

Mobile User Authentication System (MUAS)

for E-commerce Applications

By

Rania A. Molla

A thesis submitted

In partial fulfilment of the requirements of

 Edinburgh Napier University,

 For the award of Doctor of Philosophy

April 2017

i

Abstract

The rapid growth of e-commerce has many associated security concerns. Thus, several

studies to develop secure online authentication systems have emerged. Most studies begin

with the premise that the intermediate network is the primary point of compromise. In this

thesis, we assume that the point of compromise lies within the end-host or browser; this

security threat is called the man-in-the-browser (MITB) attack. MITB attacks can bypass

security measures of public key infrastructures (PKI), as well as encryption mechanisms for

secure socket layers and transport layer security (SSL/TLS) protocol. This thesis focuses on

developing a system that can circumvent MITB attacks using a two-phase secure-user

authentication system, with phases that include challenge and response generation. The

proposed system represents the first step in conducting an online business transaction.

The proposed authentication system design contributes to protect the confidentiality of the

initiating client by requesting minimal and non-confidential information to bypass the MITB

attack and transition the authentication mechanism from the infected browser to a mobile-

based system via a challenge/response mechanism. The challenge and response generation

process depends on validating the submitted information and ensuring the mobile phone

legitimacy. Both phases within the MUAS context mitigate the denial-of-service (DOS)

attack via registration information, which includes the client’s mobile number and the

International Mobile Equipment Identity (IMEI) of the client’s mobile phone.

This novel authentication scheme circumvents the MITB attack by utilising the legitimate

client’s personal mobile phone as a detached platform to generate the challenge response and

conduct business transactions. Although the MITB attacker may have taken over the

challenge generation phase by failing to satisfy the required security properties, the response

generation phase generates a secure response from the registered legitimate mobile phone by

employing security attributes from both phases. Thus, the detached challenge- and response

generation phases are logically linked.

ii

To my Mother and Father

 To my Brothers

 To my Husband

 &

 To my Kids

iii

Acknowledgements

First and foremost, I would like to thank God for giving me the strength and patience to carry

out and finish this research. Second, I would like to express my sincere gratitude to my

primary supervisor Dr. Imed Romdhani. I thank him for his ongoing guidance,

encouragement, support and limitless patience and faith in me throughout this research. I

would also like to thank my second supervisor Prof. Bill Buchanan for helping me with

valuable suggestions and guidelines throughout my PhD. This work would not have been

possible without either of them due to their enthusiasm, inspiration and their great effort to

explain things clearly, not to mention their kindness and understanding in difficult times. I

would also like to thank the kind help of Prof. Jessie Kennedy for being there for me during

my study.

My thanks also go to Edinburgh Napier University and King Abdulaziz University for

providing the appropriate environment for conducting this research.

I would also like to thank my friend and internal supervisor Dr. Etimad A. Fadel for being

there for me throughout my studying period, advising and encouraging me and providing me

with lots of valuable ideas. My friends and colleagues Dr. Omaimah O. Bamasag and Dr.

Areej A. Malibary, I want to thank them for their guidance and help at difficult times during

the thesis.

My deepest thanks go to my lovely husband Abdullah Baslaim, who supported and

encouraged me in every possible way, and fed the confidence in myself and my ability to

complete this work, when there were times that I felt it was impossible to finish. I would also

love to thank my kids, Shahd, Omar and Sultan for coping with me and allowing me to finish

my work.

Last in writing and first in my heart, my Mother and Father, whose prayers, support and

continuous encouragement have helped and pushed me throughout the years to complete this

work and never give up, even when things got hard.

Thank you.

iv

Table of Contents

1 Introduction .. 1

1.1 Background .. 1

1.2 Objectives of the Research ... 3

1.3 Man-In-The-Browser Attack.. 4

1.3.1 MITB Attack Performance ... 5

1.3.2 MITB Attack Capabilities .. 7

1.4 Research Contributions .. 8

1.5 Related Publications ... 10

1.6 Structure of the Thesis ... 11

2 Literature Review .. 12

2.1 Introduction .. 12

2.2 E-commerce Security ... 12

2.2.1 Dimensions of E-commerce Security... 15

2.3 Authentication .. 15

2.3.1 Password-Based Authentication... 19

2.3.2 Two-Factor Authentication .. 20

2.3.3 Three-Factor Authentication .. 23

2.3.3.1 Biometric Properties and Drawbacks ... 24

2.4 Current Trends in Online Authentication Solutions ... 26

2.4.1 One-Time Password (OTP) .. 26

2.4.1.1 OTP Attack Methods ... 28

2.4.1.2 OTP Distribution Mechanisms ... 29

2.4.1.2.1 SMS-based One-Time Password (SMS-OTP) ... 29

2.4.1.2.2 Mobile Banking Application OTP ... 32

2.4.2 QR Code ... 33

2.4.2.1 QR Code Structure and Capacity ... 33

2.4.2.2 QR Code Usage .. 36

2.4.2.3 QR Code Security Issues .. 38

2.4.2.4 Attacking Different Parts ... 39

2.4.2.5 QR Codes as Attack Vectors .. 42

2.4.2.5.1 Attacking Automated Processes .. 42

2.4.2.5.2 Attacking Human Interaction .. 43

2.5 Encryption Technology Layer ... 43

2.5.1 Symmetric Cryptography ... 44

v

2.5.1.1 Data Encryption Standard (DES) ... 46

2.5.1.2 Triple Data Encryption Standard (3DES) .. 46

2.5.1.3 Advanced Encryption Standard (AES) .. 47

2.5.2 Asymmetric Cryptography ... 48

2.5.2.1 RSA .. 49

2.6 Security Authentication Layer ... 51

2.6.1 Digital Digest (Hashing) .. 51

2.6.2 Hash Algorithm Security ... 53

2.6.3 Public Key Infrastructure (PKI) ... 55

2.7 Security Protocol Layer ... 57

2.7.1 TLS/SSL .. 58

2.7.1.1 TLS/SSL Session Key Establishment .. 63

2.7.1.1.1 RSA Key Exchange Method .. 63

2.7.1.1.2 Diffie-Hellman Key Exchange (DHKE) Method .. 64

2.8 Related Work ... 67

2.9 Conclusion ... 70

3 Design and Methodology ... 72

3.1 Introduction .. 72

3.2 MUAS Design Model .. 74

3.3 MUAS Design Assumptions .. 76

3.4 Challenge Generation Phase .. 78

3.4.1 QR Code Generation .. 80

3.5 Response Generation Phase ... 82

3.5.1 Activation Layer .. 83

3.5.2 Cryptography Layer ... 84

3.5.3 Response Generation Layer ... 85

3.6 Conclusion ... 88

4 Implementation .. 91

4.1 Introduction .. 91

4.2 Platform Implementation Overview ... 92

4.2.1 Establishing an SSL/TLS Connection .. 93

4.3 Challenge-generation Phase ... 95

4.4 Challenge-generation Components .. 98

4.4.1 Nonce Component.. 99

4.4.1.1 Nonce Generator .. 100

4.4.2 QR Code Component ... 101

vi

4.4.2.1 Forming QR Code Contents ... 101

4.4.2.1.1 Assembling QR Code Contents ... 101

4.4.2.1.2 Appending QR Code Contents .. 102

4.4.2.1.3 Encrypting QR Code Contents .. 102

4.4.2.2 Generating the QR Code Image ... 105

4.5 Response-generation Phase .. 106

4.6 Response-generation Components ... 109

4.6.1 Application Component ... 111

4.6.1.1 App Activator ... 111

4.6.1.2 QR Code Recovery .. 113

4.6.1.2.1 QR Code Decryptor ... 114

4.6.1.2.2 QR Code Splitter ... 115

4.6.1.3 SSL/TLS Establisher .. 116

4.6.1.4 Response Generator ... 117

4.6.1.4.1 Appending and Hashing .. 118

4.6.1.5 Verifier Component ... 119

4.7 Conclusion ... 121

5 Evaluation ... 122

5.1 Introduction .. 122

5.2 MUAS Protocol Overview ... 123

5.3 MUAS Security and Performance Evaluation ... 125

5.3.1 Theoretical Performance Measurement ... 125

5.3.1.1 Challenge-Generation Theoretical Measurement .. 126

5.3.1.2 Response-Generation Theoretical Measurement ... 130

5.3.2 Implementation Performance Measurement .. 134

5.3.2.1 Computational Cost Measurement ... 134

5.3.2.2 Communication Cost Measurement ... 136

5.3.2.3 Execution Time Measurement ... 137

5.4 MUAS Adversary Model ... 140

5.5 MUAS Protocol Specification ... 140

5.5.1 Challenge-Generation Protocol Specification .. 141

5.5.2 Response-Generation Protocol Specification ... 142

5.6 MUAS Protocol Execution and Verification Results ... 144

5.6.1 Security Properties ... 145

5.6.1.1 Secrecy/Confidentiality .. 146

5.6.1.2 Authentication .. 146

vii

5.6.1.2.1 Aliveness ... 146

5.6.1.2.2 Synchronisation ... 147

5.6.1.2.3 Message Agreement/Integrity .. 148

5.6.2 Scyther Verification Tool ... 148

5.6.3 Challenge-Generation Protocol Verification .. 149

5.6.3.1 Adversary Modelling ... 149

5.6.3.2 Automated Challenge-Generation Verification ... 150

5.6.3.3 Automated Challenge-Generation Analysis ... 154

5.6.4 Response-Generation Protocol Verification .. 159

5.6.4.1 Automated Response-Generation Verification .. 159

5.6.4.2 Analysis of Response-Generation Security Properties... 160

5.6.4.2.1 Secrecy/Confidentiality ... 160

5.6.4.2.2 Authentication ... 161

5.7 Conclusion ... 164

6 Conclusion and Future Work ... 166

6.1 Introduction .. 166

6.2 Summary of the Results ... 167

6.3 Future Work ... 172

6.4 MUAS Limitations ... 175

References ... 177

Appendix A ... 197

Pseudocode of the Challenge Generation Phase .. 197

Pseudocode of the Response Generation Phase ... 198

List of Figures

Figure 1.1: Data Flow through the OSI model ... 5

Figure 1.2: MITB attack within a banking system ... 6

Figure 1.3: MITB attack within an e-commerce system .. 6

viii

Figure 2.1: E-commerce Security System ... 14

Figure 2.2: QR Code Structure (Version2) .. 34

Figure 2.3: TLS in the TCP/IP stack .. 58

Figure 2.4: IPSec in the TCP/IP stack .. 58

Figure 2.5: TLS Protocol stack .. 59

Figure 2.6: TLS Initial Negotiation.. 60

Figure 2.7: TLS Record Protocol Operations .. 61

Figure 2.8: TLS with RSA Key Exchange Method ... 64

Figure 2.9: Diffie-Hellman Mathematical Computations .. 65

Figure 2.10: TLS with Diffie-Hellman Key Exchange Method .. 66

Figure 3.1: MUAS Client Registration .. 75

Figure 3.2: MUAS High Level Representation ... 76

Figure 3.3: MUAS Relational Database .. 79

Figure 3.4: High Level Representation of the Challenge Generation Phase 80

Figure 3.5: QR Code Generation Phases in MUAS ... 82

Figure 3.6: 3LS-Authentication Layers ... 83

Figure 3.7: 3LS-Authentication Activation Layer ... 84

Figure 3.8: 3LS-Authentication cryptography and response generation Layers 87

Figure 4.1: Platform Implementation Overview .. 93

Figure 4.2: SSL/TLS Socket Establishment in a Client-Server Model .. 94

Figure 4.3: Overall Challenge-generation Algorithm .. 97

Figure 4.4: Challenge-generation Components.. 98

Figure 4.5: Fresh Nonce Generation Procedure ... 100

Figure 4.6: Forming QR Code Contents .. 104

Figure 4.7: Generating the QR Code Image Process ... 106

Figure 4.8: Mobile Phone-side Process of the Response-generation Phase 108

Figure 4.9: Response-generation Components .. 110

Figure 4.10: Alert View Creation and Settings .. 112

Figure 4.11: Alert View Behavior.. 113

Figure 4.12: Extracting the Client Certificate and its Private Key to Perform Decryption 115

Figure 4.13: Splitting the QR Code Contents ... 116

Figure 4.14: Establishing SSL/TLS Client-side Process within the Response-generation Phase 117

Figure 4.15: Response Hashing and Encryption Processes ... 118

Figure 4.16: Verification Algorithm of the Response-generation Phase ... 120

Figure 5.1: MUAS Security Protocol Overview .. 124

ix

Figure 5.2: Challenge-Generation Protocol ... 127

Figure 5.3: Response-Generation Protocol .. 131

Figure 5.4: Aliveness hierarchy ... 147

Figure 5.5: synchronisation hierarchy .. 148

Figure 5.6: Correct Behavior of role B in the Challenge Generation Protocol 151

Figure 5.7: Correct Behavior of role S in the Challenge Generation Protocol 151

Figure 5.8: Challenge-generation protocol verification results .. 153

Figure 5.9: Complete characterization of the challenge-generation protocol 154

Figure 5.10: An attack graph of the challenge-generation protocol (a) ... 155

Figure 5.11: An attack graph of the challenge-generation protocol (b) ... 156

Figure 5.12: An attack graph of the challenge-generation protocol (c) ... 157

Figure 5.13: An attack graph of the challenge-generation protocol (d) ... 158

Figure 5.14: Response-generation protocol verification results .. 160

Figure 5.15: Trace pattern of the response-generation protocol, claim MUAS, M1 in role M 162

Figure 5.16: Trace pattern of the response-generation protocol, claim MUAS, S1 in role S 163

Figure 6.1: Response Generation Protocol in a Multi-homed mobile Network 171

Figure 6.2: MUAS Future Transaction Mechanism ... 174

Figure 6.3: MUAS in Different Disciplines ... 175

Figure A.1: Challenge Generation Pseudo Code ... 197

Figure A.2: Response Generation Pseudo Code .. 198

List of Tables

Table 2.1: Attributes of Different Authentication Methodologies ... 18

Table 2.2: Applicability of Attacks to the Main Authentication Mechanisms 18

Table 2.3: Different Identification and Authentication Mechanisms Used in UK Banks 21

Table 2.4: Mask Pattern Formulas ... 39

Table 2.5: Character Encoding Mode .. 40

Table 2.6: Character Count Indicator size for each Encoding Mode and Version 40

x

Table 2.7: Concatenating different data segments within a QR code .. 41

Table 2.8: Secure Hash Algorithm Properties ... 53

Table 2.9: Strengths of the Security Properties of the Hash Algorithms ... 54

Table 5.1: Performance comparison between MUAS protocol and the most related work 134

Table 5.2: Comparison of communication costs between MUAS protocol and other relevant

protocols ... 136

Table 5.3: Execution Time of Challenge Generation Protocol .. 138

Table 5.4: Execution Time of Response Generation Protocol ... 139

1

1 Introduction

1.1 Background

Since the early days of e-commerce revolution, a world of cybercriminals emerged and

produced a profitable online fraud business with a low risk of being caught [1]. An

intermediate network has always been assumed as the point of compromise. Although this

was true in the early days of networked computers, the internet evolution has allowed

adversaries to live closer to and within end hosts [2]. Hence, a large amount of attention in

academia and industry has been inspired to investigate more into the concept of developing

a secure user-authentication system to secure the commercial transactions among the

organization and individuals with respect to stopping host adversaries.

Most traditional e-commerce user-authentication systems involve the submission of

confidential information, which can be prone to a number of attacks, such as a Trojan that

infects the web browser, namely the man-in-the-browser (MITB) attack [1]. The strategy of

this type of attack steals money from an online transaction [3] because of its ability to

manipulate and intercept all incoming and outgoing information [1, 4]. Although the MITB

attack is a serious issue, there has been an insufficient amount of research towards developing

an MITB-prevention mechanism within the context of user authentication. Therefore, an

investigation is conducted regarding the possible and available authentication methods to be

used within the context of e-commerce applications to verify the identity of the client along

with overcoming MITB attacks.

The current methods used for user authentication are categorised into single-factor

authentication, two-factor authentication and three-factor authentication, which correspond

to something the user knows, something the user has and something the user is, respectively

[5-7]. The widely employed single-factor authentication is a simple password-based

mechanism that employs a username/password combination to become authenticated.

However, passwords can be easily stolen, forgotten or guessed [5], and this mechanism is

vulnerable to various attacks [8]. In contrast, two-factor authentication is a much stronger

mechanism that combines what the user knows with what the user has. Thus, it is based on

2

the user’s possession of an object for providing a challenge/response mechanism to increase

the level of authentication security [8-10]. The final authentication mechanism is based on

authenticating the user via his/her biometrical characteristics[5-7].

According to Dougan and Curran [11], the only guaranteed solution to prevent MITB attack

is via an out-of-band (OOB) confirmation, usually a one-time-password (OTP). On the other

hand, Krishnan and Kumar [12] stated that the attacker can simply take control of the

transaction following the OTP submission and user authentication. Therefore, MITB attack

cannot be prevented with any of the previous authentication methods.

Given such a scenario, we argue that most proposed solutions utilise the browser for

conducting business transactions, thus exposing the whole process to abort in case of an

infected browser. We believe these solutions need to be modified to serve as an accountable

and active countermeasure against MITB attack. In this thesis, the proposed authentication

mechanism utilises the browser and the mobile phone as the initiation- and completion-

phases, respectively. Where the detached second phase represents the solution to the MITB

attack lying within the browser. A number of security-related technologies are combined to

provide trustworthy mechanisms that logically link both phases, paving the way to generate

a secure response within the detached and developed mobile phone application. The basis

behind the modification relies on excluding the browser and continue the authentication

mechanism securely within the application that can only be operated by its legitimate owner.

The responsibility of the mobile phone application lies within capturing the displayed

challenge, generating, and sending the response to the server without displaying any

information on its screen.

Furthermore, the proposed scheme mitigate the connection-based distributed denial of

service attack (DDoS) in both phases through exploiting the registration information within

the server. This type of attack obstructs the legitimate user’s services through exhausting the

server’s resources via application-level flooding attacks [13].

3

1.2 Objectives of the Research

Inspired by the lack of efficient solutions towards Man-In-the-Browser (MITB) attack and

the desire to provide a secure authentication system within e-commerce environments, this

study incorporated the required security measures along with the MITB capabilities to

simulate its effect upon the proposed solution and to confirm whether the essential security

requirements are satisfied.

This thesis provides a secure authentication system called “Mobile User Authentication

System” or “MUAS”, which is designed to utilise smartphones for a simple and secure client-

authentication mechanism within the context of e-commerce applications for conducting

business transactions. The MUAS is a two-phased system that uses a challenge/response

mechanism for client authentication. Both phases are built on top of the secure socket

layer/transport layer security (SSL/TLS) protocols as a mean for securing all connections and

communications between participants. Furthermore, security measures are considered within

both phases to prevent replay attacks and malicious users, thus satisfying security properties,

namely authentication and secrecy.

This research focuses on three major objectives when developing a secure authentication

system. The first objective concentrates on the main problem to overcome, which is the

MITB attack. This involves defining its purpose along with its performance capabilities from

an e-commerce application’s perspective, which is explained in the following section. Based

on MITB-attack capabilities, a secure user-authentication system is formulated that is

composed of two physically detached, yet logically connected phases.

The second objective is to design and implement the two phases of the authentication system

with a specific functionality for each phase. The second phase contributes to circumvent the

problem of MITB attack by transitioning the authentication mechanism to the client’s mobile

device, which uses a detached connection for authentication and conducting business

transactions. Entities involved in the two-phased system are characterised through their

specific roles within the MUAS, where the client connects with the server through two

separate and complementary roles. Furthermore, both phases mitigates the denial-of-service

(DOS) attack through the client’s registered information.

4

The third objective is to verify the two phases of the authentication system and to consider

the effects of the threat residing in the browser. This part emphasises the need for requiring

a detached second phase. Both phases are specified in an abstract manner, thus providing a

detailed description of the protocols to be verified via the Scyther security-protocol-

verification tool. The verification results are analysed per the security properties to be

satisfied. Furthermore, this study is conducted in terms of computational and communication

cost based on related studies and a theoretical performance measurement.

1.3 Man-In-The-Browser Attack

In this thesis, a type of current phishing attack is addressed, namely, man-in-the-browser

(MITB) attack. MITB attack is a special case of man-in-the-middle (MITM) attack, where

the attacker bypasses targeting the information flow in order to infiltrate and manipulate

sensitive information provided by the client through attacking web browsers [4]. Thus, the

attacker resides and acts in the application layer, within the open system interconnection

(OSI) model that is the closest to the user. Hence, the attack occurs at the system level

between the user and his/her browser [11]. From a structural point of view, a MITB attack is

considered as a MITM attack between the user and the security mechanisms of the browser

[11]. This type of attack is difficult to detect by the user or the server, as the attack might take

place after the user becomes authenticated [12], where both parties receive deceptive

information [1]. Thus, some standard authentication mechanisms employed within PCs, such

as username/password combination, client certificates, secure ID tokens, one-time-passwords

and biometric authentication, cannot be trusted to overcome MITB attack [14].

Moreover, MITB attack is invincible against the secure socket layer and transport layer

security (SSL/TLS) protocols [1, 14], as the encryption mechanism is performed within the

transport layer that is below the application layer, as illustrated in Figure 1.1. Thus, all

exchanged data between the browser and the other party are exposed [1]. Whenever incoming

encrypted data is received by the browser, it passes through the OSI model, starting from the

physical layer and continuing up to the application layer, passing through the transport layer

for decryption. As a result, the received encrypted data is disclosed. Conversely, outgoing

data passes in plain text through the OSI model, starting from the infected application layer

5

down to the physical layer, passing through the transport layer for encryption. Thus outgoing

data is disclosed before being encrypted. In this scenario, incoming and outgoing data are

disclosed to the MITB, even within a secure communication channel [1, 14].

Figure 1.1: Data Flow through the OSI model

1.3.1MITB Attack Performance

Man-in-the-browser attack is a Trojan horse combined with phishing capabilities that infects

a web browser to capture, manipulate or insert additional information to the web page without

the user noticing [1, 14, 15].

Whenever a Trojan infects an operating system or a web browser application, it installs the

malware extension into the browser configuration to be loaded and triggered once the user

restarts the browser, thereby registering a handler for each page load. Whenever the user

loads a specific web page, it is verified and filtered against a list of targeted sites. If the pattern

verification matches, the user becomes authenticated via an authentication method and starts

the transaction process. Once the user presses the submit button, the Trojan alters the user

input before it is sent to the server, with neither the user noticing nor the server identifying

the alteration. The alteration involves extracting user data via a document object model

(DOM) interface to be modified and re-submitted to the server. The server generates the

transaction receipt using the modified data to be sent to the browser. The received receipt

will be detected by the extension, which will scan the receipt fields to re-modify the data with

6

the original user data, in order to match the expectations of the user [1, 14]. Figure 1.2 shows

the MITB behaviour within a banking system.

Figure 1.2: MITB attack within a banking system

In the case of an e-commerce application, the Trojan is able to capture the confidential

information submitted by the user to be used in other fraudulent operations as illustrated in

Figure 1.3.

Figure 1.3: MITB attack within an e-commerce system

7

1.3.2MITB Attack Capabilities

In this section, the MITB attack capabilities are classified into four categories:

 Stealing Data: data submitted into a compromised browser can be passively and

actively stolen by an MITB Trojan, along with the ability to choose the required data

fields. Moreover, the MITB is capable of modifying the web page structure to prompt

for more confidential information from the user, as most web sites today limit the

amount of sensitive information required from the user. An example of this category

involves stealing information within the context of e-commerce applications such as

credit card numbers [11].

 Modify HTML/HTML Injection: this category refers to the ability of the MITB

attacker to alter the HTML web page before being interpreted by the browser.

Modifying HTML pages requires the Trojan to have a perfect background of the page

format of the targeted sites, and it also requires a powerful data collection mechanism

for obscure authentication methods which aim to defeat key loggers [11]. HTML

injection can be performed in two ways:

1. Adding extra data field within the web page, for the user to submit confidential

information.

2. Modifying the server response to reflect the original user input.

 Modify Outgoing Data: this usually happens within the context of online banking,

where the Trojan is capable of modifying and tampering with user data without the

user or the server discovering. This capability is very hard to detect, and it is unlikely

to be discovered early which gives the attacker the opportunity to take advantage of

it [11].

 Choosing Targets: MITB Trojan is capable of making a list of targeted sites to be

available to its browser monitoring service, where two different types of data are

selected from this list, either individual data fields of interest or the entire web page

of interest. For each targeted site within the list, successful Trojans should be specific

with respect to knowing what fields to inject and where, in order to carry out their

attack. Therefore, MITB Trojans exclude non-valuable data in the process of stealing

data and sending it back to the owner of the attacker [11].

8

1.4 Research Contributions

In order to conduct a secure business transaction within an e-commerce system, , this thesis

made the following contributions:

 Designing a user-friendly and non-confidential input-based authentication system

that bypasses the Man-In-The-Browser (MITB) attack via a two-phased

authentication mechanism

The proposed MUAS requires the client to submit minimal and non-confidential

information via a browser, which contributes to bypassing the MITB residing within

the browser and exposing worthless information to the attacker. Upon submission,

the proposed solution generates a secure challenge within the challenge-generation

phase, in order to switch the authentication mechanism from the infected browser to

a mobile-based system for conducting business transactions. This is achieved by

utilizing the legitimate mobile phone of the registered client as its primary

authentication device. The mobile-based system represents the response-generation

phase that is physically detached, yet logically connected to the first phase via

cryptographic security attributes and registration information.

 Mitigate the Denial-of-Service (DOS) attack within both phases of the MUAS via

registration information

Upon mobile number submission within the first phase, the authentication server

validates the received information against its registered clients. If the mobile number

is unregistered, the server rejects the client and aborts the authentication process.

Similarly, the International Mobile Equipment Identity (IMEI) extracted from the

mobile phone within the second phase overcomes the DOS attack through validating

the received IMEI against the registered IMEI to carry on with the client verification

process. Thus, the proposed solution builds a strong authentication system against

denial-of-service attack in both phases.

 Generating unique and useful cryptographic nonce-based QR-code contents

9

The QR-code challenge (Quick Response Code) that is generated within the first

phase represents the foundation for logically connecting the detached phases. For

each session, the contents of the QR code are encrypted via public key cryptography

(RSA), thus generating a one-time private and secure QR code. The contents of the

challenge can be considered as unique and useful for being the basis of a one-time

generated challenge and the basis for establishing a secure SSL/TLS communication

channel.

 Exploiting security attributes from challenge- and response generation phases for

generating the response, and overcoming the problem of a contaminated QR code

With respect to developing a secure protocol in both phases, security attributes are

utilised to satisfy the mandatory security properties. One of these is the cryptographic

fresh nonce, which is generated and exchanged between participants to prevent

attacks. In addition to securing protocols, the employed cryptographic-security

attributes represent the indispensable components required for generating the

response, and contribute to linking the detached phases through a combination of the

employed security attributes, thus forming the correct response within the mobile-

phone application. Furthermore, the security attributes combination from both phases

contribute to overcoming the problem of a contaminated QR code, where the attacker

cannot exploit the recovered security attribute to generate a response from any mobile

phone other than the phone of the registered client, due to its IMEI registration.

 Designing a three-level secure mobile-phone application

“3LS-Authenticate” is a user-friendly mobile-phone application that is responsible

for capturing the QR code and generating the response. The application is composed

of three levels, with each level meeting a security target. Although the encrypted QR

code can be scanned by any QR code-scanning application, the mobile-phone

application is the only application that can decrypt its contents.

The application contributes to establishing a secure path with the server, along with

exchanging a cryptographic nonce for satisfying security properties via exploiting the

recovered-QR code’s useful content. While the other recovered-QR code unique

10

content is exploited to generate the response through combining and hashing it along

with the mobile phone’s fresh nonce from the second phase, in the case of stolen

mobile phones, the application is secure by only authorising legitimate phone holders

to use the application.

 Applicability of the proposed authentication approach within other disciplines

A minor modification within the QR code contents contributes in the capability of

applying the proposed approach in other disciplines within the context of client

authentication. Such disciplines include healthcare, academic institutions, or

government applications, where all registered clients have a secret account number,

for accessing their personal records within the server’s institution. This account

number will be contained within the QR code contents, for verification against the

submitted account number within the mobile phone application, thus generating the

response. Upon successful authentication, the client will be able to access their

personal records.

1.5 Related Publications

The following publications have resulted from the research presented in this thesis:

[1] Molla, R., Romdhani, I., Buchanan, W. (2017). A Two-phase Mobile User

Authentication System (MUAS) to Overcome Man-in-the-browser Attack.

International Journal of Computer Networks & Communications (IJCNC)

[2] Molla, R., Romdhani, I., Buchanan, W. (2016). 3LS-Authenticate: an e-Commerce

Challenge-Response Mobile Application. In: 13th ACS/IEEE International

Conference on Computer Systems and Applications. Agadir, Morocco.

[3] Molla, R., Romdhani, I., Buchanan, W., Fadel, Etimad Y. (2014). Mobile User

Authentication System for E-commerce Applications. In: International Conference

on Advanced Networking, Distributed Systems and Applications. Algeria

http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/publications/publicationid/13385972
http://www.iidi.napier.ac.uk/c/publications/publicationid/13385972
http://www.iidi.napier.ac.uk/c/people/peopleid/13376117
http://www.iidi.napier.ac.uk/c/people/peopleid/8211296
http://www.iidi.napier.ac.uk/c/people/peopleid/79
http://www.iidi.napier.ac.uk/c/publications/publicationid/13377467
http://www.iidi.napier.ac.uk/c/publications/publicationid/13377467

11

1.6 Structure of the Thesis

In chapter 2, preliminaries of the proposed system are introduced, where different

authentication mechanisms are presented along with a detailed description of the

technologies employed within the proposed Mobile-User-Authentication System (MUAS).

Related work is also presented with regard to MITB attack.

In chapter 3, the infrastructure of the proposed MUAS is presented. This chapter details and

justifies every aspect within the design phase along with objectives and security requirements

of both phases.

In chapter 4, an implementation outline of the proposed MUAS is presented. This involves

presenting the main algorithms of both phases in addition to the MUAS SSL-server platform

establishment process, which is the essence of the authentication system. Moreover,

components constituting both phases are presented along with their procedures.

In chapter 5, the verification and security analysis of the secrecy and authentication security

properties are presented. This chapter provides a detailed description of the protocol through

performing a theoretical performance measurement to evaluate its security with respect to

possible attacks. Moreover, an implementation evaluation is conducted with respect to the

most related work. The results of introducing the effect of the MITB attack into the first phase

are presented along with the results of verifying the second detached phase.

In chapter 6, a summarization of the thesis is provided. This chapter concludes the findings

from this thesis. A discussion regarding future work is also provided.

12

2 Literature Review

2.1 Introduction

Developing a secure mobile user-authentication system encompasses a wide range of stages.

The first stage revolves around introducing the platform of this chapter, namely the e-

commerce security system. This system is composed of several layers with associated

security technologies that help to guide the work throughout this thesis.

The organization of this chapter is as follows. Section 2.2 describes the basic building blocks

of this chapter by defining each component of an e-commerce security system, their

associated technologies, and the required e-commerce security dimensions. Section 2.3

discusses the primary authentication methodologies along with their drawbacks and attack

vulnerabilities. Furthermore, a review of existing UK bank’s authentication mechanisms is

accomplished to demonstrate the qualities of the most popular authentication mechanisms.

Section 2.4 investigates the current trends in online authentication methods, techniques and

technologies. The thesis objective is satisfied by leveraging these trends to develop the

proposed MUAS. Section 2.5 discusses the technologies associated within the encryption

technology layer of the e-commerce security system, namely symmetric and asymmetric

cryptography, along with its most popular data-processing algorithms. Section 2.6 presents

some of the authentication technologies employed within the encryption technology layer.

Section 2.7 discusses and justifies the use of a widely-used security protocol within the

security protocol layer that establishes a secure communication channel between participants.

Section 2.8 reviews related work within the context of preventing MITB attacks and

exploiting QR codes within authentication systems. Section 2.9 concludes the findings of the

literature review chapter.

2.2 E-commerce Security

The objectives of e-commerce security are varied and include securing e-commerce assets

from unauthorised access, modification, disclosure or use, thus protecting the confidentiality

13

and privacy of the end user [16]. One of the main reasons for the loss of consumer trust in e-

commerce applications is the disclosure of confidential information during a transaction. This

is particularly true when the resulting data breach is due to a lack of security measures.

Therefore, security is considered as the most important concern that needs to be addressed to

guarantee client trust and e-commerce success [17].

With the revolutionary growth of e-commerce applications, a comparable number of security

threats have surfaced that require a security presence to protect transactions [18]. As a result,

secure technologies are being developed and amended every day [19]. Mapping these

technologies to the seven-layered open system interconnect (OSI) leads to better technology

characterisation, thereby reflecting the functionality of each layer within the e-commerce

security system [20].

Generally, e-commerce security is divided into two main categories: computer network

security and e-commerce transaction security. Computer network security plays a pivotal role

in IT systems. As most applications operate within a networking environment, they therefore

rely on the network’s reliability, performance, and security [21]. It follows that, computer

network security represents the foundation for e-commerce transaction security, as it focuses

on implementing security solutions to solve security problems within a computer network,

such as firewalls, vulnerabity scan, content aware, viral prevention and control [20, 22]. From

a design point of view, deployed security safeguards may not be capable of accomplishing

their function properly due to design or configuration errors [21]. Moreover, basic TCP/IP

networking protocols do not provide cryptography nor strong authentication, resulting in

exchanging unencrypted data and lack of confidentiality. Higher level protocols such as

Telnet and SMTP do not provide sufficient security measures outside the username and

password mechanism [23]. The inability of the traditional networking protocols to enforce

strong security measures within e-commerce transactions result in a lack of security.

Therefore, e-commerce transaction security focuses on solving security problems associated

with online businesses. It processes e-commerce transactions in a secure and smooth manner

over the foundation of computer network security through employing: (1) a safe transaction

protocol, (2) a secure authentication mechanism to ensure the authenticity of the participant’s

identities, and (3) an encryption technology to prevent unauthorized information leakage.

Hence, both computer network security and e-commerce transaction security are

indispensable, as they complement each other. Considering the security requirements for e-

14

commerce transactions, the security system model is divided into five layers: the network

service layer, encryption technology layer, security authentication layer, security protocol

layer and application layer [20]. Figure 2.1 demonstrates the five layers and their associated

technologies [20].

Figure 2.1: E-commerce Security System

Each layer is supplemented with example technology that serves the purpose of the layer as

illustrated in the figure. In order to ensure the security of e-commerce transactions, e-

commerce applications will be developed according to the open system interconnect layers

(OSI), where all the essential e-commerce security layers will be placed within the OSI

application layer. Each layer along with the technologies employed within the MUAS are

presented in this chapter and are described according to the order of the layers.

15

2.2.1Dimensions of E-commerce Security

With the increasing growth of cybercrimes and cybercriminals, e-commerce security systems

need to adopt additional measures to establish a secure e-commerce transaction. There are

six key dimensions in e-commerce security: authenticity, integrity, confidentiality, non-

repudiation, privacy and availability.

 Authenticity: the ability to verify the identity of a person or entity [24] and assure

that the supplied identity is real and valid [20]. Authenticity is considered a

prerequisite for allowing access to an information system [25].

 Integrity: the ability to guard proprietary data against tampering or alteration by an

unauthorized entity while it is being transmitted over the network [24, 25]. Integrity

can be achieved by message digest or hashing technologies [16].

 Confidentiality: the ability to guard personal data from being accessed by an

unauthorized entity [24]. Moreover, confidentiality enforces authorized restrictions

on personal data access via encryption/decryption, for personal privacy protection.

 Non-repudiation: the ability to ensure that e-commerce participants cannot deny

their actions [24]. This means that the client receives proof of delivery and the

merchant receives proof of the client’s identity [25]. Non-repudiation can be achieved

through the use of digital signature technology [16].

 Privacy: the ability to control the use of a client’s personal information provided to

the merchant [24].

 Availability: the ability of an e-commerce application to function as planned by

preventing data delays or removal [24, 25].

2.3 Authentication

According to the National Institute of Standards and Technology (NIST), authentication is

defined as the “process of establishing confidence in the identity of users or information

16

systems” [26]. Another perspective by Cisco states that “authentication is the way a user is

identified prior to being allowed access to the network and network services” [27].

In the e-commerce world, it is acknowledged that authentication is the first step towards

establishing a secure connection with any organization. Therefore, both online merchants and

clients need to acquire authentication information about one other as a means of identity

verification [28].

All authentication methodologies can be broadly classified into three categories: single-factor

authentication, two-factor authentication and three-factor authentication. These correspond

to the following: something the user knows, something the user has and something the user

is, respectively [5-7].

Single-factor authentication is based on the principle of “proof-by-knowledge” [8] via the

use of static passwords [8, 29, 30]. Password-based authentication is the most common [6]

and widely utilized mechanism for identity verification within communication systems [8,

29]. This mechanism is characterised by secrecy [5], simplicity and no requirement for

additional hardware or software. On the other hand, passwords can often be forgotten, stolen

or guessed [5]. Single-factor authentication is also considered to be a weak mechanism due

to its vulnerability to attack [8, 31-33]. Although passwords are substantial, they do not

provide users with a strong authentication mechanism [32] unless combined with other

methods [6].

Two-factor authentication (2FA) is an authentication approach based on the “proof-by-

possession” principle [8]. Here, the user possesses an object (e.g., hardware token or a mobile

phone) to be combined with something the user memorizes (e.g., static password, PIN, pass

phrase) [8, 9] to protect lost or stolen tokens [5]. This approach enhances the strengths of

knowledge-based authentication by combining the two authentication factors, thus providing

a challenge/response mechanism as a means of increasing authentication security [10]. The

challenge/response mechanism is based upon generating a challenge on the server side that

is to be processed by the client in order to produce the authentication response [8]. 2FA is a

more secure mechanism than one-factor authentication, since a token can provide a strong

defence against brute-force attacks [5]. However, it is still vulnerable to token attacks, man-

in-the-middle attacks and session hijacking attacks [8].

17

Three-factor authentication is a strong authentication mechanism that is based on the “proof-

by-property” principle [8]. In this approach, different user properties are used for remote

identity authentication [34] using different biometric analyses such as fingerprint

verification, iris analysis, facial analysis, voiceprint, handwritten signature verification and

keystroke analysis [5-7].

Biometric-based authentication were considered a reliable authentication mechanism due to

providing potential high-entropy information that cannot be lost or forgotten such as

fingerprint, voiceprint, and iris scan [6, 7]. However, some biometric characteristics can be

stolen from others, such as fingerprints that can be obtained from a mug [6] and built with

silicone, gelatin, wood glue or latex [35]. Facial features can also be obtained from a

photograph [35]. Therefore, not all biometric authentication approaches are trustworthy [6,

36]. Moreover, there is always the possibility of false rejection rate (FRR) and false

acceptance rate (FAR) within a biometric authentication system. The FRR is the probability

measurement that the system will falsely reject an access attempt by an authorized user.

Whereas the FAR is the probability measurement that the system will falsely accept an access

attempt by an unauthorized user. This type of inaccuracy is related to the lack of security

requirements [35]. Security requirements of any biometric system should include

confidentiality, integrity, availability, and authenticity. The confidentiality and integrity

requirements should be satisfied for the acquired biometric raw data and the user template.

Whereas the availability requirement should be satisfied for the biometric sensor,

transmission channels connecting the different components of the target system, user

template, and the processing data function implemented on the feature extractor component.

Finally, the authenticity of the system decision is linked directly to the biometric system’s

functionality [35].

Furthermore, there exist other general issues that obstruct the biometric system’s

performance such as: sensor quality that is affected by noise, non-universality that leads to

Failure to Enrol, lack of individuality that increase FAR, susceptibility to circumvention that

leads to unauthorized access and, finally, intra-class variation and intra-class similarities that

leads to increase FRR and FAR, respectively [37].

