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Abstract 
This work addresses the real-life scheduling problem of a Scottish company that must pro- 
duce daily schedules for the catching and transportation of large numbers of live chickens. 
The problem is complex and highly constrained. We show that it can be successfully 
solved by division into two subproblems and solving each using a separate genetic algo- 
rithm (GA). We address the problem of whether this produces locally optimal solutions 
and how to overcome this. We extend the traditional approach of evolving a “permutation 
+ schedule builder” by concentrating on evolving the schedule builder itself. This results 
in a unique schedule builder being built for each daily scheduling problem, each individ- 
ually tailored to deal with the particular features of that problem. This results in a robust, 
fast, and flexible system that can cope with most of the circumstances imaginable a t  the 
factory. We also compare the performance of a GA approach to several other evolution- 
ary methods and show that population-based methods are superior to both hill-climbing 
and simulated annealing in the quality of solutions produced. Population-based methods 
also have the distinct advantage of producing multiple, equally fit solutions, which is of 
particular importance when considering the practical aspects of the problem. 

Evolving schedule builder, heuristics, constraints. 
Keywords 

1. Introduction 

Studies of the application of evolutionary methods to a variety of benchmark scheduling 
problems have produced solid evidence that such techniques can be fast and efficient ways 
of solving many types of scheduling problems, for instance (Lin, Goodman, & Punch, 1997; 
Cleveland & Smith, 1989; Fang, Ross, & Corne, 1993; Mott, 1990). 
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However, when attempting to scale these techniques up to tackle some of the real prob- 
lems faced in industry, we often discover that a number of additional factors and constraints 
must be incorporated to successfully model the real world, which can complicate the issue 
considerably. Here we study a very highly constrained problem for a chicken-processing 
factory that must schedule the arrival times of lorry loads of birds to two factories on a daily 
basis, scheduling teams of chicken-catching squads, lorries, and drivers in the process. The  
problem is described in detail in Section 2 .  The  goal is to produce an a u t o m a t e d  scheduling 
system that produces practical schedules quickly, similar to those currently produced by hand 
a t  the factory. Against the grain of most scheduling work, we are not interested in optimizing 
any particular objective while producing the schedules, but in producing a fast and robust 
system that can produce high-qualih pr~~-ticnl schedules that satisfj a large number of con- 
straints. In ti-ying to formulate a definition of “practical” we are required to add many more 
constraints to the system, significantly increasing the complexity of the problem. We believe 
that this problem is coninion to a large number of industrial scheduling problems, and it 
is this factor that may hinder the success of many of the techniques successhlly proven on 
artificial problem when applying them to real problems. 

An automated scheduling system can be exploited in many ways to directly and indirectly 
provide beliefits to the company. For example, a system that closely replicates current 
working practices can quickly gain the confidence of its users and perhaps then be used as an 
exploratory tool to investigate the effects of making changes to current practices. Changing 
established practice may not, in many cases, be cost-effective in the short-term, and hence 
;i coinpany may be reluctant to implement change. In this case, the automated system is 
intended to bring an immediate, direct cost benefit to the company by freeing up human 
resources to be put to better use elsewhere. 

3‘he following section describes the scheduling task in more detail. Sections 3 ,  4, and 
5 describe the evolutionary approach we have adopted and the reasoning behind it. This is 
followed by a set of results found using eight test cases supplied by the factory. 

2. Problem Description 

The conipany catches up to 1 . 3  million live birds a week a t  fiamms spread across Scotland and 
processes them a t  two factories. The aim is to schedule the catching and delivery of birds 
using a fixed resource of squads and lorries so as to keep the fiactories supplied with birds at 
a constant rate. Each day, a set of orxie7-s must be processed a t  each of the two factories. 

Each factory runs its own fleet of lorries, which are available in two different sizes, 
holding either 2 2  modules or 24 modules of birds. Certain types of birds require a large 
lor? for delivery, whereas others can fit in either size. Although a lorry may deliver loads 
to either of the factories during the day, it must deliver its last load to its base factory in the 
evening. 

-ln or-cler- consists of m modules of birds, of type t ,  weight zt, to be collected from a {arm 
f and delivered to a factory F.  The work defined by the orders must be allocated to teams of 
catching squads. Lorries and drivers then must be scheduled to meet each load a t  a farm as 
it is caught and deliver it to a fiactory. The factories must be continually supplied with birds 
throughout the day - however, there are strict regulations governing the period of time the 
live birds can remain outside the factory before being processed; hence the birds must arrive 
only at the same rate as the factory can process them. Figure 1 illustrates an example of this 
process for one factory. A squad leaves its base factory at the beginning of a shift, travels 
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0 Farm 
~ Squad trip 
_. ~ ~r Lorry trip 

Figure 1. Illustration of squad and lorry schedules for two squads collecting work for a factory. 

between a set of farms, catches a variable number of birds at  each farm, and returns to its 
base factory only at the end of the shift. 

A squad is based at one of the factories and works either part or full time. It rotates 
between three shifts, classified as early, jloating, or late, depending on the time of day the 
shift begins. There are contractual requirements specifymg the minimum and maximum 
number of modules a squad can catch in one day, and also in one week, and the maximum 
length of the shifts they can work. Some farms have their own catching squads, and there 
are restrictions on the order in which squads can visit certain farms due to the prevention of 
spread of diseases existing at some farms. 

Drivers must also be assigned to each lorry trip-a lorry driver can work a maximum of 
a 13-hour shift, of which only 9 hours can actually be driving. If necessary, contract drivers 
and/or lorries can be hired to do any extra work, although of course it is preferable to avoid 
this. 

3. Evolving a Scheduler 

An often-cited approach to tackling scheduling problems (Syswerda & Palmucci, 1991) is 
to use a simple chromosome that represents a permutation of tasks to be scheduled, plus a 
schedule builder that transforms the chromosome into a schedule. This section describes 
related work that uses this approach, and based on this, discusses some of the factors that 
must be taken into account when designing both the chromosome and the schedule builder 
in this particular case. 

