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Abstract and lay summary 

 

This thesis investigates the effects in speech production of prediction during speech comprehension.  

The topic is raised by recent theoretical models of speech comprehension, which suggest a more 

integrated role for speech production and comprehension mechanisms than has previously been 

posited.  The thesis is specifically concerned with the suggestion that during speech comprehension 

upcoming input is simulated with reference to the listener’s own speech production system by way of 

efference copy.   

Throughout this thesis the approach taken is to investigate whether representations elicited during 

comprehension impact speech production. The representations of interest are those generated 

endogenously by the listener during prediction of upcoming input. We investigate whether predictions 

are represented at a form level within the listener’s speech production system.  We first present an 

overview of the relevant literature.  We then present details of a picture word interference study 

undertaken to confirm that the item set employed elicits typical phonological effects within a 

conventional paradigm in which the competing representation is perceptually available.  The main 

body of the thesis presents evidence concerning the nature of representations arising during prediction, 

specifically their effect on speech output.  We first present evidence from picture naming vocal 

response latencies.  We then complement and extend this with evidence from articulatory imaging, 

allowing an examination of pre-acoustic aspects of speech production.   

To investigate effects on speech production as a dynamic motor-activity we employ the Delta method, 

developed to quantify articulatory variability from EPG and ultrasound recordings.  We apply this 

technique to ultrasound data acquired during mid-sagittal imaging of the tongue and extend the 

approach to allow us to explore the time-course of articulation during the acoustic response latency 

period.  We investigate whether prediction of another’s speech evokes articulatorily specified 

activation within the listener’s speech production system 

The findings presented in this thesis suggest that representations evoked as predictions during speech 

comprehension do affect speech motor output.  However, we found no evidence to suggest that 

predictions are represented in an articulatorily specified manner.  We discuss this conclusion with 

reference to models of speech production-perception that implicate efference copies in the generation 

of predictions during speech comprehension. 
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 Introduction Chapter 1:  

Comprehension is, in part, a proactive process.  In addition to analysing incoming perceptual 

information, comprehenders synthesize anticipated input.  There is considerable evidence to indicate 

that anticipated input is specified at semantic and syntactic levels. In this thesis we focus on synthesis 

at a phonological-phonetic level, and investigate the proposal that prediction at this level invokes the 

speech-motor system through a process of “prediction-by-simulation” (Pickering & Garrod, 2013).  

This proposal has generated widespread interest, particularly with respect to the potential nature of 

representations generated during prediction, and the mechanism by which these might be associated 

with neural motor activation (e.g., Alario & Hamamé, 2013; de Ruiter & Cummins, 2013; Hartsuiker, 

2013; Hickok, 2013; Mylopoulos & Pereplyotchik, 2013; Oppenheim, 2013).  We investigate the 

question of whether speech sound representations activated predictively during comprehension engage 

the speech production system in a manner comparable to those activated during planning of one’s own 

speech.  Specifically, we investigate whether competition between predicted and to-be-produced item 

is identifiable at a speech-output level. 

In this chapter we introduce the theoretical framework under which prediction during comprehension 

is treated as a speech production phenomenon.  We focus on Pickering and Garrod’s suggestion that 

prediction can involve simulation within the listener’s speech production system (referred to as 

“prediction-by-simulation”; Pickering & Garrod, 2013).  Although itself a framework rather than an 

evidence-tested model, Pickering and Garrod’s suggestion is inspired by evidence that: (i) hearing 

speech activates the neural speech motor system; (ii) comprehension involves the prediction of 

upcoming input; (iii) joint action involves predictive simulation of others’ actions.  We briefly review 

evidence supportive of these three claims.  We then summarise Pickering and Garrod’s unifying 

argument; that conversation is a form of joint action, that prediction during comprehension can 

therefore be understood as action prediction, and that action prediction involves simulation within the 

observer’s own neural motor planning system.  We review response latency and articulatory imaging 

evidence to indicate that phonological competition during planning of one’s own speech produces 

observable traces in speech output.  We conclude by presenting the approach employed in the current 

study, in which we investigate whether “planning” during prediction of another’s speech evokes 

similar traces in speech output.  

1.1. Speech motor activation during comprehension 

Pickering and Garrod argue that comprehension and production must be treated as interconnected 

processes.  They argue that, in line with current thinking concerning the integrated nature of action 

and perception (e.g., see Hommel, 2004; Gentsch, Weber, Synofzik, Vosgerau, & Schütz-Bosbach, 

2016), speaking (i.e., action) and comprehension (i.e., perception) processes are best understood and 
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modelled as interwoven.  The proposal that prediction-by-simulation involves activation within the 

listener’s (neural) speech motor system is underpinned by evidence that listening to speech evokes 

speech-motor activity (Fadiga, Craighero, Buccino, & Rizzolatti, 2002; Pulvermüller, Huss, Kherif, 

del Prado Martin, Hauk, & Shtyrov, 2006; Watkins & Paus, 2004; Wilson, Saygin, Sereno, & 

Iacoboni, 2004; for reviews see Gambi & Pickering, 2013; Scott, McGettigan, & Eisner, 2009).  

Motor activation has been associated with two types of comprehension-production resonance: 

referential resonance and communicative resonance (Fischer & Zwaan, 2008; Willems & Hagoort, 

2007).  Referential resonance describes activation elicited by the linguistic content of the listened-to-

material, and involves the representation or simulation of motor acts referred to by the speaker (e.g., 

hearing “kick” activates leg areas; Hauk, Johnsrude, & Pulvermüller, 2004; Tettamanti et al., 2005).  

Communicative resonance describes activation related to the phonetic content, or surface form of 

speech, and involves representation or simulation of the motor activity involved in speech production 

itself (e.g., hearing /khIk/ activates areas involved in the articulation of that sound stream).  It is 

communicative resonance with which the studies reported in this thesis are concerned. 

Communicative resonance was initially observed in response to meaningless speech sounds presented 

acontextually:  Listening to speech sounds has repeatedly been demonstrated to evoke somatotopically 

specified activation within the primary motor cortex (for a review, see Schomers, Kirilina, Weigand, 

Bajbouj, & Pulvermüller, 2015).  For example, presentation of labially articulated syllables (e.g., /ba/) 

evokes greater activation within the primary motor cortex sub-region associated with lip movement 

execution, whereas presentation of lingually articulated syllables (e.g., /ka/) evokes greater activation 

in the region associated with tongue movement (Pulvermüller et al., 2006).  Such effects can be seen 

not only in the speech motor cortex, but in the articulatory effectors (e.g., tongue and lips) themselves:  

Electromyographic activity within a given articulator is raised when the participant is auditorily 

presented with a speech sound involving that articulator (Fadiga et al., 2002; Watkins, Strafella, & 

Paus, 2003).  These effects have been observed in response to acoustic presentation of meaningless 

syllables in a comprehension-free context, and are therefore neither evidence of predictive activation 

nor evidence that motor-activation is a pre-requisite for speech processing during comprehension. 

More recent research findings suggest that communicative resonance may play a causal role in speech 

comprehension. Transcranial magnetic stimulation (TMS) of somatotopically relevant areas of the 

speech motor and premotor cortex has been demonstrated to affect speech comprehension in an 

articulatorily specified manner (Schomers et al., 2015):  People are quicker to match heard words to 

pictures when the place of articulation of the word onset is consistent with the neural speech-motor 

region activated via TMS than when the area activated relates to a competing articulator.  For 

example, people are quicker to select the relevant picture for labial-onset words such as “pool” when 

TMS pulses are applied to the primary motor cortex area associated with lip movement than when 

pulses are applied to the area associated with tongue movement.  The reverse is true for lingual onset 

words such as “tool”.  The fact that comprehension task performance (word-picture matching) is 

affected by externally-induced somatotopically-specific simulation of the primary motor cortex 
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implies that activation within the speech motor system impacts semantic processing.  That is to say, 

neural speech motor activation contributes to comprehension.  This evidence supports an action-

perception model of language processing (e.g., Fadiga & Pulvermüller, 2010).  Whilst this is 

consistent with Pickering and Garrod’s argument that production and comprehension are interwoven 

processes, the study described above did not address whether the putative relationship between speech 

motor activation and comprehension involves a predictive element.  

There remains considerable controversy as to whether, how, and why speech production processes 

might be recruited speech during comprehension (see Galantucci, Fowler, & Turvey, 2006 and Scott, 

2009 for reviews).  As outlined above, Pickering and Garrod (2007; 2013) propose that 

communicative resonance arises not only in response to externally generated perceptual input, but that 

it is also evoked during preactivation of speech motor representations during comprehension: They 

suggest that listener predictions of upcoming input are implemented in the (neural) speech production 

system, and that these predictions ultimately result in activations within the speech-motor system.  

1.2. Prediction during comprehension 

Phenomenological evidence suggests that, when language is used in an everyday setting (i.e. 

dialogue), interlocutors make use of an ability to predict each other’s material:  We finish one 

another’s sentences (Clark & Wilkes-Gibbs, 1986), and inter-speaker turn intervals can be shorter than 

intra-speaker intervals (de Ruiter, Mitterer, & Enfield, 2006; Stivers et al., 2009; Heldner & Edlund, 

2010; Sacks, Schegloff, & Jefferson, 1974; Wilson & Wilson, 2005).  Strongly predictive accounts of 

language comprehension hold that multi-level constraints within the input lead listeners to pre-activate 

upcoming items or features in an online fashion (see Kutas, DeLong, & Smith, 2011, for details and 

discussion; see also Martin, 2016, for discussion of cues as constraints). This pre-activation “most 

likely does not reach the level of consciousness”, and therefore tends to be investigated within 

experimental paradigms that allow the use of online measures (Kutas et al., 2011).   

The nature of predictively elicited representations can be investigated by the manipulating the degree 

of overlap between a predicted item and a presented item at the level of interest (e.g., conceptual, 

semantic, syntactic, phonological).  This approach has been employed in visual world, event related 

potential (ERP) and picture naming studies, and has provided significant insight into the role and 

nature of top-down processing during comprehension.  We briefly summarise these approaches and 

relevant findings below. 

