
75

SIMULATION OF THREE-DIMENSIONAL FINITE-DIFFERENCE
TIME DOMAIN METHOD ON LIMITED MEMORY SYSTEMS

W.J. Buchanan and N.K. Gupta

Napier Polytechnic, UK

1 INTRODUCTION

It is the intention of this paper to discuss techniques in the
modelling of Electromagnetic Fields using Finite
Difference Time Domain (FDTD) Methods applied to
80x86-based PCs or limited memory computers.
Electrical modelling of structures is currently carried out

mainly in the frequency domain using empirical methods
or by treating structures as two-dimensional objects. Until
recently the application of finite difference methods were
applied to super computers such as the Cray XMP and Cray
II. The power of modem workstations and microcomputers
offer large storage area, large memory capacity and fast
CPU times. Thus it is now possible for full time domain
simulations to be camed out on complex structures on base
model workstations and microcomputers.

2 THEORY
For the sake of completeness an overview of the Finite

Difference Time Domain method is given in this section.

2.1 Eauations

differences the following equations can be generated.
Taking Maxwell's curl equations and taking central

2.2 Problem formation

The structure to be analysed is fitted into an xyz axis.
The z-direction being the height, the y-direction the
length, and the x-direction the width (see Figure 1). Next
the problem is given a cell structure by splitting each axis
into a series of nodes. The distance between the nodes in
the x-direction is defined as delta X, in the y-direction
delta Y and the z-direction delta Z. A Gaussian pulse is
applied to the source [2] . This pulse is used because its
frequency spectrum is also Gaussian and will provide
frequency domain information from zero frequency to
the desired cut-off frequency by adjusting the width of
the pulse. A raised cosine can also be used [3].

Fig 1: Microstrip line
The electric field applied to the source consists only of
a z component and is Gaussian.

(t - to)z E, = exp--
T2

Simulations are usually carried out for several hundred
or even several thousand time steps (or iterations). After
a complete time solution a Fourier Transform is taken at
a specific node to determine the frequency response of
the structure. For more information on the Finite
Difference Time Domain method [1-51.

3 METHODS OF SIMULATION
Some methods of increasing speed of simulation and/or

increasing memory allocation are given in this section.
3.1 Memo rv A l l o a
Memory allocation on a PC using DOS causes some

problems. 80286 processors are able to address 16
Megabytes (4GBytes for 80386) of physical address
space and 1 Gigabyte (64 Terabytes for 80386) of virtual
address space per task. Unfortunately modem compilers
can only access up to a maximum of 1 MByte. It is
necessary in most simulations to use the maximum
amount of usable memory. 8086 compatible PCs can
address up to a maximum of 1 MByte of RAM. Some of
this memory is used for applications such as graphics,
interrupt vectors, etc. Computers based around the
8086/286/386 have a segmented memory architecture.
They are designed to directly address only 64k of memory
at a time. Memory address pointers on a 8088 compatible
machine can be near pointers or far pointers. The near
pointer is a 16 bit address value and can address up to
64k of data, whereas a far pointer is a 32bit address and
can address up to 1 MB of memory. The far pointer is
made up of a segment address and an offset address
(segment:offset). In the large model far pointers are used
for both the code and the data, giving both a 1Mb range.
It is also possible (in 'C') to force a variable to be a fir

76

pointerusingthe fartype. ThePCusesaround4OOkBytes
for interrupts, graphics', etc leaving around 600 Bytes
for the program and data storage.

FDTDrtlethrpd
The 3D FDTD method uses four three dimensional

arrays to store Electric and Magnetic field components.
Two of these arrays store the previous time step (for E
and H fields), while the other two store the current time
interval. Each of these cells has three field components
in thex,y and z directions. The static declaration is poor
in both speed and in the size of memory it can use. A
much better solution is to use a two-dimensional array
of pointers, which are used to point to a block of data.
Thus only the offset address of the data added to the
pointer gives the memory location. In the example of
a 3 dimensional array of 24 by 40 by 10 (for the x,y
and z nodes), 24*40 (480) pointers can be allocated.
Each of these pointers point to a 10 values (the
z-values). The total number of bytes to store all the
arrays in this example will be 406.200 (24 * 50 * 7 *
4 * 3). This leaves around 100 kB for the FDTD
program.

The FDTD method provides a good application of
multitasking.
A technique to use the maximum amount of the memory
is to segment the problem then run the FDTD processor
on each of the segments as a separate task. Each segment
will have access to a maximum of 1MB of memory. For
example if a PC has 8MBytes of memory, the problem
can be segmented into eight separate tasks. Each of these
tasks will wait on boundary conditions if they are not
available.

1 608K is available for programs, the rest is used by
BIOS, Fixed Disk ROM, Video Buffer, Interrupt Vector
Table, Communications Data, Disk handling.

Fig 2: Segmentation of problem

Multitasking splits into two categories non-preemtive
and pre-emptive. In anon-preemtive system the task must
voluntarily give up the processor before the next task can
run. The running task is said to be preempted by the task
waiting to run. Operating systems for the PC such as DOS
and Windows 3.0 are non-preemtive. In a pre-emptive
system the task is 'kicked' off the processor by another
task. The scheduling used in this a plication is the round
robin time slicing algorithm. Tash which are ready to
run are put in a queue. On a particular event, in this case
the timer tick interrupt, the next task in the queue
pre-empts the running task and the task preempted is put
to the end of the 'ready' queue. DOS does not handle
multitasking. It is required that processes are allocated a
certain amount of time on the processor and therefore it
is logical to use the PCs built-in timer routines to keep
track of time. By extending the clock-tick Intempt
Service Routine (ISR) it is possible to keep the routine
doing its old job of updating the system clock and
refreshing memory, but add the feature of task switching
control.

