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Abstract 

 

The rapid growth of e-commerce has many associated security concerns. Thus, several 

studies to develop secure online authentication systems have emerged. Most studies begin 

with the premise that the intermediate network is the primary point of compromise. In this 

thesis, we assume that the point of compromise lies within the end-host or browser; this 

security threat is called the man-in-the-browser (MITB) attack. MITB attacks can bypass 

security measures of public key infrastructures (PKI), as well as encryption mechanisms for 

secure socket layers and transport layer security (SSL/TLS) protocol. This thesis focuses on 

developing a system that can circumvent MITB attacks using a two-phase secure-user 

authentication system, with phases that include challenge and response generation. The 

proposed system represents the first step in conducting an online business transaction.  

The proposed authentication system design contributes to protect the confidentiality of the 

initiating client by requesting minimal and non-confidential information to bypass the MITB 

attack and transition the authentication mechanism from the infected browser to a mobile-

based system via a challenge/response mechanism.  The challenge and response generation 

process depends on validating the submitted information and ensuring the mobile phone 

legitimacy. Both phases within the MUAS context mitigate the denial-of-service (DOS) 

attack via registration information, which includes the client’s mobile number and the 

International Mobile Equipment Identity (IMEI) of the client’s mobile phone. 

This novel authentication scheme circumvents the MITB attack by utilising the legitimate 

client’s personal mobile phone as a detached platform to generate the challenge response and 

conduct business transactions. Although the MITB attacker may have taken over the 

challenge generation phase by failing to satisfy the required security properties, the response 

generation phase generates a secure response from the registered legitimate mobile phone by 

employing security attributes from both phases. Thus, the detached challenge- and response 

generation phases are logically linked.  
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1 Introduction 

 

1.1 Background 

Since the early days of e-commerce revolution, a world of cybercriminals emerged and 

produced a profitable online fraud business with a low risk of being caught [1]. An 

intermediate network has always been assumed as the point of compromise. Although this 

was true in the early days of networked computers, the internet evolution has allowed 

adversaries to live closer to and within end hosts [2]. Hence, a large amount of attention in 

academia and industry has been inspired to investigate more into the concept of developing 

a secure user-authentication system to secure the commercial transactions among the 

organization and individuals with respect to stopping host adversaries.  

Most traditional e-commerce user-authentication systems involve the submission of 

confidential information, which can be prone to a number of attacks, such as a Trojan that 

infects the web browser, namely the man-in-the-browser (MITB) attack [1]. The strategy of 

this type of attack steals money from an online transaction [3] because of its ability to 

manipulate and intercept all incoming and outgoing information [1, 4]. Although the MITB 

attack is a serious issue, there has been an insufficient amount of research towards developing 

an MITB-prevention mechanism within the context of user authentication. Therefore, an 

investigation is conducted regarding the possible and available authentication methods to be 

used within the context of e-commerce applications to verify the identity of the client along 

with overcoming MITB attacks. 

The current methods used for user authentication are categorised into single-factor 

authentication, two-factor authentication and three-factor authentication, which correspond 

to something the user knows, something the user has and something the user is, respectively 

[5-7]. The widely employed single-factor authentication is a simple password-based 

mechanism that employs a username/password combination to become authenticated. 

However, passwords can be easily stolen, forgotten or guessed [5], and this mechanism is 

vulnerable to various attacks [8]. In contrast, two-factor authentication is a much stronger 

mechanism that combines what the user knows with what the user has. Thus, it is based on 
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the user’s possession of an object for providing a challenge/response mechanism to increase 

the level of authentication security [8-10]. The final authentication mechanism is based on 

authenticating the user via his/her biometrical characteristics[5-7].  

According to Dougan and Curran [11], the only guaranteed solution to prevent MITB attack 

is via an out-of-band (OOB) confirmation, usually a one-time-password (OTP). On the other 

hand, Krishnan and Kumar [12] stated that the attacker can simply take control of the 

transaction following the OTP submission and user authentication. Therefore, MITB attack 

cannot be prevented with any of the previous authentication methods.  

Given such a scenario, we argue that most proposed solutions utilise the browser for 

conducting business transactions, thus exposing the whole process to abort in case of an 

infected browser. We believe these solutions need to be modified to serve as an accountable 

and active countermeasure against MITB attack. In this thesis, the proposed authentication 

mechanism utilises the browser and the mobile phone as the initiation- and completion- 

phases, respectively. Where the detached second phase represents the solution to the MITB 

attack lying within the browser. A number of security-related technologies are combined to 

provide trustworthy mechanisms that logically link both phases, paving the way to generate 

a secure response within the detached and developed mobile phone application. The basis 

behind the modification relies on excluding the browser and continue the authentication 

mechanism securely within the application that can only be operated by its legitimate owner. 

The responsibility of the mobile phone application lies within capturing the displayed 

challenge, generating, and sending the response to the server without displaying any 

information on its screen.  

Furthermore, the proposed scheme mitigate the connection-based distributed denial of 

service attack (DDoS) in both phases through exploiting the registration information within 

the server. This type of attack obstructs the legitimate user’s services through exhausting the 

server’s resources via application-level flooding attacks [13]. 
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1.2 Objectives of the Research 

Inspired by the lack of efficient solutions towards Man-In-the-Browser (MITB) attack and 

the desire to provide a secure authentication system within e-commerce environments, this 

study incorporated the required security measures along with the MITB capabilities to 

simulate its effect upon the proposed solution and to confirm whether the essential security 

requirements are satisfied. 

This thesis provides a secure authentication system called “Mobile User Authentication 

System” or “MUAS”, which is designed to utilise smartphones for a simple and secure client-

authentication mechanism within the context of e-commerce applications for conducting 

business transactions. The MUAS is a two-phased system that uses a challenge/response 

mechanism for client authentication. Both phases are built on top of the secure socket 

layer/transport layer security (SSL/TLS) protocols as a mean for securing all connections and 

communications between participants. Furthermore, security measures are considered within 

both phases to prevent replay attacks and malicious users, thus satisfying security properties, 

namely authentication and secrecy.  

This research focuses on three major objectives when developing a secure authentication 

system. The first objective concentrates on the main problem to overcome, which is the 

MITB attack. This involves defining its purpose along with its performance capabilities from 

an e-commerce application’s perspective, which is explained in the following section. Based 

on MITB-attack capabilities, a secure user-authentication system is formulated that is 

composed of two physically detached, yet logically connected phases. 

The second objective is to design and implement the two phases of the authentication system 

with a specific functionality for each phase. The second phase contributes to circumvent the 

problem of MITB attack by transitioning the authentication mechanism to the client’s mobile 

device, which uses a detached connection for authentication and conducting business 

transactions. Entities involved in the two-phased system are characterised through their 

specific roles within the MUAS, where the client connects with the server through two 

separate and complementary roles. Furthermore, both phases mitigates the denial-of-service 

(DOS) attack through the client’s registered information. 
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The third objective is to verify the two phases of the authentication system and to consider 

the effects of the threat residing in the browser. This part emphasises the need for requiring 

a detached second phase. Both phases are specified in an abstract manner, thus providing a 

detailed description of the protocols to be verified via the Scyther security-protocol-

verification tool. The verification results are analysed per the security properties to be 

satisfied. Furthermore, this study is conducted in terms of computational and communication 

cost based on related studies and a theoretical performance measurement.  

 

1.3 Man-In-The-Browser Attack  

In this thesis, a type of current phishing attack is addressed, namely, man-in-the-browser 

(MITB) attack. MITB attack is a special case of man-in-the-middle (MITM) attack, where 

the attacker bypasses targeting the information flow in order to infiltrate and manipulate 

sensitive information provided by the client through attacking web browsers [4]. Thus, the 

attacker resides and acts in the application layer, within the open system interconnection 

(OSI) model that is the closest to the user. Hence, the attack occurs at the system level 

between the user and his/her browser [11]. From a structural point of view, a MITB attack is 

considered as a MITM attack between the user and the security mechanisms of the browser 

[11]. This type of attack is difficult to detect by the user or the server, as the attack might take 

place after the user becomes authenticated [12], where both parties receive deceptive 

information [1]. Thus, some standard authentication mechanisms employed within PCs, such 

as username/password combination, client certificates, secure ID tokens, one-time-passwords 

and biometric authentication, cannot be trusted to overcome MITB attack [14]. 

Moreover, MITB attack is invincible against the secure socket layer and transport layer 

security (SSL/TLS) protocols [1, 14], as the encryption mechanism is performed within the 

transport layer that is below the application layer, as illustrated in Figure 1.1. Thus, all 

exchanged data between the browser and the other party are exposed [1]. Whenever incoming 

encrypted data is received by the browser, it passes through the OSI model, starting from the 

physical layer and continuing up to the application layer, passing through the transport layer 

for decryption. As a result, the received encrypted data is disclosed. Conversely, outgoing 

data passes in plain text through the OSI model, starting from the infected application layer 
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down to the physical layer, passing through the transport layer for encryption. Thus outgoing 

data is disclosed before being encrypted. In this scenario, incoming and outgoing data are 

disclosed to the MITB, even within a secure communication channel [1, 14]. 

 

Figure 1.1: Data Flow through the OSI model 

 

1.3.1MITB Attack Performance 

Man-in-the-browser attack is a Trojan horse combined with phishing capabilities that infects 

a web browser to capture, manipulate or insert additional information to the web page without 

the user noticing [1, 14, 15]. 

Whenever a Trojan infects an operating system or a web browser application, it installs the 

malware extension into the browser configuration to be loaded and triggered once the user 

restarts the browser, thereby registering a handler for each page load. Whenever the user 

loads a specific web page, it is verified and filtered against a list of targeted sites. If the pattern 

verification matches, the user becomes authenticated via an authentication method and starts 

the transaction process. Once the user presses the submit button, the Trojan alters the user 

input before it is sent to the server, with neither the user noticing nor the server identifying 

the alteration. The alteration involves extracting user data via a document object model 

(DOM) interface to be modified and re-submitted to the server. The server generates the 

transaction receipt using the modified data to be sent to the browser. The received receipt 

will be detected by the extension, which will scan the receipt fields to re-modify the data with 
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the original user data, in order to match the expectations of the user [1, 14]. Figure 1.2 shows 

the MITB behaviour within a banking system. 

 

Figure 1.2: MITB attack within a banking system 

 

In the case of an e-commerce application, the Trojan is able to capture the confidential 

information submitted by the user to be used in other fraudulent operations as illustrated in 

Figure 1.3. 

 

Figure 1.3: MITB attack within an e-commerce system  
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1.3.2MITB Attack Capabilities 

In this section, the MITB attack capabilities are classified into four categories: 

 Stealing Data: data submitted into a compromised browser can be passively and 

actively stolen by an MITB Trojan, along with the ability to choose the required data 

fields. Moreover, the MITB is capable of modifying the web page structure to prompt 

for more confidential information from the user, as most web sites today limit the 

amount of sensitive information required from the user. An example of this category 

involves stealing information within the context of e-commerce applications such as 

credit card numbers [11]. 

 Modify HTML/HTML Injection: this category refers to the ability of the MITB 

attacker to alter the HTML web page before being interpreted by the browser. 

Modifying HTML pages requires the Trojan to have a perfect background of the page 

format of the targeted sites, and it also requires a powerful data collection mechanism 

for obscure authentication methods which aim to defeat key loggers [11]. HTML 

injection can be performed in two ways: 

1. Adding extra data field within the web page, for the user to submit confidential 

information. 

2. Modifying the server response to reflect the original user input.  

 Modify Outgoing Data: this usually happens within the context of online banking, 

where the Trojan is capable of modifying and tampering with user data without the 

user or the server discovering. This capability is very hard to detect, and it is unlikely 

to be discovered early which gives the attacker the opportunity to take advantage of 

it [11].  

 Choosing Targets: MITB Trojan is capable of making a list of targeted sites to be 

available to its browser monitoring service, where two different types of data are 

selected from this list, either individual data fields of interest or the entire web page 

of interest. For each targeted site within the list, successful Trojans should be specific 

with respect to knowing what fields to inject and where, in order to carry out their 

attack. Therefore, MITB Trojans exclude non-valuable data in the process of stealing 

data and sending it back to the owner of the attacker [11]. 
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1.4 Research Contributions 

In order to conduct a secure business transaction within an e-commerce system, , this thesis 

made the following contributions: 

 Designing a user-friendly and non-confidential input-based authentication system 

that bypasses the Man-In-The-Browser (MITB) attack via a two-phased 

authentication mechanism 

The proposed MUAS requires the client to submit minimal and non-confidential 

information via a browser, which contributes to bypassing the MITB residing within 

the browser and exposing worthless information to the attacker. Upon submission, 

the proposed solution generates a secure challenge within the challenge-generation 

phase, in order to switch the authentication mechanism from the infected browser to 

a mobile-based system for conducting business transactions. This is achieved by 

utilizing the legitimate mobile phone of the registered client as its primary 

authentication device. The mobile-based system represents the response-generation 

phase that is physically detached, yet logically connected to the first phase via 

cryptographic security attributes and registration information. 

 

 Mitigate the Denial-of-Service (DOS) attack within both phases of the MUAS via 

registration information 

Upon mobile number submission within the first phase, the authentication server 

validates the received information against its registered clients. If the mobile number 

is unregistered, the server rejects the client and aborts the authentication process. 

Similarly, the International Mobile Equipment Identity (IMEI) extracted from the 

mobile phone within the second phase overcomes the DOS attack through validating 

the received IMEI against the registered IMEI to carry on with the client verification 

process. Thus, the proposed solution builds a strong authentication system against 

denial-of-service attack in both phases. 

 

 Generating unique and useful cryptographic nonce-based QR-code contents 
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The QR-code challenge (Quick Response Code) that is generated within the first 

phase represents the foundation for logically connecting the detached phases. For 

each session, the contents of the QR code are encrypted via public key cryptography 

(RSA), thus generating a one-time private and secure QR code. The contents of the 

challenge can be considered as unique and useful for being the basis of a one-time 

generated challenge and the basis for establishing a secure SSL/TLS communication 

channel.  

 

 Exploiting security attributes from challenge- and response generation phases for 

generating the response, and overcoming the problem of a contaminated QR code 

With respect to developing a secure protocol in both phases, security attributes are 

utilised to satisfy the mandatory security properties. One of these is the cryptographic 

fresh nonce, which is generated and exchanged between participants to prevent 

attacks. In addition to securing protocols, the employed cryptographic-security 

attributes represent the indispensable components required for generating the 

response, and contribute to linking the detached phases through a combination of the 

employed security attributes, thus forming the correct response within the mobile-

phone application. Furthermore, the security attributes combination from both phases 

contribute to overcoming the problem of a contaminated QR code, where the attacker 

cannot exploit the recovered security attribute to generate a response from any mobile 

phone other than the phone of the registered client, due to its IMEI registration. 

 

 Designing a three-level secure mobile-phone application 

“3LS-Authenticate” is a user-friendly mobile-phone application that is responsible 

for capturing the QR code and generating the response. The application is composed 

of three levels, with each level meeting a security target. Although the encrypted QR 

code can be scanned by any QR code-scanning application, the mobile-phone 

application is the only application that can decrypt its contents. 

The application contributes to establishing a secure path with the server, along with 

exchanging a cryptographic nonce for satisfying security properties via exploiting the 

recovered-QR code’s useful content. While the other recovered-QR code unique 
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content is exploited to generate the response through combining and hashing it along 

with the mobile phone’s fresh nonce from the second phase, in the case of stolen 

mobile phones, the application is secure by only authorising legitimate phone holders 

to use the application. 

 

 Applicability of the proposed authentication approach within other disciplines 

A minor modification within the QR code contents contributes in the capability of 

applying the proposed approach in other disciplines within the context of client 

authentication. Such disciplines include healthcare, academic institutions, or 

government applications, where all registered clients have a secret account number, 

for accessing their personal records within the server’s institution. This account 

number will be contained within the QR code contents, for verification against the 

submitted account number within the mobile phone application, thus generating the 

response. Upon successful authentication, the client will be able to access their 

personal records. 

 

1.5 Related Publications 

The following publications have resulted from the research presented in this thesis: 

[1] Molla, R., Romdhani, I., Buchanan, W. (2017). A Two-phase Mobile User 

Authentication System (MUAS) to Overcome Man-in-the-browser Attack. 

International Journal of Computer Networks & Communications (IJCNC) 

[2] Molla, R., Romdhani, I., Buchanan, W. (2016). 3LS-Authenticate: an e-Commerce 

Challenge-Response Mobile Application. In: 13th ACS/IEEE International 

Conference on Computer Systems and Applications. Agadir, Morocco. 

[3] Molla, R., Romdhani, I., Buchanan, W., Fadel, Etimad Y. (2014). Mobile User 

Authentication System for E-commerce Applications. In: International Conference 

on Advanced Networking, Distributed Systems and Applications. Algeria 

 

http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/publications/publicationid/13385972
http://www.iidi.napier.ac.uk/c/publications/publicationid/13385972
http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/publications/publicationid/13377467
http://www.iidi.napier.ac.uk/c/publications/publicationid/13377467


 

11 

 

1.6 Structure of the Thesis 

In chapter 2, preliminaries of the proposed system are introduced, where different 

authentication mechanisms are presented along with a detailed description of the 

technologies employed within the proposed Mobile-User-Authentication System (MUAS). 

Related work is also presented with regard to MITB attack.  

In chapter 3, the infrastructure of the proposed MUAS is presented. This chapter details and 

justifies every aspect within the design phase along with objectives and security requirements 

of both phases.  

In chapter 4, an implementation outline of the proposed MUAS is presented. This involves 

presenting the main algorithms of both phases in addition to the MUAS SSL-server platform 

establishment process, which is the essence of the authentication system. Moreover, 

components constituting both phases are presented along with their procedures. 

In chapter 5, the verification and security analysis of the secrecy and authentication security 

properties are presented. This chapter provides a detailed description of the protocol through 

performing a theoretical performance measurement to evaluate its security with respect to 

possible attacks. Moreover, an implementation evaluation is conducted with respect to the 

most related work. The results of introducing the effect of the MITB attack into the first phase 

are presented along with the results of verifying the second detached phase. 

In chapter 6, a summarization of the thesis is provided. This chapter concludes the findings 

from this thesis. A discussion regarding future work is also provided. 
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2 Literature Review 

 

2.1 Introduction 

Developing a secure mobile user-authentication system encompasses a wide range of stages. 

The first stage revolves around introducing the platform of this chapter, namely the e-

commerce security system. This system is composed of several layers with associated 

security technologies that help to guide the work throughout this thesis. 

The organization of this chapter is as follows. Section 2.2 describes the basic building blocks 

of this chapter by defining each component of an e-commerce security system, their 

associated technologies, and the required e-commerce security dimensions. Section 2.3 

discusses the primary authentication methodologies along with their drawbacks and attack 

vulnerabilities. Furthermore, a review of existing UK bank’s authentication mechanisms is 

accomplished to demonstrate the qualities of the most popular authentication mechanisms. 

Section 2.4 investigates the current trends in online authentication methods, techniques and 

technologies. The thesis objective is satisfied by leveraging these trends to develop the 

proposed MUAS. Section 2.5 discusses the technologies associated within the encryption 

technology layer of the e-commerce security system, namely symmetric and asymmetric 

cryptography, along with its most popular data-processing algorithms. Section 2.6 presents 

some of the authentication technologies employed within the encryption technology layer. 

Section 2.7 discusses and justifies the use of a widely-used security protocol within the 

security protocol layer that establishes a secure communication channel between participants. 

Section 2.8 reviews related work within the context of preventing MITB attacks and 

exploiting QR codes within authentication systems. Section 2.9 concludes the findings of the 

literature review chapter. 

 

2.2 E-commerce Security 

The objectives of e-commerce security are varied and include securing e-commerce assets 

from unauthorised access, modification, disclosure or use, thus protecting the confidentiality 



 

13 

 

and privacy of the end user [16]. One of the main reasons for the loss of consumer trust in e-

commerce applications is the disclosure of confidential information during a transaction. This 

is particularly true when the resulting data breach is due to a lack of security measures. 

Therefore, security is considered as the most important concern that needs to be addressed to 

guarantee client trust and e-commerce success [17]. 

With the revolutionary growth of e-commerce applications, a comparable number of security 

threats have surfaced that require a security presence to protect transactions [18]. As a result, 

secure technologies are being developed and amended every day [19]. Mapping these 

technologies to the seven-layered open system interconnect (OSI) leads to better technology 

characterisation, thereby reflecting the functionality of each layer within the e-commerce 

security system [20]. 

Generally, e-commerce security is divided into two main categories: computer network 

security and e-commerce transaction security. Computer network security plays a pivotal role 

in IT systems. As most applications operate within a networking environment, they therefore 

rely on the network’s reliability, performance, and security [21]. It follows that, computer 

network security represents the foundation for e-commerce transaction security, as it focuses 

on implementing security solutions to solve security problems within a computer network, 

such as firewalls, vulnerabity scan, content aware, viral prevention and control [20, 22]. From 

a design point of view, deployed security safeguards may not be capable of accomplishing 

their function properly due to design or configuration errors [21]. Moreover, basic TCP/IP 

networking protocols do not provide cryptography nor strong authentication, resulting in 

exchanging unencrypted data and lack of confidentiality. Higher level protocols such as 

Telnet and SMTP do not provide sufficient security measures outside the username and 

password mechanism [23]. The inability of the traditional networking protocols to enforce 

strong security measures within e-commerce transactions result in a lack of security. 

Therefore, e-commerce transaction security focuses on solving security problems associated 

with online businesses. It processes e-commerce transactions in a secure and smooth manner 

over the foundation of computer network security through employing: (1) a safe transaction 

protocol, (2) a secure authentication mechanism to ensure the authenticity of the participant’s 

identities, and (3) an encryption technology to prevent unauthorized information leakage. 

Hence, both computer network security and e-commerce transaction security are 

indispensable, as they complement each other. Considering the security requirements for e-
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commerce transactions, the security system model is divided into five layers: the network 

service layer, encryption technology layer, security authentication layer, security protocol 

layer and application layer [20]. Figure 2.1 demonstrates the five layers and their associated 

technologies [20].  

 

Figure 2.1:  E-commerce Security System 

  

Each layer is supplemented with example technology that serves the purpose of the layer as 

illustrated in the figure. In order to ensure the security of e-commerce transactions, e-

commerce applications will be developed according to the open system interconnect layers 

(OSI), where all the essential e-commerce security layers will be placed within the OSI 

application layer. Each layer along with the technologies employed within the MUAS are 

presented in this chapter and are described according to the order of the layers. 
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2.2.1Dimensions of E-commerce Security 

With the increasing growth of cybercrimes and cybercriminals, e-commerce security systems 

need to adopt additional measures to establish a secure e-commerce transaction. There are 

six key dimensions in e-commerce security: authenticity, integrity, confidentiality, non-

repudiation, privacy and availability.  

 Authenticity: the ability to verify the identity of a person or entity [24] and assure 

that the supplied identity is real and valid [20]. Authenticity is considered a 

prerequisite for allowing access to an information system [25]. 

 Integrity: the ability to guard proprietary data against tampering or alteration by an 

unauthorized entity while it is being transmitted over the network [24, 25]. Integrity 

can be achieved by message digest or hashing technologies [16]. 

 Confidentiality: the ability to guard personal data from being accessed by an 

unauthorized entity [24]. Moreover, confidentiality enforces authorized restrictions 

on personal data access via encryption/decryption, for personal privacy protection.  

 Non-repudiation: the ability to ensure that e-commerce participants cannot deny 

their actions [24]. This means that the client receives proof of delivery and the 

merchant receives proof of the client’s identity [25]. Non-repudiation can be achieved 

through the use of digital signature technology [16].  

 Privacy:  the ability to control the use of a client’s personal information provided to 

the merchant [24]. 

 Availability: the ability of an e-commerce application to function as planned by 

preventing data delays or removal [24, 25]. 

 

2.3 Authentication 

According to the National Institute of Standards and Technology (NIST), authentication is 

defined as the “process of establishing confidence in the identity of users or information 
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systems” [26]. Another perspective by Cisco states that “authentication is the way a user is 

identified prior to being allowed access to the network and network services” [27]. 

In the e-commerce world, it is acknowledged that authentication is the first step towards 

establishing a secure connection with any organization. Therefore, both online merchants and 

clients need to acquire authentication information about one other as a means of identity 

verification [28]. 

All authentication methodologies can be broadly classified into three categories: single-factor 

authentication, two-factor authentication and three-factor authentication. These correspond 

to the following: something the user knows, something the user has and something the user 

is, respectively [5-7].  

Single-factor authentication is based on the principle of “proof-by-knowledge” [8] via the 

use of static passwords [8, 29, 30]. Password-based authentication is the most common [6] 

and widely utilized mechanism for identity verification within communication systems [8, 

29]. This mechanism is characterised by secrecy [5], simplicity and no requirement for 

additional hardware or software. On the other hand, passwords can often be forgotten, stolen 

or guessed [5]. Single-factor authentication is also considered to be a weak mechanism due 

to its vulnerability to attack [8, 31-33]. Although passwords are substantial, they do not 

provide users with a strong authentication mechanism [32] unless combined with other 

methods [6]. 

Two-factor authentication (2FA) is an authentication approach based on the “proof-by-

possession” principle [8]. Here, the user possesses an object (e.g., hardware token or a mobile 

phone) to be combined with something the user memorizes (e.g., static password, PIN, pass 

phrase) [8, 9] to protect lost or stolen tokens [5]. This approach enhances the strengths of 

knowledge-based authentication by combining the two authentication factors, thus providing 

a challenge/response mechanism as a means of increasing authentication security [10]. The 

challenge/response mechanism is based upon generating a challenge on the server side that 

is to be processed by the client in order to produce the authentication response [8]. 2FA is a 

more secure mechanism than one-factor authentication, since a token can provide a strong 

defence against brute-force attacks [5]. However, it is still vulnerable to token attacks, man-

in-the-middle attacks and session hijacking attacks [8]. 
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Three-factor authentication is a strong authentication mechanism that is based on the “proof-

by-property” principle [8]. In this approach, different user properties are used for remote 

identity authentication [34] using different biometric analyses such as fingerprint 

verification, iris analysis, facial analysis, voiceprint, handwritten signature verification and 

keystroke analysis [5-7]. 

Biometric-based authentication were considered a reliable authentication mechanism due to 

providing potential high-entropy information that cannot be lost or forgotten such as 

fingerprint, voiceprint, and iris scan [6, 7]. However, some biometric characteristics can be 

stolen from others, such as fingerprints that can be obtained from a mug [6] and built with 

silicone, gelatin, wood glue or latex [35]. Facial features can also be obtained from a 

photograph [35]. Therefore, not all biometric authentication approaches are trustworthy [6, 

36]. Moreover, there is always the possibility of false rejection rate (FRR) and false 

acceptance rate (FAR) within a biometric authentication system. The FRR is the probability 

measurement that the system will falsely reject an access attempt by an authorized user. 

Whereas the FAR is the probability measurement that the system will falsely accept an access 

attempt by an unauthorized user. This type of inaccuracy is related to the lack of security 

requirements [35].  Security requirements of any biometric system should include 

confidentiality, integrity, availability, and authenticity. The confidentiality and integrity 

requirements should be satisfied for the acquired biometric raw data and the user template. 

Whereas the availability requirement should be satisfied for the biometric sensor, 

transmission channels connecting the different components of the target system, user 

template, and the processing data function implemented on the feature extractor component. 

Finally, the authenticity of the system decision is linked directly to the biometric system’s 

functionality [35].  

Furthermore, there exist other general issues that obstruct the biometric system’s 

performance such as: sensor quality that is affected by noise, non-universality that leads to 

Failure to Enrol, lack of individuality that increase FAR, susceptibility to circumvention that 

leads to unauthorized access and, finally, intra-class variation and intra-class similarities that 

leads to increase FRR and FAR, respectively [37]. 

Table 2.1 lists all of the authentication methodologies along with their characteristics [5]. 
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Table 2.1: Attributes of Different Authentication Methodologies 

 User Authentication 

Single-factor 

authentication  

(Knowledge-Based) 

Two-factor 

authentication  

(Object-Based) 

Three-factor 

authentication(ID-

Based) 

Commonly Referred to as  Password/ Secret Token/ Mobile Phone Biometrics 

Support Authentication by Secrecy Possession Uniqueness and 

personalisation 

Security Defence Closely kept Closely held Forge-resistant 

Security Drawback Less secret with time Insecure if lost Difficult to replace 

 

 

With regard to online attacks, Schneier [38] introduced the “Attack Tree” method, which 

describes and analyses different types of attacks against system security [8, 39]. This 

comprehensive attack analysis provides a foundation for and facilitates the study of the 

existing authentication mechanisms [8], particularly the single-factor, two-factor, and three-

factor authentication methods. Table 2.2 shows the applicability of different attacks on the 

three main authentication mechanisms [8]. 

Table 2.2: Applicability of Attacks to the Main Authentication Mechanisms 

                Authentication 

Methods 

                           

Attacks                           

Static password 

(Single-factor 

authentication) 

Challenge/Response 

(Two-factor 

authentication) 

Biometrics 

(Three-factor 

authentication) 

User Surveillance A X X 

Token/note Theft A X X 

Hidden Code A X A 

Worms A X A 

E-mails with Malicious Code A X A 

Social Engineering A X A 

Webpage Obfuscation A X A 
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Pharming A A A 

Sniffing A A A 

Active Man-In-The-Middle 

Attack 

A A A 

Session Hijacking A A A 

Brute-force Attack A X A 

Security Policy Violation A A A 

Website Manipulation A X A 

Man-in-the-Browser  A A A 

Where: 

A: Applicable 

X: Not Applicable 

 

Table 2.2 shows that two-factor authentication is prone to less attacks than static passwords 

and biometrics. Therefore, 2FA is considered as the most suitable authentication mechanism. 

However, it is still prone to the MITB attack, but one of its best and most popular features 

can be utilized within the context of our thesis, namely using the mobile phone as the primary 

authentication device. 

 

2.3.1Password-Based Authentication 

In 1981, Lamport [40] was the first to propose the concept of password-based authentication. 

The concept is based on authenticating a user based on an inputted username-password 

combination. Here, the system only stores the password-hash result to be compared with the 

submitted password after applying the hash function [32, 40]. Such a mechanism, however, 

is vulnerable to password theft. Nevertheless, it is still utilized to access some internet 

applications that doesn’t require strong protection against repudiation [5], such as e-mail 

services and social networks [6, 8], although its security properties [41] are not reliable [6]. 

Requesting longer and more complex passwords in an attempt to secure this mechanism has 

led users to write down their passwords, making them prone to theft [8]. 

Although password-based authentication takes place via a secure socket layer (SSL) channel 

[42], it is still vulnerable to sniffing attacks [8, 31] within the SSL handshake establishment 

process [43]. Here, the sniffer masquerades as the server and provides the user with a 
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fraudulent certificate [8]. Therefore, the system also becomes vulnerable to man-in-the-

middle (MITM) and phishing attacks [8]. 

Alongside password-based authentication vulnerabilities [8], users are required to manage 

and memorize too many passwords [44]. Therefore, specialized password-manager (PM) 

software is available [44], which “manages and organizes passwords and personal 

identification in a secure manner” [45]. Such software can help reduce the effort in creating, 

memorizing, and changing passwords [45]. Password managers are classified into web-based 

and browser-based PMs. However, while password managers are secure against phishing and 

pharming, they are still vulnerable to failures, which can be due to the web-based PM server 

being targeted by cyberattacks, or the browser-based PM information being stolen or lost due 

to damage to the local hard disk [45]. Furthermore, a security analysis conducted on five 

popular web-based PMs, found that four of them—LastPass, RoboForm, My1Login, and 

PasswordBox—have critical vulnerabilities in which attacker can obtain the user’s 

credentials [46]. A good remedy for this is to include an extra object, which is possessed by 

the user and entered into the authentication mechanism, thus forming a stronger two-factor 

authentication [6]. The password-based authentication mechanism cannot be employed as a 

secure stand-alone system to be used within financial institutions and e-commerce. 

 

2.3.2Two-Factor Authentication 

To increase security and overcome the problem of stolen passwords in the password-based 

authentication mechanism, a server-side countermeasure that includes adding a second 

authentication factor is frequently employed by online services [44, 47, 48]. This 

countermeasure uses an out-of-band (OOB) communication channel as a means for receiving 

a one-time-generated token to be used alongside the standard password-based authentication 

mechanism [44].  

