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Abstract

Agent-based simulations are an effective simulation technique that can
flexibly be applied to real-world business problems. By integrating such
simulations into business games, they become a widely accepted educational
instrument in the context of business training. Not only can they be used
to train standard behaviour in training scenarios but they can also be used
for open experimentation to discover structure in complex contexts (e.g.
complex adaptive systems) and to verify behaviours that have been predicted
on the basis of theoretical considerations.

Traditional modelling techniques are built on mathematical models con-
sisting of differential or difference equations (e.g. the well-known system
dynamics approach). However, individual behaviour is not visible in these
equations. This problem is addressed by using software agents to simulate
individuals and to model their actions in response to external stimuli.

To be effective, business training tools have to provide sufficiently realistic
models of real-world aspects. Ideally, system effects on a macroscopic level
are caused by behaviour of system components on a more microscopic level.
For instance, in modelling market mechanisms market participants can
explicitly be modelled as agents with individual behaviour and personal
goals. Agents can communicate and act on the basis of what they know
and which communication acts they perform. The evolution of the market
then depends on the actions of the participants directly and not on abstract
mathematical expressions.

Generally, agent-based modelling is a challenging task, when modelling
knowledge and behaviour. With the rise of the so-called semantic web
ontologies have become popular, allowing the representation of knowledge
using standardised formal languages which can be made available to agents
acting in a simulation. However, the combination of agent-based systems with
ontologies has not yet been researched sufficiently, because both concepts
(web ontology languages and agent oriented programming languages) have
been developed independently and the link has not yet been built adequately.
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Using ontologies as a knowledge base allows access to powerful standard-
ised inference engines that offer leverage for the decision process of the agent.
Agents can then determine their actions in accordance with this knowledge.
To model agents using ontologies creates a new perspective for multi-agent
simulation scenarios as programming details are reduced and a separation of
modelling aspects from coding details is promising as business simulation
scenarios can be set up with a reduced development effort.

This thesis focuses on how ontologies can be integrated utilising the
agent framework Jadex. A basic architecture with layered ontologies and its
integration into the belief-desire-intention (BDI) agent model is presented.
The abstract level of the approach guarantees applicability to different simu-
lation scenarios which can be modelled by creating appropriate ontologies.
Examples are based upon the simulation of market mechanisms within the
context of different industries. The approach is implemented in the inte-
grated simulation environment AGADE which incorporates agent-based and
semantic technologies. Simulations for different scenarios that model typical
market scenarios are presented.

Keywords: business simulation, ontology, BDI agents, business game.
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1

1 Introduction

Traditionally, business simulation is used for a wide range of business purposes

such as business training, education, analysis of a particular business situation

and decision making [1]. Classically, the models used have been equation-

based and modelled with cause-and-effect relationships which more or less

ignore the role of individuals and their behaviour. Nevertheless, crowd

behaviour is formed by the individual behaviour of the members of the crowd

and therefore depends on effects that can be ascribed to the crowd itself and

interactions between its members. Software simulations of these phenomena

are common in the field of sociology and related disciplines, i.e. simulations

are essential for understanding complex systems. Markets can be treated as

complex systems. The focus of a complex system model is on representing

the interactions among the elements, which in an economic model involves

agents (individuals) and institutions (firms, regulatory agencies, etc.).

A paradigm not yet extensively applied to business simulations is the

agent-based approach ([2] and [3]), even though this technique provides a

natural description of an economic environment where simulated human

beings are modelled as agents, interacting with some of their peers as well

as with their environment. Agent-based systems are perfectly suited to

represent individuals rather than describing effects through equations and

thresholds.

However, realistic behavioural patterns can only be achieved by appro-

priately representing knowledge and intelligence. Agents must be able to act

according to what they know and must be able to learn. With the rise of the

semantic web [4], ontologies became popular and we now have standardised
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formal languages to represent knowledge which can thus be made available

to agents acting in a simulation.

In computer science, an ontology is a formal representation of knowledge

by means of a set of concepts within a domain and the relationships between

those concepts [5]. Using ontology languages such as OWL1, knowledge

can be represented in a formal standardised way. The history of OWL

dates back to the 1990s: A number of research efforts were set up to

explore how the idea of knowledge representation as it was used in the

area of artificial intelligence could be used on the Web to make machines

understand content. One particular project in this field named DARPA

Agent Markup Language (DAML) was started in late 1990s, with the goal

of creating machine-readable representation for the Web. The main outcome

of the project was an agent markup language based on Resource Description

Framework (RDF) – which is a general-purpose language for representing

information on the web (see [6]) – named DAML [7]. OWL started as a

research-based revision of DAML and Ontology Inference Layer (OIL) and

has become a formal W3C recommendation in 2004 (see [8]).

Ontologies for agents can be used to represent knowledge such as knowl-

edge about an agent’s external environment such as knowledge about prod-

ucts, knowledge about personal preferences, knowledge about relations, etc.

In multi-agent systems, ontologies are gradually becoming more popular for

describing objects involved in the agents’ interactions. Nevertheless, the

1The natural initialism for Web Ontology Language would be WOL instead of OWL. The
story dates back to December 2001, the days when the OWL group was working on OWL.
Tim Finin, in an e-mail dated back on 27 December 2001, suggested the name OWL
based on these considerations: OWL has just one obvious pronunciation that is also easy
on the ear; it yields good logos, it suggests wisdom, and it can be used to honour the
One World Language project, an artificial intelligence project at MIT in the mid-1970s
(see http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html)

http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html
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combination of agent-based systems with ontologies for running business

simulations has not yet been researched sufficiently, because both concepts

(web ontology languages and agent oriented programming languages) have

been developed independently and the link has not yet been built.

This research is being undertaken with the aim of building stronger

connections between semantic technologies and multi-agent systems. Agents

and their knowledge will be modelled by means of ontologies. Models that

incorporate individual behaviour into business simulations are considered.

The generic approach will allow the simulation of different scenarios. The

representation of individuals in simulations with socio-cultural and personal

patterns can then lead to more realistic market simulations in business

games.

1.1 Motivation

Business games are an important tool when teaching students the conse-

quences of decision making within a business context. In a business game

environment the player typically suggests a plan of activity, through making

a set of decisions e.g. producing a certain quantity of products, with a given

set of features, a pricing strategy or a marketing budget. Such decisions are

governed by constraints within the game scenario such as budget or produc-

tion capacities. The business game then evaluates the input of the player

and presents feedback detailing the effect of the decision. Such feedback

will typically be an estimate of the quantity of products sold, the market

share and the resulting profit/loss. The players continue to interact “turn

about” with this model over a number of iterations. Typically, the model

attempts to estimate likely sales figures for the product portfolios offered
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by the companies under simulation. Classically, business games are created

with traditional modelling techniques like the well-known system dynamics

approach. In a system dynamics approach the system dynamics modeller

does not program the behaviour of individual agents. Instead, he has to

model how populations of agents behave as a whole. System Dynamics

models are highly sensitive to their settings and small changes can have sig-

nificant effects on the behaviour of the system. The modeller has to calibrate

parameter settings with time costly experiments to adjust the model. He

cannot make use of knowledge about individuals directly as this is not part of

the controls of the system. In contrast, appropriate agent-based models are

based on descriptions of individuals and their behaviour. Therefore, agent

based models and especially multi agent models are a more natural tool to

model complex systems which depend on individuals rather than approaches

in which the effect of the system is described – in a sense indirectly – with

equations and thresholds. Using agents in business simulations, there is

a necessity to represent the knowledge base of an agent in an appropriate

way. Ontologies allow access to powerful standardised inference engines

that offer leverage for the decision process of the agent. This thesis will

concentrate on building a stronger connection between semantic technologies

and multi-agent systems for business simulations.

1.2 Problem Statement

Simulation of real-world scenarios in business games is an important appli-

cation of complex adaptive social systems. According to Holland, complex

adaptive systems can be defined as “... systems that have a large numbers

of components, often called agents, that interact and adapt or learn.” [9]
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These complex adaptive systems will gain more and more importance for

business simulations to describe and explore complex structures e.g. organi-

sations or markets and therefore the science of complexity will become one

of the core disciplines of the future. While many aspects of complex systems

might be put into sets of difference or differential equations (see Forrester

in his System Dynamics approach [10]) or other methods that emphasise

quantitative aspects (see [11]). Agents provide a natural instrument to model

complex dynamic systems as they allow direct modelling of components

and interactions. A restructuration of the representational infrastructure of

complex social systems has occurred as Wilensky has put forth [12] and this

will in consequence have an impact on the quality of business simulations.

1.3 Objectives

The effectiveness of a business game as an educational tool depends entirely

on its feasibility in real-world scenarios and on the feedback provided by

the game which should both appear as realistic as possible (see [13] and

[14]). The more realistic the model the more valuable the educational

experience. In specific simulation scenarios, the business game involves

specifying, producing and pricing a consumer product which is then released

into a marketplace for sale. Products that are desirable will outsell those

that are perceived as less attractive. It is proposed that a realistic simulation

of consumer marketplaces can be achieved by the use of agents to model

consumer behaviour and communication.

According to classical definitions, agent-based models consist of agents

that are autonomous computational individuals interacting with each other

and their environment. They are active as well as reactive: external stimuli,
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internal state and available information are used to determine actions an

agent performs to reach given goals. That is why agents are particularly

well suited to represent social actors in complex environments which we use

as a basis for business game scenarios.

A conceptual framework that guides agent activities is the BDI (Beliefs-

Desires-Intentions) model. The BDI model is a well-established paradigm

for the development of agents [15]. A BDI agent has knowledge about its

world (beliefs) and pursues goals (desires) while following given strategies

(intentions). Agents must be able to act according to their knowledge of

their internal and external world which must therefore be expressed in an

appropriate format. Standardised formal languages to represent knowledge

are available now and can be used to model the knowledge of an agent using

ontologies. They can be used to equip agents acting in a simulation with

personalised knowledge and learning capability. The idea of supporting

communities of agents with ontologies which describe the objects involved in

the interactions of the agents was originally formulated by Gruber [16] and

subsequently been discussed by various other authors e.g. [17]. Currently,

frameworks mostly just perform syntactic matchings to detect analogies

between data exchanged during the communication process of a simulation

[17, pp. 1–35]. The research presented here aims at building stronger

connections between semantic technologies and multi-agent systems for

business simulations. A strong and well-designed integration of semantic

technologies and multi-agent systems can have a significant effect on the

quality of multi-agent simulations.
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The overarching objectives of the research are:

• creating simulations with semantically advanced technology in the

context of business games.

• mapping BDI agents flexibly to corresponding OWL ontologies.

• creating simulations that can support running scenarios based on real

individual behavioural patterns.

1.4 Research Questions

Again, extending an agent programming environment with the reasoning

power of ontologies can have a significant impact on the ways agent oriented

programming and business simulations work. The practical integration of

such technologies for developing business simulations is still a challenge. In

fact, extending agent programming languages with the ability of a transparent

use of ontologies with a focus on the perspective of real market based

simulations is not yet described in the literature. The aim to create ontology

based business simulations with various scenarios, where plans are carefully

written to use ontological descriptions which have effects on the agents’

beliefs, leads to the following main research questions which will be answered

in this thesis:

• To what extent can software agent methodologies be utilised in the

context of a business game to enhance realistic gaming behaviour?

• How can ontologies handle and influence the activities of BDI agents?

• How can ontologies be adapted to different simulation scenarios?
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1.5 Summary of Contribution

The contributions contained within this thesis may be summarised as:

A community of agents for the simulated market place. By using a

complex structure with a large number of agents making individual decisions

based on local criteria and the influence of other local agents the responses

should be sufficiently complex to model market-place behaviour, but should

not encourage the students to learn the game rules to achieve goals, but to

concentrate on making realistic business decisions.

Supplying agents with ontologies in modelling simulation scenarios. A

major benefit of supplying agents with ontologies in modelling simulation

scenarios is a shift in perspective that separates modelling aspects from

coding details and focuses on the model rather than on programming details.

This increases efficiency and leads to a clearer separation of concerns.

A layered-ontology model. It allows agents to share knowledge and

create a basic common understanding of their environment while enabling

reuse of fundamental concepts. Ontological commitment is ensured without

which communication between the agents would not be possible. Overall

individual behaviour and decision processes can be modelled and used in

simulations for different scenarios. This creates a new perspective for multi-

agent simulation scenarios by modelling agent knowledge with the help of

semantic technologies.

A framework that incorporates semantic technologies and network analy-

sis algorithms. The framework called AGADE (Agile Agent Development

Environment) shows a practical integration of a multi-agent based system

and semantic technologies for a realistic modelling of individuals participat-
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ing in a dynamic market environment, where plans are carefully written to

use ontological descriptions.

1.6 Outline of the Thesis

The remainder of the thesis is set out as follows:

Chapter 3: Literature Review.

This chapter gives a review of published work that is relevant to the

research contained within this thesis.

Chapter 4: Social Structures and Marketing Theory.

A brief overview of marketing theories is given and behavioural patterns

relevant for the thesis are discussed. Selected marketing mechanisms

are explained and the scenarios (e.g. opinion leadership) are introduced.

Chapter 5: Agents and Ontologies.

Theoretical foundations of multi-agent systems and ontologies are sum-

marised. An integration pattern for ontologies and agent frameworks

following the BDI paradigm is presented. A blueprint is then created

of a layered ontology architecture that makes the concept universally

applicable.

Chapter 6: Agent Software Framework.

The agent-based framework called Agile Agent Development Environ-

ment (AGADE) is introduced in this chapter in which the concept of

agents with ontology support is implemented. It is a highly configurable

tool that can run BDI agent simulations where agents communicate

with each other, have knowledge of their environment and act in

structured social environments.
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Chapter 7: Results and Validation.

This chapter describes the process of applying the underlying AGADE

mechanisms to simulation scenarios. Results obtained using AGADE

are compared with simulation results published earlier.

Chapter 8: Conclusions and Future Research.

This chapter draws final conclusions from the thesis and proposes

topics to be discussed in future work.
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2 Background

In this chapter, the basic formalisms and technologies underlying the work

in this thesis are introduced. Apart from giving background information, it

will also touch on the standardised OWL language in the area of ontologies.

Expert readers can skip (parts of) this section and continue directly to

Chapter 3.

2.1 Multi-Agent Systems

Before discussing multi-agent systems (MAS), the concept of an agent has

to be defined. An agent is an autonomous software entity which observes an

environment, reacts to impulses (internal or external) and acts independently

within a certain setting ([18]).

Environment

Agent

ActionSensor

Figure 1: The agent-environment interaction.

Fig. 1 shows an abstract representation of an agent in relation to its

environment [19] which follows the definition of Russell and Norvig [20].

An agent receives information about its environment through sensors. The

information is then processed and may cause the agent to perform an

action in its environment. Agents can focus their activities on achieving

given goals. Literature also uses the term intelligent agent or software

agent. Both terms are interchangeable. An intelligent agent can use existing



Background 12

knowledge and can acquire new knowledge (i.e. learn) while pursuing

goals. Intelligent agents are used in various research areas such as artificial

intelligence, information retrieval, database and knowledge-base systems,

and distributed computing. Because researchers use agents with different

goals and therefore have different requirements, there is no single generally

accepted definition of an agent. The most commonly used and cited definition

follows Wooldridge et al.: “An agent is a computer system that is situated

in some environment, and that is capable of autonomous action in this

environment in order to meet its delegated objectives.” [18]

Generally speaking, agents are autonomous parts of a software application

that show independent reactive and proactive behaviour. The following defi-

nitions describe the basic characteristics of agents adapted from Wooldridge

et al.:

Autonomy

Agents act independently without direct control through external

interventions. They control their own actions.

Social ability

Agents interact with other agents through some kind of language (such

as KQML and FIPA ACL). They also communicate with users to

answer questions and to report on their own work progress.

Reactivity

Agents can perceive their environment and respond to their perceptions.

Proactivity

Agents can take the initiative to operations and can act proactively

to achieve their objectives. They are able to perform goal-directed

actions.
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Multi-agent systems are systems which typically contain numerous inter-

acting agents within an environment. Multi-agent systems allow modelling

complex situations in which agents mutually can have common, conflicting or

even contradictory goals. They exhibit unexpected, emergent behaviour as a

result of the complexity of agent behaviours and their interactions. Agents

may act in complex situations, e.g. as participants in markets. For this

purpose, agents may decide to cooperate for mutual benefit or to egoistically

pursue and achieve their own goals.

2.2 Ontologies

Knowledge representation (KR) and reasoning aim to have machine-inter-

pretable representations of the world and to allow the drawing of conclusions,

similar to humans [21]. According to Davis et al. [22]:

“A KR is most fundamentally a surrogate, a substitute for the
thing itself, used to enable an entity to determine consequences
by thinking rather than acting, i.e., by reasoning about the world
rather than taking action in it. [. . . ] It is a set of ontological
commitments, i.e., an answer to the question: In what terms
should I think about the world? [. . . ]

A KR is a Medium of Human Expression: knowledge repre-
sentations are also the means by which we express things about
the world, the medium of expression and communication in which
we tell the machine (and perhaps one another) about the world.
This role for representations is inevitable so long as we need
to tell the machine (or other people) about the world, and so
long as we do so by creating and communicating representations.
[This] role for knowledge representations is thus as a medium of
expression and communication for use by us.”

Currently, knowledge representation appears in different forms, the most

prevalent of which are based on semantic networks, rules and logic. The use
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of ontologies serves two purposes in the approach: according to Gruber’s

classic postulate [23] it defines a common vocabulary for communication and

beyond that it allows an abstraction of certain elements of the simulation. For

example, simulating market mechanisms with typical actors is structurally

equivalent for different markets. They differ in detail only e.g. in the goods

being traded and specific behavioural patterns.

Referring to the statement that “agents must be able to act according to

their knowledge of their internal and external world which must therefore

be expressed in an appropriate format” the characteristics of ontologies

are summarised here: ontologies are used to declare facts (i.e. structural

knowledge) and to define how conclusions can be drawn (i.e. inference

knowledge) by using available reasoning instruments. Formally, an ontology

O is a triple (C,R, I) where C is a set of concepts, R a set of relations, and I

a set of individuals. Concepts formally denote subsets of individuals. From

a perspective of formal logic such subsets of individuals are the extension

of concepts itself while concepts define the intentional representation of the

corresponding sets of individuals. An individual that belongs to a concept

is called an instance of that concept. The elements of R are relations (also

called roles or object properties, as they manifest the linking on the level of

the individuals) having subsets of C as domain and range. The extension

of a role is then a set of pairs (c, d) with c, d ∈ I. Additionally, individuals

can have data properties through which they get linked to primitive data

e.g. strings or numbers. Typically, ontologies are formulated by means

of description logics with differing levels of expressiveness [24]. Usually,

description logics are proper subsets of first order logic where expressiveness

has been traded for decidability. Inference knowledge is implicitly given by
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the underlying mechanisms of the available reasoning instruments (see [25]

and [26]). The following shows some typical constructors using description

logic. Let the ontology consists of concepts Human, Male, Female and

Doctor. Assume that the concept of “A man that is married to a female

and has at least two children, all of whom are doctors” has to be defined.

This concept can be described with the following concept description (see

appendix B for basic description logic symbols):

Human u ¬Female u ∃married.∃Female u (> 2hasChild)u

∀hasChild.Doctor

This description uses the intersection (u) constructor, the negation (¬)

which is interpreted as set complement, as well as the existential restric-

tion constructor (∃R.C), the value restriction constructor (∀R.C), and the

number restriction constructor (> nR). Let an individual, Alice, belongs

to ∃married.∃Female if there exists an individual that is married to Alice

(i.e., is related to Alice with the married property) and is a male person (i.e.,

belongs to the concept Male). Similarly, Alice belongs to (> 2hasChild) if

she has at least two children, and she belongs to (∀hasChild.Doctor) if all

her children (i.e., all individuals related to Alice using the hasChild property)

are doctors.

As OWL is a well accepted standardised general knowledge representation

language for formulating ontologies, OWL was the language of choice (see

the following section).



Background 16

2.3 Web Ontology Language

2.3.1 Introduction

OWL has been standardised by the World Wide Web Consortium (W3C) as

an ontology language finding increasing acceptance in various areas since the

2000s [27]. In 2009, the W3C OWL Working Group published an extension

and revision of the first standardisation. The previous version has been

referred to as OWL 12. Languages for modelling knowledge face two principal

problems. The first is the problem of complexity, i.e. evaluating language

expressions is potentially exponential in time and space. The second problem

is that of undecidability, i.e. first order logic expressions can be formulated

that can neither be evaluated to be true nor to be false. Obviously, language

expressiveness and efficiency are concurrent goals. Particular emphasis in

the development of OWL was laid on striking a balance between expression

strength and efficient and scalable inference algorithms. There are currently

three sub-languages of OWL available for modelling: OWL Full, OWL

Description Logic (DL) and OWL Lite. OWL Lite is a sub-language of OWL

DL, which in turn is a sub-language of OWL Full: OWL Full ⊇ OWL DL

⊇ OWL Lite.

2.3.2 OWL-Sublanguages

In the following the most important characteristics of each species of OWL

are listed [27]:

OWL Full

2Whenever it is necessary to differentiate between the version number of OWL in the
following text, it will be specified.
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• equals full first-order logic FOL

• is very expressive

• is undecidable

• has only limited support by current software tools

OWL DL

• is a sub-language of OWL Full

• is decidable

• is almost completely supported by current software tools

• NExpTime3

OWL Lite

• is a sub-language of OWL DL and thus also of OWL Full

• is decidable

• is least expressive

• ExpTime4 complexity in the worst case scenario

After becoming a W3C Recommendation, OWL is becoming increasingly

widely accepted and used [29]. Particular worthy of mention is that OWL

DL is decidable by its design. This means that the question whether or

not a statement can be inferred from a set of facts within an ontology can

be answered by an algorithm whose termination is guaranteed. In practise,

there are only few constructs that cannot be modelled with the use of OWL

DL and those constructs are normally only necessary for a rather limited

purpose. For example, a resource which is not allowed in DL is a resource
3NExpTime or NEXP and EXPTIME or EXP are complexity classes of decision problems
that can be accepted by a nondeterministic Turing machine in a limited time complexity
in the worst case scenario [28, pp. 101-104]

4See previous footnote
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which is simultaneously a class and an individual [30]. These and similar

restrictions are accepted to ensure the decidability. OWL Lite, however, has

very limited expressive power and therefore only bears minor importance i.e.

OWL Lite has a limited notion of cardinality for properties, to be explicit, the

only cardinalities allowed are 0 or 1, etc. (see [30]). The OWL 2 document

does not list OWL Lite anymore and states that all OWL Lite ontologies are

OWL 2 ontologies. In addition, OWL 2 defines three sub-languages based

on OWL DL as profiles that allow the expressive power to be tailored in

order to balance the efficiency of reasoning - OWL 2 EL, OWL 2 QL and

OWL 2 RL. This reduction in expression level is accepted in order to achieve

optimum calculation times for reasoning in specific applications.

2.3.3 Basic Elements of OWL DL

The basic building blocks of an OWL DL ontology are [31]:

Namespaces

Each ontology that contains knowledge about objects has its own

namespace for identifying the unique ontology. The namespace is

identified by an Uniform Resource Identifier (URI).

Classes

Classes are interpreted as sets that contain individuals with certain

properties. For example, class Person defines the characteristics of

every object in a given universe of discourse that is considered to be

an element of the set that corresponds to the concept Person. The set

is the extension of the class, while the class is the intention of the set.

Classes may be organised into a superclass-subclass hierarchy, which

leads to a named taxonomy. Subclasses specialise (are subsumed by)



Background 19

their superclass. Classes represent an important part of the metadata

as they are the basic building blocks of an ontology.

Object Properties

Object properties are relations defined by the set of classes (and

possibly by the set of individuals) in ontologies. They are defined

by classes and link individuals. For example, the property hasSibling

defined by the class Person may link the individuals Smith and Jones.