3.1 The Chromosome Encoding 
In general, each chromosome represents a permutation of the order in which tasks to be 
scheduled are to  be considered by the schedule builder (SB) (Bierwith, 1995). For example, in 
a 5 x 5 job-shop schedulingproblem, each chromosome could simplyrepresent a permutation 
of the 25 operations that must be scheduled (Mattfeld, 1996). 
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Coarse 

Fine 

Figure 2. Levels of order: split granularity. 

In the problem presented here, however, there is no clear notion of an opet-ution or task. 
At the highest level, we have a collection oforders to schedule (e.g., Fig. 2 ,  levels 1 and 2). An 
order itself cannot he scheduled in a single step: Each order represents several arrivals a t  a 
factory that may be caught by several different squads (e.g., Fig. 2 ,  levels 3 and 4); therefore, 
each order must be broken down into schedulable tasks. Evolving permutations of or-den to 
present to the SB requires that the SB itself must split each whole order into schedulable 
tasks. These tasks may themselves require ordering to produce good schedules, and hence 
the SB must do too much work - evolution is taking place a t  too high a level. 

The  most obvious candidate for a tilsk is a complete lorry load of birds (ix., 2 2  or 24 
modules), depending on bird type and lorry size (e.g., Fig. 2 ,  level 3 ) .  However, scheduling 
tasks of this size may preclude some of the best solutions. For example, a part-time squad 
has a maximum load of 64 modules. Assigning two tasks to a part-time squad will result in 
an undeworked squad, catching with 44 or 48 modules, whereas assigning three tasks to the 
squad will cause it to become overworked. If the task size is reduced to try to resolve this, 
for example, to half a lorry load (level 4 in Fig. 2 ) ,  the size of the search space dramatically 
increases; moreover, the possibility o f  producing impractical schedules increases also. As 
up to 60 lorry loads per day may arrive a t  the factories, even scheduling complete lorry 
loads results in 60! possible permutations. Man!- of these permutations are likely to lead to 
highly impractical schedules, for instance, with squads collecting small loads of birds at many 
different farms, rather than collecting large loads a t  few farms. This can be counteracted i n  
a fitness function by introducing penalties to penalize such schedules, but given an already 
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highly constrained problem, this is not desirable (see Section 6.1.2 for a full discussion of 
the effects of the choice of task size). 

We resolve this problem by using a genetic algorithm (GA) that encodes, for every 
order, a choice of heuristic that should be used to split that order into schedulable tasks. The 
reasoning behind this is that, wherever possible, the search space is reduced by using a coarse- 
grained split, with a corresponding increase in the practicality of the schedules. By allowing 
the GA to increase the size of the search space if necessary, we hope to find an acceptable 
trade-off between the optimality of the schedule (in terms of satisfymg constraints) and the 
practicality of the schedule. 

3.2 The SB 
The function of the SB is to transform the chromosome into an actual schedule and is a crucial 
step in the performance of the whole system. The SB itself can be used to enforce constraints, 
as well as to produce the actual schedules from the chromosome. Bagchi, Uckun, Miyabe, 
and Kawamura (1991) note, however, that the schedules produced by an SB are optimal 
locally (i.e., the schedules produced are constrained by the plans in the SB). More recently, 
other work has investigated the effect of using some degree of choice within the SB itself to 
counteract this problem of local optimality. Langdon (1996) used a genetic programming 
approach to evolve the heuristic to use for a fixed order of tasks. Shaw and Fleming (1997) 
found that implementing a degree of flexibility into the SB, producing a compromise between 
a rigrd SB and one that assigns tasks randomly, can improve results when trying to optimize 
costs of schedules in production scheduling. 

Other people have reported successful use of a GA to evolve heuristic choice in schedul- 
ing applications. For example, Dorndorf and Pesch (1995) describe a “priority-rule based 
genetic algorithm,” where the ith gene in a chromosome denotes a dispatch rule used to 
resolve conflicts in the ith iteration of a scheduling algorithm. In a similar vein, Fang, Ross, 
and Corne (1993) and Fang (1993) investigated “evolving heuristic choice” for open-shop 
problems, in which they evolve the choice of heuristic to decide which operation of the job 
defined in the permutation should be scheduled next, with promising results. Norenkov and 
Goodman (1 997) extend this approach in an algorithm called the “heuristic combination 
method,” in which a GA is used to optimize the choice and sequence of application of a set 
of heuristic rules for schedule synthesis. 

In this case, as we aim to produce a system that replicates a human scheduler, it is 
obviously vital to include as much of hidher knowledge as possible in the SB. The  potential 
problem of producing suboptimal schedules by exactly reflecting factory decision malung is 
irrelevant in this case, as we wish to produce schedules that look like those currently made 
by hand. The crux of the problem lies with accurately formulating the heuristics used by the 
human. Often, the reasoning behind why a particular decision was taken cannot be easily 
encapsulated - it comes with years of experience and an “intuition” that cannot be expressed 
on paper. We resolve this problem by expressing as much information as we can glean from 
current factory practice as a set of rules and by exploiting the searching capabilities of the 
GA to combine these rules into a sensible SB that fits the features of the problem being 
considered. A sequence of heuristic choices is evolved that dictates which heuristic to use to 
place a task into the partially built schedule. 

In summary, we shall use a GA to evolve a strategy for producing schedules, rather than 
the schedule itself. We circumvent the inherent problems of the “permutation+SB” approach 
by evolving the optimal method of dividing the high-level work into schedulable tasks and 
then evolving a unique SB for each test case. This is described in detail in Sections 5 and 6. 
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Pairs of (Order,Quantity) used to satisfy 
fixed criteria 

I1 
f-- Permutation of N orders 

Il11 A i c ~ 5 1 I - - Choiceof Heuiisttcs for splitting the load 

IVI  D 1 D I A  - Choice of Heuri\tic\ for assigning the load 

Figure 3.  T h e  chromosome representation for GA('4rJzgn). 