Table 2.1 lists all of the authentication methodologies along with their characteristics [5].

18

Table 2.1: Attributes of Different Authentication Methodologies

 User Authentication

Single-factor

authentication

(Knowledge-Based)

Two-factor

authentication

(Object-Based)

Three-factor

authentication(ID-

Based)

Commonly Referred to as Password/ Secret Token/ Mobile Phone Biometrics

Support Authentication by Secrecy Possession Uniqueness and

personalisation

Security Defence Closely kept Closely held Forge-resistant

Security Drawback Less secret with time Insecure if lost Difficult to replace

With regard to online attacks, Schneier [38] introduced the “Attack Tree” method, which

describes and analyses different types of attacks against system security [8, 39]. This

comprehensive attack analysis provides a foundation for and facilitates the study of the

existing authentication mechanisms [8], particularly the single-factor, two-factor, and three-

factor authentication methods. Table 2.2 shows the applicability of different attacks on the

three main authentication mechanisms [8].

Table 2.2: Applicability of Attacks to the Main Authentication Mechanisms

 Authentication

Methods

Attacks

Static password

(Single-factor

authentication)

Challenge/Response

(Two-factor

authentication)

Biometrics

(Three-factor

authentication)

User Surveillance A X X

Token/note Theft A X X

Hidden Code A X A

Worms A X A

E-mails with Malicious Code A X A

Social Engineering A X A

Webpage Obfuscation A X A

19

Pharming A A A

Sniffing A A A

Active Man-In-The-Middle

Attack

A A A

Session Hijacking A A A

Brute-force Attack A X A

Security Policy Violation A A A

Website Manipulation A X A

Man-in-the-Browser A A A

Where:

A: Applicable

X: Not Applicable

Table 2.2 shows that two-factor authentication is prone to less attacks than static passwords

and biometrics. Therefore, 2FA is considered as the most suitable authentication mechanism.

However, it is still prone to the MITB attack, but one of its best and most popular features

can be utilized within the context of our thesis, namely using the mobile phone as the primary

authentication device.

2.3.1Password-Based Authentication

In 1981, Lamport [40] was the first to propose the concept of password-based authentication.

The concept is based on authenticating a user based on an inputted username-password

combination. Here, the system only stores the password-hash result to be compared with the

submitted password after applying the hash function [32, 40]. Such a mechanism, however,

is vulnerable to password theft. Nevertheless, it is still utilized to access some internet

applications that doesn’t require strong protection against repudiation [5], such as e-mail

services and social networks [6, 8], although its security properties [41] are not reliable [6].

Requesting longer and more complex passwords in an attempt to secure this mechanism has

led users to write down their passwords, making them prone to theft [8].

Although password-based authentication takes place via a secure socket layer (SSL) channel

[42], it is still vulnerable to sniffing attacks [8, 31] within the SSL handshake establishment

process [43]. Here, the sniffer masquerades as the server and provides the user with a

20

fraudulent certificate [8]. Therefore, the system also becomes vulnerable to man-in-the-

middle (MITM) and phishing attacks [8].

Alongside password-based authentication vulnerabilities [8], users are required to manage

and memorize too many passwords [44]. Therefore, specialized password-manager (PM)

software is available [44], which “manages and organizes passwords and personal

identification in a secure manner” [45]. Such software can help reduce the effort in creating,

memorizing, and changing passwords [45]. Password managers are classified into web-based

and browser-based PMs. However, while password managers are secure against phishing and

pharming, they are still vulnerable to failures, which can be due to the web-based PM server

being targeted by cyberattacks, or the browser-based PM information being stolen or lost due

to damage to the local hard disk [45]. Furthermore, a security analysis conducted on five

popular web-based PMs, found that four of them—LastPass, RoboForm, My1Login, and

PasswordBox—have critical vulnerabilities in which attacker can obtain the user’s

credentials [46]. A good remedy for this is to include an extra object, which is possessed by

the user and entered into the authentication mechanism, thus forming a stronger two-factor

authentication [6]. The password-based authentication mechanism cannot be employed as a

secure stand-alone system to be used within financial institutions and e-commerce.

2.3.2Two-Factor Authentication

To increase security and overcome the problem of stolen passwords in the password-based

authentication mechanism, a server-side countermeasure that includes adding a second

authentication factor is frequently employed by online services [44, 47, 48]. This

countermeasure uses an out-of-band (OOB) communication channel as a means for receiving

a one-time-generated token to be used alongside the standard password-based authentication

mechanism [44].

In 1991, Chang and Wu [49] proposed the idea of a two-factor authentication using

passwords and smart cards as a means of client authentication [6]. Since then, the trend

towards proposing two-factor authentication solutions has increased [6], with the use of other

objects, such as smart cards, security tokens, and mobile phones, as the second factor within

the authentication scheme [50].

21

Over the past decade, a growing number of banks have started to support online banking as

a means to provide customers with financial services anywhere and anytime [47]. Obviously,

a stronger and more secure authentication mechanism was required [47]. Therefore, online

banking sites switched to the two-factor authentication method as a simple and friendly way

to securely authenticate online banking end-users [47, 51]. In a study by Krol et al. [47],

looking at the identification and authentication mechanisms used by 11 popular UK banks,

all banks were found to follow the two-factor authentication mechanism for logging into their

online banking platform. The first authentication factor is usually based on the user’s

knowledge, such as a username-password combination, pass phrase, or PIN number, while

the second factor can be based on challenge questions on memorable information [47], a

security token generator issued by the bank [47, 51], a mobile banking application that

generates random numbers [47, 51], or a generated random number sent to the customer

through SMS [47, 51]. When reviewing these popular banks’ official websites, it was found

that most of these banks employ both one-factor and two-factor authentication mechanisms.

The one-factor mechanism is used to provide limited banking services, such as viewing

account balances, transactions, and checking and savings account statements using e-

Statements [52-54]. In addition, customers can make payments to existing payees, transfer

money between accounts in the same bank, and report lost or stolen cards [52-54]. The two-

factor authentication mechanism for login through security tokens or mobile banking

applications gives customers access to the same services as with the single-factor

authentication, plus some additional ones, such as making payments to new payee, making

international payments, changing personal details, and managing regular payments [52-54].

Using the banks’ own terminology, Table 2.3 summarizes the different identification and

authentication mechanisms employed by different UK banks.

Table 2.3: Different Identification and Authentication Mechanisms Used in UK Banks

 Identification

Mechanism

Authentication Mechanism

First Factor Second Factor

Barclay’s [53, 54]

Surname + Membership

Number, Card Number,

or Account Number

1) 5-digit Passcode

2) 2 out of the 8+

characters of memorable

word

-

22

8-digit OTP (PINsentry)

HSBC [52, 55]

Username

1) Memorable Answer

2) Password

-

Memorable Answer 6-digit OTP (Secure

Key)

First Direct [56, 57] Username Memorable Answer 6-digit OTP (Digital

Secure Key)

Nationwide [58, 59]

Customer Number

1) Memorable data

2) 3 out of the 6-digit

pass number

-

8-difit OTP (Card Reader)

Halifax [60], Lloyds

[61]

User ID

8+ Character Password 3 out of the 6+

Character Memorable

Information

NatWest [62, 63],

Ulster [64, 65]

Customer Number

1) 3 out of the 4-digit

PIN

2) 3 out of the 6+

Character Password

-

8-digit OTP (Card Reader)

RBS [66] Customer Number

(DOB + 4 digits)

1) 3 out of the 4-digit

PIN

2) 3 out of the 6+

Character Password

-

Santander [67]

Personal ID

1) 8-digit Password

2) 5-digit Security

Number

-

SMS-OTP

The Co-operative

Bank [68]

Account Number or

Credit Card Number

1) 2 out of the 4-digit

Security Code

-

23

2) Memorable

Information

Standard Chartered

[69]

Username SMS-OTP

Bank of Scotland [70]

User ID

Password -

Bank Secure App / Phone call (Keying a displayed

4-digit [OTP] into the phone number pad)

In terms of security, Tables 2.2 and 2.3 show that two-factor authentication has been adopted

by most financial institutions, for whom security is the number one concern. However, the

traditional 2FA cannot be useful within the context of our thesis, due to its vulnerability to

the invincible MITB attack. Therefore, the essence of the mechanism can be utilized through

employing the mobile phone within the authentication framework to replace the presumably

infected browser.

2.3.3Three-Factor Authentication

As an improvement over some of the security issues with two-factor authentication, Juels and

Wattenberg [71] proposed the first three-factor authentication scheme, which uses biometric

identification. According to the National Science and Technology Council (NSTC)

subcommittee on biometric and identity management [72], biometrics are defined as

measurable biological (anatomical and physiological) and behavioural characteristics that

can be used for automated recognition [73].

Biometrics provide the “something you are” factor of authentication to strongly authenticate

legitimate users and detect fraudsters through physiological and behavioural characteristics

[74]. Recognition of physiological characteristics, often known as “what you are” [75],

includes human body measurements such as fingerprint recognition, facial recognition, retina

recognition, iris recognition, and hand recognition [74]. On the other hand, recognition of

behavioural characteristics, known as “what you do” [75], includes measurement of human

action, such as voice recognition, signature recognition, gait patterns, and key stroke

dynamics [74].

24

Biometrics substitute for the “proof by knowledge” and “proof by possession” mechanisms

[8], since passwords can be easily forgotten/stolen and devices can be lost/stolen, respectively

[74].

Common reasons to choose biometric authentication over password-based authentication are

based on:

 Physical presence: Biometric authentication requires the person being identified to

be present at the time of authentication, which makes this type of authentication

more secure [76].

 No need to remember information: The biometric information required for

authentication is always present, which bypasses the need to remember any sort of

information [76].

 Less prone to forgery: The possibility of forging or faking biometric identity is much

lower than in password-based authentication [76]. However, it is not impossible

[75].

To improve security in a password-based authentication system, biometrics can be

incorporated into the scheme [76]. As a solution, Bio-key International, Inc. [77] introduced

a mini USB fingerprint reader called “SideSwipe” [78] and a compact fingerprint reader

called “EcoID” [79], which are used as alternatives to passwords, tokens and PINs.

SideSwipe [78] and EcoID [79] are multi-factor authentication solutions that can be used

for healthcare, banking, retail, identity and access management. Most Bio-key International

products operate on Microsoft Windows devices.

2.3.3.1 Biometric Properties and Drawbacks

A biometric system must satisfy a number of properties in order to be a successful and

suitable authentication system. The following properties were proposed by Clarke [80] after

analysing biometric system requirements.

1. Universality: The chosen biometric characteristic within any authentication system

should be owned by each person, and it should be difficult, if not impossible, to lose

[75, 76, 80].

25

2. Uniqueness: Biometric characteristics within authentication systems must

distinguish between individuals, such that no two persons would ever have the same

biometric values [75, 76, 80].

3. Permanence: Long-lasting biometrics that do not change over time due to age or

disease should be used within authentication systems [75, 76, 80].

4. Collectability: The chosen biometric characteristic must be easily collected from

anyone on any occasion [75, 76, 80].

5. Acceptability: The chosen biometric to be collected must be acceptable to society

[76, 80].

6. Measurability: The digital device/sensor used to acquire and digitize the biometric

characteristic should be suitable, causing no inconvenience to the people [76, 80].

7. Circumvention: In the case of forged or faked biometric characteristics, the

authentication system should have the ability to handle such situations [76, 80].

Finding a biometric characteristic that satisfies all of the above properties is difficult due to

drawbacks regarding some biometric characteristics, biometric readers, template storage, and

costs [75].

Fingerprints do not satisfy the universality property, since some individuals do not have clear

fingerprints due to aging or injury [81]. Some cancer patients can lose their fingerprints due

to some kind of chemotherapy [81]. While facial recognition is much more universal, its error

rate is much higher due to its poor uniqueness property [75]. In some cases, multi-model

biometric systems combine several biometric characteristics to overcome some of the

drawbacks of using uni-model biometrics [82]. For example, combining facial and fingerprint

recognition increases the recognition rate and decreases the error rate [83]. Another issue

regards the biometric reader acceptability, as in the case of retina reader. In an outrageous

form of attack, biometric collection is performed by the attackers, who record the biometric

characteristics without the owner’s knowledge [75]. Furthermore, some biometrics can be

copied, in the case of fingerprints [84], or forged in the case of the iris [85] by employing

non-invasive biometric readers. The more invasive a reader is, the harder it is to copy a

biometric [75]. This leads us to a related characteristic, which is cost. The less expensive the

biometric reader is, the higher the likelihood of it being fooled by forged characteristics,

while more expensive fingerprint readers with wide functionality can check that the

26

fingerprint is being inputted by a live person [75]. Finally, the storage systems that hold the

biometric templates must be highly secured and protected [75].

2.4 Current Trends in Online Authentication

Solutions

A large number of studies have been conducted with regard to developing online

authentication solutions. In this section, two of the most popular technologies, namely one-

time passwords and QR codes are discussed in detail along with their related work, attacks

and vulnerabilities.

2.4.1One-Time Password (OTP)

Among all second factors, the system’s capability to dynamically generate a login-session

password provides the best enhancement of security within two-factor authentication

systems. The dynamic login-session password is called a one-time password (OTP) [86], and

it is considered one of the strongest authentication mechanisms against account theft [87, 88].

A one-time password can be defined as a temporary password that is valid for one use only

[89] within a single session or transaction [9].

The basic idea behind the development of OTP, first suggested in 1981 by Lamport [40], was

to overcome the security concerns accompanying static passwords and to avoid man-in-the-

middle (MITM) attacks [40]. The scheme was based on the generation of different

pseudorandom outputs each time the user tries to login [9, 40]. Successive tests of OTP in

many authentication systems alongside different technologies have been conducted in

different areas such as online banking [44, 90-92], healthcare [91, 93, 94], academic

institutions [95], and government applications [91]. According to a two-factor authentication

usability study by Krol et al, [47], in the context of online banking within the UK, it was

found that many banks require the OTP authentication method. Banks rely on hardware

tokens as a means to generate the second authentication factor. Such devices can be either a

27

secure key such as the HSBC PIN-protected security device [55], or a card reader that

requires a debit card to be inserted into the device, such as Barclay’s PINsentry security

device [96] and NatWest’s card reader [97].

In an attempt to develop user friendly and secure online authentication mechanisms,

researchers have conducted a large number of studies on the use of OTP with different

authentication technologies. Some of these studies are presented in this section. For instance,

Tandon et al. [92] proposed the integration of OTP with QR code technology in a novel

authentication scheme for online banking. The scheme involves sending the client an e-mail

with a QR code containing an encrypted OTP, to be verified through the mobile banking

application by entering the ATM pin to decrypt the OTP. Although the system makes it

difficult for intruders to detect secure information, user friendly that requires no technical

pre-requisites, and provides authenticity, integrity, confidentiality, and privacy, it is still

vulnerable to man-in-the-browser (MITB) attacks, in which all computations take place

within the browser. A similar methodology based on embedding an OTP into a QR code was

proposed by Moholkar et al. [98] to detect phishing websites. The proposed anti-phishing

framework verifies the originality of a particular merchant’s website as a means to protect

personal information and passwords from phishing websites. The bank possesses a database

of registered original websites, and another database for their user accounts. The framework

login phase begin with the user submitting his or her credentials to log into any merchant

website. The merchant sever sends this information to the bank, along with information about

the site, in order to generate and embed an OTP into a QR code, which is split into two parts.

The first part is sent to the user through e-mail, while the second is sent to the merchant server

through network and then sent to the user via this network. The user combines both parts to

scan the QR code and recover the OTP, which is sent to the bank through e-mail for

verification. Finally, the bank sends an e-mail to the user, stating whether the website is

phishing or not. The system protects online users from attackers by dividing the image into

two parts and sending them to different servers, since one part does not reveal the entire

image. On the other hand, the system cannot be considered user friendly due to the continuous

need for e-mail use. An additional factor is the overhead caused by the computation required

to combine the two images.

A new approach for securing ATM authentication systems using fingerprint identification

and OTP was proposed by Shamdasani and Matte [99]. The approach works by verifying a

28

currently scanned fingerprint against a biometric template that was registered during account

opening. If the fingerprints are a match, the bank sends a random four-digit OTP to the

client’s mobile phone to be submitted by the user for authentication purposes. Compared to

the traditional magnetic card reader used by the majority of ATM machines, the proposed

approach provides a safer authentication mechanism. The only disadvantages of this system

are the shortcomings associated with biometric systems, such as implementation cost,

damaged fingerprints, and people’s concerns with touching a public device.

2.4.1.1 OTP Attack Methods

With the evolution of attack methods, hackers have developed MIT-X (man-in-the-X)

attacks, which combined with other concepts to attack accounts under OTP protection. MIT-

X attack methods include:

 Man-In-The-Middle (MITM)

 Man-In-The-Browser (MITB)

 Man-In-The-PC (MITPC)

An MITM attack combined with phishing is used for to attack OTP. The attacker first attacks

the user’s PC to intercept the certification and snatch credentials through a phishing website.

Next, when the user submits the OTP to log in, the attacker intercepts the OTP value through

an MITM attack. The second attack is an MITB attack (man-in-the-browser attack), caused

by malignant code installed in the web browser. The main idea behind this type of OTP attack

is to use a malignant program to cover over the targeted internet banking service with a fake

input form, without the need to create a fake site. Finally, there is the MITPC attack (man-

in-the-PC attack), which exploits PC environment vulnerabilities to control and attack every

data access pathway. This includes keyboard and mouse logging, screen capture, and

accessing memory to intercept fundamental account information from the user’s PC.

Furthermore, a new type of attack that combines MITPC and MITM has emerged. This

method uses an MITM attack to intercept the OTP, which will be used with the information

previously collected during the MITPC attack for account theft [88].

29

2.4.1.2 OTP Distribution Mechanisms

There are a number of ways in which one-time passwords are generated or distributed [88],

such as through SMS messages [8], mobile banking applications [47] and hardware tokens,

which are small devices given to the client to aid in the authentication mechanism. Although

tokens provide a secure environment, they can be very costly for organizations in terms of

customer training and replacing lost or damaged tokens. There is also the burden of having

to always carry and maintain the token. This could be especially difficult if the customer has

several accounts at several banks, which would lead to the inconvenience of having more

than one token. Therefore, this subsection will only focus on SMS-OTP and mobile banking

applications.

2.4.1.2.1 SMS-based One-Time Password (SMS-OTP)

The SMS-based channel has been the predominant OTP distribution mechanism for online

banking in a number of countries, including Germany, Spain, Switzerland, Austria, Poland,

Holland, Hungary, the US, China [48], and Saudi Arabia. Moreover, a number of online

service providers such as Google, Facebook, Dropbox, Microsoft, and Apple have recently

been employing SMS-OTP as the second authentication mechanism in their login verification

systems [48].

In SMS-based one-time-password verification systems, users log in with their standard

username-password combination [90], followed by submitting the verification code (OTP)

received on their mobile-phone via SMS [90]. SMS-OTP was built upon two foundations:

cellular networks and mobile phones. Today, these foundations are quite different than what

they were when SMS-OTP was designed [100]. An attacker’s main goal is to get a hold of

the OTP, which can be done either through wireless interception or mobile phone Trojans

[100]. In terms of wireless interception, GSM technology is insecure due to a number of

vulnerabilities, such as unilateral authentication, which jeopardizes the network to MITM

attack [100, 101], implementation algorithm flaws causing weak cryptographic algorithms

[100, 101], and disabled wireless encryption in some countries or situations [100, 101]. As a

result, over-the-air communication can be vulnerable to eavesdroppers and sniffers, who are

capable of intercepting mobile traffic in order to get a hold of the authentication information

[100, 101]. Furthermore, mobile phone Trojans have been created by criminals as a means

30

of stealing money [100]. SMS-OTP-stealing Trojans are designed specifically to receive,

alter, delete, and forward SMS messages that contains OTPs without leaving any trace [100].

Mulliner et al. [100] proposed two countermeasures to diminish attacks against SMS-OTP.

The first approach uses the concept of end-to-end encryption, where a permanent and private

storage area for each application is used to store the received OTP. The concept is based on

using the SMS channel to send an encrypted server-side OTP to the mobile phone. The

mobile phone decrypts the OTP using a dedicated application, which stores that piece of data

in the application’s private storage [100]. Although an SMS-OTP Trojan can still access

received SMS messages, it cannot access the user-specific key that is needed to decrypt the

OTP. The only problem with this approach is key distribution. Another study involving

prototyping attacks against the SMS-based TAN schemes of four large banks was conducted

by Dmitrienko et al. [48]. The study involved investigating dual infection attacks against a

scheme with a server-side generated OTP and direct OOB. In terms of attack implementation,

the login credentials are stolen from the PC though an MITB attack, while mobile malware

intercepts SMS messages through an MITM attack between the GSM modem and the mobile

phone and hides them from the user. The result showed that malware has succeeded in

intercepting SMS messages, stressing the need for further research within the context of

secure mobile two-factor schemes. The second approach proposed by Mulliner et al. [100] is

based on creating a virtual dedicated channel inside the mobile phone’s operating system to

protect specific SMS messages against local Trojan interception, redirecting them to a special

OTP application called “OtpMessages,” which blocks them from being read by other

applications. The only difference between the “OtpMessages” and the default SMS

application is that “OtpMessages” only receives messages containing OTPs due to the use of

a knowledge-based filter that matches keywords against the message body. This approach

seems effective against Trojan attacks. On the other hand, it requires operating system

manufacture support, along with some support from service providers and cellular network

operators.

Hamdare et al. [89] proposed a technique to secure SMS-OTP from MITM attacks by

combining the received SMS-OTP with a pre-shared secret key, to be passed through an RSA

algorithm in order to generate a transaction password on the mobile application side. This

will be compared to a copy of the same transaction password that exists on the server side

when the client submits his transaction password through the website.

31

Finally, Saxena and Chaudhari [102] proposed a successful, secure and efficient end-to-end

protocol called “EasySMS” for securing SMSs between end users, whether they share the

same Home Location Register or not. The protocol is based on transmitting symmetric keys

to mobile users for secure message exchange after verifying both end users. The analysis of

EasySMS showed that the protocol prevents SMS disclosure, replay attacks, MITM attacks,

over-the-air modification, and impersonation attacks. The protocol also generates less

communication and computational overhead, it utilizes bandwidth efficiently by reducing

consumption to 51% and 31% and, reduces message exchange during the authentication

process by 62% and 45% compared to the SMSsec and PK-SIM protocols. Furthermore,

within the protocol modelling phase, the authentication server was assumed to work as the

authentication centre (AuC), in which all symmetric keys that are shared between the

authentication server and the mobile phones are stored. Therefore, the proposed protocol

could be applied within any framework that requires OTP generation on the server side.

Another solution by Liu and Zhu [103] eliminated the use of SMS messages by utilizing

Bluetooth technology to create a connection between a computer and a smartphone. Thus,

the remote server sends the OTP to the computer, which will be submitted to the smartphone

via Bluetooth. This scheme is based on submitting the Bluetooth device address to the remote

server during the registration phase. As SMS is transmitted over a telecommunication carrier,

the sender will be charged with fees for each sent message. On the other hand, mobile instant

messaging (MIM) is transmitted via the internet, which is free of cost [104]. Therefore, the

use of public MIM services has become increasingly popular due to providing a private

network communication between two users, in addition to providing a chat session between

two or more users [105, 106]. In MIM, users are authenticated by logging into the IM network

via submitting their usernames and passwords. The logging authentication is performed by

exchanging hashes of the password. In the IM approach, expensive cryptographic algorithms

such as RSA are avoided. Instead, cheaper cryptographic algorithms such as MD5 and SHA

are used. In the authentication phase, a sniffer who monitors exchanged packets is able to

determine who is logged into the IM server without knowing the password. The well-known

hash algorithms used for hashing passwords within IM achieves this. These algorithms can

be applied to the challenge sent to the server along with the hash result, for recovering the

password. Thus, the system is vulnerable to dictionary attacks [106] and impersonation in the

case of a stolen username and password [107]. This type of data theft is performed off the

32

wires, where the attacker grabs TCP packets off the network. Another type involves stealing

conversation logs that are created by almost all IM clients. Moreover, a profile of an

individual can be built from registration information that is publicly available (data mining),

thus resulting in identity theft [107]. In terms of spreading viruses, vulnerabilities in the IM

software or Trojans deceiving users into executing a malicious code can help spread viruses

quickly to the user’s contact list [107]. In terms of the application speed, whenever the system

becomes busy, message sending and receiving becomes slower. A delay of more than one

second means that the conversation will not take place [107]. Considering the mentioned

security drawbacks of the MIM services, a trade-off is made with respect to security in favour

of the SMS.

2.4.1.2.2 Mobile Banking Application OTP

With the increasing popularity of mobile phones, there has been a growing trend towards

mobile phone investment to help surpass desktop PCs in providing mobile banking [108]. As

Ha et al. [109] have indicated, the benefits of mobile banking include 1) ubiquity, 2)

immediacy, 3) localization, 4) instant connectivity, and 5) proactive functionality. Therefore,

large banks provide mobile banking, through which their clients can conduct secure financial

transactions such as balance inquiries, payments, and transfers [110, 111]. Even small banks

and credit unions are considering mobile banking as a means to simplify banking activities

for their clients [112]. However, mobile banking security is complicated and is considered a

major concern for mobile banking clients due to the existence of different mobile devices and

platforms [112]. Therefore, a number of security methods are used in mobile banking. These

include 1) passwords, 2) encryption, 3) security questions, and 4) downloaded applications

[112]. These methods help divide mobile banking into three categories: password,

messaging, and applications [110]. The first defence mechanism is the screen lock, which is

equivalent in strength to the password-based mechanism, thus providing very weak security

[110]. The second category is messaging, which revolves around receiving an authentication

code (OTP) through the SMS channel, to be submitted within the banking application, as is

done when activating the HSBC digital security device via the HSBC mobile banking app

[113]. Finally, a large number of UK banks provide clients with downloadable mobile

banking applications [54, 114-125]. Mobile banking applications are used to conduct secure

financial transactions with the bank. The application mechanism requires at least two pieces

33

of information in order to activate the app—the username-password combination. Moreover,

some applications require a second layer of authentication, one that is linked to the

authentication device to ensure that the mobile phone is in the possession of the account’s

legitimate owner [110]. This authentication factor is a one-time password (OTP) that is

generated by the banking application itself and is required for internet banking transactions,

as in the HSBC mobile banking app [113, 114] and Barclay’s mobile PINsentry banking app

[54].

2.4.2QR Code

With increasing security concerns, there has been a strong trend in online security towards

employing QR code technology as a means of assuring online users that the service they are

using is secure and reliable. [126]. This approach has rapidly gained popularity and found

widespread adoption within two-factor authentication schemes, where QR codes are applied

as the client’s second factor within secure online transactions.

QR (“Quick Response”) code is a machine-readable [127], two-dimensional matrix barcode

technology that decodes its contents at high speed [103, 128, 129]. It was first developed by

the Japanese corporation Denso-Wave in 1994 for tracking parts in the vehicle manufacturing

process [128, 130, 131]. In June 2000, QR codes were approved as an ISO international

standard (ISO/IEC 18004) to be made publicly available to people regardless of applicability

[132]. Recent QR code usage has since expanded beyond its initial purpose to cover a

multitude of different purposes [128], ranging from marketing [133] and advertising [134,

135] to secure mobile payments [135-138].

2.4.2.1 QR Code Structure and Capacity

QR code capacity is influenced by several factors:

 Version: there are 40 different versions of QR codes. Each version differs in the

number of modules, which are the black or white dots constituting the QR code.

Version 1 consists of 21 x 21 modules, from which 133 are used for storing the

encoded data, while version 40 is the largest QR code symbol, consisting of 177 x

177 modules and up to 23,648 data storage modules [139].

34

 Error correction level: the QR code error correction feature is based on the Reed-

Solomon codes. This robust feature restores data even if the code is damaged or

partially dirty [140-142]. There are four error correction levels, namely L (Low 7%),

M (Medium 15%), Q (Quartile 25%), and H (High 30%) [140, 142]. Error correction

level L is the most preferred level [142], since higher error correction levels improve

error correction ability by increasing the area reserved for error correction codewords,

thus decreasing the area reserved for storing the actual data [135]. Furthermore, based

on the error correction feature, QR codes are readable from any direction at a stable,

high speed. This is accomplished through the position detection patterns located at

the symbol’s three corners [129, 141]. Another useful feature is masking, which helps

increase the image contrast, and helps the reader software decode the QR code [142].

 Encoded data: QR code capacity depends on the amount of data that needs to be

included. Whenever the data amount increases, more modules are required for the QR

code, resulting in a larger symbol [139]. All data types are supported by QR code,

including numeric, alphanumeric, kana, kanji, hiragana, symbols, binary, and control

codes [129, 135, 141]. QR codes are able to encode up to 7,089 characters in a single

symbol [129, 141].

Each QR code consists of eight sections, each of which is necessary for the scanner’s ability

to decode the data [142]. Figure 2.1 shows the different sections of the QR code [127, 142].

Figure 2.2: QR Code Structure (Version2)

Finder Pattern (1): The finder pattern is used to detect the QR code position and determine

its correct orientation (omni-directional). It consists of three identical 3 x 3 square boxes

(modules) located at all corners of the QR code, except for the bottom-right corner. Each

35

pattern is represented by a square black box, surrounded by square white box, and surrounded

again with a square black box [127, 142].

Separators (2): Separators are the white modules surrounding the finder pattern to improve

its recognisability and to separate it from the actual data [127, 142].

Timing Patterns (3): Timing patterns are a sequence of black and white modules [142]

placed in vertical and horizontal form. Each pattern has alternating dark and light modules,

beginning and ending with dark modules. The vertical timing pattern extends across the sixth

column, between the separators of the left-hand finder pattern, while the horizontal timing

pattern extends across the sixth row, between the separators of the upper finder patterns.

Timing patterns help the reader software determine the modules’ width [127].

Alignment Patterns (4): Alignment patterns help correct possible code distortion when

scanning the QR code. The symbol size determines the number of alignment patterns [127,

142].

Format Information (5): Format information consists of 15 bits next to the separators. It

contains the error correction level and the selected mask pattern of the QR code [127, 142].

Data (6): The data section is where the data are stored in 8-bit pieces after being encoded

into binary values called codewords [127, 142] and then converted into black and white

modules. This section also contains version information, format information, and error

correction codewords [127].

Error Correction (7): Error correction codewords are generated from the data codewords

[142]. These error correction bits are stored in 8-bit-long codewords in the error correction

section [127, 142].

Remainder Bits (8): Remainder bits consist of empty bits that are present in case the data or

error correction bits cannot be divided into 8 bits without a remainder [127, 142].

Finally, surrounding the QR code symbol is a quite zone, which is a white margin that

surrounds the symbol on all four sides. It consists of four wide modules that help improve

symbol detection [127].

36

2.4.2.2 QR Code Usage

Recently, QR code usage has expanded and evolved significantly beyond its initial purpose

[128]. QR codes are able to store different types of data, such as URL, contact information,

e-mails, geo-location, and plaintext [142]. The marketing industry is widely employing QR

codes as a means of advertising by encoding URLs, which take users to companies’ official

web pages without having to type an address [143].

A unique example of using QR code for advertising was done by a shampoo company, which

introduced QR code haircuts. People were thus used as moving advertisements to be scanned,

leading to the company’s website [142]. Another clever and innovative use of QR codes was

launched by Reporters Without Borders, an international and non-governmental organization

whose goal is to defend freedom of the press [144]. The idea was to create a printout that

literally speaks to the people; by scanning a QR code in a magazine and placing the

smartphone on a published full page photo, audio of journalist speaking about what’s really

happening in the world would start playing [145, 146]. Furthermore, QR codes have been

adopted by some companies to enable customers to purchase products or pay for services

[142]. QR Pay is a specialist technology company that focuses on mobile payments using QR

codes. It provides a smartphone application called QR Pal, which allows individuals and

businesses to conduct payment transactions using QR code via the intermediate payment

agent PayPal [147].

The literature has also confirmed that online authentication solutions can be secured using a

QR code within two-factor authentication mechanisms. Tandon et al. [92] proposed the

embedding of a cryptographic OTP into a QR code as a means of achieving secure

authentication in online banking. Another use of QR codes in online banking systems was

proposed by Adsul et al. [148]. From the scanned QR code, the scheme generates a string

that is a combination of the IMEI number of the client’s registered mobile phone and a

random number. The string is automatically inputted into the login page in order to open the

bank’s homepage. The server decrypts the submitted string using the registered user’s public

key for verification. This method enhances the security level of banking by moving the

authentication process from the web browser to the mobile phone, forcing the client to

perform mobile banking. Furthermore, another QR code security enhancement mechanism

has been proposed for use with ATM machines. In transferring money from one ATM card

37

to another, a QR code confirmation pop-up message appears for scanning; this decodes

recipient information for verification. Such an approach adds an extra security layer by

employing mobile phones as a second authentication factor [148]. As attackers can easily

collect financial credentials through web phishing, Kale et al. [149] suggested a secure single-

sign-on (SSO) authentication scheme for untrusted computers via QR codes. The scheme is

based on generating an encrypted QR code following the submission of the user ID. After

decrypting the scanned QR code, the user’s OpenID is requested by the mobile phone to

generate a QR code, which will then be transferred to the untrusted computer for verification

to finally gain access to the website.

Although most proposed authentication solutions are focused on embedding OTPs into QR

codes on the server-side [92, 94, 98, 136], another approach proposed by Malik et al. [129]

uses a timestamp as a verification criterion on both sides. During the scheme’s enrolment

phase, two personal assurance messages called PAM image and PAM text are selected by the

user. Next, a digest based on the user ID, along with a secret key, are created and sent to the

client. The verification phase displays an encrypted QR code that is based on the PAM image,

PAM text, and a random number. The server also sends its timestamp, hash, and QR code

contents to the client for a validity check. User validity is also checked. The client generates

an OTP that is based on his registered identity and his timestamp, which is hashed along with

the random number received. The user then sends the timestamp, along with its hash, to the

server for verification. This scheme provides safe access across the web, with no replay

attacks or MITM attacks due to timestamp and OTP cryptography, respectively. Moreover,

the secret key is secured from intruders due to the use of a one-way hash function that

generated the digest.

Other technologies can also be combined with QR codes and OTPs in authentication

schemes. Liu and Zhu [103] proposed the utilization of some of the most important features

of mobile phones in online authentication, namely the camera and Bluetooth, in combination

with the QR code and OTP technology. Their scheme is based upon submitting the Bluetooth

device address to the server during the registration phase as a means of connecting the current

computer with the mobile phone. The QR code is used in the registration and authentication

phases, while Bluetooth is used to submit the server-generated OTP and timestamp hashing

result to the mobile phone during the login and authentication phases, respectively. The

proposed protocol draws on a self-verified timestamp and QR code technology to prevent

38

MITM and replay attacks. OTP is used to increase security, and Bluetooth is used to reduce

consumption. Moreover, a large amount of computation is not required due to the use of the

one-way hash function and QR code cryptography. However, compared to a wireless

connection, Bluetooth is weak and vulnerable to pairing failure. Besides online

authentication, QR codes can be used to conduct financial transactions by simulating the

mobile phone as a digital wallet. Ugwe and Mesigo [128] developed a model that uses QR

codes as a communication link between parties engaged in financial transactions. The model

is based on both parties launching their mobile wallet application. The receiver (merchant)

selects the required payment amount and currency. Then, a QR code containing the account

details and the necessary transaction information is generated. Once the payer (client) scans

the QR code, the payment and transaction information are displayed, along with options to

select which bank account or credit card to use for payment. After being authenticated via

the mobile application, the payer is transferred to the selected financial institution’s platform

(such as PayPal) for the second authentication. Although the scheme is useful, both

participants must be face to face in order for the transfer to take place.

2.4.2.3 QR Code Security Issues

QR codes have gained increasing popularity through their adoption in different fields of

application, ranging from marketing [150] to secure mobile payments [135-138]. As a result,

this technology has caught the attention of the hacking community, causing attackers to try

to manipulate and modify its contents in order to advance their unethical pursuits.

QR code manipulation can be divided into two attack models. The first attack model is called

“Both Colours,” which has the ability to invert any module from black to white and vice

versa. It generates a QR code sticker with the manipulated QR code to be positioned over the

original code within the advertisement [127, 150]. This type of attack is trivial and represents

an attack against a real-life advertisement, which is beyond the scope of this thesis. The

second attack model is called “Single Colour,” which is the basis for all QR code attacks. It

is restricted to the modification of a single module from white to black but not vice versa,

using a pen [127, 150].

39

2.4.2.4 Attacking Different Parts

As QR codes consist of different mandatory sections that contains a large amount of meta

information, such as masks, version, and source code. Several different QR code regions can

be targeted and manipulated by the attacker, either individually or in combination, in order

to change the encoded information [127, 150].

 The Masks

According to a particular rule, masks are used to generate evenly distributed modules in a

QR code. This step helps modify QR code to make it easy for the QR code reader to scan and

decode it [150]. The QR code specification standards [151] have defined eight mask patterns

to be applied to the generated QR code, with the result of each being rated. The mask with

the best distribution result based on the rating is chosen [127, 150].

Each mask pattern uses a specific formula to decide whether or not to change the colour of

the bit. Table 2.4 lists the mask patterns formulas.

Table 2.4: Mask Pattern Formulas

Mask number Formula (condition)

0 (𝑟𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 2 == 0

1 (𝑟𝑜𝑤) 𝑚𝑜𝑑 2 == 0

2 (𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0

3 (𝑟𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0

4
(𝑓𝑙𝑜𝑜𝑟 (

𝑟𝑜𝑤

2
)) + (𝑓𝑙𝑜𝑜𝑟 (

𝑐𝑜𝑙𝑢𝑚𝑛

3
)) 𝑚𝑜𝑑 2 == 0

5 (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 2 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛) 𝑚𝑜𝑑 3 == 0

6 ((𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑2 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑3) 𝑚𝑜𝑑 2 == 0

7 ((𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑3 + (𝑟𝑜𝑤 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛)𝑚𝑜𝑑2) 𝑚𝑜𝑑 2 == 0

If the conditions in Table 2.4 are true for a given module coordinate, the bit colour is changed

[127, 150]. As mask patterns specifically apply to data modules and error correction modules,

targeting or attacking the mask can affect these modules [127, 150].

 The Character Encoding (mode)

40

The encoded data within the QR code starts with a four-bit mode indicator, which identifies

the encoding mode of the information contained within the QR code [127, 150]. Table 2.5

lists each mode along with its indicator. If the mode indicator is changed or attacked, a whole

new meaning is given to the encoded data [127, 150].

Table 2.5: Character Encoding Mode

Mode Name Mode Indictor

Numeric Mode 0001

Alphanumeric Mode 0010

Byte Mode 0100

Kanji Mode 1000

ECI Mode 0111

 Character Count Indicator

After the mode indicator is the character count indicator, which gives the number of

characters being encoded within the QR code, represented as a string of bits. The size of the

character count indicator depends on the encoding mode being used and the QR code version

[127, 150]. Table 2.6 lists the sizes of the character count indicator for each encoding mode

and version.

Table 2.6: Character Count Indicator size for each Encoding Mode and Version

Version Numeric Alphanumeric 8-bit Kanji

1-9 10 9 8 8

10-26 12 11 16 10

27-40 14 13 16 12

Two main approaches can be used to attack the character count indicator, producing buffer

underflow or buffer overflow [127, 150].

Buffer Underflow: Changing the number representing the character count indicator to a

smaller number causes buffer underflow. Therefore, the QR code reader will only decode the

number of characters specified by the attacker, causing it to neglect the rest of the characters

and treat them as a new segment or as fillers. This kind of attack can be useful if the encoded

data was a URL link with suffixes. Nevertheless, QR codes can overcome this type of attack

41

and still be decodable. If only a small change is made, this will result in a small change in the

error correction values [127, 150].

