
On Temporal Versioning in Object-Oriented Databases

Jiang Lü, Peter Barclay and Jessie Kennedy
Department of Computer Studies, Napier University, Edinburgh EH14 1LT, UK.

email: <jiang, pete>@dcs.napier.ac.uk

Abstract This paper describes the development of
the data model TVM which contains a new concept,
temporal versioning. This generalises the ideas of
temporal databases and version management to
object-oriented databases. TVM provides a new
approach for data modelling and management; it
allows the user to define a multi-dimensional
temporal storage space and to model the evolution of
objects within that space. It supports historical
versions and alternative versions of objects at
instance level and as well as schema level.

1 Motivation and Objectives
There are two application areas where temporal data
[McKenzie 1991] and versions [Sciore 1991] have
become particularly important: temporal databases
and version control and management systems.
Although these two areas have a similar conception,
the systems developed for each area have different
concerns. Versions and temporal data are different
concepts; temporal data reflects the states of objects
in a more time-oriented way; this feature does not
apply to versions. Techniques developed in temporal
databases cannot solve the problems of versioning.
On the other hand, the techniques developed in the
area of version control and management lack of the
ability of support time-varying data. A temporal
database is one in which the information about the
states of entities (objects) in the database is a function
of time; it is primarily concerned with the power and
expressiveness of temporal query languages [Kline
1993]. Version management and control systems
support the design of engineering objects. They have
focused on understanding the system-level
requirements of versioning. In particular, the
questions of how to support alternative versions,
configurations, long transactions and control access
to versions have received substantial attention.

These two areas have solved different but related
problems from different angles. However, issues such

as how these different solutions can be combined have
not yet been tackled. Many applications require
databases that support both temporal data and version
management (such as design of engineering objects).
Figure 1 shows a Car-Manufacturing Database. There
are several types of lock which can be used in this car
model. These locks are an alternatives of each other
and valid at same time. The historical information of
engine design is important, the updated data is need
to be preserved. It is considered historical (temporal)
data. For the safety system, both of the temporal and
alternative data are important. It is needed to be
maintained at same time. However most of proposed
temporal database models support neither alternative
versions nor schema versioning and version
management do not have time aspects support. The
combinations of the techniques developed in these
two areas will provide a more general solution to
these problems.

The objective of this study is to present a simple and
theoretically consistent data model. The principle is
to treat all the relevant information in a single data
model. We introduce a new data concept “temporal
versioning”, which provides a uniform way of
understanding temporal data and versions. We
present a data model, called temporal versioning
model (TVM), which incorporates temporal
versioning semantics of the real world into the object-
oriented database model. TVM supports multiple
dimensional time to overcome the limitation of
existing temporal database models which support one
valid time attribute and one valid transaction time
only [Snodgrass 1994]; a temporal version can be
accessed by its time information, or its identifier or
values of properties; this aims to overcome the
limitations of accessing temporal data only by its time
information or by its version identifier. Alternative
versions, schema history and other features are also
supported by TVM.

ESCORT 1.3

engine safety system

Engine 1.3
15/02/85

central
lock seat belt - front

20/12/85

lock

manual
lock

electrical
lock

Engine 1.3
15/02/90

Engine 1.3
15/02/91

seat belt - passengers
20/12/85

seat belt - front
03/04/90

seat belt - passengers
03/04/90

air-bag - front
03/04/90

air bag - passengers
03/04/90

 Figure 1
 We adopt the framework for TVM by extending the

remarks posed in [Soares 1995]. By analysing the
results in [Agrawal 1991], we identify the following
requirements:
• Maintenance of an enterprise history - a good

DBMS will enable the users to maintain and
manipulate a history of changes to their data.
These histories are for objects and schemas.

• Access to the history of an enterprise by its
version values (including its identifier) as well as
its time information - It should be possible to
access the history of an enterprise by its time
information; the property values and other version
values could also be used in the query
specification. It should be possible to express the
temporal order inherent in a temporal object.;

• Current version and temporal version - Temporal
is referred as non-current, since for each schema
or object, it may have many versions at different
times.