1.2.1.   Pre-activation during comprehension 

Prediction during comprehension cannot be directly measured.  It is instead inferred on the basis of 

behavioural or neurophysiological effects.  If an effect is to be interpreted as evidence of predictive 

activation it should be observable prior to, or in the absence of, perceptual presentation of the 
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predicted item (e.g., Pickering & Garrod, 2013). Eye-tracking within a visual world paradigm allows 

the capture of relevant behavioural data. Participant eye movements are recorded online, allowing 

fixations and saccades to be time-locked against linguistic information (see Kamide, 2008).  It is 

understood that linguistic material guides the listener’s attention allocation, which in turn determines 

gaze direction (e.g., Huettig, Rommers, & Meyer, 2011).  Within the visual world paradigm, linguistic 

material is acoustically presented whilst the participant views a “visual world” on screen. The visual 

world contains potential referents and/or distractors alongside irrelevant fillers. Typically, constraints 

provided by the linguistic and visual information combined lead some images to be preferentially 

attended (i.e., attract a higher number of fixations than others). When an image is preferentially 

attended prior to, or in the absence of, its name being presented, it is understood that participants have 

anticipated that the item will be referred to within upcoming spoken input (see Huettig, 2015). 

Electroencephalographic (EEG) recording provides another means to collect data pertinent to the 

question of whether participants predict upcoming input during comprehension.  EEG captures 

temporally high resolution data concerning electrical activity within the brain.  Electrodes placed on 

the participant’s scalp allow changes in the electrical activity of the brain to be recorded over time.  

Much of the activity recorded does not relate specifically to the event of interest.  However, the 

impact of this unrelated activity can be minimised by averaging over many trials.  This allows 

researchers to isolate components related to the event of interest.  Signature peaks and troughs in 

electrical activity (referred to as “event related potentials”; ERPs) provide a means to infer online 

neural processing.   

Although ERPs have a somewhat unknown temporal delay relative to neural activity, they allow for 

estimation of the time point during stimulus presentation at which specific effects developed. As with 

eye-tracking, the potential this offers to determine whether effects arose before perceptual 

presentation of a specific stimulus has been crucial in determining whether an effect can be said to 

arise of prediction (see Osterhout, Kim, & Kuperberg, 2007, for a discussion). Whereas eye-tracking 

data concerning prediction has commonly been obtained in paradigms where the linguistic input is 

acoustic, ERP data has tended to be collected in paradigms where the linguistic input is orthographic.  

Orthographic material in such studies is typically presented via rapid serial visual presentation 

(RSVP), in which the words of a sentence fragment are presented one-by-one, in order, in written 

form on a computer screen.  This allows maximal experimental control over when participants process 

specific lexical items but limits the extent to which findings might inform about the processing of 

spoken, as opposed to written, language. 

Eye-tracking data suggest that listeners make predictions that incorporate semantic information.  A 

key finding in this respect is that verb meaning induces preferential looking to semantically 

appropriate objects (Altmann & Kamide, 1999; Mani & Huettig, 2012). For example, upon hearing a 

sentence featuring the verb “eats” listeners preferentially fixate edible items (e.g., CAKE)  over non-

edible items (e.g., BALL ).  This is not the case when the verb does not impose a selectional constraint 
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within the visual context.  The fact that preferential fixation to edible items occurs prior to acoustic 

presentation of the edible item suggests that the (semantic) selectional constraint imposed by the verb 

causes participants to shift visual attention to items that satisfy the constraint.  That is, participants 

predict upcoming input at a semantic level.  Predictive shifts in visual attention have also been 

observed where the verb constrains upcoming information through their argument structure:  Dative 

verbs elicit higher numbers of fixations to potential recipient images than do monotransitive verbs 

(Boland, 2005). 

ERP data indicate that semantic predictions are also elicited during reading (Federmeier & Kutas, 

1999; see also Federmeier & Kutas, 2001 for a version in which the critical item is presented in 

picture rather than orthographic form). This evidence rests on the understanding that N400 response 

indexes semantic unification, i.e., fit between elements of a sentence or utterance, with N400 

amplitude being inversely related to the degree of semantic fit between the critical item and its context 

(see Osterhout et al., 2007). When context is provided by a high-cloze sentence fragment, items that 

provide equally unlikely completions may differ in the degree to which they overlap with the high-

cloze target at a semantic feature level.  For example, the sentence fragment “They wanted to make 

the hotel look more like a tropical resort so along the driveway they planted” is a high-cloze sentence 

fragment that typically elicits the completion “palms”.  The words “pines” and “tulips” are both 

plausible yet unlikely completions to the sentence.  However, “pines” overlaps with “palms” at a 

semantic feature level to a greater extent than does “tulips” (for example, both pines and palms have 

trunks, whereas tulips do not). The amplitude of the N400 response to the presented cloze item (i.e., 

“palms”, “pines”, “tulips”) was found to be inversely related to the degree of semantic overlap 

between the presented item and the expected high-cloze item.  This suggests that the typical 

completion (“palms”), although not presented in the stimulus, is activated
1
 to at least a semantic 

feature level. This is therefore interpreted as evidence that readers pre-activate semantic features of 

high-cloze items. 

The N400 data described above are not consistent with an integration-only account (i.e., an account 

that attributes effects to difficulty integrating the presented cloze item with the linguistic context in 

which it is presented).  This is because items that are equally unlikely in a given context will be 

equally difficult to integrate in that context.  Therefore, if the N400 effect reflected integration costs 

alone, items that are equally unlikely would elicit N400 components of equal amplitude (for further 

discussion see Federmeier, 2007).  In the studies described above this was found not to be the case, 

although unlikely items presented in the study above did not differ in their cloze-probability.  Instead, 

                                                           
1
 Throughout this thesis, the term “activation” is used when referring to neuroimaging data to signal 

“significant difference from resting state on the measure employed in that study”, rather than an 
actual increase in activity: our perspective is agnostic with respect to whether such activity reflects 
activation or inhibition at a neurobiochemical level,  and we, personally, are, at present, unqualified 
to comment further on this topic: nor is it of immediate pertinence to the current study.  When the 
term “activation” is used in a more general sense it is as the more commonly employed equivalent to 
“invocation”. 
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N400 amplitude varied as a function of the degree to which an unlikely item shared semantic features 

with the (absent) high-cloze item.  The fact that N400 amplitude was conditioned on aspects of this 

relationship to the high-cloze item suggests that the high-cloze item was subject to representation at a 

semantic feature level, despite being absent from the stimulus.  Given that the high-cloze item was not 

presented, evidence to suggest that its semantic features were active is interpreted as evidence that the 

item was subject to representation at this level through a top-down process of prediction.    

An ERP approach has also been employed to investigate predictive activation of syntactic features 

during comprehension. Modulations in ERP amplitude can be associated with the presentation of 

gender- incongruous adjectives or determiners.  This has been interpreted as evidence that listeners 

and readers preactivate syntactic features of upcoming lexical items (Wicha, Bates, Moreno, & Kutas, 

2003; Wicha, Moreno, & Kutas, 2003; Wicha, Moreno, & Kutas, 2004; Otten & van Berkum, 2008; 

Otten, Nieuwland, & Van Berkum, 2007; Foucart, Ruiz-Tada, & Costa, 2016).   For example, Van 

Berkum, Brown, Zwitserlood, Kooijman, and Hagoort (2005) presented participants with “predictive 

two-sentence mini-stories”, read aloud in Dutch (mean cloze probability = .86, e.g., “The burglar had 

no trouble locating the secret family safe. Of course, it was situated behind a big but unobtrusive 

painting/bookcase”). Dutch nouns have syntactic gender (e.g., painting = schilderijneu / bookcase = 

boekenkastcom), requiring inflection on the prenominal adjective (e.g., big = grootneu/grotecom). 

Although the form of the adjective is determined by the noun, listeners encounter the adjective first.  

If listeners anticipate the syntactic gender of the upcoming noun, this will inform their expectations 

concerning the inflection on the adjective.  The adjective could therefore violate gender agreement 

with a predicted noun even when there is no violation with respect to the noun that is actually 

subsequently heard (e.g., grotecom violates gender agreement for predicted schilderijneu although not for 

the actually heard boekenkastcom).  Van Berkum and colleagues found this to be the case:  Deflections 

in ERP amplitude time-locked to the point at which the adjectival inflection was presented were larger 

when the inflection was not gender congruent with the high-cloze (i.e., predicted) noun than when it 

was. This is interpreted as evidence that at the point of adjective presentation participants have already 

developed expectancies conditioned on syntactic features of the noun; that is, syntactic features of the 

noun are preactivated through prediction. 

The nature of ERP modulations associated with syntactic gender mismatch with likely upcoming 

words varies considerably between studies.  The “canonical” N400 component associated with a 

meaning-related violation is observed in data from electrodes located in centro-parietal regions.  The 

negative-going deflection starts between 200 and 300 milliseconds after orthographic or acoustic 

presentation of the word, and peaks around 400 milliseconds post-presentation.  Modulations 

associated with predicted gender mismatch have been observed more frontally (e.g., van Berkum et 

al., 2005) and later (e.g., Wicha et al., 2003).  Such variations can lead to questions concerning the 

validity of interpreting these findings as evidence of the prediction of syntactically-specified lexical 

items.  Discussion of matters concerning the localization of the N400 component source is beyond the 

scope of this thesis (see Lau, Phillips, & Poeppel, 2008 for a review and meta-analysis).   However, 
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we note that the claim that syntactically-specified representations are preactivated through prediction 

during comprehension is consistent with the suggestion that prediction during comprehension involves 

the retrieval of specific lexical items.   This suggestion is supported by evidence from whole-brain 

frequency-specific EEG oscillatory data, in which it has been observed that high-cloze contexts are 

associated with theta band power increases not see in lower cloze contexts (Wang et al., 2012).   