Buffer Overflow: Changing the number representing the character count indicator to a

higher number causes buffer overflow. Therefore, the QR code reader tries to decode parts

of the fillers as data. This type of attack is difficult to perform in a real-life scenario, due to

the abilities and great powers of the employed Reed-Solomon Code [127, 150].

 Mixing Modes

It is possible to mix different modes into a single QR code through concatenation, which is

useful when encoding different types of data. This is done by concatenating several data

segments, along with their mode indicators and character count indicators [127, 150]. Table

2.7 shows how different data segments can be concatenated within a QR code.

Table 2.7: Concatenating different data segments within a QR code

Segment 1 Segment 2

…

Segment 𝑛

Mode

Indicator

1

Character

Count

Indicator

1

Data Mode

Indicator

2

Character

Count

Indicator

2

Data Mode

Indicator

𝑛

Character

Count

Indicator

𝑛

Data

This feature aids attacks using four different approaches:

1. Changing mode of segments: This works the same way as attacking the encoding

mode of a QR code. However, in the mixed mode, the change is limited to one

segment only, while the other data are left untouched [127, 150].

2. Inserting new segments: A segment can be split into two new segments, one with

the same header (the same mode indicator and character count indicator), and one

with a new header [127, 150].

3. Deleting existing segments: When a segment is deleted, the space used by the mode

indicator and the character count indicator is overwritten with additional data.

Moreover, the character count indicator of the previous segment can be changed in

order to append data to the deleted segment [127, 150].

4. Structured append: This mode allows concatenation of up to 16 QR codes.

Decoding these QR codes is done independently of their encoding order. Attackers

42

exploit this feature through adding a segment pointing to another QR code, which is

beneath the original segment. This attack is less practical due to the complexity of the

structured append mode and the preparation overhead [127, 150].

 Data and Error Correction

As illustrated in Figure 1, data and error correction codewords represent the largest part of

the QR code. These two parts are related in a way that only changes when the actual data is

directly reflected in the data and error correction portions [127, 150]. The Reed-Solomon

encoding used to convert the data into data bits [142] can detect changes in either the data or

error correction parts and decodes the original message even if some modifications or errors

have been made. Hence, it can be said that the error correction feature of the Reed-Solomon

code increases the integrity of the QR code as much as possible [127, 150].

2.4.2.5 QR Codes as Attack Vectors

Whether the QR code reader is human or an automated process, manipulated QR codes can

be the basis for a number of attacks [127, 150].

2.4.2.5.1 Attacking Automated Processes

The consequences of scanning malicious QR codes can go beyond the victims who scan these

codes; such attacks can affect the backend system that is trying to serve as an intermediate

between the requests generated upon QR code scanning and the client [142]. For example,

SQL injection is capable of manipulating the backend database by appending a semicolon

followed by an SQL query to the encoded information, which can result in a denial-of-service

attack in the case that the SQL query was deleting a table [127, 142, 150]. Another attack

based on automated processes is command injection, which can cause severe damage to the

operating system of the automated system. This attack uses the encoded information as a

command line parameter without being sanitized [127, 142, 150]. In other words, a user who

scans a random QR code created by an attacker will generate the attack on behalf of the

attacker [127, 142, 150]. Furthermore, fraud can be committed via automated system changes

[127, 150].

43

2.4.2.5.2 Attacking Human Interaction

As the encoded information within the QR code is completely obscure, humans cannot decide

whether or not the code is malicious, even when decoded by the reader software. For

example, a QR code might contain a URL of a phishing website that is similar to the original

URL. This form of attack is called “Phishing and Pharming,” and is serious, especially if

some form of credentials are required [127, 150]. In case of advertisements, QR codes can

be manipulated by attackers to redirect users to cloned websites, in order to commit fraud

[127, 150]. Other attacks are based on command injection or traditional buffer overflow as a

means to attack the reader software on computers or smartphones. The attacker might take

over control of the entire smartphone, including its contacts, e-mail or SMS [127, 150]. Based

on these attacks, social engineering attacks are also possible, such as spear phishing or

publishing manipulated QR codes in public places [127, 150].

2.5 Encryption Technology Layer

In e-commerce, encryption technologies are an essential means for protecting confidential

information leakage [20]. Thus providing four of the six key dimensions of e-commerce

security, namely integrity, non-repudiation, authentication and confidentiality [24]. Over the

years, a large number of cryptographic algorithms have been developed for use in many

different functions and security protocols [152] to ensure secure communications [41]. Most

current communication systems rely on security protocols and the properties of secrecy and

authentication [41].

Since cryptography is considered the “science of keeping secrets secret” [153], and secrecy

is one of the mandatory and fundamental security properties in any secure protocol [41],

cryptography is considered one of the fundamental aspects in the field of computer security

[154].

According to the National Institute of Standards and Technology (NIST), cryptography is

defined as “a branch of mathematics that is based on the transformation of data and can be

used to provide several security services: confidentiality, data integrity authentication,

44

authorization, and non-repudiation” [155]. In terms of cryptology science, cryptography is a

part of a wider science called “cryptology” [156, 157], which is the “science of information

security and privacy” [156]. It is divided into two main branches: cryptography and

cryptanalysis [156]. Cryptography is the design part of the science [156], while cryptanalysis

involves analysis and security investigation [156].

Cryptography is based on an algorithm (cipher) and a key, which are used to encrypt and

decrypt the data [155]. In general, the algorithm is a mathematical function that transforms

the data from plaintext to ciphertext, and from ciphertext back to plaintext, with the help of

the key parameter [155].

The types of cryptographic algorithms fall into three broad categories: symmetric

cryptography, asymmetric cryptography, and cryptographic hash function [153-155, 157,

158].

2.5.1Symmetric Cryptography

In symmetric cryptography, also referred to as conventional encryption [159], secret-key

schemes, or single-key schemes [154, 155, 157], the same secret key is used for both

encryption and decryption [153-155, 157, 160]. Examples of such cryptography include the

Advanced Encryption Standard (AES) [152] and Triple Data Encryption Standard (3DES)

[152].

Symmetric key algorithms are usually very secure [157] and fast [157, 160]. However,

several shortcomings are associated with symmetric key schemes, such as:

 Secret-key distribution: Prior to the sender and receiver communicating with such

a cipher, the secret key must be exchanged among participants in a secure manner

[153, 157, 160]. Since the communication link is not secure, there is always the risk

for the secret key to be intercepted by an adversary, causing messages to be decrypted

and impersonation of users [157, 160]. Therefore, secret-key distribution is

considered the biggest problem in symmetric cryptography [158].

45

 Number of keys: In a network corporation between n users, if each pair of users

needs a separate key-pair, then each user will have to save (𝑛 − 1) keys, and an

𝑛.
𝑛−1

2
 key pair must be generated and transported over a secure channel [157].

 Repudiation: Either one of the participants can deny involvement in an e-commerce

application. Therefore, symmetric cryptography cannot be used in applications that

need to satisfy the non-repudiation requirement [157]. In these cases, asymmetric

cryptography should be employed through a digital signature [158].

Symmetric cryptography is divided into stream ciphers and block ciphers [157]. A stream

cipher is a method that encrypts plaintext into ciphertext by applying a cryptographic key and

an algorithm to each bit of the plaintext, individually [157]. The method works by generating

a keystream, which is a pseudorandom sequence of data. Next, each bit of the keystream is

XORed with the corresponding bit of the plaintext to generate the ciphertext. To decrypt, the

same method is applied, where the keystream is XORed bit-by-bit with the corresponding bit

of the ciphertext [161].

A stream cipher is very fast, compact and efficient [157]. It is relevant for applications with

very low hardware complexity, such as cell-phones and other embedded devices, where few

processor cycles and small chip areas are required for encryption [157]. However, stream

ciphers are not used in modern cryptography as often as block ciphers [157].

A block cipher can be either symmetric or asymmetric [162]. Therefore, it is considered the

most important and dominant element in many cryptographic protocols [162]. A block cipher

can be defined as a mapping function [162] that operates on blocks of data [163]. It encrypts

a block of 𝑛-bits of plaintext into a block of 𝑛-bits of ciphertext by applying a cryptographic

secret key and an algorithm to the block at the same time [157]. Such blocks are usually 64-

bits (8-bytes), e.g., the Data Encryption Standard (DES) or the Triple DES algorithms

(3DES), or 128-bits (64-bytes), e.g., the Advanced Encryption Standard algorithm (AES)

[157, 162, 163].

In terms of building blocks, a block cipher represents the fundamental building block for

other major cryptographic tools. A block cipher can be turned into a stream cipher or a hash

function, which plays a major role in cryptographic protocols [162]. In addition, the method

satisfies data confidentiality and authenticity [162]. In terms of speed and compactness,

46

stream ciphers can be used to perform a fast cipher to encrypt a large amount of data due to

having a smaller size [157] and faster speed [157, 164] than block ciphers, and the method is

more efficient for hardware and software because it requires few processor instructions and

few gates [157], respectively. However, modern block ciphers are also very efficient when it

comes to hardware and software [157].

2.5.1.1 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is an old symmetric block cipher algorithm designed

by IBM in 1972 [165, 166]. DES is an iterated block cipher [153, 160] that operates on blocks

of plaintext of 64-bits with 16 rounds of encryption, using a shared key of 56-bits [165, 166].

The DES algorithm is based on the Feistel structure, in which each block is split into two to

be fed into the Feistel network [157]. The structure feeds the right half of the input into

function 𝑓, where its output is XORed with the left half. Thus, only the left half of the input

is encrypted, while the right half moves on to the next round unchanged after swapping its

position with the right half. In each round, a different key is derived from the main 56-bit

shared key using a key schedule [157]. One of the advantages of DES is that the decryption

and encryption functions are the same; the decryption function reverses the encryption in a

round-by-round technique [157]. On the other hand, the DES key space is too small to be

used to encrypt confidential data and is thus vulnerable to brute-force attacks [157].

Furthermore, DES is very slow when implemented in software. However, variants of DES,

such as 3DES, are much more secure [157].

2.5.1.2 Triple Data Encryption Standard (3DES)

In 1998, DES was replaced by Triple-DES (3DES); this was done to overcome DES’s

deficiencies without changing its original structure [165]. 3DES achieves a higher level of

security in data encryption because it performs three iterations of DES on each block, using

three different unrelated keys [165]. As with its predecessor, 3DES is based on the Feistel

structure, and it operates on blocks of plaintext of 64 bits with 48 rounds of encryption, using

a key of size of 168 bits that is permuted into 16 subkeys [167]. Although 3DES resists brute-

force attacks, it still has several problems with regard to software implementation, including

47

lack of efficiency and speed, with 3DES being three times slower than DES [157]. Another

shortcoming is its small block size, which is considered a drawback in some applications

[157]. Moreover, 3DES is exposed to differential and related key attacks [165].

2.5.1.3 Advanced Encryption Standard (AES)

Due to the disadvantages of DES and 3DES, the National Institute of Standards and

Technology (NIST) looked to develop a new block cipher to replace DES. Therefore, a

formal call for a new Advanced Encryption Standard (AES) was announced by NIST in 1997

[157]. In 2001, Rijndael was chosen from among five finalist algorithms (Mars, RC6,

Rijndael, Serpent, and Twofish) as the new AES [157].

AES operates on blocks of 128 bits, with 10, 12, or 14 rounds, using key sizes of 128, 192,

or 256 bits, respectively [167]. The reason for having small number of rounds is that AES

encrypts an entire block per iteration. The AES round functions deals with all 128 bits of the

data path (also called algorithm state or state matrix), arranged in a four-by-four byte matrix

[153, 157].

Each round of the algorithm (except for the last) consists of four steps: Byte Substitution,

ShiftRows, MixCoulmn and Key Addition. For each individual AES round, Byte Substitution

starts by feeding the 16-byte data input into the S-box for transformation [153, 157]. The S-

box uses a look-up table with special mathematical properties [157]. The generated 16-byte

output is then transformed in the ShiftRows step through a periodic left shift of the rows

within the state matrix (except for the first row) to increase the diffusion property [157].

Another transformation is performed within the MixCoulmn step by multiplying each column

of the state matrix by a constant matrix, where each input byte affects another four output

bytes. Thus, MixCoulmn is considered the primary diffusion element within the AES

algorithm [153, 157]. Finally, the Key Addition step is a bitwise XOR operation between the

intermediate 16-byte state matrix and a 16-byte subkey to generate the next subkey. Note that

the first subkey used in the initial round is the original AES key, and the following AES

subkeys are derived via a key schedule [157].

48

Since AES is not based on the Feistel network, all steps are invertible as a means of

performing decryption [157]. AES also has the ability to provide strong diffusion, confusion,

and long-term security against brute-force attacks [157].

In a comparative analysis of symmetric algorithms done by Ebrahim et al. [165], AES was

observed to be superior in terms of security memory usage, flexibility, and encryption

performance. It has also been shown to be efficient with regard to software and hardware

implementation [157]. Therefore, AES has become the compulsory encryption algorithm in

many commercial systems, including the internet security standard IPsec, TLS, the Wi-Fi

encryption Standard IEEE 802,11i, the internet phone service Skype, and many other security

products [157]. Furthermore, by 2003, the US National Security Agency (NSA) was using

AES to encrypt classified documents up to top secret level [157], and it was also being used

for other US government applications [157]. However, based on the number of rounds and

the key size, a large amount of memory is required for storage. Therefore, it is undesirable to

implement AES on devices with limited memory resources [157].

2.5.2Asymmetric Cryptography

In asymmetric cryptography, also referred to as public-key cryptography [154, 155, 157],

two mathematically related keys—the public key and private key—are used for the

encryption and decryption processes [153-155, 160]. The public key can be widely published

and used publically by everyone to encrypt data [155, 160], while the private key must remain

secret, known only by its owner, to be used for decryption [155, 160]. Although the two keys

are related, the private key cannot be extracted from the public key [155].

Based on symmetric cryptography, the idea behind asymmetric cryptography is the

importance of maintaining the confidentiality and secrecy of the decryption key, and not the

encryption key [157]. Therefore, in their landmark paper, Diffie, Hellman, and Merkle

proposed the revolutionary “public-key cryptography” [168], in which the public key is

published to be used by everyone, and while its matching private key is secured for

decryption [157].

In terms of security mechanisms, public-key cryptography has been designed in a way that it

provides secure cryptographic schemes that satisfy data integrity, non-repudiation, and

authentication [155]. In the case of symmetric cryptography, a message can be encrypted

49

without a secret channel for key establishment, but much effort is required to manage those

keys. This protocol can be modified using public-key cryptography [157]. In this

modification the symmetric key is encrypted with the public-key, and once the receiving

party decrypts the symmetric key with the private key, both parties can exchange messages

using symmetric cryptography [157]. This methodology combines the best features of both

symmetric and asymmetric cryptography [157].

Besides using public key schemes to encrypt data, asymmetric cryptography provides the

following security mechanisms:

 Key establishment: There exist a number of public-key protocols to establish secret

keys in a secure manner over an insecure network [157]. Examples of such protocols

include the Diffie-Hellman key exchange or RSA key-transport protocols [157].

 Non-repudiation: The repudiation problem can be overcome through a digital

signature [155, 157, 160] that is recognized by the asymmetric cryptography

algorithms [160]. The methodology is based on encryption of the data with the private

key, which is later verified by the corresponding public key through decryption [160].

 Identification: Identification of entities can be achieved through digital signatures

within challenge-response protocols [157], such as those used in online banking.

Although symmetric cryptography can identify entities and perform encryption, much effort

is required for key establishment [160]. Moreover, it poorly satisfies the non-repudiation

requirement [157, 160]. Asymmetric cryptography, on the other hand, seems to satisfy the

requirements of modern security protocols, such as data integrity, non-repudiation, and

authentication [155], and provides key establishment functionality [155, 157]. However, its

encryption mechanism is very slow [157]. Nevertheless, in order to take advantage of the

best features of both methodologies, it is recommended to merge both symmetric and

asymmetric algorithms, as is done in the SSL/TLS protocol [157].

2.5.2.1 RSA

The RSA algorithm (Rivest-Shamir-Adleman) is the most popular and widely used

asymmetric cryptosystem, and is based on public key cryptography [157]. The algorithm uses

a pair of keys—a public and a private key—to perform the encryption and decryption

50

processes, respectively [160, 169]. The RSA algorithm consists of three main steps: key

generation, encryption, and decryption [170]. The algorithm is computationally intensive,

since it is based on generating and publishing a public key based on two large prime numbers

(𝑝, 𝑞) that are used to compute the public and private keys. The prime numbers must be kept

secret as a means to prevent private key disclosure.

In practice, RSA is slow compared to symmetric cryptography due to the complexity of the

operations performed during execution [160]. Therefore, it is mainly used to securely encrypt

and transport session keys in symmetric ciphers such as AES or 3DES due to its time

complexity [157, 160]. It is also used in digital signatures through encrypting messages with

the private key, to be decrypted in such a case with the public key [157, 160]. Furthermore,

it is used in the key exchange algorithm within the TLS/SSL protocol [167, 171, 172].

In terms of security, RSA has an undesirable property termed “malleability,” which allows

an attacker to transform a ciphertext into another ciphertext, leading to a known plaintext

transformation. Malleability only allows manipulation of the plaintext without decryption,

which can cause harm, especially in the financial world. However, padding provides the

solution to malleability; it involves embedding a random structure into the plaintext prior to

encryption [157]. Other shortcomings of RSA involve the operational complexity of the

execution, which causes the RSA cryptosystem to be much slower than DES, 3DES, and

AES [160, 173]. Moreover, some chip-card microprocessors cannot employ RSA

cryptosystems in their applications due to its inability to perform computations with keys

longer than 1024 bits [160].

Furthermore, RSA is faced with two problems that represent the bases upon which the

algorithm’s security and cryptographic power rely [157, 160]. The two problems are based

on their mathematical structure; they are the RSA problem and the integer factorization

problem [160]. The RSA problem revolves around recovering the plaintext from the

ciphertext without actually having the private key, but only knowing the public key(𝑒, 𝑛).

One possible approach to solving the RSA problem is to factor the modulus 𝑛, which can

retrieve the prime numbers (𝑝, 𝑞). The factoring approach makes it easy for the attacker to

compute the private key (𝑑, 𝑛) [160, 174]. Therefore, it is stated that the “RSA and integer

factorization problems are computationally equivalent” [160, 174]. Thus, prime numbers

(𝑝, 𝑞) must be chosen in such a way that makes it impossible for any algorithm to break the

51

RSA. In addition, secure keys must be generated that cannot be broken for at least two

decades, in the case that reasonable long-term security is required. In other words, prime

numbers must be sufficiently large enough to generate an integer 𝑛 that has 2048 bits in its

binary representation. The need for numbers with thousands of bits is due to the fact that

numbers with hundreds of bits are now factorable [160].

2.6 Security Authentication Layer

Secure authentication technologies are the first line of defence against security threats [24].

It represents the primary means for verifying the identity of the participants within an e-

commerce system, along with ensuring the authenticity of the exchanged messages. Secure

authentication technology include digital digest, digital envelope, digital signature, digital

certificate, certification authority, digital timestamping, etc.

Among the previous technologies, the most suitable solutions serving the purpose of the

proposed MUAS are digital digest, digital certificate and certification authority.

2.6.1Digital Digest (Hashing)

Hashing is an essential cryptographic primitive that is widely adopted in information security

protocols [157, 175, 176] to provide message integrity [177]. It is a computationally feasible

function that computes a fixed-length message digest from an arbitrary-length message [157,

175]. Although the use of hash functions within modern cryptography is manifold, hashing

is best known for its use in digital signatures [157], which are signed cipher texts that are sent

over the internet as a means to validate the integrity and authenticity of a message, as well as

to ensure non-repudiation [176].

Currently, the most popular cryptographic hash functions are SHA-1 (Secure Hash Algorithm

1) and SHA-2, which replaced their predecessor MD5 (Message Digest) [160]. MD5 is a

cryptographic hash function that produces a 128-bit message digest. It was widely used in

internet security protocols for storing password hashes and computing files checksums.

However, MD5 also has potential weakness, in that collision attacks could occur in some

cases. Wang et al. [178] published an effective method against the MD5 algorithm, in which

52

two different messages evaluate the same MD5 hash value. Thus, a secure hash algorithm

(SHA) was published by the US NIST in 1993 [157]. SHA-0 was the first member of the

SHA family; it was later modified to become SHA-1, in which the cryptographic security

was improved by modifying the schedule of the compression function [157]. Both SHA-0

and SHA-1 produce a 160-bit message digest. Later, a partial attack was conducted on MD5

[179], leading SHA-1 to become widely adopted in a large number of products and standards

[157]. However, a number of collision search attacks on the SHA-1 algorithm were carried

out by Wang et al. [178] and Stevens [180], providing a useful perspective on the design

criteria for a more secure hash algorithm.

In 2001, the US NIST Federal Information Processing Standards published SHA-2, the

second member of the SHA family [157, 160]. SHA-2 consists of four hash algorithms, SHA-

224, SHA-256, SHA-384, and SHA-512, with output message digests of 224, 256, 384, and

512 bits, respectively [157, 160].

The SHA-1 and SHA-2 family algorithms are based on a very similar design principle.

Compared to MD5, both algorithms are less prone to brute-force attack and differential

cryptanalysis [160]. In terms of the output digest, SHA-1 produces a 160-bit message digest,

while SHA-2 produces a larger digest, which in turn makes the algorithm more secure and

harder to break [160].

According to the Secure Hash Standard (SHS) from the National Institute of Standards and

Technology (NIST), the seven approved algorithms are SHA-1, SHA-224, SHA-256, SHA-

384, SHA-512, SHA-512/224, and SHA-512/256. When inputting a message that is shorter

than 264 bits (for SHA-1, SHA-224, and SHA-256) or 2128 bits (for SHA-384, SHA-512,

SHA-512/224, and SHA-512/256) into a hash algorithm, the output is called a message

digest; it ranges in length from 160 to 512 bits, depending on the algorithm in use [181].

Table 2.8 lists the basic properties of the seven hash algorithm [181].

Each algorithm consists of two phases: pre-processing and hash computation [157, 160, 181].

The pre-processing phase involves padding the message into a multiple of 512 or 1024 bits

[157, 160, 181], dividing the padded message into message blocks [157, 160, 181], and

setting the initial hash value to be used in the hash computation [157, 160, 181]. The hash

computation phase uses the padded message to generate a message schedule, which is used

53

along with functions, constants, and word operations to generate a series of hash values. The

final value is the message digest [157, 181].

Table 2.8: Secure Hash Algorithm Properties

Algorithm Message size

(bits)

Block size (bits) Word size (bits) Message Digest

size (bits)

SHA-1 <264 512 32 160

SHA-224 <264 512 32 224

SHA-256 <264 512 32 256

SHA-384 <2128 1024 64 384

SHA-512 <2128 1024 64 512

SHA-512/224 <2128 1024 64 224

SHA-512/256 <2128 1024 64 256

2.6.2Hash Algorithm Security

The security strength of hash functions is defined by three main properties that must be met

in order for the hash function to be considered secure [157].

1. Pre-image Resistance (One-Wayness): This property states that it is computationally

infeasible to derive the input message from the hash value. That is, given a hash

value ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒, it is computationally infeasible to derive the hash function’s input

message 𝑥 [157, 160, 175, 182], such that ℎ𝑎𝑠ℎ(𝑥) = ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 [175]. Therefore, this

is called a “one-way” hash function [157, 182]. The amount of work needed to obtain a

pre-image for a hash function is measured by the length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by

the hash function, i.e., for an 𝐿-bits hash function, the expected pre-image resistance is 𝐿

bits [175].

2. Second Pre-image Resistance (Weak Collision Resistance): This property states that it

is computationally infeasible to find a second input message that is different than the

given first input message, with both evaluating to the same hash value [157, 175, 182].

54

That is, given an input message 𝑥1, it is computationally infeasible to find a second input

message 𝑥2, where 𝑥1 ≠ 𝑥2, such that ℎ𝑎𝑠ℎ(𝑥1) = ℎ𝑎𝑠ℎ(𝑥2) [157, 160, 175, 182]. The

amount of work needed to find a second pre-image for a hash function is measured by

the length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by the hash function, i.e., for an 𝐿-bits hash

function, the expected second pre-image resistance is 𝐿 bits [175].

3. Collision Resistance (Strong Collision Resistance): This property states that it is

computationally infeasible to find two different input messages that evaluate to the same

hash value [157, 175, 182]. That is, it is computationally infeasible to find two different

input messages 𝑥1 and 𝑥2, such that ℎ𝑎𝑠ℎ(𝑥1) = ℎ𝑎𝑠ℎ(𝑥2) [157, 160, 175, 182]. The

amount of work needed to find a collision for a hash function is measured by half the

length of the ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒 produced by the hash function, i.e., for an 𝐿-bits hash function,

the expected second pre-image resistance is 𝐿/2 bits [175].

Table 2.9 summarizes the strength of the security properties for each one of the approved

hash algorithms [175].

Depending on the properties required of the hash function, the security strength is determined

by either one of the previous three main properties. If more than one property is required

from a hash function, the security strength of the hash function is defined by the weakest

property [175]. For instance, a digital signature requires both collision resistance and second

pre-image resistance from the hash function. Therefore, since the collision resistance strength

(
𝐿

2
) is less than the second pre-image resistance (𝐿), the security strength of the hash function

used for a digital signature is defined as its collision resistance strength [175].

Table 2.9: Strengths of the Security Properties of the Hash Algorithms

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512 SHA-

512/224

SHA-

512/256

Pre-image

Resistance

in bits

160

224

256

384

512

224

256

Second

Pre-image

55

Resistance

in bits

105-160 201-224 201-256 384 394-512 224 256

Collision

Resistance

in bits

<80

112

128

192

256

112

128

2.6.3Public Key Infrastructure (PKI)

Among the advantages of asymmetric cryptography is to enable digital signatures, where data

is electronically signed before being submitted [160]. Digital signatures are based on sharing

the public key of the sender to the other party, either through an e-mail, a web site or any

form of electronical exchange [160]. It ensure authenticity of the message and non-

repudiation of the sender through encrypting the message with the sender’s private key to be

decrypted by the recipient with the public key of the sender [24]. However, an intruder can

impersonate identities and replaces the transmitted public key with his own key, causing an

incorrect authorization [160]. Hence, a trusted third party called certificate authority (CA)

confirms the authenticity of the public key through signing it with its private key to

authenticate the identity of both parties while exchanging data, thus achieving a secure and

reliable system [160, 183]. Certificate authority is a trusted government agency or financial

institution who issues digital certificates, which is a digital document containing the name of

the subject, company and public key. In addition to certificate identifying information [24,

183].

Public key infrastructure system refers to the digital certificate issued by a CA. The process

begins by the user generating a public/private key pair, and sending a request to the CA along

with the public key. Following the CA verifying the submitted information, a certificate

containing the received public key and other related information is issued. Eventually, the

certificate is signed with the CA’s private key, thus generating a message digest called signed

certificate [24, 160, 183]. Whenever the certificate is published, any party can verify the real

identity of the user by authenticating the certificate against the reliable CA’s [183].

With respect to expanding and diversifying mobile services, it is essential to provide

trustworthy remote access to security-sensitive systems such as internet banking and e-

commerce. Therefore, a trend towards sharing certificates securely between devices has

56

evolved. A novel certificate sharing system (CSS) was proposed by Kim et al. [184] to share

certificates securely without modifying the existing standard format between a PC and a

smart phone. The CSS is a special conversion module for storing the same X.509 certificate

on both a PC and a smart phone. The CSS module converts the certificate on the PC to binary

code to be saved on the CSS database server (DB server). The user begins the process by

authenticating and issuing an X.509 certificate from the certification authority (CA) via the

web server. Four parameters are required for authentication: user ID, password, certificate

password, and security answer. Upon issuance, the certificate is transferred to the PC’s CSS

module and saved as a .CERT file. The device’s unique information is then incorporated into

this active certificate to prevent it from being copied.

To upload the certificate from the PC to the web server, the authenticated user submits the

certificate’s password for authentication within the CSS module. Once authenticated, the

CSS module performs the following operations: (1) removes the unique hardware

information from the .CERT file and encrypts the X.509 certificate via private key, (2)

converts the .CERT file into a personal information change (.PFX) with a 192-bit secret key

and temporarily saves the .PFX file in the root folder of the PC, and (3) converts the .PFX

file into binary form using a 128-bit secret key, which will be uploaded into the webserver.

After the binary code is converted, it is saved in the database server, and the .PFX file is

deleted from the root folder. When the binary codes are successfully saved to the database

server, an OTP is generated by the OTP server and sent to the user’s smart phone.

To download the certificate from the DB server into the smart phone, the user authenticates

his/her account via user ID and password, then submits the OTP and the certificate password

as a request for downloading the binary form of the X.509 certificate. Once the binary code

is downloaded, the smart phone’s CSS module performs the following operations: (1)

converts the binary code into a .PFX file using the 128-bit secret key, which will be saved to

the root folder, (2) converts the .PFX file into a .CERT file with the 192-bit secret key, (3)

deletes the binary code and OTP from the database server for certificate security and to

prevent reuse and, (4) incorporates the device ID into the converted file, and saves the .CERT

file in a specific folder on the smart phone. Once the .CERT conversion is complete, the .PFX

file is deleted from the smart phone.

57

This approach provides strong end-to-end data security for the certificate, as well as strong

data security on physical devices. Moreover, it is operable on low-end smart phones with

older operating systems, and it can be flexibly applied to enterprise environmental systems.

2.7 Security Protocol Layer

Secure communications within E-commerce are an indispensable requirement to provide

security attributes such as authenticity, integrity, confidentiality, privacy, availability and

non-repudiation [43]. Thus, secure cryptographic protocols have been designed to protect

data among the different network layers [185].

Transport Layer Security (TLS) and Internet Protocol Security (IPSec) are known

cryptographic network security protocols that prevent data transmitted between participants

from being eavesdropped on or tampered with [186]. The security features of these protocols

are based on the use of cryptography [187]. TLS and IPSec are not interchangeable, as each

protocol operates on different levels within the TCP/IP protocol stack [186]. Thus, many

differences exist between them [43].

IPSec is a collection of protocols that operates at the network layer of the internet protocol

suites (TCP/IP), as illustrated in Figure 2.2, providing transparent security for upper layer

protocols [186, 188]. The layered structure of the TCP/IP prevents the protocol from

changing its type of protection to conform to different applications [186]. Thus, IPSec does

not provide user-to-user nor application-to-application security; it provides only host-to-host

security [43, 186, 188].

58

TLS, on the other hand, is an Internet Engineering Task Force (IETF) standard that deals

with network security issues within the context of E-commerce [43]. It operates at the

application layer of the internet protocol suites (TCP/IP), as illustrated in Figure 2.3. It

provides application-to-application security [186, 189].

TLS is used to secure communications and protect sensitive data in a wide variety of online

transactions, including financial, healthcare-related, and social [189]. It uses a set of

cryptographic algorithms to ensure data authenticity, integrity, and confidentiality [189].

The proposed authentication mechanism, which connects a web browser (client) to a server

in the context of E-commerce, uses a mobile phone application as the second factor to

generate and send the response back to the server. Taking into consideration the security

requirements of this approach, TLS is the most suitable protocol for use within the proposed

MUAS. TLS is the security backbone of many client-server applications [172].

2.7.1TLS/SSL

TLS stands for “transport layer security.” It is a client/server protocol that exists in all major

web browsers [187] to secure data transmitted between any two communicating applications

Figure 2.4: IPSec in the TCP/IP stack Figure 2.3: TLS in the TCP/IP stack

59

within the application layer [189]. TLS is application independent [189, 190], which ensures

data privacy and integrity [190, 191] between applications running on top of the transport

layer [172]. The reason for placing TLS at higher levels is to help secure communication

between the client’s browser and the server’s application. Thus, it is more appropriate for

web-based applications [167, 192].

The TLS protocol is divided into two layers [191, 193]. The first layer is composed of the

application protocol and three handshake sub-protocols: the Handshake protocol, the Change

Cipher Spec protocol, and the Alert protocol. The second layer contains the TLS Record

protocol. [43, 186, 191]. Figure 2.4 shows the different protocols constituting the TLS

protocol [191].

Figure 2.5: TLS Protocol stack

 The TLS Handshake sub-protocol is responsible for establishing and resuming secure

sessions between clients and servers by negotiating session parameters [171, 191,

193]. Figure 2.6 shows the initial negotiation and establishment of secure session

parameters.

 The TLS Change Cipher Spec sub-protocol is a single one-byte message, exchanged

by between parties to indicate the transition to a new negotiation to update the Cipher

Spec and keys [171, 191].

60

 The Alert sub-protocol is responsible for reporting error conditions to the other party

[171, 193].

Figure 2.6: TLS Initial Negotiation

The TLS record protocol is responsible for ensuring the authenticity, integrity, and

confidentiality of the exchanged application data through the use of a set of cryptographic

algorithms [193]. The operations include fragmentation, compression, application of MAC,

and finally, symmetric encryption to be passed on to the TCP layer after adding the TLS

record header [43, 172]. Initially, the MAC and encryption key parameters are initialized to

NULL. Therefore, the protocol does not use MAC or encryption during the initial handshake

negotiation phase [172]. Figure 2.7 clarifies the TLS record protocol operations [43].

61

Figure 2.7: TLS Record Protocol Operations

Most TLS studies have focused on the initial key exchange phase within the handshake

protocol, while potential re-negotiation has not been investigated in depth. However,

Gelashvili [172] did conduct research on the key re-negotiation phase, pointing out some of

the functions that makes TLS one of the most popular and secure cryptographic algorithms.

Based on Gelashvili’s study, the TLS handshake protocol can be classified into three

successive phases: the setup phase, the re-negotiation phase, and the finishing phase. The

TLS setup phase is responsible for setting-up the session’s security parameters [186]. The

session parameters consist of the TLS version (𝑉𝑒𝑟𝑠), a session ID (𝑆𝐼𝐷), random values

(𝑅𝐶 , 𝑅𝑆) and cipher specification (𝑃𝑟𝑒𝑓) [172, 186, 191]. Each cipher defines a key exchange

algorithm, an encryption algorithm, a MAC algorithm, and a pseudo-random function for key

generation [172, 191]. The selected key exchange algorithm defines the precise structure of

the entire negotiation phase regarding whether the server will start with a server certificate

authentication, or whether the server will be required to submit additional information to the

client [172].

In terms of satisfying security attributes, the negotiated encryption algorithm provides data

confidentiality, as it protects the transmitted data from being eavesdropped on [193]. The

exact keys used for MAC, encryption, authentication, and the secure hash function are

derived from the master secret that is obtained from the pre-master-secret [167, 172, 193].

62

Furthermore, the TLS record protocol, which is the lowest layer of the protocol [172], takes

higher layer TLS control messages or application data blocks to be fragmented and

compressed. This is followed by appending a MAC that is derived from the master secret

[172, 193] to secure the compressed fragment [172] and to ensure message integrity [193].

Finally, symmetric encryption is performed and the TLS record header is added in order to

be passed on to the TCP for further processing [43, 172]. Thus, it can be said that MAC and

encryption represent the fundamental security measures of the TLS record protocol [172].

MAC also includes a sequence number that helps in detecting extra, missing, or repeated

messages [172].

Established session keys are ephemeral and have limited crypto-periods within the message

sequence space [167]. Therefore, allowing re-keying for long sessions is an appropriate

solution that prevents cryptanalysis in the case that a key is compromised [172]. In the re-

keying process, the MAC and encryption keys of both parties are derived from the master

secret. This is followed by fragmenting the key block into four successive keys, representing

the pending key pair to be used next. Re-keying takes place within the re-negotiation phase,

whenever the Change Cipher Spec message is exchanged between participants. The Change

Cipher Spec protocol indicates that the sender and recipient cipher suite is being updated

[172, 191]. Furthermore, one of the main functions of the re-negotiation phase is to protect

the client’s identity. This is because sending the “optional” client’s public key certificate

upon server request during the initial unencrypted handshake causes the client’s identity to

be exposed in clear text. Therefore, client authentication via certificate (if requested) is

performed within the second handshake following the initial phase [172].

The finishing phase provides a mechanism for checking the integrity of all previous messages

and exchanged parameters. The finished messages are based on the use of the secret master

key, along with the application of a hash function to all the previous messages of the current

TLS handshake, to generate the data to be verified. After validating the finished messages,

transmission might continue or be aborted [172].

63

2.7.1.1 TLS/SSL Session Key Establishment

 According to Section 2.5.1, secret key distribution is one of symmetric cryptography’s

shortcomings [153, 157, 160], but it can be solved with public key protocols [157]. RSA and

the Diffie-Hellman key exchange (DHKE) are examples of such protocols [157, 171]. They

are based on exchanging or generating the parameters used to generate the secret session key

[171, 172]. The exact parameters used to generate the secret session key are determined by

the key exchange algorithm [171] that was agreed upon during the initial handshake, which

in turn defines the exact functionality of the TLS protocol [172].

As TLS usually uses a public key certificate for authentication [194], the server sends its

certificate to the client following the initial negotiation to support the key exchange protocol

[171, 172]. The certificate key type should be compatible with the negotiated key exchange

algorithm. Hence, either the RSA/DSS or DH public key is used [171, 172].

2.7.1.1.1 RSA Key Exchange Method

Agreeing upon RSA as the key exchange algorithm within the initial handshake negotiation

results in the use of an RSA public key as the server’s certificate key type during the key

exchange mechanism [171, 172]. The RSA key exchange method authenticates the server to

the client by sending the public key certificate to support the key exchange protocol [172].

Following the certificate’s verification, a pre-master secret (PMS) is generated by the client

[172, 195] using the following equation:

 𝑃𝑀𝑆 ≔ (𝑉𝑒𝑟𝑠𝐶 , 𝑅𝐴𝑁𝐷𝑂𝑀[46]) [172]

Where VersC is the client’s suggested version of TLS, and RANDOM [n] is a function that returns

𝑛 unified random bytes [172].

PMS is considered the seed from which both connecting parties generate the secret session

key (master secret) [172, 195]. In order to protect the confidentiality of the session, the PMS

must remain protected. Therefore, the client encrypts the PMS with the server’s public key

and securely shares it with the server [172, 195]. Finally, both sides of the TLS protocol

employ a pseudo-random function (PRF) that uses the exchanged parameters of the TLS

initial handshake and the pre-master secret to generate the master secret (MS) [171, 172],

using the following equation:

64

 𝑀𝑆 ≔ 𝑃𝑅𝐹48(𝑃𝑀𝑆, "master secret", (𝑅𝐶 , 𝑅𝑆)) [172]

The MS is then used for encrypting/decrypting the transferred messages over the negotiated

session [171, 172, 195]. It is assumed that the encrypted PMS in the RSA key exchange

method cannot be determined by eavesdropping, as it can only be decrypted by the server’s

private key [195]. Figure 2.8 shows the exact steps involved in the RSA key exchange method

within TLS.

Figure 2.8: TLS with RSA Key Exchange Method

2.7.1.1.2 Diffie-Hellman Key Exchange (DHKE) Method

The Diffie-Hellman key exchange method (DHKE) is a fundamental key exchange technique

that was first published in 1976 in Diffie and Hellman’s landmark paper [168]. It offered the

first effective solution to the secret-key distribution problem [153]. DHKE is an asymmetric

cryptographic protocol that allows two parties communicating over an insecure channel to

establish a shared secret key without the key being transmitted [153, 157, 196]. Thus, it is

widely used in the key exchange frameworks of SSL/TLS and IPSec protocols as a means to

ensure web security [157, 160].

65

The DH algorithm is composed of two phases: the setup phase and the key exchange phase

[157]. The setup phase is responsible for publishing the public domain parameters (a prime

modulus 𝑝 and a generator 𝑔), which are used by both parties in the key exchange phase to

compute their public values. The public values are exchanged between parties over an

insecure channel to finally compute the shared session key without ever being transmitted

[153, 157, 160, 196]. Figure 2.9 shows the mathematical computations of the DH algorithm.