• Support alternatives - It should allow users to
explore several configurations simultaneously.
More than one version for an object at a particular
time may be allowed.

• Versionable and non-versionable - The value of
non-versionable class may be modified without
creating a new version of the object. Changes to
versionable classes have to be made on a new
version of the object.

2 Temporal Versioning Model (TVM)

2.1 Preliminaries
We regard the entire process of evolution of entities
over time as happening within a conceptual temporal
storage space. The evolution of an object within
temporal space can be described as a series of
versions (or states) of an object. Temporal data may
exist in the form of an interval within each time
dimension. The assignment of a coordinate system

provides a one-to-one mapping between the position
of the time-space and the state of an object. e.g. the
coordinates of a point may be represented by
Cartesian coordinates. Every position within the
temporal storage space can be described by a set of
corresponding values of each time dimension. A time-
interval represents the life-span of the version of an
entity. An object-oriented database model NOM
(Napier Object Model) is used to represent the states
of objects. (NOM is a simple data model intended to
allow object modelling of data at a conceptual level. It
was first presented in [Barclay 1991] and is described
fully in [Barclay 1993]. The data defination and
manipulation languages NOODL (Napier Object
Oriented Data Language) may be used to specify
enterprises modelled using NOM. A NOODL schema
contains a list of class definations, which show the
name and ancestors of each class. A class definition
also contains operations, constraints, and triggers.
The GNOME (Generic Napier Object Model
Environment) is an implementation of NOM in the
persistent programming language Napier88 [Dearle
1989].)

For example, in order to record employee E's salary
history, the salary history must be maintained along
two time dimensions: valid time-denotes the time
when a fact becomes effective in reality, transaction
time - concerns the time of storage of information in
the database [Mckenzie 1991]. Figure 2 illustrates
our modelling approach. E1, E2 and E3 represent three
different states of an object E in temporal space T
(valid time, transaction time).

Within tij, i represents the state sequence order and j
represents different time dimensions. Therefore, tij is
the "shadow" of state i of object E at time dimension
j. It can also be viewed as three different versions of
E. In the beginning E's state is E1 at the time of t1t,
t1v. At the time t2t, t2v, E has an update and its state is

E2. Finally, at t3t, t3v, E has another update, as the
result of the update, the state of E becomes E3.

..

.

.

valid time

transaction time

t1v t2v t3v

t1t

t2t

t3t

E1

E2

E3

Figure 2

2.2 Basic concepts
The main features of TVM can be summarised as
follows:

• Each schema may have many versions. A new

version with its own life-span is created after each
update.

• Each object (instance of class) may have many
versions and each version has its own life-span.

• An instance of a schema and its relevant data
construct an schema-instance-hierarchy, which
also has its life-span.

• Different versions of schema may get accessed by
its time information and version-indentifier.
Different versions of object may get accessed by
its property values, time information and version
identifier.

We will continue with an introduction of the main
components of TVM, and the description of
mechanisms for their support and management. Our
discussion will mainly at the conceptual level, but
some remarks may address at the implementation
level.

There are two types of schema in TVM: versionable
and non-versionable schema. Changes in the
versionable schema and its instances may result the
creations of new version. Within the versionable
schema, there may be two types of classes,
versionable class and non-versionable class.
Modifications on non-versionable schemas, or non-
versionable classes and their instances will result the
previous data being dismissed, because for these data,
the temporal versions are assumed not to be
important.

 schema type
non-versionable
schema

 versionable schema

non-versionable
classes

non-versionable
classes

versionable
classes

For each time dimension, two special time-related
properties FROM and TO are associated with each
version. The time of creating a version is recorded in
its FROM, and its TO is assigned as * to indicate that
this version is valid until further change. The
historical and future time are described by their
specific time data (timestamps). A symble ⊗ is used
to indicate the end of future. Whenever the version
has an update, the time of the update is assigned to
TO. The time data is associated with non-temporal
data in two levels: object instance level and schema
level in each time dimension, or instance-oriented
data and schema-oriented data.