The suggestion that specific lexical items are pre-activated during comprehension (e.g., Lau et al., 

2008; Kutas et al., 2011; Wang et al., 2012) raises the possibility that predicted information might be 

subject to form-level representation.  It is this possibility which underlies Pickering and Garrod’s 

proposal that neural speech motor activation observed during listening may in part reflect predictive 

processing, specifically prediction-via-simulation.  Below we review evidence of phonological form 

prediction during comprehension. 

1.2.2.   Form preactivation  

The ERP approach described above with respect to the investigation of semantic and syntactic 

preactivation has also been used to investigate whether phonological features of (anticipated) 

upcoming words are preactivated. In a study exploiting the rule that, in English, the phonological form 

of the indefinite article varies according to whether the word it precedes begins in a vowel or a 

consonant, DeLong and colleagues (2005) found N400 amplitude effects associated with phonological 

form appropriacy.  Participants read high-cloze sentences word-by-word (as presented by RSVP; e.g., 

“The day was breezy so the boy went outside to fly a/an…”).  High-cloze target nouns began with 

either a consonant (e.g., “kite”) or a vowel (e.g., “airplane”), requiring the preceding indefinite article 

to take either the form “a” or “an” respectively.  When the indefinite article was inappropriate to the 

phonological form of the high-cloze probability noun, N400 amplitude was higher than when the 

article form was appropriate. N400 amplitude in response to non-match indefinite articles varied 

systematically in accordance with the cloze-probability of the anticipated noun.  When a sentence 

context less strongly biased toward a specific cloze item, the N400 amplitude in response to an 

incongruous indefinite article was reduced.  As the two forms of the indefinite article differ only at a 

phonological form level (i.e. do not differ at a syntactic or semantic level), it was concluded that the 

N400 effect on the article arose because the surface form of the anticipated cloze item was 

preactivated via prediction, thus influencing the anticipated form of the preceding indefinite article 

(DeLong et al., 2005). The surface form prediction effect first reported by DeLong and colleagues has 

been replicated and found to be present for L1 speakers but not L2 users of a language (Martin, 

Thierry, Kuipers, Boutonnet, Foucart, Costa, 2013).   

N400 amplitude in response to the cloze noun itself, as opposed to the preceding article, appears to be 

associated with the presence of phonological overlap between the item presented and the high cloze 

probability predicted item (Ito, Corley, Pickering, Martin, & Nieuwland, 2016):  When very high-

cloze sentence contexts (mean cloze probability = .93) were presented via serial visual presentation at 
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a slow rate (500ms on, 200ms off per word), the N400 response to unexpected cloze items was 

attenuated when the word overlapped at coda position with very high-cloze probability nouns. For 

example, given the sentence context “The juice isn’t cold enough, so Alice is adding some … now”, 

N400 was attenuated in response to “dice”, which overlaps with the predicted word “ice”, as opposed 

to “wine”, which does not overlap with the high-cloze target in onset or coda position. This effect was 

not apparent at a faster presentation rate (300ms on, 200ms off) nor in medium cloze (M = .65) 

contexts. 

As yet, ERP modulations associated with predicted surface form have been found only when the 

context is presented word-by-word in written form.  Current ERP findings therefore cannot 

distinguish between whether the surface form effect is phonological or orthographic in nature (i.e., 

whether participants pre-activate sound or letter form features of the anticipated word, or both).  

Effects appear to emerge earlier than a classical N400 (i.e., at around 250ms); this was noted 

particularly by Martin and colleagues, who use the term “N400a” (Martin et al., 2013). N400(a) 

amplitude has previously been shown to be modulated by the degree to which a presented 

orthographic word form matches an anticipated word form, suggesting that orthographic 

representations are pre-activated:  Orthographic neighbours of high-cloze items elicit smaller N400 

amplitudes than do words that do not overlap with the predicted word at an orthographic level (Laszlo 

& Federmeier, 2009; see also Kim & Lai, 2012). It has been argued that early effects are consistent 

with contextual support for a  high-cloze word leading to top down activation of orthographic form 

features of the word (Kim & Lai, 2012), as the N250 has been found to be sensitive to the degree of 

orthographic overlap between a prime and target (e.g., Grainger & Holcomb, 2009; Holcomb & 

Grainger, 2006; Kiyonaga, Midgley, Holcomb, & Grainger, 2007).  However, it should be noted that 

the greater support for an orthographic interpretation is largely a function of the fact that historically 

researchers tended to use orthographic presentation, for both pragmatic and theoretical reasons. Where 

phonological overlap has been investigated within an acoustic priming ERP paradigm, the N400 effect 

is similar to that found in orthographic priming studies, and does not appear to be dependent on 

conscious processes (e.g., Praamstra & Stegeman, 1993; Radeau, Besson, Fontenau, & Caastro, 1998; 

for an alternative view see Perrin & Garcia-Larrea, 2003). 

Whether form representations are elicited during comprehension can also be investigated within the 

visual world paradigm (introduced above).  This is achieved by including in the “visual world” an 

item that shares form features with an item that is predicted by the linguistic input.  As detailed above, 

eye gaze is understood to reflect attentional focus, and therefore to provide inform as to the content of 

representations active at the time.  It has previously been demonstrated that when participants hear a 

word they look to phonologically related items more often than to those that are unrelated (Allopenna, 

Magnuson, & Tanenhaus, 1998). If listener predictions are similarly specified at the form level, items 

that are phonologically related to the predicted word should be preferentially attended over non-

related items.  In the case of speech sound predictions, this would involve a higher number of 

fixations to items that  overlap at a phonemic level with the high-cloze item than to those that do not. 
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Evidence is emerging to suggest that this may be the case (Ito, Corley, & Pickering, submitted; see 

also Dahan & Tanenhaus, 2004, for potentially relevant evidence from constraining sentences and 

heard words, and Chabal & Marian, 2015 for a related visual search paradigm). 

In the study reported by Ito and colleagues (submitted), highly-predictive sentences were presented 

acoustically in English to participants (e.g., “The tourists expected rain when the sun went behind the 

cloud”).  Sentences were presented in 4 conditions; in each condition the on-screen image contained 3 

unrelated distractor items and 1 critical item.  The four conditions were formed by manipulating the 

properties of the critical item such that its name either; (i) was the predicted word (e.g., cloud), (ii) 

partially shared the phonological form of the predicted word (e.g., clown), (iii) was unrelated to the 

predicted word, (iv) in Japanese partially shared phonological form with the predicted item.  Critical 

items were fixated most often in the condition where the high-cloze item was present on screen, but 

were fixated more often in the partial phonological overlap condition (English) than in the unrelated 

and Japanese conditions.  This effect was observable approximately 2 words prior to acoustic 

presentation of the highly predictable word, and was interpreted as suggesting that the phonological 

form of upcoming words is activated by that point in L1 speakers.   

The finding described above may be experiment-specific.  As the authors themselves highlight, the 

fact that participants were initially required to name the relevant pictures in isolation may have 

“boosted word form activation”.  Pictures, even when to-be-ignored, can elicit phonological word 

form activation (e.g., Meyer & Damian, 2007).  In the study reported by Ito and colleagues, pictures 

were displayed on-screen from 1000ms prior to onset of the critical word.  It is possible that picture 

presentation elicited automatic word form activation related to the images displayed. Such activation 

could, theoretically, interact with lexical level preactivation of anticipated items to guide attention to 

the phonologically-related image, as opposed to attention being guided by independent word form 

activation of predicted items.  This interpretation would require to be ruled out in further 

investigations.  This is particularly the case because the time interval between picture presentation and 

presentation of a highly predictable word was consistent:  In some cases the picture represented the 

highly predictable word.  The consistent time interval may therefore have led participants to develop 

an association between the two events, in which picture presentation acted as a trigger to focus on 

specific predictions.   

A replication of the finding reported by Ito et al. would be desirable, as the form effects were small 

and short-lived (in the view of Ito and colleagues; see manuscript p. 28), and statistical modelling was 

generally anti-conservative.  However, the finding itself is highly relevant: Unlike in the ERP studies 

of form preactivation described above, the evidence indicates that phonological form can be 

preactivated to an extent that items that overlap only partially at this level are preferenced over those 

that do not overlap.  This finding is critical, in that it provides much stronger evidence of predictive 

activation of phoneme-level representations than can evidence that electrophysiological activity 

differs when an item fulfils phonological expectations than when it does not.  Further, although Ito 
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and colleagues suggest that their study cannot distinguish between orthographic and phonological 

preactivation, the fact that experimental stimuli were delivered acoustically and pictorially favours a 

phonological account to a much greater degree than studies in which stimuli were presented 

orthographically (e.g., DeLong et al., 2005; Ito et al., 2016; Martin et al., 2013).  

In summary, both eye-tracking and neural signal recording approaches have provided evidence that 

readers and listeners pre-activate features of anticipated input.  Semantic and syntactic features appear 

to be preactivated in both written and spoken contexts.  There is some evidence to suggest that 

phonological features are also preactivated, under certain circumstances. When stimulus material is 

presented in written form, readers appear to anticipate surface form (e.g., readers anticipate the 

indefinite article form “a” before a consonant onset and “an” before a vowel onset). This has been 

interpreted as indicating that comprehenders generate phonological representations of anticipated 

items, although the extent to which this interpretation can be generalised to listening as opposed to 

reading during RSVP remains open to question:  ERP evidence from written word studies does not 

allow a distinction to be made between phonological and orthographic preactivation.  However, the 

finding that listeners are more inclined to look to items when they are phonologically related to 

predicted input suggests that listeners do, at times, preactivate anticipated input at a speech-sound 

level.  This allows the possibility that communicative resonance might, at times, reflect processes 

involved in preactivation at a speech-sound level during linguistic processing.  It does not, however, 

directly relate to (neural) speech-motor activation during comprehension.  

1.2.3.   Pre-activation in Comprehension-Production  

In addition to being used in studies of online language comprehension, cloze-probability and 

contextual constraint manipulation have been used to study language production (and, often 

incidentally, relationships between comprehension and production).  Production studies have, to a 

greater extent than comprehension studies, tended to be situated within an integration framework 

rather than a prediction framework.  That is, they have considered what features ease integration 

rather than what or how features might be represented during prediction of upcoming material.  