Figure 2.9: Diffie-Hellman Mathematical Computations

In terms of security, an attacker already knows the domain parameters published during the

setup phase, and there is also the possibility of easily obtaining the computed values

exchanged between parties over insecure channels. Thus, the question arises of whether the

attacker is capable of computing the shared session key from the compromised parameters.

This is known as the Diffie-Hellman problem (DHP) [157].

Although it hasn’t been mathematically proven, it is often assumed that efficiently solving

the Discrete Logarithm Problem (DLP) in DH key exchange is the only efficient way to solve

the Diffie-Hellman problem (DHP) [157]. Therefore, it is recommended to choose a

sufficiently large prime number as the modulus, ensuring that the corresponding DLP cannot

be solved [157, 160], as it becomes practically infeasible to compute the shared session key

66

[153]. Furthermore, the DH key exchange method supports anonymous cipher-

suites (𝐷𝐻_𝐴𝑁𝑂𝑁), which require no certificate authentication from either side and

exchange unsigned DH parameters [172, 197]. This algorithm thus makes the system

vulnerable to man-in-the-middle attacks (MITM) [197].

Selecting the DH exchange algorithm during the TLS initial handshake protocol results in

server authentication using the DH public key certificate, which is digitally signed with either

the RSA or DSS public key [171, 172]. The DH key exchange method is quite similar to the

RSA key exchange method, except that it employs the DH algorithm [172, 194] to generate

and exchange the secret session key [172], along with using the following equation:

𝑀𝑆 ≔ 𝑃𝑅𝐹48(𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝, "master secret", (𝑅𝐶 , 𝑅𝑆)) [172]

Figure 2.10 shows the exact steps involved in the DH key exchange (DHKE) method within

TLS.

Figure 2.10: TLS with Diffie-Hellman Key Exchange Method

According to Huang et al. [197], the server’s private keys can be compromised by attackers.

Thus, RSA is not the optimal method for exchanging keys. An attacker intercepting traffic

during the handshake is able to decrypt the transferred pre-master secret (PMS) to derive the

shared master secret (MS), which is an essential security parameter in the re-negotiation and

67

finishing phases within the TLS/SSL protocol. On the other hand, the PMS is not employed

within the DH key exchange algorithm; the shared MS is calculated on both sides of the

connection based on the exchanged public values [172, 195]. As the parameters used to derive

the shared MS are not transferred through the network, an attacker intercepting the traffic

cannot compromise the shared master secret.

2.8 Related Work

Regarding the proposed objective of this thesis, which is overcoming man-in-the-browser

(MITB) attacks within an online authentication system, several related solutions have been

proposed. Nor et al.[4] proposed a scheme that is based on incorporating a TPM-based remote

attestation in order to deliver a trust communication between the client and the server that

will mitigate an MITB attack. The protocol is based on the client measuring the platform

integrity and storing it in the platform configuration registers (PCR) to be used in the

registration phase. The protocol also uses the secure remote password (SRP) in the key

exchange phase to satisfy a zero-knowledge proof requirement. In the final platform

attestation phase, the client signs the PCR values with the AIK private key. The signature is

then encrypted with a shared key and sent to the server for integrity verification. The server

decrypts the received message to verify the signature, using the AIK public key that was

previously sent during the registration phase. Once the signature is verified, both parties start

their communication over a secure channel.

The experimental results have shown that the PCR values have changed, indicating that the

integrity of the client platform has been tampered with. Hence, the protocol rejects the

authentication. In general, moving security to the hardware level along with software

provides more protection. However, TPM secures hardware against its owner through

abusive remote attestation. In addition, the cost and size overheads of TPM chips are

unacceptable [198, 199].Moreover, in case in which a system has been modified by an

attacker who has administrative access to the system, as the TPM authenticates a system

instead of the user of the system, the TPM cannot be reliable when it comes to security.

Goyal et al. [3] proposed an image-based approach to mitigate MITB attacks during online

banking. The approach is based on the bank server embedding critical transaction

68

information, submitted by the user on a user-specific personal image (USPI) that has been

selected earlier by the user via a bank visit. Next, an HTML confirmation page displays the

transaction information, along with the embedded USPI, for the user to confirm the details

and to detect any irregularity of the information displayed on the USPI before submission.

Once a change has been detected, the user cancels the transaction. The approach encompasses

several countermeasures against the attacker, such as inaccessibility of the USPI, and the

inability to find an automated algorithm that can extract and change the information displayed

on the USPI within the bank confirmation time limit, along with eliminating any USPI

artefacts. On the other hand, the MITB can confirm the transaction without the user getting

a chance to notice any irregularity within the USPI. Thus, Krishnan and Kumar [12] proposed

a solution that requires the user to submit an OTP that is embedded within the USPI to

confirm the transaction. However, the approach lacks practicality due to the need of the user

visiting the bank. In addition, the protocol lacks decision making as it depends on the user to

either discard the process or to carry on with it.

In a recent and similar user authentication approach against MITM and MITB attacks, Chow

et al. [200] proposed a two-phased scheme, an initial user authentication phase, and a

transaction verification phase. The user authentication phase initiates the scheme by

submitting a user ID via an untrusted computer for public-key retrieval from a PKI. A

cryptographic random number-based OTP is generated, encrypted with the user public key,

and embedded within a QR code. The OTP is decrypted on the mobile phone side to be

retrieved and submitted to the server for verification via the untrusted computer. Next, the

transaction verification phase requires transaction data submission via an untrusted computer.

Similarly, a random number-based TAN is generated, symmetrically encrypted, and

embedded within a QR code, along with the transaction data and a hash of the transaction

data, credential, and the encrypted TAN. The mobile side verifies the recovered hash, and

decrypts the TAN to be submitted via the untrusted computer after checking the transaction

data. Although the scheme provides a strong authentication and transaction system against

MITM and MITB attacks, in which any attempt to manipulate the transaction data or reuse

the OTP/TAN will fail, both phases still use the untrusted browser for submitting the OTP

and the TAN. Thus, the user can abort the whole process in case the transaction data have

been manipulated, whereas the proposed MUAS has transitioned the whole authentication

process to a new and detached connection with no risk of MITB attack and no need to abort

69

the process. Moreover, in case the user authentication phase is used as a stand-alone system,

the attacker can simply wait for the user to become authenticated and then take over the

process.

Moreover, several similar approaches have proposed employing QR code technology within

online authentication systems to prevent MITM attacks. However, due to its similarity with

the proposed MUAS, these approaches were studied in-depth regarding overcoming MITB

attacks. Dodson et al. [201] proposed and implemented a strong and effective QR-based

challenge/response approach called ‘Snap2Pass’ that has been made available to over 30,000

OpenID websites. This approach is implemented for OpenID-based authentication systems

to overcome the problem of having too many usernames and passwords to memorise.

Snap2Pass is composed of two phases, an account creation and account login, which are

based on challenge and challenge/response generation, respectively. Whenever the account

creation phase is initiated and the user submits a chosen username, a shared secret is

computed by the server and encoded within the QR code, along with the provider name and

response end point. Once the QR code is scanned, this secret is saved in the mobile phone

password manager to be used for subsequent logins. On the login page, a challenging QR

code, containing the browser nonce and the provider name will be displayed for the user to

capture. Once the QR code is scanned and decoded, the application will use the recovered

provider name as a reference to find the shared secret and the end point on the mobile. Once

found, the response is generated using the hash-based MAC along with the shared secret to

be sent to the end point, along with the original challenge and the user name. No input is

required during the login phase, thus providing strong security against an MITM attack.

However, an MITB attack can simply wait for the user to become authenticated and take over

the transaction via the untrusted browser. Moreover, the system lacks user legitimacy

verification due to not requiring the certificate authority (CA) infrastructure in both phases.

In addition, the account creation phase displays an unencrypted QR code, where a peeper can

capture the displayed QR code and log in using the victim’s identity, unlike the proposed

MITB-resistant MUAS, where both phases employ PKI for mutual identity verification and

encrypting the QR code content, using the client’s CA-issued SSL-certificate.

A similar QR-based challenge/response approach called ‘2-clickAuth’ was proposed by

Vapen et al.[130]. The proposed approach implemented a QR-based identity provider,

making it available to users of OpenID websites, including Facebook, SourceForge, and

70

MySpace. It replaced the need to submit a password within the OpenID provider. Following

the submission of the OpenID within the relying party and being redirected to the OpenID

provider, the proposed 2-clickAuth starts its authentication process. A secret is generated by

the OpenID provider and encoded into a QR code, which is captured by the mobile phone to

generate the response using the hash-based MAC along with a shared secret key between the

mobile and OpenID provider. The generated response is then encoded into a QR code, which

is captured by the web camera of the untrusted computer to be sent to the OpenID provider

for verification. If it verifies as true, the user is authenticated and redirected to the relaying

party. As a requirement for the proposed approach, the mobile phone needs to register with

the OpenID provider. Therefore, the mobile phone encodes an encrypted freshly generated

secret key into a QR code to be captured by the web camera of the untrusted browser.

Consequently, the mobile phone and the OpenID provider share a secret key. The ‘2-

clickAuth’ approach is secure enough against replay attacks and MITM and MITB attacks,

as it only employs the optical channel in the key exchange mechanism and in the

authentication mechanism, back and forth. However, the system lacks practicality in terms

of the response sending technique within the authentication system.

From the above literature, the proposed MUAS protocol and [200] employ the public-key

infrastructure for identifying and verifying the identity of the participants. In addition, QR

code contents are encrypted via public key encryption, where the mobile phone application

have access to the client’s private key, unlike Snap2Pass [201] and 2-clickAuth [130] that

lacks the confidentiality of the QR code. Furthermore, the protocol in [200] aborts the

authentication mechanism in case of an MITB attack. Unlike the proposed MUAS, which

carries on with the authentication process using a different communication channel.

2.9 Conclusion

In this chapter, we summarise the various components involved in developing a secure online

authentication system. The individual components are combined to produce an e-commerce

security system and its dimensions. E-commerce security systems are generally composed

of five layers: the network service layer, encryption technology layer, security authentication

layer, security protocol layer and application layer. The network service layer is responsible

71

for providing the e-commerce security system the ability to solve network problems. The

remaining layers represent basic building blocks for e-commerce transaction security, which

are cautiously adopted to help develop an e-commerce authentication system.

Next, an in-depth study was conducted to test and evaluate three fundamental authentication

mechanisms: the single-factor, two-factor and three-factor authentication. These mechanisms

were critically reviewed according to their associated advantages and disadvantages. The

end-result of this analysis determined the most suitable technique, which does not satisfy the

objectives of this thesis. In addition, a comparative study focusing on 11 popular UK banks

was conducted to determine and evaluate state-of-the-art identification and authentication

mechanisms. This study reveals that two-factor authentication (2FA) methods are the

authentication mechanisms most frequently used by financial institutions; this is because they

are considered the most suitable mechanisms to secure the logging-in process of their online

banking platform. As 2FA is based upon object possession. Many technologies have

emerged to exploit such objects; these include authentication mechanisms such as one-time-

passwords (OTP) and quick response codes (QR code). Although OTP are considered one of

the strongest authentication mechanisms in use today, along with static passwords, it cannot

accomplish the objective of preventing or surmounting an MITB attack. The mechanism can

instead be used for verifying a mobile phone number in case of submission.

Aside from OTP mechanisms, another technology that exploits the most popular and

available authentication device was considered; this technology is the popular QR code,

which requires a visual channel for capturing and decoding the QR code. As a result, mobile

phones can become the perfect authentication device to use with QR code due to its expanded

functionalities. These functionalities include downloading applications for code decoding

and sending/receiving messages in case an OTP mechanism was involved. Moreover, the

connectivity feature of mobile phones is another opportunity that can be exploited within the

process of developing a secure authentication system, due to its ability to connect to the

internet. Thus, QR code technology can be employed to transition the authentication process

from an MITB-infected browser to a more secure mobile phone.

Determining the proper technologies that can defeat an MITB attack is considered the first

step in establishing e-commerce transaction security layers. This process suggests that each

layer has several technologies that can enhance the security mechanism. Accordingly, the

appropriate technology is chosen to serve the purpose of the proposed system at each layer.

72

At the encryption technology layer, asymmetric cryptography is chosen as a way of

enhancing the security of the proposed MUAS by encrypting the QR code to prevent

unauthorised information from being disclosed to unauthorised observed. While the security

authentication layer is responsible for verifying the identities of participants within the e-

commerce platform, several technologies were employed for mutual authentication,

including digital certificates and certification authority, which are components of a PKI. In

addition, cryptographic nonce and digital digest are employed to prevent replay attacks and

generate a message digest of the confidential information, respectively. Finally, the SSL/TLS

protocol was chosen within the security protocol layer to establish a secure communication

channel between participants, thus protecting all exchanged messages.

3 Design and Methodology

3.1 Introduction

A review of the literature and online authentication approaches have been presented in the

previous chapter, paving and justifying the way to detail the different aspects involved in

designing the methodology of the proposed online Mobile-User-Authentication System

(MUAS).

73

The infrastructure of an online authentication system represents the foundation on which a

secure system is built upon. Thus, employing the Public Key Infrastructure (PKI) along with

the SSL/TLS protocol provides the basis for building a strong and secure authentication

system. In terms of a user authentication session, a novel Mobile-User-Authentication

System (MUAS) is proposed. MUAS employs SSL/TLS protocol within e-commerce

applications as a security backbone to essentially authenticate the server via its PKI-based

SSL-certificate, and to secure all exchanged messages among participants [202].

Based on the proposed objective, MUAS design is based on developing a novel challenge-

response protocol that overcomes Man-In-The-Browser (MITB) attack. Therefore, the

proposed approach is divided into two physically detached and logically connected phases,

which are the challenge- and response-generation phases. When designing the proposed

system, security properties were taken into consideration alongside the primary objective.

Thus, cryptographic security attributes [41] were utilised within exchanged messages for

security purposes and for the logical linkage between both phases. In addition, MUAS

registration information were utilised within both phases for preventing DOS attack and

ensuring the authenticity of the primary authentication device.

The proposed authentication scheme can be the basis for conducting secure online

transactions, where the authentication is initiated within the infected browser and the

verification of the identity and the transaction are performed on a detached medium. Taking

MITB capabilities into account, the initiation phase of the proposed system limit the amount

of the requested information from the user to be composed of the mobile number only. Thus,

stealing mobile numbers and choosing targets that requests non-confidential information are

not of interest to the attacker. Moreover, modifying and tampering with outgoing mobile

numbers will only be an act of vandalism with no effect on the client. Finally, modifying

HTML pages within the context of the proposed scheme will involve adding extra data fields

that request financial information, whereas the client is only registered through the mobile

number and the IMEI for being authenticated within the site and not for any financial

transaction.

This chapter detail and justifies the different parts and aspects of the design, along with the

main goal of this thesis, and is organised into the following sections. Section 3.2 provides an

overview of the proposed MUAS design model, along with its entities and basic architecture.

74

Plus, the design assumption on which the MUAS is built are also provided. Section 3.3

present the objectives and security requirements of the challenge generation phase, along

with an abstract overview of the whole phase. In addition, a justification of the QR code

design issues are presented and explained, as QR code generation process represents the

foundation behind the logical connection between the two phases. Section 3.4 present the

objectives and security requirements of the response generation phase, along with an abstract

overview of the whole phase and its layers. Section 3.5 concludes the different design aspects

of this chapter.

3.2 MUAS Design Model

Based on the attacker's interest in financial information, once the client is authenticated and

starts providing confidential information, the attacker starts its malicious act. Thus,

conducting a secure authentication represents the preliminary step for conducting a secure

transaction. Therefore, the aim of this thesis is to design an online cryptographic-based

Mobile-User-Authentication System (MUAS) for e-commerce websites. With respect to

avoiding MITB attack, the proposed system authenticates clients securely through

transitioning the authentication mechanism from the infected browser to a new and detached

medium, which utilises the mobile phone as the primary authentication device. . Hence, the

proposed MUAS has been developed under the foundation of a challenge/response protocol,

which corresponds to two connections that are physically separated, yet logically related.

Therefore, the MUAS is split into two phases:

 Challenge generation phase,

 and Response generation phase.

The MUAS is based on establishing a platform on which the client can interact and

communicate smoothly with the server to generate a cryptographic QR code challenge, for

the client to capture and to generate the response. Therefore, the platform is considered a

prerequisite for the challenge- and response-generation phases, for information submission,

challenge generation, and response verification processes. However, before the MUAS

75

mechanism begins, the client should be registered through submitting the mobile number and

the International Mobile Equipment Identity IMEI of his/her mobile phone to be saved in the

𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 − 𝒄𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. As seen in figure 3.1.

Figure 3.1: MUAS Client Registration

The system consists of the following entities: an end-user and an authentication server.

The end-user is equipped with a personal computer and a mobile phone device with a network

connection, assigned to the challenge- and response- generation phases, respectively.

Both PC and mobile phone share the same PKI X.509 certificate, required for establishing an

SSL/TLS communication channel between participants. Although certificates are capable of

verifying identities, however MITB attacks can bypass the security measures of public key

infrastructure (PKI) and SSL/TLS protocols [14]. Consequently, using PKI X.509 certificates

alone within infected browsers for authentication purposes cannot be held accountable.

Therefore, a challenge that switch the client from the infected browser to the mobile phone

is required for authenticating the client within the mobile phone side.

 The authentication server is considered as the MUAS platform, where it is being accessed

by the user in both phases for online authentication. Furthermore, a visual channel takes place

within the response generation phase through employing a camera-based mobile phone, for

communicating with the browser via QR code capturing. At a high level, the proposed MUAS

works as follows. The client initiates a connection with an e-commerce website. The

authentication server of the website requests the client to submit his/her mobile number.

Upon receiving a registered mobile number, the server generates a one-time-password (OTP)

and submits it to the mobile phone via SMS. Next, the authentication server request the client

to submit the OTP. Following the OTP verification, the authentication server generates an

encrypted QR code that encodes a cryptographic challenge, along with other contents. The

76

client captures the QR code with the mobile phone camera. The mobile phone computes the

response from the cryptographic challenge and sends it to the authentication server. The

server verifies the response, and if it verifies to true, the client is authenticated. Under the

hood, security attributes are exchanged between participants. Figure 3.2 is a high level

representation of the proposed MUAS.

Figure 3.2: MUAS High Level Representation

3.3 MUAS Design Assumptions

When designing the proposed protocol, a number of assumptions were taken into

consideration:

 Both client and server are pre-registered with a trustworthy Registration Authority

(RA). The RA enters into an agreement with the Certification Authority (CA), for

issuing a trusted and signed X.509 certificate for the applicant. The issued certificate

contains a public key, along with a number of attributes, some of which forms an

77

identity. The identity is included in all exchanged messages within the proposed

protocol, which helps obtain the public key of the partner from the PKI.

 The PKI X.509 certificate of the client is shared between the PC and the mobile phone

without any modification of the existing standard format. This assumption was based

on the certificate sharing system (CSS) proposed by Kim et al. [184], which provides

an extensible and resilient system for distributing certificates within an enterprise

environment. The X.509 certificate, which is saved on the PC as a .CERT file is

converted into a .PFX file after authenticating the user via user ID, password, and

certificate password. The .PFX file is then converted into a binary code and stored on

the database server. On the mobile phone side, the user downloads the binary code

from the database server after being authenticated via the user ID, password,

certificate password, and OTP. The binary code is then converted into a .PFX file,

followed by conversion into a .CERT file to eventually be saved on the mobile phone.

The X.509 certificate stored on the PC is the same as the X.509 certificate stored on

the smart phone, thus ensuring the correctness of the digital certificate installed on

the mobile phone. This approach was discussed in section 2.6.3.

 User identities exchanged between parties in both protocols are constructed from the

Distinguished Name (DN) field values [203-205] of the issued X.509 certificate. The

user ID can be either the subject name or the issuer name along with the serial number

of the certificate [206].

 An SSL/TLS communication channel is established between both participants in both

protocols as a security backbone and the fundamental cryptographic protocol within

the context of a client-server model, thus establishing shared secret keys for securing

all exchanged messages within both protocols. This reliable end-to-end secure

channel is used for authenticating the server via its X.509 certificate.

 Shared session keys in both protocols cannot be compromised. Compromising such

keys is beyond the scope of this thesis, as they represent the result of the negotiation

phase within the SSL/TLS handshake protocol [172]. Although, it is compromised in

the challenge generation protocol as the result of applying the MITB attack model,

which is discussed in the next chapter.

78

 The server of the proposed MUAS requires prior client registration only through the

mobile number and the IMEI of the mobile phone. Thus, the challenge generation

phase requires mutual authentication of both client (browser) and server within the

SSL/TLS handshake protocol via their X.509 certificates for security purposes.

Whereas the response generation phase requires server authentication only, as the

mobile phone represents the same client in the challenge generation phase, thus they

share the same SSL-certificate.

3.4 Challenge Generation Phase

The challenge generation is the first phase of the proposed Mobile-User-Authentication-

System (MUAS), which is responsible for initiating the whole authentication process. This

phase is based on the client initiating a connection with a merchant through his/her browser.

The challenge generation phase takes place following the SSL/TLS handshake protocol

establishment, which resulted in mutual authentication between participants, thus sharing a

jointly secret key for securing exchanged messages. The browser initiates the authentication

system through exchanging and verifying cryptographic messages with the authentication

server as part of securing the protocol. The exchanged messages are composed of the identity

of the sender, freshly generated cryptographic nonce, along with the submitted information

from the client, upon request.

From a design point of view, the MUAS is designed as a user-friendly and non-confidential

input-based authentication system that mitigates the denial-of-service (DOS) attack and

overcomes the MITB attack. The system only request the client to submit the registered

mobile number within the infected browser as a means to generate a challenge that transitions

the authentication mechanism to the mobile phone of the client, which can be used for

validating the identity of the client along with conducting the transaction without the risk of

MITB attack. Upon mobile number validation, MUAS employs one-time-password (OTP)

as an auxiliary authentication mechanism to ensure that the mobile phone is in possession by

the client who initiated the authentication process. Hence, the main objective of the OTP

authentication mechanism is to link the client to the submitted mobile number.

79

In the challenge-generation phase, whenever a registered client initiates a connection with

the authentication server, a record for that client is created and added to the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆.

The primary key of the table is the user ID of the initiating client 𝐶_𝑼𝒔𝒆𝒓𝑰𝑫, which is

included in all received messages. Alongside the primary key, the received mobile number

𝒎𝒏 will be saved in the 𝑴𝒐𝒃𝒊𝒍𝒆_𝑵𝒖𝒎𝒃𝒆𝒓 field as the foreign key. The value of the fresh

server-nonce 𝒏𝒔, which was uniquely generated by the server for the session will be saved in

the 𝑺𝒆𝒓𝒗𝒆𝒓 − 𝒏𝒐𝒏𝒄𝒆 field. Furthermore, other fields such as 𝑶𝒏𝒆_𝑻𝒊𝒎𝒆_𝑷𝒂𝒔𝒔𝒘𝒐𝒓𝒅,

𝑺𝒆𝒓𝒗𝒆𝒓_𝒏𝒐𝒏𝒄𝒆𝟐, 𝑴𝒐𝒃𝒊𝒍𝒆_𝒏𝒐𝒏𝒄𝒆, 𝑴𝒐𝒃𝒊𝒍𝒆_𝑹𝒆𝒔𝒖𝒍𝒕 , and 𝑰𝑴𝑬𝑰 are also included in the

table. Figure 3.3 shows the relational database that contains the 𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 −

𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆 and the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆.

Figure 3.3: MUAS Relational Database

Following the submission and verification of the received SMS-based OTP, the server

compose and append QR code contents to finally generate the cryptographic nonce-based QR

code image. Figure 3.4 shows the high level representation of the challenge generation phase.

80

Figure 3.4: High Level Representation of the Challenge Generation Phase

3.4.1QR Code Generation

For achieving a secure and solid Mobile-User-Authentication System (MUAS), both

challenge- and response-generation phases should complement each other. The foundation

behind this complement lies within generating a challenging QR code with specific contents

as a prerequisite for establishing a logical connection between the two phases. Therefore,

81

embedding the proper information within the QR code represents the basis behind the

coherency of both MUAS phases.

The main objective of the challenge generation phase is generating the challenging QR code

to be displayed on the web-browser, for the client to capture and generate the response within

the response generation phase. The QR code generation process is based on assembling the

required contents to generate the code. Thus, the process is composed of two phases:

 Forming QR code contents,

 and Generating QR code image.

Forming QR code contents is the first phase of the QR code generation process. It takes place

within the server-side, following the submission of the client’s mobile number and one-time-

password (OTP) verification. This phase is a multi-level process that consists of contents

assembly, appending, and encryption. Contents assembly involves including the server’s

identity 𝑺_𝑼𝒔𝒆𝒓𝑰𝑫 from its SSL-certificate, and appending it along with the server’s initial

and unique freshly-generated nonce 𝒏𝒔, and response end-point 𝑼𝑹𝑳. Figure 3.5 shows the

two phases of the QR code generation process.

From a design point of view, embedding the freshly server-nonce into the QR code as one of

its contents satisfies the uniqueness property, as nonce is never repeated during a session.

The unique server-nonce represents the essential element of the MUAS response verification

process. Another QR code influential embedded element is the server’s distinguished name,

which plays a major role in verifying the identity of the server in the challenge generation

phase against the server in the response generation phase. Thus, ensuring that the end user in

both protocols are communicating with the same authentication server. A further attribute

considered while creating QR code contents is the server’s URL. This URL is exploited to

establish a secure SSL/TLS communication channel between the mobile phone and the

server, for sending the generated cryptographic response from the mobile phone to the server

for verification.

After completing the QR code assembly and appending processes, the server obtains the

public key of the client (browser) from the PKI to encrypt the appended contents.

Next, the second phase generates the QR code image to finally be displayed on the client-

side (browser). The QR code is finally captured by the client’s mobile-phone camera to be

used in the response generation phase for authentication and verification purposes.

82

Figure 3.5: QR Code Generation Phases in MUAS

3.5 Response Generation Phase

The response generation is the second phase of the proposed Mobile-User-Authentication-

System (MUAS), which is responsible for finalizing the authentication process by generating

the response and sending it to the server for verification. This phase takes place between the

83

mobile phone and the same authentication server platform, through a developed mobile

phone application called “3LS-Authentication”.

The “3LS-Authentication” stands for Three-Layer Secure Authentication. The application is

composed of three sequential layers of security: activation, cryptography, and response

generation. The application is responsible for capturing the generated QR code via the mobile

phone camera, and generating a cryptographic response to be sent securely to the server for

verification. Figure 3.6 shows the three sequential layers of the developed “3LS-

Authentication” mobile application.

Figure 3.6: 3LS-Authentication Layers

Considering the SSL/TLS handshake's mutual authentication within the challenge generation

phase, the response generation phase has been designed without requiring the SSL-certificate

of the mobile phone, as they both represent the same client.

3.5.1Activation Layer

The activation layer is the first security layer of the application, residing in the client’s mobile

phone. This layer displays an alert view requesting the client to submit the login ID and

password, as a requirement for the application to operate. Thus, allowing the client to capture

84

the displayed QR code. Figure 3.7 shows the activation layer of the “3LS-Authneitcation”

mobile application.

Figure 3.7: 3LS-Authentication Activation Layer

3.5.2Cryptography Layer

The cryptography layer is the second security layer of the application, which takes place

following the QR code capturing. The foundation behind this layer lies within sharing the

PC’s X.509 certificate with the mobile phone, from which the private key is utilised to

decrypt the QR code as a means to recover, split, and exploit its contents. Moreover, the

cryptography layer represents the basis for paving a cryptographic communication channel

with the server for sending the response for verification.

The main objective of this layer is to utilise the functionalities of the QR code contents, for

preparing an adequate environment for sending the response securely to the legitimate

authentication server. In terms of establishing a secure communication session, the QR-

recovered 𝑼𝑹𝑳 is exploited to establish a secure SSL/TLS communication channel with the

server, for the mobile phone application to start exchanging and verifying cryptographic

messages with the authentication server as part of securing the cryptographic protocol.

Another objective lies within extracting the IMEI of the mobile phone to guarantee its

legitimacy upon submission to the server. The IMEI is included within the initiating

cryptographic message to the server, along with the extracted mobile number (𝒎𝒏), mobile

identity (𝑴), and the freshly generated cryptographic nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆). Upon receiving

the first message, the server uses the received mobile number (𝒎𝒏) to lookup the

85

𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅_𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. If the mobile number was registered, the received IMEI is

verified against the registered IMEI, thus ensuring the legitimacy of the mobile phone and

mitigating the denial-of-service (DOS) attack.

Upon IMEI verification, the server generates a fresh and new server-nonce 𝒏𝒔𝟐 for its session

with the mobile phone. The mobile phone application verifies the identity of the server by

validating the received server’s identity 𝑺_𝑼𝒔𝒆𝒓𝑰𝑫 against the QR-recovered identity

𝑺_𝑼𝒔𝒆𝒓𝑰𝑫, and against the server’s ID from the CA-issued SSL-certificate, received during

the SSL/TLS establishment. Based on the server’s authenticity and identity verification

results, the final layer is executed and the response is generated.

3.5.3Response Generation Layer

The response generation layer is the third and final layer of the application, which takes place

between the “3LS-Authentication” application and the authentication server. The foundation

of this layer lies within exploiting the functionalities of the previous layer to securely generate

and send the response to the server for verification.

With regard to response generation, the point of authenticating the server at the mobile

phone-side represents the initiating point of generating the response. The server

authentication point can be defined as the point of validating the mobile phone’s

cryptographic nonce 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, exchanged with the server. Upon validation, the QR-

recovered server nonce 𝒏𝒔 is hashed after being appended with the validated cryptographic

nonce 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, thus representing the generated response.

As part of the secure communication protocol, initiated in the previous layer between the

mobile phone and the authentication server, the “3LS-Authentication” application embeds

the generated response along with the exchanged cryptographic server-nonce 𝒏𝒔, and the

identity of the sender 𝑪_𝑼𝒔𝒆𝒓𝑰𝑫, and sends it to the server over the SSL/TLS connection for

verification.

Finally, upon receiving the response from the “3LS-Authentication”, the server verifies the

identity of the sender against the listed clients within the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆. Once the client

is found, the server extracts the content of the 𝑺𝒆𝒓𝒗𝒆𝒓 − 𝒏𝒐𝒏𝒄𝒆 and the 𝑴𝒐𝒃𝒊𝒍𝒆 − 𝒏𝒐𝒏𝒄𝒆

fields from the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆 and append them together. The server finally applies a hash

86

function to the appended result to be compared against the received response.

Consequentially, and based on the response verification result, the authentication result is

sent to the mobile phone, either to reject the client or to carry on with a future process. Figure

3.8 shows the cryptography and response generation layers of the “3LS-Authentication”

mobile application, along with the server verification.

87

Figure 3.8: 3LS-Authentication cryptography and response generation Layers

88

3.6 Conclusion

Based on the proposed objectives and the different authentication methodologies presented

in chapter 1 and chapter 2, respectively. A number of aspects were considered while

designing an online user authentication system for e-commerce applications. One of the most

important aspects was to design a secure and user-friendly authentication system that

overcomes Man-In-the-Browser (MITB) and Denial-of-Service (DOS) attacks while

satisfying e-commerce security requirements. Furthermore, securing the protocol is

considered as a mandatory requirement during the design phase, for satisfying security

properties and overcoming adversaries, which is discussed in the verification phase in chapter

5.

In spite of the security mechanisms within most currently deployed user authentication

systems, MITB attacks still pose serious threats that affect web-browsers. Most MITB

solutions use the same infected browser to be authenticated via employing out-of-band

communication channels. But the adversary could simply wait for the client to become

authenticated before taking over the transaction. Thus, the proposed approach have

transitioned from the MITB-infected traditional authentication mechanism to a different and

detached mechanism that uses the mobile phone as the primary authentication device. The

mobile phone is used along with its visual channel and cellular network due to its

indispensability. The motivation behind employing two separate networks goes beyond the

ability of the MITB to attack two detached devices within two unconnected authentication

channels, to be linked to the same client. Therefore, the MUAS design is based on using the

browser as an initiation to the authentication process, only requesting the registered mobile

number of the client to mitigate the Denial-of-Service (DOS) attack. Upon verifying the

mobile number, an OTP is sent to the mobile device to ensure that the primary authentication

device is in possession by the initiating client. Subsequently, the authentication mechanism

is transitioned to the mobile phone via a captured QR code, generated by the authentication

server. The employment of an OTP within the MUAS is different than the OTP used within

Microsoft [207] and Google’s two-step verification process (2FA) [208], which is employed

for providing a stronger authentication mechanism that protects the client’s account in case

of a stolen password. This two-step verification process requires the client to submit a static

89

password (step 1) and an OTP (step 2), which can be sent to the client via e-mail, SMS, phone

call, or by using an authenticator app.

Based on the presence of two detached networks, the proposed MUAS is composed of two

protocols, the challenge- and response-generation protocols. Both of which are built on

top of the cryptographic SSL/TLS protocol, where participants exchange their SSL-

certificates, and share secret session keys in order to secure all exchanged messages, thus

ensuring data privacy and integrity.

In terms of designing a secure QR code challenge within the challenge generation protocol,

the system exploits some of the security attributes used in securing the protocol to become

the foundation of the challenge, thus ensuring the uniqueness of the challenge and reducing

the cost of computations. In addition, public key encryption is applied to the QR code

contents, for increasing the security level and protecting the transmitted information from

intruders.

After using the visual channel to capture the QR code, these attributes become the foundation

for generating the response as well. Moreover, the challenge is composed of other

components as well, some of which are exploited to initiate a new and secure connection with

the authentication server, for submitting the response within the response generation

protocol. While others are exploited to verify the identity of the authentication server to

ensure its legitimacy.

With regard to representing the client in the response generation protocol, a simple mobile

phone application called “3LS-Authentication” has been developed. The “3LS-

Authentication” is a user-friendly application that is based on sharing the same SSL-

certificate with the client’s browser. It is composed of three levels of security: activation,

cryptography and response generation. The activation layer represents the first security layer

that request the client’s credentials in order for the application to operate. In case of a stolen

mobile phone, the activation layer only authorises the legitimate owner of the phone to use

the application. The cryptography layer represents the second security layer that mitigates

the DOS attack through extracting and submitting the IMEI to the server, for verifying a

registered client. It also decrypts the QR code and exploit its contents to establish a secure

cryptographic connection with the server, and starts to exchange and verify cryptographic

messages with the server to secure the protocol against adversaries. The response generation

90

layer is the third and final security layer that is based on exploiting and linking the QR-

recovered unique content, along with one of the security attributes, required for securing the

response generation phase. Thus, generating a response that combines unique security

attributes from both phases to be finally hashed, using a one-way hash function. A one-way

hash function was chosen to be applied as it is computationally infeasible to derive the

original message from the hash result, even if it was intercepted by an adversary.

91

4 Implementation

4.1 Introduction

The previous design chapter proposed the theory of dividing the MUAS into two physically

detached and logically connected phases. Moreover, it elucidated the two aspects of the client

side within the challenge- and response-generation phases through browser and mobile phone

connection with the server. It also illustrated how the server side is responsible for generating

the challenge and verifying the response.

This chapter translates the proposed MUAS design principles and outlines the basic

algorithms with regard to implementing the proposed authentication system. Based on the

proposed MUAS split, each phase comprises several components that will be clarified in this

chapter, together with descriptive flowcharts. Moreover, both phases utilise the same SSL-

server as the framework platform for the challenge-generation and response-verification

processes.

Taking advantage of the massive power, flexibility and performance that the C programming

language offers [209], the SSL-server side and the SSL-client side (browser-based) are

implemented with Embarcadero C++ Builder XE3 [210]. The client side (mobile phone-

based) within the response-generation phase is implemented with Objective-C, using Xcode

6.1.1. Furthermore, a large section of the implementation functions was performed using

software components and libraries provided by Chilkat Software, Inc. [211]. In addition, the

QR code image-generation process is implemented using the ‘TBarCode Software

Development Kit’ [212], which is a set of professional tools that supports all development

environments and generates high-quality barcodes as printouts or graphic files. TBarCode

SDK supports more than 100 different barcode symbologies and provides C/C++ developers

with a barcode library (DLL), which is a full software library for embedding barcodes into

applications and generating barcodes with only a few function calls [213].

92

This chapter demonstrates the implementation details and algorithms of the challenge- and

response-generation phases separately, based on the grounds that the phases are not

physically connected. The chapter is organised into the following sections: Section 4.2

provides an overview of the platform implementation that demonstrates the processes

performed to establish an SSL/TLS connection between the server platform and both aspects

of the client side within both phases. Section 4.3 presents the main algorithm of the challenge-

generation phase. Section 4.4 illustrates the components of the challenge-generation phase

required for forming the cryptographic QR code contents. Section 4.5 presents the response-

generation phase algorithm. Section 4.6 illustrates the components of the response-generation

phase, which are distributed between the mobile phone and the established SSL/TLS server

platform. Section 4.7 concludes the implementation chapter.

4.2 Platform Implementation Overview

The prototype platform represents the foundation for both challenge- and response-

generation phases. It consists of three main components, as presented in Figure 4.1. The three

components are the challenge generator, the application and the verifier components.

93

Figure 4.1: Platform Implementation Overview

The first component residing within the server-side is the challenge-generator component,

whereas the application and verifier components reside within the mobile phone and the

server-sides, respectively.

Section 4.2.1 presents the general process of establishing the SSL/TLS server platform as the

main prerequisite for the MUAS framework. In addition, the SSL/TLS client-side certificate

is used to connect to the server, regardless of whether the client side is a browser or a mobile

phone.

4.2.1Establishing an SSL/TLS Connection

The server platform of the proposed authentication system represents the required grounds

for the logical connection to the physically separated challenge- and response-generation

phases. However, the MUAS server platform is established to perform two fundamental tasks

that represent the essence of the authentication system, namely challenge-generation and

response-verification. Moreover, an SSL/TLS client certificate represents the client side of

the challenge-generation phase. Whenever mutual authentication is required, the certificate

is exchanged with the established SSL/TLS server side. In the challenge-generation phase,

94

mutual authentication is mandatory for securing the generated response, whereas the

response-generation phase does not require the SSL client certificate for the mobile phone.

Figure 4.2 shows the SSL/TLS establishment process between the server platform and the

client side.

Figure 4.2: SSL/TLS Socket Establishment in a Client-Server Model

As illustrated in Figure 4.2, the server platform in both phases creates an SSL/TLS socket for

accepting connections. The process begins by creating and initialising a TCP socket

component with SSL/TLS capabilities for listening on a port to accept client connections

[214]. Prior to accepting connections, the server application is initialised with the SSL/TLS

server certificate to be used for SSL/TLS connections [214-216]. The TCP socket is then

bound to a specified port to be configured for listening to incoming connections [214, 216].

Similarly, the same process applies on the client side to enable connection to the SSL/TLS

server [214]. As mutual authentication is a prerequisite within the challenge-generation

phase, the client is authenticated on the server through specifying the certificate via a

certificate object [217]. This certificate is exploited later to secure the generated challenge.

The process of establishing an SSL/TLS handshake protocol between the client and the server

requires several back-and-forth messages, negotiating the encryption algorithms and

cryptographic keys to eventually set up a secure channel. The sending and receiving of these

messages are controlled by the 𝑀𝑎𝑥𝑅𝑒𝑎𝑑𝐼𝑑𝑙𝑒𝑀𝑠 and 𝑀𝑎𝑥𝑆𝑒𝑛𝑑𝐼𝑑𝑙𝑒𝑀𝑠 properties, which

are set in millisecond timescales to wait and to read/write. These steps are considered

95

requirements to accept the SSL/TLS connection, as the handshake establishment protocol is

part of the connection process [216, 217]. Thus, these properties must be set before accepting

an incoming connection [214, 216]. Next, a secure SSL/TLS connection is established with

the 𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡 using the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 function, along with setting the SSL server

hostname and port number [214, 217].