In 1991, Chang and Wu [49] proposed the idea of a two-factor authentication using 

passwords and smart cards as a means of client authentication [6]. Since then, the trend 

towards proposing two-factor authentication solutions has increased [6], with the use of other 

objects, such as smart cards, security tokens, and mobile phones, as the second factor within 

the authentication scheme [50].  



 

21 

 

Over the past decade, a growing number of banks have started to support online banking as 

a means to provide customers with financial services anywhere and anytime [47]. Obviously, 

a stronger and more secure authentication mechanism was required [47]. Therefore, online 

banking sites switched to the two-factor authentication method as a simple and friendly way 

to securely authenticate online banking end-users [47, 51]. In a study by Krol et al. [47], 

looking at the identification and authentication mechanisms used by 11 popular UK banks, 

all banks were found to follow the two-factor authentication mechanism for logging into their 

online banking platform. The first authentication factor is usually based on the user’s 

knowledge, such as a username-password combination, pass phrase, or PIN number, while 

the second factor can be based on challenge questions on memorable information [47], a 

security token generator issued by the bank [47, 51], a mobile banking application that 

generates random numbers [47, 51], or a generated random number sent to the customer 

through SMS [47, 51]. When reviewing these popular banks’ official websites, it was found 

that most of these banks employ both one-factor and two-factor authentication mechanisms. 

The one-factor mechanism is used to provide limited banking services, such as viewing 

account balances, transactions, and checking and savings account statements using e-

Statements [52-54]. In addition, customers can make payments to existing payees, transfer 

money between accounts in the same bank, and report lost or stolen cards [52-54]. The two-

factor authentication mechanism for login through security tokens or mobile banking 

applications gives customers access to the same services as with the single-factor 

authentication, plus some additional ones, such as making payments to new payee, making 

international payments, changing personal details, and managing regular payments [52-54]. 

Using the banks’ own terminology, Table 2.3 summarizes the different identification and 

authentication mechanisms employed by different UK banks. 

Table 2.3: Different Identification and Authentication Mechanisms Used in UK Banks 

 Identification 

Mechanism 

Authentication Mechanism 

First Factor Second Factor 

 

 

Barclay’s [53, 54] 

Surname + Membership 

Number, Card Number, 

or Account Number 

1) 5-digit Passcode 

2) 2 out of the 8+ 

characters of memorable 

word 

 

- 
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8-digit OTP (PINsentry) 

 

HSBC [52, 55] 

 

Username 

1) Memorable Answer 

2) Password 

- 

Memorable Answer 6-digit OTP (Secure 

Key) 

First Direct [56, 57] Username Memorable Answer 6-digit OTP (Digital 

Secure Key) 

 

Nationwide [58, 59] 

 

Customer Number  

1) Memorable data 

2) 3 out of the 6-digit 

pass number 

 

- 

8-difit OTP (Card Reader) 

 

Halifax [60], Lloyds 

[61] 

 

User ID 

8+ Character Password 3 out of the 6+ 

Character Memorable 

Information 

 

NatWest [62, 63], 

Ulster [64, 65] 

 

Customer Number 

1) 3 out of the 4-digit 

PIN 

2) 3 out of the 6+ 

Character Password 

 

- 

8-digit OTP (Card Reader) 

RBS [66] Customer Number 

(DOB + 4 digits) 

1) 3 out of the 4-digit 

PIN 

2) 3 out of the 6+ 

Character Password 

- 

 

Santander [67] 

 

Personal ID 

1) 8-digit Password 

2) 5-digit Security 

Number 

 

- 

SMS-OTP 

The Co-operative 

Bank [68] 

Account Number or 

Credit Card Number 

1) 2 out of the 4-digit 

Security Code 

 

- 
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2) Memorable 

Information 

Standard Chartered 

[69] 

Username SMS-OTP 

 

Bank of Scotland [70] 

 

User ID 

Password - 

Bank Secure App / Phone call (Keying a displayed 

4-digit [OTP] into the phone number pad) 

 

In terms of security, Tables 2.2 and 2.3 show that two-factor authentication has been adopted 

by most financial institutions, for whom security is the number one concern. However, the 

traditional 2FA cannot be useful within the context of our thesis, due to its vulnerability to 

the invincible MITB attack. Therefore, the essence of the mechanism can be utilized through 

employing the mobile phone within the authentication framework to replace the presumably 

infected browser. 

 

2.3.3Three-Factor Authentication 

As an improvement over some of the security issues with two-factor authentication, Juels and 

Wattenberg [71] proposed the first three-factor authentication scheme, which uses biometric 

identification. According to the National Science and Technology Council (NSTC) 

subcommittee on biometric and identity management [72], biometrics are defined as 

measurable biological (anatomical and physiological) and behavioural characteristics that 

can be used for automated recognition [73].  

Biometrics provide the “something you are” factor of authentication to strongly authenticate 

legitimate users and detect fraudsters through physiological and behavioural characteristics 

[74]. Recognition of physiological characteristics, often known as “what you are” [75], 

includes human body measurements such as fingerprint recognition, facial recognition, retina 

recognition, iris recognition, and hand recognition [74]. On the other hand, recognition of 

behavioural characteristics, known as “what you do” [75], includes measurement of human 

action, such as voice recognition, signature recognition, gait patterns, and key stroke 

dynamics [74]. 
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Biometrics substitute for the “proof by knowledge” and “proof by possession” mechanisms 

[8], since passwords can be easily forgotten/stolen and devices can be lost/stolen, respectively 

[74]. 

Common reasons to choose biometric authentication over password-based authentication are 

based on: 

 Physical presence: Biometric authentication requires the person being identified to 

be present at the time of authentication, which makes this type of authentication 

more secure [76]. 

 No need to remember information: The biometric information required for 

authentication is always present, which bypasses the need to remember any sort of 

information [76]. 

 Less prone to forgery: The possibility of forging or faking biometric identity is much 

lower than in password-based authentication [76]. However, it is not impossible 

[75]. 

To improve security in a password-based authentication system, biometrics can be 

incorporated into the scheme [76]. As a solution, Bio-key International, Inc. [77] introduced 

a mini USB fingerprint reader called “SideSwipe” [78] and a compact fingerprint reader 

called “EcoID” [79], which are used as alternatives to passwords, tokens and PINs. 

SideSwipe [78] and EcoID [79] are multi-factor authentication solutions that can be used 

for healthcare, banking, retail, identity and access management. Most Bio-key International 

products operate on Microsoft Windows devices. 

 

2.3.3.1 Biometric Properties and Drawbacks 

A biometric system must satisfy a number of properties in order to be a successful and 

suitable authentication system. The following properties were proposed by Clarke [80] after 

analysing biometric system requirements. 

1. Universality: The chosen biometric characteristic within any authentication system 

should be owned by each person, and it should be difficult, if not impossible, to lose 

[75, 76, 80]. 
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2. Uniqueness: Biometric characteristics within authentication systems must 

distinguish between individuals, such that no two persons would ever have the same 

biometric values [75, 76, 80]. 

3. Permanence: Long-lasting biometrics that do not change over time due to age or 

disease should be used within authentication systems [75, 76, 80]. 

4. Collectability: The chosen biometric characteristic must be easily collected from 

anyone on any occasion [75, 76, 80]. 

5. Acceptability: The chosen biometric to be collected must be acceptable to society 

[76, 80]. 

6. Measurability: The digital device/sensor used to acquire and digitize the biometric 

characteristic should be suitable, causing no inconvenience to the people [76, 80]. 

7. Circumvention: In the case of forged or faked biometric characteristics, the 

authentication system should have the ability to handle such situations [76, 80]. 

Finding a biometric characteristic that satisfies all of the above properties is difficult due to 

drawbacks regarding some biometric characteristics, biometric readers, template storage, and 

costs [75]. 

Fingerprints do not satisfy the universality property, since some individuals do not have clear 

fingerprints due to aging or injury [81]. Some cancer patients can lose their fingerprints due 

to some kind of chemotherapy [81]. While facial recognition is much more universal, its error 

rate is much higher due to its poor uniqueness property [75]. In some cases, multi-model 

biometric systems combine several biometric characteristics to overcome some of the 

drawbacks of using uni-model biometrics [82]. For example, combining facial and fingerprint 

recognition increases the recognition rate and decreases the error rate [83]. Another issue 

regards the biometric reader acceptability, as in the case of retina reader. In an outrageous 

form of attack, biometric collection is performed by the attackers, who record the biometric 

characteristics without the owner’s knowledge [75]. Furthermore, some biometrics can be 

copied, in the case of fingerprints [84], or forged in the case of the iris [85] by employing 

non-invasive biometric readers. The more invasive a reader is, the harder it is to copy a 

biometric [75]. This leads us to a related characteristic, which is cost. The less expensive the 

biometric reader is, the higher the likelihood of it being fooled by forged characteristics, 

while more expensive fingerprint readers with wide functionality can check that the 
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fingerprint is being inputted by a live person [75]. Finally, the storage systems that hold the 

biometric templates must be highly secured and protected [75].   

 

2.4 Current Trends in Online Authentication 

Solutions 

A large number of studies have been conducted with regard to developing online 

authentication solutions. In this section, two of the most popular technologies, namely one-

time passwords and QR codes are discussed in detail along with their related work, attacks 

and vulnerabilities.  

 

2.4.1One-Time Password (OTP) 

Among all second factors, the system’s capability to dynamically generate a login-session 

password provides the best enhancement of security within two-factor authentication 

systems. The dynamic login-session password is called a one-time password (OTP) [86], and 

it is considered one of the strongest authentication mechanisms against account theft [87, 88]. 

A one-time password can be defined as a temporary password that is valid for one use only 

[89] within a single session or transaction [9].  

The basic idea behind the development of OTP, first suggested in 1981 by Lamport [40], was 

to overcome the security concerns accompanying static passwords and to avoid man-in-the-

middle (MITM) attacks [40]. The scheme was based on the generation of different 

pseudorandom outputs each time the user tries to login [9, 40]. Successive tests of OTP in 

many authentication systems alongside different technologies have been conducted in 

different areas such as online banking [44, 90-92], healthcare [91, 93, 94], academic 

institutions [95], and government applications [91]. According to a two-factor authentication 

usability study by Krol et al, [47], in the context of online banking within the UK, it was 

found that many banks require the OTP authentication method. Banks rely on hardware 

tokens as a means to generate the second authentication factor. Such devices can be either a 
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secure key such as the HSBC PIN-protected security device [55], or a card reader that 

requires a debit card to be inserted into the device, such as Barclay’s PINsentry security 

device [96] and NatWest’s card reader [97].  

In an attempt to develop user friendly and secure online authentication mechanisms, 

researchers have conducted a large number of studies on the use of OTP with different 

authentication technologies. Some of these studies are presented in this section. For instance, 

Tandon et al. [92] proposed the integration of OTP with QR code technology in a novel 

authentication scheme for online banking. The scheme involves sending the client an e-mail 

with a QR code containing an encrypted OTP, to be verified through the mobile banking 

application by entering the ATM pin to decrypt the OTP. Although the system makes it 

difficult for intruders to detect secure information, user friendly that requires no technical 

pre-requisites, and provides authenticity, integrity, confidentiality, and privacy, it is still 

vulnerable to man-in-the-browser (MITB) attacks, in which all computations take place 

within the browser. A similar methodology based on embedding an OTP into a QR code was 

proposed by Moholkar et al. [98] to detect phishing websites. The proposed anti-phishing 

framework verifies the originality of a particular merchant’s website as a means to protect 

personal information and passwords from phishing websites. The bank possesses a database 

of registered original websites, and another database for their user accounts. The framework 

login phase begin with the user submitting his or her credentials to log into any merchant 

website. The merchant sever sends this information to the bank, along with information about 

the site, in order to generate and embed an OTP into a QR code, which is split into two parts. 

The first part is sent to the user through e-mail, while the second is sent to the merchant server 

through network and then sent to the user via this network. The user combines both parts to 

scan the QR code and recover the OTP, which is sent to the bank through e-mail for 

verification. Finally, the bank sends an e-mail to the user, stating whether the website is 

phishing or not. The system protects online users from attackers by dividing the image into 

two parts and sending them to different servers, since one part does not reveal the entire 

image. On the other hand, the system cannot be considered user friendly due to the continuous 

need for e-mail use. An additional factor is the overhead caused by the computation required 

to combine the two images. 

A new approach for securing ATM authentication systems using fingerprint identification 

and OTP was proposed by Shamdasani and Matte [99]. The approach works by verifying a 
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currently scanned fingerprint against a biometric template that was registered during account 

opening. If the fingerprints are a match, the bank sends a random four-digit OTP to the 

client’s mobile phone to be submitted by the user for authentication purposes. Compared to 

the traditional magnetic card reader used by the majority of ATM machines, the proposed 

approach provides a safer authentication mechanism. The only disadvantages of this system 

are the shortcomings associated with biometric systems, such as implementation cost, 

damaged fingerprints, and people’s concerns with touching a public device. 

2.4.1.1 OTP Attack Methods  

With the evolution of attack methods, hackers have developed MIT-X (man-in-the-X) 

attacks, which combined with other concepts to attack accounts under OTP protection. MIT-

X attack methods include: 

 Man-In-The-Middle (MITM) 

 Man-In-The-Browser (MITB) 

 Man-In-The-PC (MITPC) 

An MITM attack combined with phishing is used for to attack OTP. The attacker first attacks 

the user’s PC to intercept the certification and snatch credentials through a phishing website. 

Next, when the user submits the OTP to log in, the attacker intercepts the OTP value through 

an MITM attack. The second attack is an MITB attack (man-in-the-browser attack), caused 

by malignant code installed in the web browser. The main idea behind this type of OTP attack 

is to use a malignant program to cover over the targeted internet banking service with a fake 

input form, without the need to create a fake site. Finally, there is the MITPC attack (man-

in-the-PC attack), which exploits PC environment vulnerabilities to control and attack every 

data access pathway. This includes keyboard and mouse logging, screen capture, and 

accessing memory to intercept fundamental account information from the user’s PC. 

Furthermore, a new type of attack that combines MITPC and MITM has emerged. This 

method uses an MITM attack to intercept the OTP, which will be used with the information 

previously collected during the MITPC attack for account theft [88]. 
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2.4.1.2 OTP Distribution Mechanisms  

There are a number of ways in which one-time passwords are generated or distributed [88], 

such as through SMS messages [8], mobile banking applications [47] and hardware tokens, 

which are small devices given to the client to aid in the authentication mechanism. Although 

tokens provide a secure environment, they can be very costly for organizations in terms of 

customer training and replacing lost or damaged tokens. There is also the burden of having 

to always carry and maintain the token. This could be especially difficult if the customer has 

several accounts at several banks, which would lead to the inconvenience of having more 

than one token. Therefore, this subsection will only focus on SMS-OTP and mobile banking 

applications. 

 

2.4.1.2.1 SMS-based One-Time Password (SMS-OTP) 

The SMS-based channel has been the predominant OTP distribution mechanism for online 

banking in a number of countries, including Germany, Spain, Switzerland, Austria, Poland, 

Holland, Hungary, the US, China [48], and Saudi Arabia. Moreover, a number of online 

service providers such as Google, Facebook, Dropbox, Microsoft, and Apple have recently 

been employing SMS-OTP as the second authentication mechanism in their login verification 

systems [48]. 

In SMS-based one-time-password verification systems, users log in with their standard 

username-password combination [90], followed by submitting the verification code (OTP) 

received on their mobile-phone via SMS [90]. SMS-OTP was built upon two foundations: 

cellular networks and mobile phones. Today, these foundations are quite different than what 

they were when SMS-OTP was designed [100]. An attacker’s main goal is to get a hold of 

the OTP, which can be done either through wireless interception or mobile phone Trojans 

[100]. In terms of wireless interception, GSM technology is insecure due to a number of 

vulnerabilities, such as unilateral authentication, which jeopardizes the network to MITM 

attack [100, 101], implementation algorithm flaws causing weak cryptographic algorithms 

[100, 101], and disabled wireless encryption in some countries or situations [100, 101]. As a 

result, over-the-air communication can be vulnerable to eavesdroppers and sniffers, who are 

capable of intercepting mobile traffic in order to get a hold of the authentication information 

[100, 101]. Furthermore, mobile phone Trojans have been created by criminals as a means 
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of stealing money [100]. SMS-OTP-stealing Trojans are designed specifically to receive, 

alter, delete, and forward SMS messages that contains OTPs without leaving any trace [100]. 

Mulliner et al. [100] proposed two countermeasures to diminish attacks against SMS-OTP. 

The first approach uses the concept of end-to-end encryption, where a permanent and private 

storage area for each application is used to store the received OTP. The concept is based on 

using the SMS channel to send an encrypted server-side OTP to the mobile phone. The 

mobile phone decrypts the OTP using a dedicated application, which stores that piece of data 

in the application’s private storage [100]. Although an SMS-OTP Trojan can still access 

received SMS messages, it cannot access the user-specific key that is needed to decrypt the 

OTP. The only problem with this approach is key distribution. Another study involving 

prototyping attacks against the SMS-based TAN schemes of four large banks was conducted 

by Dmitrienko et al. [48]. The study involved investigating dual infection attacks against a 

scheme with a server-side generated OTP and direct OOB. In terms of attack implementation, 

the login credentials are stolen from the PC though an MITB attack, while mobile malware 

intercepts SMS messages through an MITM attack between the GSM modem and the mobile 

phone and hides them from the user. The result showed that malware has succeeded in 

intercepting SMS messages, stressing the need for further research within the context of 

secure mobile two-factor schemes. The second approach proposed by Mulliner et al. [100] is 

based on creating a virtual dedicated channel inside the mobile phone’s operating system to 

protect specific SMS messages against local Trojan interception, redirecting them to a special 

OTP application called “OtpMessages,” which blocks them from being read by other 

applications. The only difference between the “OtpMessages” and the default SMS 

application is that “OtpMessages” only receives messages containing OTPs due to the use of 

a knowledge-based filter that matches keywords against the message body. This approach 

seems effective against Trojan attacks. On the other hand, it requires operating system 

manufacture support, along with some support from service providers and cellular network 

operators.  

Hamdare et al. [89] proposed a technique to secure SMS-OTP from MITM attacks by 

combining the received SMS-OTP with a pre-shared secret key, to be passed through an RSA 

algorithm in order to generate a transaction password on the mobile application side. This 

will be compared to a copy of the same transaction password that exists on the server side 

when the client submits his transaction password through the website. 
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Finally, Saxena and Chaudhari [102] proposed a successful, secure and efficient end-to-end 

protocol called “EasySMS” for securing SMSs between end users, whether they share the 

same Home Location Register or not. The protocol is based on transmitting symmetric keys 

to mobile users for secure message exchange after verifying both end users. The analysis of 

EasySMS showed that the protocol prevents SMS disclosure, replay attacks, MITM attacks, 

over-the-air modification, and impersonation attacks. The protocol also generates less 

communication and computational overhead, it utilizes bandwidth efficiently by reducing 

consumption to 51% and 31% and, reduces message exchange during the authentication 

process by 62% and 45% compared to the SMSsec and PK-SIM protocols. Furthermore, 

within the protocol modelling phase, the authentication server was assumed to work as the 

authentication centre (AuC), in which all symmetric keys that are shared between the 

authentication server and the mobile phones are stored. Therefore, the proposed protocol 

could be applied within any framework that requires OTP generation on the server side. 

Another solution by Liu and Zhu [103] eliminated the use of SMS messages by utilizing 

Bluetooth technology to create a connection between a computer and a smartphone. Thus, 

the remote server sends the OTP to the computer, which will be submitted to the smartphone 

via Bluetooth. This scheme is based on submitting the Bluetooth device address to the remote 

server during the registration phase. As SMS is transmitted over a telecommunication carrier, 

the sender will be charged with fees for each sent message. On the other hand, mobile instant 

messaging (MIM) is transmitted via the internet, which is free of cost [104]. Therefore, the 

use of public MIM services has become increasingly popular due to providing a private 

network communication between two users, in addition to providing a chat session between 

two or more users [105, 106]. In MIM, users are authenticated by logging into the IM network 

via submitting their usernames and passwords. The logging authentication is performed by 

exchanging hashes of the password. In the IM approach, expensive cryptographic algorithms 

such as RSA are avoided. Instead, cheaper cryptographic algorithms such as MD5 and SHA 

are used. In the authentication phase, a sniffer who monitors exchanged packets is able to 

determine who is logged into the IM server without knowing the password. The well-known 

hash algorithms used for hashing passwords within IM achieves this. These algorithms can 

be applied to the challenge sent to the server along with the hash result, for recovering the 

password. Thus, the system is vulnerable to dictionary attacks [106] and impersonation in the 

case of a stolen username and password [107]. This type of data theft is performed off the 
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wires, where the attacker grabs TCP packets off the network. Another type involves stealing 

conversation logs that are created by almost all IM clients. Moreover, a profile of an 

individual can be built from registration information that is publicly available (data mining), 

thus resulting in identity theft [107]. In terms of spreading viruses, vulnerabilities in the IM 

software or Trojans deceiving users into executing a malicious code can help spread viruses 

quickly to the user’s contact list [107]. In terms of the application speed, whenever the system 

becomes busy, message sending and receiving becomes slower. A delay of more than one 

second means that the conversation will not take place [107]. Considering the mentioned 

security drawbacks of the MIM services, a trade-off is made with respect to security in favour 

of the SMS. 

  

2.4.1.2.2 Mobile Banking Application OTP 

With the increasing popularity of mobile phones, there has been a growing trend towards 

mobile phone investment to help surpass desktop PCs in providing mobile banking [108]. As 

Ha et al. [109] have indicated, the benefits of mobile banking include 1) ubiquity, 2) 

immediacy, 3) localization, 4) instant connectivity, and 5) proactive functionality. Therefore, 

large banks provide mobile banking, through which their clients can conduct secure financial 

transactions such as balance inquiries, payments, and transfers [110, 111]. Even small banks 

and credit unions are considering mobile banking as a means to simplify banking activities 

for their clients [112]. However, mobile banking security is complicated and is considered a 

major concern for mobile banking clients due to the existence of different mobile devices and 

platforms [112]. Therefore, a number of security methods are used in mobile banking. These 

include 1) passwords, 2) encryption, 3) security questions, and 4) downloaded applications 

[112]. These methods help divide mobile banking into three categories: password, 

messaging, and applications [110]. The first defence mechanism is the screen lock, which is 

equivalent in strength to the password-based mechanism, thus providing very weak security 

[110]. The second category is messaging, which revolves around receiving an authentication 

code (OTP) through the SMS channel, to be submitted within the banking application, as is 

done when activating the HSBC digital security device via the HSBC mobile banking app 

[113]. Finally, a large number of UK banks provide clients with downloadable mobile 

banking applications [54, 114-125]. Mobile banking applications are used to conduct secure 

financial transactions with the bank. The application mechanism requires at least two pieces 
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of information in order to activate the app—the username-password combination. Moreover, 

some applications require a second layer of authentication, one that is linked to the 

authentication device to ensure that the mobile phone is in the possession of the account’s 

legitimate owner [110]. This authentication factor is a one-time password (OTP) that is 

generated by the banking application itself and is required for internet banking transactions, 

as in the HSBC mobile banking app [113, 114] and Barclay’s mobile PINsentry banking app 

[54].  

2.4.2QR Code 

With increasing security concerns, there has been a strong trend in online security towards 

employing QR code technology as a means of assuring online users that the service they are 

using is secure and reliable. [126]. This approach has rapidly gained popularity and found 

widespread adoption within two-factor authentication schemes, where QR codes are applied 

as the client’s second factor within secure online transactions. 

QR (“Quick Response”) code is a machine-readable [127], two-dimensional matrix barcode 

technology that decodes its contents at high speed [103, 128, 129]. It was first developed by 

the Japanese corporation Denso-Wave in 1994 for tracking parts in the vehicle manufacturing 

process [128, 130, 131]. In June 2000, QR codes were approved as an ISO international 

standard (ISO/IEC 18004) to be made publicly available to people regardless of applicability 

[132]. Recent QR code usage has since expanded beyond its initial purpose to cover a 

multitude of different purposes [128], ranging from marketing [133] and advertising [134, 

135] to secure mobile payments [135-138].  

 

2.4.2.1 QR Code Structure and Capacity 

QR code capacity is influenced by several factors: 

 Version: there are 40 different versions of QR codes. Each version differs in the 

number of modules, which are the black or white dots constituting the QR code. 

Version 1 consists of 21 x 21 modules, from which 133 are used for storing the 

encoded data, while version 40 is the largest QR code symbol, consisting of 177 x 

177 modules and up to 23,648 data storage modules [139].   
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 Error correction level: the QR code error correction feature is based on the Reed-

Solomon codes. This robust feature restores data even if the code is damaged or 

partially dirty [140-142]. There are four error correction levels, namely L (Low 7%), 

M (Medium 15%), Q (Quartile 25%), and H (High 30%) [140, 142]. Error correction 

level L is the most preferred level [142], since higher error correction levels improve 

error correction ability by increasing the area reserved for error correction codewords, 

thus decreasing the area reserved for storing the actual data [135]. Furthermore, based 

on the error correction feature, QR codes are readable from any direction at a stable, 

high speed. This is accomplished through the position detection patterns located at 

the symbol’s three corners [129, 141]. Another useful feature is masking, which helps 

increase the image contrast, and helps the reader software decode the QR code [142]. 

 Encoded data: QR code capacity depends on the amount of data that needs to be 

included. Whenever the data amount increases, more modules are required for the QR 

code, resulting in a larger symbol [139]. All data types are supported by QR code, 

including numeric, alphanumeric, kana, kanji, hiragana, symbols, binary, and control 

codes [129, 135, 141]. QR codes are able to encode up to 7,089 characters in a single 

symbol [129, 141]. 

Each QR code consists of eight sections, each of which is necessary for the scanner’s ability 

to decode the data [142]. Figure 2.1 shows the different sections of the QR code [127, 142]. 

 

Figure 2.2: QR Code Structure (Version2) 

Finder Pattern (1): The finder pattern is used to detect the QR code position and determine 

its correct orientation (omni-directional). It consists of three identical 3 x 3 square boxes 

(modules) located at all corners of the QR code, except for the bottom-right corner. Each 
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pattern is represented by a square black box, surrounded by square white box, and surrounded 

again with a square black box [127, 142]. 

Separators (2): Separators are the white modules surrounding the finder pattern to improve 

its recognisability and to separate it from the actual data [127, 142]. 

Timing Patterns (3): Timing patterns are a sequence of black and white modules [142] 

placed in  vertical and horizontal form. Each pattern has alternating dark and light modules, 

beginning and ending with dark modules. The vertical timing pattern extends across the sixth 

column, between the separators of the left-hand finder pattern, while the horizontal timing 

pattern extends across the sixth row, between the separators of the upper finder patterns. 

Timing patterns help the reader software determine the modules’ width [127]. 

Alignment Patterns (4): Alignment patterns help correct possible code distortion when 

scanning the QR code. The symbol size determines the number of alignment patterns [127, 

142]. 

Format Information (5): Format information consists of 15 bits next to the separators. It 

contains the error correction level and the selected mask pattern of the QR code [127, 142]. 

Data (6): The data section is where the data are stored in 8-bit pieces after being encoded 

into binary values called codewords [127, 142] and then converted into black and white 

modules. This section also contains version information, format information, and error 

correction codewords [127]. 

Error Correction (7): Error correction codewords are generated from the data codewords 

[142]. These error correction bits are stored in 8-bit-long codewords in the error correction 

section [127, 142]. 

Remainder Bits (8): Remainder bits consist of empty bits that are present in case the data or 

error correction bits cannot be divided into 8 bits without a remainder [127, 142]. 

Finally, surrounding the QR code symbol is a quite zone, which is a white margin that 

surrounds the symbol on all four sides. It consists of four wide modules that help improve 

symbol detection [127]. 
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2.4.2.2 QR Code Usage 

Recently, QR code usage has expanded and evolved significantly beyond its initial purpose 

[128]. QR codes are able to store different types of data, such as URL, contact information, 

e-mails, geo-location, and plaintext [142]. The marketing industry is widely employing QR 

codes as a means of advertising by encoding URLs, which take users to companies’ official 

web pages without having to type an address [143].  

A unique example of using QR code for advertising was done by a shampoo company, which 

introduced QR code haircuts. People were thus used as moving advertisements to be scanned, 

leading to the company’s website [142]. Another clever and innovative use of QR codes was 

launched by Reporters Without Borders, an international and non-governmental organization 

whose goal is to defend freedom of the press [144]. The idea was to create a printout that 

literally speaks to the people; by scanning a QR code in a magazine and placing the 

smartphone on a published full page photo, audio of journalist speaking about what’s really 

happening in the world would start playing [145, 146]. Furthermore, QR codes have been 

adopted by some companies to enable customers to purchase products or pay for services 

[142]. QR Pay is a specialist technology company that focuses on mobile payments using QR 

codes. It provides a smartphone application called QR Pal, which allows individuals and 

businesses to conduct payment transactions using QR code via the intermediate payment 

agent PayPal [147].  

The literature has also confirmed that online authentication solutions can be secured using a 

QR code within two-factor authentication mechanisms. Tandon et al. [92] proposed the 

embedding of a cryptographic OTP into a QR code as a means of achieving secure 

authentication in online banking. Another use of QR codes in online banking systems was 

proposed by Adsul et al. [148]. From the scanned QR code, the scheme generates a string 

that is a combination of the IMEI number of the client’s registered mobile phone and a 

random number. The string is automatically inputted into the login page in order to open the 

bank’s homepage. The server decrypts the submitted string using the registered user’s public 

key for verification. This method enhances the security level of banking by moving the 

authentication process from the web browser to the mobile phone, forcing the client to 

perform mobile banking. Furthermore, another QR code security enhancement mechanism 

has been proposed for use with ATM machines. In transferring money from one ATM card 
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to another, a QR code confirmation pop-up message appears for scanning; this decodes 

recipient information for verification. Such an approach adds an extra security layer by 

employing mobile phones as a second authentication factor [148]. As attackers can easily 

collect financial credentials through web phishing, Kale et al. [149] suggested a secure single-

sign-on (SSO) authentication scheme for untrusted computers via QR codes. The scheme is 

based on generating an encrypted QR code following the submission of the user ID. After 

decrypting the scanned QR code, the user’s OpenID is requested by the mobile phone to 

generate a QR code, which will then be transferred to the untrusted computer for verification 

to finally gain access to the website.  

Although most proposed authentication solutions are focused on embedding OTPs into QR 

codes on the server-side [92, 94, 98, 136], another approach proposed by Malik et al. [129] 

uses a timestamp as a verification criterion on both sides. During the scheme’s enrolment 

phase, two personal assurance messages called PAM image and PAM text are selected by the 

user. Next, a digest based on the user ID, along with a secret key, are created and sent to the 

client. The verification phase displays an encrypted QR code that is based on the PAM image, 

PAM text, and a random number. The server also sends its timestamp, hash, and QR code 

contents to the client for a validity check. User validity is also checked. The client generates 

an OTP that is based on his registered identity and his timestamp, which is hashed along with 

the random number received. The user then sends the timestamp, along with its hash, to the 

server for verification. This scheme provides safe access across the web, with no replay 

attacks or MITM attacks due to timestamp and OTP cryptography, respectively. Moreover, 

the secret key is secured from intruders due to the use of a one-way hash function that 

generated the digest.  