However, the fact that the sentence-cloze approach has been used across comprehension and mixed 

modality (comprehension-production) studies allows findings to be interpreted within a prediction 

framework.   

Production activity in relevant comprehension-production designs is typically elicited by asking 

participants to complete sentences (e.g., Bock & Miller, 1991) or to name pictures or words presented 

within a sentence context (Bentrovato, Devescovi, D’Amico, & Bates, 1999; Bentrovato, Devescovi, 

D’Amico, Wicha, & Bates, 2003;  Forster, 1981; Gollan, Slattery, Goldenberg, van Assche, Duyck, & 

Rayner, 2011; Griffin & Bock, 1998; Jacobsen, 1999; Manenti, Repetto, Bentrovato, Marcone, Bates, 

& Cappa, 2004; Piai, Roelofs, & Maris, 2014; Roe, Jahn-Samilo, Juarez, Mickel, Royer, & Bates, 

2000; Stanovich & West, 1979; Wicha, Orozco-Figueroa, Reyes, Hernandez, Gavaldón de Barreto, & 
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Bates, 2005; see Appendix B for study-by-study summaries). For example, Roe and colleagues 

investigate sentential context effects via auditory presentation of a sentence-stem followed by 

presentation of an image-to-be-named (Roe, Jahn-Samilo, Juarez, Mickel, Royer, & Bates, 2000). 

Participants were required to name pictures in three sentential contexts; semantically congruent, 

semantically incongruent, and semantically neutral (e.g., The dog was chasing the CAT/ Peter eats his 

soup with a CAT/ Now please say CAT).  Compared to a neutral context, congruous sentential context 

facilitated picture naming (as measured by voice-key response latency).  This effect remained steady 

across the experiment.  Incongruous sentential context sometimes slowed picture naming response 

times, but this effect was only observable in by-participant analyses of trials presented early in the 

experiment. This led the authors to suggest that sentential interference is, “[…] vulnerable to a build-

up of strategies and expectations across the course of the experiment.”, in contrast to the facilitative 

component of “sentential priming” (i.e. sentence context), which they suggest is invulnerable to 

repetition effects  due to being a, “relatively automatic process” (p.763).  The suggestion that naming 

facilitation reflects automatic processing elicited via sentence comprehension was subsequently 

supported by the findings of a lexical decision task (Aydelott & Bates, 2004; see chapter 3 for further 

details). 

The way in which semantic and syntactic expectancies generated by sentential context interact to 

influence production has primarily been studied in languages that have grammatical gender (e.g., 

Italian, Spanish).  When pictures are presented for naming following acoustic presentation of a 

sentence context, latencies in partially congruent contexts (i.e. those that are congruent at either a 

semantic or a syntactic level) are no slower than those obtained in neutral sentence contexts.  

Latencies in a fully incongruent context (i.e., when both the noun’s gender and its meaning are 

incongruent given the sentential context) are slower than those in a neutral context (Bentrovato et al., 

1999; see also Wicha et al., 2005; for word-naming versions, in which partial congruence is 

facilitatory, see Bentrovato et al., 2003; Manenti et al., 2004). 

Whether sentential context generates expectancies that influence production at a phonological form 

level has, to the author’s knowledge, not been studied directly prior to the work presented in this 

thesis.  However, indirect evidence pertinent to the question can be found in studies that investigate 

whether sentential context modulates lexical frequency effects.  The term “lexical frequency effect” 

here refers to the finding that, during simple picture naming, response latencies for high-frequency 

words are shorter than those for low-frequency words.  In both comprehension and production, lexical 

frequency effects are generally assumed to arise primarily during lexical access, specifically at the 

point of form retrieval (for production see Jescheniak & Levelt, 1994; Levelt, Roelofs, & Meyer, 

1999; for comprehension see; Forster & Chambers, 1973; Murray & Forster, 2004; Rayner, 1998; see 

Kitteridge, Dell, Verkuilen, & Schwartz, 2008 and Knobel, Finkbeiner, & Caramazza, 2008 for 

alternative viewpoints based on case studies of patients with aphasia; see Gollan et al., 2011 for a 

review).   
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It appears that the lexical frequency effect in picture naming is modulated by sentential context; 

frequency effects are observable in low sentential constraint contexts (i.e. when no lexical item has 

high cloze probability given the sentence context), but abolished or reduced in high constraint 

contexts (i.e., when the sentence context has an associated high-cloze lexical item; Griffin & Bock, 

1998; Gollan et al., 2011; Piai et al., 2014).  Under a prediction framework account, the interaction is 

observed because high constraint contexts guide form retrieval prior to presentation of the picture-to-

be-named.  If frequency effects arise during form retrieval, and high-cloze contexts elicit form 

retrieval prior to picture presentation, frequency effects will then not be observable at picture 

presentation as they will have occurred at a point prior to picture presentation. This interpretation is 

supported by the finding that neural activity associated with lexical access is raised prior to picture 

presentation in high-cloze contexts compared to low-cloze contexts (Piai et al., 2014, p. 154).   

In summary, effects of sentential constraint on picture naming suggest that auditorily and 

orthographically presented high-cloze contexts orthographically affect speech production processes.  

To some degree, at least, the effects seem to arise of automatic processing.  High-cloze contexts 

appear to impact processing during speech production at semantic and syntactic levels.  Cloze-

probability and picture name frequency interact, suggesting that these variables share a processing 

locus.   If, as has been suggested, frequency effects arise during word form retrieval, this may be 

indirect evidence that sentential context affects word form activation within the speech production 

system through predictive preactivation.   

1.3. Speech motor activation in prediction in 

comprehension? 

As it has become largely accepted that sentential context can cause listeners and readers to preactivate 

aspects of upcoming material, researchers have begun to focus on the mechanisms by which such 

prediction is achieved. One suggestion which has gained considerable traction, and which we 

investigate in this thesis, is the suggestion that; “predictions are generated by the language production 

system” through motor simulation (Pickering & Garrod, 2007, p.105; see also Schiller, Horemans, 

Ganushchak, & Koester, 2009).  The suggestion that motor simulation is one route to prediction 

during comprehension is situated within a framework that treats linguistic interchange as a special 

form of joint action.  Pickering and Garrod, in line with others (e.g., Clark, 1996), suggest that 

conversation can be understood as a case of joint action in which the action is speech.  Drawing an 

analogy from the joint action prediction literature, Pickering and Garrod suggest that when people 

listen during conversation their predictions of upcoming input are action predictions, involving 

forward modelling within the listener’s own motor system.  Below we briefly introduce the concept of 

joint action, with specific reference to the proposed mechanism of prediction; forward modelling 

within the observer’s neural motor system.   
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1.3.1.   Joint Action and Prediction-by-simulation 

Joint action has been defined as “any form of social interaction whereby two or more individuals 

coordinate their actions in space and time to bring about a change in the environment” (Sebanz, 

Bekkering, & Knoblich, 2006, p.70).  Joint action requires prediction of a co-actor’s actions, in that it 

requires that individual bodies (and minds) are co-ordinated (e.g., Allport, 1924, cited in Sebanz, 

Bekkering & Knoblich, 2006).   It has been proposed that such action prediction may be achieved 

through a process of action emulation (that is to say, motor simulation; Wilson & Knoblich, 2005), 

and that this engages processes typically recruited during the planning and execution of a person’s 

own actions (Knoblich, Butterfill, & Sebanz, 2011).   

Task sharing paradigms have provided a means to investigate action planning within a joint action 

environment (e.g., Sebanz, Knoblich, Prinz, & Wascher, 2006; Tsai, Kuo, Hung, & Tzeng, 2008; Tsai, 

Kuo, Jing, Hung, & Tzeng, 2006; Knoblich et al., 2011; see Obhi  & Sebanz, 2011; Wenke, Atmaca, 

Holländer, Liepelt, Baess, & Prinz, 2011 for reviews).  The pattern of performance observed indicates 

that two participants performing individual tasks within a joint environment act in a manner similar to 

that observed when one individual performs both tasks (rather than when two participants perform 

their own individual tasks in isolation; e.g., Sebanz, Knoblich, & Prinz, 2003; Welsh, 2009).  This 

supports the notion that we plan (predict) other’s actions in a manner functionally similar to the way 

that we plan our own actions (Welsh, 2009), an argument that underlies Pickering and Garrod’s 

proposal that the listener “plans” the speaker’s upcoming input using their own speech production 

system.   

The effects observed in task sharing paradigms may be explained by either an actor co-representation 

account (e.g., Dolk, Hommel, Colzato, Schütz-Bosbach, Prinz, & Liepelt, 2014; Philipp & Prinz, 

2010; Vlainic, Liepelt, Colzato, Prinz, & Hommel, 2010; Wenke et al., 2011) or a task co-

representation account (e.g., Atmaca, Sebanz, & Knoblich, 2011; Sebanz, Knoblich, & Prinz, 2005).  

Under the actor co-representation account, representations of the other partner’s activity specify only 

when the other partner should act.  By analogy, if the joint action task is conversation, then the 

listener’s predictive representation of the task will detail only when they should speak. Under the task 

co-representation account, partners form representations of both when the other partner should 

perform and what they will perform. Again by analogy, the listener would predict the content of what 

the speaker would say (as Pickering and Garrod propose).  ERP findings provide some evidence to 

support a task co-representation account interpretation of joint action:  When participants performed a 

key push task in which either they, their partner, or neither partner should respond, with intended 

responder identity being indicated by a colour cue, P300 amplitudes were greater in “partner 

response” than “neither respond” trials (Tsai et al., 2006).  The P300 component is widely taken to 

index inhibitory processes. This finding was therefore interpreted as evidence that participants formed 

representations within their own neural motor systems of their partner’s (unobserved) actions, which 
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then had to be inhibited in order to avoid their own responding (see Baus, Sebanz, de la Fuente, 

Branzi, Martin, & Costa, 2014, p. 396).  It should be noted, however, that this approach cannot be 

adapted to investigate whether listeners represent at a speech-motor level what speakers will say.  This 

is because the P300 indexes inhibition at a general level; its amplitude could therefore be used to infer 

whether listeners predicted that the speaker would speak but not what sounds they would speak (i.e., 

the content of what they would say). 