If more than one version of an object is valid at a
certain time, these versions may be distinguished by
version-indentifiers. For example, in order to
distinguish the cars with different colours within one
model, such version identifiers are required, these
different values are called alternatives.

Similar to handling object versions, a version-
identifier may be defined by user to distinguish
different schema versions which are valid at same
time, and a version class can be adopted for keeping
schema versions.

TVM can maintain the history of changes to both the
schema and its data. An instance of a schema and its
data (all its object instances) constructs an schema-
instance-hierarchy which is a combination of
versions of various objects and the version of the
schema that was used to create them.

This is different from the mechanisms used in
ORION [Chou 1987], in which such as ‘version-
counter’ and ‘next-version-number’ are employed to
link the different versions of same versionable object.
In TVM, there are no such requirements. The
positions of different versions of same object in the
logical storage space is used to indicate the
relationships of the versions of same object. It avoids
the complex process of establishing the links between
versions. It was suggested that a versionable object (a
generic object, which does not have any information
about its life-span) and its versions are instances of
the same class, even through their formats are
different. However, versions have more attributes

than the generic object, these attributes are used to
describe the features of the versions, for example
‘version number’, the OID of the generic object, etc.
This results in different type instances (with different
number of attributes) belonging to same class. To
overcome this problem in TVM, the versionable
classes are defined by the combination of the generic
class and its version type, so all instances of
versionable class have same format. Each instance
has its own OID. This simplifies version
management.

2.3 Temporal version and its semantics
A version is a semantically significant snapshot of a
modelled object. A temporal version is the
combination of version, its identifier and time
information during which the version exists.

In TVM, temporal semantics [Allen 1983] are
adopted; this defines the temporal primitive,
temporal connectives and other related basic
components.

The temporal versions for schema and the object-
instance are treated in a uniform way. It is declared
by a class, temporal version, which is used to define
different types of temporal versions. The notion of
temporal version is defined by a pair containing the
versioned object and its temporal version definition.
The versioned object can be a schema, a class, or
several classes, or part of a class, i.e. a property or
operation of interest.

A temporal version definition determines the type of
temporal versions. It could be historical versions,
which are used to describe an versioned object at
various time; an object may have a number of
alternative versions which are valid at same time.
Each alternative version may be changed over time,
therefore, the alternative-historical versions are also
required.

2.3.1 Multiple dimensional temporal
versioning

Time types of valid time and transaction time are
supported in TQuel [Tansel 1993] and TSQL2
[Snodgrass 1994]. However, only one time dimension
of each time type (such as valid time, transaction
time) is supported. The when clause is the valid-time
analogue of the where clause of SQL, and the as-of
clause is for transaction time. For example,

retrieve (Obj.all)
where Obj.Client = “Melanie”
When Obj.overlap | 12PM Dec. 30, 1991|
as of present

It implies that present is transaction time, and ‘12PM
Dec. 30, 1991’ is valid time. To restrict support only
one time attribute of each time type by the temporal
database model will limit its application.

In order to describe temporal information accurately
and precisely, a number of time types have been
introduced, apart from valid time, transaction time.
Other type of time include, event time [Chakravarthy
1994], abstract time [Dayal 1992], user-defined time
[Snodgrass 1994]. Each of these reflect a different
angle on temporal information. A user from a
different point of view could define a different time
type. Moreover, there may be more than one time
attribute of same time type that need to be modelled.
Many business, medical and scientific applications
require multiple dimensional time support - in
particular, multiple valid time dimensions [Kokkotos
1995][Lü 1995].

In TVM, multiple dimensional temporal attributes are
supported; these attributes could belong to different
time types and for each time type arbitrary time
attributes are allowed. We consider that temporal
information may be viewed as existing in a multiple
dimensional time space. At the conceptual level, all
time dimensions are treated in the same way
regardless of whether it is imposed by the computer
system. It is required to indicate the time type and the
name of the time attribute when it is being used. For
example, there are two time attributes
(TreatmentTime and ApprovalTime) in GP17-form (a
Scottish dental remuneration claim form), both of
which can be regarded as valid time and are often
used in audit query conditions. Here, valid is used to
indicate its time type, TreatmentTime and
ApprovalTime indicate the names for time attributes.