77

Intel 80386SX-b
ased, 16MHz
Intel 80386SX-b
ased. 16MHz

Turbo C and C+t supports the redirection of the interrupt
vector table through the getvecto and setvect0
commands. This makes task switching much easier. By
redirecting the existing ISR routine for the timer tick
interrupt to a free location. In its place put the customised
ISR which calls the old ISR by calling the relevant
interrupt. It then goes on to call the task switching routine
which controls task switching.

7lSL.r 11-

Intel 80387 6:37

None 5150

I

Fig 4: Redefinition of Interrupt Vector Table
This is illustrated in fig 8. The old timer ISR will now

have interrupt vector number 50 hex, the new ISR will
have interrupt vector number 8’. With each tick, the new
ISR will be called.

3.3 Use of Maths Co-processor
Currently 80286/80386-based PCs only have a Maths

Co-processor as an option. It is possible to use software
floating point arithmetic, but this is relatively slow
compared to a 80287B0387 Maths Co-processor. It is
difficult to make comparison between different systems
but bench-mark timings for a standard simulation are
given in table 1. The grid used was a 25,45,7 and the
number of iterations was 100.

Computer type ICo-processor]Time taken (minutes:secs)
Intel 80386DX- None I based. 25MHz I

~ ~ ~~

Table 1: Comparison of run times for 100 iterations

2 Interrupt 8 is the System Timekeeper and is a hardware
interrupt. The system keeps time by dividing a
1.193 18-MHz clock signal by 65536. This produces
’ticks’ at a rate of 18.2 per second. Each tick generates a
type 8 interrupt.

The maximum current clock speed available for a
80386-type processor is 4OMHz. No machine with an
Intel 80486 processor was tested, although these
processors are at least twice as fast as the comparable
Intel 80386 processor. Another advantage of the Intel
80486 processor is that it has a Maths Co-processor
in-built (although the 80486SX does not).

3.4 S u b g r i d d i m
A technique of subgridding can be employed to reduce

memory storage [3]. This method splits the problem into
a coarse grid with a large step size and a fine grid with a
small step sue is introduced only around discontinuities.
The cell dimensions will thus vary in size.

Y Grid. ”
Fig 6: Subgridding method for Microstrip Antenna

3.5 Shielded AredVolume
All conductors are treated as perfect, thus tangential

Electric field components on a zero thickness conductor
will equal zero. If the conductors are assumed to have a
finite thickness all electric fields within the volume and
all tangential electric field components on the surface will
be equal to zero. These electric fields thus do not have to
be calculated or stored. Problems which have a large
amount of metal can benefit most from this method [6].

4 RESULTS
A patch antenna was analysed using the techniques

discussed. This layout of the structure is shown in figure 7.
An example of the 3D time slices are shown in figures 8-1 1.
The linear grid used was 30,56,14.

78

?; . . !;, c k Qord PI.-

/
~ l t a t l o l J v

X

Figure 7: Patch antenna structure
8
Fig 11: Response after 200 time steps

5 CONCLUSIONS

Fig 8: Response after 50 time steps

t .--a I
Fig 9: Response after 100 time steps

r

The multitasking kernel has worked well giving a good
working environment with several processes running in
parallel each using a lMbyte segment of memory.
Multitasking using Transputers would obviously decrease
run-times through true concurrency. A maths co-processor
is essential when simulating. A factor of 8 improvement is
speed was obtained. This is due to the amount of floating
point arithmetic. The subgridding method is dependent on
the generated grid. This grid can be staggered in both ij
and k directions. A useful addition to the program would
be an automatic grid generator which detects
discontinuities and this generates a finer grid amund it.
Problems which have a large amount of metal can benefit
most from the shielded volume method. A major drawback
of the FDTD processor is that it can only address up to a
maximum of 1MBytes. To take full advantage of the 80x86
memory management facilities new 80286/80386 code
needs to be written to interface with the existing code. This
will take advantage of the 80x86 virtual memory facility.

References
1. A Taflone,"Finite Difference Time Domain Method for
Elecmnnagnetic Scattering and interaction problems"-

-K* M a t i o n s of the Dmrsive
- .pp191-202.A~$1980.

Charactcri&cs of ~ c r o s m p s by the TDFD Method"- =, YpL26.p~ 263-267,Feb 1988.
3. T.Shitata,THavashi andT.Kimura,"Analysis of microstripcircuits
using 3D full-wave electromagnetic field analysis in the time
domain".IEEE~,pp10661070,June 1988.
4. VSvetlana,KLeeandKMei,"AsubgriddingMethodfortheTDFD
Method to Solve Maxwell's Equations"- yollp,
No 3. 1991. - - -, - - - -.
5. D Sheen, S Ali. M Abouzahra and J Kong,"Application of the 3D
FDTD Method to the Analysis of Planar Microstrip CirCuits"JEEE
Trans., u . N o 7 . July 1990.
6. Furse C and Mathur S."Impvements to the FDTD Method for
Calculating the Radar Cross Section of a Perfectly Conducting
Target''-, ypL28. No.7. July 1990,pp919-927.

Fig 10: Response after 150 time steps