There is currently, to the author’s knowledge, no direct evidence concerning whether participants in 

spoken dual-task paradigms generate form-level representations of each other’s turn.  However, as 

with sentential context effects (see section 1.2.3), indirect evidence is provided by an investigation of 

lexical frequency effects:  Baus and colleagues (2014) employ an electrophysiological approach to 

investigate lexicalization processes during a task sharing paradigm (as indexed by P200 modulations 

associated with lexical frequency/ activation; see, for example, Strijkers, Holcomb, & Costa, 2011), in 

order to address “whether lexical processes in speech production are involved during the anticipation 

of a task-partner’s utterance” (p. 396). Participants performed a go no-go picture naming task in two 

conditions; (i) alone; (ii) alongside a partner.  In both conditions, pictures were presented in 3 colours 

(blue, black, red) and participants were to name only pictures presented in red (self-go trials). In the 

joint condition the partner (a confederate) named only pictures presented in blue, and neither 

participant named pictures in black.  In this way, both blue and black pictures represented no-go trials 

for the experimental participant in both lone and joint conditions.   In blue picture trials, however, 

there was potential for the participant to form a representation of their partner’s action (other-go), 

whereas in black picture trials neither participant would be expected to act. Participants’ neural 

activity in the two no-go conditions was compared. An interaction between word frequency and trial-

type (other-go v. none-go) indicated that the magnitude of the word frequency effect was influenced 

by trial-type.  The authors interpret this interaction as indicating that, “when participants did not have 

to name a picture, traces of lexical access were present as long as another person had the intention to 

name it” (p.403).   

1.3.2.   Forward modelling as an action prediction mechanism 

As noted above, Pickering and Garrod propose that prediction during comprehension can be achieved 

via forward modelling within the production system.  This suggestion is made in the context of 

models and evidence from the wider motor control literature, particularly in relation to joint action 

(see Wolpert, Doya, & Kawato, 2003; Brown & Brüne, 2012, for a review). Under this suggestion, 

predictive emulation of others’ actions during joint action is thought to engage forward modelling 

processes typically associated with planning and executions of one’s own actions (see Sebanz & 

Knoblich, 2009; Wilson & Knoblich, 2005, for reviews; see also Knoblich & Flach, 2001; Avenanti, 

Candidi, & Urgesi, 2013).  
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Many models and theories of action planning and/or execution incorporate the generation of “forward 

models” (i.e., predictions of the state of the motor apparatus or sensory input at future point in time; 

see Grush, 1997; 2004; Hickok, 2012; Miall & Wolpert, 1996; HMOSAIC; Haruno, Wolpert, & 

Kawato, 2003).  The internal forward model is considered to be internal to the central nervous system.  

It represents movement that will be executed within the peripheral nervous system, and “captures the 

forward or causal relationship between actions and their consequences” (Wolpert & Flanagan, 2001, 

p.R729).  The mechanism by which forward models are thought to be generated is efference copy 

(also referred to as “corollary discharge”; for classical evidence from the visual domain see Sperry, 

1950; von Holst & Mittelstadt, 1950).   The efference copy is a copy of a motor command, thought to 

be emitted along the route from motor-command generation to motor execution.  In this strict sense, 

the term “efference copy” refers to a specific neurobiological event that occurs as an outgoing 

(efferent) signal from the motor cortex to the peripheral nervous system is copied to the sensory 

cortex.  This input activates within the central nervous system a representation of the sensory input 

associated with execution of the copied motor command.  The sensory representation is referred to as 

the forward model.  The forward model can be compared to input from the perceptual system in order 

to determine whether the action command goal was achieved in terms of its sensory consequences.   

Indirect evidence from behavioural and neuroimaging studies supports the suggestion that forward 

models of the actions of others are generated within the neural regions associated with motor action 

(e.g., Aglioti, Cesari, Romani, & Urgesi, 2008; Kourtis, Sebanz, & Knoblich, 2013; Ramnani & Miall, 

2004; van Schie, Mars, Coles, & Bekkering, 2004). Activation of motor-associated neural regions is 

observed prior to visual presentation of (expected) predictable movements (Kilner, Vargas, Duval, 

Blakemore, & Sirigu, 2004; see also Haueisen & Knösche, 2001). Increases in premotor activation can 

be observed when participants can predict the “future course of partly invisible action sequences” 

(Stadler, Schubotz, von Cramon, Springer, Graf, & Prinz, 2011).   Beta oscillation changes in the 

neural motor system appear to be involved in predictive timing of sensory input as well as being 

related to anticipatory motor planning and response selection (e.g., Arnal & Giraud, 2012; Cheyne, 

2013).  Behavioural evidence that motor simulation involving forward models may be involved in 

action prediction is provided by the finding that action production interferes with action prediction.  

The degree of interference observed is modulated by the degree of overlap between the executed and 

predicted actions (Springer, Brandstädter, Liepelt, Birngruber, Giese, Mechsner, & Prinz, 2011; see 

also Mulligan, Lohse, & Hodges, 2015 for evidence that a secondary motor action task impacts expert 

observers’ accuracy in predicting the action trajectories). 

The importance of a forward model of one’s own speech output during articulation is well recognized 

(Heinks-Maldonado et al., 2006; Christoffels, Formisano, & Schiller, 2007; Hawco, 2009).  Indirect 

evidence of efferent copy can be observed in, for example, auditory cortex suppression during 

vocalization (see Flinker, Chang, Kirsch, Barbaro, Crone, & Knight, 2010, for evidence and a review; 

see also Blakemore, Frith, & Wolpert, 1999 for evidence from the somatosensory domain).  Of 

particular interest to the question of speech predictions during comprehension is the fact that auditory 
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cortex suppression occurs whether speech is fully implemented or imagined (Tian & Poeppel, 2010).  

This finding led Tian and Poeppel to suggest that “speakers construct a forward model incorporating 

phonological information under conditions when they do not speak (i.e., do not use the production 

implementer)” (p. 340). The suggestion is in keeping with a much earlier proposal that, “Although 

typically associated with sensorimotor systems, corollary discharge might also apply to inner speech 

or thought, which can be regarded as our most complex motor act”( Ford, Mathalon,  Heinks, Kalba, 

Faustman, & Roth, 2001, p. 2069, citing Jackson, 1958).  

Within the Pickering and Garrod framework, the terms “efference copy” and “forward model” appear 

to be used  in an metaphorical rather than a literal sense (for comments see Alario & Hamamé, 2013; 

Howes, Healey, Eshghi, & Hough, 2013; Jaeger & Ferreira, 2013). The abstract levels of 

representation at which forward models are suggested to operate (phonological, syntactic, semantic) 

are considerably removed from the point at which true efferent copies of motor command output are 

generated (see above).  Other speech processing frameworks that incorporate the notion of forward 

models have been explicit in stating that their forward models operate at a conceptual level and do not 

involve the production of true efference copies (e.g., Tian & Poeppel, 2010; Hickok, 2012).  We 

return to this matter in further chapters, whilst noting at this point that this matter is not central to the 

investigation carried out in this thesis: The picture word interference and phonological competition 

effects to which inform our experimental design and interpretations are understood to arise at a 

phonological (i.e., abstract) level but have been shown to have effects that are observable at an 

articulatory level when participants plan their own speech.  This is consistent with understanding 

detailed in the above paragraph that, with respect to speech, forward models may involve 

representation at a phonological level within the speech production system. 

In summary, action emulation provides a parsimonious explanation of the mechanism underlying 

prediction at a phonological-phonetic level during comprehension.  To date, however, evidence cited 

in support of the view that prediction through the production system is specified at a phonetic-

phonological level (and therefore likely to result in speech-motor activation) has been largely 

circumstantial.  Researchers have observed that speech-motor activation occurs during spoken 

language comprehension and have suggested that this activation may reflect the simulation of 

upcoming speech sound input through emulations (Watkins & Paus, 2004; Pickering & Garrod, 2004; 

Schiller et al. 2009).  Evidence that action prediction interferes with action production (and vice versa) 

is cited to support this proposal, under the understanding that dialogue is a form of joint action and 

that findings from the wider joint action literature are transferrable to spoken language 

comprehension. The work reported in this thesis investigates specifically whether speech production 

shows evidence of interference from speech action prediction (i.e., prediction-by-simulation during 

comprehension). 
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1.4.   Analysing speech as action 

Speech differs considerably from other forms of action, not least in that the action is primarily heard 

rather than seen (see Stevens, 2005, for evidence that visual and motor imagery make differing 

contributions to action prediction).  This difference means that it is particularly important that there be 

speech-specific evidence to supplement argument based on analogy from other motor action domains.  

It also means that it is particularly difficult to capture speech action data:  Limb movement and 

movement-readiness data can be non-invasively captured via magnetic or infra-red tracking (e.g., 

Kilner, Hamilton, & Blakemore, 2007; Stanley, Gowen, & Miall, 2007), or motor evoked potentials 

(e.g., Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995).  Ultrasound imaging currently offers the only risk-

free, non-invasive means to image articulatory movement during speech production at a temporal 

resolution suitable for studies of a psycholinguistic nature. 

As noted above, speech activity is typically inferred by reference to its acoustic sequelae, for example 

voice onset latencies or speech error rates.  Such measures do not capture articulatory variability, but 

historically articulatory variability has been understood to arise of “motor noise” and therefore to be 

constant across conditions in psycholinguistic experiments.  The acoustic approach has been 

enormously informative, grounding the development of highly influential models of speech 

production (e.g., Levelt, 1993; Dell, 1988; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997).  