Object properties cannot be represented by means of the taxonomy

alone. Like attributes, these object properties are also inherited along

with the taxonomy. Object properties can have an inverse relationship,

i.e. the inverse of hasOwner is isOwnedBy.

Datatype Properties

Datatype properties describe relationships between individuals and

data values. OWL uses the facilities of the standardised XML Schema

Datatypes [32]. For example, a datatype property for a person may

be first name or age which links to date of the type xsd:string or

xsd:integer respectively. Further, it is possible to assign ranges for

datatypes, i.e. age with range int[>= 20, < 99].

Instances or Individuals

Instances are concrete expressions in which attributes have concrete val-

ues. They are often referred to as facts or individuals. In combination

with the ontology they represent the knowledge base.

Rules

Rules extend an ontology with special relations that occur only under

clearly definable circumstances. An often-used example is the ancestral

relationship: If a father of a child has a brother, then the brother is the
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uncle of the child. By using rules it is possible to create such relations

between concepts that are unique for specifying circumstances, such

as the ancestral relationship which exists only in a part of the existing

instances.

Reasoner

Reasoners are able to automatically draw conclusions based on the

OWL expressions of the ontology by inferring logical consequences

from a set of explicitly asserted facts or axioms. Reasoners typically

provides automated support for reasoning tasks such as classification

and consistency checks [33].

Fig. 2 shows a simplified example of the basic building blocks described

above, where the element with a yellow circle is a class, and those with dark

diamonds are instances.

Figure 2: OWL ontology example.
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2.3.4 Modelling Standards for Applied Ontologies

The Unified Modelling Language (UML) is a standardised general-purpose

tool for software engineering which aims to be a standard modelling language

which can model concurrent and distributed systems [34]. Cranefield et al.

published various papers about the combination of UML, agent messages

and ontologies. They discussed the use of UML for representing instance

information within agent messages and presented technologies to support

knowledge representation [35]. In further work, they proposed ontologies

for interaction protocols where ontologies used for describing the input and

output data are processed during the protocols execution, together with the

actions and decisions that agents must perform. Cranefield et al. follow

the aim that an ontology would then be able to interpret any interaction

protocol which is defined in an ontology [36]. As an example, Cranefield

et al. prove the suitability of UML to model agent-based systems in a travel

booking scenario [37].

The paper “Is it an ontology or an abstract syntax?” shows a system

of interlinked ontologies to describe the concepts underlying FIPA agent

communication [38]. It presents a meta-modelling approach for modelling

both the object-oriented domain ontologies and the abstract models of agent

communication and content languages. For example, the concepts of an

ontology were referred to message types and internal agent operations were

modelled as a combination of classes and objects which define the performing

operations.

Collier et al. present the paper “Agent Factory Development Method-

ology” demonstrating with a brief example how these modelling languages
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can be used to support developers assigned with the task of building an

agent-oriented application [39]. The idea of modelling ontology domains

during the implementation phase is considered, but the idea has not been

discussed in depth. Object Management Group published a standard ontol-

ogy definition meta model (ODM) for mapping OWL and UML in 2009 [40].

High expectations were raised and the community is waiting for implemen-

tation approaches that work in practise such as the ATL Use Case - ODM

implementation (see [41]). In the meantime, whenever an ontology will be

visualised in this thesis, the modelling notation from Appendix C will be

used.

2.3.5 Open-World Assumption

The open-world assumption (OWA) is an essential aspect which is applied in

formal system of logic like OWL or Datalog (see [42, p. 16] and [43]). It is

the assumption that the truth value of a statement may be true irrespective

of whether or not it is known to be true. The following section gives a more

detailed explanation and better understanding of OWA.

The structure of OWL statements about individuals and their relation-

ship with other individuals or values (i.e. object properties and datatype

properties) shows analogies to structures in relational databases. Consid-

ering a simple database schema with a one-column table for each OWL

class, containing all individual names that are individuals of this class, and

a two-column table for each property, containing pairs of individuals (i.e.

object property) or values associated with individuals (datatype property)

known to be related by the property.
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…

Thing
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1

n
<<Concept>>

Person
propertyName Single	String
…

<<Concept>>
Thing

OWL Relational	Database

Figure 3: OWL/relational structural analogies.

Note that the occurrence of individuals in a table is based on either

explicit assertions or implicit OWL reasoning results. OWL assumes that

the information in these tables is incomplete by default – open-world as-

sumption. The closed-world assumption which is commonly used in standard

databases, not found is false. The open-world assumption would interpret

non-occurrence of information as unknown, since the the open-world as-

sumption assumes that if something is not known, just because nobody has

formulated that an assertion is not true [44, pp. 233-238].

For instance, considering a data source about a customer c who owns a

product p1, then the query about the fact whether customer c owns product

p2 would be answered using the closed-world assumption with false. However,

using the open-world assumption, the answer is unknown, as there could

be another data source containing this information. If customer c is not in

possession of product p2, this has to be expressed explicitly in the ontology

to receive false.

This assumption has a significant impacts on how information is modelled

and interpreted. Typically, information systems operate with a closed-world

assumption and assume that information is complete and known (everything
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stated by the database, either explicitly or implicitly, is true; everything

else is false). However, in the context of the semantic web it is useful to

consider information as incomplete, because the absence of information on

the world wide web is based on the assumption that the information has not

been made explicit.

2.4 System Dynamics

Crowd behaviour is formed by individuals and depends on effects that can

be ascribed to the crowd itself and the interactions between its members.

Software simulations of these phenomena are fairly common in the field of

sociology and related disciplines. A popular example is Forrester’s world

model presented to the Club of Rome in the 1970s, which tried to make

predictions about future population levels, increasing pollution levels and

rates of consumption of natural resources [45].

The system dynamics approach is generally used for models such as that

described above. It is a modelling technique that can express cause-and-effect

relationships between variables. Each variable needs to have an equation

which is used to determine the value of the variable at any future point in

time (i.e. time units). This in turn also depends on the values of other

variables and describes the behaviour of the components of such a model.

Such models are able to handle direct causal links such as how growth in

population leads to increased depletion of resources and feedback loops:

population growth depends on the food supply – but food supply in turn

also depends on the level of the population [46]. Fig. 4 shows an example of

a feedback loop modelled in Vensim5.

5Vensim is a software tool from Ventana Systems, Inc. (See http://www.vensim.com).

http://www.vensim.com
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Figure 4: Simple human population feedback loop.

The model in Fig. 4 uses factors for representing natural birth rate,

natural death, amount of food supply which all have an effect on the number

of the human population. It is possible to set an equation for every variable

as shown in Fig. 5. For example, there is a random birth rate between 0.05

and 0.2 and a variable death rate of 0.06 and 0.12 which depends on the

amount of food supply. The food rate is randomised between 0.05 and 0.4

while the food consumption depends on the size of the human population.

By running this simulation on the basis of the assumed data, it is suggested

that the human population increases steadily at the beginning and drops

slightly at the end, because in this model it is assumed that the growth

of the food supply is limited. At the end the consumption rate is higher

than the food growth and the human population drops slightly (see Fig. 6).

Simulations with significantly more factors were used to describe various

phenomena e.g. the human population growth.
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Figure 5: Equation view of a Vensim model.

Figure 6: Result of running feedback loop simulation.
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2.5 Summary of Chapter 2

This chapter has given a brief overview of the background relevant to this

thesis. After introducing multi-agent systems in Section 2.1, knowledge

representation has been considered. Section 2.3 introduced the OWL on-

tology language standardised by W3C followed by the current situation of

available ontology modelling notation standards. Section 2.4 introduced the

OWA, which is an essential aspect in OWL. The last section in this chapter

described the system dynamics approach including a typical example of a

simple human population model.
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3 Literature Review

This chapter provides a description of literature relevant for the research

area. The first part of this review focuses on business games, the second

part focuses on multi-agent simulation models and methods and the third

part, relevant work involving multi-agent systems and basic technologies is

reviewed.

3.1 Business Games

Business games (also called business simulation games) originated from mili-

tary war games which appeared in the late 1950s, spawned by the experience

of many ex-military managers who had learned war game simulations in

World War II [47]. Nowadays, business games can be described as virtual

business worlds with the ability to allow users to interact and obtain feedback

about possible outcomes of these interactions. The focus usually lies on

economic process management using a simplification of the business envi-

ronment [48]. Business software simulations often refer to simulation games

that are used as an “educational tool” for teaching business. Participants

make strategic decisions by analysing company and market data and then

set different variables in the simulation to values determined as a result

of decision process. Participants manage a simulated company and tackle

life-like business challenges while competing in teams against one another.

The simulation then processes the decisions of the participants and deter-

mines how successful these strategies would be in the simulated economic

system. Results are usually calculated immediately. The feedback and

time dimensions added by using simulations allow participants to evaluate
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their accomplishments and commercial effectiveness after each round of the

simulation [49]. The three business games listed are representative products

of this area.

SimVenture

SimVenture was developed by Paul and Peter Harrington of Venture

Simulations in 2006. It is a business simulation game for apprentices

who are learning the realities of running a business startup. SimVenture

allows participants to setup and run their own virtual company, allow-

ing the user to learn about business and about being an entrepreneur

in an active, authentic and engaging way. The participant takes on

the role of business owner, managing time and money to develop the

business and resolve any issues that may arise over the course of a game.

The participant receives feedback from the software in relation to any

decision made. Details of the underlying technology and algorithms

have not been published.

Simultrain

Simultrain is a project management simulator used in project man-

agement training programs. A group of 4 people plays the role of a

project manager and manages a 3-month project in 6-8 hours. It allows

participants to acquire core project management competencies as well

as teamwork and leadership skills. The first version was released in

1996. It is based on Sauter’s PhD thesis La modélisation des facteurs

humains dans la gestion de projets [50]. The participants have to

complete the project within the deadline and budget with various sce-

narios: IT service development project, production project, marketing

project and organising a sport event. It allows the multidimensional
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optimisation along selected criterion of the shortest time or the lowest

cost. Progress index may be modelled directly through the adopted

earned values or as a quality parameter in the simulation. Again,

details of the underlying technology and algorithms have not been

published.

TopSim

TopSim is an umbrella brand which offers business games for different

areas i.e. banking, biotech, business development, change management,

destinations management, eCommerce, facility management, global

management, insurance, logistics, marketing, portfolio management,

social management, etc. Originally developed by Unicon, the software

is under control of TATA Interactive Systems since 2006. A representa-

tive example of a business game is the e-Commerce scenario: the focus

of this business game is the simulation of converting a conventional

company into an online company. The main goal is to improve cost

effectiveness, which can be achieved by formulating and reaching goals

such as customer loyalty, customer satisfaction and others determined

by the participants. Market analysis, product mix, pricing, the right

ratio of online and traditional marketing, the support of IT (call centers

and logistics capabilities) are critical success factors in this scenario.

During the simulation, the products on sale and certain business param-

eters can be modified by the participants. In conjunction with rapid

market growth, the seasonal fluctuations create a strong momentum

in the game. Participants have to make assumptions about the market

and act according to their hypothesis. This business game is based on

the system dynamics approach (see Section 2.4). TopSim eCommerce
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currently implements 78 of those cause-and effects relations and each

relation can be edited by the seminar leader e.g. the parameter of

attractiveness of a website which has an effect on market share [51, pp.

17-20].

The University of Applied Sciences Friedberg has used TopSim games

since 2008. Despite the successful use in the classroom and the positive

feedback from students, there are rigid game restrictions that cause a gap

between the implemented model and reality. Lecturers as well as students

note that it does not give sufficient feedback to draw conclusions on cause

and effect. This statement can certainly be made for the most of the business

games which are based principally on global cause and effect description.

Again, such models are highly sensitive according to their setting. Agent-

based models are a more natural tool to represent individuals in a market

rather than describing effects through equations and thresholds.

3.2 Approaches for Multi-Agent Based Simulation

3.2.1 Computational Economics

Computational Economics (CE) is a branch of economic research which is

mainly interested in system dynamics and the computational study of eco-

nomic processes by running simulations. A popular approach for implement-

ing heterogeneous agent models is also called Agent-Based Computational

Economics (ACE). In the paper Heterogeneous Agent Models in Economics

and Finance [52], Hommes explains reasons for the increase in popularity of

ACE. Certain economic models have traditionally relied on the assumption

that humans are rational and will attempt to maximise their utility for
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both monetary and non-monetary gains (i.e. Homo Oeconomicus). Modern

behavioural economists, however, have demonstrated that human beings are

not as rational as has long been assumed. Based on Hommes laboratory

experiments, he supports the statement that individuals often do not behave

rationally.

Smith and Kahneman are pioneers in the discipline of experimental

economics [53]. They received the Nobel prize in economic sciences for their

work in 2002 [54]. Economic experiments check psychological principles of

individual actions in economically relevant decision-making situations. Smith

conducted a classroom experiment in 1956 where half of the participants

act as buyers and the other half act as sellers [55]. Buyers profited from

exchange and had a secret demand schedule while sellers had a secret supply

schedule. The two-sided auction began: buyers announced bids, sellers

announced asking prices. Contracts were made on acceptance. The market

converged to price and volume represented by theoretical intersection of

supply and demand curves. Market simulations are now often designed in a

very abstract way and models derived from decision and game theory.

Multi-agent environments have proven to be successful tools for simula-

tions that has seen a number of applications in the last few years, including

applications to real-world business problems [56]. There are a lot of ap-

proaches to pure agent-based simulations. Bonabeau shows an example of

an emergent phenomenon where simple individual rules lead to coherent

group behaviour [57]. Particularly worth emphasising is the ability to run

the simulation involving humans as well as by agents.

There is a group of 10 - 40 people with the following rules:

• Each member has to randomly select two individuals and define them
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as person A and person B.

• The selected person A is considered as a protector and person B is

considered as the opponent.

• Every member tries to keep person A between them and person B.

Then the simulation starts where each member has to ensure that they

always keep A between them and B (A is their protector from B). After

a short period of time each member has to keep itself in between A and

B (members are now the protector). The system will end up in everyone

clustering in a tight knot (see Fig. 7).

Scenario 1 Scenario 2

Figure 7: Example of emergent phenomenon.

Again, this short agent-based example shows group behaviour of individuals

and additionally how small changes in rules can have a dramatic impact.

3.2.2 Micro-Economic Models

Micro-economic is a branch of economics that studies the behaviour of

individuals and firms in making decisions regarding the allocation of limited

resources [58, p. 19]. Steiglitz describes one of the simplest models wherein

agents produce, consume and trade in a gold-food economy e.g. agents
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will bid higher if the inventory of food is low and will sell food at a lower

price if the inventory is high [59]. By running this simulation with 1,000

independent agents and some speculator agents who are able to store gold

and food depending on the exchange rate of food to gold, the price stabilised

dramatically. This model utilises multi-agent systems and shows the impact

of rules on the agents’ behaviour.

In addition to pure agent-based models, there is an approach for building

simulations which is called microsimulation. The original version of microsim-

ulation was set out in [60]. It is a modelling technique that “operates at the

level of individual units such as persons, households, vehicles or firms” [61].

This modelling technique uses historical records or representative national

surveys e.g. of households, and includes data with unifying identifiers, e.g.

a list of persons with age, sex, annual income and employment status. A set

of rules allows changes in state or behaviour like changes in taxes, marrying

or salary increases to be simulated. These rules are in general deterministic

or stochastic. There are a lot of hybrid approaches in which agent-based

models are based on microsimulation models in the area of economics and

financial activity which might combine the best features of both approaches

(see [62], [63], [64], [65] and [66]). Agents are well suited for representing

individuals and the simulation runs with realistic historical data. However,

there are disadvantages:

• High modelling complexity of agents and their appropriate mapping

with the historical data. For example, the change of a state of an agent

in relation to time has to be represented, e.g. the possibility that an

individual earns more or less money next year which in turn can be

reinvested in the market.
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• Microsimulation does not allow any interaction between agents. Each

agent is individually represented by its properties and isolated in the

world.

Weighing up the advantages and disadvantages and examining the scien-

tific assessment, an agent-based microsimulation allows a quick development

of individual simulations in which the effects of changing rules can be visu-

alised but the representation of individual behaviour of humans, especially

the communication among themselves, will be ignored.

3.2.3 Monte Carlo Simulations

Monte Carlo methods are also applied in agent-based simulations, typically

for assigning valuations to agents or for simulating noise. In 1993, Gode

and Sunder published an article in which they have conducted various

market experiments. They run experiments in which human traders are

replaced with so called zero-intelligence traders. Zero-intelligence trader is a

simple algorithm trader in a market that submits random bids and offers

in a range bounded by their reservation prices (they can avoid transactions

which incur losses) [67]. Cliff and Bruten analysed models that use zero-

intelligence trader and showed that they do not correspond to real-world

behaviour. Two more articles from [68] and [69] underline, that more than

zero-intelligence traders are needed for realistic simulations - especially in

double auction market environments - in which buyers can determine the

price and the highest bid typically wins. However, Das et al. have shown

that zero-intelligence programs consistently out-perform human traders in

human-against-robot experimental economics marketplaces in real-time [70].

In 2001, Cliff published an article based on the result of this analysis in
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which he presents a parameter set for more realistic behaviour of software

agent traders, but the models are highly sensitive in the parameter setting

[71].

This demonstrates the breadth of approaches of agent-based simulation

models with attempts to build realistic economical simulations. For running

simulations it is important that agents are represented in a way that is as

similar as possible to the behaviour of human beings. The next section deals

with these approaches.

3.3 Review of Relevant Work Involving Multi-Agent

Systems and Semantic Technologies

3.3.1 Ontologies in Multi-Agent Systems

It is not a new idea to use ontologies to share terms among agents. Malucelli

and colleagues introduced the ForEV platform which is implemented using

a multi-agent system in which partners negotiate about common standards

of which an ontology is part [72]. Stuckenschmidt and Timm argue that

ontologies play a key role in multi-agent communication and mention that

there is a need for ontologies for interacting agents to understand the content

of messages [73]. Ontologies have also been applied to help in solving the

heterogeneity problem in e-commerce negotiations [74]. Furthermore, sharing

terms are also important in robotic applications e.g. the RoboCup robot

soccer domain to share knowledge and also to represent real-world objects

in software applications [75].
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3.3.2 Ontology Alignment

Ontology alignment aims at finding meaningful correspondences between

two ontologies represented as a collection of entities [76]. Ontologies can be

used to support the integration of heterogeneous information tasks. Singh

and colleagues present semantic modelling techniques that enable the inte-

gration of stable information resources and pioneered the use of agents to

provide interoperation among autonomous systems [77]. The paper “Coordi-

nating Heterogeneous Information Services based on Approximate Ontology

Translation” shows approximation mechanisms for ontology translations

for achieving semantic interoperability [78]. In this prototype, agents can

coordinate regional information services provided by the GeoLink system

[79].

Soh’s paper deals with the collaborative understanding of distributed on-

tologies in multi-agent frameworks [80]. Each agent manages an information

database in a distributed information retrieval simulation. For facilitating

collaborative understanding, each agent maintains its own ontology and a

translation table. Agents determine whether some translation is worth learn-

ing, which neighbours to communicate with, how to handle and distribute

queries, and how to plan for agent activities. The translation table is to

map between each concept the agent knows and its neighbours.

Deen shows an ontology integration for a multi-agent environment [81].

Each agent is autonomous and has knowledge of its own schema. Additionally,

each agent holds an ontology of its acquaintances i.e. other agents with

similar interests. The integration has to be carried out whenever a new

acquaintance is added or, when the local ontology of an acquaintance changes.
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This approach implies that agents communicate only with a few agents and

ignore others.

Among the approaches mentioned before the concept of ontology based

communication is the most important of this thesis. Since one of the main

objectives of this thesis is the creation of simulations with semantically

advanced technology, ontology concepts will be used for communication task.

Using a standard modelling language to share terms among agents, enables

these agents to communicate appropriately.

3.3.3 Semantic Technologies Applied to Agent-Models

Up to now, multi-agent systems have been set up on rather similar paradigms

regarding the methods for expressing data, behaviour and knowledge. Agents

only have a limited knowledge of their external world. There have been some

rudimentary efforts to give agents access to structured representations of what

they know. For example Knowledge Query and Manipulation Language

(KQML), which is a language and a protocol for communication among

software agents and knowledge-based systems that allows a structured way

for knowledge exchange [82]. As a result of this a logical language Knowledge

Information Format (KIF) was built for the representation of knowledge

[83]. It is a computer-oriented language for the interchange of knowledge

among different programs. It allows agents to express properties of humans

or objects like Peter is 1.87 meters tall or Neil is the supervisor of Thomas.

But KQML was proposed without a defined semantic. This criticism led

researchers to define the new language Agent Communication Language

standardised by the Foundation for Intelligent Physical Agents (FIPA), or

(FIPA-ACL).
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FIPA was founded in order to improve the interoperability between agent

systems. As a result, FIPA-ACL is now a widely adopted standard language

for agent communications [84]. FIPA-ACL is in turn based on the ARTIMIS

Communication Language (ARCOL) [85]. ARCOL became the basis for the

FIPA-ACL rather than KQML because ARCOL defines formal semantics,

whereas KQML does not. It should be mentioned that there are no organised

efforts to develop KQML any further or even to maintain a list of resources

about it. The KQML effort was mainly subsumed by FIPA’s activities and

their concentration is on FIPA-ACL [86].6 In order to model ontology-based

communication FIPA published the following specifications:

• The FIPA-ACL Message Structure Specification

• The FIPA Ontology Service Specification

• The FIPA-SL Content Language Specification

• The FIPA Communicative Act Library Specification

These specifications define speech acts in agent systems with the help of

a formal model. There are more specifications than listed here, but the

status for other content languages is still experimental. A closer look at

the ontology service and SL content language specification which enable

agents to manage explicit, declaratively represented ontologies shows that

SL is in general undecidable. There are two profiles, SL1 and SL2 which are

subsets of SL. They have restricted statements and have to be decidable by

definition. Schiemann mentioned in his work that there are disadvantages in

6All three communication languages are based on a philosophical theory called speech
act theory. This theory is originally due to the philosopher of language, Austin in 1962
[87], and extended by Searle (1969, 1983) and Searle and Vanderveken (1985) [88], [89]
and [90]. In such an approach, interactions among agents take place at least at two
levels: one is corresponding to the informational content of the message and the other is
corresponding to the intention of the communicated message.
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the specification [91]. First, building reasoners for message contents is a very

complex task. The way in which FIPA-SL is applied determines whether

one of the profiles is satisfied or not. Second, the speech act request-when

must have another speech act as its content. The request-when allows an

agent to inform another agent that a certain action should be performed

as soon as a given precondition, expressed as a proposition, becomes true.

The separation of the semantics of speech act and content in FIPA-SL is

difficult (see [91]). Khalique and colleagues made an analysis of FIPA-SL

and OWL based on the factors of knowledge representation and expression

power. They came to the conclusion that both languages have advantages as

well as disadvantages. But OWL has become a W3C recommendation. OWL

is constantly being developed and becomes really more applicable. ACL

messages contain one or a set of more parameters, but every message has to

set the performative parameter which specifies the type of communicative

act. The types of communicative acts used most often are request, inform,

reuse and not-understood. All types are listed in table 1.
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Table 1: FIPA-ACL Message Parameters.

Parameter Description

performative Type of communicative acts

sender Sender of the message

receiver Receiver of the message

reply-to Specifies the reply address

content Content of message

language Language in which the content is written

encoding Encoding of the Content

ontology Specifies the ontology

protocol Specifies the interaction protocol

conversation-

id

Unique Identifier, which identifies an ongoing com-

munication

reply-with Control of conversation

in-reply-to Reference to a previous action

reply-by Time or date value as deadline for a response

To realise parallel communication between agents, each message has

a unique identifier: the conversion-id parameter. Thus agents are able

to associate messages with a specific task. The language parameter is

the representation of an ACL message for several types of encoding like

FIPA-SL. Within the FIPA-ACL specifications it is also possible to set an

ontology parameter as language parameter. The ontology parameter is used

in conjunction with the language parameter to support the interpretation

of the content expression by the receiving agent. Fig. 8 shows a typical



Literature Review 42

ontology-based communication model: agent A sends a message to agent

B. The content of the message can e.g. be a question about any part of a

mobile phone. Both agents, A and B, use the same ontology. Thus, the

receiving agent B knows how to interpret the incoming ACL-based message.