Other technologies can also be combined with QR codes and OTPs in authentication 

schemes. Liu and Zhu [103] proposed the utilization of some of the most important features 

of mobile phones in online authentication, namely the camera and Bluetooth, in combination 

with the QR code and OTP technology. Their scheme is based upon submitting the Bluetooth 

device address to the server during the registration phase as a means of connecting the current 

computer with the mobile phone. The QR code is used in the registration and authentication 

phases, while Bluetooth is used to submit the server-generated OTP and timestamp hashing 

result to the mobile phone during the login and authentication phases, respectively. The 

proposed protocol draws on a self-verified timestamp and QR code technology to prevent 
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MITM and replay attacks. OTP is used to increase security, and Bluetooth is used to reduce 

consumption. Moreover, a large amount of computation is not required due to the use of the 

one-way hash function and QR code cryptography. However, compared to a wireless 

connection, Bluetooth is weak and vulnerable to pairing failure. Besides online 

authentication, QR codes can be used to conduct financial transactions by simulating the 

mobile phone as a digital wallet. Ugwe and Mesigo [128] developed a model that uses QR 

codes as a communication link between parties engaged in financial transactions. The model 

is based on both parties launching their mobile wallet application. The receiver (merchant) 

selects the required payment amount and currency. Then, a QR code containing the account 

details and the necessary transaction information is generated. Once the payer (client) scans 

the QR code, the payment and transaction information are displayed, along with options to 

select which bank account or credit card to use for payment. After being authenticated via 

the mobile application, the payer is transferred to the selected financial institution’s platform 

(such as PayPal) for the second authentication. Although the scheme is useful, both 

participants must be face to face in order for the transfer to take place. 

 

2.4.2.3 QR Code Security Issues 

QR codes have gained increasing popularity through their adoption in different fields of 

application, ranging from marketing [150] to secure mobile payments [135-138]. As a result, 

this technology has caught the attention of the hacking community, causing attackers to try 

to manipulate and modify its contents in order to advance their unethical pursuits.  

QR code manipulation can be divided into two attack models. The first attack model is called 

“Both Colours,” which has the ability to invert any module from black to white and vice 

versa. It generates a QR code sticker with the manipulated QR code to be positioned over the 

original code within the advertisement [127, 150]. This type of attack is trivial and represents 

an attack against a real-life advertisement, which is beyond the scope of this thesis. The 

second attack model is called “Single Colour,” which is the basis for all QR code attacks. It 

is restricted to the modification of a single module from white to black but not vice versa, 

using a pen [127, 150]. 
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2.4.2.4 Attacking Different Parts 

As QR codes consist of different mandatory sections that contains a large amount of meta 

information, such as masks, version, and source code. Several different QR code regions can 

be targeted and manipulated by the attacker, either individually or in combination, in order 

to change the encoded information [127, 150].  

 The Masks 

According to a particular rule, masks are used to generate evenly distributed modules in a 

QR code. This step helps modify QR code to make it easy for the QR code reader to scan and 

decode it [150]. The QR code specification standards [151] have defined eight mask patterns 

to be applied to the generated QR code, with the result of each being rated. The mask with 

the best distribution result based on the rating is chosen [127, 150].  

Each mask pattern uses a specific formula to decide whether or not to change the colour of 

the bit. Table 2.4 lists the mask patterns formulas. 

Table 2.4: Mask Pattern Formulas 

Mask number Formula (condition) 

0 (𝑟𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 2 == 0 

1 (𝑟𝑜𝑤) 𝑚𝑜𝑑 2 == 0 

2 (𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0 

3 (𝑟𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0 

4 
(𝑓𝑙𝑜𝑜𝑟 (

𝑟𝑜𝑤

2
)) + (𝑓𝑙𝑜𝑜𝑟 (

𝑐𝑜𝑙𝑢𝑚𝑛

3
))  𝑚𝑜𝑑 2 == 0 

5 (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 2 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0  

6 ((𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑2 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑3) 𝑚𝑜𝑑 2 == 0 

7 ((𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑3 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑2) 𝑚𝑜𝑑 2 == 0 

 

If the conditions in Table 2.4 are true for a given module coordinate, the bit colour is changed 

[127, 150]. As mask patterns specifically apply to data modules and error correction modules, 

targeting or attacking the mask can affect these modules [127, 150]. 

 

 The Character Encoding (mode) 



 

40 

 

The encoded data within the QR code starts with a four-bit mode indicator, which identifies 

the encoding mode of the information contained within the QR code [127, 150]. Table 2.5 

lists each mode along with its indicator. If the mode indicator is changed or attacked, a whole 

new meaning is given to the encoded data [127, 150].  

Table 2.5: Character Encoding Mode 

Mode Name Mode Indictor 

Numeric Mode 0001 

Alphanumeric Mode 0010 

Byte Mode 0100 

Kanji Mode 1000 

ECI Mode 0111 

 

 Character Count Indicator 

After the mode indicator is the character count indicator, which gives the number of 

characters being encoded within the QR code, represented as a string of bits. The size of the 

character count indicator depends on the encoding mode being used and the QR code version 

[127, 150]. Table 2.6 lists the sizes of the character count indicator for each encoding mode 

and version. 

Table 2.6: Character Count Indicator size for each Encoding Mode and Version 

Version Numeric Alphanumeric 8-bit Kanji 

1-9 10 9 8 8 

10-26 12 11 16 10 

27-40 14 13 16 12 

 

Two main approaches can be used to attack the character count indicator, producing buffer 

underflow or buffer overflow [127, 150]. 

Buffer Underflow: Changing the number representing the character count indicator to a 

smaller number causes buffer underflow. Therefore, the QR code reader will only decode the 

number of characters specified by the attacker, causing it to neglect the rest of the characters 

and treat them as a new segment or as fillers. This kind of attack can be useful if the encoded 

data was a URL link with suffixes. Nevertheless, QR codes can overcome this type of attack 
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and still be decodable. If only a small change is made, this will result in a small change in the 

error correction values [127, 150]. 

Buffer Overflow: Changing the number representing the character count indicator to a 

higher number causes buffer overflow. Therefore, the QR code reader tries to decode parts 

of the fillers as data. This type of attack is difficult to perform in a real-life scenario, due to 

the abilities and great powers of the employed Reed-Solomon Code [127, 150]. 

 Mixing Modes 

It is possible to mix different modes into a single QR code through concatenation, which is 

useful when encoding different types of data. This is done by concatenating several data 

segments, along with their mode indicators and character count indicators [127, 150]. Table 

2.7 shows how different data segments can be concatenated within a QR code. 

Table 2.7: Concatenating different data segments within a QR code 

Segment 1 Segment 2  

 

 

… 

Segment 𝑛 

Mode 

Indicator 

1 

Character 

Count 

Indicator 

1 

Data Mode 

Indicator 

2 

Character 

Count 

Indicator 

2 

Data Mode 

Indicator 

𝑛 

Character 

Count 

Indicator 

𝑛 

Data 

 

This feature aids attacks using four different approaches: 

1. Changing mode of segments: This works the same way as attacking the encoding 

mode of a QR code. However, in the mixed mode, the change is limited to one 

segment only, while the other data are left untouched [127, 150]. 

2. Inserting new segments: A segment can be split into two new segments, one with 

the same header (the same mode indicator and character count indicator), and one 

with a new header [127, 150]. 

3. Deleting existing segments: When a segment is deleted, the space used by the mode 

indicator and the character count indicator is overwritten with additional data. 

Moreover, the character count indicator of the previous segment can be changed in 

order to append data to the deleted segment [127, 150]. 

4. Structured append: This mode allows concatenation of up to 16 QR codes. 

Decoding these QR codes is done independently of their encoding order. Attackers 
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exploit this feature through adding a segment pointing to another QR code, which is 

beneath the original segment. This attack is less practical due to the complexity of the 

structured append mode and the preparation overhead [127, 150]. 

 

 Data and Error Correction 

As illustrated in Figure 1, data and error correction codewords represent the largest part of 

the QR code. These two parts are related in a way that only changes when the actual data is 

directly reflected in the data and error correction portions [127, 150]. The Reed-Solomon 

encoding used to convert the data into data bits [142] can detect changes in either the data or 

error correction parts and decodes the original message even if some modifications or errors 

have been made. Hence, it can be said that the error correction feature of the Reed-Solomon 

code increases the integrity of the QR code as much as possible [127, 150]. 

 

2.4.2.5 QR Codes as Attack Vectors 

Whether the QR code reader is human or an automated process, manipulated QR codes can 

be the basis for a number of attacks [127, 150]. 

 

2.4.2.5.1 Attacking Automated Processes 

The consequences of scanning malicious QR codes can go beyond the victims who scan these 

codes; such attacks can affect the backend system that is trying to serve as an intermediate 

between the requests generated upon QR code scanning and the client [142]. For example, 

SQL injection is capable of manipulating the backend database by appending a semicolon 

followed by an SQL query to the encoded information, which can result in a denial-of-service 

attack in the case that the SQL query was deleting a table [127, 142, 150]. Another attack 

based on automated processes is command injection, which can cause severe damage to the 

operating system of the automated system. This attack uses the encoded information as a 

command line parameter without being sanitized [127, 142, 150]. In other words, a user who 

scans a random QR code created by an attacker will generate the attack on behalf of the 

attacker [127, 142, 150]. Furthermore, fraud can be committed via automated system changes 

[127, 150]. 
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2.4.2.5.2 Attacking Human Interaction 

As the encoded information within the QR code is completely obscure, humans cannot decide 

whether or not the code is malicious, even when decoded by the reader software. For 

example, a QR code might contain a URL of a phishing website that is similar to the original 

URL. This form of attack is called “Phishing and Pharming,” and is serious, especially if 

some form of credentials are required [127, 150]. In case of advertisements, QR codes can 

be manipulated by attackers to redirect users to cloned websites, in order to commit fraud 

[127, 150]. Other attacks are based on command injection or traditional buffer overflow as a 

means to attack the reader software on computers or smartphones. The attacker might take 

over control of the entire smartphone, including its contacts, e-mail or SMS [127, 150]. Based 

on these attacks, social engineering attacks are also possible, such as spear phishing or 

publishing manipulated QR codes in public places [127, 150]. 

 

2.5 Encryption Technology Layer 

In e-commerce, encryption technologies are an essential means for protecting confidential 

information leakage [20]. Thus providing four of the six key dimensions of e-commerce 

security, namely integrity, non-repudiation, authentication and confidentiality [24]. Over the 

years, a large number of cryptographic algorithms have been developed for use in many 

different functions and security protocols [152] to ensure secure communications [41]. Most 

current communication systems rely on security protocols and the properties of secrecy and 

authentication [41].  

Since cryptography is considered the “science of keeping secrets secret” [153], and secrecy 

is one of the mandatory and fundamental security properties in any secure protocol [41], 

cryptography is considered one of the fundamental aspects in the field of computer security 

[154]. 

According to the National Institute of Standards and Technology (NIST), cryptography is 

defined as “a branch of mathematics that is based on the transformation of data and can be 

used to provide several security services: confidentiality, data integrity authentication, 
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authorization, and non-repudiation” [155]. In terms of cryptology science, cryptography is a 

part of a wider science called “cryptology” [156, 157], which is the “science of information 

security and privacy” [156]. It is divided into two main branches: cryptography and 

cryptanalysis [156]. Cryptography is the design part of the science [156], while cryptanalysis 

involves analysis and security investigation [156]. 

Cryptography is based on an algorithm (cipher) and a key, which are used to encrypt and 

decrypt the data [155]. In general, the algorithm is a mathematical function that transforms 

the data from plaintext to ciphertext, and from ciphertext back to plaintext, with the help of 

the key parameter [155]. 

The types of cryptographic algorithms fall into three broad categories: symmetric 

cryptography, asymmetric cryptography, and cryptographic hash function [153-155, 157, 

158]. 

 

2.5.1Symmetric Cryptography 

In symmetric cryptography, also referred to as conventional encryption [159], secret-key 

schemes, or single-key schemes [154, 155, 157], the same secret key is used for both 

encryption and decryption [153-155, 157, 160]. Examples of such cryptography include the 

Advanced Encryption Standard (AES) [152] and Triple Data Encryption Standard (3DES) 

[152]. 

Symmetric key algorithms are usually very secure [157] and fast [157, 160]. However, 

several shortcomings are associated with symmetric key schemes, such as: 

 Secret-key distribution: Prior to the sender and receiver communicating with such 

a cipher, the secret key must be exchanged among participants in a secure manner 

[153, 157, 160]. Since the communication link is not secure, there is always the risk 

for the secret key to be intercepted by an adversary, causing messages to be decrypted 

and  impersonation of users [157, 160]. Therefore, secret-key distribution is 

considered the biggest problem in symmetric cryptography [158]. 
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 Number of keys: In a network corporation between n users, if each pair of users 

needs a separate key-pair, then each user will have to save (𝑛 − 1) keys, and an 

𝑛.
𝑛−1

2
 key pair must be generated and transported over a secure channel [157]. 

 Repudiation: Either one of the participants can deny involvement in an e-commerce 

application. Therefore, symmetric cryptography cannot be used in applications that 

need to satisfy the non-repudiation requirement [157]. In these cases, asymmetric 

cryptography should be employed through a digital signature [158].  

Symmetric cryptography is divided into stream ciphers and block ciphers [157]. A stream 

cipher is a method that encrypts plaintext into ciphertext by applying a cryptographic key and 

an algorithm to each bit of the plaintext, individually [157]. The method works by generating 

a keystream, which is a pseudorandom sequence of data. Next, each bit of the keystream is 

XORed with the corresponding bit of the plaintext to generate the ciphertext. To decrypt, the 

same method is applied, where the keystream is XORed bit-by-bit with the corresponding bit 

of the ciphertext [161]. 

A stream cipher is very fast, compact and efficient [157]. It is relevant for applications with 

very low hardware complexity, such as cell-phones and other embedded devices, where few 

processor cycles and small chip areas are required for encryption [157]. However, stream 

ciphers are not used in modern cryptography as often as block ciphers [157].  

A block cipher can be either symmetric or asymmetric [162]. Therefore, it is considered the 

most important and dominant element in many cryptographic protocols [162]. A block cipher 

can be defined as a mapping function [162] that operates on blocks of data [163]. It encrypts 

a block of 𝑛-bits of plaintext into a block of 𝑛-bits of ciphertext by applying a cryptographic 

secret key and an algorithm to the block at the same time [157]. Such blocks are usually 64-

bits (8-bytes), e.g., the Data Encryption Standard (DES) or the Triple DES algorithms 

(3DES), or 128-bits (64-bytes), e.g., the Advanced Encryption Standard algorithm (AES) 

[157, 162, 163]. 

In terms of building blocks, a block cipher represents the fundamental building block for 

other major cryptographic tools. A block cipher can be turned into a stream cipher or a hash 

function, which plays a major role in cryptographic protocols [162]. In addition, the method 

satisfies data confidentiality and authenticity [162]. In terms of speed and compactness, 
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stream ciphers can be used to perform a fast cipher to encrypt a large amount of data due to 

having a smaller size [157] and faster speed [157, 164] than block ciphers, and the method is 

more efficient for hardware and software because it requires few processor instructions and 

few gates [157], respectively. However, modern block ciphers are also very efficient when it 

comes to hardware and software [157]. 

 

2.5.1.1 Data Encryption Standard (DES) 

The Data Encryption Standard (DES) is an old symmetric block cipher algorithm designed 

by IBM in 1972 [165, 166]. DES is an iterated block cipher [153, 160] that operates on blocks 

of plaintext of 64-bits with 16 rounds of encryption, using a shared key of 56-bits [165, 166].  

The DES algorithm is based on the Feistel structure, in which each block is split into two to 

be fed into the Feistel network [157]. The structure feeds the right half of the input into 

function 𝑓, where its output is XORed with the left half. Thus, only the left half of the input 

is encrypted, while the right half moves on to the next round unchanged after swapping its 

position with the right half. In each round, a different key is derived from the main 56-bit 

shared key using a key schedule [157]. One of the advantages of DES is that the decryption 

and encryption functions are the same; the decryption function reverses the encryption in a 

round-by-round technique [157]. On the other hand, the DES key space is too small to be 

used to encrypt confidential data and is thus vulnerable to brute-force attacks [157]. 

Furthermore, DES is very slow when implemented in software. However, variants of DES, 

such as 3DES, are much more secure [157].   

 

2.5.1.2 Triple Data Encryption Standard (3DES) 

In 1998, DES was replaced by Triple-DES (3DES); this was done to overcome DES’s 

deficiencies without changing its original structure [165]. 3DES achieves a higher level of 

security in data encryption because it performs three iterations of DES on each block, using 

three different unrelated keys [165]. As with its predecessor, 3DES is based on the Feistel 

structure, and it operates on blocks of plaintext of 64 bits with 48 rounds of encryption, using 

a key of size of 168 bits that is permuted into 16 subkeys [167]. Although 3DES resists brute-

force attacks, it still has several problems with regard to software implementation, including 
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lack of efficiency and speed, with 3DES being three times slower than DES [157]. Another 

shortcoming is its small block size, which is considered a drawback in some applications 

[157]. Moreover, 3DES is exposed to differential and related key attacks [165].  

 

2.5.1.3 Advanced Encryption Standard (AES) 

Due to the disadvantages of DES and 3DES, the National Institute of Standards and 

Technology (NIST) looked to develop a new block cipher to replace DES. Therefore, a 

formal call for a new Advanced Encryption Standard (AES) was announced by NIST in 1997 

[157]. In 2001, Rijndael was chosen from among five finalist algorithms (Mars, RC6, 

Rijndael, Serpent, and Twofish) as the new AES [157].  

AES operates on blocks of 128 bits, with 10, 12, or 14 rounds, using key sizes of 128, 192, 

or 256 bits, respectively [167]. The reason for having small number of rounds is that AES 

encrypts an entire block per iteration. The AES round functions deals with all 128 bits of the 

data path (also called algorithm state or state matrix), arranged in a four-by-four byte matrix 

[153, 157].  

Each round of the algorithm (except for the last) consists of four steps: Byte Substitution, 

ShiftRows, MixCoulmn and Key Addition. For each individual AES round, Byte Substitution 

starts by feeding the 16-byte data input into the S-box for transformation [153, 157]. The S-

box uses a look-up table with special mathematical properties [157]. The generated 16-byte 

output is then transformed in the ShiftRows step through a periodic left shift of the rows 

within the state matrix (except for the first row) to increase the diffusion property [157]. 

Another transformation is performed within the MixCoulmn step by multiplying each column 

of the state matrix by a constant matrix, where each input byte affects another four output 

bytes. Thus, MixCoulmn is considered the primary diffusion element within the AES 

algorithm [153, 157]. Finally, the Key Addition step is a bitwise XOR operation between the 

intermediate 16-byte state matrix and a 16-byte subkey to generate the next subkey. Note that 

the first subkey used in the initial round is the original AES key, and the following AES 

subkeys are derived via a key schedule [157].  



 

48 

 

Since AES is not based on the Feistel network, all steps are invertible as a means of 

performing decryption [157]. AES also has the ability to provide strong diffusion, confusion, 

and long-term security against brute-force attacks [157]. 

In a comparative analysis of symmetric algorithms done by Ebrahim et al. [165], AES was 

observed to be superior in terms of security memory usage, flexibility, and encryption 

performance. It has also been shown to be efficient with regard to software and hardware 

implementation [157]. Therefore, AES has become the compulsory encryption algorithm in 

many commercial systems, including the internet security standard IPsec, TLS, the Wi-Fi 

encryption Standard IEEE 802,11i, the internet phone service Skype, and many other security 

products [157]. Furthermore, by 2003, the US National Security Agency (NSA) was using 

AES to encrypt classified documents up to top secret level [157], and it was also being used 

for other US government applications [157]. However, based on the number of rounds and 

the key size, a large amount of memory is required for storage. Therefore, it is undesirable to 

implement AES on devices with limited memory resources [157].   

2.5.2Asymmetric Cryptography 

In asymmetric cryptography, also referred to as public-key cryptography [154, 155, 157], 

two mathematically related keys—the public key and private key—are used for the 

encryption and decryption processes [153-155, 160]. The public key can be widely published 

and used publically by everyone to encrypt data [155, 160], while the private key must remain 

secret, known only by its owner, to be used for decryption [155, 160]. Although the two keys 

are related, the private key cannot be extracted from the public key [155].  

Based on symmetric cryptography, the idea behind asymmetric cryptography is the 

importance of maintaining the confidentiality and secrecy of the decryption key, and not the 

encryption key [157]. Therefore, in their landmark paper, Diffie, Hellman, and Merkle 

proposed the revolutionary “public-key cryptography” [168], in which the public key is 

published to be used by everyone, and while its matching private key is secured for 

decryption [157]. 

In terms of security mechanisms, public-key cryptography has been designed in a way that it 

provides secure cryptographic schemes that satisfy data integrity, non-repudiation, and 

authentication [155]. In the case of symmetric cryptography, a message can be encrypted 
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without a secret channel for key establishment, but much effort is required to manage those 

keys. This protocol can be modified using public-key cryptography [157]. In this 

modification the symmetric key is encrypted with the public-key, and once the receiving 

party decrypts the symmetric key with the private key, both parties can exchange messages 

using symmetric cryptography [157]. This methodology combines the best features of both 

symmetric and asymmetric cryptography [157].    

Besides using public key schemes to encrypt data, asymmetric cryptography provides the 

following security mechanisms: 

 Key establishment: There exist a number of public-key protocols to establish secret 

keys in a secure manner over an insecure network [157]. Examples of such protocols 

include the Diffie-Hellman key exchange or RSA key-transport protocols [157]. 

 Non-repudiation: The repudiation problem can be overcome through a digital 

signature [155, 157, 160] that is recognized by the asymmetric cryptography 

algorithms [160]. The methodology is based on encryption of the data with the private 

key, which is later verified by the corresponding public key through decryption [160]. 

 Identification: Identification of entities can be achieved through digital signatures 

within challenge-response protocols [157], such as those used in online banking. 

Although symmetric cryptography can identify entities and perform encryption, much effort 

is required for key establishment [160]. Moreover, it poorly satisfies the non-repudiation 

requirement [157, 160]. Asymmetric cryptography, on the other hand, seems to satisfy the 

requirements of modern security protocols, such as data integrity, non-repudiation, and 

authentication [155], and provides key establishment functionality [155, 157]. However, its 

encryption mechanism is very slow [157]. Nevertheless, in order to take advantage of the 

best features of both methodologies, it is recommended to merge both symmetric and 

asymmetric algorithms, as is done in the SSL/TLS protocol [157]. 

 

2.5.2.1 RSA 

The RSA algorithm (Rivest-Shamir-Adleman) is the most popular and widely used 

asymmetric cryptosystem, and is based on public key cryptography [157]. The algorithm uses 

a pair of keys—a public and a private key—to perform the encryption and decryption 
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processes, respectively [160, 169]. The RSA algorithm consists of three main steps: key 

generation, encryption, and decryption [170]. The algorithm is computationally intensive, 

since it is based on generating and publishing a public key based on two large prime numbers 

(𝑝, 𝑞) that are used to compute the public and private keys. The prime numbers must be kept 

secret as a means to prevent private key disclosure.  

In practice, RSA is slow compared to symmetric cryptography due to the complexity of the 

operations performed during execution [160]. Therefore, it is mainly used to securely encrypt 

and transport session keys in symmetric ciphers such as AES or 3DES due to its time 

complexity [157, 160]. It is also used in digital signatures through encrypting messages with 

the private key, to be decrypted in such a case with the public key [157, 160]. Furthermore, 

it is used in the key exchange algorithm within the TLS/SSL protocol [167, 171, 172]. 

In terms of security, RSA has an undesirable property termed “malleability,” which allows 

an attacker to transform a ciphertext into another ciphertext, leading to a known plaintext 

transformation. Malleability only allows manipulation of the plaintext without decryption, 

which can cause harm, especially in the financial world. However, padding provides the 

solution to malleability; it involves embedding a random structure into the plaintext prior to 

encryption [157]. Other shortcomings of RSA involve the operational complexity of the 

execution, which causes the RSA cryptosystem to be much slower than DES, 3DES, and 

AES [160, 173]. Moreover, some chip-card microprocessors cannot employ RSA 

cryptosystems in their applications due to its inability to perform computations with keys 

longer than 1024 bits [160].  

Furthermore, RSA is faced with two problems that represent the bases upon which the 

algorithm’s security and cryptographic power rely [157, 160]. The two problems are based 

on their mathematical structure; they are the RSA problem and the integer factorization 

problem [160]. The RSA problem revolves around recovering the plaintext from the 

ciphertext without actually having the private key, but only knowing the public key(𝑒, 𝑛). 

One possible approach to solving the RSA problem is to factor the modulus 𝑛, which can 

retrieve the prime numbers (𝑝, 𝑞). The factoring approach makes it easy for the attacker to 

compute the private key (𝑑, 𝑛) [160, 174]. Therefore, it is stated that the “RSA and integer 

factorization problems are computationally equivalent” [160, 174]. Thus, prime numbers 

(𝑝, 𝑞) must be chosen in such a way that makes it impossible for any algorithm to break the 
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RSA. In addition, secure keys must be generated that cannot be broken for at least two 

decades, in the case that reasonable long-term security is required. In other words, prime 

numbers must be sufficiently large enough to generate an integer 𝑛 that has 2048 bits in its 

binary representation. The need for numbers with thousands of bits is due to the fact that 

numbers with hundreds of bits are now factorable [160].   

  

2.6 Security Authentication Layer 

Secure authentication technologies are the first line of defence against security threats [24]. 

It represents the primary means for verifying the identity of the participants within an e-

commerce system, along with ensuring the authenticity of the exchanged messages. Secure 

authentication technology include digital digest, digital envelope, digital signature, digital 

certificate, certification authority, digital timestamping, etc. 

Among the previous technologies, the most suitable solutions serving the purpose of the 

proposed MUAS are digital digest, digital certificate and certification authority.  

   

2.6.1Digital Digest (Hashing) 

Hashing is an essential cryptographic primitive that is widely adopted in information security 

protocols [157, 175, 176] to provide message integrity [177]. It is a computationally feasible 

function that computes a fixed-length message digest from an arbitrary-length message [157, 

175]. Although the use of hash functions within modern cryptography is manifold, hashing 

is best known for its use in digital signatures [157], which are signed cipher texts that are sent 

over the internet as a means to validate the integrity and authenticity of a message, as well as 

to ensure non-repudiation [176].  

Currently, the most popular cryptographic hash functions are SHA-1 (Secure Hash Algorithm 

1) and SHA-2, which replaced their predecessor MD5 (Message Digest) [160]. MD5 is a 

cryptographic hash function that produces a 128-bit message digest. It was widely used in 

internet security protocols for storing password hashes and computing files checksums. 

However, MD5 also has potential weakness, in that collision attacks could occur in some 

cases. Wang et al. [178] published an effective method against the MD5 algorithm, in which 
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two different messages evaluate the same MD5 hash value. Thus, a secure hash algorithm 

(SHA) was published by the US NIST in 1993 [157]. SHA-0 was the first member of the 

SHA family; it was later modified to become SHA-1, in which the cryptographic security 

was improved by modifying the schedule of the compression function [157]. Both SHA-0 

and SHA-1 produce a 160-bit message digest. Later, a partial attack was conducted on MD5 

[179], leading SHA-1 to become widely adopted in a large number of products and standards 

[157]. However, a number of collision search attacks on the SHA-1 algorithm were carried 

out by Wang et al. [178] and Stevens [180], providing a useful perspective on the design 

criteria for a more secure hash algorithm.  

In 2001, the US NIST Federal Information Processing Standards published SHA-2, the 

second member of the SHA family [157, 160]. SHA-2 consists of four hash algorithms, SHA-

224, SHA-256, SHA-384, and SHA-512, with output message digests of 224, 256, 384, and 

512 bits, respectively [157, 160].  

The SHA-1 and SHA-2 family algorithms are based on a very similar design principle. 

Compared to MD5, both algorithms are less prone to brute-force attack and differential 

cryptanalysis [160]. In terms of the output digest, SHA-1 produces a 160-bit message digest, 

while SHA-2 produces a larger digest, which in turn makes the algorithm more secure and 

harder to break [160]. 

According to the Secure Hash Standard (SHS) from the National Institute of Standards and 

Technology (NIST), the seven approved algorithms are SHA-1, SHA-224, SHA-256, SHA-

384, SHA-512, SHA-512/224, and SHA-512/256. When inputting a message that is shorter 

than 264  bits (for SHA-1, SHA-224, and SHA-256) or 2128 bits (for SHA-384, SHA-512, 

SHA-512/224, and SHA-512/256) into a hash algorithm, the output is called a message 

digest; it ranges in length from 160 to 512 bits, depending on the algorithm in use [181]. 

Table 2.8 lists the basic properties of the seven hash algorithm [181]. 

Each algorithm consists of two phases: pre-processing and hash computation [157, 160, 181]. 

The pre-processing phase involves padding the message into a multiple of 512 or 1024 bits 

[157, 160, 181], dividing the padded message into message blocks [157, 160, 181], and 

setting the initial hash value to be used in the hash computation [157, 160, 181]. The hash 

computation phase uses the padded message to generate a message schedule, which is used 
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along with functions, constants, and word operations to generate a series of hash values. The 

final value is the message digest [157, 181]. 

Table 2.8: Secure Hash Algorithm Properties 

Algorithm Message size 

(bits) 

Block size (bits) Word size (bits) Message Digest 

size (bits) 

SHA-1 <264 512 32 160 

SHA-224 <264 512 32 224 

SHA-256 <264 512 32 256 

SHA-384 <2128 1024 64 384 

SHA-512 <2128 1024 64 512 

SHA-512/224 <2128 1024 64 224 

SHA-512/256 <2128 1024 64 256 

 

2.6.2Hash Algorithm Security 

The security strength of hash functions is defined by three main properties that must be met 

in order for the hash function to be considered secure [157].  

1. Pre-image Resistance (One-Wayness): This property states that it is computationally 

infeasible to derive the input message from the hash value. That is, given a hash 

value ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒, it is computationally infeasible to derive the hash function’s input 

message 𝑥 [157, 160, 175, 182], such that ℎ𝑎𝑠ℎ(𝑥) = ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 [175]. Therefore, this 

is called a “one-way” hash function [157, 182]. The amount of work needed to obtain a 

pre-image for a hash function is measured by the length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by 

the hash function, i.e., for an 𝐿-bits hash function, the expected pre-image resistance is 𝐿 

bits [175]. 

2. Second Pre-image Resistance (Weak Collision Resistance): This property states that it 

is computationally infeasible to find a second input message that is different than the 

given first input message, with both evaluating to the same hash value [157, 175, 182]. 
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That is, given an input message 𝑥1, it is computationally infeasible to find a second input 

message 𝑥2, where 𝑥1 ≠ 𝑥2, such that ℎ𝑎𝑠ℎ(𝑥1) = ℎ𝑎𝑠ℎ(𝑥2) [157, 160, 175, 182]. The 

amount of work needed to find a second pre-image for a hash function is measured by 

the length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by the hash function, i.e., for an 𝐿-bits hash 

function, the expected second pre-image resistance is 𝐿 bits [175]. 

3. Collision Resistance (Strong Collision Resistance): This property states that it is 

computationally infeasible to find two different input messages that evaluate to the same 

hash value [157, 175, 182]. That is, it is computationally infeasible to find two different 

input messages 𝑥1 and 𝑥2, such that ℎ𝑎𝑠ℎ(𝑥1) = ℎ𝑎𝑠ℎ(𝑥2) [157, 160, 175, 182]. The 

amount of work needed to find a collision for a hash function is measured by half the 

length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by the hash function, i.e., for an 𝐿-bits hash function, 

the expected second pre-image resistance is 𝐿/2 bits [175]. 

Table 2.9 summarizes the strength of the security properties for each one of the approved 

hash algorithms [175]. 

Depending on the properties required of the hash function, the security strength is determined 

by either one of the previous three main properties. If more than one property is required 

from a hash function, the security strength of the hash function is defined by the weakest 

property [175]. For instance, a digital signature requires both collision resistance and second 

pre-image resistance from the hash function. Therefore, since the collision resistance strength 

(
𝐿

2
) is less than the second pre-image resistance (𝐿), the security strength of the hash function 

used for a digital signature is defined as its collision resistance strength [175]. 

Table 2.9: Strengths of the Security Properties of the Hash Algorithms 

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512 SHA-

512/224 

SHA-

512/256 

Pre-image 

Resistance 

in bits 

 

160 

 

224 

 

256 

 

384 

 

512 

 

224 

 

256 

Second 

Pre-image 
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Resistance 

in bits 

105-160 201-224 201-256 384 394-512 224 256 

Collision 

Resistance 

in bits 

 

<80 

 

112 

 

128 

 

192 

 

256 

 

112 

 

128 

 

2.6.3Public Key Infrastructure (PKI) 

Among the advantages of asymmetric cryptography is to enable digital signatures, where data 

is electronically signed before being submitted [160]. Digital signatures are based on sharing 

the public key of the sender to the other party, either through an e-mail, a web site or any 

form of electronical exchange [160]. It ensure authenticity of the message and non-

repudiation of the sender through encrypting the message with the sender’s private key to be 

decrypted by the recipient with the public key of the sender [24]. However, an intruder can 

impersonate identities and replaces the transmitted public key with his own key, causing an 

incorrect authorization [160]. Hence, a trusted third party called certificate authority (CA) 

confirms the authenticity of the public key through signing it with its private key to 

authenticate the identity of both parties while exchanging data, thus achieving a secure and 

reliable system [160, 183]. Certificate authority is a trusted government agency or financial 

institution who issues digital certificates, which is a digital document containing the name of 

the subject, company and public key. In addition to certificate identifying information [24, 

183]. 