However, the “motor noise” assumption, whilst pragmatic, is not fully tenable (see Smolensky, 1988 

for a philosophical treatment of this issue):  Vocal response latencies encompass both cognitive and 

motor components (Riès, Legou, Burle, Alario, & Malfait, 2012; 2015), and articulation contains 

traces of cascade from higher-processing levels (e.g., Frisch & Wright, 2002; Goldrick & Blumstein, 

2006; McMillan & Corley, 2010; Pouplier, 2007; see Pouplier & Goldstein, 2010 for comment and 

Chapter 5 of this thesis for details).  This may not be particularly problematic within the context of 

speech production models that intentionally do not extend to incorporate articulation (e.g., Levelt, 

1993; Levelt, Roelofs, & Meyer, 1999).  However, a framework that treats speech (and potentially 

comprehension) as a motor activity (e.g., Pickering & Garrod, 2013) requires speech action data.  

Therefore in this thesis we analyse both response latency and articulatory imaging data in order to 

investigate whether speech motor behaviour shows traces of activation of the (neural) speech motor 

system during comprehension related prediction-by-simulation. 

The primary active articulator involved in speech production is the tongue (see Keating, 1994).  As an 

internal muscular hydrostat, its movements are particularly difficult to capture and measure.  Potential 

data capture techniques include electromagnetic articulography (EMA; e.g., Narayanan et al., 2014), 

magnetic resonance imaging (MRI; see Narayanan, Nayak, Lee, Sethy, & Byrd, 2004) and ultrasound 

tongue imaging (Stone, 2005; for an introduction to speech imaging techniques see Ball, 2016). EMA 

involves attaching coils to the surface of the tongue, and is therefore somewhat invasive.  MRI is non-

invasive but currently does not have a temporal resolution appropriate to capture dynamic speech 

production.  These techniques have not yet been widely employed to address psycholinguistically 
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motivated research questions. This is likely in part due to the fact that articulation has historically 

been considered to be outside the scope of psycholinguistic models (see above), and in part due to the 

practical difficulties of capturing and analysing data.  However, the Delta method of ultrasound 

tongue image analysis has been demonstrated to be an appropriate and feasible approach for 

addressing psycholinguistic questions within an experimental environment (e.g., McMillan, 2008; 

McMillan & Corley, 2010).  In this thesis we develop and extend the technique to investigate pre-

acoustic speech action within a prediction-eliciting environment.   

1.5. The current study 

In the studies reported in this thesis, we elicit prediction through the acoustic presentation of high-

cloze sentence fragments, and determine its effect on production activity elicited via picture-naming.  

We are interested in whether prediction during comprehension elicits speech sound representations 

within the speech motor system.  We address this question by manipulating the degree to which high-

cloze targets overlap picture name targets at a phonological level, and examining whether the effects 

of this manipulation are observable in speech motor output.  Production level effects of phonological 

overlap between the predicted and to-be-produced word would provide evidence to suggest that 

lexical predictions are indeed represented in a form that contacts the listener’s speech motor system, in 

keeping with Pickering and Garrod’s prediction-by-simulation proposal. 

As noted previously, vocal response latency studies consistently report an effect of phonological 

similarity when a distractor is presented perceptually (see above for references to the literature; see 

also Chapter 2 and Appendix A of this thesis for evidence and discussion):  When participants are 

required to name pictures in the presence of distractor pictures or words, naming response latencies 

are longer than when the picture is named in isolation.  Where there is phonemic overlap between the 

target and distractor name, this interference effect is reduced.  For example, naming latencies to the 

image TAP are shorter when it is accompanied by auditory presentation of the word TAN than when it 

is accompanied by an entirely non-overlapping word form such as CONE.  This effect indicates that 

perceptually available distractors are subject to representation at a speech-sound level in a form that 

contacts the speech production system.  If comprehension-related predictions are represented at a 

speech-sound level within the speech production system, we would expect to see a comparable effect, 

with response latencies being shorter when the high-cloze target overlaps the picture name in onset- or 

rime- position than when it does not.  This possibility is investigated in the first part of this thesis:  In 

Chapter 2 we present a study in which we confirmed that the perceptual phonological similarity effect 

described above was observable for items that would be used in our subsequent prediction studies.  In 

chapters 3 and 4 we present prediction studies in which we tested whether phonological overlap 

between a predicted item and a picture-to-be-named affects picture naming latencies.  We observed a 

phonological overlap effect when items were presented perceptually but not when items were elicited 

through prediction. 
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In the second part of the thesis, we investigate whether articulation shows evidence of interference 

from speech motor system activation elicited during comprehension-related prediction.  Although 

articulatory imaging is a nascent method of psycholinguistic investigation, a number of studies have 

used this approach to investigate the effect of phonological competition arising of one’s own speech 

planning:  These studies have elicited phonological competition either by requiring participants to 

perform tongue-twisters (i.e., to repeat alternating phonologically similar sequences; McMillan & 

Corley, 2010; Pouplier & Goldstein, 2010) or by generating a word onset order expectancy and then 

violating it (e.g., McMillan, Corley, Lickley, 2009; Pouplier, 2007).  When speech motor activity is 

recorded via articulatory imaging (electropalatography, electromagnetic articulography, or ultrasound 

tongue imaging), it reveals traces of phonological level competition during speech planning (see 

Chapter 5 for details and discussion of techniques and findings).   Where items compete at word onset, 

speech motor activity is more variable than when items do not compete at word onset.  If 

comprehension-related predictions are represented at a speech-sound level within the speech 

production system we would expect to see a comparable effect of predictions, with speech motor 

activity revealing traces of competition from prediction-related activation.  In Chapter 5 we introduce 

the technique used to investigate this possibility.  In Chapters 6 and 7 we present studies in which we 

tested whether comprehension-related predictions induce interference at an articulatory level and 

whether this interference is speech-sound specific.    

The question of whether interference is speech-sound specific is crucial in considering whether speech 

motor effects reflect prediction-by-simulation as opposed to a more general articulatory response to 

expectancy violation.  As reviewed above (see Section 1.1), a number of studies have found that 

speech motor activation in response to perceptual presentation of speech sounds is speech-sound 

specific at a neural and effector level:  Electromyelographic activity within a given articulator is raised 

when the participant is auditorily presented with a speech sound involving that articulator. Listening 

to speech sounds evokes somatotopically-specified activation within the primary motor cortex. 

Comprehension task performance (word-picture matching) is affected by externally-induced 

somatotopically-specific simulation of the primary motor cortex.   Such somatotopically specific 

responses to hearing speech sounds have been investigated under paradigms which involve the 

presentation of single words or syllables in isolation.  When sounds are presented in isolation each 

item can be associated with one primary articulator. This allows the researcher to investigate whether 

sounds associated with involvement of a given articulator during production evoke somatotopically 

specific activation within the listener’s primary motor cortex.  It also allows the articulatory contrast 

between labial and lingual onsets to be exploited in order to investigate whether somatotopic 

activation of speech motor regions plays a causal role in speech comprehension. 

Unfortunately, the question of whether comprehension-related predictions are associated with 

somatotopic activation of the neural speech-motor system does not lend itself to the approaches 

employed to investigate the effects of perceptual presentation.  When investigating reactive speech-

motor activation associated with sensory presentation of a linguistic item, only the critical item need 
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be presented in each trial.   In order to study proactive speech-motor activation associated with 

prediction-by-simulation, it is necessary to present linguistic content sufficient to constrain potential 

upcoming input to an extent that the listener predicts the critical item (at some level).  The 

presentation of such linguistic content will in itself induce reactive speech-motor activation.  The 

techniques that are employed to study reactive somatotopic activation during perception would 

currently not allow differentiation between prospective activation associated with prediction and 

retrospective activation associated with perception
2
.  A neural imaging approach is therefore not 

currently amenable to addressing the questions central to this thesis.  However, given that activation at 

a phonological level has been found to leave traces in speech motor output (see above), direct 

observation of speech motor behaviour allows a potential window on speech sound representation 

within the speech production system during prediction of upcoming linguistic input.  

Chapters 6 and 7 of this thesis report studies in which we employed an ultrasound tongue imaging 

approach in order to allow direct observation of speech motor behaviour within a predictive context.  

We manipulated the degree and nature of form overlap between predicted and to-be-named items.  

This allowed us to investigate whether predictions are specified in an articulatorily-specified manner, 

as would be anticipated under Pickering and Garrod’s prediction-by-simulation proposal.  To pre-

empt our findings, it appears that predictions elicited during comprehension do make contact with the 

listener’s speech motor system.  However, we did not find evidence that predictions are represented at 

a speech segment level in a production-accessible manner; rather, it appears, the predictions are 

represented at a syllable (or phonological word) level.   

This finding is compatible with the general proposal that the speech production system is active 

during the generation of lexical predictions during comprehension.  It does not support the proposal 

that the production of individual speech segments is simulated within the listener’s speech-motor 

production system during prediction of upcoming spoken input.  The findings are consistent with a 

speech processing architecture proposed under the Hierarchical State Feedback Control model (HSFC; 

Hickok, 2012), under which phonology is represented at lower and higher levels.  The higher level 

involves syllable level units and the lower level involves motor-encoded segment level units, with 

both levels including production and comprehension processing streams.  The HSFC incorporates 

forward models at pre-motor levels, and allows for a mechanism that inhibits the cascade of activation 

                                                           
2
 Disruptive TMS has been employed within a visual world paradigm in order to investigate the 

potential involvement of the cerebellum in prediction-during-comprehension (Lesage, Morgan, 
Olson, Meyer & Miall, 2012).  This study provided evidence to suggest that processing within the 
cerebellum supports “prediction during motor control and language processing”.  In this study 
predictions were associated with semantic-syntactic constraints provided by the verb.  Slowed 
predictive processing in the presence of disruptive TMS is therefore interpreted at reflecting 
cerebellar involvement at that level rather than a speech-motor level.  It has separately been 
proposed that the internal (i.e., forward) models operating at an articulatory level are cerebellar 
(e.g., Hickok, 2012).  Argryopoulos (2015) provides a review relating to the fact that “whether 
cerebellar internal models in language comprehension recruit language generation mechanisms 
remains an outstanding question”. 