Ontology

Agent A Agent BOntoloy-Based Communication

Ontology Query Ontology Query

Figure 8: Ontology-based communication model.

Moreira et al. published a paper which set the general basis for the

idea of combining agent-oriented programming with the use of reasoning

techniques of ontologies [92], but additional research activities for a practical

implementation for running business simulation scenarios such as ontology

based communication (see Section 5.4) and rules (see Section 5.1.2) for agent

behaviour have to be carried out. Schiemann et al. use contents that are

exclusively formulated in OWL DL for FIPA ACL compliant messages [91].

In practise, it is more realistic that agents not only use the same ontology

but that they also have an individual ontology. The main challenge of giving

agents individual ontologies is that ontologies can differ in various ways.

The difference can exist between the concepts, properties and the facts (i.e.

individuals or instances of concepts). In a further approach, Schiemann

tackles the problem of merging OWL DL ontologies used in multi-agent

systems to allow communication between agents that use semantic content

for dynamic knowledge bases [93]. He considered a semi-automatic method
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which uses the principle of minimal change of belief revision theory [94, pp.

129-147].

3.3.4 Overview of Available Frameworks

There are over 20 different multi-agent systems from one-man open source

projects to commercial platforms with IDE support (see [95] and [96]).

Among them it is possible to identify two groups. While the first group fo-

cuses on the implementation of communication platforms and standards like

FIPA [97], e.g. JADE [98] or FIPA-OS [99], the second group provides sup-

port for the implementation of agent internal structures for methodological

behaviourism in which each agent is defined in terms of its goals, knowledge

and social capability, e.g. AgentBuilder [100], JACK [101] or JAM [102].

These systems are based on different agent languages because there is no

general consent about which language concept is suitable for the description

of those structures. For example, AgentSpeak [103] or the extended version

of it called Jason [104] are well known agent-oriented programming languages

which are based on the Beliefs-Desires-Intentions-Concept (BDI-Concept).

The origins of the BDI model lie in the theory of human practical reasoning

developed by the philosopher Michael Bratman, which focuses particularly

on the role of intentions in practical reasoning [15]. The theory of human

practical reasoning asserts that agents are influenced by their beliefs, desires

and intentions in their reasoning about which action to perform. BDI agents

are defined as systems that are situated in a changing environment, receive

continuous perceptual input and take actions to affect their environment,

all based on their internal mental state [103]. In 2007, Silva et al. shows an

approach called Argonaut [105] which shows a combination of Jason with
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internal actions to handle OWL ontologies but has disadvantages (see [106]).

Most agent platforms, both FIPA and non-FIPA, offer flexible integra-

tion possibilities at the agent level, but the platforms themselves are mostly

considered as a black box. The agent community agrees that the flexible and

dynamic attaching of agents from different systems to the agent platform

requires a common language [107]. Ontologies are suitable to be used as a

common language as they can represent an agreement on common termi-

nologies. W3C’s OWL has gained wide acceptance in the agent community

and it has already been used in many agent frameworks like JADE. Those

frameworks implement ontologies in general for describing elements that

agents can use within the content of messages. The ontology is used to

define a vocabulary and the relationships between the elements in such a

vocabulary.

Table 2 shows the results of a study comparing various agent frameworks

based on [108, p. 282]. Firstly, the ontology support of agent frameworks

was evaluated. Secondly, criteria such as the free use of, support, available

literature and a quick initial training in getting the framework runnable

was evaluated. The three top-rated agent-based frameworks that made it

into the closer selection will be analysed with detailed descriptions in the

following three sections.
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3.3.4.1 JADE

JADE was developed by Telecom Italia Lab. JADE is an abbreviation for

Java Agent Development Framework. It is implemented in Java and based on

the FIPA specifications for agents. It is distributed under the GNU Lesser

General Public License (LGPL), which guarantees end-users the freedom to

use, study, share (copy) and modify the software for individual needs.

3.3.4.1.1 Architecture

Fig. 9 shows the architecture of the JADE agent platform. It consists of

different containers which may be connected or distributed over a network.

Each agent runs in an individual Java thread and lives in a container. A

container manages all services which are needed for running an agent.

A

Jade Platform

Agents Agents Agents

Main 

Container
Container - 2Container - 1

LADT

GADT

CT

Java Process Java Process Java Process

DF AMS

IMTPIMTP

Other FIPA-Based

Platforms

LADT

GADT

Cache

LADT

GADT

Cache

FIPA

FIPA

FIPA

Figure 9: JADE architecture based on [98].

The main container plays a particular role in JADE. It is the starting point

of the agent platform and is loaded initially. All other containers must be

linked to this main container. The main container manages the container
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table (CT) which contains the registrations for all object references and

transport addresses of linked containers. In addition, the main container

also manages the global agent descriptor table (GADT). It contains the

information of running agents, their location and status. Furthermore, the

main container hosts two agents: the Agent Management System (AMS)

and the Directory Facilitator (DF). Both are agents which are connected

and instantiated automatically by JADE. The AMS controls and manages

the access to the agent platform. It also provides a called white page service

which controls life cycles of agents: a new agent will be registered at the

AMS and will receive an Agent Identifier (AID) which identifies an individual

agent. The Directory Facilitator (DF) provides the called yellow page service

in which agents can register their own services or search for services of

other agents. To handle performance issues in the agent platform, all other

containers contain two tables: the Local Agent Descriptor Table (LADT)

and Global Agent Descriptor Table (GADT). If a container has to locate

the receiver (agent) of a message, the LADT will be used. If the search fails,

the main container has the task of locating and caching the reference of the

agent. Due to the dynamics of the system, agents can migrate, terminate or

instantiate during a running simulation. This could lead to incorrect entries

in the LADT and an internal error message will be thrown. If this happens,

the container has to update its cache entries from the GADT of the main

container.

3.3.4.1.2 Modelling Behaviour

The tasks an agents can perform are implemented as behaviours in JADE. A

behaviour describes the reaction of an agent on its environment. All classes
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are sub-classes of the abstract class Jade.core.behaviour.Behaviour. Ev-

ery modelled agent has to inherit from the class Jade.core.Agent which

supports two methods of controlling behaviour:

• addBehaviour(Behaviour b) and

• removeBehaviour(Behaviour b).

They facilitate the adding of new or removing no longer required behaviour.

It is possible to add or remove behaviour during runtime. A scheduler,

internal to the base class Agent and hidden to the programmer, automatically

manages the scheduling of all defined behaviours until the method action

is called. JADE differentiates between two behaviour classes: the Simple-

Behaviour and the CompositeBehaviour. The SimpleBehaviour is an

abstract class which models behaviour that is made by a single, monolithic

task and cannot be interrupted. The CompositeBehaviour is a superclass

for behaviour composed of many parts. This class holds a number of children

behaviours inside. When a CompositeBehaviour receives its execution

quantum from the agent scheduler, it executes one of its children according

to some policy.

3.3.4.1.3 Ontology Support

Jade supports the use of ontologies for defining a knowledge domain. This

enables the creation and communication of complex data types in agent

languages. Fig. 10 shows a class diagram of the content reference model.
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Element

ContentElement

Predicate

ContentElementList Term

IRE Concept Primitive Aggregate Variable

AgentAction

Indicated entities
(abstract or concrete)

Can be used as the
content of an ACL
message

Can be true
or false

An ontology deals with these
types of element

Figure 10: The content reference model (based on [109]).

The important types in this model are Predicate, Concept and AgentAction

since these are the types a JADE ontology deals with. They are marked in

orange and are defined as follows [109]:

• Predicate is an expression which describes the status of the modelled

world and usually evaluates to true or false.

• Concept is an expression that indicates entities and that agents talk

and reason about.

• AgentAction is an expression that indicates something that can be

executed by some agent.

The other classes appearing in Fig. 10 are provided to support JADE

ontologies. They are generally used to combine user defined content elements

in order to put them into an ACL message. Ontologies are modelled by
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the Java class Jade.content.onto.Ontology. This class can be used for

modelling concepts, predicates and agent actions in message content. An

individual Java class instance is needed for each of the modelled elements.

Objects can be generated by the content manager which prepares (encodes)

the message for the use as message content of an ACL message. The content

manager can decode the message content on the receiver side into the original

object structure including validation without any further programming efforts.

Fig. 11 shows the process of code and decode by the Content-Manager.

Content-ManagerContent of an 

ACL-Message

JADE support
for content

languages and 
ontologies

Inside of an Agent

ContentElementString/Byte[]

Figure 11: Jade support for content languages and ontologies (based on
[98]).

JADE allows the development of additional modules implementing fea-

tures that extend Jade with functionality. Braubach and others developed

an add-on called Jadex which follows the BDI architecture. Thus allowing

the modelling of BDI in a widely used agent plattform.

3.3.4.2 MadKit

MadKit is a Java-based platform which is built upon an organisational model.

It was developed by Gutknecht and Ferber and the help of a MadKit team
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at the Laboratoire d’Informatique, de Robotique et de Microélectronique

de Montpellier [110]. The main classes of MadKit are distributed under the

LGPL.

3.3.4.2.1 Architecture

MadKit is based on the Aalaadin meta model. The Aalaadin model is not a

specific agent methodology, but a meta model for describing organisations

of agents which are based on three core concepts: agent, group and role:

Agent

RoleGroup

is member handles

contains

Figure 12: Aalaadin core model based on [111, p. 3].

The following provides a short description of Fig. 12 [111]: The Group is

defined as an atomic set of agent aggregation. A group represents any usual

multi-agent system. The Role is an abstract representation of an agent

function, service or identification within a group. Each agent can handle

several roles, and each being local to a group. The model does not place any

constraints or any formalism on agents’ internal architecture.

The organisational structure is the focus of MadKit. The architecture

and the structure of any individual agent have to be defined by the developer.

Fig. 13 shows the essential components of MadKit [112]:
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Application
Agent

Application
Agent

Application
Agent

System 
Agent

System 
Agent

Java Bean Java Bean Java Bean

Agent Micro-Kernel

Group/Role Manager Synchronous Engine Local Messaging

Graphical Host Application

Figure 13: MadKit architecture (based on [112]).

The Agent platform consists of a micro-kernel and a set of system agents

which handle certain system services. The micro-kernel is a small (less

than 40 Kb) agent kernel and can be understood as a program – similar

to micro-kernel operating systems – which provides an infrastructure for

running system services. Further, it handles the management of local groups

and roles, controls the life cycle of all agents and handles the communication

between local agents. The micro-kernel is also represented as an agent – the

KernelAgent.

In contrast to other agent frameworks, MadKit uses agents to achieve

things like distributed message passing, migration control, dynamic security,

and other aspects of system management. The developers are pursuing the

goal of a very high level of customisation, as these agents can be replaced

without great difficulty.

3.3.4.2.2 Modelling Behaviour

MadKit is a Java library for designing and simulating multi-agent systems

which provides a set of tools i.e. agents which can be used to help the

development of multi-agent applications. Such agents provide methods for
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building communities, groups and roles. The group and role system is always

available to an agent and provides both action and information calls. The

agent developer is completely free to define the agent behaviour, but the

organisational model will always be present.

3.3.4.2.3 Ontology Support

MadKit does not provide a mapping model of an ontology similar to JADE

which is described in Section 3.3.4.1. Since the release of MadKit 5 in 2012

the API specifies an option for using the FIPA protocol as a communication

language which can specify an ontology as a parameter. There is no further

support for ontologies and the use of the ontology parameter is up to the

developer.

3.3.4.3 FIPA-OS Toolkit

The FIPA-OS is a component-based toolkit and was originally developed

as an experimental agent framework by Nortel Networks Ltd. [113]. Since

2000 the company emorphia Ltd. has led the development of the FIPA-OS

toolkit. It was founded by members of the agent group at Nortel Networks for

the purpose of commercialising agent technology, network services, mobile

technology and building solutions. The toolkit is distributed under the

Nortel Networks FIPA-OS Public Licence which is similar to GNU General

Public License (GPL) [113].

3.3.4.3.1 Architecture

Fig. 14 shows the architecture of the FIPA-OS toolkit.
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Message Transport Service

Agent Loader Tools Agent Loader

Other FIPA-Based

Platforms/Agents

Task Manager Monitor

Thread Pool Monitor

and

ACC

Agents

DF AMS DF GUI Agent IO Test Agent

Configuration Wizard

Task Generator

Figure 14: FIPA-OS architecture based on [113].

An essential component of the FIPA-OS agent platform is the Agent

Loader which starts and stops the agents. For monitoring threads or tasks

of running agents the Agent Loader Tools can be used. The FIPA-OS

model consists of the DF and the AMS agents similar to JADE in Section

3.3.4.1. The DF provides the yellow page service in which agents can

register their own services or agents can search for services from other

agents. The AMS provides the white page service which controls life cycles

of agents. Both agents are started automatically during the initialisation

of the platform by the Agent Loader. A DF Cross Registration GUI agent

which is loaded automatically is needed to link several DF agents. It

provides a register with remote DF and add remote DF function. The

IO Test agent is a simple test agent to send messages to other agents and

prints out the responses. The Message Transport Service (MTS) ensures the

communication between agents and supports the message transport protocols

Remote Method Invocation (RMI) and Internet Inter-ORB Protocol (IIOP).

MTS is part of the Agent Communication Channel (ACC) which enables
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the communication to other compliant agent platforms. The Configuration

Wizard can be used to set all running parameters for FIPA-OS easily. The

Task Generator facilitates the integration of communication protocols in

agent classes by generating Java classes depending on the protocol definition.

3.3.4.3.2 Modelling Behaviour

FIPA-OS provides a lot of Java library classes for developing a multi-agent

system. A detailed description of the more than 450 existing Java classes can

be found in the developers guide of FIPA-OS [114]. The tasks performed by

agents are implemented and handled by the class TaskManager. It provides

the ability to split the functionality of an agent into smaller, disjoint units

of work known as tasks. Generally every modelled agent has to extend the

class FIPAOSAgent, and a number of Task implementations that contains

the basic functionality of an agent. The FIPAOSAgent class enables direct

access to the TaskManager by the _tm variable. The class TaskManager

references all active Tasks which can be understood as a set of specific

events to be processed. The different types of events are handled by the

TaskManager i.e. initialisation of a task, termination of a sub-task and

termination of not correctly processed sub-task. The order of upcoming

events is handled by the TaskManagerListener which will be informed by

the TaskManager. The default processing of upcoming events is in the order

in which the events occur. Fig. 15 shows the logical interaction between

a number of parent and child tasks. The method startTask() is invoked

after the method newTask() has been invoked on a task and doneX() is

automatically invoked on the parent after a child task invokes its done()

method.
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ParentTask : Task ParentChildTask : Task

ChildTask : Task

1. startTask()

2. startTask()

4. doneParentChildTask(Object)

3. doneChildTask(Task)

Figure 15: FIPA-OS task model (based on [113, p. 17]).

3.3.4.3.3 Ontology Support

FIPA-OS does not provide a mapping model of an ontology similar to JADE

which is described in Section 3.3.4.1. The API of FIPA-OS only specifies an

ontology package in which an individual ontology class can be placed if a

class belongs to an ontology component. FIPA-OS supports the majority of

the FIPA experimental specifications and is being continuously improved

as a managed open source community project. This means that the listed

protocol specifications in Section 3.3.3 can be used in FIPA-OS.

3.4 Conclusion Drawn from Literature Review

The literature review shows the breadth of approaches of agent-based simu-

lation models, which allow flexible and dynamic simulations. Despite the

success of business games, rigid game limitations cause a relevant gap be-

tween the implemented model and reality, e.g. micro simulations do not

allow any interaction between individuals. When running simulations, it is

important that individuals are represented in a way as close to reality as

possible. Regarding business simulations, social interactions such as commu-
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nication are a major requirement for representing consumers appropriately

in a market. The modelling of interaction can create new explanation possi-

bilities for the phenomena of crowd and individual behaviour. Multi-agent

environments have proved to be successful tools for simulations [56]. These

models in which agents represent individuals can extend business games with

more realistic behavioural patterns but those patterns can only be achieved

by appropriately representing knowledge and intelligence. Agents must be

able to act according to what they know and must be able to learn. The

standardised agent communication language FIPA already allows for the

integration of ontologies, but currently agent frameworks have not yet made

full use of this option. The available FIPA Ontology Service Specification

has disadvantages, which are described in Section 3.3.3. FIPA defines a

knowledge manipulation based on content languages i.e. FIPA-SL, which is

powerful but lacks any interconnection with commercial tools and standards.

The disadvantages can be reduced by using description logics [91]. Descrip-

tion logics are the core of ontology languages, such as OWL [115]. These

can be used to give agents access to a structured representation of what

they know. The challenge is to minimise the described lack in integrating

ontologies and agent frameworks as described in the previous sections.
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4 Social Structures and Marketing Theory

This chapter provides a brief overview of social structures, marketing theories

and behavioural patterns relevant to the simulations used for the experiments.

Well understood marketing mechanisms are explained and the scenarios (i.e.

opinion leadership and personal preferences) are introduced.

4.1 Social Structures

Social structures are the basic concept of the proper understanding of society.

For a long time, many efforts have been made to define social structure

but still there is no unanimity of opinion on its definition. According to

Radcliffe-Brown social structure is “an arrangement of parts or components

related to one another some sort of a larger unity” [116].

In other words, individuals can be considered as components and indi-

viduals occupy in some kind of a position in the world. The relationships

among these positions make up the social structures.

Social structures can be visualised using mathematical graph theory: A

graph G = (V,E) consists of a set of nodes V (vertices) and links E (edges)

between pairs of nodes. Edges can either be directed or undirected. Graphs

can be applied in real world problems: in the context of social networks,

nodes typically represent individuals and edges relations between individuals.

This representation of interpersonal relationships is also called a sociogram.

Depending on the type of relation modelled the edges will be directed or

undirected. The number of edges leaving a node is called out-degree and the

number of edges entering is called in-degree.
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Dave

Alice Bob

Figure 16: Sociogram.

Fig. 16 shows a rudimentary sociogram containing three individuals that

are linked together: Alice knows Bob and Alice is known by Dave (directed

link). Bob and Dave know each other (undirected link). Note, links do not

necessarily represent a knows relationship. They may also represent various

factors such as involvement, appeal, co-operation, etc. The in-degree of

Alice and Dave is both one and of Bob is two. The out-degree is one for all

individuals.

4.1.1 Small-World Scale-Free Networks

A small-world network is a type of a graph in which, although most nodes

are not neighbours of one another, most nodes can be reached from every

other node by a small number of links. Analysis of real world communities

showed that social structures are not as random as long assumed. According

to Watts et al., small-world networks are a class of networks that are “highly

clustered, like regular lattices, yet have small characteristic path lengths,

like random graphs” [117] (see Fig. 17).

Because of the characteristic that nodes in the network can reach each

other through short paths these networks are called small-world networks.

This fact was suspected by several authors and probably first stated dat-
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ing back as far as 1967 by Milgram [118]. Later on with more elaborate

techniques (computer power) the fact could be demonstrated by analysis of

data describing networks (see by Barabási [119] and [120]). Recent results

show that virtual social networks (like Facebook) do not really follow that

typical pattern [121]. However, concentrating on real-world communities the

considerations are still valid.

Random Network Scale-Free Network

Figure 17: Random versus scale-free graphs.

Mapping communities to graphs (members to vertices, relations to edges)

often leads to a graph that consists of few highly connected nodes and a

majority of nodes with only a small number of neighbours i.e. scale-free

network. The distribution of the node degrees (number of neighbours of a

node) follows a power law distribution. Barabási and collaborators coined

the term scale-free network, to describe the class of networks that exhibit a

power-law degree distribution. Scale-free means that there is no intrinsic

scale in these networks. The most commonly used definition of a scale-free

network is “A network is called scale-free network if its probability degree

distribution P (k) is asymptotically for large k (degree) a simple power law of

the form: limk→∞ P (k) ∝ k−γ where by the definition of power law, γ > 0.”

[122, p. 18]
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Figure 18: Power-law graph.

Fig. 18 shows an example power-law graph, being used to demonstrate

ranking of popularity. To the right is the long tail, and to the left are the

few that dominate.

4.1.2 Preferential Attachment

Observing that communities rather evolve over time than being created in a

single act, Barabási’s preferential attachment algorithm is an appropriate

means for creating small-world networks.

The following describes the preferential process: Nodes are added succes-

sively one at a time. When a new node is added to the network it creates m

edges (m is a parameter which is constant for all nodes). The edges are not

placed at random but preferentially, i.e., with a probability pi, this new node

is linked to an existing node i with in-degree ki, according to a probability

proportional to its (in-)degree (degree for an undirected graph or in-degree

for a directed graph) relative to the (in-)degree of the other nodes (eq. 1).

pi =
ki∑
j kj

(1)
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Fig. 19 illustrates the preferential attachment process. Starting from three

connected nodes (t = 1), in each timestep a new node (shown as an empty

circle) with m = 2 is added to the network. In timestep t = 2 each node has

therefore an in-degree of 2 and the total number of edges is 3, then each node

has the same probability pi = 0.66 for node ki (p1,2,3 = 2
3
). In step t = 3, k1

and k3 as well as k2 and k4 has the same in-degree. The total number of

edges is 5. Therefore the probability p1,3 = 3
5
= 0.6 and p2,4 = 2

5
= 0.4 and

so on. In other words, it is more likely to see the new nodes prefer to attach

to the more connected nodes – preferential attachment.

t=1 t=2 t=3

t=4 t=5

k1 k2

k3

k1
p=0.66

k2
p=0.66

k3
p=0.66

k4

k1
p=0.6

k3
p=0.6

k2
p=0.4

k4
p=0.4

k5

k3

p=0.44

k2
p=0.22

k1

p=0.55

k4
p=0.22

k1

p=0.57

k3
p=0.57

k2
p=0.28

k4
p=0.28k5

p=0.28

k6

k6
p=0.22

k7

k5
p=0.33

Figure 19: Preferential attachment.

A slightly modified version of the algorithm is used that creates directed

arcs whose tails are chosen randomly with a probability that depends on

the number of nodes already linked to that node. This models the fact that

a newcomer will more likely get connected with someone popular (directed

link). The hubs are the result of the rich get richer phenomenon [120].

Adjacency matrices are likely to be used to represent a graph. The

preferential attachment is used to directly operate the adjacency matrix



Social Structures and Marketing Theory 63

with entries of 1 and 0. The entry 1 in all i, j indicated that an edge with

head i and tail j exists. The adjacency matrix for iteration 5 in Fig. 19

((i = 5)) will be as follows:

adjacencyMatrix =

0 1 1 1 1 1 1

1 0 1 0 0 0 0

1 1 0 1 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 1 1

1 0 0 0 1 0 0

1 0 0 0 1 0 0





k1 k2 k3 k4 k5 k6 k7

j1 j2 j3 j4 j5 j6 j7

k1
k2
k3
k4
k5
k6
k7

i1
i2
i3
i4
i5
i6
i7

The algorithm presented in pseudocode shows the implementation of

preferential attachment as it is used in the scenarios.
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Algorithm 1 Preferential attachment. Build Adjacency Matrix Function.
Ensure: gamma ≥ 1
function createAdjacencyMatrix(nodes, gamma)

admat: two-dimensional array . adjacency matrix
for i = 0, . . . , nodes− 1 do

pvect: array . probability vector for node i
csum: array . sum of the columns (i.e. in-

degree of node i)
tsum = 0 . auxiliary variable for the total

sum of existing links in the
social network

for j = 0, j < i, j + 1 do
for k = 0, k < i, k + 1 do

csum[i]+ = admat[j][k] . sum of entries with value 1 for
column j in admat

end for
tsum+ = csum[j] . add it to the total sum of ex-

isting links
end for
for j = 0, j < i, j + 1 do

if i > gamma then . special case for a new social
network (i.e. current number
of nodes < number of edges)

pvect[j] = csum[j]/tsum . probability of node j
else

pvect[j] = 1 . when current number of nodes
is less then number of edges,
each node will have the same
probability

end if
end for
pick(admat, i, pvect, gamma) . build links to existing nodes

end for
end function
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Algorithm 2 Preferential attachment. Pick Function.
function pick(admat, i, probs, gamma)

count = 0 . break if all links have been
built per node

tries = 0 . auxiliary variable for the prob-
ability array

while count < gamma & count < i do
if randomValue() < probs[tries%i] . throw the dice and if the

value is below the prob-
ability then create a di-
rected link between two
nodes

& admat[i][tries%i] == 0 then
admat[i][tries%i] = 1 . create directed link
if randomValue() < δ then . δ represents the probability of

creating a symmetric link
admat[tries%i][i] = 1 . create 2nd directed link

end if
count+ 1 . increase the link counter

end if
tries+ 1 . increase the number of tries

for building links counter
end while

end function

4.2 Stimulus-Response Model

One of the commonly accepted consumer buying behaviour models is the so

called stimulus response model S-R [123, p. 24]. Here stimulus and response

can be interpreted as cause and effect of consumer behaviour. Mapping S-R

to the agent paradigm means that a desire is created in an agent through

its sensors or internal state and that this agent has plans how to satisfy it.

