ~ - o l u t i o n a ~ Computation Volume 6, Number 1

Real-World Scheduling Using a Schedule Builder

Number of Occurrences in case 2
Initial Population

Number of Occurrences in
Initial Population

case 5

Least Fit Most Fit Least Fit
Different Fitness Values Different Fitness Values

Most Fit

Figure 5. Graphs of cases 2 and 5 , showing the diversity of fitnesses in the initial populations. In
case 2 there are 80, and in case 5 there are 64, different fitness values. Note that the overall density of
fit solutions, although relatively high (compared to the number of unfit solutions), is low in absolute
terms (compared with the fitnesses after evolution).

‘ I

‘ I
‘ I
‘ I ’ , ‘ I

Arrival Time

I
Lorry Travel Time to Factory

Squad Catching Time

Squad Travel Time from Farm A
to Farm B

1 I Arrival Tune of Load At Factory

Farm B

Figure 6. An example schedule for a squad.

Some preprocessing of the input data can narrow down the allele range for each squad,
with the effect that the search space is considerably reduced. For example, the squads
allocated to satisfy the “unavoidable” criteria (see Section 5.2) in GA(Assign) have a predefined
time window in which they must start. A predetermined number of loads must be waiting a t
the factory when it opens in the morning, and the last load must arrive half an hour before
the factory closes. Squads are selected at random to satisfy these criteria, and the starting
times are fixed.

The GA only evolves start times for each squad. When the factory schedule has been
built, lorry assignment is done by the following iterative process:

1. Sort the tasks in chronological order of arrival at the factory;

2 . Set start time(Zorry I> = 0 for all lorries;

Evolutionary Computation Volume 6 , Number 1 75

E. Hart, P. Ross, and J. Nelson

Constraint
LATE

EARLY

SLMULTAYEOUS

STmTDARD
DEVIATIOK

LORRIES I!

Table 10. Constraints applied to G-I(Ti77wr).

Description
Loads arriving after a factory closes
Only two loads must arrive before a factory
opens
T h e number of loads arriving a t the same
moment in time

T h e deviation of arrival times from the ideal
schedule in which loads arrived with even gaps
throughout the day
T h e number of extra lorries that must be con-
tracted in to deliver the loads

Importance
Hard
Hard

So!

3 . For each unassigned task I :

consider each lorry l with start time > 0:
if (start time (task i) > finish time (Lon?, Z)

allocate (task i) to lorry I
finish time (I o / - I ~ Z) = finish time (trirk i)

4. If still not assigned (task i):

assign (task i) to a new lorry (I + 1)
start time (I o r q I) = start time (tnsk i)
finish time (1 0 r ~ I> = finish time (task i)

5. Repeat from step 3 until all tasks assigned

This method is preferred over an evolutionary one because the majority of assignments
of lorry to task made a t random would be infeasible, and hence the GA would spend most of
its time searching for feasible rather than good solutions. Each factory schedule is evaluated
for quality using a weighted penalty function that penalizes violations of constraints. As in
C;,4(A.~.sign), the constraints can be “hard” or “soft”-acceptable schedules must not violate any
hard constraints, and all schedules must minimize the number ofviolations ofsoft constraints.
T h e constraints used are detailed in Table 10. T h e values for the weights of the constraints
were arrived a t easily and arbitrarily (as in Section 5.2.3). t’alues that worked were quick to
find, and those that worked well were adopted.

8. Experiments

For e\ev test case, the best assignment found by running GA(A.s.rrgn) was used as input to
GL4~’h/w), which was run for 5000 evaluations. T h e experiments with each test case were

76 Evolutionary Computation Volume 6 , Number 1

Real-World Scheduling Using a Schedule Builder

Table 11. The worst and best penalties found from the C;A(Timer) using a set of input assignments
for each test case having equal fimess but different assignments. Note: the lower the value of the
significance (column 4), the more significant the value.

Test Case

6
8

Significance
0.42 1

0
0.196
0.001
0.708
0.001
0.373

repeated 10 times. Two-point crossover and a mutation rate of 0.02 were used, with a steady-
state reproduction strategy. On a good laptop PC, the speed was around 10 evaluations per
second.