21 
 

to motor-encoded segment representations during listening for comprehension.  The HSFC model was 

not developed to account for prediction during spoken language comprehension.  However, our data 

suggest that it provides a suitable model through which to improve understanding of the interactions 

between spoken language comprehension and production which, as Pickering and Garrod have 

highlighted, appear to underlie the predictions we make during comprehension. 
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 Item-Set Suitability Chapter 2:  

2.1. Introduction 

As detailed in Chapter 1, the main body of this thesis investigates whether prediction during 

comprehension evokes representations within the speech motor system of the listener.  Predictions are 

elicited via presentation of high cloze sentence fragments.  Production activity is observed during 

picture naming.  Response latencies and articulatory activity are analysed to determine whether these 

are impacted by the presence and nature of predictions.  Interference at an articulatory level would 

indicate that predictions are represented at a speech-motor level.  If interference is reduced when there 

is phonological-phonetic overlap between the predicted and produced words, this would suggest that 

speech-motor representations are articulatorily specified.   

The rationale for the above approach rests, to some extent, on evidence from picture word interference 

(PWI) studies:  When a picture-to-be-named is presented in the presence of a perceptually available 

distractor, phonological-phonetic overlap results in reduced interference effects (see Chapter 1 and 

below for details).  However, previous evidence of interference at an articulatory level comes not from 

PWI studies but from error-elicitation studies involving tongue twisters or SLIP tasks (e.g., McMillan, 

2008; Pouplier, 2007; see Chapter 5 for more details).  For theoretical and practical reasons, the items 

used in error-elicitation studies are typically monosyllabic, with “distractors” (or competing items) 

often differing from the target by only one phonological feature.  For example, the tongue twister 

words (“cop” – “top”) employed by McMillan and Corley (2010) differ only by place of articulation 

of the onset consonant.  This degree of similarity between target and distractor is not typically seen in 

phonological PWI studies, in which competing items usually differ by multiple phonemes and features 

(e.g., swear – BEAR; Damian & Bowers, 2009).   

In addition to differing in the degree of featural overlap between competing items, the design of PWI 

and articulatory interference (error elicitation) studies differs at a syllabic level.  Articulatory 

interference studies almost exclusively investigate the effects of competition at word onset position 

(i.e., competing items share a syllable rime; e.g., cop - top), whereas PWI effects are most stable and 

most frequently investigated in onset overlap conditions (e.g., cop – cot); see Appendix A details). 

PWI and error elicitation studies further differ in that PWI studies typically group monosyllabic and 

multisyllabic words together, with the first syllable of competing multisyllabic words overlapping 

fully  (see Meyer & Schriefers, 1991, for an exception), whereas  studies in which articulatory 

interference has been observed have exclusively employed monosyllabic items.   
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In this chapter we present a pilot study, conducted in order to confirm that PWI facilitation effects are 

observable for items of the type that have previously revealed articulatory interference in error 

elicitation paradigms (i.e. exclusively monosyllabic words, with an onset competition condition 

included).  The PWI study we report includes the items that would be included in subsequent studies 

reported in this thesis.  This allows us to confirm that when the distractor items we employ in further 

studies reported in this thesis are perceptually available (as opposed to being represented solely via 

top-down prediction processes as they are in subsequent studies in this thesis), they elicit the effects 

typically observed within a PWI paradigm.  This allays the concern that, were phonologically 

mediated effects not to be observable within the prediction paradigm, this could be due to peculiarities 

of the item-set rather than differences in the nature of representations elicited. Below we review the 

PWI paradigm and relevant findings prior to presenting details of the current study. 

Picture word interference (PWI) and picture picture interference (PPI) paradigms have been used to 

investigate the scope and nature of phonological encoding during word production (Appendix A 

provides an overview of relevant studies).  Participants are required to name a sequence of pictures 

while ignoring distractor words.  The phonological relationship between the distractor words and 

pictures to be named is systematically varied.  Distractor words may be presented in written form, 

superimposed on the picture-to-be named (e.g., Damian & Dumay, 2007; de Zubicaray, McMahon, 

Eastburn, & Wilson, 2002; Glaser & Düngelhoff, 1984; Lupker, 1982), auditorily (e.g., Damian & 

Martin, 1999; Meyer & Schriefers, 1991), or pictorially (e.g., Meyer & Damian, 2007; Morsella & 

Miozzo, 2002; Navarette & Costa, 2005). Regardless of distractor modality, participants are usually 

slower to name pictures in the presence of a distractor than when pictures are presented in isolation.  

Participants are quicker to name pictures when the distractor word shares phonological segments with 

the picture-to-be-named than when it does not (e.g., Damian & Dumay, 2007; de Zubicaray & 

McMahon, 2009; Lupker, 1982; Meyer & Schriefers, 1991).  This effect is commonly referred to as a 

“phonological facilitation effect”, although it has also been interpreted as a phonetic effect (see 

Lupker, 1982).   

The phonological facilitation effect is assumed to arise either at a word-form retrieval or at an 

encoding level where phonological segments of both the distractor word and the target picture name 

are activated (e.g., Roelofs, 1997; Schriefers, Meyer, & Levelt, 1990; Starreveld & La Heij, 1995; 

Damian & Martin, 1999).  It is argued that, when the distractor word and target picture name share 

phonological segments, either competition is reduced (see Meyer & van der Meulen, 2000, p., 315), or 

segments are pre-activated by the distractor and are then more readily activated in response to the 

target (see Meyer, Schriefers, Levelt, 1990, p. 99).  

When distractors are presented orthographically, the size of the phonological facilitation effect is 

generally not affected by the position of the phonological overlap when the target and distractor are 

presented simultaneously (begin v. end related; Meyer, 1996; Damian & Dumay, 2007). Similarly, 

when distractors are presented pictorially (i.e., in picture-picture interference paradigms) a 
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phonological facilitation effect is observed in both word-onset and word-rime overlap positions (e.g., 

Meyer & Damian, 2007; Morsella & Miozzo, 2002; Navarrete & Costa, 2005). However, when 

distractor words are presented auditorily, effects tend to be larger and occur earlier if overlap occurs at 

the beginning of a syllable/word than at the end (e.g., Meyer & Schriefers, 1991).  The mechanism 

underlying this finding continues to be debated.  Phonological facilitation associated with auditorily 

presented rime-overlap distractors appears to decrease over the course of childhood (ages 5 to 11 

years; Brooks & MacWhinney, 2000). It has been suggested that the decrease over the course of 

development reflects a move from holistic to incremental encoding. An alternative interpretation of 

auditory PWI findings is that onset-overlap facilitates lexical selection via a cohort effect (for 

argumentation and rebuttal see Wilshire, Singh, & Tattersall, 2015).  

As noted above, effects of phonological overlap within PWI are assumed to arise at phonological level 

(see Roelofs, 1997).  In this respect, understanding of the effect is subject to more general questions 

concerning the nature of phonological encoding:  Accounts of the form-encoding process differ as to 

whether abstract phonemes of a morpheme are activated in sequence (e.g., Dell, Juliano, & Govindjee, 

1993; Hartley & Houghton, 1996; Houghton, 1990; Sevald & Dell, 1994; Vousden, Brown, & 

Hartley, 2000) or are activated simultaneously and then selected in sequence (e.g., Levelt et al., 1999; 

Roelofs, 1997; 2004; 2015).  Minimalist accounts assume that articulation can start as soon as the 

initial segment of an utterance becomes available (e.g., Dell, Juliano, & Govindjee, 1993; Jordan, 

1990; MacKay, 1987; 2012).  Non-minimalist accounts assume that articulation cannot start until the 

first syllable or phonological word has been planned: Segments are sequentially assigned to a frame 

during the syllabification and prosodification processes necessary to allow the generation of 

appropriate motor commands via access to the mental syllabary (see Wilshire et al., 2015 for a review; 

see also Roelofs, 2015). Syllabification of a word can commence once the first few segments have 

become available, but the output will be buffered until all segments are available.  Buffered forms can 

only be extended from left to right (i.e., sequentially from word onset to word end), as indicated by 

the finding that anticipatory knowledge of phonological segments of words to be said only speeds 

response times when the segments occur at the beginning of the word (see Roelofs, 2015, p.35 for a 

summary).   

Whilst differences between minimalist and non-minimalist accounts are pertinent to investigations 

described later in this thesis, the study described in this chapter seeks simply to replicate previously 

observed effects; as such it does not contribute to this debate. Phonological effects have previously 

been observed in studies that employ primarily monosyllabic items (e.g., de Zubicaray, McMahon, 

Eastburn, & Wilson, 2002; mean syllables per item = 1.25, mean phonemes per item = 4.6).  

However, subsequent studies in this thesis employ exclusively monosyllabic words, with the same 

items acting as both targets and distractors (for reasons of articulatory comparability and experimental 

control; see Chapters 3, 4, and 5):  Given the existence of non-minimalist accounts of the relationship 

between form-encoding and articulatory execution, we were particularly concerned to confirm that the 
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item set to be used throughout this thesis was capable of eliciting phonological facilitation effects 

typically observed in PWI studies.   

In the current study we chose to present distractor items orthographically and at a stimulus onset 

asynchrony (SOA) of 0ms.  That is, we presented pictures-to-be-named simultaneously with a 

distractor word.  This ensured that participants had access to the full lexical form of the distractor 

whilst formulating the picture name.  Findings of semantic interference and phonological facilitation 

have consistently been found at 0ms SOA (see Appendix A), whereas semantic interference is 

sometimes not observed at positive SOAs and phonological facilitation is sometimes not observed at 

negative SOAs.  We therefore employed a 0ms in order that the conditions during perceptual 

presentation should be as comparable as possible to those included in later experiments in which the 

distractor representation was elicited via prediction (following Pickering & Garrod, 2013, we assume 

that predictions are subject to representation at multiple linguistic levels).  