The template of the behaviour of such an agent can be described as follows:

The agent searches a rule whose condition matches the corresponding

situation and performs the appropriate action.

The response part of S-R can be further elaborated by modelling the
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Algorithm 3 S-R-Agent.
function S-R-Agent(percept)

input interpret-input(percept)
rule rule-match(input)
action description-action(rule)
return action

end function

decision-making process. According to [124, pp. 1–20] decision-making

includes the following five steps:

Problem
recognition

Evaluation of
alternatives

Product
decision

Post-purchase
evaluation

Information
search

Figure 20: Linear Decision-Making process. In practice it may contain loops
and any step may be linked to previous process steps.

Problem Recognition.

The first phase problem recognition in decision-making process meaning

if there is no problem, there is no action. This situation arises when

a consumer is happy with his current product. However, not all

the problems end up as buying behaviour depending on the level of

importance he attributes to the need. The recognition of a problem

can be caused by internal stimuli or external stimuli:

Internal stimuli is a need for change. It may occur when a consumer

is not satisfied with his current situation any more. This situation

is modelled by a happiness value. This value is used as an indicator

of how likely an agent will start an action, e.g. if a consumer is not
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satisfied it will start a buying action. This is handled by individual

thresholds for happiness i.e. if the happiness value is lower than

the given threshold the agent becomes active following its plans

trying to make amends by starting actions. The happiness value

deteriorates continuously over time to model internal stimuli.

External stimuli is a stimuli that may arise from the environment

e.g. advertising.

Information Search and Evaluation of Alternatives.

The phases information search and evaluation of alternatives (i.e.

evaluate the most suitable to their needs and choice (i.e. product

decision the one he think it is best for him) are described in detail in

the next sections.
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Post-Purchase.

In the last activity post-purchase the consumer will evaluate the ade-

quacy of his decision.

The decision process can then be implemented as follows:

Problem is a low 
happiness value which 
indicates a buying desire

The agent follows its intentions to
acquire information e.g.
communicating with other agents

The agent compares the
alternatives found in (as in
previous process)

The agent chooses
best alternative

The agent is
happy again

Figure 21: Agent decision-making process. This is a linear process stage
representation. In practice it may contain loops and any step may be linked
to previous process steps.

The agent decision-making process represents the most basic behavioural

pattern of consumers. The following scenario in Fig. 22 demonstrates what

this mechanism might look like in practice.

Steve

Bill

Hey! Look at my new phone, Bill! It's so amazing, 
it's an ePhone – the fulfillment of virtually every

mobile dream you‘ve ever had! Ahm, but you DO notice that this… Thing –
does not possess any keys?

How are you supposed to type text messages
to your friends?

Steve
Bill

Gotta get my hands on one of those…

Well, Bill, look: It does not need any keys! In fact, 
this is one of its most overwhelming features: You
can control everything with its multi-touch screen, 

that comes with a virtual keyboard.
What kind of phone is this?

We call it a smartphone, it is still a mobile phone
except that it has some very nice features like the
multi-touch screen, and a fully-fledged operating
system, a processor that runs with over 400 MHz 

and some very cool applications we simply call
apps…

Steve
Bill

Figure 22: A demonstrative conversation between Steve and Bill.
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In this short conversation Steve sets a stimulus in Bill by showing him

his amazing new mobile phone. Bill’s first response is reluctance to accept

the new features of the phone. Then he starts gathering information and

finally he does indeed want to have the mobile phone.

4.3 Opinion Leadership and Buying Influence

The spread of information through multiple channels in a social system is a

key mechanism driving the diffusion of innovations [125]. The distribution of

“news” spread fast through a small world network which follows a power law

distribution, because the average distance of two nodes measured in nodes

in the shortest connecting path is comparatively small [126].

The information search phase of a consumer can be structured as follows:

A consumer may acquire information about a product from his neighbour-

hood. If the person contacted cannot answer the request adequately he can,

alternatively, delegate a request to one of his neighbours. The process of

passing information from person to person (e.g. about a product) is often

called word-of-mouth.

A common model for the phase of information search (see Section 4.2)

follows the so called opinion leadership [124, pp. 8-9]. Among social

structures, influence depends on an individual’s expertise, status or power.

In social networks which do have a small world like structure hubs often

act as opinion leaders [127, p. 129]. According to Katz who first coined the

concept of opinion leadership, opinion leaders evolve because of their values,

their competence or their social relations. The latter is modelled for a node

with a high in-degree indicating its important role in the community (hub).
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“Opinion leaders are said to be most influential in the word-of-
mouth process.” [128, p. 6]

Influence is not necessarily mutual and the level may vary depending on

individuals. Therefore it is described in a non-symmetric influence matrix.

Just as the adjacency matrix the influence matrix is indexed with the graphs

nodes in row and column. The entry in cell i, j is zero if i and j are not

connected and contains a measure for j’s influence on i otherwise. A hub’s

influence on others is probably higher because of the social status that

is ascribed to such a position assuming that the influence of a person on

another person depends on popularity. Instead of working with an influence

matrix with predefined values, structural aspects to compute a popularity

factor for each node are used. Of course someone who is popular among

other popular members of a community is more important than someone

who is only popular in the eyes of the wallflowers. This line of argument

leads directly to the page rank algorithm published by Page et al. The

hyperlink matrix L is the transpose of the adjacency matrix where entries

are divided by the sum of the entries in the corresponding column. This

matrix obviously is a Markov matrix and Eigenvalues and Eigenvectors can

be calculated iteratively. To guarantee convergence and to allow random

effects the following iteration is used [129]:

pk+1 =
1− α
n

e+ αLpk

Starting with a vector that contains a valid probability distribution the

limit of the sequence will yield a probability distribution over the set of

agents whose values can be used to compute the influence matrix. In the

formula α is a damping factor between 0 and 1, e the vector with 1 in each
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component, and n the number of nodes. Nodes with out-degree 0 will get

a value of 1
n
in each corresponding cell in matrix L. Otherwise the matrix

would not be a Markov matrix.

This influence matrix where the individual weights of influence can be

properly represented was the main focus of the investigation for the reference

scenario opinion leadership (see Section 7.1.1). Parts of this section have

been published in the MATES 2014 Springer Lecture Notes in Computer

Science (LNCS) [130].

4.4 Personal Preferences

General market segments consist of buyers and sellers who demand and offer

competing products. Consumers compare attributes of products (i.e. price

or technical features of available products) and try to rank them according

to their personal preferences (see [131, pp. 202-204] and [132]). Since

consumers often have specific multi-dimensional requirements on products

(e.g. price, product weight, product quality, etc.) a multi-criteria comparison

for product properties is considered.

To enable multi-criteria comparison quantifiable attributes are normalised

to points for comparison using the span between the highest and the low-

est value that appears among the described products of one kind. Let

a1, ..., an be attributes of an object and pi the corresponding calculated

values. The weighted preference value of that object is the sum
∑N

i=1wi · pi

where
∑N

i=1wi = 1. By definition it lies between 0 and 1.

For example: let the camera resolution values within a fictive mobile

phone market segment range from a minimum value of 4.1 megapixels to a

maximum of 20.7 megapixels. The normalised value of a camera resolution of
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15.9 megapixels is then calculated as follows: the actual difference between

15.9 and 4.1 (15.9 − 4.1 = 11.8) is divided by the difference between the

maximum value of 20.7 and the minimum value of 4.1 (20.7− 4.1 = 16.6):

11.8
16.6

= 0.7108. With this calculated value a camera resolution with 15.9

megapixels can be estimated to lie in the upper third quantile. But obvi-

ously consumers will base their buying decision not only on one attribute.

Each consumer weighs different characteristics of a product with different

importance. To take these individual preferences into account the criteria

are weighted with weighting factors between 0 and 1 which sum up to 1. In

the given example the camera resolution may be weight with a factor of 0.3

leaving 0.7 for other attributes. The calculated value of 0.7108 is multiplied

by the individual comparison factor of 0.3: 0.71 · 0.3 ≈ 0.213. Figure 23

illustrates the calculation of the example.

0
Min:	4.1

Max:	20.7

Comparison Criteria:	
Camera Resolution	in	Megapixels

Actual:	15.9
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𝑑𝑖𝑓𝑓𝑀𝑎𝑥𝑇𝑜𝑀𝑖𝑛 = 𝑝𝑜𝑖𝑛𝑡𝑠	

11.8
16.6 = 0.7108
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𝑝𝑜𝑖𝑛𝑡𝑠 ⋅ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟
= 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛	𝑝𝑜𝑖𝑛𝑡𝑠	

0.7108 ⋅ 0.3 ≈0.2133

Figure 23: Calculation of points for comparison.

This multi-criteria comparison is used in the alternative evaluation phase.

Each consumer can now attribute individual importance to each attribute

which is relevant to his decision. This approach was used for the personal
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preference scenario (see Section 7.1.2). A version of this section has been

published in the PAAMS 2015 Springer Lecture Notes in Artificial Intelli-

gence (LNAI) [133].

4.5 Summary of Chapter 4

Chapter 4 has given a brief overview of social structures, marketing theories

and behavioural patterns relevant to the simulations used for the experiments.

Section 4.1 described social structures and introduced small-world net-

works (see section 4.1.1). A model that describes networks with power

law degree distribution was given in Section 4.1.2 (i.e. the preferential

attachment algorithm from Barabási and Albert).

Section 4.2 described the S-R model. A template of a rudimentary S-R

agent is given and the decision-making process is described and demonstrated

with a demonstrative conversation between Steve and Bill. The information

search phase is discussed more in detail and the process of passing information

from person to person (i.e. word-of-mouth) is introduced.

Section 4.3 shows a common model for the phase of information search

(i.e. opinion leadership). Followed by a discussion that influence is not

necessarily mutual an influence matrix was developed which is based on the

page rank algorithm.

Finally, Section 4.4 a multi-criteria comparison for multi-dimensional

consumer preferences on products is considered. Each consumer can then

attribute individual importance to each product attribute.
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5 Agents and Ontologies

This chapter describes combination of agent and ontology techniques. The

architecture developed here can be extended into a comprehensive frame-

work. The behaviour of agents can be modelled declaratively with semantic

technologies.

5.1 Fundamentals

5.1.1 Agent Design Methodology

An important benefit of agent-based modelling is that interactions between

agents can be simulated directly. With regard to Section 2.1 agents focus

their activities on achieving given goals while acting according to available

plans. Such a goal is a desired state that can be reached by use of these plans.

An appropriate paradigm for the development of agents is the BDI concept.

It is characterised by the implementation of an agent’s beliefs, desires and

intentions which can be used to model aspects of human behaviour [15]. The

core concepts – beliefs, desires and intentions – are those which we as human

beings naturally use to explain the reasoning of both ourselves and others.

In a BDI model agents are endowed with beliefs about the environment

and fellow agents in that environment, with intentions to execute actions

structured into plans and desires, which represent the outcomes the agents

want to achieve. A consistent subset of desires forms the agent goals, towards

which plans should be developed.
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Figure 24: A high-level abstraction of a BDI agent (adopted from [134, p.
13]).

Fig. 24 illustrates the core elements of a BDI agent. They are as follows:

Beliefs represent the informational state, which comprise its knowledge

about the world (knowledge base).

Desires represent the motivational state of the agent; in other words it

defines the things that the agent may wish to achieve – goals.

Plans is a set of available actions. A goal can be achieved by using one or

more plans.

Intentions of an agent are the particular plans that the agent has committed

to performing in order to achieve its goals.

Reasoner is the engine which bundles together the previous four compo-

nents. It receives data (e.g. communication), updates beliefs and goals,

selects next agent actions.

The agent belief base stores everything an agent knows (or believes to

know) about the environment it lives and acts in. Basically, modellers have

to express knowledge (as well as desires, plans and intentions) in agent
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frameworks in the respective programming language i.e. Java. This increases

workload and potentially reduces re-usability, because the abstraction level

of modelling such knowledge is often limited. Ontologies now offer a stan-

dardised way to represent knowledge in general. This knowledge can be

used for specifying the things that exist and how these things are related

to each other (i.e. domain knowledge). Furthermore, the ontology defines

how conclusions can be drawn (i.e. inference knowledge) by using available

reasoning instruments. Consequently, ontologies are a promising tool to

model agent belief bases.

5.1.2 Rules

Rules extend the expressiveness of OWL. Such rules follow the form of

IF-THEN -constructs and allow the expression of various kinds of complex

statements. Semantic Web Rule Language (SWRL) is a language for the

definition of rules which combines OWL with a subset of Rule Markup

Language (RuleML)7. All rules are expressed in terms of OWL concepts

(classes, properties, individuals). SWRL is an essential component of this

work, therefore discussed in more detail at this point. It is a high-level

abstract syntax for Horn-like rules. A Horn clause is a clause (a disjunction

of literals) with at most one positive, i.e. unnegated, literal. SWRL atoms

are defined as follows:

C(i)|D(v)|R(i, j)|U(i, v)|builtIn(p, v1, . . . , vn)|i = j|i 6= j → Atom

with:

C Class

D Data type
7http://ruleml.org
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R Object property

U Data type property

i, j Object variable names or object individual names

v1, . . . , vn Data type variable names or data type value names

p Built-in names

Rules are of the form of an implication between an antecedent (bs, body

– the if -part) and a consequent (h, head – the then-part): b1, b2, . . . , bn → h.

The following example shows a SWRL rule where a person is classified

as a PersonWithChild when a hasChild relation between two individuals

exists. The question mark designated an object variable name or a data

type variable name.

Person(?x) ∧ Person(?y) ∧ hasChild(?x, ?y) ⇒ PersonWithChild(?x)

Note that if domain and range of the object property hasChild are appropri-

ately set to Person then the terms Person(?x) and Person(?y) are optional,

because then the reasoner already ensures that the variables x and y are

related to concept Person. The main SWRL-API developer O’Connor would

call this rule as OWL syntactic sugar [135], because some SWRL rules can

also be represented as DL axioms:

Person u ∃ hasChild.∃ Person v PersonWithChild

However, there are rules which cannot be formulated with OWL DL:
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Person(?x) ∧ Person(?y) ∧ hasParent(?x, ?y) ∧ hasSister(?y,?z)

⇒ hasAunt(?x,?y)

The reason for this is that the consequent has two different variables (?x, ?z).

Basically, the formulation of a SWRL rule which consists of more than one

shared variable in antecedent and consequent translation to OWL DL is not

possible (see [136, p. 204]). Note that SWRL rules can lead to undecidability

if they are not DL-safely formulated. Whenever it is ensured that all variables

in the consequent are used in the antecedent as well as the underlying rule

interpretation system (i.e. reasoner) can assign facts to the variables, is an

elementary understanding of DL-safe rules. The solution is then to apply

DL-safe rules, wherein each variable must occur in a non-DL-atom in the

rule body, i.e., DL-safe rules are SWRL rules restricted to known individuals.

Considering the following rule as it may not be immediately obvious why

variables in a SWRL rule would ever bind to anything other than known

facts (cf. [137]):

Agent(?x) ∧ Phone(?y) ∧ hasPhone(?x,?y) ⇒ AgentWithPhone(?x)

This rule classifies any individual of concept Agent as an AgentWithPhone

if it has an associated hasPhone object property with an individual which is

belonging to concept Phone. Let the ontology be extended with the concept

Person which is sub-concept of Agent. It has an associated restriction

(hasPhone some Phone) formulated with DL. A single individual belonging to

this concept in the ontology is defined. Because of the rule that states that an
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agent that hasPhone belongs to the concept AgentWithPhone all individuals

which belong to the concept Agent will be classified as AgentWithPhone as

soon as the relation to a phone individual gets established. However, since

there is no specific phone declared for the hasPhone property, a DL-safe

implementation of a SWRL reasoner would not infer that the person is

an AgentWithPhone meaning that the variable ?y in the rule would be

bound to an individual that is not explicitly known. Thus DL-safe rules may

produce incomplete inferences, but this restriction of SWRL rules guarantees

decidability which is more important. This limitation does not apply as

long as the modeller is aware of this behaviour and restricts the rules to

known facts. Current reasoners focus on a DL-safe implementation of SWRL.

DL-safe rules look exactly like normal SWRL rules.

5.2 Incorporating Ontologies into BDI-Agents

Again, in classical implementations of multi-agent systems following the BDI

architectural pattern built with frameworks such as Jadex [138], all aspects

have to be coded using a conventional programming language (mostly Java)

fitting into the hotspots of the framework. Building a BDI agent-based

simulation all the agents must be populated with domain-specific knowledge

of the world in which they act and live.

The default BDI reasoner of an agent receives sensory data, updates

knowledge, forms intentions and selects the agent actions to perform. The

following pseudo code describes a simple BDI agent reasoner (adopted from

[139, p. 147]):
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Algorithm 4 Simple BDI agent reasoner.
while unachieved goals do

observe environment
update beliefs
prioritise intentions to achieve
choose a plan for the intention
execute and monitor the plan

end while

The algorithm consists of a loop of observing the world (sensors), updating

its beliefs, prioritising on its intentions, choosing a plan to achieve its

prioritised intention, then executing the plan and monitoring its progress.

The while loop condition depends on there being unachieved goals. Note

that the BDI reasoner is abstract and postpones detailed implementation

decision. A goal may also be triggered through agent communication which

can also have effects on the beliefs of the agent. Generally, a customisation

of aspects of the agent has the consequence that the project has to be rebuilt

which increases workload and potentially reduces reusability (see Section

2.2).

The use of a declarative rule language such as OWL allows the strict

separation of concerns where ontological definitions and rules can be sep-

arated from behavioural patterns. On the one hand we have the world of

ontologies with O =< C,R, I > and on the other hand the world of agents

with Agent = < B,D, I >. Social aspects and information about internal

aspects of the agent (e.g. its current state) are fully mapped to the ontology

(see Fig. 25): the set of beliefs (i.e. knowledge), desires (i.e. goals) and

intentions (i.e. plans of how to reach the goals). The modelling notation

used for the next and following figures which includes OWL elements are

listed in Appendix C.
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Figure 25: OWL-BDI-Mapping.

Factual knowledge of the world of an agent is represented by individuals

and corresponding relations (i.e. set of beliefs). Relations can be restricted by

specifying domain and range. Data properties link concepts and individuals

to primitive data e.g. strings or numbers (i.e. the age of a person). Desires

are represented as individuals of the concept Desire (i.e. goals) and intentions

are represented as individuals of the concept Intention (i.e. a sub-set of the

goals with an associated stack of plans for achieving them – the intended

actions). The concrete actions an agent may carry out to reach its desire are

described in plans (i.e. AgentAction). Thus desires have an object relation

with domain set to Desire and range set to AgentAction.

Fig. 26 shows a rudimentary example of an BDI-OWL agent. The agent

is represented as an individual of concept Agent. It has acquaintances to

other agents linked through the object property relation isAcquaintedWith.

A simple SWRL rule has set the object relation hasAgentAction to the
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individual GoShopping of concept AgentAction for individual myself. The

multi-agent framework has then to trigger the corresponding intention.

……

Agent

<<Concept>>
Agent

OWL-OntologyBDI Agent

Rule: Agent(myself) -> hasAgentAction(myself, GoShopping)

…

myself
isAcquaintedWith Multiple Agent
hasAgentAction Some AgentAction

<<Concept>>
AgentAction

GoShopping

Figure 26: Small example of OWL / BDI agent model.

To summarise, the ontology and its inference mechanisms are used to

determine the behaviour of an agent e.g. rules are used to determine plans

and calculate actions. Each agent has its individual ontology while it is

ensured that agents have a common understanding of the environment by

providing commonly shared elements. This is implemented using a layered

approach which will be discussed in the next section.

5.3 Layered-Ontology Model

This section is about the development of a universally applicable integration

of semantic technologies and agent based systems. The layered approach is

to construct a blueprint for an architecture that can easily be adapted to

various simulation scenarios. Parts of this section were published in [130].
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Fig. 27 shows a layered ontology model in which domain knowledge can

be hierarchically separated by its degree of generality:

ADL

SDL

<<import>>

<<import>>

IDL

Agent

<<uses>>

IDL

Agent

<<uses>>

IDL

Agent
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<<import>>

<<import>>

Simulation
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Figure 27: Three-layered ontology.

Abstract Domain Layer (ADL) is the top-level ontology which describes

the domain-independent part and consists of general abstract concepts

(see Fig. 27). The root concept of each ontology is Thing. It represents

the basic knowledge i.e. concepts that cannot be assigned to a particu-

lar domain, and their relationships among themselves. In this context,

the concept ValuePartition should be noted which is also related to

the ADL. Value partitions are not part of ontology languages, they

are a proven solution of a partition with disjoint subsets and domain

independent. They can be created to refine a concept description. For

example: acquaintance may describe the level of acquaintance between
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individuals. The value partitions restrict the range of possible values

to a list: casual, friend and bestFriend.

Specific Domain Layer (SDL) refines ADL by specialising abstract ele-

ments of ADL to fit the requirements of a specific domain. All concepts,

relations and individuals on this layer are restricted to a specific prod-

uct market e.g. mobile phone market which means that these elements

are used as reference by agents and agent engineers.

Individual Domain Layer (IDL) expresses the individuality of each agent.

It contains beliefs and definitions of individual behaviour of each agent

(e.g. how an agent reacts to a certain stimulus).

Fig. 28 shows the three-layered ontology with example concepts on each

layer. According to the concept hierarchy, the specialisation regarding its

different layers becomes clear.

Concept_1

Abstract Domain Layer (ADL)

Specific Domain Layer (SDL)

Individual Domain Layer (IDL)

Sub-Concept_1_2

Sub-Concept_1_1

General Concepts
(Person, Item, Brand, AgentAction)

Specific Concepts
(Product, Smartphone, Apple)

Individual Concepts
(Touchphone, Acquaintances, 
OpinionInfluence)

Figure 28: Three-layered ontology architecture example.

For example: the general concept Item is specialised in the environment

of a mobile phone marked by Product. Since mobile phones within this

domain are the relevant products, the concept Product is specialized by

Smartphone. If an individual knows further specialisations (or synonyms),

these are mapped within the IDL (in the example, the concept Touchphone).
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By use of the owl:import statement ontologies can refer to another OWL

ontology which contains definitions, whose meaning is considered to be part

of the meaning of the importing ontology. The statement is transitive i.e.

if ontology IDL imports SDL, and SDL imports ADL, then IDL imports

both SDL and ADL. From a mathematical point of view the set of general

concepts is a subset of the specific knowledge available to an agent. By

separating knowledge into layers, general control of the simulation is kept

independent of specific terms of a given scenario (see Section 7).

An important function of the ADL is to support broad semantic interoper-

ability among the large number of individual market domains by providing a

common starting point for the formulation of agents. In information science,

the ADL would be then called as an upper ontology or top-level ontology. An

upper ontology such as the ADL supports broad semantic interoperability

among a large number of domain-specific ontologies by providing a common

starting point [140] for the formulation of SDL ontologies as well as IDL

ontologies.