8.1 Results
The GA(Timer) evolves acceptable schedules in every case. Here, acceptable means that the
factory is supplied with birds throughout the day and is never either idle or oversupplied. In
each case the final penalty results only from the standard deviation of the times of the load
arrivals-although not possible to prove, it is reasonable to assume that there cannot be an
optimum schedule in which loads arrive at precisely even intervals throughout the day, given
the widely spread geographical locations of the farms. In practice, a situation often arises
where two loads arrive at once, or a few loads arrive closely spaced. Also, the lorry schedules
produced use fewer lorries than those available at the factory, representing a possible cost
saving to the factory.

8.2
Although the GA(Timer) evolves satisfactory schedules, the question of whether they are
constrained by the optimality of the input assignment must be addressed. The exact sequence
with which a squad visits farms, as well as the allocation, can affect the resulting schedules.

The GA(Timer) could be improved by considering permutations of the possible se-
quences in which each squad visits its allocated set of farms. In the current version, the
sequence used for each squad is simply the order in which GA(Assign) considered each farm;
thus if the permutation of orders in GA(Assign) specified “ABCDE,” and squad S was as-
signed work at farms B and E, the GA(Timer) assumes a sequence “BE.” By examining other
permutations, it may be possible to achieve better schedules.

As noted in Section 6.1.5, running GA(Asszgn) generally results in a population with
several different chromosomes of equal fitness. Given a set of assignments A(i) of equivalent
fitness for each test case i, we use each member ofA as input to the GA(Tzmer) and find the
average quality of the schedule produced over 10 runs. Table 11 shows the penalty assigned
to the best and worst quality schedules found in each set A(i) and the probability that the
results are not significant.

The table shows that in several cases, the factory schedule can be significantly improved
by judicious choice of input schedule. As the schedules are produced very quickly, a simple

Relationship Between Assignments and Factory Schedules

Evolutionary Computation Volume 6, Number 1 77

E. Hart, P. Ross, and J. Nelson

improvement to the system would be to evolve factory schedules from a selection of the
fittest chromosomes in the final GA(A.r.rig77) population and present the user with the fittest
timing schedule found and the assignment schedule needed to produce this.

Another appealing feature from the user’s point of view would be to evolve a timing
schedule for every member of the assignment population that has reached the “best” fitness.
’The output of the scheduling system is then a set of pairs of (assignment + timings) from
which the user can choose which pair best represents a satisfactory trade-off between factory
schedules and assignment schedules.

9. Conclusion

The combination of two GA~-G4(~4-ls-lsigx) and GA(Evze/.)-has resulted in a robust system
t h a t produces schedules that are nixeptnbfe to the factory for every test case. The eight test
cases used varied in complexity and were representative of typical siutations that could occur
in the factory. This system was able to produce feasible schedules that could be put into work-
ing practice by the company, and were similar to those already used. Results were compared
using a GA, SL4, a Pop-HC, and a simple HC, all based on the same problem representation.
All the search methods produced fi.nsible schedules that satisfied hard constraints, but those
produced by the (;A and Pop-HC were judged to be superior by the factory experts because
they represented more practical solutions.

Although this paper discusses a very specific application, several of the design concepts
can be extended to other scheduling problems, particularly those involving complex real-
world data and constraints. In particular, we highlight the benefit of employing the following
techniques:

0 Division of a complex problem into smaller subproblems.

0 Separation of the most important constraints from the penalty function and instead

0 Evolving an SB that uses heuristic choice as a means of dealing with complex domain

incorporating them into the chromosome representation.

knowledge.

Dividing the problem into smaller subtasks and solving each separately simplifies the
search space considerably and hence increases efficiency. However, we must recognize that
this may compromise the solution quality because the quality of the final output is dependent
on the quality of the output from each individual subtask.