Once the connection is established, the server receives a confirmation message from the

client. This is followed by the server confirming its connection. Subsequently, participants

exchange their messages to generate the challenging QR code and to verify the received

response within the challenge- and response-generation phases, respectively. Finally, the

connection is closed after a predefined amount of time [214, 216].

4.3 Challenge-generation Phase

The challenge-generation phase signifies the launching phase of the proposed MUAS. It takes

place between the client (browser) and the server platform within a secure SSL/TLS

communication channel to generate a QR code to be displayed on the web browser. The

server side is the focus of attention in this section, due to its responsibility for generating the

challenge.

The server maintains a database in which a table called 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 holds specific

information related to each client-server session, including 𝑈𝑠𝑒𝑟𝐼𝐷, as the primary key of

the table, as well as 𝑀𝑜𝑏𝑖𝑙𝑒_𝑁𝑢𝑚𝑏𝑒𝑟, 𝑂𝑛𝑒_𝑇𝑖𝑚𝑒_𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒,

𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒2, 𝑀𝑜𝑏𝑖𝑙𝑒_𝑛𝑜𝑛𝑐𝑒 and 𝑀𝑜𝑏𝑖𝑙𝑒_𝑅𝑒𝑠𝑢𝑙𝑡.

Following the established mutual authentication between the client and the authentication

server over the SSL/TLS communication channel, described in Section 4.2.1, a new record

is created in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒, where the distinguished name (𝐷𝑁) within the received

SSL-client certificate is saved in the primary key field 𝑈𝑠𝑒𝑟𝐼𝐷.

The sequence of steps leading to the generation of the challenging QR code is based on three

messages exchanged between the authentication server and the browser. These messages are:

Msg1: C_UserID, nb, mn,

96

Msg2: S_UserID, nb, ns,

Msg3: C_UserID, ns, OTP

The authentication server depends heavily on the first and last messages, which includes the

client’s mobile number 𝒎𝒏 and one-time password 𝑶𝑻𝑷, as they comprise the information

required for executing the challenge-generation process. Whereas the fresh browser-nonce

𝒏𝒃, submitted in the first message and received again within the second message prevents an

adversary from impersonating the server. These messages were composed based on the

requirement of satisfying secrecy and authentication security properties, which will be

discussed in Chapter 5.

However, the challenge generation process begins with verifying the received mobile number

𝒎𝒏 from Msg1 against the primary key of the 𝑹𝒆𝒈𝒊𝒔𝒕𝒆𝒓𝒆𝒅 − 𝑪𝒍𝒊𝒆𝒏𝒕𝒔 𝑻𝒂𝒃𝒍𝒆. Upon

verification, a new record is created in the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆 for the 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 client, where

the received identity 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 is saved in the 𝑈𝑠𝑒𝑑𝐼𝐷 primary key field, and the received

mobile number 𝑚𝑛 is saved in the 𝑀𝑜𝑏𝑖𝑙𝑒_𝑁𝑢𝑚𝑏𝑒𝑟 field of the same record. In Msg2, the

server generates a fresh nonce 𝑛𝑠, which is saved in the 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒 field for verification

purposes in both phases, as well as for security purposes.

For ensuring that the primary authentication device is in possession by the legitimate client,

the server generates an OTP, saves it in the One_Time_Password field in the same record,

and sends it to the mobile phone of the client via SMS. Upon reception, the client submits

the OTP via browser. Next, upon receiving the 𝑛𝑠 value together with the submitted 𝑂𝑇𝑃 in

Msg3, the server uses the attached 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 from Msg3 to verify the received 𝑛𝑠 value

against the 𝑆𝑒𝑟𝑣𝑒𝑟 − 𝑛𝑜𝑛𝑐𝑒 field for client verification. In the event of a match, the same

attached 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 from Msg3 is used to verify the received 𝑂𝑇𝑃 value against the

𝑂𝑛𝑒_𝑇𝑖𝑚𝑒_𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑 field. Based on the verification result, the server executes the final

stage of the challenge-generation phase. In this stage, the server assembles, composes and

encrypts the QR code contents using the client's public key that was extracted from the client

certificate, received during the establishment of the SSL/TLS session. Finally, the QR code

image is generated and displayed on the web browser of the initiating client. Figures 4.3

provide the overall algorithm of the challenge-generation phase. (Pseudo code is provided in

Appendix A).

97

Figure 4.3: Overall Challenge-generation Algorithm

98

4.4 Challenge-generation Components

The challenge-generation phase consists of three main components, which are responsible

for generating a secure QR code challenge. The components are the nonce component, the

OTP component and the QR code component. Figure 4.4 shows the three components,

together with their procedures.

Figure 4.4: Challenge-generation Components

The three challenge-generation components can be summarized as follows:

99

 The nonce component is responsible for generating fresh random numbers. These

numbers are used to secure messages exchanged between participants, in which

verification is performed upon exchange. Moreover, this component is considered an

essential feature in forming the QR code contents, since the freshly generated server

nonce represents one of the contents that constitute the QR code.

 The OTP component generates a random number to be sent to the mobile phone via

SMS. The client submits the received number through the browser for the server to

verify upon reception. An OTP verifies that the mobile phone holder is a legitimate

client who initiated the authentication system on the browser side.

 The QR code component is responsible for forming the contents of the QR code and

for generating the QR code image.

The following sections present the challenge-generation component algorithms with regard

to their sequence of events.

4.4.1Nonce Component

As part of developing a secure protocol, fresh values should be generated for each

instantiation of each role [41]. Thus, each participant in the challenge-generation phase

generates a fresh nonce to be exchanged and verified during communication.

The nonce component consists of two primary procedures that play an integral part in the

challenge and response development mechanism. These procedures are executed in a

sequential manner on behalf of the server platform whenever a client initiates a connection

with the server through the established SSL/TLS channel. The procedures are the following:

1. Nonce generator.

2. Nonce verifier.

The nonce generator and verifier procedures are mandatory in every secure protocol to

prevent impersonators and malicious users from trying to replay the same message multiple

times [41].

100

4.4.1.1 Nonce Generator

The generation of a fresh nonce within both phases is accomplished by employing the Fortuna

Pseudo Random Number Generator (PRNG). The generator takes real random data (entropy)

as a seed to generate an arbitrary amount of pseudorandom data. The accumulator then

collects and pools the real random data from various sources to reseed the generator, which

can be a difficult and time-consuming process in terms of implementation. Therefore, the

pseudorandom data are used. Furthermore, new entropy data are added periodically in the

event that further random data are needed [218].

The process of generating a pseudorandom number within MUAS begins with creating and

initialising an object from the PRNG component [219]. The component implements the

Fortuna PRNG algorithm using a 256-bit AES and SHA256, along with providing methods

for accessing the system entropy. Next, the pseudorandom data generator reads entropy data

from a system entropy source to generate an encoded string using the 𝐺𝑒𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 function,

which uses the 𝐶𝑟𝑦𝑝𝑡𝐺𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚 method within the Microsoft Crypto API to generate the

pseudorandom number. The initial seeding of the generator should not exceed 32 bytes of

entropy, as it should be specified within the function. The 𝐴𝑑𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 function is used to

seed the entropy into the generator to finally generate and return a specified number of

random bytes in an encoded form using the 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚 function [219, 220]. All generated

nonce within both phases are specified as 32 bytes. Figure 4.5 provides the algorithm of the

nonce generation procedure, along with the nonce exchange protocol and its subsequent

procedures.

Figure 4.5: Fresh Nonce Generation Procedure

101

The Fortuna PRNG function is used to generate random strings that represent the server

nonce 𝑛𝑠, the browser nonce 𝑛𝑏 and the mobile phone nonce 𝑚𝑛. Furthermore, it is also

employed within the OTP component to generate the OTP on the server side. However, the

generated OTP is specified as 2 bytes.

Moreover, the nonce verifier procedure takes place upon nonce exchange to verify the

received nonce against the original value that was generated and sent by the initiating party.

4.4.2QR Code Component

With regard to challenge generation, the QR code component represents the essence of the

entire authentication system, which is considered the primary factor upon which the

response-generation phase depends. It is composed of two primary procedures:

1. Forming QR code contents.

2. Generating QR code image.

The following sections illustrate the exact steps followed to generate the challenging QR

code with regard to their sequence of events.

4.4.2.1 Forming QR Code Contents

Forming the QR code contents is a multi-level procedure that revolves around assembling

the required components to form the QR code contents. The assembled contents are appended

and encrypted as an extra layer of security against intruders and to ensure the authenticity of

the client on both browser and mobile phone sides.

The following sections present and explain the algorithms of the three-level procedure that

constitutes the QR code contents.

4.4.2.1.1 Assembling QR Code Contents

Assembling QR code contents is the first level of the formation procedure. It gathers the

components that constitute the contents of the QR code. The components are as follows:

102

 The server’s distinguished name 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷 is the first component to be exported into

the QR code contents. This component is mandatory for verifying proper server

connectivity in the response-generation phase. The process works by importing the

SSL-server certificate from the server platform to obtain the certificate’s subject and

full distinguished name (DN). As demonstrated in Figure 4.7, the process begins by

creating an instance of a certificate store object [221], which represents a collection

of certificates that can be loaded from a Windows-based certificate store or from a

PFX file (PKCS# 12). Once the PFX file is loaded, the required certificate within the

PFX is searched for by common name, subject, email address or by issuer and serial

number [216].

 The second component is the freshly generated server nonce 𝑛𝑠, which is considered

the essence of the assembled QR code contents. This component is the foundation for

the client’s verification process within the response-generation phase. The nonce

generation algorithm has been explained in Section 4.4.1.1

 The response end-point URL (𝑈𝑅𝐿) is the last component of the QR code content.

This component represents the entry point to the intermediate cryptography layer. The

address is formatted as ‘𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡’, which specifies the exact address of the

server for connecting and sending the response for verification.

4.4.2.1.2 Appending QR Code Contents

Appending QR code contents is the second level of the formation procedure. It concatenates

the server’s distinguished name 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷, the server nonce 𝑛𝑠 and the response end-point

𝑈𝑅𝐿. The appending process begins with creating an instance of a string class to be used with

the 𝐴𝑝𝑝𝑒𝑛𝑑 function [222]. When concatenating the contents, they are separated by a

delimiter character to be used later for string splitting.

4.4.2.1.3 Encrypting QR Code Contents

Encrypting QR code contents is the final level of the formation procedure. The foundation of

this procedure lies within the mutual authentication between the browser and the

103

authentication server during the initial SSL/TLS channel establishment. The server exploits

the received SSL-client certificate to secure the generated challenge.

For implementation, the received SSL-encoded string certificate is used to initialise a client

certificate object 𝐶𝑙𝑖𝑒𝑛𝑡𝐶𝑒𝑟𝑡 [215]. The next step is to export the public key from the

certificate object [215, 223] to obtain the public key in XML format [224]. Finally, the

appended QR code contents are encrypted by creating an instance of the ‘𝐶𝑘𝑅𝑠𝑎’ object [225]

to be used for setting the encoding mode and importing the extracted public key [225, 226],

which is used to perform the encryption process. Figure 4.6 shows the algorithm of the overall

QR code contents formation process.

104

Figure 4.6: Forming QR Code Contents

105

4.4.2.2 Generating the QR Code Image

Following the formation of the QR code contents, the second procedure begins and generates

the QR code image to be displayed on the browser side. The QR code is then captured by the

client’s mobile phone camera to be used for client authentication and verification.

The QR code image-generation procedure is performed by allocating memory for the barcode

structure. The next step is to specify and set up some of the QR code attributes, such as the

contents to be encoded and the QR code size. The size, in device pixels, is determined by

performing barcode height and width calculations [227]. Figure 4.7 shows the process of

generating a barcode on behalf of the server side to be displayed on the client side (browser).

The generation procedure begins with calling the function 𝐵𝐶𝐴𝑙𝑙𝑜𝑐 to set up and initialise

the barcode’s internal structure by allocating memory and retrieving a barcode handle 𝑝𝐵𝐶.

The required barcode type, and the text to be encoded, are then specified through the

𝐵𝐶𝑆𝑒𝑡𝐵𝐶𝑇𝑦𝑝𝑒 and 𝐵𝐶𝑆𝑒𝑡𝑇𝑒𝑥𝑡𝐴 functions, respectively. The barcode pattern is then

prepared to be drawn or saved through creating an internal barcode representation from the

previous parameters set by calling the function 𝐵𝐶𝐶𝑟𝑒𝑎𝑡𝑒 [227]. With regard to the output

device resolution, performing calculations in device pixels specifies the barcode size. The

calculations involve converting the height and width (given in millimetres) to inches, where

the result is multiplied by the resolution in dots per inch (dpi) of the output device. Next,

functions 𝐵𝐶𝐺𝑒𝑡2𝐷_𝑋𝑅𝑜𝑤𝑠 and 𝐵𝐶𝐺𝑒𝑡2𝐷_𝑋𝐶𝑜𝑙𝑠 return the number of modules calculated

for the chosen barcode, thus returning the horizontal and vertical module count. The height

and width are optimised by rounding up their values via the Ceil function, to be multiplied

next by the module count. Finally, the optimised height and width can be used to draw the

barcode or to save it as an image file by calling the function 𝐵𝐶𝑆𝑎𝑣𝑒𝐼𝑚𝑎𝑔𝑒 [227, 228].

106

Figure 4.7: Generating the QR Code Image Process

4.5 Response-generation Phase

The response-generation phase is the second and final phase of the proposed MUAS. The

process is based on developing a single-view mobile phone application, called ‘3LS-

Authentication’, which communicates with the authentication server after capturing the

displayed QR code for verification purposes. The response-generation phase is composed of

three layers, namely an activation layer, a cryptography layer, and a response-generation

layer. The activation and cryptography layers take place on the mobile phone side within the

‘3LS-Authentication’ application, whereas the response-generation layer takes place between

the application and the server side.

107

The sequence of steps leading to generation of the response within the ‘3LS-Authentication’

begins

with the activation layer, where the client is requested to submit the credentials that was set

during the app installation on the mobile phone. This layer works as a defence mechanism

against stolen mobiles, where the application credentials are required from the legitimate

client in order to operate. The second layer extracts the IMEI from the mobile phone, for the

server to verify against the registered IMEI. It also executes the decryption and splitting

processes to recover the QR code contents. These are utilised for several purposes in the

second and third layers.

 The first content to be utilised within this phase is the server’s response end-

point 𝑈𝑅𝐿, which is responsible for establishing an SSL/TLS connection with the

authentication server, as shown in the cryptography layer in Figure 4.8. This paves

the way for sending the generated response.

 The second recovered content to be exploited is the distinguished name DN of the

server, which ensures the authenticity of the connected server by verifying it against

the DN of the SSL-server certificate, and against the received server’s identity, as

illustrated in the response-generation layer in Figure 4.8.

 The final recovered content is the fundamental element of the response-generation

mechanism, namely the fresh server nonce. This nonce is utilised for the logical

connection of the challenge- and response-generation phases. In addition, it plays an

essential part in generating the response, as illustrated in the response-generation

layer in Figure 4.8.

Finally, the third layer passes on the hashed result to the server for verification, along with

the exchanged nonce from the response-generation phase. Figure 4.9 shows the detailed steps

of the ‘3LS-Authentication’ application within the response-generation phase. (Pseudo code

is provided in Appendix A).

108

Figure 4.8: Mobile Phone-side Process of the Response-generation Phase

109

4.6 Response-generation Components

The response-generation phase consists of two main components, namely an application

component and a verifier component. These components are enclosed within the mobile

phone and server-side end-point for performing response generation and response

verification, respectively. Both of these comprise a number of procedures for performing

specific actions.

The application component residing on the mobile phone side consists of several procedures

for securing the application against stolen phones, together with exploiting the recovered QR

code contents for response generation. The recovered QR code contents are also utilised to

establish a secure SSL/TLS communication channel for submitting the response to the server

for verification. Furthermore, the application component is responsible for securing the

protocol from impersonators via a nonce exchanging mechanism. The verifier component

residing on the server-side is responsible for verifying the received response. Figure 4.9

shows the main components within the response-generation phase.

Moreover, a common component exists between both parties, namely the nonce component,

which is responsible for generating and verifying exchanged nonces among participants. This

component was explained previously in Section 4.4.1.

110

Figure 4.9: Response-generation Components

111

Based on the components constituting the response-generation phase, the sequence of steps

leading to the generation of the response within the mobile phone side are described in

Section 4.6.1, whereas the steps for verifying the response within the server side are described

in Section 4.6.1.5.

4.6.1Application Component

The mobile phone application developed for authenticating on-line clients via the QR code

comprises three layers. The first layer is the activation layer, which is responsible for

activating the app through a single procedure, the app activator. The second layer is the

cryptography layer, which is responsible for decrypting and recovering the QR code

contents, in addition to establishing a secure cryptographic communication channel with the

server. The third and final layer is the response-generation layer that is distributed between

the mobile phone application and the authentication server end-point for response generation

and response verification, respectively. In this section, the algorithms of the first and second

layers are illustrated, along with the mobile phone’s response-generation algorithm. The

algorithm of the server’s response-verification is illustrated in Section 4.6.1.5. The four

primary procedures used within the cryptography layer and the response-generation

algorithms are as follows:

1. QR code recovery.

2. SSL/TLS establisher.

3. Nonce component.

4. Response generator.

These procedures are executed in a sequential manner on behalf of the mobile phone

whenever the QR code is captured. The following sections present the algorithms for the

procedures of the application component with regard to their sequence of events.

4.6.1.1 App Activator

The app activator procedure lies within the activation layer. It is performed on behalf of the

mobile phone application to ensure the legitimacy of the user. When loading the application,

112

the user is requested to submit his/her credentials via an alert view. Thus, a titled custom

button ‘Login’ is added to the alert view.

The alert view is configured through its properties and methods to set the title, message,

delegate and configure buttons. Following the creation and initialisation of the alert view, the

presentation style of the alert is set to display two text fields that accommodate the login ID

and password. Figure 4.10 shows the steps for creating and initialising the alert view, together

with the style settings.

Figure 4.10: Alert View Creation and Settings

Due to the existence of a custom button within the alert, a delegate is designated to handle

the button action. Whenever the custom button is tapped, the delegate responds with the

𝑎𝑙𝑒𝑟𝑡𝑉𝑖𝑒𝑤 ∶ 𝑐𝑙𝑖𝑐𝑘𝑒𝑑𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑡𝐼𝑛𝑑𝑒𝑥 method. Within the alert view, the

𝑡𝑒𝑥𝑡𝐹𝑖𝑒𝑙𝑑𝐴𝑡𝐼𝑛𝑑𝑒𝑥 method retrieves the values entered by the client from the text fields. The

values are verified against the application credentials that were stored on the mobile phone

during the installation process of the application. Figure 4.11 shows the

𝑐𝑙𝑖𝑐𝑘𝑒𝑑𝐵𝑢𝑡𝑡𝑜𝑛𝐴𝑡𝐼𝑛𝑑𝑒𝑥 response upon tapping the custom button. Finally, and after

verifying the credentials’ authenticity, the alert view is discarded and the cryptography layer

begins to operate.

113

Figure 4.11: Alert View Behavior

4.6.1.2 QR Code Recovery

As the captured QR code contains encrypted data, the first component to handle the QR code

contents is the QR code recovery component, which comprises two primary procedures:

1. QR code decryptor.

2. QR code splitter.

The procedures are responsible for decrypting and splitting the QR code contents to generate

the response. The following sections present the algorithms of the QR code recovery

procedures with regard to their sequence of events.

114

4.6.1.2.1 QR Code Decryptor

The foundation of the QR code decryptor lies within installing the client’s digital certificate

on the mobile phone; therefore, the client certificate is embedded within the application’s

main bundle. The embedded certificate is the same X.509 certificate of the PC, which is used

for authenticating the browser within the challenge-generation phase. The QR code decryptor

procedure fetches the private key from the installed certificate for decrypting the QR code

contents.

From an implementation point of view, the process begins by creating a bundle object for the

client to specify the required certificate [229]. This is achieved by selecting the required

certificate’s name and type. Followed by authenticating the certificate via its password in

order to be used within the application. The selected certificate is then initialised into a static

data object [230] for later reuse within the SSL/TLS communication channel establishment.

Consequentially, the certificate is loaded and its private key is exported [231] to obtain the

private key in XML format [232] by using a certificate object [231]. Finally, the exported

private key decrypts the QR code contents by creating an instance of the ‘𝐶𝑘𝑅𝑠𝑎’ object to

perform the decryption process [233]. Prior to content decryption, the encoding mode is set,

and the private key is imported into the RSA object for performing the decryption process

[234]. Figure 4.12 shows the process of extracting the private key from the client certificate,

along with the decryption process.

115

Figure 4.12: Extracting the Client Certificate and its Private Key to Perform Decryption

4.6.1.2.2 QR Code Splitter

Following the QR code decryption process, the contents are split into their original

components using the delimiter character as a separator to return an array containing the QR

code components [235]. The recovered components are the server’s distinguished name DN,

the fresh server nonce and the server’s end-point (URL). Figure 4.13 shows the steps of

splitting the decrypted QR code contents.

116

Figure 4.13: Splitting the QR Code Contents

4.6.1.3 SSL/TLS Establisher

Paving the way to send the generated response over a secure channel for verification, an

SSL/TLS connection with the server should be established. The QR code-recovered URL

‘𝑟𝑒𝑚𝑜𝑡𝑒ℎ𝑜𝑠𝑡: 𝑝𝑜𝑟𝑡’, from the previous section represents the basis for the SSL/TLS

establishment process. Thus, the address is split into the required fields for connecting to the

SSL server. Figure 4.14 shows the steps for connecting to a specific SSL server [236].

117

Figure 4.14: Establishing SSL/TLS Client-side Process within the Response-generation Phase

Following the SSL/TLS channel establishment, both parties start exchanging their freshly

generated nonce as a means to secure exchanged messages from impersonators and to satisfy

security properties. As part of the current SSL/TLS handshake establishment process, the

server submits his/her SSL certificate for authentication. Hence, the QR code-recovered

server identity 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝐷 from the previous section is verified against the distinguished name

𝑆_𝐷𝑁 of the received SSL server certificate, and against the server identity 𝑆_𝑈𝑠𝑒𝑟𝐼𝐷

received from the server during the second message 𝑀𝑠𝑔2. This triple verification helps to

verify the identity of the connected server, which prevents excess overhead on behalf of the

mobile phone in the event of unverified identity.

4.6.1.4 Response Generator

Following the process of securing the communication channel against impersonators and

verifying the legitimacy of the connecting party, the response generator procedure begins to

execute its own procedures, namely appending and hashing.

118

The procedure is responsible for generating the response from the QR code-recovered nonce

along with the fresh mobile phone nonce. The following section presents the algorithm of the

response-generator procedure with regard to the sequence of events. Figure 4.15 shows the

hashing algorithm, along with the encryption process.

4.6.1.4.1 Appending and Hashing

The appending and hashing procedure is based on exploiting the recovered contents of the

QR code, specifically the server nonce 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒, which is utilised to generate the

response. Moreover, the procedure exploits the freshly generated nonce of the mobile phone

𝑛𝑚, which is appended to the 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒. Following this, the hashing algorithm

(𝑆𝐻𝐴256) is applied on the appended value, thus generating the response to be sent to the

server for verification. The hashing process is based on creating and initialising an encryption

object [237, 238], followed by setting its properties and performing the hashing process

[238].

Figure 4.15: Response Hashing and Encryption Processes

Finally, and enclosed in Msg3, the hashed response is sent to the server over the established

SSL/TLS channel, together with the mobile phone’s identity and exchanged nonce for

verification.

119

4.6.1.5 Verifier Component

The verifier component is the final component within the server side. It is responsible for

validating the received response, and consequently for verifying the authenticity of the client.

This component consists of two primary procedures, which are:

1. Appending and hashing.

2. Hash verifier.

The appending and hashing procedure works in exactly the same way as the appending and

hashing in the response-generator component as shown in Figure 4.16. However, the exact

and detailed steps of the verifier component are described in this section.

Upon receiving Msg3, the server side verifies the response as the final step of the

authentication mechanism. The verification process starts with exploiting the received mobile

phone’s identity 𝐶_𝑈𝑠𝑒𝑟𝐼𝐷 against the 𝑈𝑠𝑒𝑟𝐼𝐷 field in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 to store the

received response ℎ𝑎𝑠ℎ1 in the 𝑀𝑜𝑏𝑖𝑙𝑒 − 𝑅𝑒𝑠𝑢𝑙𝑡 field for later verification. Following this,

the mobile phone nonce 𝑛𝑚 and the original server nonce 𝑛𝑠 that was generated previously

in the challenge-generation phase are recovered from the 𝑀𝑜𝑏𝑖𝑙𝑒_𝑛𝑜𝑛𝑐𝑒 and 𝑆𝑒𝑟𝑣𝑒𝑟_𝑛𝑜𝑛𝑐𝑒

fields, respectively. Both of the recovered values are appended and hashed using the

𝑆𝐻𝐴256 hashing algorithm, thus forming ℎ𝑎𝑠ℎ2 to eventually be compared against ℎ𝑎𝑠ℎ1

to finally verify the authenticity of the client. Figure 4.16 shows the detailed steps in the final

verification layer.

120

Figure 4.16: Verification Algorithm of the Response-generation Phase

121

4.7 Conclusion

Building on the design model in the previous chapter, the aim of this chapter is to (1)

implement the proposed system, (2) provide a demonstration of both MUAS challenge- and

response-generation phases, (3) show all exchanged messages between participants within

both phases, which will be verified in the next chapter, and (4) execute the proposed novelty

within the implementation phase. Hence, this chapter paves the way for the evaluation

chapter (chapter 5), in terms of performance measurement.

This chapter can be summarised as follows:

 Based on the design model described in Chapter 3, this chapter focuses on applying

the proposed methodology to build the MUAS model/framework with regard to the

SSL/TLS socket creation that accepts connections from both phases consecutively.

The SSL/TLS socket is the foundation for the logical connection of the physically

separated phases through the generated challenge, causing the response-generation

phase to be dependent on the challenge-generation phase.

 Placing significant emphasis on the SSL/TLS sessions between participants

contributes to securing both phases. In the challenge-generation phase, the SSL-client

certificate is utilised to verify the identity of both participants and to secure the

generated challenge. In the response-generation phase, the distinguished name

extraction from the received SSL-server certificate helps to prevent mobile phone

overheads as a result of verifying it against the received server identity and against

the recovered server identity included within the QR code.

 The implementation of the response-generation phase depends on the outcome of the

challenge-generation phase, along with the sharing of a common certificate for

proceeding with the response-generation process.

 With regard to the provision of a secure and consistent protocol with a unique

challenge, the server’s freshly generated nonce is utilised within the challenge-

generation phase to provide a dynamic nonce-based QR code. Furthermore, utilising

the mobile phone’s fresh nonce, to be combined with the QR code-recovered nonce

in the response-generation phase, contributes to connecting both sessions logically,

despite being physically separated. Thus, protocol security is achieved even if the

server nonce is compromised.

122

5 Evaluation

5.1 Introduction

Research results in formal protocol verification area showed that formal verification tools

have helped avoid standardising protocols with security defects [239]. Therefore, this chapter

aims at reliably evaluating and verifying the proposed Mobile-User-Authentication System

(MUAS) security protocols with respect to Man-in-the-Browser (MITB) attack by using the

Scyther security protocol verification tool [240]. However, formal verification of a security

protocol is performed with respect to a formal model [241]. A formal model comprises a

protocol model that presents how the protocol should behave using static description [41,

241], an execution model that formalises dynamic aspects in terms of traces [41, 241], an

adversary model that is derived from the protocol description and defined as a set of terms

known to the compromised agents [41, 241], and a specification of the exact security

properties that the protocol should satisfy [41, 241].

The organisation of this chapter is as follows. Section 5.2 provides an overview of both

security protocols constituting the proposed MUAS. Section 5.3 conducts a security and

performance evaluation through theoretical and implementation performance measurements,

respectively. The theoretical evaluation provides a detailed description of the protocols, and

justifies the corresponding messages within both protocols along with their contents with

respect to possible attacks. However, the implementation evaluation is conducted in terms of

computational and communication costs, with respect to the most related work. Section 5.4

introduces the adversary model of the proposed MUAS. Section 5.5 provides the mandatory

protocol specification, for performing the required verification process and generating the

results. Section 5.6 provides the verification results by applying the Scyther verification tool

on both protocols, along with a representative analysis of the compromised protocol, and an

in-depth analysis of the satisfied security properties. Section 5.7 concludes the findings of

the verification chapter.

123

5.2 MUAS Protocol Overview

In a world of insecure networks, cryptographic protocols play a significant role when

designing a secure authentication system by employing cryptography to achieve and satisfy

security properties [41, 242]. Likewise, cryptographic input values (freshly-generated nonce)

are considered indispensable for satisfying the security properties within secure protocols, as

they play an essential role in cryptographic security, such as in stream ciphers, block ciphers,

modes of authentications and message authentication codes [243]. Therefore, a combination

of both mechanisms were cautiously employed within the proposed MUAS to provide a

secure authentication protocol with respect to satisfying security properties [41].

The proposed approach circumvents the MITB capabilities through transitioning the

authentication mechanism to a new and detached medium that uses the mobile phone of the

client as the primary authentication device. Thus, a transaction can be carried out via the

mobile phone without submitting confidential information through an infected browser as

discussed in the future work in chapter 6. Therefore, the MUAS addresses the problem of the

MITB attack via two protocols: the challenge-generation protocol and the response-

generation protocol. The challenge-generation protocol starts with the untrusted computer

establishing an SSL/TLS communication channel with the server, thus generating a shared

secret key; security attributes exchanged between the untrusted computer and the server,

required information submitted by the untrusted computer and a specific security attribute

verified by the server to eventually generate the challenge, representing the basis behind the

transition to the response-generation protocol through utilising the visual channel.

The response-generation protocol starts with activating the mobile phone application,

capturing and decoding the challenge; establishing an SSL/TLS communication channel with

the server, generating a shared secret key; security attributes exchanged between the mobile

phone and the server; and response generated and sent to the server for verification. Figure

5.1 depicts the MUAS security protocol overview.

In terms of verification, there are three basic roles that constitute the system: browser 𝑩,

server 𝑺, and the mobile phone 𝑴. Although 𝑩 and 𝑴 represent different devices, they

represent the same client. Thus, they share the same digital certificate on different platforms,

124

denoted by 𝐶𝐸𝑅𝑇𝐶. Consequently, the public and secret key pair of the client on both

platforms are represented as 𝑝𝑘(𝐶)/𝑠𝑘(𝐶), respectively.

Figure 5.1: MUAS Security Protocol Overview

125

5.3 MUAS Security and Performance Evaluation

Chapters 3 and 4 presented the theoretical design and implementation outlines of the

proposed protocol, respectively. This section conducts and presents the results of evaluating

the proposed protocol from a theoretical and implementation point of view.

With respect to possible attacks, the theoretical performance measurement provides a

justification of the exchanged messages and their contents, along with the attached security

attributes and the employed cryptographic mechanisms. Whereas the implemented

performance measurement evaluates the proposed protocol by conducting a comparison

against the most related work in terms of computational and communication costs. In addition

to measuring the execution time of the protocol.

5.3.1Theoretical Performance Measurement

The challenge- and response-generation protocols are built on the basis of establishing

SSL/TLS communication channels between participants with mutual and server SSL-

certificate authentication, respectively, where the authenticity of the SSL-certificates is

verified via a certificate authority (CA). Consequentially, both protocols build up to establish

128-bit secret session keys 𝒌(𝑩, 𝑺) and 𝒌(𝑴, 𝑺) for AES encryption. A 128-bit key size is

sufficient enough to symmetrically encrypt and secure exchanged messages within both

protocols against adversaries and impersonators [244]. The AES algorithm is considered the

most popular symmetric cipher [157], due to its ability to encrypt an entire block of 128-bits

using key sizes of 128, 192 or 256-bits [157]. Unlike other symmetric ciphers, such as DES

and 3DES, which are slow and operate on small blocks with a single key size [157]. However,

in terms of encryption performance, speed, secure memory storage, flexibility, and efficiency

in hardware and software, AES surpasses both of them [165].

With regard to generating a secure protocol that satisfies the security properties, all

exchanged messages comprise an identity of the message originator as a proof-of-identity

and proof-of-origin. The identity is 64 bytes in size, which is constructed from the

Distinguished Name (DN) field values of the subject’s SSL-certificate [203-205]. Moreover,

fresh nonce are generated by both parties in both protocols to be included in all exchanged

126

messages to prevent inducing messages from previous sessions, avoid impersonators and to

rule out replay attacks.

5.3.1.1 Challenge-Generation Theoretical Measurement

The challenge-generation protocol represents the first phase of the MUAS protocol

verification process. It is responsible for forming and encrypting the contents of the QR code

image to be displayed on the web-browser as a challenge. In terms of verification, the

protocol consists of two roles: the client (browser) and the server (merchant), denoted by 𝑩

and 𝑺, respectively. Figure 5.2 depicts the Message Sequence Chart (MSC) [245] of the

challenge-generation protocol and shows the exchanged messages among the participants.

Taking the Public Key Infrastructure (PKI) and SSL/TLS handshake protocol into account,

both roles have mutually been authenticated via the SSL-certificate exchange. Hence, they

shared a secret session key 𝒌(𝑩, 𝑺). Moreover, the initial knowledge of each role includes its

own public/secret key pair, in addition to the public key of the other party.

127

Figure 5.2: Challenge-Generation Protocol

The following steps illustrate and justify the exchanged messages within the challenge-

generation protocol, along with their contents and algorithms used.

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏: ((𝑩, 𝒏𝒃, 𝒎𝒏)𝒌(𝑩,𝑺)) 𝑺

Whenever a client 𝑩 initiates a connection with a server 𝑺 via the browser, browser 𝑩 forms

the initiating message of the challenge-generation protocol to be sent to the server 𝑺, along

with the required information.

128

The message is composed of three elements: an identity (𝑩), a fresh browser nonce (𝒏𝒃) and

the requested mobile number (𝒎𝒏), which represents the foundation on which the rest of the

protocol is built.

The 𝒏𝒃 is sent back and forth within the first two messages of the challenge-generation

protocol to:

 Prevent Man-in-the-Middle (MITM) attacks via performing an 𝒏𝒃 handshake, and

 Prevent an adversary from impersonating the server.

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐: ((𝑺, 𝒏𝒃, 𝒏𝒔)𝒌(𝑩,𝑺)) 𝑩

Server 𝑺 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 for recovering and exploiting its contents

with regard to generating the complementary 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, thus serving the purpose

of ensuring server legitimacy via the nonce handshake. Once decrypted, 𝑺 verifies the user’s

registration by validating the recovered 𝒎𝒏 against the Mobile_Number field (primary key)

within the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒. Upon registration confirmation, 𝑺 validates the

recovered identity 𝑩 against the SSL-certificate of browser 𝑩 received during the SSL/TLS

handshake protocol. Thus, a new record for client 𝑩 is created within the 𝑪𝒍𝒊𝒆𝒏𝒕 − 𝑻𝒂𝒃𝒍𝒆,

where all subsequent session variables are saved in this record to be used within the response-

generation protocol. Following record 𝑩 creation, Server 𝑺 generates a fresh nonce (𝒏𝒔) to

be sent back and forth within the second and third messages of the protocol, including a server

nonce 𝒏𝒔 within the protocol messages to satisfy the following:

 Prevent MITM attacks via performing an 𝒏𝒔 handshake, and

 Prevent a client from submitting a message from a previous session, and

 Avoid malicious users impersonating the client.

Next, server 𝑺 saves the 𝒏𝒔 in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 within client 𝑩 record for later

verification-use in step 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒 within the response-generation protocol.

Eventually, the second message of the protocol is formed by server 𝑺 and sent to browser 𝑩.

The message is composed of the subject’s identity (𝑺), fresh server nonce (𝒏𝒔) and the

recovered browser nonce (𝒏𝒃), which is sent back to its originator, representing the crucial

step in ensuring the legitimacy of the 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 originator.

129

Upon sending 𝑪 − 𝑮_𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, 𝑺 generates an 𝑶𝑻𝑷 and sends it via SMS to the mobile

phone by exploiting the recovered mobile number 𝒎𝒏 from 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏. The SMS-

OTP will be submitted later as a means to ensure legitimacy of the submitted mobile number

𝒎𝒏.

 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑: ((𝑩, 𝒏𝒔, 𝑶𝑻𝑷)𝒌(𝑩,𝑺)) 𝑺

Browser 𝑩 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 for recovering and verifying the 𝒏𝒃

handshake, thus ensuring server legitimacy. Once decrypted, 𝑩 validates the recovered

identity 𝑺 against the SSL-certificate of server 𝑺 received during the SSL/TLS handshake

protocol.

Eventually, the third message of the protocol is formed by browser 𝑩 and sent to server 𝑺.

The message comprises the subject’s identity (𝑩), received 𝑶𝑻𝑷 and the recovered server

nonce (𝒏𝒔), which is sent back to its originator, representing the crucial step in ensuring the

legitimacy of 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 originator. Furthermore, the recovered server nonce (𝒏𝒔)

is included in the third message to ensure the legitimacy of the 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑

originator, in case the OTP has been eavesdropped.

𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒: (((𝑺, 𝒏𝒔), 𝒖𝒓𝒍)𝒑𝒌(𝑩)) 𝑩

Server 𝑺 decrypts the received 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 for recovering and exploiting its contents

with regard to generating 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒. Once decrypted, 𝑺 validates the recovered

identity 𝑩 against the SSL-certificate of client 𝑩 received during the SSL/TLS handshake

protocol.

Following 𝑩’s identity verification, server 𝑺 verifies the recovered 𝒏𝒔 and recovered 𝑶𝑻𝑷

against its original value generated by the server 𝑺 in step 𝑪 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐. After 𝑶𝑻𝑷

verification, server 𝑺 obtains the public key 𝒑𝒌(𝑪) of client 𝑩 via PKI, forms the final

message of the challenge-generation protocol and encrypts it with 𝒑𝒌(𝑪).

130

Eventually, the QR code image is generated and sent to browser 𝑩 to be captured by the

mobile phone 𝑴. The QR code encrypted contents comprises the subject’s identity (𝑺), its

original server nonce (𝒏𝒔) and the response end-point (𝒖𝒓𝒍).

5.3.1.2 Response-Generation Theoretical Measurement

The response-generation protocol represents the second phase of the MUAS protocol

verification process. It complements the first phase of the MUAS, yet in a different

communication channel to finally generate the response via a mobile phone application.

In terms of verification, the response-generation protocol comprises two roles: the server and

the mobile phone, denoted by 𝑺 and 𝑴, respectively. Figure 5.3 depicts the MSC [245] of the

response-generation protocol and shows the exchanged messages among the participants.

Taking the PKI and SSL/TLS handshake protocol into account, server 𝑺 is authenticated via

its SSL-certificate exchange. Hence, sharing a secret session key 𝒌(𝑴, 𝑺) with the mobile

phone 𝑴. Moreover, the initial knowledge of each role includes its own public/private key

pair, in addition to the public key of the other party.

131

Figure 5.3: Response-Generation Protocol

The following steps illustrate and justify the exchanged messages within the response-

generation protocol, along with their contents and algorithms used.

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏: ((𝑴, 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝒎𝒏, 𝑰𝑴𝑬𝑰)𝒌(𝑴,𝑺)) 𝑺

132

Following capture of the QR code, decryption and contents recovering, mobile phone 𝑴

initiates a connection with server 𝑺 via the recovered response end-point 𝒖𝒓𝒍. Mobile phone

𝑴 forms the initiating message of the response-generation protocol to be sent to the server 𝑺

implicitly.