The layered approach is mirrored into the Java application that imple-

ments the BDI concept (see Section 6).

5.4 Communication and Learning Capability

Interaction through communication between agents is one of the most impor-

tant features of multi-agent systems. Usually, agents do not know everything

in a multi-agent environment, but may extend their knowledge through

social interaction i.e. communication.

While using ontologies as the main belief base, agents can communicate

with each other by means of a common ontology. An ontology is machine
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readable, and supports agent communication by defining and providing a

shared vocabulary to be used in the course of communication, they also pro-

vide a definition of the terms that can be used in communication; ontologies

also provide the definition of the world in which an agent grounds its actions.

Different agents of a system can reach a shared understanding by committing

to the same ontology. This enables them to make statements, communicate

knowledge and make different queries. Use of ontology permits coherent

communication and easier information sharing between agents, enabling

agents to cooperate and coordinate their actions. The use of ontologies in

message based communication gives meaning to the contents of messages

sent between agents.

Agent knowledge is limited to what is defined in the hierarchy of ontolo-

gies possibly differing from what other agents know: Each agent is equipped

with shared ontologies (common knowledge in ADL and SDL) both agents

have a basic common understanding of the current domain. But the IDL is

private and may differ from each agent. An agent may extend its knowledge

base during a simulation, meaning that it has learning capability i.e. com-

munications which refer to knowledge items that belong to the IDL layer.

Therefore, agents can exchange information which contains concepts that

may be new to the receiving agent. The receiving agent may then add new

facts acquired through this information exchange into its belief base. When

incorporating a new concept into its IDL the agent has to obtain all available

information relating to that concept. Concepts with a direct superclass in

ADL or SDL can easily be added to the IDL of the learning agent. If the

concept does not have direct ancestors in ADL or SDL the super classes of

the sending agent must also be included. Individuals and facts (properties)
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about individuals can be added directly, if they are instances of a concept

defined in ADL and SDL.

To summarise: Let o1 and o2 be individual ontologies. The intersection

o1 ∩ o2 is uncritical because it is obviously available to both agents. From

the perspective of o1 the set o2 \ o1 is critical, because it contains elements

of C, R or I which are relevant for the learning process.

Algorithm 5 Add information to knowledge base.
procedure learning(Individual i)

if ontology not contains i then
addIndividualToIDL(i)

end if
for all dataProperties dp of i do

if ontology not contains dp with i then
addDPToIDL(dp,i)

end if
end for
for all objectProperties op of i do

if ontology not contains op with i then
addOPToIDL(dp,i)

end if
end for

end procedure

Algorithm 5 shows a rudimentary but suitable learning strategy in pseudo

code. Concepts, properties and individuals that do not exist in the ontology

of the learning agent can be added to its private ontology directly. For the

time being, the algorithm is restricted to directly adding unknown elements

to the relevant ontology and it has to be ensured, that the sum of knowledge

of all individual ontologies does not contain inconsistencies. Inconsistency is

a severe error and the ontology cannot be instantiated. For example: An

individual i is of type concept c1. The learning agent receives the information
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that individual i is of type c2 as well while concept c1 and concept c2 are

disjoint (see Fig. 29).

<<Concept>>
Thing

<<Concept>>
C1

<<Concept>>
C2

disjoint

i

Figure 29: Inconsistency ontology example.

Here, the contradiction is quite obvious as long as the old information

will be left in the ontology. It is required that the individual i has to be a

member of class c1 and class c2 at the same time. For example, Schiemann

as well as Noy et al. show variants to resolve such conflicts in their work

(see [93] and [141]). However, in this thesis it is expected that every concept

in IDL is a subconcept of concepts in ADL – possibly transitively. This is

ensured by a Java routine that performs validation checks on the ontologies.

This learning capability has direct effects on the actions of agents e.g.

their buying behaviour (see Section 7.1.2). The layered approach enables

the possible learning capability described above.

5.5 Summary of Chapter 5

In this chapter, Section 5.1 described the fundamentals of the BDI con-

cept, the concept of knowledge representation in ontologies and the SWRL

language for the definition of rules which extends the expressiveness of OWL.
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Section 5.2 considered the combination of agent and ontology techniques.

A rudimentary example of an OWL-BDI agent model shows how the ontolo-

gies and its inference mechanisms are used to determine the behaviour of an

agent.

The three-layered ontology model (i.e. ADL, SDL and IDL) is presented

in Section 5.3. It shows that the domain knowledge is hierarchically separated

by its degree of generality. Abstract general concepts (e.g. thing, person,...)

are coded in the ADL while more specific elements (e.g. concepts of a

certain market theory) belong to the SDL. Individual beliefs and desires are

included in the IDL. Ontological commitment is ensured while ADL and

SDL are shared by all agents.

Finally, Section 5.4 considered the ontology based communication between

agents. Agents can exchange information that may be new for the receiving

agent. A learning strategy is introduced which can be used when an agent

has to incorporate new concepts into its private ontology.
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6 Agent Software Framework

This chapter describes a concept of a practical integration of semantic tech-

nologies applied to an agent-based framework. The agent-based framework

called AGADE is introduced that can run BDI agent simulations where

agents communicate with each other, have knowledge of their environment

and act in structured social environments. This chapter finishes with a

demonstration of AGADE.

6.1 Ontology-based Business Simulations Framework

The challenge of running business simulations lies in representing social struc-

tures and marketing mechanisms appropriately. For this purpose, references

to social structures and marketing theory (see Section 4) are made. When

running business simulations, a social structure with mutual relations, market

mechanisms, individuals with knowledge and behaviour and a configurable

tool to incorporate all that are required. For this purpose, the framework

AGADE was developed by the author. AGADE was demonstrated at the

13th and the 14th international conference on practical applications of agents

and multi-agent systems (PAAMS). Achievements of the framework were

presented at the PAAMS conference including two publications ([142], [143]).

AGADE received the third award of scientific excellence (see Appendix D).

AGADE is a multi-agent simulation framework which leverages semantic

technologies to facilitate a convenient modelling of the desired market context

while empowering all actors to utilise their world knowledge for inferring

implicit knowledge as well as deducing how to act in a specific situation.

Agents are active parts of complex social structures, allowing them to not
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only communicate with but also permanently learn from each other.

6.2 Architecture

This section demonstrates how ontologies can be integrated into the BDI

concept utilising the Jadex agent framework. Jadex was the tool of choice

because it provides a set of convenience tools (logging, monitoring,. . . ), is

Java based, and therefore can seamlessly connect to the reasoning mechanisms

of the ontologies and its reasoners using the OWL API [144]. While the

basic operations of agents are left in Java classes, certain aspects of the BDI

agent are shifted into the ontology so that declarative rule languages such

as the OWL (see Section 7) can be used.
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<<component>>
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<<component>>
<<agent>>
Participant

<<component>>
OWLComponents
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Visual Paradigm Standard Edition(Technische Hochschule Mittelhessen)

Figure 30: Abstract view on the AGADE architecture.

Fig. 30 shows an abstract component model of the proposed architecture.

AGADE knows two different kinds of BDI agents: a director type agent and

participant type agent. The director agent represents the central management

entity i.e. the coordinator of the simulation. Participating agents comprise
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any agent participating in the simulation (i.e. customer and seller). The

director agent is connected with a graphical user interface where relevant

information about the simulation is displayed (e.g. market share chart) and

handles user commands (e.g. start and stop the simulation). The following

sections describe the components and mechanisms in detail.

6.2.1 Distributed Environment

Simulation of real-world scenarios often requires a large number of agents.

With increasing level of detail and resolution in the underlying models ma-

chine limitations both in the aspects of memory and computing power are

reached. Even more when additional features like reasoning mechanisms

of semantic technologies are used. First experiments have shown that the

extensive use of ontologies results in high memory consumption due to the

large number of String objects used in the reasoning process and caching

mechanisms of the OWL API. Mengistu et al. claim that the support for

schedulers for managing time, synchronising agents and data collections are

crucial elements of multi-agent simulations. The component model as shown

in Fig. 30 includes a mechanism that allows the scaling-up of simulations

considerably: AGADE implements a Java RMI (Remote Method Invoca-

tion) based communication mechanism with which the agents can send and

receive messages. RMI is directly based on socket communication and is

therefore more efficient than alternative technologies like Web Services [145]

or CORBA [146]. Running various benchmarks comparing the alternatives

with results similar to what has been published before (e.g. [147]). For

example: 1000 calls via Web Services on quad core cpu machines connected

to a network with a transmission rate of 100 MBits took ≈ 203, 37 seconds.
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Using RMI on the same machine settings 1000 calls were completed con-

siderably faster in less than one second. The “cost” of constructing and

decomposing the corresponding request via Web Services is significantly

higher than using a socket based communication as RMI. As sending and

receiving messages are basis elements of every multi-agent system, choosing

an efficient technology for a distributed communication is crucial regarding

simulation time consumption. However, when interoperability is a major

requirement on a multi-agent system then Web Service is the technique of

choice, because of the programming language-independence i.e. Web Services

can be implemented using any programming language, and can be run on

any platform. Because of the fact that Jadex as well as the OWL API are

Java based, AGADE already relies on Java components and therefore RMI

can be integrated. The source code which has been used for measuring the

performance of the aforementioned technologies can be found in appendix E.

The communication between participating agents and between participat-

ing agent and director agent uses RMI based services both in distributed and

in non-distributed mode ensuring a unified architecture for the framework.

The typical RMI flow of execution starts with an initial registration of

objects in the RMI registry of a server using a unique name which makes

the objects available for client access. Clients can now query the lookup

service of the RMI registry to get a reference to the objects. The client can

then invoke appropriately published methods. The roles of server and client

are interchangeable i.e. each node in the network can act as client and as

server thus allowing two way communication with asynchronous method

invocation (see Fig. 31).
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Figure 31: AGADE nodes model.

Each node provides a YellowPages service where agents are published to

be used in inter-agent communication. Note that two nodes in the network

do not necessarily have to be connected through yellow page entries as they

may not have to communicate at all during the simulation. But at least one

distinguished central node must be aware of all other nodes and can then act

as a broker and enable communication if requested. Once communication

between two nodes has been established mutual entries are made in the

local yellow pages. This lazy set up of communication information reduces

initial messaging efforts and provides direct links only if requested. The

director agent and the GUI communication with the user obviously have to

be placed on the central node as well. The delivery process of inter-agent

communication is therefore implemented as follows:

• query local yellow pages on client-side and deliver message directly if
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address information for both is available

• request broker on central node to provide necessary information and

initiate communication

In the inter-client communication scenario, the client is querying the

server for the client-address and will then deliver the message to the specific

client directly. RMI message mechanisms use Java serialisation to deliver

objects. OWL components are represented as Strings and can therefore

undergo the standard RMI serialisation process. Thus the content of each

agent message is eventually a serialised instance of String.

The typical message content size of an OWL concept is about 850

Byte which is 0.0068 Mbit. Theoretically, a typical network bandwidth

of 1000MBit/s allows the sending of ∼ 147, 058 messages simultaneously

with respect to the content size without limitations neglecting connection

overhead usage. To reduce the amount of network traffic between clients,

the message content can be compressed by using gzip which reduces the size

by roughly 50 percent.

The robustness of this architecture was successfully tested by simulating a

homogeneous crowd of buyers acting in a mobile phone market where 100,000

agents were run over 100 rounds on 6 clients each connected with 100 MBits

network speed and equipped with various hardware settings (RAM/CPU)

(see Section 7.1.1).

6.2.2 Abstract OWL Agent

The layered approach (see Section 5.3) is mirrored into the Java imple-

mentation built according to the BDI concept. Class AbstractOWLAgent

class corresponds to ADL. This abstract class defines the interface to the
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OWL-Application Programming Interface (API) and connects elements of

the ontology to the BDI architecture thus enabling an OWL-BDI agent to

participate in AGADE simulations (see Fig. 32). References and methods

to maintain ontologies and trigger plans are implemented here. Each agent

is equipped with its own ontology reasoner and private ontology. AGADE

supports OWL DL ontologies, which give maximum expressiveness while

preserving computational completeness and decidability, which both are

needed for modelling complex scenarios.

AbstractOWLAgent
{abstract}

# ontology:OWLOntology
# manager:OWLOntologyManager
# reasoner:OWLReasoner
...

+ runPlan(plan:String, type:Class<T>)
...

Figure 32: AbstractOWLAgent Java class.

Subclasses of AbstractOWLAgent are on the level of SDL and specify

more concrete aspects of an agent (see Fig. 33). Each subclass references an

IDL which in turn models the individual behaviour of an agent and describes

the type of an agent. For example: when simulating a market place then

one general market participant class has to be modelled which distinguishes

between seller or customer in the individual ontologies used in the simulation.

Additional Java subclasses are possible whenever more-specific categories

are required.
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Figure 33: Interaction of layered ontology and agent classes.

6.2.3 Ontology-based Plan Selection

AGADE uses inference mechanisms of the semantic infrastructure (i.e. on-

tology reasoner) to determine the next actions an agent performs to reach

its goals (i.e. desires). Note that while it is more natural to think that

agents having goals which in turn are realised through tasks and actions,

traditional BDI implementations do not support such explicit modelling of a

goal behaviour. Goals are defined independently of other goals and mapped

to one or more plans. A BDI plan consists of a sequence of plan steps which

have to be expressed in the BDI framework. The decision which goal or

at least which plan an agent has to use next is expressed in the ontology.

Thus, plans (i.e. intentions) play a central role for BDI agents, because they

encapsulate the recipe for achieving a goal. From a modelling perspective,

ultimately, agents use plans to reach their goals (i.e. desires). The execution

cycle for achieving a goal can be characterised as follows:

1. The selection of a plan (potentially more than one plan available) to
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achieve the current goal

2. The execution of that plan and

3. The updating of agent state

Note that BDI agents do not always need to have a desire for running

plans. A plan can also be directly considered whenever a condition of a plan

(set at design-time by the BDI programmer) is set to true.

In compliance with the Jadex framework possible individual actions have

to be denoted as plans. This is done in the Java code that implements the

agent. Plans in Jadex can be represented as methods inside the Java class

that implements the agent or alternatively as plan Java classes which have

to provide a so called plan body method which is used to formulate the

sequence of actions. The author recommends the coding of plans as Java

classes to keep the agent behaviour pattern as flexible as possible, because

plans written in Java classes can easily be made available to different agents

by simply adding @Plan annotations to the specific agent class thus making

them available in other simulations. AGADE can create plan pools out of

available classes annotated as plans thus making them available in other

simulations.

Each agent keeps a representation of itself in its private ontology. This

is realised as an instance of Agent called myself. The ADL defines concepts

Desire and Intention which are modelled as sub-classes of the concept

AgentAction which is used to express that something that can be executed

by some agent. Goals and intentions (sometimes called plans) are expressed

as individuals of concept Desire and concept Intention respectively and

can be linked to agents and actions through appropriate object properties.

These are nextAgentAction (with domain Agent and range AgentAction)
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and hasIntention (with domain Desire and range Intention). Assignment of

elements in the range uses rule evaluation. The relevant steps of executing

agent actions are shown in Fig. 34. It shows the principal workflow of

selecting and executing the agent actions which are formulated in the private

ontology and selected by a Java routine. The following paragraphs and

sections in this chapter describe the workflow in more detail.

Selection of the
next plan with the

highest priority

Execute the
selected plan

Determing next
agent action using

inference
mechanisms

Write results back 
into the ontology

Ontology Java

Figure 34: Ontology-controlled plan selection.

An agent may have more than one goal at the same time, which can

also be achieved using a set of plans. Typically, the next plan is selected

randomly if an agent has more than one next agent action. As SWRL does

not support rule ordering, it cannot be used to express any arbitrary order of

actions. If an order is required for plan execution (e.g. plan a should be run

before plan b is executed), a data property called hasPriority with domain

set to AgentAction and range set to xsd:integer can be used to express any

particular order of agent actions. E.g. plan a has the priority set to 1 and

plan b has the priority set to 2. For this, all next agent actions of myself will
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be added to a priority queue. If a plan has no priority, it will be enqueued

with the max-value of the data type int (see algorithm 6). Prioritisation is

required because OWL works according to OWA meaning that something

that is not explicitly known as true or vice versa known as untrue must

be considered as unknown. It is therefore assumed that knowledge of the

facts is simply missing. In order to illustrate the effect on the selection of

the actions, the following situation is mentioned: Considering a condition

y, an action a is to be set as the next action to be executed. It would

be desirable if, in the event of a non-use of y, action b would be selected

instead. However, according to OWA, it must be explicitly stated that y is

not satisfied. Again, only the absence of the information on the validity of y

does not allow to conclude that y is not satisfied and that action b is to be

chosen. By assigning an individual priority value annotation to each action,

this can be bypassed flexibly. The selection of a single next action to be

performed per simulation round is computed, as described before, via the

Java application. Here, the missing information about a condition y can be

interpreted as not being applicable. For example: the absence of a priority

specification can be interpreted as the lowest prioritisation which is done in

a dedicated Java method (addIntentions). This then corresponds to the

CWA.
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Algorithm 6 Run next agent actions.
procedure SelectNextAgentAction

PriorityQueue<OWLIndividuals> pq
Set<OWLIndividuals> intentions
Set<OWLIndividuals> agentActions← nextAgentAction
for all agentActions aa do

if aa is member of concept desire then
pq.addIntentions(aa.hasIntentions)

else
pq.addIntention(aa)

end if
end for
for all pq do

runPlan(pq.dequeue())
end for

end procedure

In summary, Java classes annotated as plans have a corresponding mem-

ber of concept Intention in the ontology. These links make facts and

rules of the ontology accessible to the agents in the Java code. The object

property nextAgentAction (with domain Person, which is basically equiv-

alent to the set of agents, and range AgentAction) together with a rule

(e.g. Agent(myself) → nextAgentAction(GoShopping) – the agent will

permanently GoShopping) determines how the agent decides which plan to

chose next. The next agent actions are periodically triggered by the round

based management of AGADE.

6.2.4 Complex Calculations

The latest OWL 2 specification from 11th December 2012 does not provide

syntax to express calculated values for data properties (see [5]). Iannone et al.

published a proposal for enabling arithmetic computation in OWL-DL, but

however, this contribution has not been integrated in the OWL specification
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yet [148]. As an alternative, the available rule language SWRL provides

math built-ins that enable OWL reasoners to perform simple mathematical

operations [149]. For example, the atom such as swrlb:add uses the add

built-in to add two numeric values. The statement swrlb:add(?sum,5,4)

adds the value 5 and 4 and bind the sum (9 = 5 + 4) to the first argument

?sum. Sánchez-Macián et al. present in their paper the groundwork for

an extension to the SWRL language to overcome complex scenarios that

include mathematical relationships and formulas that exceed current SWRL

capabilities by enabling advanced mathematical support utilising the Open-

Math libraries [150]. Wenzel et al. have put forth the approach but further

work is still required for practical operations [151].

SWRL built-ins is limited and additionally may cause SWRL rules to

lose decidability, which will let the reasoning mechanisms fail [152]. The

author recommends the implementation of all numerical computations in

Java (or any other procedural language) and making them accessible to the

ontology through method calls. Consider, for example, the following SWRL

rule:

Person(?p) ∧ hasAge(?p, ?age) ∧ swrlb : add(?newage, ?age, 1)

⇒ hasAge(?p, ?newage)

At first sight, this rule is going to increment the age of any person

?p by one. However, this rule generates an infinite loop incrementing the

individuals age, each age one greater than the previous age. This is because

the built-in bind the argument ?age of the data property hasAge in the

antecedent and this property again is used in the consequent for overwriting
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the current age, then rules may become undecidable i.e. this rule will never

terminate the reasoning process.

6.2.5 Ontology Query Languages

Querying data through ontologies is an essential step when using ontolo-

gies as the main belief base for agents. Currently, several ways to query

ontologies are available which can be used in the context of OWL based

ontologies. However, in order to enable simulations with a very large number

of agents, an efficient query language for OWL ontologies is essential. This

section demonstrates well-established possibilities for retrieving data through

ontologies using a test case and benchmarks their query performance in

order to optimise response time when running multi-agent scenarios. The

query should answer from the individual ontology of an agent (i.e. myself ),

the agent which has the highest opinion influence (i.e. opinion leader (see

Section 4.3)) on myself. Fig. 35 shows the rudimentary ontology which is

used for the test case.

<<Concept>>

Agent

myself

<<Datatype property>>
hasOpinionInfluence Single Integer

<<Object property>>
isAcquaintedWith Multiple Agent

…

myself agent_2

isAcquaintedWith

hasOpinionInfluence 92

Ontology

Example

Figure 35: An example ontology used for the query variants.
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6.2.5.1 SPARQL

SPARQL (SPARQL Protocol And RDF Query Language) is a W3C stan-

dardised query language, inspired by the well known database language

SQL. With SPARQL, concepts, individuals and properties can be queried

flexibly from ontologies. A select query provides all possible bindings for

given variables. The query below shows the relevant SPARQL query to find

the agent with the highest opinion influence which is acquainted with myself.

The query consists of two parts: the SELECT clause identifies the variables to

appear in the query results, and the WHERE clause provides the basic graph

pattern to match against the data. Note that ontologies and their elements

(i.e. concepts, properties and individuals) are identified using internation-

alised resource identifiers (IRI) (see [5]). Two IRIs are structurally equivalent

if their string representations are identical (i.e. unique key). SPARQL allows

the declaration of a prefix for abbreviating long IRIs in the query body with

the aim of improving the readability which is used in the following query.

1PREFIX pm: <http :// www.thm.de/mnd/wbm/phonemarket#>

2SELECT ?y ?o WHERE {

3pm:myself pm:isAcquaintedWith ?y.

4?y pm:hasOpinionInfluence ?o

5FILTER (?o >=80)

6}

7ORDER BY DESC(?o) LIMIT 1

In addition to the readability of SPARQL queries the result set can be

filtered, ordered and limited. The result set is in a descending order and

the size of the result set is limited to one entry. Thus, this query result
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has only a single entry with the highest opinion influence of all available

acquaintances instead of a result set. There are currently two reasoners

available for handling SPARQL queries: the reasoner Pellet (see [26]) as

well as a SPARQL-supporting extension for the reasoner HermiT (see [25]).

Both require the Apace Jena framework (see [153]), because the OWL API

does not support direct use of SPARQL.

6.2.5.2 SPARQL-DL

SPARQL-DL is a query language based on SPARQL and specialised for OWL

ontologies (see [154]). A query engine has been designed and developed

for SPARQL-DL which is based on the OWL API and adds a common

interface for each reasoner that is supported by the OWL API (see [155]).

Just as SPARQL, all possible bindings of variables are returned to a select

statement. Concepts, individuals and properties can be queried, as well as

meta informations such as the disjointness of concepts or the transitivity of

object properties. The following shows a SPARQL-DL query which selects

the agents with their related opinion influence:

1PREFIX pm: http :// www.thm.de/mnd/wbm/phonemarket#

2SELECT ?y ?o

3WHERE {

4PropertyValue(pm:myself , pm:isAcquaintedWith , ?y),

5PropertyValue (?y, pm:hasOpinionInfluence , ?o)

6}

In contrast to SPARQL, the value of the data property hasOpinionInflu-

ence can not be limited by a minimum value. Furthermore, the maximum

of the property values can not be queried directly. This has to be done by a
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Java routine separately.

6.2.5.3 DL Query

DL queries allows the selection of super-concepts, sub-concepts or instances

of a class. Only the last mentioned usage is relevant to the test case. A

corresponding query engine for DL queries is not part of the OWL API, but

is provided as a sample class (see [156]).

The test case, in which individuals have to be queried which have an

acquainted relation to myself, shows a significant disadvantage in the usage

of DL queries. If the query consists of an object property assertion, the

object of this property cannot be a variable. The following query is, unlike

SPARQL, not possible:

myself isAcquaintedWith ?y

An inverse formulated query, however, could solve this issue:

isAcquaintedWith myself

Note that this would force an isAcquaintedWith to become a symmetric

relationship. However, such a modelling would not correspond to reality,

because the relationship is not mutual.