Public key infrastructure system refers to the digital certificate issued by a CA. The process 

begins by the user generating a public/private key pair, and sending a request to the CA along 

with the public key. Following the CA verifying the submitted information, a certificate 

containing the received public key and other related information is issued. Eventually, the 

certificate is signed with the CA’s private key, thus generating a message digest called signed 

certificate [24, 160, 183]. Whenever the certificate is published, any party can verify the real 

identity of the user by authenticating the certificate against the reliable CA’s [183].  

With respect to expanding and diversifying mobile services, it is essential to provide 

trustworthy remote access to security-sensitive systems such as internet banking and e-

commerce. Therefore, a trend towards sharing certificates securely between devices has 
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evolved. A novel certificate sharing system (CSS) was proposed by Kim et al. [184] to share 

certificates securely without modifying the existing standard format between a PC and a 

smart phone. The CSS is a special conversion module for storing the same X.509 certificate 

on both a PC and a smart phone. The CSS module converts the certificate on the PC to binary 

code to be saved on the CSS database server (DB server). The user begins the process by 

authenticating and issuing an X.509 certificate from the certification authority (CA) via the 

web server. Four parameters are required for authentication: user ID, password, certificate 

password, and security answer. Upon issuance, the certificate is transferred to the PC’s CSS 

module and saved as a .CERT file. The device’s unique information is then incorporated into 

this active certificate to prevent it from being copied.  

To upload the certificate from the PC to the web server, the authenticated user submits the 

certificate’s password for authentication within the CSS module. Once authenticated, the 

CSS module performs the following operations: (1) removes the unique hardware 

information from the .CERT file and encrypts the X.509 certificate via private key, (2) 

converts the .CERT file into a personal information change (.PFX) with a 192-bit secret key 

and temporarily saves the .PFX file in the root folder of the PC, and (3) converts the .PFX 

file into binary form using a 128-bit secret key, which will be uploaded into the webserver. 

After the binary code is converted, it is saved in the database server, and the .PFX file is 

deleted from the root folder. When the binary codes are successfully saved to the database 

server, an OTP is generated by the OTP server and sent to the user’s smart phone.  

To download the certificate from the DB server into the smart phone, the user authenticates 

his/her account via user ID and password, then submits the OTP and the certificate password 

as a request for downloading the binary form of the X.509 certificate. Once the binary code 

is downloaded, the smart phone’s CSS module performs the following operations: (1) 

converts the binary code into a .PFX file using the 128-bit secret key, which will be saved to 

the root folder, (2) converts the .PFX file into a .CERT file with the 192-bit secret key, (3) 

deletes the binary code and OTP from the database server for certificate security and to 

prevent reuse and, (4) incorporates the device ID into the converted file, and saves the .CERT 

file in a specific folder on the smart phone. Once the .CERT conversion is complete, the .PFX 

file is deleted from the smart phone.  
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This approach provides strong end-to-end data security for the certificate, as well as strong 

data security on physical devices. Moreover, it is operable on low-end smart phones with 

older operating systems, and it can be flexibly applied to enterprise environmental systems. 

 

2.7 Security Protocol Layer 

Secure communications within E-commerce are an indispensable requirement to provide 

security attributes such as authenticity, integrity, confidentiality, privacy, availability and 

non-repudiation [43]. Thus, secure cryptographic protocols have been designed to protect 

data among the different network layers [185]. 

Transport Layer Security (TLS) and Internet Protocol Security (IPSec) are known 

cryptographic network security protocols that prevent data transmitted between participants 

from being eavesdropped on or tampered with [186]. The security features of these protocols 

are based on the use of cryptography [187]. TLS and IPSec are not interchangeable, as each 

protocol operates on different levels within the TCP/IP protocol stack [186]. Thus, many 

differences exist between them [43].  

IPSec is a collection of protocols that operates at the network layer of the internet protocol 

suites (TCP/IP), as illustrated in Figure 2.2, providing transparent security for upper layer 

protocols [186, 188]. The layered structure of the TCP/IP prevents the protocol from 

changing its type of protection to conform to different applications [186]. Thus, IPSec does 

not provide user-to-user nor application-to-application security; it provides only host-to-host 

security [43, 186, 188]. 
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TLS, on the other hand, is an Internet Engineering Task Force (IETF) standard that deals 

with network security issues within the context of E-commerce [43]. It operates at the 

application layer of the internet protocol suites (TCP/IP), as illustrated in Figure 2.3. It 

provides application-to-application security [186, 189].  

TLS is used to secure communications and protect sensitive data in a wide variety of online 

transactions, including financial, healthcare-related, and social [189]. It uses a set of 

cryptographic algorithms to ensure data authenticity, integrity, and confidentiality [189]. 

The proposed authentication mechanism, which connects a web browser (client) to a server 

in the context of E-commerce, uses a mobile phone application as the second factor to 

generate and send the response back to the server. Taking into consideration the security 

requirements of this approach, TLS is the most suitable protocol for use within the proposed 

MUAS. TLS is the security backbone of many client-server applications [172]. 

 

2.7.1TLS/SSL  

TLS stands for “transport layer security.” It is a client/server protocol that exists in all major 

web browsers [187] to secure data transmitted between any two communicating applications 

Figure 2.4: IPSec in the TCP/IP stack Figure 2.3: TLS in the TCP/IP stack 
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within the application layer [189]. TLS is application independent [189, 190], which ensures 

data privacy and integrity [190, 191] between applications running on top of the transport 

layer [172]. The reason for placing TLS at higher levels is to help secure communication 

between the client’s browser and the server’s application. Thus, it is more appropriate for 

web-based applications [167, 192]. 

The TLS protocol is divided into two layers [191, 193]. The first layer is composed of the 

application protocol and three handshake sub-protocols: the Handshake protocol, the Change 

Cipher Spec protocol, and the Alert protocol. The second layer contains the TLS Record 

protocol. [43, 186, 191]. Figure 2.4 shows the different protocols constituting the TLS 

protocol [191]. 

 

 

Figure 2.5: TLS Protocol stack 

 

 The TLS Handshake sub-protocol is responsible for establishing and resuming secure 

sessions between clients and servers by negotiating session parameters [171, 191, 

193]. Figure 2.6 shows the initial negotiation and establishment of secure session 

parameters. 

 The TLS Change Cipher Spec sub-protocol is a single one-byte message, exchanged 

by between parties to indicate the transition to a new negotiation to update the Cipher 

Spec and keys [171, 191].  
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 The Alert sub-protocol is responsible for reporting error conditions to the other party 

[171, 193]. 

 

Figure 2.6: TLS Initial Negotiation 

 

The TLS record protocol is responsible for ensuring the authenticity, integrity, and 

confidentiality of the exchanged application data through the use of a set of cryptographic 

algorithms [193]. The operations include fragmentation, compression, application of MAC, 

and finally, symmetric encryption to be passed on to the TCP layer after adding the TLS 

record header [43, 172]. Initially, the MAC and encryption key parameters are initialized to 

NULL. Therefore, the protocol does not use MAC or encryption during the initial handshake 

negotiation phase [172]. Figure 2.7 clarifies the TLS record protocol operations [43]. 
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Figure 2.7: TLS Record Protocol Operations  

 

Most TLS studies have focused on the initial key exchange phase within the handshake 

protocol, while potential re-negotiation has not been investigated in depth. However, 

Gelashvili [172] did conduct research on the key re-negotiation phase, pointing out some of 

the functions that makes TLS one of the most popular and secure cryptographic algorithms. 

Based on Gelashvili’s study, the TLS handshake protocol can be classified into three 

successive phases: the setup phase, the re-negotiation phase, and the finishing phase. The 

TLS setup phase is responsible for setting-up the session’s security parameters [186]. The 

session parameters consist of the TLS version (𝑉𝑒𝑟𝑠), a session ID (𝑆𝐼𝐷), random values 

(𝑅𝐶 , 𝑅𝑆) and cipher specification (𝑃𝑟𝑒𝑓) [172, 186, 191]. Each cipher defines a key exchange 

algorithm, an encryption algorithm, a MAC algorithm, and a pseudo-random function for key 

generation [172, 191]. The selected key exchange algorithm defines the precise structure of 

the entire negotiation phase regarding whether the server will start with a server certificate 

authentication, or whether the server will be required to submit additional information to the 

client [172].  

In terms of satisfying security attributes, the negotiated encryption algorithm provides data 

confidentiality, as it protects the transmitted data from being eavesdropped on [193]. The 

exact keys used for MAC, encryption, authentication, and the secure hash function are 

derived from the master secret that is obtained from the pre-master-secret [167, 172, 193]. 



 

62 

 

Furthermore, the TLS record protocol, which is the lowest layer of the protocol [172], takes 

higher layer TLS control messages or application data blocks to be fragmented and 

compressed. This is followed by appending a MAC that is derived from the master secret 

[172, 193] to secure the compressed fragment [172] and to ensure message integrity [193]. 

Finally, symmetric encryption is performed and the TLS record header is added in order to 

be passed on to the TCP for further processing [43, 172]. Thus, it can be said that MAC and 

encryption represent the fundamental security measures of the TLS record protocol [172]. 

MAC also includes a sequence number that helps in detecting extra, missing, or repeated 

messages [172].  

Established session keys are ephemeral and have limited crypto-periods within the message 

sequence space [167]. Therefore, allowing re-keying for long sessions is an appropriate 

solution that prevents cryptanalysis in the case that a key is compromised [172]. In the re-

keying process, the MAC and encryption keys of both parties are derived from the master 

secret. This is followed by fragmenting the key block into four successive keys, representing 

the pending key pair to be used next. Re-keying takes place within the re-negotiation phase, 

whenever the Change Cipher Spec message is exchanged between participants. The Change 

Cipher Spec protocol indicates that the sender and recipient cipher suite is being updated 

[172, 191]. Furthermore, one of the main functions of the re-negotiation phase is to protect 

the client’s identity. This is because sending the “optional” client’s public key certificate 

upon server request during the initial unencrypted handshake causes the client’s identity to 

be exposed in clear text. Therefore, client authentication via certificate (if requested) is 

performed within the second handshake following the initial phase [172]. 

The finishing phase provides a mechanism for checking the integrity of all previous messages 

and exchanged parameters. The finished messages are based on the use of the secret master 

key, along with the application of a hash function to all the previous messages of the current 

TLS handshake, to generate the data to be verified. After validating the finished messages, 

transmission might continue or be aborted [172]. 
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2.7.1.1 TLS/SSL Session Key Establishment 

 According to Section 2.5.1, secret key distribution is one of symmetric cryptography’s 

shortcomings [153, 157, 160], but it can be solved with public key protocols [157]. RSA and 

the Diffie-Hellman key exchange (DHKE) are examples of such protocols [157, 171]. They 

are based on exchanging or generating the parameters used to generate the secret session key 

[171, 172]. The exact parameters used to generate the secret session key are determined by 

the key exchange algorithm [171] that was agreed upon during the initial handshake, which 

in turn defines the exact functionality of the TLS protocol [172]. 

As TLS usually uses a public key certificate for authentication [194], the server sends its 

certificate to the client following the initial negotiation to support the key exchange protocol 

[171, 172]. The certificate key type should be compatible with the negotiated key exchange 

algorithm. Hence, either the RSA/DSS or DH public key is used [171, 172].   

 

2.7.1.1.1 RSA Key Exchange Method 

Agreeing upon RSA as the key exchange algorithm within the initial handshake negotiation 

results in the use of an RSA public key as the server’s certificate key type during the key 

exchange mechanism [171, 172]. The RSA key exchange method authenticates the server to 

the client by sending the public key certificate to support the key exchange protocol [172]. 

Following the certificate’s verification, a pre-master secret (PMS) is generated by the client 

[172, 195] using the following equation: 

                     𝑃𝑀𝑆 ≔ (𝑉𝑒𝑟𝑠𝐶 , 𝑅𝐴𝑁𝐷𝑂𝑀[46])          [172] 

Where VersC is the client’s suggested version of TLS, and RANDOM [n] is a function that returns 

𝑛 unified random bytes [172]. 

PMS is considered the seed from which both connecting parties generate the secret session 

key (master secret) [172, 195]. In order to protect the confidentiality of the session, the PMS 

must remain protected. Therefore, the client encrypts the PMS with the server’s public key 

and securely shares it with the server [172, 195]. Finally, both sides of the TLS protocol 

employ a pseudo-random function (PRF) that uses the exchanged parameters of the TLS 

initial handshake and the pre-master secret to generate the master secret (MS) [171, 172], 

using the following equation: 
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                                      𝑀𝑆 ≔  𝑃𝑅𝐹48(𝑃𝑀𝑆, "master secret", (𝑅𝐶 , 𝑅𝑆))                      [172] 

The MS is then used for encrypting/decrypting the transferred messages over the negotiated 

session [171, 172, 195]. It is assumed that the encrypted PMS in the RSA key exchange 

method cannot be determined by eavesdropping, as it can only be decrypted by the server’s 

private key [195]. Figure 2.8 shows the exact steps involved in the RSA key exchange method 

within TLS. 

 

Figure 2.8: TLS with RSA Key Exchange Method 

 

2.7.1.1.2 Diffie-Hellman Key Exchange (DHKE) Method 

The Diffie-Hellman key exchange method (DHKE) is a fundamental key exchange technique 

that was first published in 1976 in Diffie and Hellman’s landmark paper [168]. It offered the 

first effective solution to the secret-key distribution problem [153]. DHKE is an asymmetric 

cryptographic protocol that allows two parties communicating over an insecure channel to 

establish a shared secret key without the key being transmitted [153, 157, 196]. Thus, it is 

widely used in the key exchange frameworks of SSL/TLS and IPSec protocols as a means to 

ensure web security [157, 160].  
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The DH algorithm is composed of two phases: the setup phase and the key exchange phase 

[157]. The setup phase is responsible for publishing the public domain parameters (a prime 

modulus 𝑝 and a generator 𝑔), which are used by both parties in the key exchange phase to 

compute their public values. The public values are exchanged between parties over an 

insecure channel to finally compute the shared session key without ever being transmitted 

[153, 157, 160, 196]. Figure 2.9 shows the mathematical computations of the DH algorithm. 

 

 

Figure 2.9: Diffie-Hellman Mathematical Computations 

 

In terms of security, an attacker already knows the domain parameters published during the 

setup phase, and there is also the possibility of easily obtaining the computed values 

exchanged between parties over insecure channels. Thus, the question arises of whether the 

attacker is capable of computing the shared session key from the compromised parameters. 

This is known as the Diffie-Hellman problem (DHP) [157]. 

Although it hasn’t been mathematically proven, it is often assumed that efficiently solving 

the Discrete Logarithm Problem (DLP) in DH key exchange is the only efficient way to solve 

the Diffie-Hellman problem (DHP) [157]. Therefore, it is recommended to choose a 

sufficiently large prime number as the modulus, ensuring that the corresponding DLP cannot 

be solved [157, 160], as it becomes practically infeasible to compute the shared session key 
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[153]. Furthermore, the DH key exchange method supports anonymous cipher-

suites (𝐷𝐻_𝐴𝑁𝑂𝑁), which require no certificate authentication from either side and 

exchange unsigned DH parameters [172, 197]. This algorithm thus makes the system 

vulnerable to man-in-the-middle attacks (MITM) [197]. 

Selecting the DH exchange algorithm during the TLS initial handshake protocol results in 

server authentication using the DH public key certificate, which is digitally signed with either 

the RSA or DSS public key [171, 172]. The DH key exchange method is quite similar to the 

RSA key exchange method, except that it employs the DH algorithm [172, 194] to generate 

and exchange the secret session key [172], along with using the following equation: 

𝑀𝑆 ≔  𝑃𝑅𝐹48(𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝, "master secret", (𝑅𝐶 , 𝑅𝑆))             [172] 

Figure 2.10 shows the exact steps involved in the DH key exchange (DHKE) method within 

TLS. 

 

 

Figure 2.10: TLS with Diffie-Hellman Key Exchange Method 

According to Huang et al. [197], the server’s private keys can be compromised by attackers. 

Thus, RSA is not the optimal method for exchanging keys. An attacker intercepting traffic 

during the handshake is able to decrypt the transferred pre-master secret (PMS) to derive the 

shared master secret (MS), which is an essential security parameter in the re-negotiation and 
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finishing phases within the TLS/SSL protocol. On the other hand, the PMS is not employed 

within the DH key exchange algorithm; the shared MS is calculated on both sides of the 

connection based on the exchanged public values [172, 195]. As the parameters used to derive 

the shared MS are not transferred through the network, an attacker intercepting the traffic 

cannot compromise the shared master secret.  

 

2.8 Related Work 

Regarding the proposed objective of this thesis, which is overcoming man-in-the-browser 

(MITB) attacks within an online authentication system, several related solutions have been 

proposed. Nor et al.[4] proposed a scheme that is based on incorporating a TPM-based remote 

attestation in order to deliver a trust communication between the client and the server that 

will mitigate an MITB attack. The protocol is based on the client measuring the platform 

integrity and storing it in the platform configuration registers (PCR) to be used in the 

registration phase. The protocol also uses the secure remote password (SRP) in the key 

exchange phase to satisfy a zero-knowledge proof requirement. In the final platform 

attestation phase, the client signs the PCR values with the AIK private key. The signature is 

then encrypted with a shared key and sent to the server for integrity verification. The server 

decrypts the received message to verify the signature, using the AIK public key that was 

previously sent during the registration phase. Once the signature is verified, both parties start 

their communication over a secure channel.  

The experimental results have shown that the PCR values have changed, indicating that the 

integrity of the client platform has been tampered with. Hence, the protocol rejects the 

authentication. In general, moving security to the hardware level along with software 

provides more protection. However, TPM secures hardware against its owner through 

abusive remote attestation. In addition, the cost and size overheads of TPM chips are 

unacceptable [198, 199].Moreover, in case in which a system has been modified by an 

attacker who has administrative access to the system, as the TPM authenticates a system 

instead of the user of the system, the TPM cannot be reliable when it comes to security. 

Goyal et al. [3] proposed an image-based approach to mitigate MITB attacks during online 

banking. The approach is based on the bank server embedding critical transaction 
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information, submitted by the user on a user-specific personal image (USPI) that has been 

selected earlier by the user via a bank visit. Next, an HTML confirmation page displays the 

transaction information, along with the embedded USPI, for the user to confirm the details 

and to detect any irregularity of the information displayed on the USPI before submission. 

Once a change has been detected, the user cancels the transaction. The approach encompasses 

several countermeasures against the attacker, such as inaccessibility of the USPI, and the 

inability to find an automated algorithm that can extract and change the information displayed 

on the USPI within the bank confirmation time limit, along with eliminating any USPI 

artefacts. On the other hand, the MITB can confirm the transaction without the user getting 

a chance to notice any irregularity within the USPI. Thus, Krishnan and Kumar [12] proposed 

a solution that requires the user to submit an OTP that is embedded within the USPI to 

confirm the transaction. However, the approach lacks practicality due to the need of the user 

visiting the bank. In addition, the protocol lacks decision making as it depends on the user to 

either discard the process or to carry on with it. 

In a recent and similar user authentication approach against MITM and MITB attacks, Chow 

et al. [200] proposed a two-phased scheme, an initial user authentication phase, and a 

transaction verification phase. The user authentication phase initiates the scheme by 

submitting a user ID via an untrusted computer for public-key retrieval from a PKI. A 

cryptographic random number-based OTP is generated, encrypted with the user public key, 

and embedded within a QR code. The OTP is decrypted on the mobile phone side to be 

retrieved and submitted to the server for verification via the untrusted computer. Next, the 

transaction verification phase requires transaction data submission via an untrusted computer. 

Similarly, a random number-based TAN is generated, symmetrically encrypted, and 

embedded within a QR code, along with the transaction data and a hash of the transaction 

data, credential, and the encrypted TAN. The mobile side verifies the recovered hash, and 

decrypts the TAN to be submitted via the untrusted computer after checking the transaction 

data. Although the scheme provides a strong authentication and transaction system against 

MITM and MITB attacks, in which any attempt to manipulate the transaction data or reuse 

the OTP/TAN will fail, both phases still use the untrusted browser for submitting the OTP 

and the TAN. Thus, the user can abort the whole process in case the transaction data have 

been manipulated, whereas the proposed MUAS has transitioned the whole authentication 

process to a new and detached connection with no risk of MITB attack and no need to abort 
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the process. Moreover, in case the user authentication phase is used as a stand-alone system, 

the attacker can simply wait for the user to become authenticated and then take over the 

process.  

Moreover, several similar approaches have proposed employing QR code technology within 

online authentication systems to prevent MITM attacks. However, due to its similarity with 

the proposed MUAS, these approaches were studied in-depth regarding overcoming MITB 

attacks. Dodson et al. [201] proposed and implemented a strong and effective QR-based 

challenge/response approach called ‘Snap2Pass’ that has been made available to over 30,000 

OpenID websites. This approach is implemented for OpenID-based authentication systems 

to overcome the problem of having too many usernames and passwords to memorise. 

Snap2Pass is composed of two phases, an account creation and account login, which are 

based on challenge and challenge/response generation, respectively. Whenever the account 

creation phase is initiated and the user submits a chosen username, a shared secret is 

computed by the server and encoded within the QR code, along with the provider name and 

response end point. Once the QR code is scanned, this secret is saved in the mobile phone 

password manager to be used for subsequent logins. On the login page, a challenging QR 

code, containing the browser nonce and the provider name will be displayed for the user to 

capture. Once the QR code is scanned and decoded, the application will use the recovered 

provider name as a reference to find the shared secret and the end point on the mobile. Once 

found, the response is generated using the hash-based MAC along with the shared secret to 

be sent to the end point, along with the original challenge and the user name. No input is 

required during the login phase, thus providing strong security against an MITM attack. 

However, an MITB attack can simply wait for the user to become authenticated and take over 

the transaction via the untrusted browser. Moreover, the system lacks user legitimacy 

verification due to not requiring the certificate authority (CA) infrastructure in both phases. 

In addition, the account creation phase displays an unencrypted QR code, where a peeper can 

capture the displayed QR code and log in using the victim’s identity, unlike the proposed 

MITB-resistant MUAS, where both phases employ PKI for mutual identity verification and 

encrypting the QR code content, using the client’s CA-issued SSL-certificate.  

A similar QR-based challenge/response approach called ‘2-clickAuth’ was proposed by 

Vapen et al.[130]. The proposed approach implemented a QR-based identity provider, 

making it available to users of OpenID websites, including Facebook, SourceForge, and 
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MySpace. It replaced the need to submit a password within the OpenID provider. Following 

the submission of the OpenID within the relying party and being redirected to the OpenID 

provider, the proposed 2-clickAuth starts its authentication process. A secret is generated by 

the OpenID provider and encoded into a QR code, which is captured by the mobile phone to 

generate the response using the hash-based MAC along with a shared secret key between the 

mobile and OpenID provider. The generated response is then encoded into a QR code, which 

is captured by the web camera of the untrusted computer to be sent to the OpenID provider 

for verification. If it verifies as true, the user is authenticated and redirected to the relaying 

party. As a requirement for the proposed approach, the mobile phone needs to register with 

the OpenID provider. Therefore, the mobile phone encodes an encrypted freshly generated 

secret key into a QR code to be captured by the web camera of the untrusted browser. 

Consequently, the mobile phone and the OpenID provider share a secret key. The ‘2-

clickAuth’ approach is secure enough against replay attacks and MITM and MITB attacks, 

as it only employs the optical channel in the key exchange mechanism and in the 

authentication mechanism, back and forth. However, the system lacks practicality in terms 

of the response sending technique within the authentication system. 

From the above literature, the proposed MUAS protocol and [200] employ the public-key 

infrastructure for identifying and verifying the identity of the participants. In addition, QR 

code contents are encrypted via public key encryption, where the mobile phone application 

have access to the client’s private key,  unlike Snap2Pass [201] and 2-clickAuth [130] that 

lacks the confidentiality of the QR code. Furthermore, the protocol in [200] aborts the 

authentication mechanism in case of an MITB attack. Unlike the proposed MUAS, which 

carries on with the authentication process using a different communication channel. 

 

2.9 Conclusion 

In this chapter, we summarise the various components involved in developing a secure online 

authentication system. The individual components are combined to produce an e-commerce 

security system and its dimensions.  E-commerce security systems are generally composed 

of five layers: the network service layer, encryption technology layer, security authentication 

layer, security protocol layer and application layer. The network service layer is responsible 
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for providing the e-commerce security system the ability to solve network problems. The 

remaining layers represent basic building blocks for e-commerce transaction security, which 

are cautiously adopted to help develop an e-commerce authentication system.  

Next, an in-depth study was conducted to test and evaluate three fundamental authentication 

mechanisms: the single-factor, two-factor and three-factor authentication. These mechanisms 

were critically reviewed according to their associated advantages and disadvantages. The 

end-result of this analysis determined the most suitable technique, which does not satisfy the 

objectives of this thesis. In addition, a comparative study focusing on 11 popular UK banks 

was conducted to determine and evaluate state-of-the-art identification and authentication 

mechanisms. This study reveals that two-factor authentication (2FA) methods are the 

authentication mechanisms most frequently used by financial institutions; this is because they 

are considered the most suitable mechanisms to secure the logging-in process of their online 

banking platform.  As 2FA is based upon object possession. Many technologies have 

emerged to exploit such objects; these include authentication mechanisms such as one-time-

passwords (OTP) and quick response codes (QR code). Although OTP are considered one of 

the strongest authentication mechanisms in use today, along with static passwords, it cannot 

accomplish the objective of preventing or surmounting an MITB attack. The mechanism can 

instead be used for verifying a mobile phone number in case of submission. 

Aside from OTP mechanisms, another technology that exploits the most popular and 

available authentication device was considered; this technology is the popular QR code, 

which requires a visual channel for capturing and decoding the QR code. As a result, mobile 

phones can become the perfect authentication device to use with QR code due to its expanded 

functionalities. These functionalities include downloading applications for code decoding 

and sending/receiving messages in case an OTP mechanism was involved. Moreover, the 

connectivity feature of mobile phones is another opportunity that can be exploited within the 

process of developing a secure authentication system, due to its ability to connect to the 

internet. Thus, QR code technology can be employed to transition the authentication process 

from an MITB-infected browser to a more secure mobile phone. 

Determining the proper technologies that can defeat an MITB attack is considered the first 

step in establishing e-commerce transaction security layers. This process suggests that each 

layer has several technologies that can enhance the security mechanism. Accordingly, the 

appropriate technology is chosen to serve the purpose of the proposed system at each layer. 
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At the encryption technology layer, asymmetric cryptography is chosen as a way of 

enhancing the security of the proposed MUAS by encrypting the QR code to prevent 

unauthorised information from being disclosed to unauthorised observed. While the security 

authentication layer is responsible for verifying the identities of participants within the e-

commerce platform, several technologies were employed for mutual authentication, 

including digital certificates and certification authority, which are components of a PKI. In 

addition, cryptographic nonce and digital digest are employed to prevent replay attacks and 

generate a message digest of the confidential information, respectively. Finally, the SSL/TLS 

protocol was chosen within the security protocol layer to establish a secure communication 

channel between participants, thus protecting all exchanged messages. 

 

 

 

 

 

 

 

 

 

3 Design and Methodology 

3.1 Introduction 

A review of the literature and online authentication approaches have been presented in the 

previous chapter, paving and justifying the way to detail the different aspects involved in 

designing the methodology of the proposed online Mobile-User-Authentication System 

(MUAS).  
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The infrastructure of an online authentication system represents the foundation on which a 

secure system is built upon. Thus, employing the Public Key Infrastructure (PKI) along with 

the SSL/TLS protocol provides the basis for building a strong and secure authentication 

system. In terms of a user authentication session, a novel Mobile-User-Authentication 

System (MUAS) is proposed. MUAS employs SSL/TLS protocol within e-commerce 

applications as a security backbone to essentially authenticate the server via its PKI-based 

SSL-certificate, and to secure all exchanged messages among participants [202].    

Based on the proposed objective, MUAS design is based on developing a novel challenge-

response protocol that overcomes Man-In-The-Browser (MITB) attack. Therefore, the 

proposed approach is divided into two physically detached and logically connected phases, 

which are the challenge- and response-generation phases. When designing the proposed 

system, security properties were taken into consideration alongside the primary objective. 

Thus, cryptographic security attributes [41] were utilised within exchanged messages for 

security purposes and for the logical linkage between both phases. In addition, MUAS 

registration information were utilised within both phases for preventing DOS attack and 

ensuring the authenticity of the primary authentication device. 

The proposed authentication scheme can be the basis for conducting secure online 

transactions, where the authentication is initiated within the infected browser and the 

verification of the identity and the transaction are performed on a detached medium. Taking 

MITB capabilities into account, the initiation phase of the proposed system limit the amount 

of the requested information from the user to be composed of the mobile number only. Thus, 

stealing mobile numbers and choosing targets that requests non-confidential information are 

not of interest to the attacker. Moreover, modifying and tampering with outgoing mobile 

numbers will only be an act of vandalism with no effect on the client. Finally, modifying 

HTML pages within the context of the proposed scheme will involve adding extra data fields 

that request financial information, whereas the client is only registered through the mobile 

number and the IMEI for being authenticated within the site and not for any financial 

transaction. 

This chapter detail and justifies the different parts and aspects of the design, along with the 

main goal of this thesis, and is organised into the following sections. Section 3.2 provides an 

overview of the proposed MUAS design model, along with its entities and basic architecture. 
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Plus, the design assumption on which the MUAS is built are also provided. Section 3.3 

present the objectives and security requirements of the challenge generation phase, along 

with an abstract overview of the whole phase. In addition, a justification of the QR code 

design issues are presented and explained, as QR code generation process represents the 

foundation behind the logical connection between the two phases. Section 3.4 present the 

objectives and security requirements of the response generation phase, along with an abstract 

overview of the whole phase and its layers. Section 3.5 concludes the different design aspects 

of this chapter. 

 

3.2 MUAS Design Model 

Based on the attacker's interest in financial information, once the client is authenticated and 

starts providing confidential information, the attacker starts its malicious act. Thus, 

conducting a secure authentication represents the preliminary step for conducting a secure 

transaction. Therefore, the aim of this thesis is to design an online cryptographic-based 

Mobile-User-Authentication System (MUAS) for e-commerce websites. With respect to 

avoiding MITB attack, the proposed system authenticates clients securely through 

transitioning the authentication mechanism from the infected browser to a new and detached 

medium, which utilises the mobile phone as the primary authentication device. . Hence, the 

proposed MUAS has been developed under the foundation of a challenge/response protocol, 

which corresponds to two connections that are physically separated, yet logically related. 

Therefore, the MUAS is split into two phases:  

 

 Challenge generation phase,  

 and Response generation phase.   

The MUAS is based on establishing a platform on which the client can interact and 

communicate smoothly with the server to generate a cryptographic QR code challenge, for 

the client to capture and to generate the response. Therefore, the platform is considered a 

prerequisite for the challenge- and response-generation phases, for information submission, 

challenge generation, and response verification processes. However, before the MUAS 
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mechanism begins, the client should be registered through submitting the mobile number and 

the International Mobile Equipment Identity IMEI of his/her mobile phone to be saved in the 

𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 − 𝒄𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. As seen in figure 3.1. 

 

Figure 3.1: MUAS Client Registration 

The system consists of the following entities: an end-user and an authentication server. 

The end-user is equipped with a personal computer and a mobile phone device with a network 

connection, assigned to the challenge- and response- generation phases, respectively.  