The message comprises four elements: an identity (𝑴), a fresh mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆),

an extracted mobile number (𝒎𝒏), and the extracted IMEI (𝑰𝑴𝑬𝑰). The 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 is sent

back and forth within the first two messages of the response-generation protocol to:

 Prevent replay attacks via performing an 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 handshake, and

 Avoid malicious users impersonating the server.

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐: ((𝑺, 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝒏𝒔𝟐)𝒌(𝑴,𝑺)) 𝑴

Server 𝑺 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 for recovering and exploiting its contents

with regard to generating the complementary 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, serving the purpose of

ensuring server legitimacy. Once decrypted, 𝑺 verifies the user’s registration by validating

the recovered 𝒎𝒏 against the Mobile_Number field (primary key) within the

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒. Upon registration confirmation, the recovered 𝑰𝑴𝑬𝑰 is verified

against the registered International Mobile Equipment Identity number 𝑹𝒆𝒈_𝑰𝑴𝑬𝑰 field

within the same registered user in the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑_𝐶𝑙𝑖𝑒𝑛𝑡𝑠 𝑇𝑎𝑏𝑙𝑒.

Following the 𝒎𝒏 and 𝑰𝑴𝑬𝑰 verification, server 𝑺 generates a fresh nonce (𝒏𝒔𝟐) to be sent

back and forth within the second and third messages of the protocol, including a server nonce

𝒏𝒔𝟐 within the protocol messages to satisfy the following:

 Prevent an adversary from impersonating the client,

 Prevent a client from submitting a message from a previous session, and

 Prevent replay attacks via performing an 𝒏𝒔𝟐 handshake.

Eventually, the second message of the protocol is formed by server 𝑺 and sent to the mobile

phone 𝑴. The message comprises the subject’s identity (𝑺), fresh server nonce (𝒏𝒔𝟐) and

the recovered mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆), which is sent back to its originator, representing

the crucial step in ensuring the legitimacy of 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 originator.

133

𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑: ((𝑴, 𝒏𝒔𝟐, 𝒉𝒂𝒔𝒉𝟏)𝒌(𝑴,𝑺)) 𝑺

Mobile phone 𝑴 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐 for recovering and exploiting its

contents with regard to generating the complementary 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑, serving the

purpose of ensuring client legitimacy. Once decrypted, 𝑴 validates the recovered identity 𝑺

against the SSL-certificate of server 𝑺 received during the SSL/TLS handshake protocol and

against the QR code-recovered server identity (𝑺).

Once the recovered mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆) has been verified, mobile phone 𝑴 appends

the 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 with the recovered 𝒏𝒔 received upon capturing and decoding the QR code

contents. Next, a one-way hash is applied on the appended result, thus generating the

response:

𝑚𝑎𝑐𝑟𝑜 ℎ𝑎𝑠ℎ1 = ℎ𝑎𝑠ℎ(𝑛𝑠, 𝑛_𝑚𝑜𝑏𝑖𝑙𝑒).

Eventually, the third message of the protocol is formed by mobile phone 𝑴 and sent to server

𝑺. The message comprises the subject’s identity (𝑴), hash result (𝒉𝒂𝒔𝒉𝟏) and the recovered

server nonce 𝒏 (𝒔𝟐), which is sent back to its originator, representing the crucial step in

ensuring the legitimacy of the 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 originator.

 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒: ((𝑺, 𝒏_𝒎𝒐𝒃𝒊𝒍𝒆, 𝑨𝒖𝒕𝒉_𝑹𝒆𝒔𝒖𝒍𝒕)𝒌(𝑴,𝑺)) 𝑴

Server 𝑺 decrypts the received 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑 for recovering and exploiting its contents

with regard to validating the received response. Once decrypted, 𝑺 validates the recovered

identity 𝑴 against the user identity field (primary key) within the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒.

Once the recovered server nonce 𝒏𝒔𝟐 has been verified, the server will ′𝑳𝑶𝑶𝑲𝑼𝑷′ the record

𝑴 in the 𝐶𝑙𝑖𝑒𝑛𝑡 − 𝑇𝑎𝑏𝑙𝑒 to find the server nonce 𝒏𝒔 field and append it with the recovered

𝒏_𝒎𝒐𝒃𝒊𝒍𝒆 from the 𝑹 − 𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏. Next, a one-way hash (𝒉𝒂𝒔𝒉𝟐) is applied to the

appended result to finally be compared against the recovered 𝒉𝒂𝒔𝒉𝟏 from 𝑹 −

𝑮 _𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑:

𝑚𝑎𝑐𝑟𝑜 ℎ𝑎𝑠ℎ2 = ℎ𝑎𝑠ℎ(𝑛𝑠, 𝑛_𝑚𝑜𝑏𝑖𝑙𝑒);

Finally, the fourth message is formed by server 𝑺 and sent to mobile phone 𝑴. The message

comprises the subject’s identity (𝑺), authentication result (𝑨𝒖𝒕𝒉_𝑹𝒆𝒔𝒖𝒍𝒕) and the recovered

134

mobile nonce (𝒏_𝒎𝒐𝒃𝒊𝒍𝒆) that is utilised to prevent replay attack and to ensure the

legitimacy of the message originator.

5.3.2Implementation Performance Measurement

When implementing the challenge- and response-generation protocols, it was taken into

consideration that security attributes are attached to the data required by the authentication

system to be exchanged via the established SSL/TLS communication channel. This affected

the computational and communication costs in terms of the number of exchanged messages

between participants and the size of each message in bytes.

5.3.2.1 Computational Cost Measurement

The constraint of developing a fast and secure authentication system has been considered

while designing the protocol; hence, the protocol comprises security-related functions along

with simple and light-weight functions.

With regard to satisfying the security properties, random number generators were executed

twice in both protocols by both participants to represent nonce for securing the protocol

against impersonators and malicious users, as well as to prevent replay attacks. It was also

executed within the challenge-generation protocol for generating an OTP. Moreover, light-

weight hash functions were executed once in each protocol, where the first hash is used as a

reference for verifying the received response, while the second hash represents the generated

response. In terms of execution speed, all exchanged messages were symmetrically

encrypted, as expensive public key encryption was used only once in the challenge-

generation protocol to be decrypted in the response-generation protocol. Table 5.1 shows a

comparison between our protocol and the most related protocols in terms of the number of

performed operations in each protocol.

Table 5.1: Performance comparison between MUAS protocol and the most related work

 Phase Hash HMAC Rand

No. Gen.

Shared

Key Gen.

P-key

Encrypt

S-key

Encrypt

QR

code

Gen.

 Challenge Gen.

-

-

2 (nonce)

1 (OTP)

-

1

Comm.

encrypted

1

135

MUAS

Protocol

Response Gen.

1

-

2 (nonce)

-

-

Comm.

encrypted

-

Response Verify

1

-

-

-

-

Comm.

encrypted

-

OTP

calculated

from QR

code [200]

Challenge Gen.

-

-

2

(random

value,

random

length)

-

1

Comm.

encrypted

1

Response Gen.

1

-

-

-

-

Comm.

encrypted

-

Response Verify

1

-

-

-

-

Comm.

encrypted

-

Snap2Pass

[201]

Account Creation

(Challenge Gen.)

-

-

-

1

-

Comm.

encrypted

1

Challenge Gen.

-

-

1

-

-

Comm.

encrypted

1

Response Gen.

-

1

-

-

-

Comm.

encrypted

-

Response Verify

-

1

-

-

-

Comm.

encrypted

-

2-clickAuth

[130]

Account Creation

(Challenge Gen.)

-

-

-

1

1

-

1

Challenge Gen. - - 1 - - - 1

Response Gen.

(QR code)

-

1

-

-

-

-

1

Response Verify - 1 - - - - -

From Table 5.1, our protocol generates the most random numbers, representing the fresh

nonce that is included within exchanged messages as a means to satisfy security properties,

which is required for securing protocols [41]. Although the computational cost of our

protocol is higher in terms of random number generation than the work in [200], Snap2Pass

[201] and 2-clickAuth [130]; however, a trade-off was made with respect to protocol security.

In terms of energy consumption, a comprehensive analysis of the energy requirements of a

wide range of cryptographic algorithms has been presented in [246]. The study showed that

energy consumption of the hash and MAC algorithms consumes the least energy of all

cryptographic algorithms. Therefore, our protocol employed the simple and light-weight hash

algorithm in the response generation and verification, which is similar to the Snap2Pass [201]

and 2-clickAuth [130] that employed the computation-intensive hash-based MAC (HMAC).

The only difference is that the HMAC requires an established secret key between participants,

which is accomplished within the registration phase in theSnap2Pass and 2-clickAuth.

Whereas the MUAS participants do not share any secret keys, thus a hash algorithm is used.

136

On the other hand, our protocol, [200], and the 2-clickAuth [130] employed the expensive

public key encryption once to secure the QR code contents; whereas the QR code contents

of Snap2Pass [201] are not encrypted, which is considered a weak point in the account

creation phase due to the risk of peepers. Furthermore, exchanged messages within all

proposed protocols, except for 2-clickAuth [130], are symmetrically encrypted due to

executing over the SSL/TLS handshake protocol.

5.3.2.2 Communication Cost Measurement

Communication costs refer to the number of exchanged messages between the client and the

server in both protocols, along with the size of each message in bytes. The size of each

message has been calculated according to the size of the parameters and the cryptographic

algorithms’ outputs, which are as follows:

 User ID: represented by the 64 bytes DN, which is used to identify the owner of the

certificate. The DN is made up of: common name, organisational unit, organisation,

locality, state or province, and country name [205].

 Nonce: cryptographic nonce is of size 32 bytes (256-bits). It is generated using

Fortuna PRNG.

 Hash-256: the function’s maximum input size is 264 − 1, and it generates a hash of

fixed length that is 32 bytes (256-bits).

 Symmetric key: the established shared secret key used for symmetrical encryption

of size 128-bits.

 RSA key: used for QR code encryption of size 245 bytes (1960-bits).

Table 5.2 compares our protocol and the most related protocols in terms of the number and

size of exchanged messages in each protocol.

Table 5.2: Comparison of communication costs between MUAS protocol and other relevant protocols

 Phase No. of

Message

s

Size of Messages

MUAS

Protocol

Challenge Gen. 4 [Msg1- Msg4: 172/ 216/ 172/ bytes] (SSL)

[RSA encrypted QR code: 344 bytes]

Response Gen. 4 [Msg1- Msg4: 216/ 216/ 216/ 172/ bytes]

Challenge Gen. 2 [PKI_UserID: 108 bytes] (SSL)

137

OTP

calculated

from QR

code [200]

[RSA encrypted QR code: 172 bytes]

Response Gen. 1 [OTP: 24 bytes] (SSL)

Snap2Pass

[201]

Account Creation 2 [Username: 24 bytes] (SSL)

[QR code encoded challenge: 71 bytes]

Challenge Gen. 2 [Session ID, Nonce: 44 bytes] (SSL)

[QR code encoded challenge: 51 bytes]

Response Gen. 2 [QR code encoded challenge: 51 bytes]

[Authentication result: 5 bytes]

2-clickAuth

[130]

Account Creation 1 [RSA encrypted key barcode: 172 bytes]

Challenge Gen. 1 [QR code encoded challenge: 128-bit]

Response Gen. 1 [QR code encoded response: 128-bit]

From Table 5.2, our protocol exceeds other protocols in terms of the number of exchanged

messages and their sizes. This can be justified by the objective of establishing a secure

authentication system against adversaries and replay attacks. Cryptographic security

attributes are included within all messages, along with the identities of the sender as a means

for identity verification.

Another reason for having more messages than Snap2Pass [201], 2-clickAuth [130] and [200]

lies within discarding the first challenge-generation protocol to initiate a new and detached

protocol for response generation. The second protocol follows the same security measures

for developing a secure protocol that satisfies the required security properties for adversary

prevention. Therefore, more messages are involved within the protocol that includes

cryptographic nonce and identities along with the generated response.

5.3.2.3 Execution Time Measurement

Measuring the execution times for both phases of the MUAS is based on the formation and

cryptography of each message within the protocol. Random runs have been executed multiple

times to calculate the average run time for each protocol. Tables 5.3 and 5.4 show the total

execution times for each run and the average run time for the entire protocol. For the

participants, it also shows the average time to form and encrypt each message being sent

within the protocol as well as the average run time to decrypt the received message.

138

Table 5.3: Execution Time of Challenge Generation Protocol

Table 5.3 contains four columns. The first column, 𝑭𝒐𝒓𝒎 − 𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 ,

represents the process of forming the first message within the challenge generation protocol.

This includes receiving user-input, extracting the sender’s identity, generating the

cryptographic nonce, and encrypting the message. The rest of the columns include the

processes of decrypting the received messages to form the subsequent messages. The average

execution times for 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏, 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟐, 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟑, and 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟒 are 0.02, 0.01,

0.01, and 0.06 seconds, respectively. The average run time for the entire protocol is 13.81

seconds.

Challenge-

Generation

Form-

Encrypt

Message1

Decrypt

Message1 &

Form-Encrypt

Message2

Decrypt

Message2 &

Form-Encrypt

Message3

Decrypt

Message3 &

Form-Encrypt

Message4

Total

Run

Time

(sec)

Run1 Client 0.016 - 0.016 - 13.64

Server - 0.015 - 0.047

Run2 Client 0.016 - 0.015 14.14

Server - 0 0.063

Run3 Client 0.031 0.016 15.18

Server 0.016 0.078

Run4 Client 0.016 0.015 14.07

Server 0.016 0.063

Run5 Client 0.015 0.015 12.15

Server 0.016 0.062

Run6 Client 0.016 0 11.75

Server 0 0.062

Run7 Client 0.016 0.016 12.32

Server 0.015 0.063

Run8 Client 0.016 0 13.98

Server 0.016 0.047

Run9 Client 0.016 0.016 16.54

Server 0.015 0.062

Run10 Client 0.016 0.016 14.28

Server 0.015 0.063

Average run time

for forming

messages (sec)

0.02

0.01

0.01

0.06

13.81

139

Table 5.4: Execution Time of Response Generation Protocol

Table 5.4 also contains four columns. The first column, 𝑭𝒐𝒓𝒎 − 𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑴𝒆𝒔𝒔𝒂𝒈𝒆𝟏 ,

represents the process of forming the first message in the response generation protocol.

Unlike the challenge generation protocol that requires the user to submit their mobile number

and one-time-password, this protocol does not require any user-input. Thus, the challenge

generation phase requires more time, as it is an input-based protocol that requires the client

to submit information.

Response-

Generation

Form-

Encrypt

Message1

Decrypt

Message1 &

Form-Encrypt

Message2

Decrypt

Message2 &

Form-Encrypt

Message3

Decrypt

Message3 &

Form-Encrypt

Message4

Total

Run

Time

(sec)

Run1 Client 0.0023 0.0040 0.1525

Server 0.06 0.03

Run2 Client 0.0045 0.0024 0.1985

Server 0.06 0.03

Run3 Client 0.0045 0.0023 0.1331

Server 0.05 0.03

Run4 Client 0.0023 0.0023 0.0862

Server 0.03 0.02

Run5 Client 0.0045 0.0022 0.1502

Server 0.06 0.03

Run6 Client 0.0023 0.0024 0.1318

Server 0.05 0.03

Run7 Client 0.0024 0.0024 0.1498

Server 0.06 0.03

Run8 Client 0.0026 0.0025 0.1042

Server 0.05 0.02

Run9 Client 0.0049 0.0034 0.1266

Server 0.05 0.03

Run10 Client 0.0023 0.0025 0.1636

Server 0.06 0.05

Average run time

for forming

messages (sec)

0.0033

0.0529

0.0026

0.0298

0.1397

140

5.4 MUAS Adversary Model

Based on the described MUAS model in Chapter 1, this section presents the adversary model

of our thesis. It is assumed that trusted agents represent both the authentication server and

the mobile device of an honest end-user. Thus, an attacker cannot access any secret

information within both parties. However, it is assumed that the adversary has complete

control over the user’s browser, operating on the internet browser application-level, thus

having the potential to learn and manipulate any data entered, received or sent through the

compromised browser. In addition, the adversary can tamper with data of an outgoing-form

that is submitted to the server. With the adversary residing in the browser, any user input and

security attributes generated by the browser or received from the server with respect to the

protocol security are not secure.

Although SSL/TLS symmetrically encrypts exchanged messages, it has no effect on securing

the data from the adversary. The data is encrypted and decrypted in the transport layer, which

is below the windows socket application programming interface (API). Thus, the adversary

modifies the incoming data after decryption and the outgoing data before encryption [1]. The

adversary can simply circumvent the encryption and decryption within the SSL/TLS

protocol. Furthermore, the security measures of the public key infrastructures can be

circumvented as well [14]. In a nutshell, it is assumed the adversary has compromised the

client PC (browser), thus able to manipulate all incoming and outgoing messages.

5.5 MUAS Protocol Specification

Considering the required security properties of a protocol, the behaviour of each role within

both the challenge- and response-generation protocols is mandatory. Therefore, specification

of both protocols are provided in this section, which delivers a description of each protocol

in an abstract manner. The specification includes the initial knowledge of the protocol that is

required for role execution along with function declarations, fresh values generation, and

global constants and variables definitions [41].

141

The following subsections describe both protocols in an expressive specification language,

paving the way for justifying and analysing the security properties.

5.5.1Challenge-Generation Protocol Specification

The initial challenge-generation protocol comprises two roles: the browser (𝑩) and the server

(𝑺), where each role is specified as a sequence of events by using static descriptions, such as

send and receive messages. The general initial knowledge required for the challenge-

generation (𝑪_𝑮) protocol execution is presented in List 5.1.

List 5.1: General Initial Knowledge of Challenge-Generation.

The browser role specification is presented in List 5.2, which models the initiating browser-

side 𝑩 role (client-side) of the challenge-generation (𝑪_𝑮) protocol. Alongside the

specification, initial knowledge of the browser role is included, specifying its freshly

generated nonce, along with its public/secret key pair, public key of the corresponding party

and their shared secret key.

142

List 5.2: Specification of Server Role (B) in the Challenge-Generation Protocol.

The corresponding server role specification is presented in List 5.3, which models server 𝑺

role (merchant-side) of the challenge-generation (𝑪_𝑮) protocol. Alongside the specification,

initial knowledge of the server role is included, specifying its freshly generated nonce, its

input, along with its public/secret key pair, public key of the corresponding party and their

shared secret key.

List 5.3: Specification of Browser Role (S) in the Challenge-Generation Protocol.

5.5.2Response-Generation Protocol Specification

The response-generation protocol comprises two roles: the server (𝑺) and the mobile-phone

(𝑴). Along with the send and receive sequence events, the specification includes internal

computations that are represented by pattern match events. The general initial knowledge

required for response-generation (𝑹_𝑮) protocol execution is presented in List 5.4.

List 5.4 Response-Generation Initial Knowledge

143

The mobile phone specification is presented in List 5.5, which models the mobile phone (𝑴)

(client-side) role of the response-generation (𝑹_𝑮) protocol. Alongside the specification,

initial knowledge of the mobile phone role is included, specifying its freshly generated nonce,

its global constant, along with its public/secret key pair, public key of the corresponding party

and their shared secret key. In addition, a declared hash function that represents the basis for

the response-generation protocol is included.

List 5.5: Specification of Mobile Phone Role (M) in the Response-Generation Protocol

The corresponding server role specification is presented in List 5.6, which models the server

(𝑺) role of the response-generation (𝑹_𝑮) protocol. Alongside the specification, initial

knowledge of the server role is included, specifying its freshly generated nonce, its global

144

constant, along with its public/secret key pair, public key of the corresponding party and their

shared secret key.

List 5.6: Specification of Server Role (S) in the Response-Generation Protocol

5.6 MUAS Protocol Execution and Verification

Results

Upon specifying all the details of both protocols, which include justifying the corresponding

messages along with their contents, introducing the possible adversary model and presenting

145

the formal protocol description, this section maps all the previously discussed details into the

Scyther verification tool for execution and generation of the verification results for both

protocols.

In the previous section, static description of how both protocols should behave were

formalised. Upon protocol execution, dynamic aspects are generated. One of which is the

agent model that is responsible for executing roles of the protocol. An agent model is based

upon closed world assumption, where an honest agent executes the protocol based on the

static protocol description. In addition, an agent may execute any number of roles in parallel.

Executing a role turns a role specification into a run. This process is called instantiation.

Whenever a role is instantiated, a unique run identifier is assigned to each run. Furthermore,

role names are bind to the names of actual agents executing the roles, and fresh values

generated by different runs are appended to the identifiers of their runs. Therefore, the set of

run terms are different than the set of terms in role specification, where fresh values, roles,

and variables that are local to a run are unique via appending them with its run identifier.

The verification mechanism generates the results through translating the protocol description

into a Security Protocol Description Language (SPDL) as a means for defining the tool’s

input. An automated verification and a representative analysis of the security claim events

are produced as its output, which will be discussed and analysed with respect to the required

security properties.

5.6.1Security Properties

Security properties are an indispensable part of all secure protocols. Knowing the properties

to be satisfied is fundamental for a protocol to be considered [41, 247]. According to Roscoe

[248], security properties are categorised into intentional and extensional properties.

Intentional security properties are motivated by the protocol structure, whereas extensional

security properties concern the accomplishment of the protocol.

This section discusses and analyses the essential properties that are verified by a formal

verification tool. Secrecy and several forms of authentication are the basic verified properties,

formalised through integration into the protocol specification via claim events.

146

5.6.1.1 Secrecy/Confidentiality

The secrecy security property ensures the confidentiality of any specified role term from

being exposed to an adversary, and that they are available to authorised parties only. This

property is satisfied if, for each assigned run, where its role is mapped to an honest agent

communicates with other honest agents [41].

5.6.1.2 Authentication

Based on the employed Scyther verification tool, three forms of authentication are discussed

and analysed in this section. The authentication forms are: aliveness, synchronisation and

message agreement.

5.6.1.2.1 Aliveness

The aliveness security property is an intentional property that assures an honest intended

communicating partner has executed some events. This property is satisfied whenever an

agent executes a role specification up to the claim event; hence, its intended communicating

partner has been running the protocol and executed some events, and therefore it is

considered Alive [41]. There are four forms of aliveness: weak alive, weak alive in the correct

role, recent alive and recent alive in the correct role [41].

If agents execute their roles up to their claim events, and their intended communicating

partners are considered honest, then the intended communicating partner has executed an

event; thus, the weak aliveness property is satisfied [41, 247]. However, satisfying the weak

aliveness property is not enough, as it only verifies that the intended communicating partner

is alive [41, 247], while he/she may not be running within the same protocol [249]. Plus, the

intended communicating partner might not have been running the protocol recently [249].

Therefore, it is preferable to ensure the intended communicating partner is running within

the same protocol, which satisfies weak aliveness in the correct role [41].

However, weak aliveness in the correct role does not say whether an event has been executed

before, after or during the run that makes the claim [41, 247]. Thus, an interpretation of

recentness can be given through the recent aliveness property [247]. This property is satisfied

within a protocol if the intended communicating partner has recently sent messages before

the claim events, and after other events within the same run in which the claim event occurs

[41]. Similarly to weak aliveness in the correct role, it is preferable to ensure the intended

147

communicating partner is running within the same protocol, which satisfies recent aliveness

in the correct role [41]. Furthermore, the recent aliveness property can be extended via the

weak agreement property, which assures the intended communicating partner has agreed to

running the protocol with the initiator.

Figure 5.4 shows the Aliveness hierarchy, where any protocol satisfying recent aliveness also

satisfies weak aliveness [41], and any protocol satisfying recent aliveness in the correct role

also satisfies weak aliveness in the correct role [41].

Figure 5.4: Aliveness hierarchy

5.6.1.2.2 Synchronisation

The synchronisation security property is a strong intentional property, requiring all

communication messages along with their contents to occur exactly as specified by the

protocol description, with respect to the order of communicating events [41, 250, 251]. As

agents are capable of executing multiple roles, and a different agent can execute the same

role, it is mandatory to identify which run performs which role. Thus, synchronisation heavily

depends upon a cast function that maps each claim and each role into a run identifier [41,

247, 252]. There are two forms of synchronisation: non-injective synchronisation and

injective synchronisation [41, 247, 252]. Figure 5.5 shows the synchronisation hierarchy,

where any protocol satisfying injective synchronisation also satisfies non-injective

synchronisation [41].

148

According to the non-injective synchronisation definition in [41, 247, 252], this property is

satisfied when correspondence between the structures in the trace-level and the protocol

descriptions are met.

Figure 5.5: synchronisation hierarchy

5.6.1.2.3 Message Agreement/Integrity

The agreement security property is an extensional property that relates to the effect of the

protocol after execution [41, 247]. It requires that all contents of the corresponding messages

have the exact contents as specified by the protocol description. Upon successful protocol

execution, the participants agree upon the contents of the variables, as specified by the

protocol description [41, 241, 247, 250]. The agreement property is very similar to

synchronisation, except for placing less restrictions on event ordering. Thus, there are two

forms of agreement: non-injective agreement and injective agreement [41]. According to

figure 5.5, any protocol satisfying injective synchronisation also satisfies injective and non-

injective agreement [41].

5.6.2Scyther Verification Tool

There are several security protocol verification tools based on the formal method approach.

A formal method approach assumes perfect cryptography [253, 254], verifies a secure

149

protocol within the existence of an adversary and provides representative analysis to help

understand how the attack violates the proposed protocol to be rectified [254]. Based on the

comparative analysis of the formal method model checking tool, it was found that Scyther is

considered one of the most efficient tools among many formal model checking tools, in terms

of public availability, flawed protocol falsification, bounded and unbounded verification, and

assured termination [254]. This is in addition to its ability of providing an automated claim

verification and generating a representative finite set of traces, which includes the anticipated

correct behaviour and a set of all possible attack violations [253].

In terms of verification speed, Scyther can run the protocol for an unbounded number of

sessions in less than one second. It also offers the possibility of bounded model checking,

where inability to reach an unbounded correctness exists, thus guaranteeing protocol

termination [241, 255, 256]. Scyther allows protocol designers to spot protocol attack

violations through complete characterisation of each role, thus generating representative and

self-explanatory attack graphs for each claim [253-255]. Therefore, the Scyther verification

tool was found to be the most appropriate for verifying the required security properties; thus,

it was considered in this chapter for verifying the proposed protocols.

5.6.3Challenge-Generation Protocol Verification

This section discusses the application of the Scyther formal verification tool to the challenge-

generation protocol after modelling and applying the adversary model. Based on the protocol

description in section 5.5.1, the expected correct behaviour of the protocol is presented along

with the actual verification results generated after applying the adversary model. Finally,

from the infinite set of all traces, the finite possible attack patterns were manually

investigated to be categorised into four patterns that can attack the protocol in the case of a

compromised browser.

5.6.3.1 Adversary Modelling

Based on the adversary model presented in section 5.4, which has complete control over the

browser through its ability to intercept and manipulate any information a user submits or

150

receives in real time, therefore it is assumed that role 𝑩 within the challenge-generation

protocol is infected with the MITB attack.

As the MITB attack can bypass the encryption and decryption processes performed in the

transport layer [1, 14]; therefore, the MITB can intercept and manipulate all exchanged

cryptographic messages and their contents within the challenge-generation protocol, thus

failing to satisfy the essential properties required by the proposed authentication system for

both role.

For simulating the effect of the MITB attack within the browser 𝑩 role, the adversary is

modelled via revealing the shared secret key used for encrypting all exchanged messages

within the challenge-generation protocol. In Scyther, this can be translated by revealing the

actor’s long-term key 𝑲(𝑩, 𝑺), which represents the long-term symmetric key shared

between the browser 𝑩 and the server 𝑺. Moreover, Scyther was set to find all possible attacks

within both protocols.

5.6.3.2 Automated Challenge-Generation Verification

Although the proposed authentication system is built with a specific objective, there is still

the slightest possibility of an honest agent representing the browser. Therefore, other possible

attacks were considered, which urged the development of a secure protocol that employs

cryptographic attributes to satisfy the security properties. Figure 5.6 and 5.7 shows the correct

behaviour of the protocol execution in the case of an honest agent, with respect to both roles.

As protocol execution is represented in terms of reachable states, both figures show all the

states within role 𝑺 and role 𝑩 that are reached during the protocol execution. A proper

description of figure 5.6 is provided below, which includes the assigned runs to each role,

agent names running each role, fresh values and their corresponding variables. The same

applies to figure 5.7, with variations in variable names.

151

Figure 5.6: Correct Behavior of role B in the Challenge Generation Protocol

Figure 5.7: Correct Behavior of role S in the Challenge Generation Protocol

152

 The trace pattern in figure 5.7 shows that each instantiated role is assigned to the

unique run identifier.

𝑩 𝑹𝒖𝒏𝟏

𝑺 𝑹𝒖𝒏𝟐

 Unlike the Message Sequence Chart (MSC) of the challenge generation protocol

shown in figure 5.2, this figure shows that role names (B, S) are bind to the names of

actual agents that are executing the roles (𝐵#2, 𝑆#2). Thus, names of actual agents

substitute role names in the exchanged messages within the trace pattern.

{ 𝑩 𝑩#𝟐, 𝑺 𝑺#𝟐 }

 Furthermore, fresh values are generated by both roles (𝒏𝒃, 𝒏𝒔) are appended to the

identifiers of their runs (𝑹𝒖𝒏𝟏, 𝑹𝒖𝒏𝟐). The same applies to constant (𝒎𝒏) and the

(𝒐𝒕𝒑) that is a defined user type.

𝑹𝒖𝒏𝟏 𝒏𝒃 𝒏𝒃#𝟏

 𝑹𝒖𝒏𝟏 𝒎𝒏 𝒎𝒏#𝟏

 𝑹𝒖𝒏𝟏 𝒐𝒕𝒑 𝒐𝒕𝒑#𝟏

 𝑹𝒖𝒏𝟐 𝒏𝒔 𝒏𝒔#𝟐

As our protocol employs fresh values of type Nonce, agents running recipient roles

use variables to store received terms. Upon sending these values, the fresh nonce

𝒏𝒃#𝟏 generated by role 𝑩 is stored in variable 𝒏𝒃#𝟐 on the server side, and fresh

nonce 𝒏𝒔#𝟐 generated by role 𝑺 is stored in variable 𝒏𝒔#𝟏 on the browser side.

 Var 𝒏𝒃#𝟐 𝒏𝒃#𝟏

 Var 𝒏𝒔#𝟏 𝒏𝒔#𝟐

Similarly, upon sending the constant (𝒎𝒏#𝟏) and the user-defined (𝒐𝒕𝒑#𝟏) from

𝑹𝒖𝒏𝟏 to 𝒏𝟐 , the constant 𝒎𝒏#𝟏 is stored in variable 𝒎𝒏#𝟐, and the user-defined

𝒐𝒕𝒑#𝟏 is stored in variable 𝒐𝒕𝒑#𝟐.

 Var 𝒎𝒏#𝟏 𝒎𝒏#𝟐

153

 Var 𝒐𝒕𝒑#𝟏 𝒐𝒕𝒑#𝟐

Upon the above configurations, the protocol starts exchanging the messages based on the

protocol specifications.

On the other hand, applying the effects of the MITB attack on the protocol causes the

Scyther’s automatic claim verification process to scan a proof tree for all possible protocol

behaviours to return the results of the verification process. The size of the bounded proof tree

ensures the verification process terminates and returns the results before reaching the upper

bound [257]. In our case, the challenge-generation protocol was verified for bounded and

unbounded verification, where the bounded verification was set to the default value of the

tool, namely 5. However, verification was reached and the result was generated as described

in Figure 5.8.

Figure 5.8: Challenge-generation protocol verification results

Figure 5.8 shows the result window of both roles within the protocol, in which the secrecy of

the freshly generated numbers by browser 𝑩 and server 𝑺, denoted by 𝒏𝒃 and 𝒏𝒔,

154

respectively, failed to be satisfied in both roles. Moreover, both roles of the challenge-

generation protocol failed to satisfy all forms of the authentication property, namely:

aliveness, weak-agree, non-injective agreement and non-injective synchronisation.

5.6.3.3 Automated Challenge-Generation Analysis

Upon simulating the MITB effects and setting bounded or unbounded verification

parameters, the protocol is analysed through a complete characterisation of each role. Thus,

for each role, a finite pattern representation is efficiently generated from an infinite set of

traces that contain an instance of that role [253, 256, 258]. The complete characterisation of

the challenge-generation protocol is shown in Figure 5.9.

Figure 5.9: Complete characterization of the challenge-generation protocol

By manually reviewing these patterns, it was found that for each role, one pattern represents

the correct behaviour as seen in figure 5.6 and 5.7, while the rest of the patterns represent all

possible security attacks on the challenge generation protocol. The representative attack

patterns show that: (a) the protocol can suffer from attackers that compromise exchanged

messages, (b) an adversary can run the protocol via impersonating the communicating

partner, (c) multiple instances of different roles are running the same protocol via an

adversary and (d) multiprotocol attacks can occur as well. An example of each possible attack

graph is shown in Figures 5.10(a), 5.11(b), 5.12(c) and 5.13(d).

155

Figure 5.10: An attack graph of the challenge-generation protocol (a)

Figure 5.10 shows an adversary intercepting exchanged messages, and manipulating their

contents. In this figure, the adversary compromised 𝑴𝟏 that is sent by browser 𝑩, and

replaced the submitted mobile number 𝒎𝒏 by another number before submitting the message

to server 𝑺. This prevents the legitimate client from receiving the SMS-OTP, hence disabling

the protocol.

156

Figure 5.11: An attack graph of the challenge-generation protocol (b)

Upon session key reveal, the adversary can intercept and decrypt exchanged messages. Thus,

the identity of the sender can be compromised as all exchanged messages include the client's

identity. Figure 5.11 shows the adversary in the process of impersonating role B and

communicating with server S. The adversary utilises the browser’s compromised identity to

construct M1 and sends it to the server, thus causing server S to believe that he is

communicating with the legitimate client B.

157

Figure 5.12: An attack graph of the challenge-generation protocol (c)

As agents can execute any number of runs in parallel, in an interleaved manner. Figure 5.12

shows that agent 𝑺#𝟐 is executing the same 𝑺 role in two different runs (𝑹𝒖𝒏𝟐, 𝑹𝒖𝒏𝟑). In

this figure, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) initiates a connection with 𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), whose response to

𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) has been intercepted and manipulated by an adversary that utilises the

browser nonce 𝒏𝒃#𝟏 for impersonating a browser and trying to initiate a new connection with

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺). Thus, the second protocol execution occurs between 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) and

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺). Hence, 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺) responds back with the browser nonce 𝒏𝒃#𝟏 and a

new server nonce 𝒏𝒔#𝟑 to 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩), assuming that the received response is from

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺). Upon receiving the response and verifying the browser nonce 𝒏𝒃#𝟏, the

response of 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) is intercepted and manipulated by the adversary to get the server

nonce 𝒏𝒔#𝟑. Finally, the adversary sends the manipulated response to 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺)

instead of 𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺). Hence, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) is running the protocol with two

different runs (𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑺)).

158

Similar to the previous figure, figure 5.13 shows that agent 𝑺#𝟒 is executing the same 𝑺 role

in three different runs (𝑹𝒖𝒏𝟐, 𝑹𝒖𝒏𝟒, 𝑹𝒖𝒏𝟓), and that agent 𝑩#𝟒 is executing the same 𝑩

role in two different runs (𝑹𝒖𝒏𝟏, 𝑹𝒖𝒏𝟑). In this figure, the first protocol execution occurs

between 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) and 𝑹𝒖𝒏𝟒 (𝒓𝒐𝒍𝒆 𝑺), whose response to 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) has been

intercepted and manipulated by an adversary that utilizes the browser nonce 𝒏𝒃#𝟑 for

impersonating a browser and trying to initiate a new connection with 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺). Thus,

the second protocol execution occurs between 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) and 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺). Hence,

𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝑺) responds back with the browser nonce 𝒏𝒃#𝟑 and a new server nonce 𝒏𝒔#𝟓 to

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩), assuming that the received response is from 𝑹𝒖𝒏𝟒 (𝒓𝒐𝒍𝒆 𝑺). However,

upon receiving the response and verifying the browser nonce 𝒏𝒃#𝟑, the response of

𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩) is intercepted and manipulated by the adversary to get and include the server

nonce 𝒏𝒔#𝟓 in a third protocol execution that occurs between 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) and

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺). In this protocol, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) initiates a connection with

𝑹𝒖𝒏𝟐 (𝒓𝒐𝒍𝒆 𝑺), whose response to 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) has been intercepted and manipulated

by the adversary that altered the server nonce from 𝒏𝒔#𝟐 to 𝒏𝒔#𝟓 before being sent to

𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩). Finally, 𝑹𝒖𝒏𝟏 (𝒓𝒐𝒍𝒆 𝑩) sends the final response to 𝑹𝒖𝒏𝟓 (𝒓𝒐𝒍𝒆 𝒔),

Figure 5.13: An attack graph of the challenge-generation protocol (d)

159

assuming that the received response is from 𝑹𝒖𝒏𝟑 (𝒓𝒐𝒍𝒆 𝑩). Thus, this trace pattern is a

multiprotocol attack that is comprised of two browsers; each is running the protocol with two

different runs.

Based on the generated attack patterns, the consequences of the MITB attack compromising

the browser cannot be circumvented within the same protocol. As a strong intruder

compromising an agent and taking control of the entire browser can corrupt random number

generators and reveal long-term and short-term keys [241]. Hence, there is no way to prevent

this type of attack along with overcoming a denial of service (DOS) attack, unless

transitioning to another communication channel with a second protocol.

5.6.4Response-Generation Protocol Verification

Following the unsuccessful verification of the challenge-generation protocol, for the MITB

attack compromising the browser, and revealing its long-term shared symmetric key, a

complementary and detached protocol is established for generating the response with no risk

of the same adversary.

This section discusses the application of the Scyther formal verification tool on the response-

generation protocol. Based on the protocol description in section 5.5.2, the expected correct

behaviour of the protocol is presented along with its actual verification results. The execution

of claim events that specify the required security properties are justified and analysed, along

with presenting all possible trace patterns of both roles, generated via complete

characterisation.

5.6.4.1 Automated Response-Generation Verification

The response-generation protocol is automatically and separately verified through setting

bounded and unbounded verification parameters. Thus, the protocol verification procedure

terminates and the results are generated, as illustrated in Figure 5.14, where the result window

of both roles within the response-generation protocol, in which the secrecy of the freshly-

generated numbers by mobile phone 𝑴 and server 𝑺, denoted by 𝒏𝒎 and 𝒏𝒔𝟐, respectively,

are successfully verified in both roles. In addition, the response-generation protocol

160

successfully verified the Aliveness, weak-agree, non-injective agreement and non-injective

synchronisation claim events, which will be analysed in-depth in the next section.

Figure 5.14: Response-generation protocol verification results

5.6.4.2 Analysis of Response-Generation Security Properties

In this section, the automated verified properties from section 5.6.4.1 are discussed and

analysed. These properties are analysed according to the design of the proposed response

generation protocol. The verified properties are secrecy and the different forms of

authentication, which are aliveness, synchronisation and message agreement.

.

5.6.4.2.1 Secrecy/Confidentiality

According to the description of the response-generation protocol in section 5.5.2, the secrecy

property of all essential elements within the protocol, including nonce, macros, variables and

constants, are satisfied. Secrecy satisfaction lies within securing the protocol via symmetrical

161

encryption of exchanged messages between two honest agents, in which their identities have

been verified via PKI.

5.6.4.2.2 Authentication

a) Aliveness

In terms of verifying the aliveness property, all forms of aliveness are analysed regarding

both roles in the response-generation protocol. Moreover, both partners within the protocol

are considered honest due to their shared secret key, which was established previously within

the SSL/TLS protocol. As both agents within the protocol execute both roles up to their

claim events, and both intended communicating partners are honest due to an event

execution. Thus, response-generation protocol assures agents execute the weak aliveness role

of their intended communicating partners. The weak aliveness in correct role property is

satisfied within the response-generation protocol as both parties act in their correct roles due

to their shared secret keys used to symmetrically encrypt all exchanged messages between

communicating parties, which ensures integrity and confidentiality as well. Thus, the

intended communicating partners are executing the roles expected from the protocol

description [41].