4. Dividing Into Subtasks 

Tqing  to evolve an SB that assigns tasks to squads and simultaneously schedules lorries, 
dril ers, and factory arrivals in one step is extremely complex. M% can simplify the problem 
somewhat by brealung it down into two stages: 

1. Split each order into tasks, according to a specific heuristic for each order, and assign 
those tasks to squads in a manner that minimizes the number of constraint violations, 
using the evolved heuristic choice-GA(il.~.rign). 

2 .  Llssign start times to each of those squads in a manner that optimizes the arrival times 
of loads to the factory and minimizes the number of lorries required-GA(Tinwr). 

For each stage, we run a separate (24. The best assignment found by GA(Assign) is 
used as input to GA(Tim7*), which evolves a start time for each squad. In the general case, 
hierarchical decomposition o f  a problem in this manner runs the risk ofproducing suboptimal 
solutions, where the performance of the second stage, in this case GA(Tzmer), is constrained 
by the output of the preceding stage [i.e., GL4(A.r.rig?7)]. Ryu, Hwang, Choi, and Cho (1997) 
tackle this problem by using an iterative process in which the cycle of steps is repeated 
until no further improvement in performance can be obtained. We investigate thoroughly 
the extent to which GA(Time7.) is actually constrained by GA(,.l.r.rign) and whether such an 
iterative approach is necessav or beneficial in this particular instance. 

5. GA(Assign) 

Thic section describes the chromosome representation adopted and explains in detail the 
steps taken to deal with the constraints associated with the problem. Although the final 
representation appears highly problem specific, the principles underlying its design have 
much more general applicabilit). to other problems. In particular, the methodology used 
to handle constraints (described in Section 5.2) is extendible to other highly constrained 
prohlerns, and the manner in which domain knowledge is dealt with (see Section 5.3), is 
transferable to other real-world applications. Figure 3 shows the structure used to indirectly 
represent how the orders should be split into tasks and assigned to squads for a single factory. 
Each chromosome consists of two identical structures, one for each factory. A detailed 
espl:iiiation of each part of the representation is given in the following sections. 
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5.1 Constraints 
GAS that are based on constraint satisfaction or penalty functions can often be hard to get 
to work as desired (Richardson, Palmer, Leipin, & Hilliard, 1989; Michalewicz & Janikow, 
1991). Michalewicz and Janikow (1991) provide a mechanism for constraint satisfaction that 
does not allow infeasible chromosomes to exist in the population. In this case this mechanism 
is neither necessary nor desirable: In this problem generation of feasible solutions is not 
difficult (see Section 6.2; Section 6.1.1 and Table 4; and Table 12); and as Richardson et al. 
(1989) point out 

The foundations of GA theory, however, say that GAS optimise by combining 
partial information from all the population. Therefore, the infeasible solutions 
should provide information and not just be thrown away. 

Richardson et al. (1989) provide a generic technique for constructing a penalty function. 
This method cannot be applied to this problem as it requires either a priori knowledge of 
the search space or a t  least certain features of it to be calculable (Michalewicz & Janikow, 
1991). We approached the problem by simplifymg the constraints and manually assigning 
penalty function weights. 

5.2 Handling Constraints 
We deal with the potentially large number of constraints in three ways: handle the unavoidable 
criteria; simplify by removal of constraints; and incorporate the hard and soft constraints 
into a penalty function. 

5.2.1 Dealing With Unavoidables Several of the constraints concern events that must 
happen in the schedule; for instance, “a full-time squad must deliver a large load of roaster 
birds to factory A to open the factory.” We can guarantee that such constraints are met by 
encoding on the chromosome the manner in which the constraint should be satisfied. Thus, 
in section I, pairs of genes specify an order and quantity for satisfymg each of the unavoidable 
criteria. Thus, we retain some flexibility by allowing the GA to evolve the method by which 
each criterion is specified. In Figure 3 ,  the first pair of genes (4, k) in section I specifies that 
criterion (1) is met by using k modules of birds from order 4. 

5.2.2 Removal Through Interpretation Several constraints can be removed by in- 
terpreting the schedule in a certain manner-this applies especially to those constraints 
introduced to preserve the “practicality” of schedules. For instance, the constraint that a 
squad should not be allowed to “double-back” (i.e., visit two farms in the sequence A, B, A )  
can be removed by scheduling all work done at  farmf by squad s in a contiguous block. 

5.2.3 The remaining constraints are incorporated into a penalty func- 
tion that penalizes each violation of a constraint in a schedule. These constraints may be 
classified as “hard” or “soft)) and are suitably weighted to reflect this. The penalties used, 
and their associated weights, are defined in Table 1. A schedule must satisfy all the hard con- 
straints (e.g., [OVERLOAD] and [UNDERLOAD]) and attempts to minimize violations of 
the soft constraints. Afeasible schedule must satisfy all hard constraints, and it is preferable 
to minimize the number of violations of soft constraints incurred by a solution. A schedule 
cannot be accepted by the factory unless it is at least feasible. 

Penalty Function 
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Table 1. T h e  penalties applied in the fitness function for C;,?(As.rZp). 

Constraint 
OVERLOAD 

UNDERLOAD 
BOTH SIDES 

TOTAL FARMS 

Description 
A squad must not collect more than mzxr 
modules 
X squad must collect a t  least mint modules 
X squad should not work on north and 
south of the Forth Estuary in the same 

Minimize the total number of farms a 
squad visits 
A squad should collect a t  least I modules 
from each $arm it visits 

day 

Importance 
Hard 

Hard 
sofi 

soft 

Hard 

Weight 
10 

10 
3 

1 

10 

T h e  values of the penalties above were arrived at somewhat arbitrarily. Values that 
worked were easy to find, and those that worked best were adopted. T h e  actual fitness of a 
solution is given by ( I  + x:z> r,Y,)-', where N is the number of violations of constraint i, 
and xi is its associated penalty; hence, a solution that incurs no penalty has fitness 1. 