Both PC and mobile phone share the same PKI X.509 certificate, required for establishing an 

SSL/TLS communication channel between participants. Although certificates are capable of 

verifying identities, however MITB attacks can bypass the security measures of public key 

infrastructure (PKI) and SSL/TLS protocols [14]. Consequently, using PKI X.509 certificates 

alone within infected browsers for authentication purposes cannot be held accountable. 

Therefore, a challenge that switch the client from the infected browser to the mobile phone 

is required for authenticating the client within the mobile phone side. 

 The authentication server is considered as the MUAS platform, where it is being accessed 

by the user in both phases for online authentication. Furthermore, a visual channel takes place 

within the response generation phase through employing a camera-based mobile phone, for 

communicating with the browser via QR code capturing. At a high level, the proposed MUAS 

works as follows. The client initiates a connection with an e-commerce website. The 

authentication server of the website requests the client to submit his/her mobile number. 

Upon receiving a registered mobile number, the server generates a one-time-password (OTP) 

and submits it to the mobile phone via SMS. Next, the authentication server request the client 

to submit the OTP. Following the OTP verification, the authentication server generates an 

encrypted QR code that encodes a cryptographic challenge, along with other contents. The 
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client captures the QR code with the mobile phone camera. The mobile phone computes the 

response from the cryptographic challenge and sends it to the authentication server. The 

server verifies the response, and if it verifies to true, the client is authenticated. Under the 

hood, security attributes are exchanged between participants. Figure 3.2 is a high level 

representation of the proposed MUAS.  

 

 

Figure 3.2: MUAS High Level Representation 

3.3 MUAS Design Assumptions 

When designing the proposed protocol, a number of assumptions were taken into 

consideration: 

 Both client and server are pre-registered with a trustworthy Registration Authority 

(RA). The RA enters into an agreement with the Certification Authority (CA), for 

issuing a trusted and signed X.509 certificate for the applicant. The issued certificate 

contains a public key, along with a number of attributes, some of which forms an 



 

77 

 

identity. The identity is included in all exchanged messages within the proposed 

protocol, which helps obtain the public key of the partner from the PKI.  

 The PKI X.509 certificate of the client is shared between the PC and the mobile phone 

without any modification of the existing standard format. This assumption was based 

on the certificate sharing system (CSS) proposed by Kim et al. [184], which provides 

an extensible and resilient system for distributing certificates within an enterprise 

environment. The X.509 certificate, which is saved on the PC as a .CERT file is 

converted into a .PFX file after authenticating the user via user ID, password, and 

certificate password. The .PFX file is then converted into a binary code and stored on 

the database server. On the mobile phone side, the user downloads the binary code 

from the database server after being authenticated via the user ID, password, 

certificate password, and OTP. The binary code is then converted into a .PFX file, 

followed by conversion into a .CERT file to eventually be saved on the mobile phone. 

The X.509 certificate stored on the PC is the same as the X.509 certificate stored on 

the smart phone, thus ensuring the correctness of the digital certificate installed on 

the mobile phone. This approach was discussed in section 2.6.3. 

 User identities exchanged between parties in both protocols are constructed from the 

Distinguished Name (DN) field values [203-205] of the issued X.509 certificate. The 

user ID can be either the subject name or the issuer name along with the serial number 

of the certificate [206]. 

 An SSL/TLS communication channel is established between both participants in both 

protocols as a security backbone and the fundamental cryptographic protocol within 

the context of a client-server model, thus establishing shared secret keys for securing 

all exchanged messages within both protocols. This reliable end-to-end secure 

channel is used for authenticating the server via its X.509 certificate. 

 Shared session keys in both protocols cannot be compromised. Compromising such 

keys is beyond the scope of this thesis, as they represent the result of the negotiation 

phase within the SSL/TLS handshake protocol [172]. Although, it is compromised in 

the challenge generation protocol as the result of applying the MITB attack model, 

which is discussed in the next chapter. 
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 The server of the proposed MUAS requires prior client registration only through the 

mobile number and the IMEI of the mobile phone. Thus, the challenge generation 

phase requires mutual authentication of both client (browser) and server within the 

SSL/TLS handshake protocol via their X.509 certificates for security purposes. 

Whereas the response generation phase requires server authentication only, as the 

mobile phone represents the same client in the challenge generation phase, thus they 

share the same SSL-certificate. 

 

3.4 Challenge Generation Phase 

The challenge generation is the first phase of the proposed Mobile-User-Authentication-

System (MUAS), which is responsible for initiating the whole authentication process. This 

phase is based on the client initiating a connection with a merchant through his/her browser. 

The challenge generation phase takes place following the SSL/TLS handshake protocol 

establishment, which resulted in mutual authentication between participants, thus sharing a 

jointly secret key for securing exchanged messages. The browser initiates the authentication 

system through exchanging and verifying cryptographic messages with the authentication 

server as part of securing the protocol. The exchanged messages are composed of the identity 

of the sender, freshly generated cryptographic nonce, along with the submitted information 

from the client, upon request. 

From a design point of view, the MUAS is designed as a user-friendly and non-confidential 

input-based authentication system that mitigates the denial-of-service (DOS) attack and 

overcomes the MITB attack. The system only request the client to submit the registered 

mobile number within the infected browser as a means to generate a challenge that transitions 

the authentication mechanism to the mobile phone of the client, which can be used for 

validating the identity of the client along with conducting the transaction without the risk of 

MITB attack. Upon mobile number validation, MUAS employs one-time-password (OTP) 

as an auxiliary authentication mechanism to ensure that the mobile phone is in possession by 

the client who initiated the authentication process. Hence, the main objective of the OTP 

authentication mechanism is to link the client to the submitted mobile number.  
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In the challenge-generation phase, whenever a registered client initiates a connection with 

the authentication server, a record for that client is created and added to the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆. 

The primary key of the table is the user ID of the initiating client 𝐶_𝑼𝒔𝒆𝒓𝑰𝑫, which is 

included in all received messages. Alongside the primary key, the received mobile number 

𝒎𝒏 will be saved in the 𝑴𝒐𝒃𝒊𝒍𝒆_𝑵𝒖𝒎𝒃𝒆𝒓 field as the foreign key. The value of the fresh 

server-nonce 𝒏𝒔, which was uniquely generated by the server for the session will be saved in 

the 𝑺𝒆𝒓𝒗𝒆𝒓 − 𝒏𝒐𝒏𝒄𝒆 field. Furthermore, other fields such as 𝑶𝒏𝒆_𝑻𝒊𝒎𝒆_𝑷𝒂𝒔𝒔𝒘𝒐𝒓𝒅, 

𝑺𝒆𝒓𝒗𝒆𝒓_𝒏𝒐𝒏𝒄𝒆𝟐, 𝑴𝒐𝒃𝒊𝒍𝒆_𝒏𝒐𝒏𝒄𝒆, 𝑴𝒐𝒃𝒊𝒍𝒆_𝑹𝒆𝒔𝒖𝒍𝒕 , and 𝑰𝑴𝑬𝑰 are also included in the 

table. Figure 3.3 shows the relational database that contains the 𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 −

𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆 and the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆. 

 

 

Figure 3.3: MUAS Relational Database 

Following the submission and verification of the received SMS-based OTP, the server 

compose and append QR code contents to finally generate the cryptographic nonce-based QR 

code image. Figure 3.4 shows the high level representation of the challenge generation phase. 
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Figure 3.4: High Level Representation of the Challenge Generation Phase 

3.4.1QR Code Generation 

For achieving a secure and solid Mobile-User-Authentication System (MUAS), both 

challenge- and response-generation phases should complement each other. The foundation 

behind this complement lies within generating a challenging QR code with specific contents 

as a prerequisite for establishing a logical connection between the two phases. Therefore, 
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embedding the proper information within the QR code represents the basis behind the 

coherency of both MUAS phases.  

The main objective of the challenge generation phase is generating the challenging QR code 

to be displayed on the web-browser, for the client to capture and generate the response within 

the response generation phase. The QR code generation process is based on assembling the 

required contents to generate the code. Thus, the process is composed of two phases: 

 Forming QR code contents,  

 and Generating QR code image.  

Forming QR code contents is the first phase of the QR code generation process. It takes place 

within the server-side, following the submission of the client’s mobile number and one-time-

password (OTP) verification. This phase is a multi-level process that consists of contents 

assembly, appending, and encryption. Contents assembly involves including the server’s 

identity 𝑺_𝑼𝒔𝒆𝒓𝑰𝑫 from its SSL-certificate, and appending it along with the server’s initial 

and unique freshly-generated nonce 𝒏𝒔, and response end-point 𝑼𝑹𝑳. Figure 3.5 shows the 

two phases of the QR code generation process. 

From a design point of view, embedding the freshly server-nonce into the QR code as one of 

its contents satisfies the uniqueness property, as nonce is never repeated during a session. 

The unique server-nonce represents the essential element of the MUAS response verification 

process. Another QR code influential embedded element is the server’s distinguished name, 

which plays a major role in verifying the identity of the server in the challenge generation 

phase against the server in the response generation phase. Thus, ensuring that the end user in 

both protocols are communicating with the same authentication server. A further attribute 

considered while creating QR code contents is the server’s URL. This URL is exploited to 

establish a secure SSL/TLS communication channel between the mobile phone and the 

server, for sending the generated cryptographic response from the mobile phone to the server 

for verification.  

After completing the QR code assembly and appending processes, the server obtains the 

public key of the client (browser) from the PKI to encrypt the appended contents. 

Next, the second phase generates the QR code image to finally be displayed on the client-

side (browser). The QR code is finally captured by the client’s mobile-phone camera to be 

used in the response generation phase for authentication and verification purposes. 
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Figure 3.5: QR Code Generation Phases in MUAS 

3.5 Response Generation Phase 

The response generation is the second phase of the proposed Mobile-User-Authentication-

System (MUAS), which is responsible for finalizing the authentication process by generating 

the response and sending it to the server for verification. This phase takes place between the 
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mobile phone and the same authentication server platform, through a developed mobile 

phone application called “3LS-Authentication”. 

The “3LS-Authentication” stands for Three-Layer Secure Authentication. The application is 

composed of three sequential layers of security: activation, cryptography, and response 

generation. The application is responsible for capturing the generated QR code via the mobile 

phone camera, and generating a cryptographic response to be sent securely to the server for 

verification. Figure 3.6 shows the three sequential layers of the developed “3LS-

Authentication” mobile application. 

 

 

Figure 3.6: 3LS-Authentication Layers 

 

Considering the SSL/TLS handshake's mutual authentication within the challenge generation 

phase, the response generation phase has been designed without requiring the SSL-certificate 

of the mobile phone, as they both represent the same client.  

 

3.5.1Activation Layer 

The activation layer is the first security layer of the application, residing in the client’s mobile 

phone. This layer displays an alert view requesting the client to submit the login ID and 

password, as a requirement for the application to operate. Thus, allowing the client to capture 



 

84 

 

the displayed QR code. Figure 3.7 shows the activation layer of the “3LS-Authneitcation” 

mobile application.  

 

Figure 3.7: 3LS-Authentication Activation Layer 

 

3.5.2Cryptography Layer 

The cryptography layer is the second security layer of the application, which takes place 

following the QR code capturing. The foundation behind this layer lies within sharing the 

PC’s X.509 certificate with the mobile phone, from which the private key is utilised to 

decrypt the QR code as a means to recover, split, and exploit its contents. Moreover, the 

cryptography layer represents the basis for paving a cryptographic communication channel 

with the server for sending the response for verification.  

The main objective of this layer is to utilise the functionalities of the QR code contents, for 

preparing an adequate environment for sending the response securely to the legitimate 

authentication server. In terms of establishing a secure communication session, the QR-

recovered 𝑼𝑹𝑳 is exploited to establish a secure SSL/TLS communication channel with the 

server, for the mobile phone application to start exchanging and verifying cryptographic 

messages with the authentication server as part of securing the cryptographic protocol. 

Another objective lies within extracting the IMEI of the mobile phone to guarantee its 

legitimacy upon submission to the server. The IMEI is included within the initiating 

cryptographic message to the server, along with the extracted mobile number (𝒎𝒏), mobile 

identity (𝑴), and the freshly generated cryptographic nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆). Upon receiving 

the first message, the server uses the received mobile number (𝒎𝒏) to lookup the 
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𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅_𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. If the mobile number was registered, the received IMEI is 

verified against the registered IMEI, thus ensuring the legitimacy of the mobile phone and 

mitigating the denial-of-service (DOS) attack.  

Upon IMEI verification, the server generates a fresh and new server-nonce 𝒏𝒔𝟐 for its session 

with the mobile phone. The mobile phone application verifies the identity of the server by 

validating the received server’s identity 𝑺_𝑼𝒔𝒆𝒓𝑰𝑫 against the QR-recovered identity 

𝑺_𝑼𝒔𝒆𝒓𝑰𝑫, and against the server’s ID from the CA-issued SSL-certificate, received during 

the SSL/TLS establishment. Based on the server’s authenticity and identity verification 

results, the final layer is executed and the response is generated. 

 

3.5.3Response Generation Layer 

The response generation layer is the third and final layer of the application, which takes place 

between the “3LS-Authentication” application and the authentication server. The foundation 

of this layer lies within exploiting the functionalities of the previous layer to securely generate 

and send the response to the server for verification.  

With regard to response generation, the point of authenticating the server at the mobile 

phone-side represents the initiating point of generating the response. The server 

authentication point can be defined as the point of validating the mobile phone’s 

cryptographic nonce 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, exchanged with the server. Upon validation, the QR-

recovered server nonce 𝒏𝒔 is hashed after being appended with the validated cryptographic 

nonce 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, thus representing the generated response.  

As part of the secure communication protocol, initiated in the previous layer between the 

mobile phone and the authentication server, the “3LS-Authentication” application embeds 

the generated response along with the exchanged cryptographic server-nonce 𝒏𝒔, and the 

identity of the sender 𝑪_𝑼𝒔𝒆𝒓𝑰𝑫, and sends it to the server over the SSL/TLS connection for 

verification.  

Finally, upon receiving the response from the “3LS-Authentication”, the server verifies the 

identity of the sender against the listed clients within the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆. Once the client 

is found, the server extracts the content of the 𝑺𝒆𝒓𝒗𝒆𝒓 − 𝒏𝒐𝒏𝒄𝒆  and the 𝑴𝒐𝒃𝒊𝒍𝒆 − 𝒏𝒐𝒏𝒄𝒆 

fields from the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆 and append them together. The server finally applies a hash 
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function to the appended result to be compared against the received response. 

Consequentially, and based on the response verification result, the authentication result is 

sent to the mobile phone, either to reject the client or to carry on with a future process.  Figure 

3.8 shows the cryptography and response generation layers of the “3LS-Authentication” 

mobile application, along with the server verification. 
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Figure 3.8: 3LS-Authentication cryptography and response generation Layers 
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3.6 Conclusion 

Based on the proposed objectives and the different authentication methodologies presented 

in chapter 1 and chapter 2, respectively. A number of aspects were considered while 

designing an online user authentication system for e-commerce applications.  One of the most 

important aspects was to design a secure and user-friendly authentication system that 

overcomes Man-In-the-Browser (MITB) and Denial-of-Service (DOS) attacks while 

satisfying e-commerce security requirements. Furthermore, securing the protocol is 

considered as a mandatory requirement during the design phase, for satisfying security 

properties and overcoming adversaries, which is discussed in the verification phase in chapter 

5. 

In spite of the security mechanisms within most currently deployed user authentication 

systems, MITB attacks still pose serious threats that affect web-browsers. Most MITB 

solutions use the same infected browser to be authenticated via employing out-of-band 

communication channels. But the adversary could simply wait for the client to become 

authenticated before taking over the transaction. Thus, the proposed approach have 

transitioned from the MITB-infected traditional authentication mechanism to a different and 

detached mechanism that uses the mobile phone as the primary authentication device. The 

mobile phone is used along with its visual channel and cellular network due to its 

indispensability.  The motivation behind employing two separate networks goes beyond the 

ability of the MITB to attack two detached devices within two unconnected authentication 

channels, to be linked to the same client. Therefore, the MUAS design is based on using the 

browser as an initiation to the authentication process, only requesting the registered mobile 

number of the client to mitigate the Denial-of-Service (DOS) attack. Upon verifying the 

mobile number, an OTP is sent to the mobile device to ensure that the primary authentication 

device is in possession by the initiating client. Subsequently, the authentication mechanism 

is transitioned to the mobile phone via a captured QR code, generated by the authentication 

server. The employment of an OTP within the MUAS is different than the OTP used within 

Microsoft [207] and Google’s two-step verification process (2FA) [208], which is employed 

for providing a stronger authentication mechanism that protects the client’s account in case 

of a stolen password.  This two-step verification process requires the client to submit a static 
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password (step 1) and an OTP (step 2), which can be sent to the client via e-mail, SMS, phone 

call, or by using an authenticator app.  

Based on the presence of two detached networks, the proposed MUAS is composed of two 

protocols, the challenge- and response-generation protocols. Both of which are built on 

top of the cryptographic SSL/TLS protocol, where participants exchange their SSL-

certificates, and share secret session keys in order to secure all exchanged messages, thus 

ensuring data privacy and integrity.  

In terms of designing a secure QR code challenge within the challenge generation protocol, 

the system exploits some of the security attributes used in securing the protocol to become 

the foundation of the challenge, thus ensuring the uniqueness of the challenge and reducing 

the cost of computations. In addition, public key encryption is applied to the QR code 

contents, for increasing the security level and protecting the transmitted information from 

intruders. 

After using the visual channel to capture the QR code, these attributes become the foundation 

for generating the response as well. Moreover, the challenge is composed of other 

components as well, some of which are exploited to initiate a new and secure connection with 

the authentication server, for submitting the response within the response generation 

protocol. While others are exploited to verify the identity of the authentication server to 

ensure its legitimacy.    

With regard to representing the client in the response generation protocol, a simple mobile 

phone application called “3LS-Authentication” has been developed. The “3LS- 

Authentication” is a user-friendly application that is based on sharing the same SSL-

certificate with the client’s browser. It is composed of three levels of security: activation, 

cryptography and response generation. The activation layer represents the first security layer 

that request the client’s credentials in order for the application to operate. In case of a stolen 

mobile phone, the activation layer only authorises the legitimate owner of the phone to use 

the application. The cryptography layer represents the second security layer that mitigates 

the DOS attack through extracting and submitting the IMEI to the server, for verifying a 

registered client. It also decrypts the QR code and exploit its contents to establish a secure 

cryptographic connection with the server, and starts to exchange and verify cryptographic 

messages with the server to secure the protocol against adversaries. The response generation 
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layer is the third and final security layer that is based on exploiting and linking the QR-

recovered unique content, along with one of the security attributes, required for securing the 

response generation phase. Thus, generating a response that combines unique security 

attributes from both phases to be finally hashed, using a one-way hash function. A one-way 

hash function was chosen to be applied as it is computationally infeasible to derive the 

original message from the hash result, even if it was intercepted by an adversary. 
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4 Implementation 

 

4.1 Introduction 

The previous design chapter proposed the theory of dividing the MUAS into two physically 

detached and logically connected phases. Moreover, it elucidated the two aspects of the client 

side within the challenge- and response-generation phases through browser and mobile phone 

connection with the server. It also illustrated how the server side is responsible for generating 

the challenge and verifying the response. 

This chapter translates the proposed MUAS design principles and outlines the basic 

algorithms with regard to implementing the proposed authentication system. Based on the 

proposed MUAS split, each phase comprises several components that will be clarified in this 

chapter, together with descriptive flowcharts. Moreover, both phases utilise the same SSL-

server as the framework platform for the challenge-generation and response-verification 

processes. 

Taking advantage of the massive power, flexibility and performance that the C programming 

language offers [209], the SSL-server side and the SSL-client side (browser-based) are 

implemented with Embarcadero C++ Builder XE3 [210]. The client side (mobile phone-

based) within the response-generation phase is implemented with Objective-C, using Xcode 

6.1.1. Furthermore, a large section of the implementation functions was performed using 

software components and libraries provided by Chilkat Software, Inc. [211]. In addition, the 

QR code image-generation process is implemented using the ‘TBarCode Software 

Development Kit’ [212], which is a set of professional tools that supports all development 

environments and generates high-quality barcodes as printouts or graphic files. TBarCode 

SDK supports more than 100 different barcode symbologies and provides C/C++ developers 

with a barcode library (DLL), which is a full software library for embedding barcodes into 

applications and generating barcodes with only a few function calls [213]. 



 

92 

 

This chapter demonstrates the implementation details and algorithms of the challenge- and 

response-generation phases separately, based on the grounds that the phases are not 

physically connected. The chapter is organised into the following sections: Section 4.2 

provides an overview of the platform implementation that demonstrates the processes 

performed to establish an SSL/TLS connection between the server platform and both aspects 

of the client side within both phases. Section 4.3 presents the main algorithm of the challenge-

generation phase. Section 4.4 illustrates the components of the challenge-generation phase 

required for forming the cryptographic QR code contents. Section 4.5 presents the response-

generation phase algorithm. Section 4.6 illustrates the components of the response-generation 

phase, which are distributed between the mobile phone and the established SSL/TLS server 

platform. Section 4.7 concludes the implementation chapter. 

 

4.2 Platform Implementation Overview 

The prototype platform represents the foundation for both challenge- and response-

generation phases. It consists of three main components, as presented in Figure 4.1. The three 

components are the challenge generator, the application and the verifier components. 
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Figure 4.1: Platform Implementation Overview 

The first component residing within the server-side is the challenge-generator component, 

whereas the application and verifier components reside within the mobile phone and the 

server-sides, respectively. 

Section 4.2.1 presents the general process of establishing the SSL/TLS server platform as the 

main prerequisite for the MUAS framework. In addition, the SSL/TLS client-side certificate 

is used to connect to the server, regardless of whether the client side is a browser or a mobile 

phone. 

 

4.2.1Establishing an SSL/TLS Connection 

The server platform of the proposed authentication system represents the required grounds 

for the logical connection to the physically separated challenge- and response-generation 

phases. However, the MUAS server platform is established to perform two fundamental tasks 

that represent the essence of the authentication system, namely challenge-generation and 

response-verification. Moreover, an SSL/TLS client certificate represents the client side of 

the challenge-generation phase. Whenever mutual authentication is required, the certificate 

is exchanged with the established SSL/TLS server side. In the challenge-generation phase, 
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mutual authentication is mandatory for securing the generated response, whereas the 

response-generation phase does not require the SSL client certificate for the mobile phone. 

Figure 4.2 shows the SSL/TLS establishment process between the server platform and the 

client side. 

 

 

Figure 4.2: SSL/TLS Socket Establishment in a Client-Server Model 

As illustrated in Figure 4.2, the server platform in both phases creates an SSL/TLS socket for 

accepting connections. The process begins by creating and initialising a TCP socket 

component with SSL/TLS capabilities for listening on a port to accept client connections 

[214]. Prior to accepting connections, the server application is initialised with the SSL/TLS 

server certificate to be used for SSL/TLS connections [214-216]. The TCP socket is then 

bound to a specified port to be configured for listening to incoming connections [214, 216]. 

Similarly, the same process applies on the client side to enable connection to the SSL/TLS 

server [214]. As mutual authentication is a prerequisite within the challenge-generation 

phase, the client is authenticated on the server through specifying the certificate via a 

certificate object [217]. This certificate is exploited later to secure the generated challenge. 

The process of establishing an SSL/TLS handshake protocol between the client and the server 

requires several back-and-forth messages, negotiating the encryption algorithms and 

cryptographic keys to eventually set up a secure channel. The sending and receiving of these 

messages are controlled by the 𝑀𝑎𝑥𝑅𝑒𝑎𝑑𝐼𝑑𝑙𝑒𝑀𝑠 and 𝑀𝑎𝑥𝑆𝑒𝑛𝑑𝐼𝑑𝑙𝑒𝑀𝑠 properties, which 

are set in millisecond timescales to wait and to read/write. These steps are considered 
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requirements to accept the SSL/TLS connection, as the handshake establishment protocol is 

part of the connection process [216, 217]. Thus, these properties must be set before accepting 

an incoming connection [214, 216]. Next, a secure SSL/TLS connection is established with 

the 𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡 using the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 function, along with setting the SSL server 

hostname and port number [214, 217]. 

Once the connection is established, the server receives a confirmation message from the 

client. This is followed by the server confirming its connection. Subsequently, participants 

exchange their messages to generate the challenging QR code and to verify the received 

response within the challenge- and response-generation phases, respectively. Finally, the 

connection is closed after a predefined amount of time [214, 216]. 

 

4.3 Challenge-generation Phase 

The challenge-generation phase signifies the launching phase of the proposed MUAS. It takes 

place between the client (browser) and the server platform within a secure SSL/TLS 

communication channel to generate a QR code to be displayed on the web browser. The 

server side is the focus of attention in this section, due to its responsibility for generating the 

challenge.  

The server maintains a database in which a table called 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 holds specific 

information related to each client-server session, including 𝑈𝑠𝑒𝑟𝐼𝐷, as the primary key of 

the table, as well as 𝑀𝑜𝑏𝑖𝑙𝑒_𝑁𝑢𝑚𝑏𝑒𝑟, 𝑂𝑛𝑒_𝑇𝑖𝑚𝑒_𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒, 

𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒2, 𝑀𝑜𝑏𝑖𝑙𝑒_𝑛𝑜𝑛𝑐𝑒 and 𝑀𝑜𝑏𝑖𝑙𝑒_𝑅𝑒𝑠𝑢𝑙𝑡.  

Following the established mutual authentication between the client and the authentication 

server over the SSL/TLS communication channel, described in Section 4.2.1, a new record 

is created in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒, where the distinguished name (𝐷𝑁) within the received 

SSL-client certificate is saved in the primary key field 𝑈𝑠𝑒𝑟𝐼𝐷. 

The sequence of steps leading to the generation of the challenging QR code is based on three 

messages exchanged between the authentication server and the browser. These messages are: 

Msg1: C_UserID, nb, mn,  



 

96 

 

Msg2: S_UserID, nb, ns,  

Msg3: C_UserID, ns, OTP 

The authentication server depends heavily on the first and last messages, which includes the 

client’s mobile number 𝒎𝒏 and one-time password 𝑶𝑻𝑷, as they comprise the information 

required for executing the challenge-generation process. Whereas the fresh browser-nonce 

𝒏𝒃, submitted in the first message and received again within the second message prevents an 

adversary from impersonating the server. These messages were composed based on the 

requirement of satisfying secrecy and authentication security properties, which will be 

discussed in Chapter 5.  

However, the challenge generation process begins with verifying the received mobile number 

𝒎𝒏 from Msg1 against the primary key of the 𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 − 𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. Upon 

verification, a new record is created in the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆 for the 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 client, where 

the received identity 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 is saved in the 𝑈𝑠𝑒𝑑𝐼𝐷 primary key field, and the received 

mobile number 𝑚𝑛 is saved in the 𝑀𝑜𝑏𝑖𝑙𝑒_𝑁𝑢𝑚𝑏𝑒𝑟 field of the same record. In Msg2, the 

server generates a fresh nonce 𝑛𝑠, which is saved in the 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒 field for verification 

purposes in both phases, as well as for security purposes.  

For ensuring that the primary authentication device is in possession by the legitimate client, 

the server generates an OTP, saves it in the One_Time_Password field in the same record, 

and sends it to the mobile phone of the client via SMS. Upon reception, the client submits 

the OTP via browser. Next, upon receiving the 𝑛𝑠 value together with the submitted 𝑂𝑇𝑃 in 

Msg3, the server uses the attached 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 from Msg3 to verify the received 𝑛𝑠 value 

against the 𝑆𝑒𝑟𝑣𝑒𝑟 − 𝑛𝑜𝑛𝑐𝑒 field for client verification. In the event of a match, the same 

attached 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 from Msg3 is used to verify the received 𝑂𝑇𝑃 value against the 

𝑂𝑛𝑒_𝑇𝑖𝑚𝑒_𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑 field. Based on the verification result, the server executes the final 

stage of the challenge-generation phase. In this stage, the server assembles, composes and 

encrypts the QR code contents using the client's public key that was extracted from the client 

certificate, received during the establishment of the SSL/TLS session. Finally, the QR code 

image is generated and displayed on the web browser of the initiating client. Figures 4.3 

provide the overall algorithm of the challenge-generation phase. (Pseudo code is provided in 

Appendix A). 
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Figure 4.3: Overall Challenge-generation Algorithm 
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4.4 Challenge-generation Components 

The challenge-generation phase consists of three main components, which are responsible 

for generating a secure QR code challenge. The components are the nonce component, the 

OTP component and the QR code component. Figure 4.4 shows the three components, 

together with their procedures. 

 

Figure 4.4: Challenge-generation Components 

The three challenge-generation components can be summarized as follows: 
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 The nonce component is responsible for generating fresh random numbers. These 

numbers are used to secure messages exchanged between participants, in which 

verification is performed upon exchange. Moreover, this component is considered an 

essential feature in forming the QR code contents, since the freshly generated server 

nonce represents one of the contents that constitute the QR code.   

 The OTP component generates a random number to be sent to the mobile phone via 

SMS. The client submits the received number through the browser for the server to 

verify upon reception. An OTP verifies that the mobile phone holder is a legitimate 

client who initiated the authentication system on the browser side. 

 The QR code component is responsible for forming the contents of the QR code and 

for generating the QR code image. 

The following sections present the challenge-generation component algorithms with regard 

to their sequence of events. 

 

4.4.1Nonce Component 

As part of developing a secure protocol, fresh values should be generated for each 

instantiation of each role [41]. Thus, each participant in the challenge-generation phase 

generates a fresh nonce to be exchanged and verified during communication. 

The nonce component consists of two primary procedures that play an integral part in the 

challenge and response development mechanism. These procedures are executed in a 

sequential manner on behalf of the server platform whenever a client initiates a connection 

with the server through the established SSL/TLS channel. The procedures are the following: 

1. Nonce generator. 

2. Nonce verifier. 

The nonce generator and verifier procedures are mandatory in every secure protocol to 

prevent impersonators and malicious users from trying to replay the same message multiple 

times [41].  
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4.4.1.1 Nonce Generator 

The generation of a fresh nonce within both phases is accomplished by employing the Fortuna 

Pseudo Random Number Generator (PRNG). The generator takes real random data (entropy) 

as a seed to generate an arbitrary amount of pseudorandom data. The accumulator then 

collects and pools the real random data from various sources to reseed the generator, which 

can be a difficult and time-consuming process in terms of implementation. Therefore, the 

pseudorandom data are used. Furthermore, new entropy data are added periodically in the 

event that further random data are needed [218]. 

The process of generating a pseudorandom number within MUAS begins with creating and 

initialising an object from the PRNG component [219]. The component implements the 

Fortuna PRNG algorithm using a 256-bit AES and SHA256, along with providing methods 

for accessing the system entropy. Next, the pseudorandom data generator reads entropy data 

from a system entropy source to generate an encoded string using the 𝐺𝑒𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 function, 

which uses the 𝐶𝑟𝑦𝑝𝑡𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚 method within the Microsoft Crypto API to generate the 

pseudorandom number. The initial seeding of the generator should not exceed 32 bytes of 

entropy, as it should be specified within the function. The 𝐴𝑑𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 function is used to 

seed the entropy into the generator to finally generate and return a specified number of 

random bytes in an encoded form using the 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚 function [219, 220]. All generated 

nonce within both phases are specified as 32 bytes. Figure 4.5 provides the algorithm of the 

nonce generation procedure, along with the nonce exchange protocol and its subsequent 

procedures. 

 

 

Figure 4.5: Fresh Nonce Generation Procedure 
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The Fortuna PRNG function is used to generate random strings that represent the server 

nonce 𝑛𝑠, the browser nonce 𝑛𝑏 and the mobile phone nonce 𝑚𝑛. Furthermore, it is also 

employed within the OTP component to generate the OTP on the server side. However, the 

generated OTP is specified as 2 bytes. 

Moreover, the nonce verifier procedure takes place upon nonce exchange to verify the 

received nonce against the original value that was generated and sent by the initiating party. 

 

4.4.2QR Code Component 

With regard to challenge generation, the QR code component represents the essence of the 

entire authentication system, which is considered the primary factor upon which the 

response-generation phase depends. It is composed of two primary procedures: 

1. Forming QR code contents. 

2. Generating QR code image. 

The following sections illustrate the exact steps followed to generate the challenging QR 

code with regard to their sequence of events. 