Alternatively, there might be an inverse object property of isAquaint-

edWith which is named isKnownBy. This work around is used for the test

case in order to enable DL queries. It should be noted, however, that an

individual in reality may not know that the other individual knows him.

The agents would thus be able to conclude such knowledge about the inverse

object properties. The corresponding DL query has the following form:
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1(isKnownBy value myself) and

2(hasOpinionInfluence some integer [ >=80])

Again, the maximal value of the property values of the result set have to

be determined by a Java routine since order and limit the result set is not

supported directly.

6.2.5.4 OWL API

Alongside available query language another possibility is to access the el-

ements of the ontology directly using the OWL API. In this case, all

individuals have to be selected which are linked with the object property

isAcquaintedWith (line 1). After that, the resulting set can be sorted and

limited to 1 entry by using a Java routine (line 2):

1Set <OWLIndividual > valuesSet = getObjectPropertyValues(

myself , opIsAcquaintedWith);

2OWLIndividual highestInfluencePerson =

searchForHighestDataPropValue(dpHasOpinionInfluence ,

valuesSet , 80);

The individual with the highest opinion influence (minimum level is set to

80) is then mapped to the attribute highestInfluencePerson.

6.2.5.5 Benchmarking

The following benchmark was used to explore the performance of the afore-

mentioned ontology query languages. Again, in order to enable simulations

with a very large number of agents, an efficient query language for OWL

ontologies is essential, especially when running a business simulation game
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where participants expect an appropriate response time. Each of the query

variants shown in the previous sections is called 100 times via a separate

Java thread. Each of these threads creates its own object of the queries

class, which in turn includes its own ontology object and relevant reasoner

instance. This setting shows that each agent is running in different threads

and uses its own ontology and reasoner.

The computation time, which is required to answer the queries, is the

decisive criterion in this scenario. Table 3 shows the computation time for

each query variant. It was run on a quad core CPU and 32GB RAM. Each

query language was run with its own Java virtual machine and using the flag

Xmx and Xms set to 30GB which specifies the maximum memory allocation

pool in order to avoid incorrect measurements regarding the time consuming

mechanisms of the Java garbage collector.

Table 3: Benchmark test results (duration time). Averages after 100 runs
(100 method calls for each run) for each query language.

Type Averages in ms

SPARQL 11357

SPARQL-DL 18398

DL Query 152124

OWL API 5135

The most time spent is when using the DL query. The fastest variant

is the OWL API followed by SPARQL and SPARQL-DL. The author

recommends avoiding DL queries for that reason. Not important in the

selection of the variants, but still an advantage is using OWL API directly,

as no further APIs are required. A disadvantage is that queries with several
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restrictive conditions require a significantly larger amount of coding effort.

However, this disadvantage is accepted in the perspective of the improvement

of performance.

Again, the computation-time is an crucial factor for the scenarios espe-

cially when a scenario is used as a business game where participants usually

want to get feedback of their decisions immediately. The queries are therefore

implemented directly via the OWL API.

6.2.6 Round-based Management

Round-based simulations enable the definition of discrete time steps. The

director agent triggers the beginning of each new round. Participating

agents send control messages after having finished their task. According

to round-based simulations the next round starts after receiving all control

messages (i.e. initialising the social network or start-stop the simulation).

The round-based approach allows a synchronisation point whereas agents

can report their current state. This ensures that all agents are synchronised

when running a simulation in a distributed environment with heterogeneous

computing power.

Each round (or time step) of the simulation is structured into four

phases (see Fig. 36) with defined functionality and integration into the BDI

paradigm.
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Control Phase

Calculation Phase

Socialisation Phase

Acting Phase

Figure 36: Four phases simulation

The control phase is modelled for user interactions and user information

meaning the director agent processes commands issued by the user during

execution of the last round and relevant GUI components (e.g. statistical

graphs) are updated. In the calculation phase the director agent tells each

agent to make necessary calculations to update its internal state. Agents

update their mutual relations and possibly build new connections to other

agents in the socialisation phase. Next agent actions are triggered in the

acting phase depending on the individual state and rules evaluation. These

four phases have proved to be appropriate for running economic simulations

after intensive test-runs. However, the existing structure can be easily

extended with additional phases if required.

6.3 AGADE Overview

AGADE provides a wizard for creating a new simulation. The first thing

which has to be done is to specify the general simulation settings (i.e.

simulation name, number of agents, number of rounds, ...) as well as setting

the location of the SDL which is shared for all participating agents and

ensures ontological commitment (see Fig. 37).
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Figure 37: AGADE start new simulation dialog step I.

The mapping between agents and ontologies must be defined in the

second dialog (see Fig. 38). The agent classes and the relevant IDL ontolgies

have to be selected. This dialogue allows the specification of how many agent

instances for each agent type have to be created and each agent instance

will be equipped with its individual ontology.
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Figure 38: AGADE start new simulation dialog step II.

Before starting the actual simulation, the social structure has to be

defined, comprised of the mutual relations of all agents. The adjacency

matrix can be added directly, the groundwork of the social structure is laid

by defining who knows whom (see Fig. 39). On top of this groundwork, an

arbitrary number of additional relational aspects (each with its own adjacency

matrix and influence matrix respectively (see the register on top of Fig. 39)

can be built, e.g. by defining the degree of technical understanding agent

a attributes to agent b or simply the degree to which one agent is affected

by another. The algorithms presented in Section 4.1.2 and Section 4.3 can

be used here. Social aspects and information about the current state of the

agent are mapped to the ontology. The social aspects will be transferred to

properties to the relevant agent (i.e. the edge value between two nodes).
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Figure 39: Adjacency matrix setup.

The simulation itself can be controlled using the GUI displayed in Fig. 40.

The graphical representation of the social network can be deactivated. This

is recommended when running a simulation with a large number of agents

when a graphical representation is not reasonable.

Figure 40: AGADE simulation GUI.
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On the top of the GUI the control buttons are located: between any

two time steps a simulation can be halted so that further inspections of the

current state of affairs are possible. Data describing crucial aspects of the

current simulation is displayed continuously. The right hand side of the

screen is a graphical display of the social structure formed by all participating

agents using the Java universal network graph framework Jung (see [157]).

The vertices of the graph represent the agents using different shapes for

different agent types (i.e. consumer and seller). Size and colour of the

vertices can be used to display additional information on the respective agent

(e.g. the individual state of the respective agent). The edges between the

vertices depict the relations of the agents giving a precise description of each

relation as they are labelled with the respective relation indices. However,

the social graph can also be used to advance into the very mind of each

agent, as it offers a view on the current private ontology state belonging to

an agent of interest. Fig. 41 shows the current state of the private ontology

of a participating agent using the open source ontology editor Protégé (see

[158]).



Agent Software Framework 115

Context menu of selected agent

Protégé

Figure 41: Current ontology state of an participating agent.

6.4 Summary of Chapter 6

In this chapter, the concept of a practical integration of semantic technologies

applied to an agent-based framework has been shown (i.e. AGADE).

Section 6.2 has demonstrated how ontologies can be integrated into

the BDI concept utilising the Jadex agent framework. The high memory

consumption when incorporating many ontology instances has been dis-

cussed, Section 6.2.1 having shown an architecture which can be used to run

simulations in a distributed environment. Section 6.2.2 demonstrated an

AbstractOWLAgent class (on the level of ADL) that describes corresponding

elements of an OWL-BDI agent that enable it to participate in AGADE

simulations. The ontology-based plan selection of an BDI agent has been

described in Section 6.2.3 where agent actions are expressed in the private

OWL ontology. Section 6.2.4 discussed the current limitations of SWRL

bult-ins followed by a recommendation to implement numerical computations
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in Java or any other procedural language and make them accessible to the

ontology through method calls. Having described the well-established query

languages for OWL ontologies in Section 6.2.5, a benchmark has shown

that the OWL API outperforms current available ontology query languages.

Ensuring that all participating agents are synchronised when running a sim-

ulation in a distributed environment with heterogeneous computing power,

the definition of discrete time steps (i.e. round-based) has been considered

in Section 6.2.6.

Finally, the last section has given an overview of AGADE which supports

the development and calibration of dynamic business scenarios.
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7 Results and Validation

This chapter demonstrates how the three-layer ontology architecture can be

used in various simulation scenarios. Different market mechanisms (e.g. opin-

ion leadership) are implemented in the interactive round based multi-agent

simulation framework (AGADE). The process of applying the underlying

AGADE mechanisms to simulation scenarios will be described. The ontolo-

gies are used to make world knowledge available to the agents which can then

determine their actions in accordance with this knowledge. The experiments

give proof-of-concept and are used to validate the proposed three-layer model.

Results obtained using AGADE are compared with simulation results pub-

lished earlier and with data collected through online surveys. This chapter

concludes with a case study where a scenario has been applied as a business

game using AGADE.

The following text passages have been part of the publications [130],

[133], [143] and [159].

7.1 Mobile Phone Market Scenario

The first scenario demonstrates how BDI agents can be used to model

individuals as participants in social structures where they act as potential

buyers in a mobile phone market simulation. Running a mobile phone market

simulation was inspired by TOPSIM (see Section 3.1) and its mobile phone

market scenario which is used in classrooms at the Technische Hochschule

Mittelhessen.

The scenario is modelled in two-stages: The reference scenario opinion

leadership is used to verify the architecture, the personal preferences mecha-
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nism extends this scenario with a more heterogeneous structure of market

participants.

7.1.1 Opinion Leadership

7.1.1.1 Summary

Opinion leadership is a well understood marketing mechanism that has gained

new attention with the advent of social networks [128]. The first scenario

models a rudimentary consumer mobile phone market. Each agent represents

a single consumer and acts in a social structure which is constructed according

to network theoretic algorithms (see Section 4.1). For simplification, a

product is identified by brand name (single dimension). Individuals who want

to buy a new mobile phone can get information from their neighbourhood.

The disposition of a person to buy a new mobile phone is expressed with

the so called happinessValue (see Section 4.2): If this value is below a

given threshold the person will make amends by initiating the purchase of

a new mobile phone. Individuals who are directly connected to an opinion

leader will be directly influenced in their purchasing decision and follow the

opinion leader’s advice by buying the same product. Individuals who are not

connected to an opinion leader look for a friend. If they are not linked to any

person, they will not buy a new phone because of the lack of information.

7.1.1.2 Mobile Phone Market Ontology

While the ADL ontology describes the abstract elements of an BDI agent and

can be used in different scenarios without any changes, the SDL has to be

modelled for the mobile phone market scenario with its product and specific

elements. Furthermore, the individual aspects have to be implemented in
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the IDL.

The process of modelling includes the specialisation of abstract concepts

(see Fig. 42).

<<Concept>>
AgentAction

<<Concept>>
Person

<<Concept>>
Expert

<<Concept>>
…

<<Concept>>
Item

<<Concept>>
…

<<Concept>>
Agent

<<Concept>>
ValuePartition

<<Concept>>
Product

partition

<<Concept>>
OpinionLeader

<<Concept>>
Friend

ADL

SDL

<<Concept>>
MobilePhone

Figure 42: Sub-concepts of the mobile phone market SDL.

Consumers represent people or individuals and these are represented by

agents in the market. Therefore, the concept Person is modelled which gets

the sub-concept of Agent. Mobile phones are traded in the market which are

represented by the conceptMobilePhone which is the specialisation of Product

which again is a sub-concept of Item. For reasons of simplification, there

are no further specialisation of concept MobilePhone. Since individuals are

directly influenced by individuals with high opinion influence (i.e. opinion

leader) in their buying decision, the opinion leaders are represented as

members related to the concept OpinionLeader in the ontology model. In

general, opinion leaders have wide knowledge and understanding of a specific

product category and can be seen as experts. The concept Expert (modelled

as a super-concept) represents this fact. In this scenario, individuals who

are not connected to an opinion leader are going to ask a friend for advice
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who can be seen as an expert in this context as well. Expert is therefore

modelled as a value partition i.e. the set of experts is the union of the two

disjoint subsets OpinionLeader and Friend. Thus opinion leaders and friends

will considered as experts. The following describes how the classification of

OpinionLeader and Friend can be done before the relevant SWRL rules are

shown.

The ontologies of the agents are architectured in a way that they can

only be influenced by a peer agent if its respective opinion influence value

is greater than a specific threshold denoted as β. To make sure that each

hub possesses an opinion influence value in the range of [β, 100] each hub is

given β as a basic value. Its pagerank is multiplied by (1− β) and added to

the base value, leading to the following formula: Let AC be the set of all

consumer agents, ρ the page rank function that assigns the page rank to

each agent a ∈ AC (according to its position in the associated sociogram),

then the opinion influence ϑ of a is calculated as follows:

ϑ(a) =


β + ρ(a) · (1− β) if a is a hub

0 else

Consequently, agents can be ranked according to their influence value. While

hubs are always ranked at the top, ordinary non-hub agents follow in the

ranking. Thus, the opinionInfluence is an element of R with domain Person

and range literal xsd:Integer. This value is what really makes an opinion

leader together with the following rules:

1. Person(myself) ∧ isAcquaintedWith(myself, ?x) ∧

integer[>= β](?y) ∧ opinionInfluence(?x,?y)
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⇒ OpinionLeader(?x)

2. Person(myself) ∧ isAcquaintedWith(myself, ?x) ∧

integer[< β](?y) ∧ opinionInfluence(?x,?y)

⇒ Friend(?x)

The first rule will handle individuals (variable ?x) which are related to

the agent myself as opinion leaders whenever the opinion influence value

to the agent is higher than a given value β. If the value is less than or

equal to β, the second rule will handle individuals as friends. However,

both sets (hubs and non-hubs) are sorted. It is concluded that each existing

non-hub relationship is a friend relationship with medium opinion influence.

This behaviour can be modified by adding an appropriate value for the

classification of the relationship. The person will contact neighbouring hubs

and will choose the one with the highest opinion influence value first. If

the set of opinion leaders is empty, then the person is going to ask a friend

(selected randomly).

The IDL describes the individual factual knowledge of a person (e.g.

which mobile phone is he familiar with) as well as the individual behaviour

(e.g.: if you are unhappy, ask someone popular for advice). The following

rule expresses how the person decides which plan to chose next:

Agent(myself) ∧ hasHappinessValue(myself, ?hvalue) ∧

hasHappinessValueThreshold(myself, ?threshold) ∧

lessThan(?hvalue, ?threshold) ∧ isAcquaintedWith(myself, ?p) ∧

Expert(?p) ⇒ nextAgentAction(myself, opinionLeadershipPlan)

To summarise: An agent a1 which is considered as myself (myself ∈ I)
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and myself has a hasHappinessValue (hhv ∈ R). If hhv is below the

hasHappinessValueThreshold (hhvt ∈ R) and if a1 isAcquaintedWith (iaw ∈

R) with another agent a2 (a2 ∈ I) and a2 is an expert (a2 ∈ Expert ∈ C)

the next agent action of a1 is set to opinionLeadershipPlan (folp ∈ I and

folp ∈ AgentAction ∈ C) by using ontology reasoning techniques. This

action implements the process in which a consumer is selected with the

highest opinion influence value from the set of experts.

Fig. 43 shows the relevant relations at the level of the IDL-layer for each

consumer agent.

IDL

Agent

<<uses>>

ADL

SDL

<<import>>

<<import>> <<Concept>>

Person

hasHappinessValue Single Double
isAcquaintedWith Multiple Agent
hasHappinessValueThreshold Single Double
hasMobilePhone Multiple MobilePhone
hasOpinionInfluence Single Double

myself

<<Concept>>
MobilePhone

…

…
<<Concept>>
AgentAction

<<Concept>>

…

followOpinion
Leadership

<<Concept>>
Agent

<<Concept>>

…

hasAgentAction Some AgentAction

Figure 43: Rudimentary mobile phone market IDL.

The relevant opinion leadership plan which is triggered whenever the next

agent action is set to opinionLeadership is implemented in the framework as

follows (see Algorithm 7: BLAH
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Algorithm 7 Opinion leadership plan.
1: procedure opinionLeadershipPlan(myself)
2: expert = queryOpinionleader(beliefbase)

. select opinion leader with highest influence value
3: if expert is empty then
4: expert = queryFriend(beliefbase) . select a friend randomly
5: end if
6: if expert is empty then
7: quit . terminate plan (not connected to an expert)
8: end if
9: phone = askForRecommendation(expert)

. trigger a communication plan and send a message and ask for a
recommendation

10: if phone is empty then
11: quit . terminate plan (received no recommendation)
12: else if beliefbase does not contain phone then
13: learning(phone) . learning mechanism (see Section 5.4)
14: end if
15: GoShopping(phone) . activate GoShopping goal
16: increase happiness value . (see Appendix F)
17: end procedure

To simplify the simulation, the model does not have any budget restric-

tions, different products and only one seller agent which has an unlimited

storage and no commercial interest.

7.1.1.3 Parameters and Results

Agents and their relations form a small world network of 1000 nodes built

with preferential attachment. Any node that is connected to more than 100

nodes is considered as a hub. The weights of all edges connecting to a node

to one of these hubs is set to an opinion influence of β = 80 which results

in a range from 80 to 100 making the hubs to opinion leaders. Various

simulation experiments have shown that this is a sensible value for β. These

opinion leaders are equipped with a mobile phone (same type of phone).
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Agents have a happiness factor which they aim to maximise and this factor

deteriorates continuously over time representing the internal stimuli (i.e.

need for change) (according to the Stimulus-Response (S-R) model, see

Section 4.2 and Appendix F).

Experiments have shown that the structure of the graph scales up with

a rising number of nodes. Fig. 44 shows a line graph with the number of

phones sold after a simulation of 100 rounds over 100 times. The x-axis

describes the number of rounds and the y-axis describes the distribution

in percent of mobile phones. The number of phones increases rapidly at

the beginning and runs into saturation. This demonstrates that innovation

spreads from hubs through the network.
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Figure 44: Phone distribution after 100 rounds (line indicates averages,
points mark results of single simulation runs).

The distribution of the product corresponds to data published by James

S. Coleman et al. [160]. They studied the adoption rate of a new antibiotic

(tetracycline – code-named Gammanym) by doctors in the field. They
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analysed prescription information and the spread of the use of that new

drug and collected data about the mutual influence of the doctor’s opinions.

They detected that there were early adopters, most of them well connected

to other doctors (namely hubs) and that the use followed the social network

structure.

Although one might argue that comparing medical drug distribution

to the spreading of a specific phone type has some drawbacks, the line of

argumentation that this data makes comparable, is the decision process of

adopting a product (adoption of a new drug by doctors and mobile phone

distribution described here). Both are based on a social structure including

hubs (i.e. inter-connected doctors) and follow a pattern where personal

influence (consulting-intensive) plays a significant role.

Comparing the data of the adoption rate (Fig. 45) with the data created

by the prototype (see Fig. 44) shows significant similarity.

Figure 45: The rate of adoption of Tetracycline by doctors [161, p. 147].
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7.1.2 Personal Preferences

7.1.2.1 Summary

According to Section 4.4 consumers compare attributes of products i.e. price

or technical features of available products and try to rank them according

to their personal preferences. This mechanism is an extension of the mobile

phone market simulation with the aim of modelling more complex scenarios

with a more heterogeneous structure of market participants. Beside buying

a new mobile phone with the opinion influence mechanisms, consumers

can gather information about mobile phones i.e. all technical data and

determine the mobile phone with the highest weighted preference value out

of the set of mobile phones collected. One way to gather information about

mobile phones is picking agents from the social environment who are already

equipped with mobile phones and asking them for advice. Alternatively,

agents can delegate a request to one of their neighbours i.e. all agents the

consumer is connected with, or alternatively contact sellers directly to get

available products instead of asking other consumers.

7.1.2.2 Mobile Phone Market Ontology

The ADL is reused and the SDL (both from previous scenario (see Section

7.1.1)) is extended with a concept PersonWithItem which is a subconcept of

Person (PersonWithItem ⊂ Person). Agents are represented as members

of concept Person again and everything that may be owned in some way

or other by a person belongs to concept MobilePhone using the property

hasProduct (domain set to Person and range set to MobilePhone). The

properties isAcquaintedWith and hasOpinionInfluence are elements of R
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with domain and range Person respectively.

If an agent a1 has a isAcquaintedWith relation to another agent a2

and a2 hasProduct p and p ∈ MobilePhone and p has attributes of a

MobilePhone, a1 can conclude that a2 is a person who owns something

that is a mobile phone. The following SWRL classifies a2 as a member of

concept PersonWithMobilePhone ∈ Person by using ontology reasoning

techniques:

isAcquaintedWith(myself, ?a) ∧ hasProduct(?a, ?p) ∧MobilePhone(?p)

⇒ PersonWithMobilePhone(?a)

Note that p does not have to be defined as a mobile phone as the OWL

reasoner will conclude this from properties of p.

Data property relations are used for describing technical data of mobile

phones quantified by numerical values (see Section 4.4). The calculations are

triggered by the rule evaluation process during the calculation of an agent’s

personal preferences. Relevant data will be retrieved from the agents private

ontology and gets updated immediately with the results calculated in Java

(see Fig. 46).
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hasComparisonPointsSum
"SUM"^^double

any value

Data: items
Result: percentageRate, comparisonSum

forall the items i do
select all data properties on i where relevantForItemComparison=true
max = findMax(dataProperties);
min = findMin(dataProperties);
diffMaxToMin = max-min;

forall the data property do
if lowestIsTheBest then

actualDiff = max - dataPropValue;
else

actualDiff = dataPropValue - min;
end
percentageRate = actualDiff / diffMaxToMin * 100;
write percentageRate in ontology;
percentagePoints = percentageRate * comparisonFactor;
comparisonSum += percentagePoints;

end
write comparisonSum into ontology;

end

Ontology Pseudo Code

<<Concept>>
Item

<<Concept>>
MobilePhone

ConcretePhone

Figure 46: Calculation of scores of phone attributes.

The sum of each calculated comparison point is stored in a data property

hasComparisonPointsSum related to the relevant item in the relevant IDL

of an agent. The results are available to the reasoning process immediately.

Mathematical operations are controlled by annotations in the ontology. Each

element can be annotated with instructions of how it will be handled during

rule evaluation. In particular a comparison annotations is designed which is

used to define how data properties will be evaluated during the calculation of

personal preferences: relevantForItemComparison, compFactor, relatedToDP

and lowestIsTheBest. They can be used for data properties of individuals

of concept Item. While relevantForItemComparison carries a boolean value

that indicates whether the property should be included in the calculation,

compFactor represents the weighting factor. The relatedToDP annotation

names another data property which stores the calculated percentage points.

The lowestIsTheBest annotation changes the orientation of the comparisons:

a lower value is considered better than a higher value. This applies to
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attributes such as retail price or product weight.

After the comparison process is finished the agent is able to decide which

item to buy. Additionally, minimal requirements for a mobile phone can be

defined e.g. the mobile phone must have a battery life span that is at least

as good as a given value. Such minimal requirements can be easily expressed

with SWRL at the IDL layer as they do not require complicated calculations.

Only those products which satisfy all given minimal requirements, are

classified as members of concept ItemAccordingPreferences and are then

ranked according to personal preferences. If there is no item that matches

the minimal requirements, the agent can search for further products by

starting information gathering or alternatively reduce minimal requirements.

The following SWRL rule shows an example of how a minimal requirement

can be expressed:

MobilePhone(?x) ∧ double[>= 8.0](?y) ∧

hasCameraResolutionInMegapixels(?x,?y)

⇒ ItemAccordingPerferences(?x)

Modelling personal preferences and including them in buying plans shows

how individual market behaviour can be expressed in an OWL ontology.