As both agents within the protocol execute their roles up to their claim events, thus ensuring

that the intended communicating partners has recently sent messages before the claim events

and after other events within the same run in which the claim event occurs, which ensures

that recent aliveness property is satisfied. Finally, based on the shared secret key between

both parties in the protocol, intended communicating partners execute the correct roles, thus

satisfying the recent aliveness in correct role property. Consequentially, the weak agreement

property is satisfied due to the established shared secret key between both participants [241].

Based on figure 5.4, any protocol satisfying recent aliveness also satisfies weak aliveness

[41]. Thus, the response-generation protocol satisfies weak aliveness, weak aliveness in the

correct role, recent aliveness and recent aliveness in the correct role.

a) Synchronisation

According to the definition of the synchronisation property in section 5.6.1.2.2, the response

generation protocol satisfies synchronization. Figures 5.15 and 5.16 show the Scyther trace

162

patterns of both roles within the response-generation protocol that corresponds to the protocol

description in section 5.5.2.

Figure 5.15: Trace pattern of the response-generation protocol, claim MUAS, M1 in role M

163

Figure 5.16: Trace pattern of the response-generation protocol, claim MUAS, S1 in role S

Figures 5.15 and 5.16 confirm the non-injective synchronisation property for both roles in

the protocol, where the roles are fulfilled through assigning each claim instance and role to a

run identifier through cast functions. With respect to the characterised role, both roles in the

protocol are assigned to Run1 and Run2.

Once the communication partners are assigned, it is required for all communication pairs

preceding the claim event to: (1) occur in the correct order, where every received message is

preceded by a corresponding send message, (2) trace events corresponding to the events in

the protocol description, and executed by the runs indicated by the cast function, which are

Run1 and Run2, and (3) have the contents of the send messages correspond to the contents

of the received messages [41, 247, 252]. According to the trace pattern results, both protocols

satisfy the non-injective synchronisation property with respect to both roles, thus ensuring

the protocol is executed as expected.

However, non-injective synchronisation does not rule out replay attacks, where an intruder

is capable of abusing the protocol by replaying an old and unexpected responder run into the

current session. To rule out such a flaw, an injectivity property is added to the protocol, which

requires that each run of the initiator role has his own and unique nonce to be included in all

164

exchanged messages with its corresponding responder role. This injective one-one

relationship between the initiator role and the responder role causes the responder to only

correspond to a single initiator role, thus creating a loop from the initiator to the responder

and back to the initiator, which prevents replay attacks [41, 247, 249, 251, 252].

Based on Figure 5.15, any protocol satisfying injective synchronisation also satisfies non-

injective synchronisation [41]. Thus, the challenge- and response-generation protocols satisfy

both forms of synchronisation.

b) Message Agreement/Integrity

Based on the trace events in Figures 5.15 and 5.16, the non-injective agreement property is

confirmed, where both roles in the protocols agree on the contents of the corresponding send

and receive messages. Moreover, according to the synchronisation hierarchy in Figure 5.5, a

protocol satisfying injective synchronisation also satisfies non-injective synchronisation, thus

satisfying the non-injective agreement.

5.7 Conclusion

This chapter complements the design and implementation of the proposed MUAS system in

a formal means through verifying the proposed protocol from a security point of view.

Therefore, a theoretical security evaluation has been performed with respect to possible

attacks for justifying every specific detail within the protocol design. In addition to evaluating

the implementation performance with respect to the most related work, where the evaluation

is conducted in terms of communication and computation costs. The evaluation results

showed our protocol has the most messages in terms of quantity and size. However, a trade-

off has been made with respect to security. Moreover, upon conducting a run-time

measurement on both protocols, it was found that the response generation protocol is much

faster than the input-based challenge generation protocol.

For performing a proper verification mechanism, the objective behind the development of

the protocol should be defined. Hence, the adversary model has been defined within the

context of the proposed protocol. The adversary model in this thesis is represented by the

165

MITB attack, which resides in the browser; thus, the adversary can intercept and manipulate

any data entered, received or sent through the compromised browser. The next building block

in the verification mechanism lies within specifying the protocol in an abstract manner to

declare the required knowledge for role execution within the protocol. The protocol

specification is then translated into the selected verification tool’s description language.

Among numerous formal model checking tools, the Scyther security protocol verification

tool was considered to verify the required security properties of the protocol due to its speed

and other novelties [239, 241, 253, 254, 259]. Based on chapter 3, the MUAS approach split

the authentication mechanism into two detached protocols: challenge-generation and

response-generation protocols. Thus, both protocols are verified separately using Scyther.

The first protocol was verified upon modelling and applying the effects of the MITB attack

within the protocol. In Scyther, the MITB attack was modelled by revealing the actor’s long-

term key, which corresponds to the established shared secret key used for securing all

exchanged messages between the server and the compromised browser within the challenge-

generation protocol. This type of exposure was based upon the MITB’s capability of

bypassing the encryption and decryption processes performed in the transport layer [1, 14].

Upon applying the adversary model, setting unbounded verification parameters and

performing an automated verification, a proof tree is scanned for all possible protocol

behaviours to return the results of the verification process. The result of verifying the

challenge-generation protocol has failed for all required security properties. Moreover, a

complete characterisation for each role is performed, thus generating a finite set of all

possible traces that contains an instance of that role. These traces include the anticipated and

correct behaviour, in addition to all possible attack patterns that have been manually reviewed

and categorised into four classes, namely, exchanged messages manipulation,

communicating partner impersonation, running the same protocol through multiple instances

of the same role, and multiprotocol attacks. Based on the generated attack patterns, the MITB

attack cannot be prevented within the same protocol as it took over the whole system. Thus,

authentication via web browser is not secure. The proposed solution is based upon

establishing a physically detached protocol that circumvents the MITB attack through

transitioning the authentication mechanism to another communication channel that uses the

mobile phone of the client. This protocol generates a response to the challenge with respect

to authenticating the client, along with its ability to conduct a secure online transaction.

166

The second detached protocol takes place between the mobile phone application ‘3LS-

Authentication’ and the server, which is initiated following the challenge capturing via the

visual channel. As the mobile phone application is secured by an activation layer, its role is

considered to be executed by an honest agent without the need for modelling an adversary;

therefore, all protocol communications are secured via their shared secret key. However,

upon setting the unbounded verification parameters within the verification process by

Scyther, secrecy and all forms of authentication security properties were satisfied.

Furthermore, each role has exactly one trace pattern generated by the complete

characterisation process, which corresponds to a valid protocol execution with no attacks

[255, 256].

6 Conclusion and Future Work

6.1 Introduction

E-commerce applications have steadily grown in recent years. This growth is accompanied

by many security concerns that have become obstacles to the development of e-commerce.

User authentication is considered one of the most important issues to be addressed within the

context of e-commerce; it is the first step in establishing a secure connection with any

organisation. Therefore, the focus of this thesis revolves around finding an appropriate

solution that overcomes the problem of a Man-in-the-browser (MITB) attack, within a secure

e-commerce authentication system. An MITB attack is a Trojan that invades a user’s browser

to infiltrate and manipulate all incoming and outgoing information. This type of attack is a

sophisticated hacking technique [11] capable of bypassing the security measures of Public

key infrastructures (PKIs) and the encryption mechanisms of a Secure socket layer and

Transport layer security (SSL/TLS) [1, 14].

In this chapter, we provide a summary of the stages involved in developing the proposed

Mobile user authentication system (MUAS) along with its learning outcomes. Beginning

with the literature review, we investigated many articles to guide the design and

167

implementation of the proposed system that was ultimately evaluated and verified as a high

performance solution that prevented MITB attacks.

In conclusion, the main goal of this thesis is to develop a secure Mobile-User-Authentication

System (MUAS), for circumventing MITB attacks through switching from the infected

platform to the mobile phone application. Hence, the mobile phone is used for authentication

and for conducting business transactions.

6.2 Summary of the Results

The focus of this thesis is to design and implement a two-phase MUAS that overcomes an

MITB attack. The design was evaluated using a reliable verification method that

authenticated the properties of the proposed security protocol. The learning outcomes of this

thesis are summarised in the list below:

 In chapter 1, we discussed the sophisticated MITB attacks. We analysed possible attack

capabilities and performance behaviour in order to find a way that circumvent its

destructive effects. The objectives and research contributions are outlined in this chapter

as well.

 In chapter 2, we delineated the development stages of the system design. First, we

reviewed the three fundamental authentication methodologies and conducted a

comparative study of security protocols employed by popular UK banks. Results of the

study revealed that the most frequently used identification and authentication mechanism

is 2FA, due to its secure login process. However, 2FA cannot accomplish the objective

of this thesis, because it, uses the same mechanisms that the infected browser uses to fulfil

the authentication process. Instead, a mobile phone, which is the most popular platform

associated with 2FA mechanisms, is employed in the proposed thesis. A mobile phone

has many pre-existing security-feature options available, often stemming from popular

technologies. Next, we reviewed the e-commerce security system. The e-commerce

security system represents the foundation of our work. The system is composed of five

basic layers: a network service layer, encryption technology layer, security authentication

layer, security protocol layer and application layer. Each layer serves a specific purpose

168

within the security system. The lower-most layer is the network service layer, which

represents the data link layer of the e-commerce security system. From a security protocol

point-of-view, the next three layers represent the encryption technology layer, security

authentication layer and security protocol layer. Each of the three layers represents

essential and basic elements for developing a secure e-commerce authentication system,

which protects personal information from unauthorized use while satisfying the required

security dimensions. From a security dimension point-of-view, encryption technology

layers help satisfy the integrity, non-repudiation, authentication and confidentiality

dimensions [24]. Security authentication layers help satisfy integrity, authenticity and

non-repudiation dimensions [24], while security protocol layers help satisfy the

authenticity, integrity, confidentiality and privacy dimensions [189-191]. Therefore, this

system is considered a platform that determines the technologies that need to be

implemented within each layer in the proposed authentication system.

o The encryption technology layer secures transmitted data from unauthorized use via

cryptographic algorithms. Thus, the encryption layer is considered a fundamental

layer in the field of e-commerce security [154]. There are two encryption categories:

asymmetric and symmetric cryptography. Asymmetric cryptography provides several

security mechanisms such as key establishment, non-repudiation, and entity

identification. Although symmetric cryptography can identify entities, identifying

key establishment requirements is significantly more difficult [160] because it poorly

satisfies the non-repudiation requirement [157, 160]. Moreover, asymmetric

cryptography is very slow, compared to symmetric cryptography. The system design

must have an explicit symmetric or asymmetric cryptography type to ensure the

rationality/logic of the key distribution and encryption efficiency [20]. In some cases,

choosing an explicit asymmetry type is a trade-off with respect to the objective of the

proposed system.

o The secure authentication layer of an e-commerce system represents the basis for

authenticating the identities of participants and their exchanged messages. This can

be accomplished by establishing a robust infrastructure that provides e-commerce

security services. Therefore, a public key infrastructure (PKI) represents the security

foundation of MUAS as it can provide the infrastructure for various network security

services. Additionally, PKIs can provide different public key certificate services [22],

169

such as obtaining public keys that can be used in the encryption technology layer for

cryptographic purposes. Moreover, other security technologies, such as cryptographic

nonce, can be used to ensure the authenticity of exchanged messages.

o The security protocol layer is a necessary way of establishing a secure channel

between participants like e-commerce or online banking. The typical choice is usually

the secure socket layer/transport layer security (SSL/TLS) protocol. This protocol

uses the client’s certificate as well as the CA-certificate within a PKI. The protocol

then verifies the user’s identity and establishes a safe and trustworthy channel,

between the communicating parties, to prevent transmitted data from being stolen

[20].

o The application layer represents the point of compromise. In this thesis, the threat

model lies within this final layer of the e-commerce security system.

 In chapter 3, the details of the proposed system are provided, along with a justification of

the different components and functions of the design. Based on the literature review and

the thesis objective, the most appropriate solution is to securely transition the

authentication process from an MITB-infected browser to the mobile phone of the client.

This is accomplished by designing two-detached secure phases, called the challenge- and

response-generation phases, each using distinct network connections. Based on the

MUAS design architecture, several outcomes have been determined:

o The importance of registering the client via a mobile number and the IMEI lies within

mitigating denial-of-service attacks in both phases, where unregistered clients will be

denied in the challenge generation phase. In the response generation phase,

submitting the extracted mobile number and IMEI to the server mitigates the DOS

attack as well, typically by matching the received mobile number with the registered

client’s mobile number, to find and validate the received IMEI against the registered

IMEI.

o Whenever a registered client triggers the authentication system, the client’s registered

mobile phone is the only device that can generate the appropriate response for that

session. The IMEI is extracted from the mobile phone while generating the response

that will be sent to the server and verified against the registered IMEI; hence, it is not

possible for multiple simultaneous (or cloned) mobile phones to run the same system.

170

This protection is an additional way to guarantee the registration of the mobile phone,

which sends the response.

o With the expansion of wireless access technologies such as Wi-Fi, Wi-Max, and LTE,

and with the popularity of multi-interfaced mobile devices, efficient multi-homing

support is possible in mobile networks. In a multi-homed mobile network, the mobile

phone is considered the multi-homed mobile host, since its Mobile IP address changes

while the selected network interface changes. Interface selection mechanisms in

mobile networks are located in the mobile router (MR) [260]. The mobile router is

responsible for updating its attachment point to the mobile network without disrupting

higher-layer connections of attached devices, thus the mobile router oversees all the

mobility functions on behalf of all the mobile hosts located within the mobile

network. To find the best approach that supports network mobility and multi-homing,

a study was conducted among several multi-homed mobile networks that resulted in

the Network Mobility (NEMO) protocol, which provides support to both network

mobility and multi-homing, in addition to providing better interface selection

mechanism than other approaches [260]. NEMO’s basic support protocol is the

Mobile IPv6, which has been extended to support connectivity within a moving

network [260, 261]. A mobile network contains one or more mobile routers (MRs),

along with local or transient nodes [260]. A multi-homed response generation

protocol enables the client to use a mobile phone and server as a mobile host (MH)

and a correspondent node (CN), respectively. Regardless of the physical location of

the mobile phone, it is identified by a permanent home address that is assigned by its

home network. The server (CN) uses the permanent home address of the mobile

phone as the destination address. Whenever the mobile phone moves to another

network (foreign network), it acquires a new address called Care-of-Address (CoA).

The mobile phone then sends its CoA to its home agent (HA), which is a router in a

static location on the MHs home network that is responsible for tunnelling packets

for delivery to the mobile phone when it is away from its home network. Next, a

binding takes place between the mobile phone’s permanent home address and the

CoA. Thus, a bi-directional IPv6-in-IPv6 tunnel is used to maintain connectivity

between the mobile router and the home agent. Response generation exchange

message-packets sent from the server (CN) to the mobile phone on a mobile network

171

(MN) are delivered to the home agent of that mobile network via traditional routing

methods. The home agent tunnels the packets that will delivered to the mobile phone.

Likewise, reverse packets take the same path in the opposite direction. The mobile

phone sends the packets to the mobile router, which will then be tunnelled to the home

agent and finally sent to the server (CN) using traditional routing methods.

Figure 6.1: Response Generation Protocol in a Multi-homed mobile Network

 In chapter 4, the theoretical design for the MUAS is interpreted as an executable form;

the form defines the design components and provides descriptive flowcharts. This

chapter represents the foundation on which the verification chapter is built-upon. The

employed functions and cryptographic algorithms that are required for calculating the

computational cost of the protocol are described in this chapter. Messages exchanged

within the protocol are specified as well, along with their attributes for calculating the

communication cost of the protocol. Furthermore, implementing the proposed system

helps by calculating the average run-time of each phase within the protocol.

 In chapter 5, both phases of the proposed system are evaluated from a theoretical and

applied point-of-view. The process also generates the verification results by applying

formal verification tools.

o An in-depth justification of all the exchanged messages, their contents and

their applied cryptographic mechanisms contribute to a theoretical

performance measure. This measurement justifies the system's security

against all possible attacks. In the literature review, most related work [130,

200, 201] demonstrated an implementation performance measure that fulfils

the design choices from the point-of-view of the computational and

communication-based cost. The MUAS computational cost is higher in terms

172

of random number generation, while its energy consumption is lower since it

employs a simple and lightweight algorithm. A public key cryptography

method is employed for securing the QR-code content, and though it is

expensive, a trade-off was made between the key cryptography and QR-code

content. The MUAS communication cost exceeds that of other protocols in

terms of the number of exchanged messages and the message sizes. The

system is composed of two detached secure protocols and each is composed

of several messages that are supported by the cryptographic security attribute

and the sender’s identity.

o Each MUAS phase is evaluated separately, using the Scyther security protocol

verification tool. The evaluation of the challenge-generation phase resulted in

a failure; this failure applies to all required security properties. The failure is

a consequence of applying the MITB effects on the protocol. The results also

suggest that MITB attacks cannot be prevented within the same (single)

protocol, especially when the attacker has overtaken the entire system. This

has justified the need for relocating the authentication mechanism to a

physically detached phase, which employs a secure authentication device

(e.g., a mobile phone) that communicates with the server over a newly created

connection. Evaluating the detached response generation phase results for

fulfilling the confidentially (secrecy) and authentication security properties.

The evaluations must validate the entire two-phase-detached protocol. Hence,

a detached-phase approach of the security measure satisfies the objective of

the thesis, which is to overcome an MITB attack.

6.3 Future Work

We anticipate that the proposed authentication system can be extended to include an e-

commerce payment. This may be achieved within the response generation phase and can

include a secure platform that can execute an electronic data interchange for e-commerce

transactions. Consequently, this extension will provide an integral authentication and

transaction framework that overcomes the MITB attacks by using a QR code with mobile

173

phone. The entities involved will include the server, mobile phone and the financial

organization (bank) that completes the transaction. The steps involved in extending the

existing system can be summarized as follows:

 In the challenge generation phase, the QR code contents will be expanded to include

(1) the transaction information, and (2) the existing authentication information that

was used to authenticate the client in this thesis. The transaction information will

include a Transaction identification number (𝑻𝑰𝑫), an Amount to transfer (𝑨𝑴𝑻),

the Destination account (𝑫𝑺𝑻) or the merchant, and the Source account (𝑺𝑹𝑪) or the

bank.

 Following user authentication, the mobile application will submit the QR code-

recovered 𝑺𝑹𝑪 within the response generation phase in order for the server to initiate

a secure SSL/TLS connection with the bank. The server will submit the client’s

Mobile number (𝒎𝒏) along with the transaction information, which includes the

𝑻𝑰𝑫, 𝑨𝑴𝑻 and 𝑫𝑺𝑻.

 The bank uses the 𝒎𝒏 received as a reference to retrieve client information and ensure

that the client is a customer. Before performing the transaction, the bank verifies the

received transaction information with the client. This verification sends the 𝑻𝑰𝑫,

𝑨𝑴𝑻 and 𝑫𝑺𝑻 to the client’s mobile phone via the Short message service (SMS).

The mobile phone then verifies the received transaction information comparing it to

the information recovered from the QR code. Upon verification, the mobile phone

submits a confirmation message to the bank that is performing the transaction.

174

Figure 6.2: MUAS Future Transaction Mechanism

In terms of using the proposed MUAS approach in other disciplines within the context of

client authentication, the challenge generation phase operates in the same manner, thus

mitigating the Denial-of-Service attack (DOS) and generating the QR code challenge. The

QR code is composed of the same contents, along with an additional account number

𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝒏𝒐 of the registered client. Upon capturing the QR code, the response generation

phase operates in the same manner. Moreover, the mobile phone requests the client to submit

his/her account number 𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝑵𝒖𝒎𝒃𝒆𝒓 to be verified against the QR code-recovered

account number 𝑨𝒄𝒄𝒐𝒖𝒏𝒕_𝒏𝒐. Upon verification, the mobile phone generates the response

to be sent to the server for verification. In the case of a successful authentication, the initiating

client is capable of accessing his/her personal records.

175

Figure 6.3: MUAS in Different Disciplines

6.4 MUAS Limitations

Although the proposed MUAS can overcome the problem of MITB attack within a secure

framework that relocates the authentication mechanism from the infected browser to the

secure mobile phone of the client, there are some limitations that are related to our proposed

system, which we will briefly discuss.

176

 Confirming the legitimacy of the mobile phone holder within the challenge-

generation phase requires a cellular network for submitting the OTP via SMS.

Therefore, this step can be considered as a defect within the system in the case of a

real-world threat, namely, an unavailable cellular network, thus causing the whole

system to malfunction.

 In the challenge-generation phase, the basis for generating the QR code by the server

relies upon verifying the received OTP from the presumably infected browser.

Although the MITB attack’s main concern is financial information, however if the

OTP value was manipulated after user submission, the system will deny the

authentication service which can cause denial of service attack. Another limitation

within the response-generation phase states that the client is requested to use a

smartphone only, for capturing and processing the QR code via a downloaded

application.

 Another considered weakness of the proposed MUAS lies within the computational

cost in terms of employing an expensive public key encryption algorithm to secure

the QR code contents; this can be justified by the need to secure the code from

unauthorized users. Moreover, the communication cost exceeds most related work in

terms of number and size of exchanged messages. However, a compromise was made

with respect to security.

Overall and despite the encountered limitations mentioned above, the proposed MUAS is a

promising solution to provide a simple, secure, and low-energy consumption framework,

which can prevent the Man-in-the-Browser (MITB) attack within a secure online

authentication system for e-commerce applications. With this new algorithm, MUAS also

excludes the risk of Denial-of-Service (DOS). In terms of security, the proposed solution

satisfies the security properties required by all security protocols [41, 247]. Thus, this thesis

have achieved its objectives and provided a novel and secure solution to one of the most

sophisticated attacks, which is MITB attack.

177

References

[1] S. Rauti and V. Leppänen, "Chapter 28 - Man-in-the-Browser Attacks in Modern Web

Browsers," in Emerging Trends in ICT Security, ed Boston: Morgan Kaufmann, 2014, pp.

469-480.

[2] M. Mannan, "Authentication and securing personal information in an untrusted internet,"

PhD, CARLETON UNIVERSITY Ottawa, 2009.

178

[3] P. Goyal, N. Bansal, and N. Gupta, "Averting man in the browser attack using user-specific

personal images," in Advance Computing Conference (IACC), 2013 IEEE 3rd International,

2013, pp. 1283-1286.

[4] F. B. M. Nor and K. A. Jalil, "An enhanced remote authentication scheme to mitigate man-

in-the-browser attacks," in Cyber Security, Cyber Warfare and Digital Forensic (CyberSec),

2012 International Conference on, 2012, pp. 271-276.

[5] L. O'Gorman, "Comparing passwords, tokens, and biometrics for user authentication,"

Proceedings of the IEEE, vol. 91, pp. 2021-2040, 2003.

[6] Y. Jiangshan, W. Guilin, M. Yi, and G. Wei, "An Efficient Generic Framework for Three-

Factor Authentication With Provably Secure Instantiation," Information Forensics and

Security, IEEE Transactions on, vol. 9, pp. 2302-2313, 2014.

[7] H. Xinyi, X. Yang, A. Chonka, Z. Jianying, and R. H. Deng, "A Generic Framework for

Three-Factor Authentication: Preserving Security and Privacy in Distributed Systems,"

Parallel and Distributed Systems, IEEE Transactions on, vol. 22, pp. 1390-1397, 2011.

[8] C. K. Dimitriadis, "Analyzing the Security of Internet Banking Authentication Mechanisms

" Information System Control Journal vol. 3, 2007.

[9] M. H. Eldefrawy, K. Alghathbar, and M. K. Khan, "OTP-Based Two-Factor Authentication

Using Mobile Phones," in Information Technology: New Generations (ITNG), 2011 Eighth

International Conference on, 2011, pp. 327-331.

[10] Emiliano De Cristofaro, Honglu Du, Julien Freudiger, and G. Norcie, "A Comparative

Usability Study of Two-Factor Authentication," in Proceedings of the Workshop on Usable

Security (USEC) 2014.

[11] K. Curran and T. Dougan, "Man in the Browser Attacks," Internation Journal of Ambient

Computation and Intelligenece, vol. 4, pp. 29-39, 2012.

[12] R. K. K and R. Kumar, "Securing User Input as a Defense Against MitB," presented at the

Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied

Computing, Amritapuri, India, 2014.

[13] S. T. Zargar, J. Joshi, and D. Tipper, "A Survey of Defense Mechanisms Against Distributed

Denial of Service (DDoS) Flooding Attacks," IEEE Communications Surveys & Tutorials,

vol. 15, pp. 2046-2069, 2013.

[14] N. Utakrit, "Review of browser extensions, a man-in-the-browser phishing techniques

targeting bank customers," in Proceedings of the 7th Australian Information Security

Management Conference, Perth, Western Australia, 1st to 3rd, Edith Cowan University,

2009.

179

[15] S. Rauti, V. Lepp, #228, and nen, "Browser extension-based man-in-the-browser attacks

against Ajax applications with countermeasures," presented at the Proceedings of the 13th

International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 2012.

[16] M. Niranjanamurthy and D. D. Chahar, "The study of e-commerce security issues and

solutions," International Journal of Advanced Research in Computer and Communication

Engineering, vol. 2, 2013.

[17] T. Lu and X. Lei, "Study on Security Framework in E-Commerce," in 2007 International

Conference on Wireless Communications, Networking and Mobile Computing, 2007, pp.

3541-3544.

[18] V. D. Sawma, "E-commerce security: A new methodology for deriving effective

countermeasures design models," University of Ottawa (Canada), 2003.

[19] N. M. Al-Slamy, "E-Commerce security," International Journal of Computer Science and

Network Security IJCSNS, vol. 8, pp. 340-344, 2008.

[20] G. Qingping, F. Li, and Y. Li, "Probe into E-Commerce Security Technology," in 2009

International Forum on Computer Science-Technology and Applications, 2009, pp. 425-428.

[21] M. Stawowski, "Network Security Architecture," ISSA Journal, pp. 34-38, 2009.

[22] Z. Tian, N. Xu, and W. Peng, "E-Commerce Security: A Technical Survey," in 2008 Second

International Symposium on Intelligent Information Technology Application, 2008, pp. 956-

960.

[23] Microsoft. (2017). TCP/IP Protocol Architecture. Available:

https://technet.microsoft.com/en-us/library/cc958821.aspx

[24] K. C. Laudon, C. G. Traver, and A. V. R. Elizondo, E-commerce vol. 29: Pearson/Addison

Wesley, 2007.

[25] R. Kissel, "Glossary of key information security terms," NIST Interagency Reports NIST IR,

vol. 7298, 2013.

[26] William E. Burr, Donna F. Dodson, Elaine M. Newton, Ray A. Perlner, W. Timothy Polk,

Sarbari Gupta, et al., "Electronic Authentication Guideline " in National Institute of

Standards and Technology (NIST), NIST Special Publication 800-63-1 ed, 2011.

[27] CISCO, "Cisco ME 2600X Series Ethernet Access Switch Software Configuration Guide ",

ed: CISCO, 2013-2014, pp. 211-266.

[28] A. Basu and S. Muylle, "Authentication in e-commerce," Commun. ACM, vol. 46, pp. 159-

166, 2003.

[29] Priti Jadhao and L. Dole, "Survey on Authentication Password Techniques " International

Journal of Soft Computing and Engineering (IJSCE) vol. 3, pp. 67-68, May 2013.

https://technet.microsoft.com/en-us/library/cc958821.aspx

180

[30] Saraswati B. Sahu and A. Singh, "Survey on Various Techniques of User Authentication and

Graphical Password " International Journal of Computer Trends and Technology (IJCTT),

vol. 16, pp. 98-102, Oct 2014.

[31] B.Sumitra, C.R. Pethuru, and M.Misbahuddin, "A Survey of Cloud Authentication Attacks

and Solution Approaches " International Journal of Innovative Research in Computer and

Communication Engineering (IJIRCCE), vol. 2, Oct 2014.

[32] Mudassar Raza, Muhammad Iqbal, Muhammad Sharif, and W. Haider, "A Survey of

Password Attacks and Comparative Analysis on Methods for Secure Authentication," World

Applied Sciences Journal vol. 19, pp. 439-444, 2012.

[33] J. A. and S. N.P., "A SURVEY ON AUTHENTICATION ATTACKS AND

COUNTERMEASURES IN A DISTRIBUTED ENVIRONMENT " Indian Journal of

Computer Science and Engineering (IJCSE), vol. 5, pp. 71-77, May 2014.

[34] Y. Hsiu-Lien, C. Tien-Ho, H. Kuei-Jung, and S. Wei-Kuan, "Robust elliptic curve

cryptography-based three factor user authentication providing privacy of biometric data,"

Information Security, IET, vol. 7, pp. 247-252, 2013.

[35] M. El-Abed, P. Lacharme, and C. Rosenberger, "Privacy and Security Assessment of

Biometric Systems," in Advances in Security and Privacy of Biometric Systems, p. Cambridge

scholar, Ed., ed, 2015.

[36] M. Gomez-Barrero, J. Galbally, P. Tome, and J. Fierrez, "On the Vulnerability of Iris-Based

Systems to a Software Attack Based on a Genetic Algorithm," in Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications. vol. 7441, L. Alvarez, M.

Mejail, L. Gomez, and J. Jacobo, Eds., ed: Springer Berlin Heidelberg, 2012, pp. 114-121.

[37] H. S. Puri, "Vulnerability Assessment of Multi Biometric Systems," The Personal Risk

Management Group Pty Ltd. March 31, 2015.

[38] B. Schneier, "Attack Trees," Dr. Dobb's Journal, vol. 24, pp. 21-29, December 1999.

[39] M. Johnson, "A new approach to Internet banking," University of Cambridge, Computer

Laboratory, September 2008.

[40] L. Lamport, "Password authentication with insecure communication," Commun. ACM, vol.

24, pp. 770-772, 1981.

[41] Cas Cremers and Sjouke Mauw, Operational Semantics and Verification of Security

Protocols: Springer, 2012.

[42] "The Secure Sockets Layer (SSL) Protocol Version 3.0 ", ed: Internet Engineering Task Force

(IETF), RFC: 6101, August 2011.

[43] A. Mahboob and N. Ikram, "Transport Layer Security (TLS)--A Network Security Protocol

for E-commerce," Pakistan Navy Engineering College (PNEC) Research Journal, 2004.

181

[44] T. Petsas, G. Tsirantonakis, E. Athanasopoulos, and S. Ioannidis, "Two-factor authentication:

is the world ready?: quantifying 2FA adoption," presented at the Proceedings of the Eighth

European Workshop on System Security, Bordeaux, France, 2015.

[45] A. E. Lackey, T. Pandey, M. Moshiri, N. Lalwani, C. Lall, and P. Bhargava, "Productivity,

part 2: cloud storage, remote meeting tools, screencasting, speech recognition software,

password managers, and online data backup," Journal of the American College of Radiology,

vol. 11, pp. 580-588, 2014.

[46] Z. Li, W. He, D. Akhawe, and D. Song, "The emperor? s new password manager: Security

analysis of web-based password managers," in 23rd USENIX Security Symposium (USENIX

Security 14), 2014.

[47] K. Krol, E. Philippou, E. De Cristofaro, and M. A. Sasse, ""They brought in the horrible key

ring thing!" Analysing the Usability of Two-Factor Authentication in UK Online Banking,"

arXiv preprint arXiv:1501.04434, 2015.

[48] A. Dmitrienko, C. Liebchen, C. Rossow, and A.-R. Sadeghi, "On the (in) security of mobile

two-factor authentication," in International Conference on Financial Cryptography and Data

Security, 2014, pp. 365-383.

[49] C. C. Chang and T. C. Wu, "Remote password authentication with smart cards," Computers

and Digital Techniques, IEE Proceedings E, vol. 138, pp. 165-168, 1991.

[50] M. Ziqing, D. Florencio, and C. Herley, "Painless migration from passwords to two factor

authentication," in Information Forensics and Security (WIFS), 2011 IEEE International

Workshop on, 2011, pp. 1-6.

[51] J. Choubey and B. Choubey, "Secure User Authentication in Internet Banking: A Qualitative

Survey," International Journal of Innovation, Management and Technology, vol. 4, p. 198,

2013.

[52] HSBC. (2015). Banking securely with Personal Internet Banking. Available:

https://www.us.hsbc.com/1/2/home/personal-banking/pib/security-device-logon-options

[53] Barclays. (2017). Quick, safe and convenient - Online Banking made easy [Online].

Available: https://bank.barclays.co.uk/olb/authlogin/loginAppContainer.do#/identification

[54] Barclays. (2017). Guide to PINsentry, Protect your accounts [Online]. Available:

http://www.barclays.co.uk/ways-to-bank/online-banking/pinsentry-guide/

[55] HSBC. (2015). Your Guide to the HSBC Security Device [Online]. Available:

https://www.us.hsbc.com/1/2/home/site/security/hsbc-online-banking-security

[56] First Direct. (2017). Internet Banking [Online]. Available:

http://www1.firstdirect.com/1/2/banking/ways-to-bank/online-banking

https://www.us.hsbc.com/1/2/home/personal-banking/pib/security-device-logon-options
https://bank.barclays.co.uk/olb/authlogin/loginAppContainer.do#/identification
http://www.barclays.co.uk/ways-to-bank/online-banking/pinsentry-guide/
https://www.us.hsbc.com/1/2/home/site/security/hsbc-online-banking-security
http://www1.firstdirect.com/1/2/banking/ways-to-bank/online-banking

182

[57] First Direct. (2017). Secure Key [Online]. Available:

http://www1.firstdirect.com/1/2/securekey

[58] Nationwide. (2017). Internet Banking Security, Keeping you safe and secure, Secure Banking

[Online]. Available: http://www.nationwide.co.uk/support/security-centre/internet-banking-

security/how-we-keep-you-safe

[59] Nationwide. (2017). Internet Banking Security, Card reader and security questions,

Additional security with card readers and security questions [Online]. Available:

http://www.nationwide.co.uk/support/security-centre/internet-banking-security/card-reader-

and-security-questions#xtab:using-a-card-reader

[60] Halifax. (Accessed 2017). How we're protecting you. [Online]. Available:

http://www.halifax.co.uk/aboutonline/security/protecting-you/

[61] Lloyds Bank. (Accessed 2017). Using Internet Banking [Online]. Available:

https://www.lloydsbank.com/online-banking/internet-banking/using-internet-

banking/logon-logout.asp

[62] NatWest. (Accessed 2017). Our Security Measures [Online]. Available:

http://personal.natwest.com/personal/security-centre/how-we-protect-you.html

[63] NatWest. (Accessed 2017). Online Banking [Online]. Available:

http://personal.natwest.com/personal/ways-to-bank/online-banking.html

[64] UIster Bank. (Accessed 2017). Getting started on Anytime Banking. [Online]. Available:

http://digital.ulsterbank.ie/personal/ways-to-bank/getting-started-with-online-banking.html

[65] UIster Bank. (Accessed 2017, 2016). Online Banking Card Reader. [Online]. Available:

http://digital.ulsterbank.ie/globals/security-centre/card-reader.html

[66] Royal Bank of Scotland. (Accessed 2017). Digital Banking [Online]. Available:

http://personal.rbs.co.uk/personal/ways-to-bank/digital-banking.html

[67] Santander. (Accessed 2017, 2016). Online Banking [Online]. Available:

http://www.santander.co.uk/uk/help-support/online-banking

[68] The co-operative Bank. (Accessed 2017, 2016). Online Banking [Online]. Available:

http://www.co-operativebank.co.uk/onlinebanking

[69] Standard Chartered. (2016). Online & Mobile Security [Online]. Available:

https://www.sc.com/global/security-tips/

[70] Bank of Scotland. (Accessed 2017). How we protect you [Online]. Available:

http://www.bankofscotland.co.uk/securityandprivacy/security/how-we-protect-you.asp

[71] A. Juels and M. Wattenberg, "A fuzzy commitment scheme," presented at the Proceedings of

the 6th ACM conference on Computer and communications security, Kent Ridge Digital

Labs, Singapore, 1999.

http://www1.firstdirect.com/1/2/securekey
http://www.nationwide.co.uk/support/security-centre/internet-banking-security/how-we-keep-you-safe
http://www.nationwide.co.uk/support/security-centre/internet-banking-security/how-we-keep-you-safe
http://www.nationwide.co.uk/support/security-centre/internet-banking-security/card-reader-and-security-questions#xtab:using-a-card-reader
http://www.nationwide.co.uk/support/security-centre/internet-banking-security/card-reader-and-security-questions#xtab:using-a-card-reader
http://www.halifax.co.uk/aboutonline/security/protecting-you/
https://www.lloydsbank.com/online-banking/internet-banking/using-internet-banking/logon-logout.asp
https://www.lloydsbank.com/online-banking/internet-banking/using-internet-banking/logon-logout.asp
http://personal.natwest.com/personal/security-centre/how-we-protect-you.html
http://personal.natwest.com/personal/ways-to-bank/online-banking.html
http://digital.ulsterbank.ie/personal/ways-to-bank/getting-started-with-online-banking.html
http://digital.ulsterbank.ie/globals/security-centre/card-reader.html
http://personal.rbs.co.uk/personal/ways-to-bank/digital-banking.html
http://www.santander.co.uk/uk/help-support/online-banking
http://www.co-operativebank.co.uk/onlinebanking
https://www.sc.com/global/security-tips/
http://www.bankofscotland.co.uk/securityandprivacy/security/how-we-protect-you.asp

183

[72] Biometrics.gov. (Accessed February, 2016). NSTC Subcommittee on Biometrics and Identity

Management Room. Available: http://www.biometrics.gov/nstc/

[73] Biometrics.gov. (Accesses February, 2016). Introduction to Biometrics- Biometric Glossary.

Available: http://www.biometrics.gov/ReferenceRoom/Introduction.aspx

[74] M. Weizhi, D. S. Wong, S. Furnell, and Z. Jianying, "Surveying the Development of

Biometric User Authentication on Mobile Phones," Communications Surveys & Tutorials,

IEEE, vol. 17, pp. 1268-1293, 2015.

[75] K. Renaud, A. Hoskins, and R. von Solms, "Biometric identification: Are we ethically

ready?," in Information Security for South Africa (ISSA), 2015, 2015, pp. 1-8.

[76] S. Prakash and P. Gupta, "Introduction," in Ear Biometrics in 2D and 3D: Localization and

Recognition, ed Singapore: Springer Singapore, 2015, pp. 1-20.

[77] BIO-key. (2016). BIO-key, Revolutionizing Authentication. Available: http://www.bio-

key.com/

[78] BIO-key. (2015). SideSwipe Mini Fingerprint Reader. Available: http://bio-

key.com/products/fingerprint-readers/sideswipe

[79] BIO-key. (March 2015). EcoID Compact Fingerprint Reader. Available: http://bio-

key.com/products/software-solutions/ecoid

[80] R. Clarke, "Human identification in information systems: Management challenges and public

policy issues," Information Technology & People, vol. 7, pp. 6-37, 1994.

[81] K. Harmon. (2009) Can You Lose Your Fingerprints? Scientific American. Available:

http://www.scientificamerican.com/article/lose-your-fingerprints/

[82] V. Mhaske and A. Patankar, "Multimodal biometrics by integrating fingerprint and palmprint

for security," in Computational Intelligence and Computing Research (ICCIC), 2013 IEEE

International Conference on, 2013, pp. 1-5.

[83] R. L. Telgad, P. D. Deshmukh, and A. M. N. Siddiqui, "Combination approach to score level

fusion for Multimodal Biometric system by using face and fingerprint," in Recent Advances

and Innovations in Engineering (ICRAIE), 2014, 2014, pp. 1-8.

[84] R. Waugh. (December 2014) Biometrics – can your fingerprint be ‘copied’ from a normal

photo? We Live Security. Available: http://www.welivesecurity.com/

[85] P. Olsen. (July 2012) Researchers Trick Iris Scanner With Forged Eye Images. Forbes.