 

4.4.2.1 Forming QR Code Contents 

Forming the QR code contents is a multi-level procedure that revolves around assembling 

the required components to form the QR code contents. The assembled contents are appended 

and encrypted as an extra layer of security against intruders and to ensure the authenticity of 

the client on both browser and mobile phone sides. 

The following sections present and explain the algorithms of the three-level procedure that 

constitutes the QR code contents. 

 

4.4.2.1.1 Assembling QR Code Contents 

Assembling QR code contents is the first level of the formation procedure. It gathers the 

components that constitute the contents of the QR code. The components are as follows: 
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 The server’s distinguished name 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷 is the first component to be exported into 

the QR code contents. This component is mandatory for verifying proper server 

connectivity in the response-generation phase. The process works by importing the 

SSL-server certificate from the server platform to obtain the certificate’s subject and 

full distinguished name (DN). As demonstrated in Figure 4.7, the process begins by 

creating an instance of a certificate store object [221], which represents a collection 

of certificates that can be loaded from a Windows-based certificate store or from a 

PFX file (PKCS# 12). Once the PFX file is loaded, the required certificate within the 

PFX is searched for by common name, subject, email address or by issuer and serial 

number [216]. 

 The second component is the freshly generated server nonce 𝑛𝑠, which is considered 

the essence of the assembled QR code contents. This component is the foundation for 

the client’s verification process within the response-generation phase. The nonce 

generation algorithm has been explained in Section 4.4.1.1 

 The response end-point URL (𝑈𝑅𝐿) is the last component of the QR code content. 

This component represents the entry point to the intermediate cryptography layer. The 

address is formatted as ‘𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡’, which specifies the exact address of the 

server for connecting and sending the response for verification. 

 

4.4.2.1.2 Appending QR Code Contents 

Appending QR code contents is the second level of the formation procedure. It concatenates 

the server’s distinguished name 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷, the server nonce 𝑛𝑠 and the response end-point 

𝑈𝑅𝐿. The appending process begins with creating an instance of a string class to be used with 

the 𝐴𝑝𝑝𝑒𝑛𝑑 function [222]. When concatenating the contents, they are separated by a 

delimiter character to be used later for string splitting. 

 

4.4.2.1.3 Encrypting QR Code Contents 

Encrypting QR code contents is the final level of the formation procedure. The foundation of 

this procedure lies within the mutual authentication between the browser and the 
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authentication server during the initial SSL/TLS channel establishment. The server exploits 

the received SSL-client certificate to secure the generated challenge. 

For implementation, the received SSL-encoded string certificate is used to initialise a client 

certificate object 𝐶𝑙𝑖𝑒𝑛𝑡𝐶𝑒𝑟𝑡 [215]. The next step is to export the public key from the 

certificate object [215, 223] to obtain the public key in XML format [224].  Finally, the 

appended QR code contents are encrypted by creating an instance of the ‘𝐶𝑘𝑅𝑠𝑎’ object [225] 

to be used for setting the encoding mode and importing the extracted public key [225, 226], 

which is used to perform the encryption process. Figure 4.6 shows the algorithm of the overall 

QR code contents formation process. 
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Figure 4.6: Forming QR Code Contents 
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4.4.2.2 Generating the QR Code Image 

Following the formation of the QR code contents, the second procedure begins and generates 

the QR code image to be displayed on the browser side. The QR code is then captured by the 

client’s mobile phone camera to be used for client authentication and verification. 

The QR code image-generation procedure is performed by allocating memory for the barcode 

structure. The next step is to specify and set up some of the QR code attributes, such as the 

contents to be encoded and the QR code size. The size, in device pixels, is determined by 

performing barcode height and width calculations [227]. Figure 4.7 shows the process of 

generating a barcode on behalf of the server side to be displayed on the client side (browser). 

The generation procedure begins with calling the function 𝐵𝐶𝐴𝑙𝑙𝑜𝑐 to set up and initialise 

the barcode’s internal structure by allocating memory and retrieving a barcode handle 𝑝𝐵𝐶. 

The required barcode type, and the text to be encoded, are then specified through the 

𝐵𝐶𝑆𝑒𝑡𝐵𝐶𝑇𝑦𝑝𝑒 and 𝐵𝐶𝑆𝑒𝑡𝑇𝑒𝑥𝑡𝐴 functions, respectively. The barcode pattern is then 

prepared to be drawn or saved through creating an internal barcode representation from the 

previous parameters set by calling the function 𝐵𝐶𝐶𝑟𝑒𝑎𝑡𝑒 [227]. With regard to the output 

device resolution, performing calculations in device pixels specifies the barcode size. The 

calculations involve converting the height and width (given in millimetres) to inches, where 

the result is multiplied by the resolution in dots per inch (dpi) of the output device. Next, 

functions 𝐵𝐶𝐺𝑒𝑡2𝐷_𝑋𝑅𝑜𝑤𝑠 and 𝐵𝐶𝐺𝑒𝑡2𝐷_𝑋𝐶𝑜𝑙𝑠 return the number of modules calculated 

for the chosen barcode, thus returning the horizontal and vertical module count. The height 

and width are optimised by rounding up their values via the Ceil function, to be multiplied 

next by the module count. Finally, the optimised height and width can be used to draw the 

barcode or to save it as an image file by calling the function 𝐵𝐶𝑆𝑎𝑣𝑒𝐼𝑚𝑎𝑔𝑒 [227, 228]. 
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Figure 4.7: Generating the QR Code Image Process 

 

4.5 Response-generation Phase 

The response-generation phase is the second and final phase of the proposed MUAS. The 

process is based on developing a single-view mobile phone application, called ‘3LS-

Authentication’, which communicates with the authentication server after capturing the 

displayed QR code for verification purposes. The response-generation phase is composed of 

three layers, namely an activation layer, a cryptography layer, and a response-generation 

layer. The activation and cryptography layers take place on the mobile phone side within the 

‘3LS-Authentication’ application, whereas the response-generation layer takes place between 

the application and the server side. 
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The sequence of steps leading to generation of the response within the ‘3LS-Authentication’ 

begins  

with the activation layer, where the client is requested to submit the credentials that was set 

during the app installation on the mobile phone. This layer works as a defence mechanism 

against stolen mobiles, where the application credentials are required from the legitimate 

client in order to operate. The second layer extracts the IMEI from the mobile phone, for the 

server to verify against the registered IMEI. It also executes the decryption and splitting 

processes to recover the QR code contents. These are utilised for several purposes in the 

second and third layers. 

 The first content to be utilised within this phase is the server’s response end-

point 𝑈𝑅𝐿, which is responsible for establishing an SSL/TLS connection with the 

authentication server, as shown in the cryptography layer in Figure 4.8. This paves 

the way for sending the generated response. 

 The second recovered content to be exploited is the distinguished name DN of the 

server, which ensures the authenticity of the connected server by verifying it against 

the DN of the SSL-server certificate, and against the received server’s identity, as 

illustrated in the response-generation layer in Figure 4.8.   

 The final recovered content is the fundamental element of the response-generation 

mechanism, namely the fresh server nonce. This nonce is utilised for the logical 

connection of the challenge- and response-generation phases. In addition, it plays an 

essential part in generating the response, as illustrated in the response-generation 

layer in Figure 4.8.  

Finally, the third layer passes on the hashed result to the server for verification, along with 

the exchanged nonce from the response-generation phase. Figure 4.9 shows the detailed steps 

of the ‘3LS-Authentication’ application within the response-generation phase. (Pseudo code 

is provided in Appendix A). 
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Figure 4.8: Mobile Phone-side Process of the Response-generation Phase 
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4.6 Response-generation Components 

The response-generation phase consists of two main components, namely an application 

component and a verifier component. These components are enclosed within the mobile 

phone and server-side end-point for performing response generation and response 

verification, respectively. Both of these comprise a number of procedures for performing 

specific actions.  

The application component residing on the mobile phone side consists of several procedures 

for securing the application against stolen phones, together with exploiting the recovered QR 

code contents for response generation. The recovered QR code contents are also utilised to 

establish a secure SSL/TLS communication channel for submitting the response to the server 

for verification. Furthermore, the application component is responsible for securing the 

protocol from impersonators via a nonce exchanging mechanism. The verifier component 

residing on the server-side is responsible for verifying the received response. Figure 4.9 

shows the main components within the response-generation phase. 

Moreover, a common component exists between both parties, namely the nonce component, 

which is responsible for generating and verifying exchanged nonces among participants. This 

component was explained previously in Section 4.4.1. 
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Figure 4.9: Response-generation Components 
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Based on the components constituting the response-generation phase, the sequence of steps 

leading to the generation of the response within the mobile phone side are described in 

Section 4.6.1, whereas the steps for verifying the response within the server side are described 

in Section 4.6.1.5. 

 

4.6.1Application Component 

The mobile phone application developed for authenticating on-line clients via the QR code 

comprises three layers. The first layer is the activation layer, which is responsible for 

activating the app through a single procedure, the app activator. The second layer is the 

cryptography layer, which is responsible for decrypting and recovering the QR code 

contents, in addition to establishing a secure cryptographic communication channel with the 

server. The third and final layer is the response-generation layer that is distributed between 

the mobile phone application and the authentication server end-point for response generation 

and response verification, respectively. In this section, the algorithms of the first and second 

layers are illustrated, along with the mobile phone’s response-generation algorithm. The 

algorithm of the server’s response-verification is illustrated in Section 4.6.1.5. The four 

primary procedures used within the cryptography layer and the response-generation 

algorithms are as follows: 

1. QR code recovery. 

2. SSL/TLS establisher. 

3. Nonce component. 

4. Response generator. 

These procedures are executed in a sequential manner on behalf of the mobile phone 

whenever the QR code is captured. The following sections present the algorithms for the 

procedures of the application component with regard to their sequence of events. 

 

4.6.1.1 App Activator 

The app activator procedure lies within the activation layer. It is performed on behalf of the 

mobile phone application to ensure the legitimacy of the user. When loading the application, 
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the user is requested to submit his/her credentials via an alert view. Thus, a titled custom 

button ‘Login’ is added to the alert view. 

The alert view is configured through its properties and methods to set the title, message, 

delegate and configure buttons. Following the creation and initialisation of the alert view, the 

presentation style of the alert is set to display two text fields that accommodate the login ID 

and password. Figure 4.10 shows the steps for creating and initialising the alert view, together 

with the style settings. 

 

 

Figure 4.10: Alert View Creation and Settings 

 

Due to the existence of a custom button within the alert, a delegate is designated to handle 

the button action. Whenever the custom button is tapped, the delegate responds with the 

𝑎𝑙𝑒𝑟𝑡𝑉𝑖𝑒𝑤 ∶  𝑐𝑙𝑖𝑐𝑘𝑒𝑑𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑡𝐼𝑛𝑑𝑒𝑥 method. Within the alert view, the 

𝑡𝑒𝑥𝑡𝐹𝑖𝑒𝑙𝑑𝐴𝑡𝐼𝑛𝑑𝑒𝑥 method retrieves the values entered by the client from the text fields. The 

values are verified against the application credentials that were stored on the mobile phone 

during the installation process of the application. Figure 4.11 shows the 

𝑐𝑙𝑖𝑐𝑘𝑒𝑑𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑡𝐼𝑛𝑑𝑒𝑥 response upon tapping the custom button. Finally, and after 

verifying the credentials’ authenticity, the alert view is discarded and the cryptography layer 

begins to operate. 
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Figure 4.11: Alert View Behavior 

 

4.6.1.2 QR Code Recovery 

As the captured QR code contains encrypted data, the first component to handle the QR code 

contents is the QR code recovery component, which comprises two primary procedures: 

1. QR code decryptor. 

2. QR code splitter. 

The procedures are responsible for decrypting and splitting the QR code contents to generate 

the response. The following sections present the algorithms of the QR code recovery 

procedures with regard to their sequence of events. 
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4.6.1.2.1 QR Code Decryptor 

The foundation of the QR code decryptor lies within installing the client’s digital certificate 

on the mobile phone; therefore, the client certificate is embedded within the application’s 

main bundle. The embedded certificate is the same X.509 certificate of the PC, which is used 

for authenticating the browser within the challenge-generation phase. The QR code decryptor 

procedure fetches the private key from the installed certificate for decrypting the QR code 

contents.  

From an implementation point of view, the process begins by creating a bundle object for the 

client to specify the required certificate [229]. This is achieved by selecting the required 

certificate’s name and type. Followed by authenticating the certificate via its password in 

order to be used within the application. The selected certificate is then initialised into a static 

data object [230] for later reuse within the SSL/TLS communication channel establishment. 

Consequentially, the certificate is loaded and its private key is exported [231] to obtain the 

private key in XML format [232] by using a certificate object [231]. Finally, the exported 

private key decrypts the QR code contents by creating an instance of the ‘𝐶𝑘𝑅𝑠𝑎’ object to 

perform the decryption process [233]. Prior to content decryption, the encoding mode is set, 

and the private key is imported into the RSA object for performing the decryption process 

[234]. Figure 4.12 shows the process of extracting the private key from the client certificate, 

along with the decryption process. 
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Figure 4.12: Extracting the Client Certificate and its Private Key to Perform Decryption 

 

4.6.1.2.2 QR Code Splitter 

Following the QR code decryption process, the contents are split into their original 

components using the delimiter character as a separator to return an array containing the QR 

code components [235]. The recovered components are the server’s distinguished name DN, 

the fresh server nonce and the server’s end-point (URL). Figure 4.13 shows the steps of 

splitting the decrypted QR code contents. 
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Figure 4.13:  Splitting the QR Code Contents 

 

4.6.1.3 SSL/TLS Establisher 

Paving the way to send the generated response over a secure channel for verification, an 

SSL/TLS connection with the server should be established. The QR code-recovered URL 

‘𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡’, from the previous section represents the basis for the SSL/TLS 

establishment process. Thus, the address is split into the required fields for connecting to the 

SSL server. Figure 4.14 shows the steps for connecting to a specific SSL server [236]. 
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Figure 4.14: Establishing SSL/TLS Client-side Process within the Response-generation Phase 

 

Following the SSL/TLS channel establishment, both parties start exchanging their freshly 

generated nonce as a means to secure exchanged messages from impersonators and to satisfy 

security properties. As part of the current SSL/TLS handshake establishment process, the 

server submits his/her SSL certificate for authentication. Hence, the QR code-recovered 

server identity 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝐷 from the previous section is verified against the distinguished name 

𝑆_𝐷𝑁 of the received SSL server certificate, and against the server identity 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷 

received from the server during the second message 𝑀𝑠𝑔2. This triple verification helps to 

verify the identity of the connected server, which prevents excess overhead on behalf of the 

mobile phone in the event of unverified identity. 

 

4.6.1.4 Response Generator 

Following the process of securing the communication channel against impersonators and 

verifying the legitimacy of the connecting party, the response generator procedure begins to 

execute its own procedures, namely appending and hashing. 
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The procedure is responsible for generating the response from the QR code-recovered nonce 

along with the fresh mobile phone nonce. The following section presents the algorithm of the 

response-generator procedure with regard to the sequence of events. Figure 4.15 shows the 

hashing algorithm, along with the encryption process. 

 

4.6.1.4.1 Appending and Hashing 

The appending and hashing procedure is based on exploiting the recovered contents of the 

QR code, specifically the server nonce 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒, which is utilised to generate the 

response. Moreover, the procedure exploits the freshly generated nonce of the mobile phone 

𝑛𝑚, which is appended to the 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒. Following this, the hashing algorithm 

(𝑆𝐻𝐴256) is applied on the appended value, thus generating the response to be sent to the 

server for verification. The hashing process is based on creating and initialising an encryption 

object [237, 238], followed by setting its properties and performing the hashing process 

[238]. 

 

 

Figure 4.15: Response Hashing and Encryption Processes 

Finally, and enclosed in Msg3, the hashed response is sent to the server over the established 

SSL/TLS channel, together with the mobile phone’s identity and exchanged nonce for 

verification. 
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4.6.1.5 Verifier Component 

The verifier component is the final component within the server side. It is responsible for 

validating the received response, and consequently for verifying the authenticity of the client. 

This component consists of two primary procedures, which are: 

1. Appending and hashing. 

2. Hash verifier. 

The appending and hashing procedure works in exactly the same way as the appending and 

hashing in the response-generator component as shown in Figure 4.16. However, the exact 

and detailed steps of the verifier component are described in this section.  

Upon receiving Msg3, the server side verifies the response as the final step of the 

authentication mechanism. The verification process starts with exploiting the received mobile 

phone’s identity 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 against the 𝑈𝑠𝑒𝑟𝐼𝐷 field in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 to store the 

received response ℎ𝑎𝑠ℎ1 in the 𝑀𝑜𝑏𝑖𝑙𝑒 − 𝑅𝑒𝑠𝑢𝑙𝑡 field for later verification. Following this, 

the mobile phone nonce 𝑛𝑚 and the original server nonce 𝑛𝑠 that was generated previously 

in the challenge-generation phase are recovered from the 𝑀𝑜𝑏𝑖𝑙𝑒_𝑛𝑜𝑛𝑐𝑒 and 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒 

fields, respectively.  Both of the recovered values are appended and hashed using the 

𝑆𝐻𝐴256 hashing algorithm, thus forming ℎ𝑎𝑠ℎ2 to eventually be compared against ℎ𝑎𝑠ℎ1 

to finally verify the authenticity of the client. Figure 4.16 shows the detailed steps in the final 

verification layer. 
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Figure 4.16: Verification Algorithm of the Response-generation Phase 
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4.7 Conclusion 

Building on the design model in the previous chapter, the aim of this chapter is to (1) 

implement the proposed system, (2) provide a demonstration of both MUAS challenge- and 

response-generation phases, (3) show all exchanged messages between participants within 

both phases, which will be verified in the next chapter, and (4) execute the proposed novelty 

within the implementation phase. Hence, this chapter paves the way for the evaluation 

chapter (chapter 5), in terms of performance measurement. 

This chapter can be summarised as follows: 

 Based on the design model described in Chapter 3, this chapter focuses on applying 

the proposed methodology to build the MUAS model/framework with regard to the 

SSL/TLS socket creation that accepts connections from both phases consecutively. 

The SSL/TLS socket is the foundation for the logical connection of the physically 

separated phases through the generated challenge, causing the response-generation 

phase to be dependent on the challenge-generation phase. 

 Placing significant emphasis on the SSL/TLS sessions between participants 

contributes to securing both phases. In the challenge-generation phase, the SSL-client 

certificate is utilised to verify the identity of both participants and to secure the 

generated challenge. In the response-generation phase, the distinguished name 

extraction from the received SSL-server certificate helps to prevent mobile phone 

overheads as a result of verifying it against the received server identity and against 

the recovered server identity included within the QR code.    

 The implementation of the response-generation phase depends on the outcome of the 

challenge-generation phase, along with the sharing of a common certificate for 

proceeding with the response-generation process.  

 With regard to the provision of a secure and consistent protocol with a unique 

challenge, the server’s freshly generated nonce is utilised within the challenge-

generation phase to provide a dynamic nonce-based QR code. Furthermore, utilising 

the mobile phone’s fresh nonce, to be combined with the QR code-recovered nonce 

in the response-generation phase, contributes to connecting both sessions logically, 

despite being physically separated. Thus, protocol security is achieved even if the 

server nonce is compromised. 
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5 Evaluation 

 

5.1 Introduction 

Research results in formal protocol verification area showed that formal verification tools 

have helped avoid standardising protocols with security defects [239]. Therefore, this chapter 

aims at reliably evaluating and verifying the proposed Mobile-User-Authentication System 

(MUAS) security protocols with respect to Man-in-the-Browser (MITB) attack by using the 

Scyther security protocol verification tool [240]. However, formal verification of a security 

protocol is performed with respect to a formal model [241]. A formal model comprises a 

protocol model that presents how the protocol should behave using static description [41, 

241], an execution model that formalises dynamic aspects in terms of traces [41, 241], an 

adversary model that is derived from the protocol description and defined as a set of terms 

known to the compromised agents [41, 241], and a specification of the exact security 

properties that the protocol should satisfy [41, 241]. 

The organisation of this chapter is as follows. Section 5.2 provides an overview of both 

security protocols constituting the proposed MUAS. Section 5.3 conducts a security and 

performance evaluation through theoretical and implementation performance measurements, 

respectively. The theoretical evaluation provides a detailed description of the protocols, and 

justifies the corresponding messages within both protocols along with their contents with 

respect to possible attacks. However, the implementation evaluation is conducted in terms of 

computational and communication costs, with respect to the most related work. Section 5.4 

introduces the adversary model of the proposed MUAS. Section 5.5 provides the mandatory 

protocol specification, for performing the required verification process and generating the 

results. Section 5.6 provides the verification results by applying the Scyther verification tool 

on both protocols, along with a representative analysis of the compromised protocol, and an 

in-depth analysis of the satisfied security properties. Section 5.7 concludes the findings of 

the verification chapter. 
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5.2 MUAS Protocol Overview 

In a world of insecure networks, cryptographic protocols play a significant role when 

designing a secure authentication system by employing cryptography to achieve and satisfy 

security properties [41, 242]. Likewise, cryptographic input values (freshly-generated nonce) 

are considered indispensable for satisfying the security properties within secure protocols, as 

they play an essential role in cryptographic security, such as in stream ciphers, block ciphers, 

modes of authentications and message authentication codes [243]. Therefore, a combination 

of both mechanisms were cautiously employed within the proposed MUAS to provide a 

secure authentication protocol with respect to satisfying security properties [41].  

The proposed approach circumvents the MITB capabilities through transitioning the 

authentication mechanism to a new and detached medium that uses the mobile phone of the 

client as the primary authentication device. Thus, a transaction can be carried out via the 

mobile phone without submitting confidential information through an infected browser as 

discussed in the future work in chapter 6. Therefore, the MUAS addresses the problem of the 

MITB attack via two protocols: the challenge-generation protocol and the response-

generation protocol. The challenge-generation protocol starts with the untrusted computer 

establishing an SSL/TLS communication channel with the server, thus generating a shared 

secret key; security attributes exchanged between the untrusted computer and the server, 

required information submitted by the untrusted computer and a specific security attribute 

verified by the server to eventually generate the challenge, representing the basis behind the 

transition to the response-generation protocol through utilising the visual channel.  

The response-generation protocol starts with activating the mobile phone application, 

capturing and decoding the challenge; establishing an SSL/TLS communication channel with 

the server, generating a shared secret key; security attributes exchanged between the mobile 

phone and the server; and response generated and sent to the server for verification. Figure 

5.1 depicts the MUAS security protocol overview. 

In terms of verification, there are three basic roles that constitute the system: browser 𝑩, 

server 𝑺, and the mobile phone 𝑴. Although 𝑩 and 𝑴 represent different devices, they 

represent the same client. Thus, they share the same digital certificate on different platforms, 
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denoted by 𝐶𝐸𝑅𝑇𝐶. Consequently, the public and secret key pair of the client on both 

platforms are represented as 𝑝𝑘(𝐶)/𝑠𝑘(𝐶), respectively. 

 

 

Figure 5.1: MUAS Security Protocol Overview 
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5.3 MUAS Security and Performance Evaluation 

Chapters 3 and 4 presented the theoretical design and implementation outlines of the 

proposed protocol, respectively. This section conducts and presents the results of evaluating 

the proposed protocol from a theoretical and implementation point of view.  

With respect to possible attacks, the theoretical performance measurement provides a 

justification of the exchanged messages and their contents, along with the attached security 

attributes and the employed cryptographic mechanisms. Whereas the implemented 

performance measurement evaluates the proposed protocol by conducting a comparison 

against the most related work in terms of computational and communication costs. In addition 

to measuring the execution time of the protocol. 

 

5.3.1Theoretical Performance Measurement  

The challenge- and response-generation protocols are built on the basis of establishing 

SSL/TLS communication channels between participants with mutual and server SSL-

certificate authentication, respectively, where the authenticity of the SSL-certificates is 

verified via a certificate authority (CA). Consequentially, both protocols build up to establish 

128-bit secret session keys 𝒌(𝑩, 𝑺) and 𝒌(𝑴, 𝑺) for AES encryption. A 128-bit key size is 

sufficient enough to symmetrically encrypt and secure exchanged messages within both 

protocols against adversaries and impersonators [244]. The AES algorithm is considered the 

most popular symmetric cipher [157], due to its ability to encrypt an entire block of 128-bits 

using key sizes of 128, 192 or 256-bits [157]. Unlike other symmetric ciphers, such as DES 

and 3DES, which are slow and operate on small blocks with a single key size [157]. However, 

in terms of encryption performance, speed, secure memory storage, flexibility, and efficiency 

in hardware and software, AES surpasses both of them [165]. 

With regard to generating a secure protocol that satisfies the security properties, all 

exchanged messages comprise an identity of the message originator as a proof-of-identity 

and proof-of-origin. The identity is 64 bytes in size, which is constructed from the 

Distinguished Name (DN) field values of the subject’s SSL-certificate [203-205]. Moreover, 

fresh nonce are generated by both parties in both protocols to be included in all exchanged 
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messages to prevent inducing messages from previous sessions, avoid impersonators and to 

rule out replay attacks. 

 

5.3.1.1 Challenge-Generation Theoretical Measurement  

The challenge-generation protocol represents the first phase of the MUAS protocol 

verification process. It is responsible for forming and encrypting the contents of the QR code 

image to be displayed on the web-browser as a challenge. In terms of verification, the 

protocol consists of two roles: the client (browser) and the server (merchant), denoted by 𝑩 

and 𝑺, respectively. Figure 5.2 depicts the Message Sequence Chart (MSC) [245] of the 

challenge-generation protocol and shows the exchanged messages among the participants. 

Taking the Public Key Infrastructure (PKI) and SSL/TLS handshake protocol into account, 

both roles have mutually been authenticated via the SSL-certificate exchange. Hence, they 

shared a secret session key 𝒌(𝑩, 𝑺). Moreover, the initial knowledge of each role includes its 

own public/secret key pair, in addition to the public key of the other party. 
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Figure 5.2: Challenge-Generation Protocol 

 

The following steps illustrate and justify the exchanged messages within the challenge-

generation protocol, along with their contents and algorithms used. 

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏: ( (𝑩, 𝒏𝒃, 𝒎𝒏)𝒌(𝑩,𝑺))                        𝑺 

Whenever a client 𝑩 initiates a connection with a server 𝑺 via the browser, browser 𝑩 forms 

the initiating message of the challenge-generation protocol to be sent to the server 𝑺, along 

with the required information.  
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The message is composed of three elements: an identity (𝑩), a fresh browser nonce (𝒏𝒃) and 

the requested mobile number (𝒎𝒏), which represents the foundation on which the rest of the 

protocol is built.  

The 𝒏𝒃 is sent back and forth within the first two messages of the challenge-generation 

protocol to: 

 Prevent Man-in-the-Middle (MITM) attacks via performing an 𝒏𝒃 handshake, and 

 Prevent an adversary from impersonating the server. 

 

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐: ( (𝑺, 𝒏𝒃, 𝒏𝒔)𝒌(𝑩,𝑺))                        𝑩 

Server 𝑺 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 for recovering and exploiting its contents 

with regard to generating the complementary 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, thus serving the purpose 

of ensuring server legitimacy via the nonce handshake. Once decrypted, 𝑺 verifies the user’s 

registration by validating the recovered 𝒎𝒏 against the Mobile_Number field (primary key) 

within the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒. Upon registration confirmation, 𝑺 validates the 

recovered identity 𝑩 against the SSL-certificate of browser 𝑩 received during the SSL/TLS 

handshake protocol. Thus, a new record for client 𝑩  is created within the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆, 

where all subsequent session variables are saved in this record to be used within the response-

generation protocol. Following record 𝑩 creation, Server 𝑺 generates a fresh nonce (𝒏𝒔) to 

be sent back and forth within the second and third messages of the protocol, including a server 

nonce 𝒏𝒔 within the protocol messages to satisfy the following:  

 Prevent MITM attacks via performing an 𝒏𝒔 handshake, and 

 Prevent a client from submitting a message from a previous session, and  

 Avoid malicious users impersonating the client. 

Next, server 𝑺 saves the 𝒏𝒔 in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 within client 𝑩 record for later 

verification-use in step 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒 within the response-generation protocol. 

Eventually, the second message of the protocol is formed by server 𝑺 and sent to browser 𝑩. 

The message is composed of the subject’s identity (𝑺), fresh server nonce (𝒏𝒔) and the 

recovered browser nonce (𝒏𝒃), which is sent back to its originator, representing the crucial 

step in ensuring the legitimacy of the 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 originator.  
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Upon sending 𝑪 − 𝑮_𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐,  𝑺 generates an 𝑶𝑻𝑷 and sends it via SMS to the mobile 

phone by exploiting the recovered mobile number 𝒎𝒏 from 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏. The SMS-

OTP will be submitted later as a means to ensure legitimacy of the submitted mobile number 

𝒎𝒏. 

 

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑: ( (𝑩, 𝒏𝒔, 𝑶𝑻𝑷)𝒌(𝑩,𝑺))                          𝑺 

Browser 𝑩 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 for recovering and verifying the 𝒏𝒃 

handshake, thus ensuring server legitimacy. Once decrypted, 𝑩 validates the recovered 

identity 𝑺 against the SSL-certificate of server 𝑺 received during the SSL/TLS handshake 

protocol.  

Eventually, the third message of the protocol is formed by browser 𝑩 and sent to server 𝑺. 

The message comprises the subject’s identity (𝑩), received 𝑶𝑻𝑷 and the recovered server 

nonce (𝒏𝒔), which is sent back to its originator, representing the crucial step in ensuring the 

legitimacy of 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 originator. Furthermore, the recovered server nonce (𝒏𝒔) 

is included in the third message to ensure the legitimacy of the 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 

originator, in case the OTP has been eavesdropped. 

 

𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒: (  ((𝑺, 𝒏𝒔), 𝒖𝒓𝒍)𝒑𝒌(𝑩))                         𝑩 

Server 𝑺 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 for recovering and exploiting its contents 

with regard to generating 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒. Once decrypted, 𝑺 validates the recovered 

identity 𝑩 against the SSL-certificate of client 𝑩 received during the SSL/TLS handshake 

protocol.   

Following 𝑩’s identity verification, server 𝑺 verifies the recovered 𝒏𝒔 and recovered 𝑶𝑻𝑷 

against its original value generated by the server 𝑺 in step 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐. After 𝑶𝑻𝑷 

verification, server 𝑺 obtains the public key 𝒑𝒌(𝑪) of client 𝑩 via PKI, forms the final 

message of the challenge-generation protocol and encrypts it with 𝒑𝒌(𝑪).  
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Eventually, the QR code image is generated and sent to browser 𝑩 to be captured by the 

mobile phone 𝑴. The QR code encrypted contents comprises the subject’s identity (𝑺), its 

original server nonce (𝒏𝒔) and the response end-point (𝒖𝒓𝒍). 

 

5.3.1.2 Response-Generation Theoretical Measurement  

The response-generation protocol represents the second phase of the MUAS protocol 

verification process. It complements the first phase of the MUAS, yet in a different 

communication channel to finally generate the response via a mobile phone application.  

In terms of verification, the response-generation protocol comprises two roles: the server and 

the mobile phone, denoted by 𝑺 and 𝑴, respectively. Figure 5.3 depicts the MSC [245] of the 

response-generation protocol and shows the exchanged messages among the participants. 

Taking the PKI and SSL/TLS handshake protocol into account, server 𝑺 is authenticated via 

its SSL-certificate exchange. Hence, sharing a secret session key 𝒌(𝑴, 𝑺) with the mobile 

phone 𝑴. Moreover, the initial knowledge of each role includes its own public/private key 

pair, in addition to the public key of the other party.  
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Figure 5.3: Response-Generation Protocol 

 

The following steps illustrate and justify the exchanged messages within the response-

generation protocol, along with their contents and algorithms used.  

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏: ( (𝑴, 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝒎𝒏, 𝑰𝑴𝑬𝑰)𝒌(𝑴,𝑺))                          𝑺 
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Following capture of the QR code, decryption and contents recovering, mobile phone 𝑴 

initiates a connection with server 𝑺 via the recovered response end-point 𝒖𝒓𝒍. Mobile phone 

𝑴 forms the initiating message of the response-generation protocol to be sent to the server 𝑺 

implicitly.  