5.3 Evolving Heuristic Choice 
In FiLgure 3 ,  section I1 of the chromosome represents a permutation of the N orders that 
must arrive at facton. f ;  and determines the order in which they will be scheduled. T h e  
chromosome sections ;marked 111 and K in Figure 3 encode the heuristics that should be 
used to split and assign each order, respectively. Ifre interpret this as meaning that the ith 
order in section TI should be split according to the heuristic denoted by the ith gene in 
section 111 and scheduled according to the heuristic denoted by the ith gene in section n! 
Tables 2 and 3 define the sets of heuristics used. These heuristics were chosen to represent 
the rules used by the human scheduler when constructing schedules. For example, Table 2 
defines heuristics that cover all ways in which we know the human scheduler currently splits 
orders, and E b l e  3 tries to capture some of the rules used by the human scheduler (somewhat 
intuitively) to ensure that schedules are practical. For instance, heuristics E and F in Table 3 
implicitly minimize the total time spent in traveling by a squad (note, however, that this is 
not always desirable, as it could result in loads arriving a t  the factory too closely spaced). 

5.4 Feasibility and Repair 
T h e  choice of assignment heuristic indicated at locus i may not be feasible as a method of 
splitting order i for m-o reasons. First, the choice of o d e ? -  and number of wzodliles (0, m) used 
to satisfy the fixed criteria in section I takes precedence when constructing an assignment and 
hence may lead to an infeasible heuristic being assigned in section I11 to split the remaining 
loatls of order o. Second, the chosen splitting heuristic may be incompatible with the size of 
the order under consideration - for example, an order containing more than 110 modules 
cannot be split by heuristic A. Before the chromosome is interpreted, it is checked for such 
anomalies, and any invalid assignments are repaired by randomly selecting another valid 
heuristic and altering the chromosome to represent this. 

However, an assignment of  work to squads constructed from the strategy represented 
by part I\' of  the chromosome map still be i74i.crsilde; for instance, a squad may be overworked 
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Table 2. Heuristics for splitting an order. 

Heuristic 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Heuristic 
A 
B 

C 
D 
E 
F 
G 

Description 
If farm order <= 110, use all this 
Split into single loads of 22 (but split first load into 10 + 12) 
Split into tasks of size 44 
1 task of size 66, split rest into single loads 
Split into tasks of size 66 66 
1 task of size 88, split rest into single loads 
Split into tasks of size 88 
I task size 110, split rest into single loads 
If order == 110, split into 56 and 54 
If order == 110, sd i t  into 66 and 44 

Table 3.  Heuristics for assignment. 

Description 
Assign each part-load to the first squad found that satisfies all the constraints 
Try and assign the load to a squad that is already doing this type of work 
(taking into account constraints) 
Assign the load to an unused squad (if possible) 
Assign the load to a squad already worlung (if possible) 
Assign the load to a squad already going to this farm 
Assign the load to a squad already going to the same complex 
Assign the loads randomly 

as a result of too many tasks being assigned to it. The  chromosome is not repaired to correct 
this-the resulting assignment is simply heavily penalized via the penalty function. Repairing 
the chromosome in this case is judged too costly, as the infeasibility of the choice of assign- 
ment heuristic does not become clear until the preceding operations have been assigned. 
Others (e.g., Smith & Tate, 1993) have noted that maintaining infeasible chromosomes in 
the population can ensure that parts of the search space are not cut off. Smith and Tate used 
an adaptive penalty function that gradually reduced the number of infeasible chromosomes 
allowed-in this case, we find that a feasible population is rapidly produced, and hence this 
is not necessary. 

5.5 output of GA(Assign) 
The result of applying GA(Assipz) is thus a complete assignment of squads to work. The 
sequence in which a squad visits the farms assigned to it is also implicitly determined by this 
GA via the permutation in part 11: The  first farm V;) that  is assigned to a squad s as the 
chromosome is interpreted from left to right is the first farm it visits; the next new farm to 
be assigned to this squad (i.e., different from$) is visited second; and so on. If at iteration t 
an order is assigned to a squad from a farm it is already visiting, the modules from this order 
are merely added to the modules already due to be collected at  this farm. 

Evolutionary Computation Volume 6 ,  Number 1 69 



E. Hart, P. Ross, and J. Nelson 

Table 4. Results of experiments using GA(Assigli) averaged over 10 trials. 

Minimum 
Fitness 
0.200 
0.250 
0.500 
0.500 
0.125 
0.250 
0.111 
0.083 

Aver age 
Fitness 
0.200 
0.250 
0.500 
0.500 
0.137 
0.316 
0.113 
0.117 

,Maximum 
Fitness 
0.200 
0.250 
0.500 
0.500 
0.167 
0.333 
0.125 
0.125 

% of Feasible 
Chromosomes in Initial Population 

29 
19 
10 

5 
15 
11 
6 

16.5 

6. Experiments 

Experiments were performed in eight test cases provided by the factory. Cases 1 to 4 were 
deemed “easy” to solve by the current scheduling expert, whereas cases 5 to 8 were found to 
be very difficult to solve by hand. Experiments with each test case were repeated 10 times and 
the results averaged. Experiments were repeated using a GA, a simple hill-climber (EIC), a 
population-based hill-climber (Pop-HC), and simulated annealing (SA). For GA(Assign) and 
the Pop-HC, the population size was 100. Crossover and mutation operators were applied 
independently to each section of the chromosome. A two-point crossover operator was 
applied to sections I, 111, and l3’ of the chromosome and PMX crossover to the permutation 
in section I1 (Mott, 1990). ,Mutation was applied with a probability 0.02 to each gene in each 
ofsections I, 111, and K-an order-based mutation operator, that picks two loci a t  random and 
exchanges their alleles, was applied to the permutation of orders. All experiments were run 
for 10,000 evaluations, with a steady-state reproduction strategy. For the HC experiments, 
mutation was applied with probability 0.2, with the resulting solution accepted if it was fitter 
or of equal fitness to the current solution. 