Available: http://www.forbes.com/sites/parmyolson/2012/07/26/researchers-trick-iris-

scanner-with-forged-eye-images/#65df22464aab

[86] F. Cheng, "Security Attack Safe Mobile and Cloud-based One-time Password Tokens Using

Rubbing Encryption Algorithm," Mobile Networks and Applications, vol. 16, pp. 304-336,

2011/06/01 2011.

http://www.biometrics.gov/nstc/
http://www.biometrics.gov/ReferenceRoom/Introduction.aspx
http://www.bio-key.com/
http://www.bio-key.com/
http://bio-key.com/products/fingerprint-readers/sideswipe
http://bio-key.com/products/fingerprint-readers/sideswipe
http://bio-key.com/products/software-solutions/ecoid
http://bio-key.com/products/software-solutions/ecoid
http://www.scientificamerican.com/article/lose-your-fingerprints/
http://www.welivesecurity.com/
http://www.forbes.com/sites/parmyolson/2012/07/26/researchers-trick-iris-scanner-with-forged-eye-images/#65df22464aab
http://www.forbes.com/sites/parmyolson/2012/07/26/researchers-trick-iris-scanner-with-forged-eye-images/#65df22464aab

184

[87] F. Aloul, S. Zahidi, and W. El-Hajj, "Two factor authentication using mobile phones," in

Computer Systems and Applications, 2009. AICCSA 2009. IEEE/ACS International

Conference on, 2009, pp. 641-644.

[88] C. Yoo, B.-T. Kang, and H. Kim, "Case study of the vulnerability of OTP implemented in

internet banking systems of South Korea," Multimedia Tools and Applications, vol. 74, pp.

3289-3303, 2015/05/01 2015.

[89] S. Hamdare, V. Nagpurkar, and J. Mittal, "Securing SMS Based One Time Password

Technique from Man in the Middle Attack," arXiv preprint arXiv:1405.4828, 2014.

[90] Y.-W. Chow, W. Susilo, M. Au, and A. Barmawi, "A Visual One-Time Password

Authentication Scheme Using Mobile Devices," in Information and Communications

Security. vol. 8958, L. C. K. Hui, S. H. Qing, E. Shi, and S. M. Yiu, Eds., ed: Springer

International Publishing, 2015, pp. 243-257.

[91] K. Subashini and G. Sumithra, "Secure multimodal mobile authentication using one time

password," in Current Trends in Engineering and Technology (ICCTET), 2014 2nd

International Conference on, 2014, pp. 151-155.

[92] A. Tandon, R. Sharma, S. Sodhiya, and P. Vincent, "QR Code based secure OTP distribution

scheme for Authentication in Net-Banking," International Journal of Engineering &

Technology, pp. 0975-4024, 2013.

[93] K. Ramesh and S. Ramesh, "Implementing One Time Password based security mechanism

for securing personal health records in cloud," in Control, Instrumentation, Communication

and Computational Technologies (ICCICCT), 2014 International Conference on, 2014, pp.

968-972.

[94] N. Thiranant and H. Lee, "A Design of e-Healthcare Authentication Framework with QR

Code," International Journal of Security & Its Applications, vol. 8, pp. 79-86, 2014.

[95] E. Sediyono, K. I. Santoso, and Suhartono, "Secure login by using One-time Password

authentication based on MD5 Hash encrypted SMS," in Advances in Computing,

Communications and Informatics (ICACCI), 2013 International Conference on, 2013, pp.

1604-1608.

[96] Barclays. (2015). Guide to Pinsentry [Online]. Available:

http://www.barclays.co.uk/Helpsupport/UpgradetoPINsentry/P1242559314766

[97] NatWest. (2015). Security, See the many ways we protect you. Available:

http://personal.natwest.com/global/security-centre.html

[98] D. Moholkar, N. Kadam, D. Deokar, A. Kute, and S. Kadam, "An Efficient Approach for

Phishing Website Detection using Visual Cryptography (VC) and Quick Response Code (QR

code)," International Journal of Computer Applications, vol. 115, 2015.

http://www.barclays.co.uk/Helpsupport/UpgradetoPINsentry/P1242559314766
http://personal.natwest.com/global/security-centre.html

185

[99] J. Shamdasani and P. Matte, "ATM Client Authentication System Using Biometric Identifier

& OTP," International Journal of Engineering Trends and Technology (IJETT), vol. 11, pp.

255-258, 2014.

[100] C. Mulliner, R. Borgaonkar, P. Stewin, and J.-P. Seifert, "SMS-based one-time passwords:

attacks and defense," in Detection of Intrusions and Malware, and Vulnerability Assessment,

ed: Springer, 2013, pp. 150-159.

[101] M. Toorani and A. Beheshti, "Solutions to the GSM Security Weaknesses," in Next

Generation Mobile Applications, Services and Technologies, 2008. NGMAST '08. The

Second International Conference on, 2008, pp. 576-581.

[102] N. Saxena and N. S. Chaudhari, "EasySMS: A Protocol for End-to-End Secure Transmission

of SMS," Information Forensics and Security, IEEE Transactions on, vol. 9, pp. 1157-1168,

2014.

[103] S. Liu and S. Zhu, "A Novel QR Code and mobile phone based Authentication protocol via

Bluetooth," presented at the International Conference on Materials Engineering and

Information Technology Applications (MEITA), 2015.

[104] O. Leung. (2016). Chapter 1: What is Mobile Instant Messaging? . Available:

https://dzone.com/articles/chapter-1-what-is-mobile-instant-messaging

[105] E. Bønes, P. Hasvold, E. Henriksen, and T. Strandenæs, "Risk analysis of information

security in a mobile instant messaging and presence system for healthcare," International

Journal of Medical Informatics, vol. 76, pp. 677-687, 2007/09/01/ 2007.

[106] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, S. Zon-Yin, and C. Waters, "A study

of Internet instant messaging and chat protocols," IEEE Network, vol. 20, pp. 16-21, 2006.

[107] D. Lane, "Instant Messaging Security," MSc, Information Technology Security, University

of Westminster, December 2003.

[108] G. Fenu and P. L. Pau, "An Analysis of Features and Tendencies in Mobile Banking Apps,"

Procedia Computer Science, vol. 56, pp. 26-33, 2015.

[109] K.-H. Ha, A. Canedoli, A. W. Baur, and M. Bick, "Mobile banking—insights on its increasing

relevance and most common drivers of adoption," Electronic Markets, vol. 22, pp. 217-227,

2012.

[110] B. Panja, D. Fattaleh, M. Mercado, A. Robinson, and P. Meharia, "Cybersecurity in banking

and financial sector: Security analysis of a mobile banking application," in Collaboration

Technologies and Systems (CTS), 2013 International Conference on, 2013, pp. 397-403.

[111] W. He, X. Tian, J. Shen, and Y. Li, "Understanding Mobile Banking Applications’ Security

risks through Blog Mining and the Workflow Technology," 2015.

https://dzone.com/articles/chapter-1-what-is-mobile-instant-messaging

186

[112] H. Lee, Y. Zhang, and K. L. Chen, "An Investigation of Features and Security in Mobile

Banking Strategy," Journal of International Technology and Information Management, vol.

22, p. 2, 2013.

[113] HSBC. (2015). Your Guide to the HSBC Digital Security Device [Online]. Available:

https://www.us.hsbc.com/1/2/home/site/security/hsbc-online-banking-security

[114] HSBC. (2016). Mobile Banking [Online]. Available:

https://www.hsbc.com.tr/eng/retail_banking/direct_banking/mobilebanking.asp

[115] First Direct. (2012). Banking on the go App [Online]. Available:

http://www1.firstdirect.com/1/2/banking/ways-to-bank/mobile-banking-app

[116] Nationwide. (2015). Mobile Banking. Available:

http://www.nationwide.co.uk/support/ways-to-bank/mobile-banking/help-what-you-can-do-

and-faqs#tab:WhatyoucandoandampFAQs

[117] Halifax. (Accessed 2016). Download Our Apps. [Online]. Available:

http://www.halifax.co.uk/aboutonline/download-apps/#Benefits

[118] LLoyds Bank. (Accessed 2016). Mobile Banking App [Online]. Available:

https://www.lloydsbank.com/online-banking/mobile-banking/mobile-app.asp

[119] NatWest. (Accessed 2016). Banking with our Mobile App [Online]. Available:

http://personal.natwest.com/personal/ways-to-bank-with-us/Mobile-app-new.html

[120] Uister Bank. (Accessed 2016, 2016). Mobile Banking [Online]. Available:

http://digital.ulsterbank.ie/personal/ways-to-bank/mobile-banking/key-benefits-of-the-

app.html

[121] Royal Bank of Scotland. (Accessed 2016, 2016). Banking with our Mobile app [Online].

Available: http://personal.rbs.co.uk/personal/ways-to-bank-with-us/mobile-banking/new-to-

mobile-app.html

[122] Santander. (Accessed 2016, 2016). Mobile Banking [Online]. Available:

http://www.santander.co.uk/uk/help-support/mobile-banking

[123] The co-operative Bank. (Accessed 2016, 2016). Mobile Banking from The Co-operative Bank

[Online]. Available: http://www.co-

operativebank.co.uk/mobile?int_cmp=tn1_ob_col2_row1-2_download-app_10032015

[124] Standard Chartered. (2014). Standard Chartered Apps [Online]. Available:

https://www.sc.com/en/online-banking/apps/

[125] Bank of Scotland. (Accessed 2016). Internet and Mobile Banking [Online]. Available:

https://www.bankofscotland.co.uk/privatebanking/services/internet-and-mobile-banking/

https://www.us.hsbc.com/1/2/home/site/security/hsbc-online-banking-security
https://www.hsbc.com.tr/eng/retail_banking/direct_banking/mobilebanking.asp
http://www1.firstdirect.com/1/2/banking/ways-to-bank/mobile-banking-app
http://www.nationwide.co.uk/support/ways-to-bank/mobile-banking/help-what-you-can-do-and-faqs#tab:WhatyoucandoandampFAQs
http://www.nationwide.co.uk/support/ways-to-bank/mobile-banking/help-what-you-can-do-and-faqs#tab:WhatyoucandoandampFAQs
http://www.halifax.co.uk/aboutonline/download-apps/#Benefits
https://www.lloydsbank.com/online-banking/mobile-banking/mobile-app.asp
http://personal.natwest.com/personal/ways-to-bank-with-us/Mobile-app-new.html
http://digital.ulsterbank.ie/personal/ways-to-bank/mobile-banking/key-benefits-of-the-app.html
http://digital.ulsterbank.ie/personal/ways-to-bank/mobile-banking/key-benefits-of-the-app.html
http://personal.rbs.co.uk/personal/ways-to-bank-with-us/mobile-banking/new-to-mobile-app.html
http://personal.rbs.co.uk/personal/ways-to-bank-with-us/mobile-banking/new-to-mobile-app.html
http://www.santander.co.uk/uk/help-support/mobile-banking
http://www.co-operativebank.co.uk/mobile?int_cmp=tn1_ob_col2_row1-2_download-app_10032015
http://www.co-operativebank.co.uk/mobile?int_cmp=tn1_ob_col2_row1-2_download-app_10032015
https://www.sc.com/en/online-banking/apps/
https://www.bankofscotland.co.uk/privatebanking/services/internet-and-mobile-banking/

187

[126] A. Sen and Y. Jou, "Secure Data Transmission Technique for iPhone using Quick Response

(QR) Code," International Conference On“Multidisciplinary Innovation In Business

Engineering Science & Technology” (MI-BEST), vol. 1, pp. 53-62, 2015.

[127] P. Kieseberg, M. Leithner, M. Mulazzani, L. Munroe, S. Schrittwieser, M. Sinha, et al., "QR

code security," presented at the Proceedings of the 8th International Conference on Advances

in Mobile Computing and Multimedia, Paris, France, 2010.

[128] C. Ugwu and T. Mesigo, "A Novel Mobile Wallet Based on Android OS and Quick Response

Code Technology," International Journal of Advanced Researchin Computer Science and

Technology (IJARCST), vol. 3, pp. 85-89, 2015.

[129] J. Malik, D. Girdhar, R. Dahiya, and G. Sainarayanan, "Multifactor Authentication Using a

QR Code and a One-Time Password," Journal of Information Processing Systems, vol. 10,

2014.

[130] A. Vapen, D. Byers, and N. Shahmehri, "2-clickauth optical challenge-response

authentication," in Availability, Reliability, and Security, 2010. ARES'10 International

Conference on, 2010, pp. 79-86.

[131] K. Choi, C. Lee, W. Jeon, K. Lee, and D. Won, "A mobile based anti-phishing authentication

scheme using QR code," in Mobile IT Convergence (ICMIC), 2011 International Conference

on, 2011, pp. 109-113.

[132] DENSO Wave Incorporated. (January, 2016). QR Code Standardization. Available:

http://www.qrcode.com/en/about/standards.html

[133] B. Sago, "The Usage Level and Effectiveness of Quick Response (QR) Codes for Integrated

Marketing Communication Purposes among College Students," International Journal of

Integrated Marketing Communications, vol. 3, 2011.

[134] J.-H. Jung, R. Somerstein, and E. S. Kwon, "SHOULD I SCAN OR SHOULD I GO?:

YOUNG CONSUMERS'MOTIVATIONS FOR SCANNING QR CODE ADVERTISING,"

International Journal of Mobile Marketing, vol. 7, 2012.

[135] K. Krombholz, P. Frühwirt, P. Kieseberg, I. Kapsalis, M. Huber, and E. Weippl, "QR code

security: A survey of attacks and challenges for usable security," in Human Aspects of

Information Security, Privacy, and Trust, ed: Springer, 2014, pp. 79-90.

[136] Y. S. Lee, N. H. Kim, H. Lim, H. Jo, and H. J. Lee, "Online banking authentication system

using mobile-OTP with QR-code," in Computer Sciences and Convergence Information

Technology (ICCIT), 2010 5th International Conference on, 2010, pp. 644-648.

[137] J. Lee, C.-H. Cho, and M.-S. Jun, "Secure quick response-payment (QR-Pay) system using

mobile device," in Advanced Communication Technology (ICACT), 2011 13th International

Conference on, 2011, pp. 1424-1427.

http://www.qrcode.com/en/about/standards.html

188

[138] G. Starnberger, L. Froihofer, and K. M. Göschka, "QR-TAN: Secure mobile transaction

authentication," in Availability, Reliability and Security, 2009. ARES'09. International

Conference on, 2009, pp. 578-583.

[139] DENSO Wave Incorporated. (January, 2016). Information Capacity nad Versions of the QR

Code. Available: http://www.qrcode.com/en/about/version.html

[140] DENSO Wave Incorporated. (January, 2016). Error Correction Feature. Available:

http://www.qrcode.com/en/about/error_correction.html

[141] DENSO Wave Incorporated. (January, 2016). What is a QR Code? Available:

http://www.qrcode.com/en/about/

[142] I. Kapsalis, "security of QR codes," Master, Faculty of Information Technology, Mathematics

and Electrical Engineering - Department of Telematics, Norwegian University of Science and

Technology, Institutt for telematikk, 2013.

[143] D. Chyi-Ren, L. Yu-Hong, J. Liao, Y. Hao-Wei, and K. Wei-Luen, "A Location-based

Mobile Advertisement Publishing System for Vendors," in Information Technology: New

Generations (ITNG), 2011 Eighth International Conference on, 2011, pp. 24-29.

[144] REPORTERS WITHOUT BORDERS. (Accessed 12 January, 2016). Reporters Without

Borders, The Freedom of Information [Online]. Available: http://en.rsf.org/

[145] T. Nudd. (April27, 2011) Print Campaigns That Really Speak to You QR codes get dictators

talking in free-press appeal. Adweek. Available: http://www.adweek.com/adfreak/print-

campaigns-really-speak-you-131046

[146] "QR Codes in the Media: Reporters without Borders," in The QR Place, ed, April30, 2011.

[147] QR Pay Limited. (2011). QR Pay. Available: http://www.qrpay.com/

[148] A. Adsul, A. Shukla, J. Sinojia, R. Sinkar, and S. Jagtap, "Secure Authentication Method

using QR Code for Banking," International Journal, vol. 3, 2015.

[149] V. Kale, Y. Nakat, S. Bhosale, A. Bandal, and R. G. Patole, "A Mobile Based Authentication

Scheme Using QR Code for Bank Security," International Journal of Advanced Researchin

Computer Science and Management Studies (IJARCSMS), vol. 3, pp. 192-196, 2015.

[150] P. Kieseberg, S. Schrittwieser, M. Leithner, M. Mulazzani, E. Weippl, L. Munroe, et al.,

"Malicious Pixels Using QR Codes as Attack Vector," in Trustworthy Ubiquitous Computing.

vol. 6, I. Khalil and T. Mantoro, Eds., ed: Atlantis Press, 2012, pp. 21-38.

[151] ISO/IEC 18004, "Information technology — Automatic identification and data capture

techniques — Bar code symbology — QR Code," ed, 15-6-2000.

[152] CISCO, "Next Generation Encryption " October 2015.

[153] Hans Delfs and Helmut Knebl, Introduction to Cryptography Principles and Applications

Third ed.: Springer, 2015.

http://www.qrcode.com/en/about/version.html
http://www.qrcode.com/en/about/error_correction.html
http://www.qrcode.com/en/about/
http://en.rsf.org/
http://www.adweek.com/adfreak/print-campaigns-really-speak-you-131046
http://www.adweek.com/adfreak/print-campaigns-really-speak-you-131046
http://www.qrpay.com/

189

[154] M. A. Alia, A. A. Tamimi, and O. N. AL-Allaf, "Cryptography Based Authentication

Methods," in Proceedings of the World Congress on Engineering and Computer Science,

2014.

[155] E. B. Barker, W. C. Barker, and A. Lee, Guideline for implementing cryptography in the

federal government: US Department of Commerce, Technology Administration, National

Institute of Standards and Technology, 2005.

[156] Valtteri Niemi and Kaisa Nyberg, "The Science of Cryptology," in UMTS Security, ed: Wiley,

2003, pp. 113-118.

[157] Christof Paar and Jan Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners: Springer, 2009.

[158] S. Pal, K. K. Soundra Pandian, and K. C. Ray, "FPGA implementation of stream cipher using

Toeplitz Hash function," in Advances in Computing, Communications and Informatics

(ICACCI, 2014 International Conference on, 2014, pp. 1834-1838.

[159] G. Singh and A. Supriya, "A Study of Encryption Algorithms (RSA, DES, 3DES and AES)

for Information Security," International Journal of Computer Applications, vol. 67, pp. 33-

38, 2013.

[160] Czesław Kościelny, Mirosław Kurkowski , and Marian Srebrny, Modern Cryptography

Primer Theoretical Foundations and Practical Applications: Springer, 2013.

[161] A. A. Zadeh and H. M. Heys, "Theoretical simple power analysis of the grain stream cipher,"

in Electrical and Computer Engineering (CCECE), 2013 26th Annual IEEE Canadian

Conference on, 2013, pp. 1-5.

[162] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, "Block Ciphers," in

Handbook of Applied Cryptography, ed: CRC Press, 1996.

[163] Lars R. Knudsen and Matthew J.B. Robshaw, The Block Cipher Companion: Springer, 2011.

[164] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, "Stream Ciphers," in

Handbook of Applied Cryptography, ed: CRC Press, 1996.

[165] M. Ebrahim, S. Khan, and U. B. Khalid, "Symmetric algorithm survey: a comparative

analysis," International Journal of Computer Applications, vol. 61, pp. 12-19, 2014.

[166] S. Kandola, "A Survey of Cryptographic Algorithms," St. Lawrence University, 2013.

[167] "Guidelines for the Selection and Use of Transport Layer Security (TLS) Implementations,"

ed: NIST Special Publication 800-52, June 2005.

[168] W. Diffie and M. E. Hellman, "New directions in cryptography," Information Theory, IEEE

Transactions on, vol. 22, pp. 644-654, 1976.

190

[169] M. Dubey and M. Y. Yadav, "Comparative Analysis of Cryptographic Algorithms,"

International Journal of Engineering Technology Science and Research (IJETSR), vol. 2,

2015.

[170] E. G. Nithya and D. P. Raj, "Survey on Asymmetric Key Cryptography Algorithms," Journal

of advanced computing and communication technologies, vol. 2, 2014.

[171] T. Dierks, "The transport layer security (TLS) protocol version 1.2," 2008.

[172] R. Gelashvili, "Attacks on re-keying and renegotiation in Key Exchange Protocols," Bachelor

Thesis, ETH Zurich, 2012.

[173] A. H. Al Hadi, "A Survey On Some Encryption Algorithms And Verification Of RSA

Technique," International Journal of Scientific and Technology Research vol. 2, pp. 285-287,

December 2013.

[174] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of applied cryptography:

CRC press, 1996.

[175] Q. Dang, Recommendation for applications using approved hash algorithms: US Department

of Commerce, National Institute of Standards and Technology, 2012.

[176] K. C. Laudon, C. G. Traver, and A. V. R. Elizondo, E-commerce: : business, technology,

society, Fourth ed.: London : Person Prentice Hall 2007.

[177] R. Purohit, U. Mishra, and A. Bansal, "A Survey on Recent Cryptographic Hash Function

Designs," International Journal of Emerging Trends and Technology in Computer Science

(IJETTCS), vol. 2, pp. 117-122, February 2013.

[178] X. Wang, Y. L. Yin, and H. Yu, "Finding Collisions in the Full SHA-1," in Advances in

Cryptology – CRYPTO 2005: 25th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 14-18, 2005. Proceedings, V. Shoup, Ed., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 17-36.

[179] Y. Wang, G. Wang, and H. Zhang, "Random Number Generator Based on Hopfield Neural

Network and SHA-2 (512)," in Advancing Computing, Communication, Control and

Management, Q. Luo, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 198-

205.

[180] M. Stevens, "New Collision Attacks on SHA-1 Based on Optimal Joint Local-Collision

Analysis," in Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece,

May 26-30, 2013. Proceedings, T. Johansson and P. Q. Nguyen, Eds., ed Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 245-261.

[181] National Institute of Standards and Technology (NIST), "Secure Hash Standard (SHS)," in

Draft Federal Information Processing Standards Publication 180-4 ed. Gaithersburg, 2011.

191

[182] P. Rogaway and T. Shrimpton, "Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, second-preimage resistance, and

collision resistance," in Fast Software Encryption, 2004, pp. 371-388.

[183] I. Karabey and G. Akman, "A cryptographic approach for secure client - server chat

application using public key infrastructure (PKI)," in 2016 11th International Conference for

Internet Technology and Secured Transactions (ICITST), 2016, pp. 442-446.

[184] S. Kim, H.-T. Oh, and Y.-G. Kim, "Certificate sharing system for secure certificate

distribution in mobile environment," Expert Systems with Applications, vol. 44, pp. 67-77,

2016.

[185] S. Pichumani and S. K. Kasera, "On implementing security at the transport layer," in

Communication Systems Software and Middleware and Workshops, 2008. COMSWARE

2008. 3rd International Conference on, 2008, pp. 318-326.

[186] E. Reimers, "On the security of TLS and IPsec: Mitigation through physical constraints,"

Institutionen för datavetenskap-Department of Computer and Information Science,

Sweden2015.

[187] I. Kotuliak, P. Rybar, and P. Truchly, "Performance comparison of IPsec and TLS based VPN

technologies," in Emerging eLearning Technologies and Applications (ICETA), 2011 9th

International Conference on, 2011, pp. 217-221.

[188] V. R. Hiran, "Usability evaluation of IPsec configuring components," Master Thesis,

Department of Computer and Information Science, Linköpings universitet Sweden, October

2015.

[189] T. Polk, K. McKay, and S. Chokhani, "Guidelines for the Selection, Configuration, and Use

of Transport Layer Security (TLS) Implementations," in NIST Special Publication 800-52

vol. 800, ed, 2014, p. 59.

[190] "The Transport Layer Security (TLS) Protocol (Version 1.2)," ed: Network Working Group,

RFC 5246, August 2008.

[191] Microsoft. (March 28, 2003). How TLS/SSL Works. Available:

https://technet.microsoft.com/en-us/library/cc783349(v=ws.10).aspx

[192] "Transport Layer Security (TLS)," in technopedia, ed, 2016.

[193] National Institute of Standards and Technology (NIST), "Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS) Implementations," in Release of

NIST Special Publication 800-52 Revision 1, Kerry McKay, Kim Quill, and G. Witte, Eds.,

ed, 2014.

[194] P. Eronen and H. Tschofenig, "Pre-Shared Key Ciphersuites for Transport Layer Security

(TLS)," Network Working Group, RFC 4346, 2005.

https://technet.microsoft.com/en-us/library/cc783349(v=ws.10).aspx

192

[195] S. Vandeven, "Ssl/tls: What’s under the hood," SANS Institute InfoSec Reading Room, vol.

13, 2013.

[196] Chilkat Software Inc. (2014). (C++) Diffie-Hellman Key Exchange (DH). Available:

http://www.example-code.com/cpp/dh_key_exchange.asp

[197] L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson, "An Experimental Study of TLS

Forward Secrecy Deployments," IEEE Internet Computing, vol. 18, pp. 43-51, 2014.

[198] N. Aaraj, A. Raghunathan, and N. K. Jha, "Analysis and design of a hardware/software

trusted platform module for embedded systems," ACM Trans. Embed. Comput. Syst., vol. 8,

pp. 1-31, 2009.

[199] N. Aaraj, A. Raghunathan, S. Ravi, and N. K. Jha, "Energy and Execution Time Analysis of

a Software-based Trusted Platform Module," in 2007 Design, Automation & Test in Europe

Conference & Exhibition, 2007, pp. 1-6.

[200] Y.-W. Chow, W. Susilo, G. Yang, M. H. Au, and C. Wang, "Authentication and Transaction

Verification Using QR Codes with a Mobile Device," in Security, Privacy, and Anonymity in

Computation, Communication, and Storage: 9th International Conference, SpaCCS 2016,

Zhangjiajie, China, November 16-18, 2016, Proceedings, G. Wang, I. Ray, J. M. Alcaraz

Calero, and S. M. Thampi, Eds., ed Cham: Springer International Publishing, 2016, pp. 437-

451.

[201] B. Dodson, D. Sengupta, D. Boneh, and M. S. Lam, "Snap2Pass: Consumer-Friendly

Challenge-Response Authentication with a Phone," http:/prpl. stanford.

edu/papers/soups10j. pdf, 2010.

[202] R. Oppliger, R. Hauser, and D. Basin, "SSL/TLS session-aware user authentication–Or how

to effectively thwart the man-in-the-middle," Computer Communications, vol. 29, pp. 2238-

2246, 2006.

[203] IBM. (August 15, 2015). Setting the user ID pattern for certificate authentication. Available:

https://www.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere

.streams.admin.doc/doc/ibminfospherestreams-adminconsole-certificate-authentication.html

[204] IBM. (August 15, 2015). Creating a distinguished name for a user account. Available:

https://www.ibm.com/support/knowledgecenter/SSTFWV_5.1.0/com.ibm.itim.doc/usr_win

ad_5135.htm

[205] Oracle. (2000). Netscape Certificate Management System Administrator's Guide:

Distinguished Names. Available: https://docs.oracle.com/cd/E19957-01/816-5531-

10/app_dn.htm#1019922

http://www.example-code.com/cpp/dh_key_exchange.asp
https://www.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.admin.doc/doc/ibminfospherestreams-adminconsole-certificate-authentication.html
https://www.ibm.com/support/knowledgecenter/SSCRJU_3.2.0/com.ibm.swg.im.infosphere.streams.admin.doc/doc/ibminfospherestreams-adminconsole-certificate-authentication.html
https://www.ibm.com/support/knowledgecenter/SSTFWV_5.1.0/com.ibm.itim.doc/usr_winad_5135.htm
https://www.ibm.com/support/knowledgecenter/SSTFWV_5.1.0/com.ibm.itim.doc/usr_winad_5135.htm
https://docs.oracle.com/cd/E19957-01/816-5531-10/app_dn.htm#1019922
https://docs.oracle.com/cd/E19957-01/816-5531-10/app_dn.htm#1019922

193

[206] IBM. (2012). Types of certificate name filters. Available:

https://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.icha700

/cnftypes.htm

[207] Microsoft. (2017). About two-step verification. Available: https://support.microsoft.com/en-

us/help/12408/microsoft-account-about-two-step-verification

[208] Google. Google 2-Step Verification. Available:

https://www.google.com/landing/2step/#tab=why-you-need-it

[209] W. E. Capers, "Sorkel, Aqua, and Sailfish - A crash course in writing embedded servers," in

Embedded Web Server Development, Version 2.3.0.4 ed, 2012.

[210] (1993-2016). C++ Builder. Available: https://www.embarcadero.com/products/cbuilder

[211] (1998). Chilkat Software. Available: http://www.chilkatsoft.com/

[212] TBarCode SDK - ActiveX/DLL/.NET Barcode Generator. Available: http://www.tec-

it.com/en/software/barcode-software/tbarcode/barcode-generator/Default.aspx

[213] (1996). Barcode Software, Label Software, Reporting Software, Data Capture, 2D Barcode

Generator. Available: http://www.tec-it.com/en/start/Default.aspx

[214] Chilkat Software Inc. (2000-2016). CkSocket C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkSocketRef.html

[215] Chilkat Software Inc. (2000-2016). CkCert C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkCertRef.html

[216] Chilkat Software Inc. (2000-2016). (C++) SSL Server Example. Available:

https://www.example-code.com/cpp/ssl_server.asp

[217] Chilkat Software Inc. (2000-2016). (C++) SSL Client Certificate. Available:

https://www.example-code.com/cpp/ssl_client_certificate.asp

[218] N. Ferguson, B. Schneier, and T. Kohno, Cryptography engineering: design principles and

practical applications: John Wiley & Sons, 2011.

[219] Chilkat Software Inc. (2000-2016). CkPrng C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkPrngRef.html

[220] Chilkat Software Inc. (2000-2016). (C++) Fortuna PRNG Generate Random Encoded.

Available: https://www.example-code.com/cpp/prng_generate_random.asp

[221] Chilkat Software Inc. (2000-2016). CkCertStore C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkCertStoreRef.html

[222] Chilkat Software Inc. (2000-2016). CkString C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkStringRef.html

[223] Chilkat Software Inc. (2000-2016). (C++) Export Digital Certificate's Public Key. Available:

https://www.example-code.com/cpp/cert_export_public_key.asp

https://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.icha700/cnftypes.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.icha700/cnftypes.htm
https://support.microsoft.com/en-us/help/12408/microsoft-account-about-two-step-verification
https://support.microsoft.com/en-us/help/12408/microsoft-account-about-two-step-verification
https://www.google.com/landing/2step/#tab=why-you-need-it
https://www.embarcadero.com/products/cbuilder
http://www.chilkatsoft.com/
http://www.tec-it.com/en/software/barcode-software/tbarcode/barcode-generator/Default.aspx
http://www.tec-it.com/en/software/barcode-software/tbarcode/barcode-generator/Default.aspx
http://www.tec-it.com/en/start/Default.aspx
https://www.chilkatsoft.com/refdoc/vcCkSocketRef.html
https://www.chilkatsoft.com/refdoc/vcCkCertRef.html
https://www.example-code.com/cpp/ssl_server.asp
https://www.example-code.com/cpp/ssl_client_certificate.asp
https://www.chilkatsoft.com/refdoc/vcCkPrngRef.html
https://www.example-code.com/cpp/prng_generate_random.asp
https://www.chilkatsoft.com/refdoc/vcCkCertStoreRef.html
https://www.chilkatsoft.com/refdoc/vcCkStringRef.html
https://www.example-code.com/cpp/cert_export_public_key.asp

194

[224] Chilkat Software Inc. (2000-2016). CkPublicKey C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkPublicKeyRef.html

[225] Chilkat Software Inc. (2000-2016). CkRsa C++ Reference Documentation. Available:

https://www.chilkatsoft.com/refdoc/vcCkRsaRef.html

[226] Chilkat Software Inc. (2000-2016). (C++) RSA Encrypt and Decrypt Strings. Available:

https://www.example-code.com/cpp/rsa_encryptStrings.asp

[227] TEC_IT, "TBarCode Library - Barcode Generation Library - Developer Manual," Version

11 ed, 2014.

[228] TEC-IT, "TEC-IT Barcode Software - Barcode Overview - Reference," Version 11 ed, 2015.

[229] Apple Developer. (2015). Accessing a Bundle’s Contents. Available:

https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CF

Bundles/AccessingaBundlesContents/AccessingaBundlesContents.html

[230] Apple Developer. (2016). NSData - Foundation | Apple Developer Documentation.

Available: https://developer.apple.com/reference/foundation/nsdata#overview

[231] Chilkat Software Inc. (2000-2016). CkoCert Objective-C Reference Documentation.

Available: https://www.chilkatsoft.com/refdoc/objcCkoCertRef.html

[232] Chilkat Software Inc. (2000-2016). CkoPrivateKey Objective-C Reference Documentation.

Available: https://www.chilkatsoft.com/refdoc/objcCkoPrivateKeyRef.html

[233] Chilkat Software Inc. (2000-2016). CkoRsa Objective-C Reference Documentation.

Available: https://www.chilkatsoft.com/refdoc/objcCkoRsaRef.html

[234] Chilkat Software Inc. (2000-2016). (Objective-C) RSA Encrypt and Decrypt Strings.

Available: https://www.example-code.com/objc/rsa_encryptStrings.asp

[235] Apple Developer. (2016). NSString Foundation - Apple Developer Documentation.

Available: https://developer.apple.com/reference/foundation/nsstring

[236] Chilkat Software Inc. (2000-2016). (Objective-C) SSL Client Certificate. Available:

https://www.example-code.com/objc/ssl_client_certificate.asp

[237] Chilkat Software Inc. (2000-2016). CkoCrypt2 Objective-C Reference Documentation.

Available: https://www.chilkatsoft.com/refdoc/objcCkoCrypt2Ref.html

[238] Chilkat Software Inc. (2000-2016). (Objective-C) Hash Algorithms: SHA-1, HAVAL, MD2,

MD5, SHA-256, SHA-384, SHA-512. Available: https://www.example-

code.com/objc/crypt_hash_algorithms.asp

[239] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala, "A comparative analysis of tools for verification

of security protocols," Int'l J. of Communications, Network and System Sciences, vol. 3, p.

779, 2010.

[240] C. Cremers, "The Scyther Tool," v1.1.3 ed, April 4, 2014.

https://www.chilkatsoft.com/refdoc/vcCkPublicKeyRef.html
https://www.chilkatsoft.com/refdoc/vcCkRsaRef.html
https://www.example-code.com/cpp/rsa_encryptStrings.asp
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/AccessingaBundlesContents/AccessingaBundlesContents.html
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/AccessingaBundlesContents/AccessingaBundlesContents.html
https://developer.apple.com/reference/foundation/nsdata#overview
https://www.chilkatsoft.com/refdoc/objcCkoCertRef.html
https://www.chilkatsoft.com/refdoc/objcCkoPrivateKeyRef.html
https://www.chilkatsoft.com/refdoc/objcCkoRsaRef.html
https://www.example-code.com/objc/rsa_encryptStrings.asp
https://developer.apple.com/reference/foundation/nsstring
https://www.example-code.com/objc/ssl_client_certificate.asp
https://www.chilkatsoft.com/refdoc/objcCkoCrypt2Ref.html
https://www.example-code.com/objc/crypt_hash_algorithms.asp
https://www.example-code.com/objc/crypt_hash_algorithms.asp

195

[241] K. Pfeffer, "Formal Verification of a LTE Security Protocol for Dual-Connectivity: An

Evaluation of Automatic Model Checking Tools," 2014.

[242] David Basin, Cas Cremers, and C. Meadows, Model Checking Security Protocols: Springer,

October 22, 2012.

[243] E. Zenner, "Nonce Generators and the Nonce Reset Problem," in Information Security. vol.

5735, P. Samarati, M. Yung, F. Martinelli, and C. Ardagna, Eds., ed: Springer Berlin

Heidelberg, 2009, pp. 411-426.

[244] B. Schneier, "New Attack on AES," in Schneier on Security, ed, Augest 18, 2011.

[245] R. Z. ITU-T and Z. Recommendation, "120: Message sequence chart (MSC)," ITU-T,

Geneva, vol. 27, 1996.

[246] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, "Analyzing the energy consumption

of security protocols," presented at the Proceedings of the 2003 international symposium on

Low power electronics and design, Seoul, Korea, 2003.

[247] C. J. F. Cremers, "Scyther - Semantics and Verication of Security Protocols," PhD Thesis,

Department of Mathematics and Computer Science, Eindhoven University of Technology,

Eindhoven, 2006.

[248] A. W. Roscoe, "Intensional specifications of security protocols," in Proceedings 9th IEEE

Computer Security Foundations Workshop, 1996, pp. 28-38.

[249] G. Lowe, "A hierarchy of authentication specifications," in Computer Security Foundations

Workshop, 1997. Proceedings., 10th, 1997, pp. 31-43.

[250] C. J. Cremers, S. Mauw, and E. P. D. Vink, "Defining authentication in a trace model," in

Fast, 2003, pp. 131-145.

[251] C. J. F. Cremers, S. Mauw, and E. P. de Vink, "A Syntactic Criterion for Injectivity of

Authentication Protocols," Electronic Notes in Theoretical Computer Science, vol. 135, pp.

23-38, 7/5/ 2005.

[252] C. J. F. Cremers, S. Mauw, and E. P. de Vink, "Injective synchronisation: An extension of

the authentication hierarchy," Theoretical Computer Science, vol. 367, pp. 139-161, 11/24/

2006.

[253] N. Kahya, N. Ghoualmi, and P. Lafourcade, "Secure key management protocol in WIMAX,"

International Journal, vol. 4, 2012.

[254] R. Patel, B. Borisaniya, A. Patel, D. Patel, M. Rajarajan, and A. Zisman, "Comparative

analysis of formal model checking tools for security protocol verification," in International

Conference on Network Security and Applications, 2010, pp. 152-163.

[255] C. Cremers, Scyther: Unbounded Verification of Security Protocols, 2007.

196

[256] C. J. F. Cremers, "Unbounded verification, falsification, and characterization of security

protocols by pattern refinement," presented at the Proceedings of the 15th ACM conference

on Computer and communications security, Alexandria, Virginia, USA, 2008.

[257] C. Cremers, "Scyther User Manual," Department of Computer Science, University of Oxford:

Oxford, UK, 2014.

[258] C. J. Cremers, "The Scyther Tool: Verification, Falsification, and Analysis of Security

Protocols," presented at the Proceedings of the 20th international conference on Computer

Aided Verification, Princeton, NJ, USA, 2008.

[259] S. Cleemput, G. Deconinck, Y. D. Mulder, K. Devos, B. Preneel, S. Seys, et al., "FM-

BIASED Applying the scyther formal verification tool on the DLMS/COSEM standard -

Version 2.1 " 2014.

[260] P. Mitharwal, C. Lohr, and A. Gravey, "Survey on Network Interface Selection in

Multihomed Mobile Networks," in Advances in Communication Networking: 20th

EUNICE/IFIP EG 6.2, 6.6 International Workshop, Rennes, France, September 1-5, 2014,

Revised Selected Papers, Y. Kermarrec, Ed., ed Cham: Springer International Publishing,

2014, pp. 134-146.

[261] C. Seongho, N. Jongkeun, and K. Chongkwon, "A dynamic load sharing mechanism in

multihomed mobile networks," in IEEE International Conference on Communications, 2005.

ICC 2005. 2005, 2005, pp. 1459-1463 Vol. 3.

197

Appendix A

Pseudocode of the Challenge Generation Phase

Figure A.1: Challenge Generation Pseudo Code

198

Figure 0.1: Response Generation Pseudo Code

Pseudocode of the Response Generation Phase