The message comprises four elements: an identity (𝑴), a fresh mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆), 

an extracted mobile number (𝒎𝒏), and the extracted IMEI (𝑰𝑴𝑬𝑰). The 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 is sent 

back and forth within the first two messages of the response-generation protocol to: 

 Prevent replay attacks via performing an 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 handshake, and 

 Avoid malicious users impersonating the server. 

 

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐: ( (𝑺,   𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝒏𝒔𝟐)𝒌(𝑴,𝑺))                         𝑴 

Server 𝑺 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 for recovering and exploiting its contents 

with regard to generating the complementary 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, serving the purpose of 

ensuring server legitimacy. Once decrypted, 𝑺 verifies the user’s registration by validating 

the recovered 𝒎𝒏 against the Mobile_Number field (primary key) within the 

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒. Upon registration confirmation, the recovered 𝑰𝑴𝑬𝑰 is verified 

against the registered International Mobile Equipment Identity number  𝑹𝒆𝒈_𝑰𝑴𝑬𝑰 field 

within the same registered user in the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒.  

Following the 𝒎𝒏 and 𝑰𝑴𝑬𝑰 verification, server 𝑺 generates a fresh nonce (𝒏𝒔𝟐) to be sent 

back and forth within the second and third messages of the protocol, including a server nonce 

𝒏𝒔𝟐 within the protocol messages to satisfy the following:  

 Prevent an adversary from impersonating the client,  

 Prevent a client from submitting a message from a previous session, and  

 Prevent replay attacks via performing an 𝒏𝒔𝟐 handshake. 

Eventually, the second message of the protocol is formed by server 𝑺 and sent to the mobile 

phone 𝑴. The message comprises the subject’s identity (𝑺), fresh server nonce (𝒏𝒔𝟐) and 

the recovered mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆), which is sent back to its originator, representing 

the crucial step in ensuring the legitimacy of 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 originator.  
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𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑: ( (𝑴, 𝒏𝒔𝟐, 𝒉𝒂𝒔𝒉𝟏)𝒌(𝑴,𝑺))                          𝑺 

Mobile phone 𝑴 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 for recovering and exploiting its 

contents with regard to generating the complementary 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑, serving the 

purpose of ensuring client legitimacy. Once decrypted, 𝑴 validates the recovered identity 𝑺 

against the SSL-certificate of server 𝑺 received during the SSL/TLS handshake protocol and 

against the QR code-recovered server identity (𝑺). 

Once the recovered mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆) has been verified, mobile phone 𝑴 appends 

the 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 with the recovered 𝒏𝒔 received upon capturing and decoding the QR code 

contents. Next, a one-way hash is applied on the appended result, thus generating the 

response:  

𝑚𝑎𝑐𝑟𝑜 ℎ𝑎𝑠ℎ1 = ℎ𝑎𝑠ℎ(𝑛𝑠, 𝑛_𝑚𝑜𝑏𝑖𝑙𝑒). 

Eventually, the third message of the protocol is formed by mobile phone 𝑴 and sent to server 

𝑺. The message comprises the subject’s identity (𝑴), hash result (𝒉𝒂𝒔𝒉𝟏) and the recovered 

server nonce 𝒏 (𝒔𝟐), which is sent back to its originator, representing the crucial step in 

ensuring the legitimacy of the 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 originator. 

 

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒: ( (𝑺,   𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝑨𝒖𝒕𝒉_𝑹𝒆𝒔𝒖𝒍𝒕)𝒌(𝑴,𝑺))                          𝑴 

Server 𝑺 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 for recovering and exploiting its contents 

with regard to validating the received response. Once decrypted, 𝑺 validates the recovered 

identity 𝑴 against the user identity field (primary key) within the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒.  

Once the recovered server nonce 𝒏𝒔𝟐 has been verified, the server will ′𝑳𝑶𝑶𝑲𝑼𝑷′ the record 

𝑴 in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 to find the server nonce 𝒏𝒔 field and append it with the recovered 

𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 from the 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏. Next, a one-way hash (𝒉𝒂𝒔𝒉𝟐) is applied to the 

appended result to finally be compared against the recovered 𝒉𝒂𝒔𝒉𝟏 from 𝑹 −

𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑: 

𝑚𝑎𝑐𝑟𝑜 ℎ𝑎𝑠ℎ2 = ℎ𝑎𝑠ℎ(𝑛𝑠, 𝑛_𝑚𝑜𝑏𝑖𝑙𝑒); 

Finally, the fourth message is formed by server 𝑺 and sent to mobile phone 𝑴. The message 

comprises the subject’s identity (𝑺), authentication result (𝑨𝒖𝒕𝒉_𝑹𝒆𝒔𝒖𝒍𝒕) and the recovered 
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mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆) that is utilised to prevent replay attack and to ensure the 

legitimacy of the message originator.  

  

5.3.2Implementation Performance Measurement  

When implementing the challenge- and response-generation protocols, it was taken into 

consideration that security attributes are attached to the data required by the authentication 

system to be exchanged via the established SSL/TLS communication channel. This affected 

the computational and communication costs in terms of the number of exchanged messages 

between participants and the size of each message in bytes. 

 

5.3.2.1 Computational Cost Measurement 

The constraint of developing a fast and secure authentication system has been considered 

while designing the protocol; hence, the protocol comprises security-related functions along 

with simple and light-weight functions.   

With regard to satisfying the security properties, random number generators were executed 

twice in both protocols by both participants to represent nonce for securing the protocol 

against impersonators and malicious users, as well as to prevent replay attacks. It was also 

executed within the challenge-generation protocol for generating an OTP. Moreover, light-

weight hash functions were executed once in each protocol, where the first hash is used as a 

reference for verifying the received response, while the second hash represents the generated 

response. In terms of execution speed, all exchanged messages were symmetrically 

encrypted, as expensive public key encryption was used only once in the challenge-

generation protocol to be decrypted in the response-generation protocol. Table 5.1 shows a 

comparison between our protocol and the most related protocols in terms of the number of 

performed operations in each protocol. 

Table 5.1: Performance comparison between MUAS protocol and the most related work 

 Phase Hash HMAC Rand 

No. Gen. 

Shared 

Key Gen. 

P-key 

Encrypt 

S-key 

Encrypt 

QR 

code 

Gen. 

 Challenge Gen.  

- 

 

- 

2 (nonce) 

1 (OTP) 

 

- 

 

1 

Comm. 

encrypted 

 

1 
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MUAS 

Protocol 

Response Gen.  

1 

 

- 

 

2 (nonce) 

 

- 

 

- 

Comm. 

encrypted 

 

- 

Response Verify  

1 

 

- 

 

- 

 

- 

 

- 

Comm. 

encrypted 

 

- 

 

OTP 

calculated 

from QR 

code [200] 

 

Challenge Gen. 

 

 

- 

 

 

- 

2 

(random 

value, 

random 

length) 

 

 

- 

 

 

1 

 

Comm. 

encrypted 

 

 

1 

Response Gen.  

1 

 

- 

 

- 

 

- 

 

- 

Comm. 

encrypted 

 

- 

Response Verify  

1 

 

- 

 

- 

 

- 

 

- 

Comm. 

encrypted 

 

- 

 

Snap2Pass 

[201] 

Account Creation 

(Challenge Gen.) 

 

- 

 

- 

 

- 

 

1 

 

- 

 

Comm. 

encrypted 

 

1 

Challenge Gen.  

- 

 

- 

 

1 

 

- 

 

- 

Comm. 

encrypted 

 

1 

Response Gen.  

- 

 

1 

 

- 

 

- 

 

- 

Comm. 

encrypted 

 

- 

Response Verify  

- 

 

1 

 

- 

 

- 

 

- 

Comm. 

encrypted 

 

- 

 

 

2-clickAuth 

[130] 

Account Creation 

(Challenge Gen.) 

 

- 

 

- 

 

 

- 

 

1 

 

1 

 

- 

 

1 

Challenge Gen. - - 1 - - - 1 

Response Gen. 

(QR code) 

 

- 

 

1 

 

- 

 

- 

 

- 

 

- 

 

1 

Response Verify - 1 - - - - - 

 

From Table 5.1, our protocol generates the most random numbers, representing the fresh 

nonce that is included within exchanged messages as a means to satisfy security properties, 

which is required for securing protocols [41]. Although the computational cost of our 

protocol is higher in terms of random number generation than the work in [200], Snap2Pass 

[201] and 2-clickAuth [130]; however, a trade-off was made with respect to protocol security. 

In terms of energy consumption, a comprehensive analysis of the energy requirements of a 

wide range of cryptographic algorithms has been presented in [246]. The study showed that 

energy consumption of the hash and MAC algorithms consumes the least energy of all 

cryptographic algorithms. Therefore, our protocol employed the simple and light-weight hash 

algorithm in the response generation and verification, which is similar to the Snap2Pass [201] 

and 2-clickAuth [130] that employed the computation-intensive hash-based MAC (HMAC). 

The only difference is that the HMAC requires an established secret key between participants, 

which is accomplished within the registration phase in theSnap2Pass and 2-clickAuth. 

Whereas the MUAS participants do not share any secret keys, thus a hash algorithm is used. 
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On the other hand, our protocol, [200], and the 2-clickAuth [130] employed the expensive 

public key encryption once to secure the QR code contents; whereas the QR code contents 

of Snap2Pass [201] are not encrypted, which is considered a weak point in the account 

creation phase due to the risk of peepers. Furthermore, exchanged messages within all 

proposed protocols, except for 2-clickAuth [130], are symmetrically encrypted due to 

executing over the SSL/TLS handshake protocol.  

 

5.3.2.2 Communication Cost Measurement 

Communication costs refer to the number of exchanged messages between the client and the 

server in both protocols, along with the size of each message in bytes. The size of each 

message has been calculated according to the size of the parameters and the cryptographic 

algorithms’ outputs, which are as follows: 

 User ID: represented by the 64 bytes DN, which is used to identify the owner of the 

certificate. The DN is made up of: common name, organisational unit, organisation, 

locality, state or province, and country name [205].  

 Nonce: cryptographic nonce is of size 32 bytes (256-bits). It is generated using 

Fortuna PRNG. 

 Hash-256: the function’s maximum input size is 264 − 1, and it generates a hash of 

fixed length that is 32 bytes (256-bits). 

 Symmetric key: the established shared secret key used for symmetrical encryption 

of size 128-bits. 

 RSA key: used for QR code encryption of size 245 bytes (1960-bits). 

Table 5.2 compares our protocol and the most related protocols in terms of the number and 

size of exchanged messages in each protocol. 

Table 5.2: Comparison of communication costs between MUAS protocol and other relevant protocols 

 Phase No. of 

Message

s 

Size of Messages 

MUAS 

Protocol 

Challenge Gen. 4 [Msg1- Msg4: 172/  216/  172/ bytes] (SSL)  

[RSA encrypted QR code: 344 bytes] 

Response Gen. 4 [Msg1- Msg4: 216/  216/  216/  172/ bytes] 

Challenge Gen. 2 [PKI_UserID: 108 bytes] (SSL)   
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OTP 

calculated 

from QR 

code [200] 

[RSA encrypted QR code: 172 bytes] 

Response Gen. 1 [OTP: 24 bytes] (SSL) 

 

Snap2Pass 

[201] 

Account Creation 2 [Username: 24 bytes] (SSL) 

[QR code encoded challenge: 71 bytes] 

Challenge Gen. 2 [Session ID, Nonce: 44 bytes] (SSL) 

[QR code encoded challenge: 51 bytes] 

Response Gen. 2 [QR code encoded challenge: 51 bytes] 

[Authentication result: 5 bytes] 

 

2-clickAuth 

[130] 

Account Creation 1 [RSA encrypted key barcode: 172 bytes] 

Challenge Gen. 1 [QR code encoded challenge: 128-bit] 

Response Gen. 1 [QR code encoded response: 128-bit] 

 

From Table 5.2, our protocol exceeds other protocols in terms of the number of exchanged 

messages and their sizes. This can be justified by the objective of establishing a secure 

authentication system against adversaries and replay attacks. Cryptographic security 

attributes are included within all messages, along with the identities of the sender as a means 

for identity verification.  

Another reason for having more messages than Snap2Pass [201], 2-clickAuth [130] and [200] 

lies within discarding the first challenge-generation protocol to initiate a new and detached 

protocol for response generation. The second protocol follows the same security measures 

for developing a secure protocol that satisfies the required security properties for adversary 

prevention. Therefore, more messages are involved within the protocol that includes 

cryptographic nonce and identities along with the generated response. 

 

5.3.2.3 Execution Time Measurement 

Measuring the execution times for both phases of the MUAS is based on the formation and 

cryptography of each message within the protocol. Random runs have been executed multiple 

times to calculate the average run time for each protocol. Tables 5.3 and 5.4 show the total 

execution times for each run and the average run time for the entire protocol. For the 

participants, it also shows the average time to form and encrypt each message being sent 

within the protocol as well as the average run time to decrypt the received message.  
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Table 5.3: Execution Time of Challenge Generation Protocol 

 

Table 5.3 contains four columns. The first column, 𝑭𝒐𝒓𝒎 − 𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 , 

represents the process of forming the first message within the challenge generation protocol. 

This includes receiving user-input, extracting the sender’s identity, generating the 

cryptographic nonce, and encrypting the message. The rest of the columns include the 

processes of decrypting the received messages to form the subsequent messages. The average 

execution times for 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏, 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑, and 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒 are 0.02, 0.01, 

0.01, and 0.06 seconds, respectively. The average run time for the entire protocol is 13.81 

seconds. 

 

 

Challenge-

Generation 

 

Form-

Encrypt 

Message1 

Decrypt 

Message1 & 

Form-Encrypt 

Message2 

Decrypt 

Message2 & 

Form-Encrypt 

Message3 

Decrypt 

Message3 & 

Form-Encrypt 

Message4 

 

Total 

Run 

Time 

(sec) 

Run1 Client 0.016 - 0.016 - 13.64 

Server - 0.015 - 0.047 

Run2 Client 0.016 - 0.015  14.14 

Server - 0  0.063 

Run3 Client 0.031  0.016  15.18 

Server  0.016  0.078 

Run4 Client 0.016  0.015  14.07 

Server  0.016  0.063 

Run5 Client 0.015  0.015  12.15 

Server  0.016  0.062 

Run6 Client 0.016  0  11.75 

Server  0  0.062 

Run7 Client 0.016  0.016  12.32 

Server  0.015  0.063 

Run8 Client 0.016  0  13.98 

Server  0.016  0.047 

Run9 Client 0.016  0.016  16.54 

Server  0.015  0.062 

Run10 Client 0.016  0.016  14.28 

Server  0.015  0.063 

Average run time 

for forming 

messages (sec) 

 

0.02 

 

0.01 

 

0.01 

 

0.06 

13.81 
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Table 5.4: Execution Time of Response Generation Protocol 

 

Table 5.4 also contains four columns. The first column, 𝑭𝒐𝒓𝒎 − 𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 , 

represents the process of forming the first message in the response generation protocol. 

Unlike the challenge generation protocol that requires the user to submit their mobile number 

and one-time-password, this protocol does not require any user-input. Thus, the challenge 

generation phase requires more time, as it is an input-based protocol that requires the client 

to submit information.  

 

 

Response-

Generation 

 

Form-

Encrypt 

Message1 

Decrypt 

Message1 & 

Form-Encrypt 

Message2 

Decrypt 

Message2 & 

Form-Encrypt 

Message3 

Decrypt 

Message3 & 

Form-Encrypt 

Message4 

 

Total 

Run 

Time 

(sec) 

Run1 Client 0.0023  0.0040  0.1525 

Server  0.06  0.03 

Run2 Client 0.0045  0.0024  0.1985 

Server  0.06  0.03 

Run3 Client 0.0045  0.0023  0.1331 

Server  0.05  0.03 

Run4 Client 0.0023  0.0023  0.0862 

Server  0.03  0.02 

Run5 Client 0.0045  0.0022  0.1502 

Server  0.06  0.03 

Run6 Client 0.0023  0.0024  0.1318 

Server  0.05  0.03 

Run7 Client 0.0024  0.0024  0.1498 

Server  0.06  0.03 

Run8 Client 0.0026  0.0025  0.1042 

Server  0.05  0.02 

Run9 Client 0.0049  0.0034  0.1266 

Server  0.05  0.03 

Run10 Client 0.0023  0.0025  0.1636 

Server  0.06  0.05 

Average run time 

for forming 

messages (sec) 

 

0.0033 

 

0.0529 

 

0.0026 

 

0.0298 

0.1397 
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5.4 MUAS Adversary Model 

Based on the described MUAS model in Chapter 1, this section presents the adversary model 

of our thesis. It is assumed that trusted agents represent both the authentication server and 

the mobile device of an honest end-user. Thus, an attacker cannot access any secret 

information within both parties. However, it is assumed that the adversary has complete 

control over the user’s browser, operating on the internet browser application-level, thus 

having the potential to learn and manipulate any data entered, received or sent through the 

compromised browser. In addition, the adversary can tamper with data of an outgoing-form 

that is submitted to the server. With the adversary residing in the browser, any user input and 

security attributes generated by the browser or received from the server with respect to the 

protocol security are not secure.  

Although SSL/TLS symmetrically encrypts exchanged messages, it has no effect on securing 

the data from the adversary. The data is encrypted and decrypted in the transport layer, which 

is below the windows socket application programming interface (API). Thus, the adversary 

modifies the incoming data after decryption and the outgoing data before encryption [1]. The 

adversary can simply circumvent the encryption and decryption within the SSL/TLS 

protocol. Furthermore, the security measures of the public key infrastructures can be 

circumvented as well [14]. In a nutshell, it is assumed the adversary has compromised the 

client PC (browser), thus able to manipulate all incoming and outgoing messages. 

 

5.5 MUAS Protocol Specification 

Considering the required security properties of a protocol, the behaviour of each role within 

both the challenge- and response-generation protocols is mandatory. Therefore, specification 

of both protocols are provided in this section, which delivers a description of each protocol 

in an abstract manner. The specification includes the initial knowledge of the protocol that is 

required for role execution along with function declarations, fresh values generation, and 

global constants and variables definitions [41].  
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The following subsections describe both protocols in an expressive specification language, 

paving the way for justifying and analysing the security properties. 

 

5.5.1Challenge-Generation Protocol Specification 

The initial challenge-generation protocol comprises two roles: the browser (𝑩) and the server 

(𝑺), where each role is specified as a sequence of events by using static descriptions, such as 

send and receive messages. The general initial knowledge required for the challenge-

generation (𝑪_𝑮) protocol execution is presented in List 5.1. 

 

List 5.1: General Initial Knowledge of Challenge-Generation. 

 

The browser role specification is presented in List 5.2, which models the initiating browser-

side 𝑩 role (client-side) of the challenge-generation (𝑪_𝑮) protocol. Alongside the 

specification, initial knowledge of the browser role is included, specifying its freshly 

generated nonce, along with its public/secret key pair, public key of the corresponding party 

and their shared secret key. 
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List 5.2: Specification of Server Role (B) in the Challenge-Generation Protocol. 

 

The corresponding server role specification is presented in List 5.3, which models server 𝑺 

role (merchant-side) of the challenge-generation (𝑪_𝑮) protocol. Alongside the specification, 

initial knowledge of the server role is included, specifying its freshly generated nonce, its 

input, along with its public/secret key pair, public key of the corresponding party and their 

shared secret key. 

 

List 5.3: Specification of Browser Role (S) in the Challenge-Generation Protocol. 

5.5.2Response-Generation Protocol Specification 

The response-generation protocol comprises two roles: the server (𝑺) and the mobile-phone 

(𝑴). Along with the send and receive sequence events, the specification includes internal 

computations that are represented by pattern match events. The general initial knowledge 

required for response-generation (𝑹_𝑮) protocol execution is presented in List 5.4. 

 

 

List 5.4 Response-Generation Initial Knowledge 
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The mobile phone specification is presented in List 5.5, which models the mobile phone (𝑴) 

(client-side) role of the response-generation (𝑹_𝑮) protocol. Alongside the specification, 

initial knowledge of the mobile phone role is included, specifying its freshly generated nonce, 

its global constant, along with its public/secret key pair, public key of the corresponding party 

and their shared secret key. In addition, a declared hash function that represents the basis for 

the response-generation protocol is included.  

 

 

List 5.5: Specification of Mobile Phone Role (M) in the Response-Generation Protocol 

 

The corresponding server role specification is presented in List 5.6, which models the server 

(𝑺) role of the response-generation (𝑹_𝑮) protocol. Alongside the specification, initial 

knowledge of the server role is included, specifying its freshly generated nonce, its global 
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constant, along with its public/secret key pair, public key of the corresponding party and their 

shared secret key.  

 

 

 

List 5.6: Specification of Server Role (S) in the Response-Generation Protocol 

 

5.6 MUAS Protocol Execution and Verification 

Results 

Upon specifying all the details of both protocols, which include justifying the corresponding 

messages along with their contents, introducing the possible adversary model and presenting 
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the formal protocol description, this section maps all the previously discussed details into the 

Scyther verification tool for execution and generation of the verification results for both 

protocols. 

In the previous section, static description of how both protocols should behave were 

formalised. Upon protocol execution, dynamic aspects are generated. One of which is the 

agent model that is responsible for executing roles of the protocol. An agent model is based 

upon closed world assumption, where an honest agent executes the protocol based on the 

static protocol description. In addition, an agent may execute any number of roles in parallel.  

Executing a role turns a role specification into a run. This process is called instantiation. 

Whenever a role is instantiated, a unique run identifier is assigned to each run. Furthermore, 

role names are bind to the names of actual agents executing the roles, and fresh values 

generated by different runs are appended to the identifiers of their runs. Therefore, the set of 

run terms are different than the set of terms in role specification, where fresh values, roles, 

and variables that are local to a run are unique via appending them with its run identifier.   

The verification mechanism generates the results through translating the protocol description 

into a Security Protocol Description Language (SPDL) as a means for defining the tool’s 

input. An automated verification and a representative analysis of the security claim events 

are produced as its output, which will be discussed and analysed with respect to the required 

security properties.  

 

5.6.1Security Properties 

Security properties are an indispensable part of all secure protocols. Knowing the properties 

to be satisfied is fundamental for a protocol to be considered [41, 247]. According to Roscoe 

[248], security properties are categorised into intentional and extensional properties. 

Intentional security properties are motivated by the protocol structure, whereas extensional 

security properties concern the accomplishment of the protocol.   

This section discusses and analyses the essential properties that are verified by a formal 

verification tool. Secrecy and several forms of authentication are the basic verified properties, 

formalised through integration into the protocol specification via claim events. 
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5.6.1.1 Secrecy/Confidentiality 

The secrecy security property ensures the confidentiality of any specified role term from 

being exposed to an adversary, and that they are available to authorised parties only. This 

property is satisfied if, for each assigned run, where its role is mapped to an honest agent 

communicates with other honest agents [41]. 

5.6.1.2 Authentication 

Based on the employed Scyther verification tool, three forms of authentication are discussed 

and analysed in this section. The authentication forms are: aliveness, synchronisation and 

message agreement. 

5.6.1.2.1 Aliveness 

The aliveness security property is an intentional property that assures an honest intended 

communicating partner has executed some events. This property is satisfied whenever an 

agent executes a role specification up to the claim event; hence, its intended communicating 

partner has been running the protocol and executed some events, and therefore it is 

considered Alive [41]. There are four forms of aliveness: weak alive, weak alive in the correct 

role, recent alive and recent alive in the correct role [41]. 

If agents execute their roles up to their claim events, and their intended communicating 

partners are considered honest, then the intended communicating partner has executed an 

event; thus, the weak aliveness property is satisfied [41, 247]. However, satisfying the weak 

aliveness property is not enough, as it only verifies that the intended communicating partner 

is alive [41, 247], while he/she may not be running within the same protocol [249]. Plus, the 

intended communicating partner might not have been running the protocol recently [249]. 

Therefore, it is preferable to ensure the intended communicating partner is running within 

the same protocol, which satisfies weak aliveness in the correct role [41]. 

However, weak aliveness in the correct role does not say whether an event has been executed 

before, after or during the run that makes the claim [41, 247]. Thus, an interpretation of 

recentness can be given through the recent aliveness property [247]. This property is satisfied 

within a protocol if the intended communicating partner has recently sent messages before 

the claim events, and after other events within the same run in which the claim event occurs 

[41]. Similarly to weak aliveness in the correct role, it is preferable to ensure the intended 
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communicating partner is running within the same protocol, which satisfies recent aliveness 

in the correct role [41]. Furthermore, the recent aliveness property can be extended via the 

weak agreement property, which assures the intended communicating partner has agreed to 

running the protocol with the initiator. 

Figure 5.4 shows the Aliveness hierarchy, where any protocol satisfying recent aliveness also 

satisfies weak aliveness [41], and any protocol satisfying recent aliveness in the correct role 

also satisfies weak aliveness in the correct role [41]. 

 

Figure 5.4: Aliveness hierarchy 

5.6.1.2.2 Synchronisation 

The synchronisation security property is a strong intentional property, requiring all 

communication messages along with their contents to occur exactly as specified by the 

protocol description, with respect to the order of communicating events [41, 250, 251]. As 

agents are capable of executing multiple roles, and a different agent can execute the same 

role, it is mandatory to identify which run performs which role. Thus, synchronisation heavily 

depends upon a cast function that maps each claim and each role into a run identifier [41, 

247, 252]. There are two forms of synchronisation: non-injective synchronisation and 

injective synchronisation [41, 247, 252]. Figure 5.5 shows the synchronisation hierarchy, 

where any protocol satisfying injective synchronisation also satisfies non-injective 

synchronisation [41]. 



 

148 

 

According to the non-injective synchronisation definition in [41, 247, 252], this property is 

satisfied when correspondence between the structures in the trace-level and the protocol 

descriptions are met. 

 

Figure 5.5: synchronisation hierarchy 

 

5.6.1.2.3 Message Agreement/Integrity 

The agreement security property is an extensional property that relates to the effect of the 

protocol after execution [41, 247]. It requires that all contents of the corresponding messages 

have the exact contents as specified by the protocol description. Upon successful protocol 

execution, the participants agree upon the contents of the variables, as specified by the 

protocol description [41, 241, 247, 250]. The agreement property is very similar to 

synchronisation, except for placing less restrictions on event ordering. Thus, there are two 

forms of agreement: non-injective agreement and injective agreement [41]. According to 

figure 5.5, any protocol satisfying injective synchronisation also satisfies injective and non-

injective agreement [41]. 

 

5.6.2Scyther Verification Tool 

There are several security protocol verification tools based on the formal method approach. 

A formal method approach assumes perfect cryptography [253, 254], verifies a secure 
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protocol within the existence of an adversary and provides representative analysis to help 

understand how the attack violates the proposed protocol to be rectified [254]. Based on the 

comparative analysis of the formal method model checking tool, it was found that Scyther is 

considered one of the most efficient tools among many formal model checking tools, in terms 

of public availability, flawed protocol falsification, bounded and unbounded verification, and 

assured termination [254]. This is in addition to its ability of providing an automated claim 

verification and generating a representative finite set of traces, which includes the anticipated 

correct behaviour and a set of all possible attack violations [253]. 

In terms of verification speed, Scyther can run the protocol for an unbounded number of 

sessions in less than one second. It also offers the possibility of bounded model checking, 

where inability to reach an unbounded correctness exists, thus guaranteeing protocol 

termination [241, 255, 256]. Scyther allows protocol designers to spot protocol attack 

violations through complete characterisation of each role, thus generating representative and 

self-explanatory attack graphs for each claim [253-255]. Therefore, the Scyther verification 

tool was found to be the most appropriate for verifying the required security properties; thus, 

it was considered in this chapter for verifying the proposed protocols. 

 

5.6.3Challenge-Generation Protocol Verification 

This section discusses the application of the Scyther formal verification tool to the challenge-

generation protocol after modelling and applying the adversary model. Based on the protocol 

description in section 5.5.1, the expected correct behaviour of the protocol is presented along 

with the actual verification results generated after applying the adversary model. Finally, 

from the infinite set of all traces, the finite possible attack patterns were manually 

investigated to be categorised into four patterns that can attack the protocol in the case of a 

compromised browser.   

 

5.6.3.1 Adversary Modelling 

Based on the adversary model presented in section 5.4, which has complete control over the 

browser through its ability to intercept and manipulate any information a user submits or 
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receives in real time, therefore it is assumed that role 𝑩 within the challenge-generation 

protocol is infected with the MITB attack.  

As the MITB attack can bypass the encryption and decryption processes performed in the 

transport layer [1, 14]; therefore, the MITB can intercept and manipulate all exchanged 

cryptographic messages and their contents within the challenge-generation protocol, thus 

failing to satisfy the essential properties required by the proposed authentication system for 

both role. 

For simulating the effect of the MITB attack within the browser 𝑩 role, the adversary is 

modelled via revealing the shared secret key used for encrypting all exchanged messages 

within the challenge-generation protocol. In Scyther, this can be translated by revealing the 

actor’s long-term key 𝑲(𝑩, 𝑺), which represents the long-term symmetric key shared 

between the browser 𝑩 and the server 𝑺. Moreover, Scyther was set to find all possible attacks 

within both protocols. 

 

5.6.3.2 Automated Challenge-Generation Verification 

Although the proposed authentication system is built with a specific objective, there is still 

the slightest possibility of an honest agent representing the browser. Therefore, other possible 

attacks were considered, which urged the development of a secure protocol that employs 

cryptographic attributes to satisfy the security properties. Figure 5.6 and 5.7 shows the correct 

behaviour of the protocol execution in the case of an honest agent, with respect to both roles. 

As protocol execution is represented in terms of reachable states, both figures show all the 

states within role 𝑺 and role 𝑩 that are reached during the protocol execution. A proper 

description of figure 5.6 is provided below, which includes the assigned runs to each role, 

agent names running each role, fresh values and their corresponding variables. The same 

applies to figure 5.7, with variations in variable names.   
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Figure 5.6: Correct Behavior of role B in the Challenge Generation Protocol 

 

Figure 5.7: Correct Behavior of role S in the Challenge Generation Protocol 
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 The trace pattern in figure 5.7 shows that each instantiated role is assigned to the 

unique run identifier. 

𝑩                         𝑹𝒖𝒏𝟏 

𝑺                         𝑹𝒖𝒏𝟐 

 Unlike the Message Sequence Chart (MSC) of the challenge generation protocol 

shown in figure 5.2, this figure shows that role names (B, S) are bind to the names of 

actual agents that are executing the roles (𝐵#2, 𝑆#2). Thus, names of actual agents 

substitute role names in the exchanged messages within the trace pattern. 

{ 𝑩                         𝑩#𝟐, 𝑺                         𝑺#𝟐 } 

 Furthermore, fresh values are generated by both roles (𝒏𝒃, 𝒏𝒔) are appended to the 

identifiers of their runs (𝑹𝒖𝒏𝟏, 𝑹𝒖𝒏𝟐). The same applies to constant (𝒎𝒏) and the 

(𝒐𝒕𝒑) that is a defined user type. 

𝑹𝒖𝒏𝟏                         𝒏𝒃                          𝒏𝒃#𝟏 

                                        𝑹𝒖𝒏𝟏                         𝒎𝒏                          𝒎𝒏#𝟏 

                                        𝑹𝒖𝒏𝟏                         𝒐𝒕𝒑                          𝒐𝒕𝒑#𝟏 

                                       𝑹𝒖𝒏𝟐                          𝒏𝒔                          𝒏𝒔#𝟐 

As our protocol employs fresh values of type Nonce, agents running recipient roles 

use variables to store received terms. Upon sending these values, the fresh nonce 

𝒏𝒃#𝟏 generated by role 𝑩 is stored in variable 𝒏𝒃#𝟐 on the server side, and fresh 

nonce 𝒏𝒔#𝟐 generated by role 𝑺 is stored in variable 𝒏𝒔#𝟏 on the browser side. 

                                                         Var   𝒏𝒃#𝟐                           𝒏𝒃#𝟏 

                                                         Var   𝒏𝒔#𝟏                           𝒏𝒔#𝟐 

Similarly, upon sending the constant (𝒎𝒏#𝟏) and the user-defined (𝒐𝒕𝒑#𝟏)  from 

𝑹𝒖𝒏𝟏 to 𝒏𝟐 , the constant 𝒎𝒏#𝟏 is stored in variable 𝒎𝒏#𝟐, and the user-defined 

𝒐𝒕𝒑#𝟏 is stored in variable 𝒐𝒕𝒑#𝟐. 