An ideal approach would consider a continuous evaluation cycle, as shown in Figure
7 , where there is some form of feedback from one subtask to another, and each subtask is
iteratively evolved until a sat isfactory solution is reached. An example of successful imple-
mentation of an iterative algorithm is given by RJW, Hwang, Choi, and Cho (1997). In this
case, the aim would be to improve the assignments based on the ability of the timing module
to produce a high-quality schedule from a given assignment. However, Table 12 shows the
aamige number of evaluations in each test case before GA(;lssig77) evolves a population that
consists of feasible chromosomes. This varies considerably, and hence an iterative scheme
coiilct result in tzvzing schedules being evolved for infeasible ~ssigiintrnts in much of the early
reproductive cycles, and consequently, an unnecessary expenditure of energy evaluating in-
feasible schedules. A sensible and eflicient method of combining information from both
edut ionary processes would have to be established. An alternative methodology would be

78 f-i-olutionary Computation Volume 6, Number 1

Real-World Scheduling Using a Schedule Builder

Test Case
Evaluations before
100%ofPopulation

Feasible

Evolve Factory Schedule A

1 2 3 4 5 6 7 8

711 3690 1012 2028 660 5514 1100 1315

Evolve in continuous cycle 1
\

Figure 7. The ideal evolutionary model for schedule construction.

Table 12. Variation in number of evaluations until GA(Assign) produces a feasible population.

to treat the assignment constraints and the factory constraints as different objectives within
a single GA and search for a satisfactory trade-off between the two quantities. A multiple
objective GA approach is currently being investigated by the authors.

In section 5.2, we described three methods of dealing with constraints that further
simplified the problem structure and reduced the search space. In particular, we significantly
decreased the size of the search space by separating the most important constraints from
the penalty function and using a chromosome representation that guarantees that these
constraints will be met. The way in which they are met is encoded on the chromosome,
and the GA searches for the optimal way to meet the constraints. This ensures that all
feasible regions of the search space are explored while improving the efficiency of the search
by cutting off infeasible regions. This places less burden on the penalty function, and as a
result, the inherent difficulties usually associated with penalty functions in finding suitable
weights are avoided.

Finally, we emphasize the importance of the heuristically driven evolving SB in the
success of this application. Although the value of using a GA to find optimal combinations
of heuristics as a method of solving complex scheduling problems has been previously noted
(e.g., Norenkov & Goodman, 1997) in solving job-shop scheduling problems, we stress that
the method is particularly advantageous when tackling real-world problems. Often, a large
amount of domain knowledge can be gathered from an expert, but it is generally complex
and often difficult to formulate into exact procedures for solving problems. By encapsulating
the knowledge in the form of heuristics, and using a GA to construct an SB via an optimal
combination of these heuristics, we considerably simplify the task. The key advantage,
however, lies in the flexibility that such a system provides-real problems do not follow an
exact pattern from day to day, and each schedule may require a subtly different approach.
Using the heuristically driven SB, a unique SB is built each time a problem is solved, which
takes account of the individual characteristics of each problem. This results in a much more
robust system that copes well with variations within the data and hence can be used by the
factory as a reliable tool.

Evolutionary Computation Volume 6, Number 1 79

E. Hart, P. Ross, and J. Nelson

References
Bagchi, S., Uckun, S., lliyabe, Y., & Kawmiura, I(. (1991). Exploring problem specific recombina-

tion operators for job-shop scheduling. In R. Beleu & L. Booker (Fh.), Proceediizgs oftbe Fourth
I77te/-izntio72nl Confii-enre on Genetic .4lgm.ith?x~ (pp. 10-1 7). San ,\lateo, C.4: hforgan Kaufinann.

Bienvith. C. (1995). A generalized perniutation approach to job-shop scheduling with genetic algo-
rithms. 01- Spekn-mt, 1 ,(2-3), 87-92.

Cleveland, G. A, & Smith, S. I:. (1989). Using genetic algorithms to schedule flow shop releases. In
J. I>. Schaffer (Ed.), Proceedings of the T b i d bitei~ntionnl Cotfereim 011 Genetic Algorithm nnd Their
ilpplicntiorts (pp. 160-169). San Alateo, (l4: A‘lorgan Kaufmann.

Ihrndorf, U., & Pcsch, E. (1095). Evolution based learning in a job shop scheduling environment.
Computers mid 0peimioti.v Research, 22(1), 2 5-10.

Fang, €i.-L. (1 993). Geiietic~lgoritbrr~s in timrtaldiizg mdscbcdrr~i7lg. Unpublished doctoral dissertation,
Department of Artificial Intelligence, Vnirersity of J4inburgh.