6.1 Results 
The average, best, and minimum fitness found in 10 trials of GA(Asszgn) are shown in Table 4. 
In mwy case a feasible schedule is found, and in every case the assignments are judged to 
be acceptable by the expert. Here we define “acceptable” to mean that the schedules were 
similar to those currently produced by hand a t  the factory and could be employed in practice. 
Yote that the iiiaximum fitness is always unknown and differs from case to case. In each 
case, the final penalty results only from the unavoidable fact that at least one squad must visit 
more than one farm and hence can never be zero. T h e  average fitness found by GA(Assign) 
is contrasted with that found using the SX, EIC, and Pop-I-IC in Table 5. For SA, I-IC, and 
Pop-FIC, the number in parentheses gives the probability that the result is n o t  significantly 
different from the result found by the GA, calculated using Student t-tests. 

Closer analysis of the results highlights the following facts. 

6.1.1 Although a good solution is always found, 
the ease with which each case is solved varies quite considerably across the probleni set. 
Problenis 1 to 4 are solved reliably, whereas problems 5 to 8 appear to be solved with more 

Variation in Difficulty of Test Cases 
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Table 5. Average results obtained over 10 trials. Numbers in parentheses show the probability that 
the null hypothesis is true; that the result is not significant. 

Test Case 

0.250 
0.500 
0.500 
0.137 
0.3 17 
0.113 
0.117 

HC 
0.200 
0.2 50 
0.500 
0.250 (0.331) 
0.111 (0.547) 
0.167 (0.062) 
0.113 
0.091 (0.10) 

SA 
0.200 
0.237 (0.166) 
0.500 
0.43 1 (0.092) 
0.128 (0.215) 
0.270 (0.050) 

0.120 (0.822) 
0.1 11 (0.431) 

0.250 
0.500 
0.500 
0.128 (0.215) 
0.308 (0.628) 
0.121 (0.124) 
0.124 (0.495) 

difficulty, as shown in Table 4. Examining the number of feasible solutions produced on 
average in the initial populations shows that, in fact, in all casesfeasible solutions can be 
randomly generated, although in all cases the fitness of these solutions is improved through 
search. The search is clearly more difficult in some cases; for example, see Figure 4, which 
shows the average and best fitness of the population as GA(Assi') runs, for cases 1 and 6. It 
also depicts the number of feasible chromosomes present in the population and the stepwise 
nature of the improvements in fitness. 

6.1.2 Table 6 shows the distribution 
in the frequency with which a splitting heuristic was chosen across all the orders for each test 
case. The most commonly used heuristic in each case is shown in boldface (see Table 2 for 
the actual heuristics). The distribution is clearly not random and highlights the importance 
of selecting a suitable task size. In general, the most common choice is to use a coarse- 
grained split.' As briefly mentioned in Section 3.1, there is a trade-off between the level 
of granularity of the order split and the amount of work that has to be done in searching 
the space of possible task assignment: The finer the granularity, the more choices there are 
of possible assignments, hence the more work that has to be done in exploring the possible 
combinations (see Fig. 2 ) .  

Benefit From Evolving Choice of Split Heuristic 

1 Regardless of the split heuristic used for the purpose of assigning work to squads, ultimately (at the timing stage) single lorry 
loads have to be scheduled (i.e., a lorry load is the atomic unit). 
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% of Heuristic Beii 

Table 6. Frequency of application of splitting heuristic. 

: Applied to S Test Case 

1 Test Case 
1 

1 2  
3 
4 
5 
6 
7 
8 

GA 
0.200 
0.250 
0.500 
0.500 
0.137 
0.317 
0.113 
0.1 17 

A 
84 
78 
44 
35 

50 
79 
47 
43 

__ 

~ 

B 
3 
6 
6 
4 

10 
12 
29 
3 3  

__ 

~ 

C 
11 
2 
38 
43 

1’) 
9 
14 
3 

- 
- 
D 
1 
1 
0 
1 

1 
0 
0 
9 

__ 

- 

:: 
0 0  

0 

~ 

G 
1 
0 
10 
3 

0 
0 
6 
2 

~ “i 
10 0 0 

1 0 0  

Table 7. Contrast in performance between C,-l(,-tx.r@z) and modifications of CA(A.mzp) in which the 
split heuristic and the permutation were fixed 

GA+FixSplit (single lorryload) 
0.167 
0.139 
0.458 
0.188 
0.091 
0.152 
0.111 
0.099 

0.250 
0.500 
0.500 
0.123 
0.250 
0.1 11 
0.122 

For example, Table 7 contrasts the results found when GA(Assigr2) is forced to fix the 
order split granularity a t  a single lorry load with those of allowing the GA(Assign) to evolve 
a choice of split granularity (as described above). In only two cases, (cases 7 and 3) are the 
average results comparable in quality, and we find that for these cases, the evolved choice of 
split is often the fine-grained split (see also Table 2). 

Again, we emphasize the advantages of a flexible scheduler for a system in which the 
work to be scheduled can vary so much from day to day. 

6.1.3 T h e  distribution in 
frequency for the choice of assignment heuristic in Table 8 shows a less distinct preference 
for choice. In this case, the frequencies are more evenly distributed and do not deviate 
significantly frotn the 14% frequency that would be expected if the choice were completely 
ranitoin. 