                                                       Var   𝒎𝒏#𝟏                           𝒎𝒏#𝟐 
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                                                       Var   𝒐𝒕𝒑#𝟏                           𝒐𝒕𝒑#𝟐 

Upon the above configurations, the protocol starts exchanging the messages based on the 

protocol specifications.  

On the other hand, applying the effects of the MITB attack on the protocol causes the 

Scyther’s automatic claim verification process to scan a proof tree for all possible protocol 

behaviours to return the results of the verification process. The size of the bounded proof tree 

ensures the verification process terminates and returns the results before reaching the upper 

bound [257]. In our case, the challenge-generation protocol was verified for bounded and 

unbounded verification, where the bounded verification was set to the default value of the 

tool, namely 5. However, verification was reached and the result was generated as described 

in Figure 5.8. 

 

Figure 5.8: Challenge-generation protocol verification results 

Figure 5.8 shows the result window of both roles within the protocol, in which the secrecy of 

the freshly generated numbers by browser 𝑩 and server 𝑺, denoted by 𝒏𝒃 and 𝒏𝒔, 
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respectively, failed to be satisfied in both roles. Moreover, both roles of the challenge-

generation protocol failed to satisfy all forms of the authentication property, namely: 

aliveness, weak-agree, non-injective agreement and non-injective synchronisation. 

 

5.6.3.3 Automated Challenge-Generation Analysis 

Upon simulating the MITB effects and setting bounded or unbounded verification 

parameters, the protocol is analysed through a complete characterisation of each role. Thus, 

for each role, a finite pattern representation is efficiently generated from an infinite set of 

traces that contain an instance of that role [253, 256, 258]. The complete characterisation of 

the challenge-generation protocol is shown in Figure 5.9.  

 

 

Figure 5.9: Complete characterization of the challenge-generation protocol 

 

By manually reviewing these patterns, it was found that for each role, one pattern represents 

the correct behaviour as seen in figure 5.6 and 5.7, while the rest of the patterns represent all 

possible security attacks on the challenge generation protocol. The representative attack 

patterns show that: (a) the protocol can suffer from attackers that compromise exchanged 

messages, (b) an adversary can run the protocol via impersonating the communicating 

partner, (c) multiple instances of different roles are running the same protocol via an 

adversary and (d) multiprotocol attacks can occur as well. An example of each possible attack 

graph is shown in Figures 5.10(a), 5.11(b), 5.12(c) and 5.13(d). 
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Figure 5.10: An attack graph of the challenge-generation protocol (a) 

 

Figure 5.10 shows an adversary intercepting exchanged messages, and manipulating their 

contents. In this figure, the adversary compromised 𝑴𝟏 that is sent by browser 𝑩, and 

replaced the submitted mobile number 𝒎𝒏 by another number before submitting the message 

to server 𝑺. This prevents the legitimate client from receiving the SMS-OTP, hence disabling 

the protocol. 
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Figure 5.11: An attack graph of the challenge-generation protocol (b) 

 

Upon session key reveal, the adversary can intercept and decrypt exchanged messages. Thus, 

the identity of the sender can be compromised as all exchanged messages include the client's 

identity. Figure 5.11 shows the adversary in the process of impersonating role B and 

communicating with server S. The adversary utilises the browser’s compromised identity to 

construct M1 and sends it to the server, thus causing server S to believe that he is 

communicating with the legitimate client B. 



 

157 

 

 

Figure 5.12: An attack graph of the challenge-generation protocol (c) 

 

As agents can execute any number of runs in parallel, in an interleaved manner. Figure 5.12 

shows that agent 𝑺#𝟐 is executing the same 𝑺 role in two different runs (𝑹𝒖𝒏𝟐, 𝑹𝒖𝒏𝟑). In 

this figure, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) initiates a connection with 𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), whose response to 

𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) has been intercepted and manipulated by an adversary that utilises the 

browser nonce 𝒏𝒃#𝟏 for impersonating a browser and trying to initiate a new connection with 

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺). Thus, the second protocol execution occurs between 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩)  and 

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺). Hence, 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺) responds back with the browser nonce 𝒏𝒃#𝟏 and a 

new server nonce 𝒏𝒔#𝟑 to 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩), assuming that the received response is from 

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺). Upon receiving the response and verifying the browser nonce 𝒏𝒃#𝟏, the 

response of 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) is intercepted and manipulated by the adversary to get the server 

nonce 𝒏𝒔#𝟑. Finally, the adversary sends the manipulated response to 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺) 

instead of 𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺).  Hence, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) is running the protocol with two 

different runs (𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺)). 
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Similar to the previous figure, figure 5.13 shows that agent 𝑺#𝟒 is executing the same 𝑺 role 

in three different runs (𝑹𝒖𝒏𝟐, 𝑹𝒖𝒏𝟒, 𝑹𝒖𝒏𝟓), and that agent 𝑩#𝟒 is executing the same 𝑩 

role in two different runs (𝑹𝒖𝒏𝟏, 𝑹𝒖𝒏𝟑). In this figure, the first protocol execution occurs 

between 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) and 𝑹𝒖𝒏𝟒 (𝒓𝒐𝒍𝒆 𝑺), whose response to 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) has been 

intercepted and manipulated by an adversary that utilizes the browser nonce 𝒏𝒃#𝟑 for 

impersonating a browser and trying to initiate a new connection with 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺). Thus, 

the second protocol execution occurs between 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩)  and 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺). Hence, 

𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺) responds back with the browser nonce 𝒏𝒃#𝟑 and a new server nonce 𝒏𝒔#𝟓 to 

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩), assuming that the received response is from 𝑹𝒖𝒏𝟒 (𝒓𝒐𝒍𝒆 𝑺). However, 

upon receiving the response and verifying the browser nonce 𝒏𝒃#𝟑, the response of 

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) is intercepted and manipulated by the adversary to get and include the server 

nonce 𝒏𝒔#𝟓 in a third protocol execution that occurs between 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) and 

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺). In this protocol, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) initiates a connection with 

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), whose response to 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) has been intercepted and manipulated 

by the adversary that altered the server nonce from 𝒏𝒔#𝟐 to 𝒏𝒔#𝟓 before being sent to 

𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩). Finally, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) sends the final response to 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝒔), 

Figure 5.13: An attack graph of the challenge-generation protocol (d) 
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assuming that the received response is from 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩). Thus, this trace pattern is a 

multiprotocol attack that is comprised of two browsers; each is running the protocol with two 

different runs. 

Based on the generated attack patterns, the consequences of the MITB attack compromising 

the browser cannot be circumvented within the same protocol. As a strong intruder 

compromising an agent and taking control of the entire browser can corrupt random number 

generators and reveal long-term and short-term keys [241]. Hence, there is no way to prevent 

this type of attack along with overcoming a denial of service (DOS) attack, unless 

transitioning to another communication channel with a second protocol.  

 

5.6.4Response-Generation Protocol Verification 

Following the unsuccessful verification of the challenge-generation protocol, for the MITB 

attack compromising the browser, and revealing its long-term shared symmetric key, a 

complementary and detached protocol is established for generating the response with no risk 

of the same adversary.  

This section discusses the application of the Scyther formal verification tool on the response-

generation protocol. Based on the protocol description in section 5.5.2, the expected correct 

behaviour of the protocol is presented along with its actual verification results. The execution 

of claim events that specify the required security properties are justified and analysed, along 

with presenting all possible trace patterns of both roles, generated via complete 

characterisation.  

 

5.6.4.1 Automated Response-Generation Verification 

The response-generation protocol is automatically and separately verified through setting 

bounded and unbounded verification parameters. Thus, the protocol verification procedure 

terminates and the results are generated, as illustrated in Figure 5.14, where the result window 

of both roles within the response-generation protocol, in which the secrecy of the freshly-

generated numbers by mobile phone 𝑴 and server 𝑺, denoted by 𝒏𝒎 and 𝒏𝒔𝟐, respectively, 

are successfully verified in both roles. In addition, the response-generation protocol 
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successfully verified the Aliveness, weak-agree, non-injective agreement and non-injective 

synchronisation claim events, which will be analysed in-depth in the next section. 

 

Figure 5.14: Response-generation protocol verification results 

 

5.6.4.2 Analysis of Response-Generation Security Properties 

In this section, the automated verified properties from section 5.6.4.1 are discussed and 

analysed. These properties are analysed according to the design of the proposed response 

generation protocol. The verified properties are secrecy and the different forms of 

authentication, which are aliveness, synchronisation and message agreement. 

. 

5.6.4.2.1 Secrecy/Confidentiality  

According to the description of the response-generation protocol in section 5.5.2, the secrecy 

property of all essential elements within the protocol, including nonce, macros, variables and 

constants, are satisfied. Secrecy satisfaction lies within securing the protocol via symmetrical 
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encryption of exchanged messages between two honest agents, in which their identities have 

been verified via PKI. 

5.6.4.2.2 Authentication 

a) Aliveness 

In terms of verifying the aliveness property, all forms of aliveness are analysed regarding 

both roles in the response-generation protocol. Moreover, both partners within the protocol 

are considered honest due to their shared secret key, which was established previously within 

the SSL/TLS protocol.  As both agents within the protocol execute both roles up to their 

claim events, and both intended communicating partners are honest due to an event 

execution. Thus, response-generation protocol assures agents execute the weak aliveness role 

of their intended communicating partners. The weak aliveness in correct role property is 

satisfied within the response-generation protocol as both parties act in their correct roles due 

to their shared secret keys used to symmetrically encrypt all exchanged messages between 

communicating parties, which ensures integrity and confidentiality as well. Thus, the 

intended communicating partners are executing the roles expected from the protocol 

description [41].  

As both agents within the protocol execute their roles up to their claim events, thus ensuring 

that the intended communicating partners has recently sent messages before the claim events 

and after other events within the same run in which the claim event occurs, which ensures 

that recent aliveness property is satisfied.  Finally, based on the shared secret key between 

both parties in the protocol, intended communicating partners execute the correct roles, thus 

satisfying the recent aliveness in correct role property. Consequentially, the weak agreement 

property is satisfied due to the established shared secret key between both participants [241].  

Based on figure 5.4, any protocol satisfying recent aliveness also satisfies weak aliveness 

[41]. Thus, the response-generation protocol satisfies weak aliveness, weak aliveness in the 

correct role, recent aliveness and recent aliveness in the correct role. 

 

a) Synchronisation 

According to the definition of the synchronisation property in section 5.6.1.2.2, the response 

generation protocol satisfies synchronization. Figures 5.15 and 5.16 show the Scyther trace 
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patterns of both roles within the response-generation protocol that corresponds to the protocol 

description in section 5.5.2.    

 

Figure 5.15: Trace pattern of the response-generation protocol, claim MUAS, M1 in role M 
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Figure 5.16: Trace pattern of the response-generation protocol, claim MUAS, S1 in role S 

Figures 5.15 and 5.16 confirm the non-injective synchronisation property for both roles in 

the protocol, where the roles are fulfilled through assigning each claim instance and role to a 

run identifier through cast functions. With respect to the characterised role, both roles in the 

protocol are assigned to Run1 and Run2.  

Once the communication partners are assigned, it is required for all communication pairs 

preceding the claim event to: (1) occur in the correct order, where every received message is 

preceded by a corresponding send message, (2) trace events corresponding to the events in 

the protocol description, and executed by the runs indicated by the cast function, which are 

Run1 and Run2, and (3) have the contents of the send messages correspond to the contents 

of the received messages [41, 247, 252]. According to the trace pattern results, both protocols 

satisfy the non-injective synchronisation property with respect to both roles, thus ensuring 

the protocol is executed as expected.  

However, non-injective synchronisation does not rule out replay attacks, where an intruder 

is capable of abusing the protocol by replaying an old and unexpected responder run into the 

current session. To rule out such a flaw, an injectivity property is added to the protocol, which 

requires that each run of the initiator role has his own and unique nonce to be included in all 
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exchanged messages with its corresponding responder role. This injective one-one 

relationship between the initiator role and the responder role causes the responder to only 

correspond to a single initiator role, thus creating a loop from the initiator to the responder 

and back to the initiator, which prevents replay attacks [41, 247, 249, 251, 252]. 

Based on Figure 5.15, any protocol satisfying injective synchronisation also satisfies non-

injective synchronisation [41]. Thus, the challenge- and response-generation protocols satisfy 

both forms of synchronisation. 

 

b) Message Agreement/Integrity 

Based on the trace events in Figures 5.15 and 5.16, the non-injective agreement property is 

confirmed, where both roles in the protocols agree on the contents of the corresponding send 

and receive messages. Moreover, according to the synchronisation hierarchy in Figure 5.5, a 

protocol satisfying injective synchronisation also satisfies non-injective synchronisation, thus 

satisfying the non-injective agreement. 

 

5.7 Conclusion 

This chapter complements the design and implementation of the proposed MUAS system in 

a formal means through verifying the proposed protocol from a security point of view. 

Therefore, a theoretical security evaluation has been performed with respect to possible 

attacks for justifying every specific detail within the protocol design. In addition to evaluating 

the implementation performance with respect to the most related work, where the evaluation 

is conducted in terms of communication and computation costs. The evaluation results 

showed our protocol has the most messages in terms of quantity and size. However, a trade-

off has been made with respect to security. Moreover, upon conducting a run-time 

measurement on both protocols, it was found that the response generation protocol is much 

faster than the input-based challenge generation protocol. 

For performing a proper verification mechanism, the objective behind the development of 

the protocol should be defined. Hence, the adversary model has been defined within the 

context of the proposed protocol. The adversary model in this thesis is represented by the 
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MITB attack, which resides in the browser; thus, the adversary can intercept and manipulate 

any data entered, received or sent through the compromised browser. The next building block 

in the verification mechanism lies within specifying the protocol in an abstract manner to 

declare the required knowledge for role execution within the protocol. The protocol 

specification is then translated into the selected verification tool’s description language. 

Among numerous formal model checking tools, the Scyther security protocol verification 

tool was considered to verify the required security properties of the protocol due to its speed 

and other novelties [239, 241, 253, 254, 259]. Based on chapter 3, the MUAS approach split 

the authentication mechanism into two detached protocols: challenge-generation and 

response-generation protocols. Thus, both protocols are verified separately using Scyther. 

The first protocol was verified upon modelling and applying the effects of the MITB attack 

within the protocol. In Scyther, the MITB attack was modelled by revealing the actor’s long-

term key, which corresponds to the established shared secret key used for securing all 

exchanged messages between the server and the compromised browser within the challenge-

generation protocol. This type of exposure was based upon the MITB’s capability of 

bypassing the encryption and decryption processes performed in the transport layer [1, 14]. 

Upon applying the adversary model, setting unbounded verification parameters and 

performing an automated verification, a proof tree is scanned for all possible protocol 

behaviours to return the results of the verification process. The result of verifying the 

challenge-generation protocol has failed for all required security properties. Moreover, a 

complete characterisation for each role is performed, thus generating a finite set of all 

possible traces that contains an instance of that role. These traces include the anticipated and 

correct behaviour, in addition to all possible attack patterns that have been manually reviewed 

and categorised into four classes, namely, exchanged messages manipulation, 

communicating partner impersonation, running the same protocol through multiple instances 

of the same role, and multiprotocol attacks. Based on the generated attack patterns, the MITB 

attack cannot be prevented within the same protocol as it took over the whole system. Thus, 

authentication via web browser is not secure. The proposed solution is based upon 

establishing a physically detached protocol that circumvents the MITB attack through 

transitioning the authentication mechanism to another communication channel that uses the 

mobile phone of the client. This protocol generates a response to the challenge with respect 

to authenticating the client, along with its ability to conduct a secure online transaction. 
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The second detached protocol takes place between the mobile phone application ‘3LS-

Authentication’ and the server, which is initiated following the challenge capturing via the 

visual channel. As the mobile phone application is secured by an activation layer, its role is 

considered to be executed by an honest agent without the need for modelling an adversary; 

therefore, all protocol communications are secured via their shared secret key. However, 

upon setting the unbounded verification parameters within the verification process by 

Scyther, secrecy and all forms of authentication security properties were satisfied. 

Furthermore, each role has exactly one trace pattern generated by the complete 

characterisation process, which corresponds to a valid protocol execution with no attacks 

[255, 256]. 

 

6 Conclusion and Future Work 

  

6.1 Introduction 

E-commerce applications have steadily grown in recent years. This growth is accompanied 

by many security concerns that have become obstacles to the development of e-commerce.  

User authentication is considered one of the most important issues to be addressed within the 

context of e-commerce; it is the first step in establishing a secure connection with any 

organisation. Therefore, the focus of this thesis revolves around finding an appropriate 

solution that overcomes the problem of a Man-in-the-browser (MITB) attack, within a secure 

e-commerce authentication system. An MITB attack is a Trojan that invades a user’s browser 

to infiltrate and manipulate all incoming and outgoing information. This type of attack is a 

sophisticated hacking technique [11] capable of bypassing the security measures of Public 

key infrastructures (PKIs) and the encryption mechanisms of a Secure socket layer and 

Transport layer security (SSL/TLS) [1, 14].   

In this chapter, we provide a summary of the stages involved in developing the proposed 

Mobile user authentication system (MUAS) along with its learning outcomes. Beginning 

with the literature review, we investigated many articles to guide the design and 
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implementation of the proposed system that was ultimately evaluated and verified as a high 

performance solution that prevented MITB attacks. 

In conclusion, the main goal of this thesis is to develop a secure Mobile-User-Authentication 

System (MUAS), for circumventing MITB attacks through switching from the infected 

platform to the mobile phone application. Hence, the mobile phone is used for authentication 

and for conducting business transactions.  

  

6.2 Summary of the Results 

The focus of this thesis is to design and implement a two-phase MUAS that overcomes an 

MITB attack. The design was evaluated using a reliable verification method that 

authenticated the properties of the proposed security protocol. The learning outcomes of this 

thesis are summarised in the list below:  

 In chapter 1, we discussed the sophisticated MITB attacks. We analysed possible attack 

capabilities and performance behaviour in order to find a way that circumvent its 

destructive effects. The objectives and research contributions are outlined in this chapter 

as well.  

 In chapter 2, we delineated the development stages of the system design. First, we 

reviewed the three fundamental authentication methodologies and conducted a 

comparative study of security protocols employed by popular UK banks. Results of the 

study revealed that the most frequently used identification and authentication mechanism 

is 2FA, due to its secure login process. However, 2FA cannot accomplish the objective 

of this thesis, because it, uses the same mechanisms that the infected browser uses to fulfil 

the authentication process. Instead, a mobile phone, which is the most popular platform 

associated with 2FA mechanisms, is employed in the proposed thesis. A mobile phone 

has many pre-existing security-feature options available, often stemming from popular 

technologies. Next, we reviewed the e-commerce security system. The e-commerce 

security system represents the foundation of our work. The system is composed of five 

basic layers: a network service layer, encryption technology layer, security authentication 

layer, security protocol layer and application layer. Each layer serves a specific purpose 



 

168 

 

within the security system.  The lower-most layer is the network service layer, which 

represents the data link layer of the e-commerce security system. From a security protocol 

point-of-view, the next three layers represent the encryption technology layer, security 

authentication layer and security protocol layer. Each of the three layers represents 

essential and basic elements for developing a secure e-commerce authentication system, 

which protects personal information from unauthorized use while satisfying the required 

security dimensions. From a security dimension point-of-view, encryption technology 

layers help satisfy the integrity, non-repudiation, authentication and confidentiality 

dimensions [24]. Security authentication layers help satisfy integrity, authenticity and 

non-repudiation dimensions [24], while security protocol layers help satisfy the 

authenticity, integrity, confidentiality and privacy dimensions [189-191]. Therefore, this 

system is considered a platform that determines the technologies that need to be 

implemented within each layer in the proposed authentication system. 

o The encryption technology layer secures transmitted data from unauthorized use via 

cryptographic algorithms. Thus, the encryption layer is considered a fundamental 

layer in the field of e-commerce security [154]. There are two encryption categories: 

asymmetric and symmetric cryptography. Asymmetric cryptography provides several 

security mechanisms such as key establishment, non-repudiation, and entity 

identification. Although symmetric cryptography can identify entities, identifying 

key establishment requirements is significantly more difficult [160] because it poorly 

satisfies the non-repudiation requirement [157, 160]. Moreover, asymmetric 

cryptography is very slow, compared to symmetric cryptography. The system design 

must have an explicit symmetric or asymmetric cryptography type to ensure the 

rationality/logic of the key distribution and encryption efficiency [20]. In some cases, 

choosing an explicit asymmetry type is a trade-off with respect to the objective of the 

proposed system.  

o The secure authentication layer of an e-commerce system represents the basis for 

authenticating the identities of participants and their exchanged messages. This can 

be accomplished by establishing a robust infrastructure that provides e-commerce 

security services. Therefore, a public key infrastructure (PKI) represents the security 

foundation of MUAS as it can provide the infrastructure for various network security 

services. Additionally, PKIs can provide different public key certificate services [22], 
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such as obtaining public keys that can be used in the encryption technology layer for 

cryptographic purposes. Moreover, other security technologies, such as cryptographic 

nonce, can be used to ensure the authenticity of exchanged messages.  

o The security protocol layer is a necessary way of establishing a secure channel 

between participants like e-commerce or online banking. The typical choice is usually 

the secure socket layer/transport layer security (SSL/TLS) protocol. This protocol 

uses the client’s certificate as well as the CA-certificate within a PKI. The protocol 

then verifies the user’s identity and establishes a safe and trustworthy channel, 

between the communicating parties, to prevent transmitted data from being stolen 

[20]. 

o The application layer represents the point of compromise. In this thesis, the threat 

model lies within this final layer of the e-commerce security system.  

 In chapter 3, the details of the proposed system are provided, along with a justification of 

the different components and functions of the design. Based on the literature review and 

the thesis objective, the most appropriate solution is to securely transition the 

authentication process from an MITB-infected browser to the mobile phone of the client. 

This is accomplished by designing two-detached secure phases, called the challenge- and 

response-generation phases, each using distinct network connections. Based on the 

MUAS design architecture, several outcomes have been determined: 

o The importance of registering the client via a mobile number and the IMEI lies within 

mitigating denial-of-service attacks in both phases, where unregistered clients will be 

denied in the challenge generation phase. In the response generation phase, 

submitting the extracted mobile number and IMEI to the server mitigates the DOS 

attack as well, typically by matching the received mobile number with the registered 

client’s mobile number, to find and validate the received IMEI against the registered 

IMEI. 

o Whenever a registered client triggers the authentication system, the client’s registered 

mobile phone is the only device that can generate the appropriate response for that 

session. The IMEI is extracted from the mobile phone while generating the response 

that will be sent to the server and verified against the registered IMEI; hence, it is not 

possible for multiple simultaneous (or cloned) mobile phones to run the same system. 
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This protection is an additional way to guarantee the registration of the mobile phone, 

which sends the response. 

o With the expansion of wireless access technologies such as Wi-Fi, Wi-Max, and LTE, 

and with the popularity of multi-interfaced mobile devices, efficient multi-homing 

support is possible in mobile networks. In a multi-homed mobile network, the mobile 

phone is considered the multi-homed mobile host, since its Mobile IP address changes 

while the selected network interface changes. Interface selection mechanisms in 

mobile networks are located in the mobile router (MR) [260]. The mobile router is 

responsible for updating its attachment point to the mobile network without disrupting 

higher-layer connections of attached devices, thus the mobile router oversees all the 

mobility functions on behalf of all the mobile hosts located within the mobile 

network. To find the best approach that supports network mobility and multi-homing, 

a study was conducted among several multi-homed mobile networks that resulted in 

the Network Mobility (NEMO) protocol, which provides support to both network 

mobility and multi-homing, in addition to providing better interface selection 

mechanism than other approaches [260]. NEMO’s basic support protocol is the 

Mobile IPv6, which has been extended to support connectivity within a moving 

network [260, 261]. A mobile network contains one or more mobile routers (MRs), 

along with local or transient nodes [260]. A multi-homed response generation 

protocol enables the client to use a mobile phone and server as a mobile host (MH) 

and a correspondent node (CN), respectively. Regardless of the physical location of 

the mobile phone, it is identified by a permanent home address that is assigned by its 

home network. The server (CN) uses the permanent home address of the mobile 

phone as the destination address. Whenever the mobile phone moves to another 

network (foreign network), it acquires a new address called Care-of-Address (CoA). 

The mobile phone then sends its CoA to its home agent (HA), which is a router in a 

static location on the MHs home network that is responsible for tunnelling packets 

for delivery to the mobile phone when it is away from its home network. Next, a 

binding takes place between the mobile phone’s permanent home address and the 

CoA. Thus, a bi-directional IPv6-in-IPv6 tunnel is used to maintain connectivity 

between the mobile router and the home agent. Response generation exchange 

message-packets sent from the server (CN) to the mobile phone on a mobile network 
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(MN) are delivered to the home agent of that mobile network via traditional routing 

methods. The home agent tunnels the packets that will delivered to the mobile phone. 

Likewise, reverse packets take the same path in the opposite direction. The mobile 

phone sends the packets to the mobile router, which will then be tunnelled to the home 

agent and finally sent to the server (CN) using traditional routing methods. 

 

Figure 6.1: Response Generation Protocol in a Multi-homed mobile Network 

 In chapter 4, the theoretical design for the MUAS is interpreted as an executable form; 

the form defines the design components and provides descriptive flowcharts. This 

chapter represents the foundation on which the verification chapter is built-upon. The 

employed functions and cryptographic algorithms that are required for calculating the 

computational cost of the protocol are described in this chapter. Messages exchanged 

within the protocol are specified as well, along with their attributes for calculating the 

communication cost of the protocol. Furthermore, implementing the proposed system 

helps by calculating the average run-time of each phase within the protocol.  

 In chapter 5, both phases of the proposed system are evaluated from a theoretical and 

applied point-of-view. The process also generates the verification results by applying 

formal verification tools.   

o An in-depth justification of all the exchanged messages, their contents and 

their applied cryptographic mechanisms contribute to a theoretical 

performance measure. This measurement justifies the system's security 

against all possible attacks. In the literature review, most related work [130, 

200, 201] demonstrated an implementation performance measure that fulfils 

the design choices from the point-of-view of the computational and 

communication-based cost. The MUAS computational cost is higher in terms 
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of random number generation, while its energy consumption is lower since it 

employs a simple and lightweight algorithm. A public key cryptography 

method is employed for securing the QR-code content, and though it is 

expensive, a trade-off was made between the key cryptography and QR-code 

content. The MUAS communication cost exceeds that of other protocols in 

terms of the number of exchanged messages and the message sizes. The 

system is composed of two detached secure protocols and each is composed 

of several messages that are supported by the cryptographic security attribute 

and the sender’s identity. 

o Each MUAS phase is evaluated separately, using the Scyther security protocol 

verification tool. The evaluation of the challenge-generation phase resulted in 

a failure; this failure applies to all required security properties. The failure is 

a consequence of applying the MITB effects on the protocol. The results also 

suggest that MITB attacks cannot be prevented within the same (single) 

protocol, especially when the attacker has overtaken the entire system. This 

has justified the need for relocating the authentication mechanism to a 

physically detached phase, which employs a secure authentication device 

(e.g., a mobile phone) that communicates with the server over a newly created 

connection. Evaluating the detached response generation phase results for 

fulfilling the confidentially (secrecy) and authentication security properties. 

The evaluations must validate the entire two-phase-detached protocol. Hence, 

a detached-phase approach of the security measure satisfies the objective of 

the thesis, which is to overcome an MITB attack. 

    

6.3 Future Work 

We anticipate that the proposed authentication system can be extended to include an e-

commerce payment. This may be achieved within the response generation phase and can 

include a secure platform that can execute an electronic data interchange for e-commerce 

transactions. Consequently, this extension will provide an integral authentication and 

transaction framework that overcomes the MITB attacks by using a QR code with mobile 
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phone. The entities involved will include the server, mobile phone and the financial 

organization (bank) that completes the transaction. The steps involved in extending the 

existing system can be summarized as follows: 

 In the challenge generation phase, the QR code contents will be expanded to include 

(1) the transaction information, and (2) the existing authentication information that 

was used to authenticate the client in this thesis. The transaction information will 

include a Transaction identification number (𝑻𝑰𝑫), an Amount to transfer (𝑨𝑴𝑻), 

the Destination account (𝑫𝑺𝑻) or the merchant, and the Source account (𝑺𝑹𝑪) or the 

bank.  

 Following user authentication, the mobile application will submit the QR code-

recovered 𝑺𝑹𝑪 within the response generation phase in order for the server to initiate 

a secure SSL/TLS connection with the bank. The server will submit the client’s 

Mobile number (𝒎𝒏) along with the transaction information, which includes the 

𝑻𝑰𝑫, 𝑨𝑴𝑻 and 𝑫𝑺𝑻. 

 The bank uses the 𝒎𝒏 received as a reference to retrieve client information and ensure 

that the client is a customer. Before performing the transaction, the bank verifies the 

received transaction information with the client. This verification sends the 𝑻𝑰𝑫, 

𝑨𝑴𝑻 and 𝑫𝑺𝑻 to the client’s mobile phone via the Short message service (SMS). 

The mobile phone then verifies the received transaction information comparing it to 

the information recovered from the QR code. Upon verification, the mobile phone 

submits a confirmation message to the bank that is performing the transaction. 
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Figure 6.2: MUAS Future Transaction Mechanism 

 

In terms of using the proposed MUAS approach in other disciplines within the context of 

client authentication, the challenge generation phase operates in the same manner, thus 

mitigating the Denial-of-Service attack (DOS) and generating the QR code challenge. The 

QR code is composed of the same contents, along with an additional account number 

𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝒏𝒐 of the registered client. Upon capturing the QR code, the response generation 

phase operates in the same manner. Moreover, the mobile phone requests the client to submit 

his/her account number 𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝑵𝒖𝒎𝒃𝒆𝒓 to be verified against the QR code-recovered 

account number 𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝒏𝒐. Upon verification, the mobile phone generates the response 

to be sent to the server for verification. In the case of a successful authentication, the initiating 

client is capable of accessing his/her personal records. 
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Figure 6.3: MUAS in Different Disciplines 

6.4 MUAS Limitations 

Although the proposed MUAS can overcome the problem of MITB attack within a secure 

framework that relocates the authentication mechanism from the infected browser to the 

secure mobile phone of the client, there are some limitations that are related to our proposed 

system, which we will briefly discuss. 
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 Confirming the legitimacy of the mobile phone holder within the challenge-

generation phase requires a cellular network for submitting the OTP via SMS. 

Therefore, this step can be considered as a defect within the system in the case of a 

real-world threat, namely, an unavailable cellular network, thus causing the whole 

system to malfunction. 

 In the challenge-generation phase, the basis for generating the QR code by the server 

relies upon verifying the received OTP from the presumably infected browser. 

Although the MITB attack’s main concern is financial information, however if the 

OTP value was manipulated after user submission, the system will deny the 

authentication service which can cause denial of service attack. Another limitation 

within the response-generation phase states that the client is requested to use a 

smartphone only, for capturing and processing the QR code via a downloaded 

application. 

 Another considered weakness of the proposed MUAS lies within the computational 

cost in terms of employing an expensive public key encryption algorithm to secure 

the QR code contents; this can be justified by the need to secure the code from 

unauthorized users. Moreover, the communication cost exceeds most related work in 

terms of number and size of exchanged messages. However, a compromise was made 

with respect to security. 

Overall and despite the encountered limitations mentioned above, the proposed MUAS is a 

promising solution to provide a simple, secure, and low-energy consumption framework, 

which can prevent the Man-in-the-Browser (MITB) attack within a secure online 

authentication system for e-commerce applications. With this new algorithm, MUAS also 

excludes the risk of Denial-of-Service (DOS). In terms of security, the proposed solution 

satisfies the security properties required by all security protocols [41, 247]. Thus, this thesis 

have achieved its objectives and provided a novel and secure solution to one of the most 

sophisticated attacks, which is MITB attack.  
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Appendix A 

Pseudocode of the Challenge Generation Phase 

 

 

Figure A.1: Challenge Generation Pseudo Code 
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Figure 0.1: Response Generation Pseudo Code 

Pseudocode of the Response Generation Phase 

 

 