L,.ang, 11.-L., Ross, P., & Corne, I). (1993). A promising genetic algorithm approach to job-shop
scheduling, rescheduling, and open-shop scheduling problems. In S. Forrest (Ed.), Proceedings of
the F$h liitei~/intioi/~I L‘oi<f i~ . i~~t i t~ 011 Genetic .-llgorith?m (pp. 3 75-382). San Mateo, C.4: Morgan
F;:\ufmann.

Langdon, M: (1 996). Scheduling maintenance of electrical power transmission networks using genetic
programming. InJ. Koza (Ed.), Lnte-171-etrkingpnper~, ~e~ieti~proffl.~t~/”’i7/‘q Y6 (pp. 107-1 16). Stanford
Bookstore, Stanford, C4.

E (1997). A genetic algorithm approach to dynamic
jobshop scheduling problems. In T. Back (Ed.), Proceedings of the Sei*eiith I7iter?zntionnl Coi f i tmre on
C;erietic ,ilgoritb?m (pp. 48 1-489). San Francisco, C.4: Morgan Kaufn~ann.

Lin, S.-C., Goodman, E. D., 8r Punch,

Alattfelci, D. (1996). Eioltitionq~ sen7~h nrid the job shop. I Ieidelberg: Physica-Verlag.

Xlichalewicz, &I., 8r Janikow, C. %. (19‘91). Handling constraints in genetic algorithms. In R. Belew &
L,. Booker (Eds.), Praceedi7/gs of the Fotiith I ~ i t e ~ ~ ~ ~ t i n i i ~ l Coilf;.i-ence on GeiieticAlgorith?rrs (pp. 15 1-1 5 7) .
San A4ate0, C.4: Morgan Kaufmann.

Nlott, (2. (I 990). 0ptiirtisir~gflozc.s~~op scheddiiig tbrotigh ndnptiw ge7zetic dgorith?FIs. Unpublished master’s
thesis, chemistry part I1 thesis, Oxford Vniversity.

Norenkov. I., & C;oodman, E. (1997). Solving scheduling problems via evolutionary methods for rule
sequence optimiz,ation. In P. K. Chowdn; R. Roy, & R. K. Pant (Eds.), So? ro?nputing in e~2gi~)eeiing
(h i p n77d ?r?nnrlfnctrii.ii/‘q. London: Springer.

Kichardson, J., Palmer, A f . , Leipin, C., & Hilliard, AT. (1989). Some guidelines for gas with penalty
functions. InJ . D. Schaffer (Ed.), A~oreedirigs of t b e Tbii~ci1iitei~intionnl Coiference on GeneticAlgorithms
n77d Theii-.~p~lic-ntioiis (pp. 191-197). San h’lateo, CX: Morgan Kaufmann.

Kyu, K. R., I h a n g , J., Choi, H. K., k Cho, I(. K. (1907). A genetic algorithm hybrid for hierarchical
reactive scheduling. In T. Back (Ed.), Pi.o~.eedi77g.r ojthe Serenth Inter-tintio7i~l Coilfererzce o n Genetic
.-I<qorithms (pp. 497-505). San Francisco: hlorgan Kaufinann.

Shaw, K., Kr Fleming, P. (1997). If’hich line is it an~way-Lse of rules and preferences for schedule
builders in genetic algorithms for production scheduling. In I). Corne 8r J. L. Shapiro (Eds.),
Si~ler td Pnpem AlSB U br-ksbop 017 Ei~ol1rtio11n7y Coiupplitiiig, Lertrtr.e X0te.c. i72 Co~nputrr Science. Berlin:
Springer-I‘erlag.

Smith, ,A,, K Tate, D. (1993). Genetic optimization using a penalty function. In S. Forrest (Ed.),
Pi-ocerrlirzgx of’the Fifth Iiitei-nntioiinl C.‘oi l fer .e~r 011 &17etil. .ilgorithim (pp. 199-505). San Mateo, CA:
.\lorgan Kaufmann.

Syswerda, G., & Palmucci, J . (1991). Application of genetic algorithms to resource scheduling. In
R. Belea K L. Booker (Eds.). Proi-eeding.~ o f the Forii-th 11iter7mrio11~l Co7lfp7.eme o n Grrietic Algwitlms
(pp. 502-508). San Mateo, C i : llorgan Kauhiann.

80 Evolutionary Computation X’olume 6, Number 1