SELECT *
FROM GP17-Form
WHEN valid.TreatmentTime.start before 01/02/95 and
 valid.ApprovalTime during [05/04/96, now]

The definition of time type is based on the semantics
of the application (the parameterized temporal
selection predicate) and the temporal domain.
Therefore, time type can be defined either by the
database system or the database user.

To sum up:
• There can be an arbitrary number of time

dimensions.
• Time dimensions are not necessarily hard-coded

into the system. New time dimensions can be
declared by an application as required, and
different combination of dimensions can be used
for constructing version definitions.

• • Giving databases multiple dimensional time
support has an effect on two levels. First, it means
the database system should support different time
types, such as valid time, transaction time, and
that user may define their own time dimension by
giving the temporal domain and temporal
semantics. Schema and object are both
versionable.

2.3.2 Alternative versioning
A database schema models a particular aspect of the
world, according to the requirements of application.
However, there are often several ways in which we
could model an application. For example, there are
may three kind of locks for same model of car at
same time. The idea of alternative versions is well-
know in CAD and CASE application [Sciore 1991].

Alternative versions and their histories can also be
modeled by TVM If more than one version of an
object (or schema) is valid at a certain time, these
versions may be distinguished by version-indentifiers.
For example, in order to distinguish the different
kinds of locks, a version identifiers are required, these
different values are called alternatives.

2.4 Operations
A set of operations is provided to define and
manipulate versions according to the above model. In
this section, we give a classification of operators. The
definitions for these operations [Lü 1995] are not
described in detail here.

1. Operators for schema definition and modification.
2. Operators for versionable object instance creation

and modification.
3. Operators for non-versionable object instance

creation, deletion and modification.
4. Operators to retrieve object instances according to

query specifications.
5. Operators to retrieve schema and their object

instances. The result will construct a
schema-instance-hierarchy.

3. Other Considerations

3.1 Temporal-Spatial Versioning

Spatial data consist of spatial objects made up of the
states (nonspatial attribute values), positions (the
positions with geographic space) and shapes (the
geometry features of the object; which may contains
line, regions, etc.). Spatial databases facilitate the
storage and processing spatial and nonspatial data.
However, regardless the shapes of the objects, the
problems still concern the processing of the states of
objects and where the objects are in a 2 or 3
dimensional geographic space. Nevertheless, this is
quite similar to temporal data processing, although
the spatial semantics are different from temporal
semantics. Therefore, a temporal-spatial data model
can be possibly established by defining a conceptual
temporal-spatial space, specifying the temporal-
spatial semantics and extending the object-oriented
data model to capture temporal-spatial versions.

3.2 Visualising multiple dimensional
data

Visualising multiple dimensional data allows viewing
of the relationships between different dimensions.
Three dimensional data presented by 3-D cubes has
been considered in some commercial system [Bailey
1996] [Stanley 1996]. There are two solutions to
visualising data existing in more than three
dimensional space.

(a) first by a set of 3-D cubes. For example, to
visualise a 4-D (a,b,c,d) data model, if the
relationships of dimensions a, b, c and a, b, d need to
be represented, then two 3-D cubes ((a,b,c), (a,b,d))
need to be used. By using the same method, a n-
dimensional cube can be represented by n (n-1)
dimensional cubes. Therefore a n (n>3) dimensional
cube can be represented by a set of 3-D cubes.

 (b) second by a set of 2-D tables. For each 3-D cube,
3 2-D tables can be used to represent the
relationships between these three dimensions. Using
a set of 3-D cubes to represent 4-D cube can not
show the full relationships among those four
dimensions, because these 3-D cubes only show
partial relationships between those four dimensions.
The conclusion obtained from above is that to
visualise n (n>3) dimensional data, 3-D cubes or 2-D
tables can only show partial relationships between

the n dimensions. To use 3-d cubes and 2-D tables at
same time provides a flexible way to show the
relationships between different dimensions. A further
investigation of the methods of visualising the full
relationships of n dimensional data in two
dimensional space is needed.