The ontology is again the main basis for the decision-making process for

agents. Integration of Jadex agents and elements of the ontology is reached

by use of annotations.
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7.1.2.3 Parameters and Results

For an appropriate simulation scenario, data was collected by running an

online survey on a restricted group of individuals (72 students and staff from

Edinburgh Napier University). The survey include a quantitative analysis of

the brand distribution, the brand loyalty of a person and the personal buying

behaviour. The model is simplified according to Holland by restricting it

to a subset of available data [162, pp. 45–46]. This setting aims at clarity

and predictability by concentrating on a reduced set of facts. Survey data is

used to set comparison factors and minimal requirements for the products.

The first question regarding to identify personal buying behaviour “Why did

you choose this brand?” had seven possible answers, the following four were

named most often:

1. Decision based on test reports (34 individuals)

�

personal preferences

2. Followed recommendation of friends and family (11 individuals)

�

opinion leadership

3. In-store consultation (3 individuals)

�

specialisation of opinion leadership (i.e. seller is modelled as expert)

4. Owned by many of my friends (socialisation) (2 individuals)

�

new plan: find the maximum of the sum of products of the set of

friends

Coming from a technically oriented organisation most of the participants

used test reports as their main source of information. Test reports typically

list all technical features of a product.

Based on the given answers the following four behaviour patterns are
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modelled:

Decision based on test reports

Every phone the agent is aware of is measured by personal preferences

with respect to minimal requirements defined and the best is selected.

If the agent only knows one phone or none it will gather information

about phone models from every agent it is in social contact with and

will then apply personal preferences. The following SWRL rule, located

in the private ontology, triggers the corresponding plan:

Agent(myself) ∧ hasHappinessValue(myself, ?hvalue) ∧

hasHappinessValueThreshold(myself, ?threshold) ∧

lessThan(?hvalue, ?threshold) ∧

⇒ nextAgentAction(myself, personalPreferencesPlan)

Opinion Leadership

The agent will chose the phone that is possessed by the socially most

important agent in its community (hub). The following SWRL rule,

located in the private ontology, triggers the corresponding plan:

Agent(myself) ∧ hasHappinessValue(myself, ?hvalue) ∧

hasHappinessValueThreshold(myself, ?threshold) ∧

lessThan(?hvalue, ?threshold) ∧ isAcquaintedWith(myself, ?p) ∧

Expert(?p) ∧

⇒ nextAgentAction(myself, opinionLeadershipPlan)
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In-store consultation

An agent following this plan will contact a seller and apply personal

preferences to each phone the seller recommends. The following SWRL

rule located in the private ontology triggers the corresponding plan:

Agent(myself) ∧ hasHappinessValue(myself, ?hvalue) ∧

hasHappinessValueThreshold(myself, ?threshold) ∧

lessThan(?hvalue, ?threshold) ∧ isAcquaintedWith(myself, ?p) ∧

Seller(?p)

⇒ nextAgentAction(myself, clientCounsellingPlan)

Owned by many of my friends (social affiliation)

The agent will chose the phone that most of the agents he is socially

connected to possess. The following SWRL rule located in the private

ontology triggers the corresponding plan:

Agent(myself) ∧ hasHappinessValue(myself, ?hvalue) ∧

hasHappinessValueThreshold(myself, ?threshold) ∧

lessThan(?hvalue, ?threshold) ∧ isAcquaintedWith(myself, ?p) ∧

Person(?p)

⇒ nextAgentAction(myself, socialAffiliationPlan)

Note that agents cannot take all information of available mobile phone

models directly from test reports as the simulation would converge very fast

without influence of the environment. Social influence is considered as very
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important and therefore the test reports are a source of detail information

only. Modelling these behavioural patterns and respective individual personal

preferences resulted in 67 different IDLs (each IDL relates to one survey

response). The survey in which participants were asked to order eight

available attributes according to its subjective importance for them. The

first four attributes were then weighted with the factors 0.4, 0.3, 0.2 and 0.1

meaning that only these four had an effect in the simulation. Non-quantifiable

factors cannot be used in the computation of the overall comparison factor

and were therefore expressed as SWRL rules as in the following, that states

that a phone should have an Android operating system:

Android(?y) ∧ Smartphone(?x) ∧ hasOperatingSystem(?x, ?y)

⇒ ItemAccordingPreferences(?x)

If non-quantifiable attributes were found among the first four attributes

in an individual ordering, the weighting factors were shifted so that the

highest quantifiable factor received the value 0.4.

The mobile phones modelled were taken from a web portal hosted by

a popular German computer magazine8. Each brand in the simulation is

represented by the product that was ranked highest by that portal (one for

each brand). The properties used for the comparison are listed in table 4.

Smartphones are distributed uniformly over all agents at the beginning of

the simulation.

8Available at http://www.chip.de/bestenlisten/Bestenliste-Handys--
index/detail/id/900/, Accessed on January 10, 2015.

http://www.chip.de/bestenlisten/Bestenliste-Handys--index/detail/id/900/
http://www.chip.de/bestenlisten/Bestenliste-Handys--index/detail/id/900/
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Table 4: Properties relevant for the comparison.

Property Range Lowest is the best

hasSpeedValue xsd:double false

hasRecommendedRetailPrice xsd:double true

hasCallingQuality xsd:double false

hasHandlingValue xsd:double false

hasDesignValue xsd:double false

hasCameraResolution xsd:double false

hasBatteryOnlineLifetime xsd:double false

hasOperatingSystem OperatingSystem —

hasBrand Brand —

Agents and their relations form a small world network of 1006 (uniform

distribution – 1006 = 67∗ 15+1; 15 agents for each of the modelled IDL and

one seller agent) agents built with preferential attachment with parameters

set according to Barabási’s (see Section 4.1). Again, the happinessValue is

used to trigger the buying process.

Fig. 47 shows the brand distribution after a simulation of 100 rounds.

While the x-axis describes the number of rounds the y-axis shows the number

of phones for a point in time.
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Figure 47: Brand distribution chart after 100 rounds generated by AGADE.

The following section discusses the similarities of the simulation result as

shown in the following table:

Table 5: Brand distribution in survey compared with brand distribution in
AGADE after 100 rounds.

Brand Distribution

in Survey

Distribution

in AGADE

Difference

Samsung 40.58% 45.77% 5.19%

Apple 21.74% 16.52% -5.22%

LG 13.04% 22.29% 9.25%

HTC 10.14 5.27% 4.87%

Motorola 5.80% 1.99% -3.81%

BlackBerry 4.35% 4.28% -0.07%

ZTE 2.90% 2.09% -0.81%

Huawei 1.45% 1.79% 0.34%
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Looking at Apple, HTC, and LG differences can be observed. The author can

see an explanation in the battery life span where there is a difference in the

relevant models. 15 individuals chose this attribute among the three most

important criteria which caused a relatively high influence on the buying

decision. As reality is simplified by only modelling one phone per brand

details may have been missed that can cause this effect. Another aspect

might be that an apparently rational buying decision based on facts and

figures may mask rather subconscious elements of the decision that were not

mentioned in the survey. However, when concentrating on the upper third,

it consists of the same brands (top-ranked) as well as the brands BlackBerry,

ZTE and Huawei (lower-ranked) are very close to each other.

7.2 Fuel Market Scenario

The fuel market scenario models the launch of a new product into an existing

marketplace. It demonstrates how the proposed three-layer ontology (ADL,

SDL and IDL) architecture can be applied to another market domain and

how user interaction enables the use of AGADE within business games.

The results obtained using AGADE are compared with simulation results

published earlier. This section is part of a publication in the journal of

artificial societies and social simulation [159].

7.2.1 Summary

Kiesling et al. describe an agent-based model for the diffusion of a second

generation biofuel product into the Austrian market [163]. High initial

investments in infrastructure are necessary to launch biofuel into the fuel

market, therefore considerable financial resources are at stake before a
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sufficiently large share of the market can be conquered. This is why the

simulation focuses on the crucial questions of whether biofuel will be accepted

by the market at all and to what extent consumers will actually use biofuel,

abandoning their traditional choice. Kiesling prefers an agent-based model

over alternative approaches because existing mathematical models “do not

distinguish between the individual characteristics of consumers and thus

neglect consumers’ heterogeneity with regard to preferences and behaviour”.

In the simulated fuel market each product is characterised along multiple

dimensions using a variety of attributes such as price, quality, or environ-

mental friendliness. Consumers estimate product characteristics based on

their limited individual level of information which is either fed by personal

experience or by communication with other individuals or advertising. Each

agent represents a single consumer and acts in a social structure which

is constructed according to network theoretic algorithms e.g. preferential

attachment. Kiesling characterises the participating agents by a number of

individual parameters among which we find the so called innovative threshold.

This is used to model individual innovativeness meaning the willingness to

adopt innovations e.g. prefer new products or new brands over established

ones. Even if they would profit from using biofuel instead of conventional

fuel, consumers may still refuse to purchase it just because it is simply too

new. They would rather wait for others and their experiences. This fact

is modelled by means of the innovative threshold. According to Roger’s

model of innovativeness [125], this threshold can be used to categorise the

consumers into innovators, early adopters, early majority, late majority,

and laggards. More parameters are available that describe the role of the

individual as a target of communication and its individual behaviour as a
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consumer. Each agent keeps an information level (short: info(p, a), for

product p and agent a) that may increase through communication with fellow

agents or by being target of marketing activities. This value automatically

decreases over time as information is obsolescing if not updated. The driving

behaviour of an agent is modelled through a parameter that determines fuel

consumption and in consequence the frequency of stops at the filling station.

Furthermore, the agent has a utility threshold that describes the level of

utility a product must have to be considered as a valid alternative. Product

quality is modelled by the product quality value (short: ppq(p, a), for product

p and agent a) which reflects consumer experiences with the product. The

utility value describes the subjective utility a consumer ascribes to a product

and determines product selection.

Agents decide to buy a new product only if the utility value of that

product is higher than the utility threshold of the agent. The utility value of

a product p for an agent a is calculated with the following utility function

(adopted from [164, p. 67]):

ut(a, p) = (1−pricet(p))·wa1,t+pricet(p)·wa2,t+ppqt(p, a)·wa3,t+infot(p, a)·wa4,t

where wi, ta ≥ 0 and
∑

i = 14wai,t = 1 for each agent a and each time period

t. For brevity the index t is omitted meaning that the proposition holds

for each value of t. The weights are related to the price (w1 and w2), the

preference for high quality (w3), and the readiness to buy renewable energy

(w4) which depends on information.

The set of consumers is partitioned into four segments which is reflected

in the four weights of the utility function:
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• price-sensitive consumers with emphasis on low prices (largest segment,

70 percent) have a high value for w1, w2 = 0 and low values for w3

and w4

• consumers with focus on high-quality (15 percent) high value for w3,

w2 = 0 and low values for w1 and w4

• eco-consumers for which price or quality are less important than

environmental friendliness (10 percent) high value for w4, w2 = 0 and

low values for w1 and w3

• snob buyers looking for exclusive products taking high prices as a

signal for high quality (smallest segment, 5 percent) high value for w2,

w1 = 0 and low values for w3 and w4

Note that the sizes of the segments are estimations based on the description

given by Kiesling [163]. Agents are assigned randomly to the segments.

The dynamics of the permeation process of biofuel in the fuel market

is modelled with three types of events that can occur during a simulation:

communication events, need events and experience events. The events are

either triggered stochastically or periodically depending on their nature.

Communication events

Communication events are generated on the set of agents and are

used to model the diffusion of information in the agent society. An

agent is selected randomly and then decides again at random which

of its relations it chooses to communicate with. The number of such

mutual communication events in a single round of the simulation is

proportional to the number of neighbours of the agent chosen. During

the communication the agent with the lower information level adjusts
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this value according to that of the communication counterpart following

an influence factor defined on the connection in the social network

weighing the influence.

Need events

A need event occurs whenever an agent encounters a deficit triggering

a purchasing process. This deficit is indicated when the fuel level falls

below the fuel threshold of the agent. If the agent does not have any

knowledge about biofuel at all, conventional fuel is bought. Otherwise,

the utility value of biofuel is calculated and if the resulting value lies

above the individual utility threshold, the agent chooses biofuel.

Experience events

In between two need events an experience event occurs. Experience

events model personal experiences with a product by directly updating

the quality value of the product.

Marketing activities are scheduled periodically to introduce new products

and to spread information about established products. A seller agent is

modelled as a super hub which can send messages to each available agent.

The agents are selected randomly and have their information level updated.

Note that besides personal communication which follows the structure of

the social environment (word of mouth and opinion leadership) marketing

activities are the second means to spread knowledge in the community.

7.2.2 Fuel Market Ontology

The ADL used in previous simulations (see Section 7.1 and Section 7.2) is

reused without any changes, the SDL has to be adapted to describe the fuel

market with its products and specific elements. Furthermore, specific aspects
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of agent behaviour have to be implemented in the individual ontologies of

seller and consumer. In this process abstract concepts from ADL have to be

specialised by sub-concepts (see Fig. 48).

<<Concept>>
AgentAction

<<Concept>>
Person

<<Concept>>
Consumer

<<Concept>>
…

<<Concept>>
Item

<<Concept>>
…

<<Concept>>
Agent

<<Concept>>
ValuePartition

<<Concept>>
Product

partition

<<Concept>>
PriceSensitive

<<Concept>>
QualitySeeking

ADL

SDL

<<Concept>>
Fuel

<<Concept>>
Snob

<<Concept>>
Eco

<<Concept>>
Seller

Figure 48: Sub-concepts of the biofuel market SDL.

The concept Person (which again is a sub-concept of Agent gets sub-concepts

FuelSeller and FuelConsumer. The concept Fuel represents the available

products in this market, thus it is modelled as a sub-concept of Product which

again is a sub-concept of Item. The four consumer segments are modelled

as a value partition i.e. the set of consumers is the union of the four disjoint

subsets Price-sensistive consumer, Quality-seeking consumer, Eco consumer

and Snob consumer that are again modelled as sub-concepts of Consumer

(taken from SDL) and ValuePartition (taken from ADL). Relevant variables

such as fuel level, travel behaviour, and utility value are modelled as data

properties having the respective concepts as range (see Fig. 49).
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IDL

Agent

<<uses>>

ADL

SDL

<<import>>

<<import>>

<<Concept>>

Consumer

hasFuelLevel Single Double
hasFuelLevelThreshold Single Double
isAcquaintedWith Multiple Agent
hasFuel Single Fuel
hasOpinionInfluence Single Double
hasTravelBehaviour Single Double
hasUtilityValue Single Double
hasUtilityValueThreshold Double
hasW1Value Single Double
hasW2Value Single Double
hasW3Value Single Double
hasW4Value Single Double

myself

<<Concept>>
Fuel

Fossil

…

<<Concept>>
AgentAction

<<Concept>>

…

NeedEvent

<<Concept>>
Agent

<<Concept>>

…

hasAgentAction Some AgentAction

hasRecommendedRetailPrice Single Double

Figure 49: Consumer IDL biofuel.

Fig. 50 shows the IDL for the seller agent which focuses on relevant

activity (i.e. marketing activities). The seller agent is aware of both available

products on the market (fossil fuel and biofuel).

IDL

Agent

<<uses>>

ADL

SDL

<<import>>

<<import>> <<Concept>>
Seller

isAcquaintedWith Multiple Agent
hasBeginAdvertisingInPeriodValue Single Integer

myself

<<Concept>>
Fuel

Fossil

…

<<Concept>>
AgentAction

<<Concept>>

…

Advertising

<<Concept>>
Agent

<<Concept>>

…

hasAgentAction Some AgentAction
currentPeriod Single Integer

Bio

hasInformationLevelValue Single Double
hasQualityValue Single Double
hasRecommendedRetailPrice Single Double

Figure 50: Seller IDL biofuel.

Besides containing the concepts of the market domain ontology, the IDLs

define all relevant facts to model the state as well as the individual behaviour

of the agents making extensive use of SWRL rules. The following SWRL

rules are used to classify each individual agent into one of the four consumer

segments (see previous section):
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Price-sensitive consumer

The following rule determine the agent as a price sensitive consumer

when the value of w1 = 0.6, w2 = 0 and w3, w4 = 0.2.

Consumer(myself) ∧ hasW1Value(myself, ?w1) ∧ equal(?w1, 0.6) ∧

hasW2Value(myself,?w2) ∧ equal(?w2, 0) ∧

hasW3Value(myself,?w3) ∧ equal(?w3, 0.2) ∧

hasW4Value(myself, ?w4) ∧ equal(?w4, 0.2)

⇒ PriceSensitive(myself)

Product-quality consumer

The following rule determine the agent as a quality seeking consumer

when the value of w1, w4 = 0.2, w2 = 0 and w3 = 0.6.

Consumer(myself) ∧ hasW1Value(myself, ?w1) ∧ equal(?w1, 0.2) ∧

hasW2Value(myself,?w2) ∧ equal(?w2, 0) ∧

hasW3Value(myself,?w3) ∧ equal(?w3, 0.6) ∧

hasW4Value(myself, ?w4) ∧ equal(?w4, 0.2)

⇒ QualitySeeking(myself)

Eco consumer

The following rule determine the agent as a eco consumer when the

value w1, w3 = 0.1, w2 = 0 and w4 = 0.8.
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Consumer(myself) ∧ hasW1Value(myself, ?w1) ∧ equal(?w1, 0.1) ∧

hasW2Value(myself,?w2) ∧ equal(?w2, 0) ∧

hasW3Value(myself,?w3) ∧ equal(?w3, 0.1) ∧

hasW4Value(myself, ?w4) ∧ equal(?w4, 0.8)

⇒ Eco(myself)

Snob consumer

The following rule determine the agent as a snob consumer when the

value w1 = 0, w2 = 0.6 and w3, w4 = 0.2.

Consumer(myself) ∧ hasW1Value(myself, ?w1) ∧ equal(?w1, 0) ∧

hasW2Value(myself,?w2) ∧ equal(?w2, 0.6) ∧

hasW3Value(myself,?w3) ∧ equal(?w3, 0.2) ∧

hasW4Value(myself, ?w4) ∧ equal(?w4, 0.2)

⇒ Snob(myself)

The SWRL rule which is used to determine the appropriate plan of a

consumer agent for the next simulation round is formulated as follows:

Consumer(myself) ∧ hasFuelLevel(myself, ?hfl) ∧

hasFuelLevelThreshold(myself, ?hflt) ∧ lessThan(?hfl, ?hflt)

⇒ hasNextAction(myself, needEventPlan)

If the fuel level value of consumer falls below its individual threshold, a

need event is triggered i.e. the next agent action will be set to eedEventPlan

by using ontology reasoning techniques. This plan implements the process

in which the product is chosen.
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The following SWRL rule is used to determine the corresponding mar-

keting activity plan of the seller agent. The agent is going to run the

advertisingPlan when the period value is greater than or equal to a given

value (i.e. 80 which corresponds to advertising setting to Kiesling).

Seller(myself) ∧ currentPeriod(myself, ?period) ∧

hasBeginAdvertisingInPeriodValue(myself, ?adv) ∧

greaterThanOrEqual(?period, adv)

⇒ hasNextAction(myself, advertisingPlan)

Again, agents communicate with other agents (e.g. they exchange infor-

mation about product details) and this communication refers to knowledge

items that belong to the IDL layer. In this scenario, agents exchange in-

formation about biofuel which may be totally new for the receiving agent.

The agent then add new facts (e.g. information level of biofuel or price

value) acquired through this information exchange into its belief base. When

incorporating a new concept into its IDL (e.g. introducing biofuel through a

marketing campaign), the agent can add the concept into its IDL directly

because of sharing SDL and ADL (see Section 5.4).

7.2.3 Parameters and Results

Agents and their relations form a small world network of 30000 consumer

agents and one seller agent built with preferential attachment using the

Barabási algorithm which builds the network iteratively by adding agents to

an initial graph (see Section 4.1.2). The overall number of agents was chosen

due to limitations of the available hardware (two servers, each equipped

with two quad core CPUs and 128GB RAM). The number of connections of
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a new agent was set to 225. Any agent that is connected to more than 3000

agents is considered a hub. Due to the parameter settings of the network

construction, approximately 1 percent of agents are hubs. The weight of

the edges connecting nodes to a hub is randomly set to an opinion influence

value between 0.8 and 1. This lets hubs act as opinion leaders who strongly

influence buying decisions of other consumers through communication events

(see Section 4.3). Experience events for an agent occur randomly in each

round after the first time the agent has bought biofuel.

The travel behaviour of an agent is represented by a stochastic variable

which is initially calculated for each agent and based on a normal distribution

with a mean of 0.3 and a standard deviation of 0.05. In each time period

the fuel level is reduced by this value. The individual threshold that leads

to a stop at the filling station (see above fuel level threshold) is set to a

random number between 0 (exclusive) and 0.20 (inclusive). The price value

of biofuel is set to 1.20e and the price value of fossil fuel is set to 1.00e.

Initially, fossil fuel is the only fuel consumers can buy. At the beginning of

the simulation the consumers are not even aware that there is an alternative

product such as biofuel. The only fuel which is modelled in the private

ontology is fossil fuel. When biofuel is launched into the market, the seller

agent initiates marketing activities to spread information about the new

product. Agents add this new information to their private IDL (see Section

5.4). The timing of the product launch can be chosen arbitrarily. For

comparison reasons with Kiesling, the point in time is to time period 85.

However, this has no significant effect on the curve progression, but only

shifts the graph on the time axis.

Marketing activities focus on increasing the information level of each
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agent within reach of the activity. A marketing activity contains the variable

information content value. This is set to a random value between 0 and 1 and

models the amount of information that is carried by the activity. The amount

of marketing activities is limited to 1% of the overall number of participating

agents in each period. Whenever an agent is reached by a marketing activity,

the information content value is added to biofuel information level of the

agent. If an agent is affected by more than one marketing activity in one

time period, the maximum of the information content values of all activities

will be added. As described above the decision of buying biofuel instead of

fossil fuel finally depends on the individual utility values and the individual

thresholds.

The time horizon is set to 400 rounds (i.e. time periods) and a total of

100 runs with varying random seeds. As expected, the results (see Fig. 51

and Fig. 52) are very similar to Kiesling’s results. Differences occur because

not all of Kiesling’s parameter settings were published with exact values.

Reasonable assumptions were made here.
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Figure 51: Biofuel adoption curve (points mark results of single simulation
runs, thick line indicates averages by AGADE and the thin line is the average
line published by Kiesling).
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Figure 7: Unit sales volumemarket share (data generated by AGADE)

Business Game Considerations

3.16 Business games are a specific typology of what is called a serious game. The concept combines business sim-
ulations and games to support management and entrepreneurial training (Baldissin et al. 2013, p. 3). Business
games are used as an educational mean to go beyond mere theoretical contemplation and to simulate prac-
tice. They provide students with the opportunity to develop decision-making skills and improve confidence in
situations of risk anduncertainty through the simulation ofmanagement practices across the enterprise in ever
more complex real-life contexts.

3.17 We have described a scenario where marketing activities are crucial for placing a new product into a saturated
market. Here challenges certainly lie in a limited marketing budget and the predictability of the e�ects of ap-
pliedmarketingmeans. The overall goal is of course to increase revenues. In this case business gameswill train
the ability to plan e�ective campaigns that make optimal use of a given budget.

3.18 Providing a user interface through which parameter settings can bemodified during the simulation AGADE lets
users intervene in the simulations. Users can experiment with various settings and investigate strategies that
may accelerate the adoption of biofuel by the market and thus increase the market share. A�er each period
users will receive feedback that describes the evolution of the market and can then draw conclusions. Users
can analyse and contemplate results and decide what to do in the next period. Note that existing equation-
based simulations usually do not present results to participants with real-time animations, as they can only
display the final output of equations at the end of each round. A possible action could be cutting consumer
priceswhich of coursewill have an impact on the sales figure andon the revenues. This impactwill immediately
be reflected by the system and the calculations of the next round. A possible hypothesis to be tested is ’If you
win opinion leaders, you will convince their community as well’. This hypothesis can be tested by simulating
target marketing (Weinstein 2013, pp. 133-154), which can be done by identifying hubs in the social network
and observe how word-of-mouth mechanisms let information di�use through the network. Social network
analysis can identify hubs by simply looking for agents with a high number of connections to fellow agents. As
findingopinion leaders in realworld communities is di�icult andexpensive estimating suche�ects in abusiness
simulation is well worth the e�ort.