Benefit From Evolving Choice of Assignment Heuristic 

6.1.4 permutation of Orders Table 7 also contrasts the results using a version of  
CL~(,~JSZK./I) in which the permutation of orders to be considered by the SB was fixed through- 
out the (;A run. J4’e see that for 50% of the cases, this has no effect. Of the remaining cases, 
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Table 8. Frequency of application of assignment heuristic. 

Test Case 

1 
2 
3 
4 

S 
6 
7 
8 

% of Heuristic Beir 
~ 

A 
1s 
8 
16 
21 

8 
14 
17 
26 

- 
~ 

B 
19 
14 
16 
16 

22 
18 
21 
16 

- 
~ 

C 
12 
13 
10 
4 

1s 
18 
8 
10 

- 
- 
D 
15 
13 
13 
25 

9 
12 
14 
1s 

~ 

Apl 
E 
14 
13 
18 
13 

23 
1 3  
18 
11 

- 

ied to Assign an Order 
~ 

F 
13 
28 
16 
10 

16 
13 
11 
10 

- 

- 
G 
11 
12 
11 
11 

7 
14 
11 
12 

evolving a permutation is beneficial in three (cases 5, 6, and 7), whereas in case 8, a better 
result is obtained by using a fixed permutation. This last case is rather surprising, suggesting 
that the choice of permutation of orders used to test the effect of a fixed permutation was 
rather fortuitous and that the GA failed to evolve a permutation of equal quality. This varia- 
tion in result also highlights the variation in problem difficulty from day to day. On balance, 
we conclude that treating orders in a flexible manner by using a permutation is advantageous, 
as it produces an equal or superior result in seven of the eight cases investigated. 

6.1.5 Choice of Evolutionary Technique Table S compares the performance of a range 
of evolutionary techniques in the eight cases. The SA appears to perform the most poorly 
when loolung at the test set as a whole and the two population-based methods, that is, 
GA(As1igz) and Pop-HC show the best overall performance. The GA and Pop-HC give 
equivalent results on the easier cases 1 to 4, and we find that the GA outperforms Pop- 
H C  in cases S and 6, whereas Pop-HC outperforms GA(AsSign) in cases 7 and 8. Closer 
analysis of the assigments produced shows that all four methods always produce feasible 
assignments; however, those produced by SA and HC were often rejected by the human 
scheduler as “impractical.” Thus, although these schedules could be used by the factory, the 
better solutions produced by GA(Assigz) and/or H C  were always preferred. 

We conclude that a population-based approach is advantageous; however, further work 
is required to determine whether a GA has any significant advantage over a simple H C  
approach. A population-based approach also has the advantage of being able to produce 
multiple solutions with the same fitness: Analyzing the final population a t  the end of each 
test showed that in a single population many different solutions, each with the same fitness, 
existed. This allows the possibility of human input in choosing among equally fit schedules 
and, as discussed in Section 3.2, can have an important bearing on the quality of the results 
produced by GA(Timer). 

6.2 
It is important to ask whether a GA is actually doing any work (i.e., that the problem is 
nontrivial); the purpose of this section is to illustrate that this is the case in this instance. 

One hundred random solutions were generated for each case (see Table 9). Note that for 
case 1, random generation produces as good a solution as GA(Assign). Also, for cases 3,4,7, 
and 8 the fitness of the best randomly generated solution is SO% or greater of the maximum 

Is 01(AsSign) Solving a Nontrivial Problem? 
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1 
2 
3 
4 

6 
7 
8 

3 

Table 9.  Contrast in performance between randomly generated solutions and those evolved using 
GA(,-fxx/p). 

‘Ll’orst (Fitness) 
0.0008 
0.0005 
0.001 
0.001 
0.0008 
0.001 
0.0006 
0.001 

Test Case 1 1  Generate 100 Solutions Randomlv / /  After Evolution 
Best (Fitness) 

0.2 
0.091 
0.250 
0.250 
0.07 1 
0.1 11 
0.067 
0.07 1 

J 

Best Solution (Fitness) 
0.2 
0.25 
0.5 
0.5 
0.267 
0.333 
0.12s 
0.125 

evolved fitness for each case. This could explain why SA and HC (see start of Section 6) 
all found comparable solution fitnesses: Because random initialization could discover them, 
fitnesses of that sort of level are not all that difficult to find. 

It can be seen that in most cases the GA improves the fitnesses of the populations, and 
hence the search procedure is worthwhile. Although occasionally the problem is straightfor- 
ward, mostly it is nontrivial; this demonstrates the need for a flexible system-the advantage 
of evolved strategies over solutions. 

It should be noted that although in most initial randomly generated populations there 
are members that are nioderately fit, the density of good solutions is low, and the spread 
of solution fitnesses and variance in the population is high. This is illustrated by Figure 5. 
T h e  charts in Figure 5 show a bar for each unique fitness value that members of the initial 
population have. In each there is a wide spread ofvalues, with no more than five members 
of a population having the same fitness value. 

7. GA(Timer) 

T h e  G A ( 7 i 7 ~ e ~ )  takes the output from GL4(il.r.r@7) and attempts to formulate a factory sched- 
ule, by assigning a time a t  which each load is to be caught. T h e  process is considerably 
simplified by the factory rules that a squad must continue working without a break once it 
has begun its shift. This means that it is only necessary to assign a start time for a squad- 
then, for a fixed sequence of fiarms (.fi . . .f;,), given the number of loads to be caught at each 
farm, the travel time between farms, the travel time from farm to factory, and the catching 
time required for each load, we have all the necessary information to calculate the arrival 
time of each load a t  the factorl;. T h e  sequence in which farms are considered is determined 
by GL.i(14s.r2gn), that is, the first farm assigned to a squad by GA4(As.rign) is the first farm visited, 
and so on. T h e  process for a single squad is illustrated in Figure 6. 