 4 Summary and Future Work
We introduced a new conecpt - temporal versioning
semantics, which provide a uniform way to
understand and process the states of objects and their
schema. A data model (TVM) supporting temporal
versioning semantics is proposed by extending an
object-oriented data model. It is able to model
temporal and alternative versions, and supports
multiple dimensional time.

Other issues are also under investigation in this study,
they are: logical storage structures and access
mechanisms for temporal data; handling schema
history and the schema-instance-hierarchy; problems
due to object migration and object update, etc. [Lü
1995].

Currently, we work on the construction of a query
language for TVM and prototype TVM on the top of
an OODBMS (Objectstore) by adding an
interpretative layer between TVM and Objectstore.

References

[Agrawal 1991] Agrawal R. Buroff R. Object
Versioning in Ode. In Proceedings of the 7th IEEE
Conference on Data Engineering, 446-455, 1991
[Allen 1984] Allen, J. F. Towards a General Theory
of Action and Time, Artificial Intelligence, 23, 1984
[Bailey 1996] Bailey A. Universal Data Management.
In the Proceedings of 14th British National
Conference on Database, Edinburgh 1996
[Barclay 1991] Barclay P. J. and Kennedy J. B
Regaining the Conceptual Level in Object Oriented
Data Modelling. In Aspects of Databases
(Proceedings of 9th British National Conference on
Databases). 1991
[Barclay 1993] Barclay P. J. and Kennedy J. B
Viewing Objects. In Advances in Databases
(Proceedings of British National Conference on
Databases, 1993). Springer Verlag (Lecture Notes in
Computer Science Series), 1993
[Bertino 1996] Bertino E., Ferrari E., and Guerrini G.
A Formal Temporal Object-Oriented Data Model. In
the proceedings of ETDB’96.

[Chou 1987] Chou H., Kim W. Versions and Change
Notification in a Object-Oriented Database System.
MCC Technical Report Number: ACA-ST-329-87,
1987
[Chakravarthy 1994] Chaakravarthy S. and Kim S.
Resolution of Time Concepts in Temporal Databases.
Information Scineces, 1994.
[Dayal 1992] Daya U and Wuu G. A Uniform
Approach to Processing Temporal Queries. I the Proc.
VLDB’92, 1992
[Dearle 1989] Dearle A., Connor R., Brown F. and
Morrison R. Napier88 - A Database Programming
Language ? In Proceedings of DBPL-2, 1989
[Kline 1993] Kline N. An Update of the Temporal
Bibliography. SIGMOD Record, 22(4), 66-80, 1993
[Kokkotos 1995] Kokkotos S. On the Issue of Valid
Time (s) in Temporal Databases, SIGMOD Record,
Vol. 24, No. 3, 1995
[Lü 1995] Lü J. Temporal versioning. Working
Report DCS/JL2, Napier University, Edinburgh, 1995
[Mckenzie 1991] Mckenzie L. E. Evaluation of
Relational Algebras Incorporating the Time
Dimension in Databases. ACM Computing Surveys,
Vol. 23 No.4 December 1991
[Sciore 1991] Sciore E. Multidimensional Versioning
for Objecy-oriented Databases. In Proceedings of
Second International Conference on Deductive and
Object-Oriented. Database, 1991
[Snodgrass 1994] R. Snodgrass A TSQL2 Tutorial.
SIGMOD RECORD, Vol. 23, No. 1, 1994
[Soares 1995] Soares L. F. G. Nested Composite
Nodes and Version Control in an Open Hypermedia
System. Information System, Vol. 20 No. 6 pp. 501-
519, 1995
[Stanley 1996] Stanley N. Microsoft Database
Technologies - An Inside View. In the Proceedings of
14th Brithsh National Conference on Database,
Edinburgh 1996
[Tansel 1993] Tansel A. Z. Temporal Databases,
Benjiaming/Cummings, 1993