3.19 The simulation itself can be controlled through the GUI displayed in Fig. 8. A simulation can be halted between
any two rounds by clicking the GUI control buttons located at the top so that further inspection of the current
state of a�airs is possible. Data describing crucial aspects of the current simulation is displayed continuously.
The right hand side of the screen is a visualisation of the social structure formed by all participating agents. The
vertices of the graph represent the agents using di�erent shapes for di�erent agent types. Size and colour of
the vertices can be used to display additional information on the respective agent (e.g. individual state). The
edges between the vertices visualise details about that relation and are labelled with the respective relation
indices (e.g. opinion influence level). Importantly, the social graph can be used to inspect the verymind of each
agent, as it allows to take a look at the current ontology state belonging to an agent of interest. The intention
of a consumer agent to refuel its car is indicated by setting the colour of the respective vertex to red. The user
interface control is displayed at the start of the simulation and then a�er a predefined number of steps (see
Fig. 9). At each stop the user can specify the amount of money to be invested inmarketing activities in the next
rounds and select a marketing strategy (i.e. target marketing). Beyond the price of the product under obser-
vation (here biofuel) can be adjusted. The feature that the social graph and agent’s ontology is contentiously
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Figure 52: Unit sales volume market share (data generated by AGADE).

7.3 Business Game Experiments

The previous section described a personal preference scenario where market-

ing activities are crucial for placing a new product into a saturated market.

Here, challenges certainly lie in a limited marketing budget and the unpre-

dictability of the effects of applied marketing means. The overall goal is to

increase revenues. In this case, business games will train the ability to plan

effective campaigns that make optimal use of a given budget.

With regard to Section 3.1, business games are a specific subspecies of

what is called a serious game. The concept combines business simulations

and games to support management and entrepreneurial training [14, p. 3].

Business games are used as an educational means to go beyond mere theo-

retical contemplation and to simulate practice. They provide students with

the opportunity to develop decision-making skills and improve confidence in

situations of risk and uncertainty through the simulation of management

practices across the enterprise in ever more complex real-life contexts.

This section shows how the fuel market scenario can be applied as a

business game using AGADE.
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7.3.1 Summary

Providing a user interface through which parameter settings can be modified

during the simulation, AGADE lets users intervene in the simulations. Users

can experiment with various settings and investigate strategies that may

accelerate the adoption of biofuel by the market and thus increase the

market share. After each period, users will receive feedback that describes

the evolution of the market and can then draw conclusions. Users can

analyse and contemplate results and decide what to do in the next period.

Note that existing equation-based simulations usually do not present results

to participants with real-time animations, as they can only display the final

output of equations at the end of each round. An example for a possible

action is cutting consumer prices which of course will have an impact on the

sales figures and revenues. This impact will immediately be reflected by the

system and the calculations of the next round. A possible hypothesis to be

tested is “If you win opinion leaders, you will convince their community as

well”. This hypothesis can be tested by simulating target marketing [165, pp.

133-154], which can be done by identifying hubs in the social network and

observing how word-of-mouth mechanisms let information diffuse through

the network. Social network analysis can identify hubs by simply looking for

agents with a high number of connections to fellow agents. As finding opinion

leaders in real-world communities is difficult and expensive, it is well worth

the effort to examine the effects of opinion leaders in a business simulation

before starting to locate them in the community. Without simulations this

would have to be done with field experimentation (compare [160]).

The simulation itself can be controlled through the GUI (see Section
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6.3). The user interface control is displayed at the start of the simulation

and then after a predefined number of steps (see Fig. 53). At each stop the

user can specify the amount of money to be invested in marketing activities

in the next rounds and select a marketing strategy (i.e. target marketing).

Beyond that, the price of the product under observation (here biofuel) can

be adjusted. The feature that the social graph is continuously updated

visualises the dynamics of information diffusion.

Figure 53: AGADE user input dialog.

An experiment was conducted with two restricted groups of students

in the classroom (10 first year bachelor’s program students and 20 second

year master’s program students, both business informatics) to investigate

how simulation settings respond to business decisions at the Technische

Hochschule Mittelhesen, Germany. Two groups of students with different

levels of knowledge of the topic “marketing” and with different levels of

experience in the use of business games were selected. While the first year

bachelor students had never actively taken part in business games in the

classroom before, the master program students already had used them and
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were experienced in their use and effect (e.g. Topsim and Simultrain (see

Section 3.1)). The experiment was divided into three phases: instructions,

pre-experiment test and post-experiment test. The instructions provided in

the first phase described the purpose of the experiment and gave instructions

on how to use AGADE. The pre-experiment test consisted of questions about

the law of demand and supply and other questions regarding marketing

effects. The intention here was to establish a mental preparation of the

test individuals towards the scenario of the game and eventually to assess

the subjects’ knowledge about particular economic concepts. The post-

experiment was a questionnaire in which the reaction of the subjects and

the user experience made after running the simulation was to be measured.

For each question, the usual 5-point Likert scale from strongly disagree to

strongly agree was used (see [166]). The overall duration of the experiment

was 90 minutes. Table 6 shows the list of questions used.
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Table 6: Survey questions

ID Question

q1 The simulation course meets my expectations

q2 The simulation appears to be realistic

q3 Playing the simulation gave me new insights into market dynamics

q4 The simulation explained possible effects of marketing activities

q5 The simulation responds to my decisions

q6 The scenario was easily comprehensible

q7 The scenario was complex

q8 The scenario is suitable for a business game

q9 The scenario is suitable for a marketing training

q10 My theoretical marketing knowledge was adequate

q11 Practical relevance

q12 Encourages teamwork

All students played an individual game using the biofuel scenario (see

Section 7.2). Player inputs were directly sent to the seller agent by using the

user interface control as shown in Fig. 53. The following section discusses

the survey responses.

7.3.2 Results and Discussion

This section deals with the results of the questionnaire in Table 6 from both

student groups. Fig. 54 compares the mean values of the answers for both

groups.
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Figure 54: Results of the questionnaire

Both student groups responded with similar answers with the exception

of question 10. The significant lower value of question 10 is due to the

fact that one group was a first-year student group which had not visited a

marketing lecture yet. Overall, the students reacted as was expected before

the experiment (see questions 1, 2 and 5). The survey results show that the

scenario is principally applicable for business simulations (q3, q4, q6, q7,

q8, q9, q11, q12). Despite the different levels of knowledge of both groups

there are only slight differences in the results. Note that both groups were

made familiar with a necessary minimum of marketing theory before the

experiments. All in all, the simulation of the consumer market was accepted

as a valid model of reality and shows the applicability of the concept of using

ontology based BDI agents to model consumer behaviour and communication.

A particular positive aspect is that this approach allows to inspect the current

state of the private ontology of an agent of interest at any time. The master

student group used this quite often and highlighted such a possibility, as it

gives insight into the agents’ decisions and behaviour. Master students have

used this possibility, because they have been made familiar with basic OWL

concepts in a knowledge management lecture before, which the bachelor

students have not.
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7.4 Summary of Chapter 7

Chapter 7 has demonstrated how the three-layer ontology architecture

can be used in various simulation scenarios. Section 7.1.1 has shown a

simulation where agents act as potential buyers in a mobile phone market

using the opinion leadership marketing mechanism. The agents were directly

influenced from their neighbourhood through communication. The resulting

distribution chart (generated by AGADE) corresponds to data published

earlier. An extension of the mobile phone market with a more heterogeneous

structure of market participants has been given in Section 7.1.2 (i.e. personal

preferences). Simulation data was collected by running an online survey

on a restricted group of individuals (students and staff from Edinburgh

Napier University) and each survey response has been related to one private

ontology. The brand distribution (generated by AGADE) was compared

with brand distribution in the survey.

The three-layer ontology architecture has been applied to another market

domain (i.e. fuel market) which has been described in Section 7.2. This

scenario models the launch of a new product (i.e. biofuel) into an existing

marketplace. Results were compared to data published earlier.

Finally in Section 7.3, the fuel market scenario has been used in an

experiment with two restricted groups of students in the classroom where

users have modified the parameters during the simulation. Survey responses

have shown that the scenario is principally applicable to business simulations

and the consumer market was accepted as a valid model of reality.
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8 Conclusions and Future Research

In this chapter, the main findings of this thesis are summarised and reflected

upon with regard to the research questions stated in Section 1.4. General

conclusions are drawn and recommendations for future research are derived.

8.1 Conclusion on Ontology Based Business Simula-

tions

This thesis has described a generic architecture to establish a connection

between the world of agents and the world of ontologies. Multi-agent

systems consist of agents that mutually interact and exist in an environment

(see Section 2.1). Therefore, they are a natural instrument for modelling

complex dynamic systems as they allow to directly describe components

and interactions of such a system. Ontologies provide a means to equip

agents with knowledge of their internal and external world thus extending

modelling capabilities (see Section 2.2).

Business simulations are tools that can be applied to analyse and to

understand complex structures e.g. organisations or markets (see Section

3.1). Therefore, the integration of ontologies and agents is suited to create

business simulations. The agent-based framework AGADE (see Chapter 6)

facilitates the creation of simulations with semantically advanced technology

in the context of business simulations. Ontologies implement the knowledge

base of each agent representing knowledge about their environment and their

relations and their individual behaviour. Standardised formal languages

like OWL (see Section 2.3) deliver a promising tool for the implementation
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of these knowledge bases. This idea consequently follows [16], but the

techniques developed here are unique to this thesis.

8.1.1 Research Question 1

To what extent can software agent methodologies be utilised in the context of

a business game to enhance realistic gaming behaviour?

Unlike previous research into classical business game simulations built

mathematically on systems of equations, AGADE shows an integration of a

multi-agent based system and semantic technologies modelling individuals

as core components of the simulations. Agents are parts of an overall given

social structure (e.g. small-world network – see Section 4.1.1) which is not

necessarily transparent for each agent in its full extent. The part of the

structure the agent is aware of, is encoded in an OWL ontology available to

each agent (i.e. IDL). Mutual influence of agents also is encoded there.

This thesis has demonstrated how different principal behaviours (see

Chapter 4) of agents can be implemented by means of semantically enhanced

BDI agents. Word-of-mouth dynamics and personal preference behaviour

have been implemented in homogeneous as well as inhomogeneous commu-

nities of agents (see Section 7.1). Real-world communities were modelled

and the results of the simulations compared with data drawn from surveys

in this community. Furthermore, a scenario in which a new product is

launched into a saturated market shows the potential of the approach to

be applied in more complex contexts (see Section 7.2). Relevance of the

model and the results has been checked through comparison with previously

published material and field experiments with students in which AGADE

has been used successfully as a rudimentary business game (see Section 7.3).
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Accompanying surveys were used to measure the users’ satisfaction with

handling and results of the simulation.

Equipping each agent with its own individual IDL, as was done in the

mobile phone scenario, becomes too expensive in large scale simulations. For

the implementation of the personal preference scenario (see Section 7.1.2),

the behavioural patterns and respective individual personal preferences

resulted in 69 different IDLs which is a time-consuming task which can be

reduced significantly by grouping agents according to relevant characteristics

thus reducing the number of different ontologies to be implemented and by

reusing available ontologies through import.

8.1.2 Research Question 2

How can ontologies handle and influence the activities of BDI agents?

Ontologies are used as a knowledge base for agents and allow access to

powerful standardised inference engines that offer leverage for the agents’

decision processes. Each agent is equipped with a personal instance of

a reasoner and a personal private ontology (see Section 5.2). Personal

behaviour, e.g. decision making, and effects of social communities are part

of the model which is the basis for business games that simulate effects of

decision making in communities. Proof of concept was given in a case study

with a scenario (opinion leadership – see Section 7.1.1) in which agents are

part of a typical social structure (small world network). The information

about this structure is made available to the agents so that they may be

aware of their position and their importance in their social environment.

The personal preference scenario (see Section 7.1.2) shows a more het-

erogeneous distribution of market participants in the same market segment
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(mobile phone market) where consumers not only base their buying decision

on opinion leaders, but also try to find the appropriate product according

to their personal preferences. The process of collecting information about

products is shown using message transfer and simple learning mechanisms

(see Section 5.4). In this scenario, 67 different private IDL ontologies model

the individual behaviour of consumers which may choose products from a

pool of real-world phones and brands.

The third scenario (fuel market scenario – see Section 7.2) models the

launch of a new product into an existing marketplace, namely biofuel into

the saturated motor fuel market of Austria. A previously published agent-

based model was reproduced using AGADE with its semantic components.

Assessing the implementation processes of theses scenarios one important

aspect can be emphasised: The use of ontologies considerably reduces coding

efforts as behaviour can be declared with rules rather than with Java code.

8.1.3 Research Question 3

How can ontologies be adapted to different simulation scenarios? OWL

ontologies allow a modular structure with reuse as existing ontologies can

be imported. In their paper Heijst et al. present a number of ways how

ontological descriptions of the contents of domain knowledge can be con-

structed and used to improve the knowledge engineering process [167]. They

underpin that an application-specific ontology should be constructed early

in the knowledge engineering process. In this thesis, a layered ontology is

derived in which domain knowledge is hierarchically separated by its degree

of generality. The three-layer ontology model approach (ADL, SDL and IDL

– see Section 5.3) allows agents to share knowledge and create a basic common
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understanding of their environment while enabling reuse of fundamental

concepts and simple learning mechanisms. The generic approach allows the

simulation of different scenarios.

This thesis has demonstrated how the three-layer ontology architecture

can be applied to different simulation scenarios. While the ADL can typically

be reused unchanged, given SDL structures have to be adapted to the relevant

domain e.g. a market of a specialised type of product. The IDLs define all

relevant facts to model the state as well as the individual behaviour of each

agent making extensive use of SWRL (see Section 5.1.2) rules.

AGADE combines a multi-agent based system with semantic technologies

for modelling each aspect of individual behaviour in different scenarios e.g.

a dynamic market environment. Furthermore, classroom experiments in

which students had to implement and run typical multi-agent scenarios as

pharmaceutical supply chain (see [168]) and credit risk (see [169]). The results

of the projects and the students’ feedback have been used to confirm and

improve the generic approach. The results of all simulation scenarios prove

the principal applicability of the three-layer ontology architecture. Although,

the scenarios can also be reproduced with other agent simulation frameworks,

the flexibility and versatility of AGADE justify this approach. AGADE can

potentially support arbitrary simulations as long as the underlying structure

of the scenario can be modelled by means of ontologies (individual aspect)

and social structure.
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8.2 Future Work on Ontology Based Business Simula-

tions

One principle area for further investigation within ontology based business

simulations, is the creation of ontologies of a higher degree of generalisation.

Here more general scenarios and behavioural patterns can be modelled.

Basically, this means creating what is usually called an upper ontology.

Both ADL and SDL can be generalised to support additional marketing

theories and behavioural patterns (e.g. the price/value hypothesis, supply

and demand model or customer loyalty) as well as scenarios beyond that

(e.g. organisational behaviour). Available upper ontologies such as the Base

Formal Ontology, Cyc (or OpenCyc) and to a certain extend WordNet are a

starting points for these investigations (see [170]).

Modelling heterogeneous structures with a high number of individual

ontologies is time-consuming and requires tedious work on details. The

efficiency of the approach may be increased by using larger building blocks

and by using a domain specific language designed to both accelerate and

facilitate the development of powerful AGADE components. This language

can improve the readability allowing developers to focus on what is important

and making development less error-prone.
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B Description Logic Symbols

In logic, a set of symbols is commonly used to express logical representation.

The following table lists the basic logic symbols.

Table 7: Basic logic symbols (adopted from [171]).

OWL Constructor Notation Semantics

owl:Thing > is a special concept with every

individual as an instance i.e.

Thing

owl:Nothing ⊥ empty concept

intersectionOF C1 u ... u Cn Human u ... uMale

unionOf C1 t ... t Cn Male t ... t Female

complementOf ¬C ¬Male

oneOf {x1} t ... t {xn} {bob} t ... t {alice}

allValuesFrom ∀R.C ∀hasParent.Human

someValuesFrom ∃R.C ∃hasParent.Doctor

maxCardinality > nR > 2hasParent

minCardinality 6 nR 6 1hasParent

subClassOf C1 v C2 MobilePhone v Product

equivalentClass C1 ≡ C2 Woman ≡ HumanuFemale

subPropertyOf P1 v R2 hasDaughter v hasChild

equivalentProperty R1 ≡ R2 cost ≡ price

transitiveProperty R+ v R anchestor+ v ancestor

type a : C Alice : HappyMother

property 〈a, b〉 : R 〈Alice, Bob〉 : hasChild
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C Ontology Modelling Notation

There is no standard graphical ontology representation in the literature so

far. Hadzic and colleagues presented a modelling notation syntax that is

inspired by UML diagrams [17]. The following shows the relevant ontology

modelling notations which are used in this thesis.

Table 8: List of modelling notations.

Concept Notation Semantics

Class
<<Concept>>

X

<<Concept>>
Thing

<<Concept>>
X

<<Concept>>
Y

Ontology class X.

Thing Class

<<Concept>>
X

<<Concept>>
Thing

<<Concept>>
X

<<Concept>>
Y

All classes in ontol-

ogy are subclasses

of class Thing.

Generalisation

<<Concept>>
X

<<Concept>>
Thing

<<Concept>>
X

<<Concept>>
Y

To express either

class-subclass

or property-sub

property.

<<Concept>>
X

<<Concept>>
Thing

<<Concept>>
X

<<Concept>>
Y

Class Y is subclass

of class X.
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Table 8: List of modelling notations.

Concept Notation Semantics

<<Object property>>

Y1

<<Object property>>

Y2

Object property

Y2 is sub property

of object property

Y1.

<<Concept>>
X

<<Concept>>
Y1

<<Concept>>
Y2

<<Concept>>
Y3

disjoint

Disjoint classes Y1,

Y2, Y3.

<<Concept>>
X

<<Concept>>
Y1

<<Concept>>
Y2

<<Concept>>
Y3

decompositior

Decomposed

classes Y1, Y2, Y3.

<<Concept>>
X

<<Concept>>
Y1

<<Concept>>
Y2

<<Concept>>
Y3

partition

Partition classes

Y1, Y2, Y3.

Data type property
<<Datatype property>>

Y Single String

<<Concept>>

X

Y Single String

Data Type prop-

erty Y which is

functional and its

type is String.
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Table 8: List of modelling notations.

Concept Notation Semantics

<<Datatype property>>

Y Single String

<<Concept>>

X

Y Single String

Class X has data

type property Y

which is functional

and its type is

String.

Object property

<<Datatype property>>

Y Single String

<<Concept>>

X

Y Single String

<<Object property>>

A Multiple

Object prop-

erty A which is

non-functional.

<<Concept>>

X

A Multiple Y

<<Concept>>
X

or

<<Concept>>
YA

Class X has rela-

tions with class

Y. The relation

considers as an

object property

named A which

is non-functional

property.

Property character-

istic

- Functional prop-

erty x
1

x

x1

A functional prop-

erty X.

- Non-functional

property

x
1

x

x1

A non-functional

property X.
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Table 8: List of modelling notations.

Concept Notation Semantics

- Inverse functional

property

x
1

x

x1

A inverse func-

tional property

X.

- Symmetric prop-

erty

x
1

x

x1

x

x

A symmetric prop-

erty X.

- Transitive prop-

erty

x
1

x

x1

x

x
A transitive prop-

erty X.

Class instance
<<Concept>>

Y
a

a is individual of

class A.

Property
<<Concept>>

X

A Multiple Y
B Multiple Z

A: a

B: b

a is individual of

property A and b

is an individual of

property B.



168

D Certificate

PAAMS includes a special track for demonstrations. Demonstrations are

intended to exhibit practical applications of multi-agent systems. The demo

presentation was awarded with an IBM demonstration award. AGADE

receives the third award of scientific excellence (see Fig. 55).

Figure 55: IBM Award of Scientific Excellence.
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E RMI vs. Web Services

This section shows the source code used for the benchmark written in Java.

Web Services:

public class WebServiceServer {

/∗∗
∗ Starts a simple server to deploy the web service.
∗/

public static void main(String[] args) {
String bindingURI = "http://localhost:9898/md5WebService";
MD5WebService webService = new MD5WebService();
Endpoint.publish(bindingURI, webService);
System.out.println("Server started at: " + bindingURI);

}
}

@WebService
public class MD5WebService {

@WebMethod
public String hashString(String input) {

try {
MessageDigest msgDigest = MessageDigest.getInstance("MD5");
byte[] inputBytes = input.getBytes();
byte[] hashedBytes = msgDigest.digest(inputBytes);

StringBuffer sb = new StringBuffer();
for (int i = 0; i < hashedBytes.length; i++) {

sb.append(Integer.toString((hashedBytes[i] & 0xff) + 0x100, 16)
.substring(1));

}

return sb.toString();
} catch (NoSuchAlgorithmException ex) {

ex.printStackTrace();
return "";

}
}

}

public class WebServiceClient {

/∗∗
∗ Starts the web service client.
∗/

public static void main(String[] args) {
MD5WebServiceService client = new MD5WebServiceService();
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long t = System.currentTimeMillis();
MD5WebService md5Webservice = client.getMD5WebServicePort();
for (int i = 0; i < 1000; i++) {

md5Webservice.hashString("admin");
// System.out.println("MD5 hash string: " + hash);

}
System.out.println(System.currentTimeMillis() − t);

}
}

RMI:

public class ServerEndpoint {
public ServerEndpoint() {

try {
System.setProperty("java.rmi.server.hostname", "localhost");
// System.setProperty("java.rmi.transport.tcp.maxConnectionThreads",
// Integer.MAX_VALUE);
Registry registry = LocateRegistry.createRegistry(8888);
registry.rebind("Server", new ServerImpl());

} catch (RemoteException ex) {
System.out.println(ex.getMessage());

}
System.out.println("Server is running");

}
}

public interface IServer extends Remote {

public String hashString(String s) throws RemoteException;

}

public class ServerImpl extends UnicastRemoteObject implements IServer {

protected ServerImpl() throws RemoteException {
super();

}

public String hashString(String s) throws RemoteException {
MessageDigest msgDigest = null;
try {

msgDigest = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException e) {

// TODO Auto−generated catch block
e.printStackTrace();

}
byte[] inputBytes = s.getBytes();
byte[] hashedBytes = msgDigest.digest(inputBytes);
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StringBuffer sb = new StringBuffer();
for (int i = 0; i < hashedBytes.length; i++) {

sb.append(Integer.toString((hashedBytes[i] & 0xff) + 0x100, 16).substring(1));
}

return sb.toString();
}

}
public class Client {

private IServer server;

public IServer getServerConnection() {
if (server == null) {

try {
server = (IServer) Naming.lookup("//" + "127.0.0.1" + ":8888/Server");

} catch (MalformedURLException | RemoteException | NotBoundException e) {
e.printStackTrace();

}
}
return server;

}

public static void main(String[] args) throws RemoteException {

Client c = new Client();
long t = System.currentTimeMillis();
IServer serverConnection = c.getServerConnection();
for (int i = 0; i < 1000; i++) {

serverConnection.hashString("HelloWorld");
}
System.out.println(System.currentTimeMillis() − t);

}

}
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F Calculation of Happiness Value

The following pseudo code shows the mathematical operation of the hap-

piness value used in the mobile phone market scenario (see Section 7.1).

This algorithm has proved to be appropriate for running the mobile phone

scenarios after intensive test-runs.

Algorithm 8 Update happiness value.
Ensure: triggered after each round
function updateHappinessValue(currentHappinessValue)

if rand < 0.5 then
if currentHappinessValue > 5 then

happinessValue = currentHappinessValue - 5
end if

else
if currentHappinessValue > 30 then

happinessValue = currentHappinessValue - randValue(30)
else if currentHappinessValue > 15 then

happinessValue = currentHappinessValue + randValue(70)
else

happinessValue = 0
end if

end if
return happinessValue

end function
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