A straightforward direct representation is used in which the chromosome has N genes, 
one for every squad taking part in the schedule. factory arrivals are timed to the nearest 
15  minutes. Each gene thus has an integer value n in the range 0 to 88, which is interpreted 
as meaning that the squad starts work a t  (15*a) minutes after midnight. T h e  latest time a 
squad can start work is 22:OO hours, hence the upper limit on the value of n is 88, i.e., 1320 
minutes after midnight. 
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Number of Occurrences in case 2 
Initial Population 

Number of Occurrences in 
Initial Population 

case 5 

Least Fit Most Fit Least Fit 
Different Fitness Values Different Fitness Values 

Most Fit 

Figure 5. Graphs of cases 2 and 5 ,  showing the diversity of fitnesses in the initial populations. In 
case 2 there are 80, and in case 5 there are 64, different fitness values. Note that the overall density of 
fit solutions, although relatively high (compared to the number of unfit solutions), is low in absolute 
terms (compared with the fitnesses after evolution). 

‘ I  

‘ I  
‘ I  
‘ I  ’ ,  ‘ I  

Arrival Time 

I 
Lorry Travel Time to Factory 

Squad Catching Time 

Squad Travel Time from Farm A 
to Farm B 

1 I Arrival Tune of Load At Factory 

Farm B 

Figure 6. An example schedule for a squad. 

Some preprocessing of the input data can narrow down the allele range for each squad, 
with the effect that the search space is considerably reduced. For example, the squads 
allocated to satisfy the “unavoidable” criteria (see Section 5.2) in GA(Assign) have a predefined 
time window in which they must start. A predetermined number of loads must be waiting a t  
the factory when it opens in the morning, and the last load must arrive half an hour before 
the factory closes. Squads are selected at random to satisfy these criteria, and the starting 
times are fixed. 

The GA only evolves start times for each squad. When the factory schedule has been 
built, lorry assignment is done by the following iterative process: 

1. Sort the tasks in chronological order of arrival at the factory; 

2 .  Set start time(Zorry I> = 0 for all lorries; 
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Constraint 
LATE 

EARLY 

SLMULTAYEOUS 

STmTDARD 
DEVIATIOK 

LORRIES I! 

Table 10. Constraints applied to G-I(Ti77wr). 

Description 
Loads arriving after a factory closes 
Only two loads must arrive before a factory 
opens 
T h e  number of loads arriving a t  the same 
moment in time 

T h e  deviation of arrival times from the ideal 
schedule in which loads arrived with even gaps 
throughout the day 
T h e  number of extra lorries that must be con- 
tracted in to deliver the loads 

Importance 
Hard 
Hard 

So! 

3 .  For each unassigned task I :  

consider each lorry l with start time > 0: 
if (start time (task i) > finish time (Lon?, Z) 

allocate (task i) to lorry I 
finish time ( I o / - I ~  Z) = finish time (trirk i) 

4. If still not assigned (task i): 

assign (task i) to a new lorry ( I  + 1) 
start time ( I o r q  I) = start time (tnsk i) 
finish time ( 1 0 r ~  I> = finish time (task i )  

5. Repeat from step 3 until all tasks assigned 

This method is preferred over an evolutionary one because the majority of assignments 
of lorry to task made a t  random would be infeasible, and hence the GA would spend most of 
its time searching for feasible rather than good solutions. Each factory schedule is evaluated 
for quality using a weighted penalty function that penalizes violations of constraints. As in 
C;,4(A.~.sign), the constraints can be “hard” or “soft”-acceptable schedules must not violate any 
hard constraints, and all schedules must minimize the number ofviolations ofsoft constraints. 
T h e  constraints used are detailed in Table 10. T h e  values for the weights of the constraints 
were arrived a t  easily and arbitrarily (as in Section 5.2.3). t’alues that worked were quick to 
find, and those that worked well were adopted. 

8. Experiments 

For e\ev test case, the best assignment found by running GA(A.s.rrgn) was used as input to 
GL4~’h/w), which was run for 5000 evaluations. T h e  experiments with each test case were 
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Table 11. The worst and best penalties found from the C;A(Timer) using a set of input assignments 
for each test case having equal fimess but different assignments. Note: the lower the value of the 
significance (column 4), the more significant the value. 

Test Case 

6 
8 

Significance 
0.42 1 

0 
0.196 
0.001 
0.708 
0.001 
0.373 

repeated 10 times. Two-point crossover and a mutation rate of 0.02 were used, with a steady- 
state reproduction strategy. On  a good laptop PC, the speed was around 10 evaluations per 
second. 

8.1 Results 
The GA(Timer) evolves acceptable schedules in every case. Here, acceptable means that the 
factory is supplied with birds throughout the day and is never either idle or oversupplied. In 
each case the final penalty results only from the standard deviation of the times of the load 
arrivals-although not possible to prove, it is reasonable to assume that there cannot be an 
optimum schedule in which loads arrive at precisely even intervals throughout the day, given 
the widely spread geographical locations of the farms. In practice, a situation often arises 
where two loads arrive at once, or a few loads arrive closely spaced. Also, the lorry schedules 
produced use fewer lorries than those available at the factory, representing a possible cost 
saving to the factory. 

8.2 
Although the GA(Timer) evolves satisfactory schedules, the question of whether they are 
constrained by the optimality of the input assignment must be addressed. The  exact sequence 
with which a squad visits farms, as well as the allocation, can affect the resulting schedules. 

The GA(Timer) could be improved by considering permutations of the possible se- 
quences in which each squad visits its allocated set of farms. In the current version, the 
sequence used for each squad is simply the order in which GA(Assign) considered each farm; 
thus if the permutation of orders in GA(Assign) specified “ABCDE,” and squad S was as- 
signed work at farms B and E, the GA(Timer) assumes a sequence “BE.” By examining other 
permutations, it may be possible to achieve better schedules. 

As noted in Section 6.1.5, running GA(Asszgn) generally results in a population with 
several different chromosomes of equal fitness. Given a set of assignments A(i) of equivalent 
fitness for each test case i, we use each member ofA as input to the GA(Tzmer) and find the 
average quality of the schedule produced over 10 runs. Table 11 shows the penalty assigned 
to the best and worst quality schedules found in each set A(i) and the probability that the 
results are not significant. 

The  table shows that in several cases, the factory schedule can be significantly improved 
by judicious choice of input schedule. As the schedules are produced very quickly, a simple 

Relationship Between Assignments and Factory Schedules 
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improvement to the system would be to evolve factory schedules from a selection of the 
fittest chromosomes in the final GA(A.r.rig77) population and present the user with the fittest 
timing schedule found and the assignment schedule needed to produce this. 

Another appealing feature from the user’s point of view would be to evolve a timing 
schedule for every member of the assignment population that has reached the “best” fitness. 
’The output of the scheduling system is then a set of pairs of (assignment + timings) from 
which the user can choose which pair best represents a satisfactory trade-off between factory 
schedules and assignment schedules. 

9. Conclusion 

The combination of two GA~-G4(~4-ls-lsigx) and GA(Evze/.)-has resulted in a robust system 
t h a t  produces schedules that are nixeptnbfe to the factory for every test case. The  eight test 
cases used varied in complexity and were representative of typical siutations that could occur 
in the factory. This system was able to produce feasible schedules that could be put into work- 
ing practice by the company, and were similar to those already used. Results were compared 
using a GA, SL4, a Pop-HC, and a simple HC, all based on the same problem representation. 
All the search methods produced fi.nsible schedules that satisfied hard constraints, but those 
produced by the (;A and Pop-HC were judged to be superior by the factory experts because 
they represented more practical solutions. 

Although this paper discusses a very specific application, several of the design concepts 
can be extended to other scheduling problems, particularly those involving complex real- 
world data and constraints. In particular, we highlight the benefit of employing the following 
techniques: 

0 Division of a complex problem into smaller subproblems. 

0 Separation of the most important constraints from the penalty function and instead 

0 Evolving an SB that uses heuristic choice as a means of dealing with complex domain 

incorporating them into the chromosome representation. 

knowledge. 

Dividing the problem into smaller subtasks and solving each separately simplifies the 
search space considerably and hence increases efficiency. However, we must recognize that 
this may compromise the solution quality because the quality of the final output is dependent 
on the quality of the output from each individual subtask. 

An ideal approach would consider a continuous evaluation cycle, as shown in Figure 
7 ,  where there is some form of  feedback from one subtask to another, and each subtask is 
iteratively evolved until a sat isfactory solution is reached. An example of successful imple- 
mentation of  an iterative algorithm is given by RJW, Hwang, Choi, and Cho (1997). In this 
case, the aim would be to improve the assignments based on the ability of the timing module 
to produce a high-quality schedule from a given assignment. However, Table 12 shows the 
aamige number of evaluations in each test case before GA(;lssig77) evolves a population that 
consists of feasible chromosomes. This varies considerably, and hence an iterative scheme 
coiilct result in tzvzing schedules being evolved for infeasible ~ssigiintrnts in much of the early 
reproductive cycles, and consequently, an unnecessary expenditure of energy evaluating in- 
feasible schedules. A sensible and eflicient method of combining information from both 
edut ionary processes would have to be established. An alternative methodology would be 

78 f-i-olutionary Computation Volume 6, Number 1 



Real-World Scheduling Using a Schedule Builder 

Test Case 
Evaluations before 
100%ofPopulation 

Feasible 

Evolve Factory Schedule A 

1 2 3 4 5 6 7 8 

711 3690 1012 2028 660 5514 1100 1315 

Evolve in continuous cycle 1 
\ 

Figure 7. The ideal evolutionary model for schedule construction. 

Table 12. Variation in number of evaluations until GA(Assign) produces a feasible population. 

to treat the assignment constraints and the factory constraints as different objectives within 
a single GA and search for a satisfactory trade-off between the two quantities. A multiple 
objective GA approach is currently being investigated by the authors. 

In section 5.2, we described three methods of dealing with constraints that further 
simplified the problem structure and reduced the search space. In particular, we significantly 
decreased the size of the search space by separating the most important constraints from 
the penalty function and using a chromosome representation that guarantees that these 
constraints will be met. The way in which they are met is encoded on the chromosome, 
and the GA searches for the optimal way to meet the constraints. This ensures that all 
feasible regions of the search space are explored while improving the efficiency of the search 
by cutting off infeasible regions. This places less burden on the penalty function, and as a 
result, the inherent difficulties usually associated with penalty functions in finding suitable 
weights are avoided. 

Finally, we emphasize the importance of the heuristically driven evolving SB in the 
success of this application. Although the value of using a GA to find optimal combinations 
of heuristics as a method of solving complex scheduling problems has been previously noted 
(e.g., Norenkov & Goodman, 1997) in solving job-shop scheduling problems, we stress that 
the method is particularly advantageous when tackling real-world problems. Often, a large 
amount of domain knowledge can be gathered from an expert, but it is generally complex 
and often difficult to formulate into exact procedures for solving problems. By encapsulating 
the knowledge in the form of heuristics, and using a GA to construct an SB via an optimal 
combination of these heuristics, we considerably simplify the task. The key advantage, 
however, lies in the flexibility that such a system provides-real problems do not follow an 
exact pattern from day to day, and each schedule may require a subtly different approach. 
Using the heuristically driven SB, a unique SB is built each time a problem is solved, which 
takes account of the individual characteristics of each problem. This results in a much more 
robust system that copes well with variations within the data and hence can be used by the 
factory as a reliable tool. 
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