2.2. Method 

2.2.1.   Participants 

Fourteen participants (7 male) between the ages of 18 and 20 years of age (mean age = 19.2 years) 

took part in the study. All participants were monolingual speakers of British English, had normal or 

corrected-to-normal vision, and reported no positive history for speech-language, learning or hearing 

difficulties.  Participants were recruited via the University of Edinburgh PPLS subject pool system, 

gave informed written consent in line with BPS (British Psychology Society) guidelines, and were 

awarded course credit for their participation.  The study was granted Ethical Approval by the 

Psychology Research Ethics Committee of the University of Edinburgh (approval no. 157-1415/2).  

2.2.2.   Materials 

Twenty black-and-white line-drawings acted as experimental items, with a further two pictures acting 

as practice items.  We standardized picture dimensions to 705 x 705 pixels.  Target picture names 

were monosyllabic. Each target picture name had within the experimental item set both a rime partner 

(e.g., CAP – TAP) and an onset partner (e.g., CAP – CAN).  In the experimental conditions, a typed 

“distractor” word (lower-case, black Arial font 72) was superimposed in a central position on the 

picture.  We varied the phonological relationship between the word and the picture name so as to 

generate 4 experimental conditions: full match (in which the word and picture name were identical, 

e.g., CAP – “cap”); onset overlap (e.g., CAP – “can”); rime overlap (e.g., CAP – “tap”); mismatch 

(e.g., CAP – “tone”).  Pictures were also named in a control condition, in which no word was 

superimposed (e.g., CAP – “   ”).  All picture names also appeared within the experiment as distractor 

words.  The experimental design was fully within participants and within items, with all participants 
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seeing all items in all conditions once across the experiment. Experiments reported in further chapters 

in this thesis made use of a reduced set of items selected from this item set: in the “reduced” data set 

target picture names differed from their rime-overlap distractor by only by place of articulation of the 

onset consonant (results for this reduced data set are reported in table 2.3.3). 

 

2.2.3.   Procedure 

Participants performed the experiment individually within a sound-attenuated booth.  The experiment 

was presented on a Dell Latitude laptop (model XPS L702) via DmDX software (Forster & Forster, 

2003).  Participants wore a Sennheiser HMD46 headset (earphones and microphone) throughout the 

experiment. Spoken responses were recorded directly via the experimental software and externally via 

a Zoom H2 digital recorder.  Participants were trained on the target picture names in order to minimise 

any effect on response times of uncertainty as to the “correct” picture name.  During the training phase 

each picture name was first auditorily presented, immediately followed by the relevant picture 

presented on screen for 3000 ms.  Pictures were then presented on screen for naming, with the picture 

name being auditorily presented as a confirmation (or correction) once the picture had been on screen 

for 5000 ms.   

In the experimental phase, participants were instructed that they would again see the pictures, and that 

they should name these as quickly and accurately as possible.  They were informed that sometimes 

pictures would be accompanied by a written word, but that in all cases they should name the picture.  

Two practice items were presented in the mismatch condition (i.e., superimposed with an unrelated 

written word; e.g., DOOR - leaf).  Participants then proceeded to the experiment proper.  In each trial 

a fixation cross was presented for 1000ms, following which the picture for naming was presented on 

screen for 3000ms (alongside the distractor, in relevant conditions).  The control and experimental 

conditions were interleaved. Trial presentation order was randomized within the experimental 

software with the constraints that no picture or condition could appear more than three times 

consecutively.  All pictures appeared once in each condition.  The experiment took around 20 minutes 

to complete. 

2.3. Results 

Data were analysed using a mixed-modelling approach implemented in R 3.1.2 via the lme4 package, 

version 1.1-7 (Bates, Maechler, Bolker, & Walker, 2014).  Error rates were analysed using binomial 

mixed-effects models fit with Laplace estimation.  Response time data were analysed using linear 

mixed-effects models fit by maximum likelihood, using contrast coding.   
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2.3.1.   Error data 

In total there were 1400 responses, of which 35 (2.5%) were contextual errors (i.e., phonologically 

related to the target picture-name or distractor word) and 17 (1.2%) were non-contextual errors (i.e., 

the participant misnamed the picture, for example RAIL -> “fence”). We analysed contextual error 

numbers to determine whether these were influenced by the condition in which a picture was named.  

The analysis included random intercepts for participants and items; the data were insufficient to 

support a model which included random slopes.  Model fit was significantly improved by the 

inclusion of condition as a fixed effect (
2
(4) = 12.76, p = 0.01).  The coefficients indicate that 

participants made significantly more errors in the rime overlap condition than in the control condition 

(β = 0.96, SE(β) = 0.30, z = 3.169, p < .01), but that error numbers in other experimental conditions 

did not differ significantly from those in the control condition (all p > .25).  

Table 2.3.1: Experiment  1, response type (correct vs. error) by condition 

 Control Match Rime overlap Onset overlap Mismatch 

Correct responses 275 (98.21%) 274 (97.86%) 263 (93.93%) 270 (96.43%) 267 (95.36%) 

Contextual error 2 (0.71%) 4 (1.43%) 14 (5%) 6 (2.14%) 8 (2.86%) 

Noncontextual 

error 

3 (1.07%) 2 (0.71%) 3 (1.07%) 4 (1.43%) 5 (1.76%) 

 

2.3.2.   Response latency data 

We subsequently performed an analysis of vocal response latencies for correct responses.  Outliers 

(latencies lower than 200 ms or greater than 2000 ms) were excluded from this analysis, leaving a 

total of 1288 data points.  The analysis included random intercepts for participants and items, and 

random slopes for participants.  Model fit was significantly improved by the inclusion of condition as 

a fixed effect (
2

(4) = 15.44, p < 0.01; see Table 2.3.2 for full model details).  The coefficients indicate 

that participants responded more slowly when the superimposed word and target picture name 

mismatched (i.e., in onset overlap, rime overlap and mismatch conditions) than when they matched 

(i.e., in the match condition; β = 79.09, SE(β) = 20.96, t =  3.77).  Comparing response latencies in the 

mismatching conditions, participants were slower to respond when there was no phonological overlap 

between the word and the target picture name (i.e., in the mismatch condition) than when there was 

phonological overlap (i.e., in onset overlap and rime overlap conditions; β = 38.56, SE(β) = 16.35, t =  

2.358).  Response latencies in the onset overlap condition did not differ from those in the rime overlap 

condition (β = 9.30, SE(β) = 12.45, t = .75).   When the superimposed word and target picture 
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matched, participants were no slower to respond than when the picture was presented in isolation (i.e., 

control condition; β = 0.37, SE(β) = 23.68, t =  0.02; see Figure 2.3.1). 

 

Figure 2.3.1:  Experiment 1 mean response latencies by condition for correct responses 

Mean RT in each condition is shown in white text on bar.  Ctl = control condition, match = 

full-overlap condition, r.o. = rime-overlap condition, o.o. = onset overlap condition, n.o. = 

no overlap condition.  Error bars indicate confidence intervals. 

  

Table 2.3.2: Experiment 1 model coefficients (in ms) for naming latencies 

Fixed Effect Estimate SE t Random  Effect Variance 

Intercept 748.57 32.93 22.73 Image Intercept 610.3 

Condition    Participant Intercept 14297.4 

 - Match v Control 0.37 23.68 0.02  MvC 3419.5 

 - All Mismatch v Match 79.09 20.96 3.77  AMMvM 3135.6 

 - Onset v Rime overlap 9.30 12.45 0.75  OvR 1000.3 

 - Mismatch  v Rime +             
)Onset overlap 

38.56 16.35 2.36  MMvR+O 244.5 
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The analyses above were performed on a data set that contained eight items that were not included in 

the subsequent prediction experiments reported in this thesis.  We performed a supplementary 

response latency analysis in which we included only those 12 items that constituted the item set in the 

main prediction experiments.  This allows us to rule out the possibility that any between-experiments 

differences might arise due to item-set rather than the nature of representations elicited.  Model fit 

again improved over the null model when context was included as a fixed effect (
2

(4) = 18.04, p < 

0.01; see Table 2.3.3 for full model details).  Participants were quicker to name pictures when the 

word and picture name fully overlapped than when they did not fully overlap (β = 98.58, SE(β) = 

21.47, t =  4.59).  Participants were faster to name pictures when the word and picture overlapped in 

part (onset overlap/rime overlap contexts) than when they did not overlap at all (no overlap context; β 

= -27.68, SE(β) = 13.69, t  =  -2.02).  Response latencies did not differ significantly by type of partial 

overlap (onset overlap v rime overlap; β = -35.42, SE(β) = 26.77, t = -1.32).  In summary, results 

obtained for this reduced data set replicated those found for the full data set:  Any subsequent by-

experiment differences in patterns of results can be understood as arising due to paradigm differences 

rather than the item set differences. 

Table 2.3.3: Experiment 1 (subset) model coefficients (in ms) for naming latencies, no obs = 776 

Fixed Effect Estimate SE t Random Effect Variance 

Intercept 753.98 34.38 21.93 Image Intercept 685.3 

Condition    Participant Intercept 15007.2 

 - Match v Control -1.89 24.59 -0.08  MvC 1784.9 

 - All Mismatch v Match 98.58 21.47 4.59  AMMvM 3322.8 

 - Mismatch v Rime + 
Onset overlap  

27.68 13.69 2.02  MMvR+O 2987.5 

 - Onset v Rime overlap -35.42 26.77 -1.32  OvR 1988.8 

 

 

 

2.4. Discussion 

We obtained typical PWI phonological facilitation effects in a study in which all manipulations were 

fully within-participants and within-items, and in which all items were monosyllabic and 

monomorphemic.  In keeping with previous findings (e.g., Damian & Martin, 1999; Lupker, 1982; de 
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Zubicaray & McMahon, 2009; see Appendix A for further details), the phonological facilitation effect 

manifested as a reduction in interference associated with the presentation of distractor words.  That is, 

naming latencies were shortest in the Match condition, in which the distractor and target fully 

matched, but shorter when there was phonological overlap between a distractor and target than when 

there was not.  This pattern held true for the “reduced” data set, in which target picture names differed 

from their rime-overlap distractor by only by place of articulation of the onset consonant. This 

confirms that the distractor-target contrasts employed in our subsequent investigations of the effect of 

predicted items are capable of eliciting statistically significant effects when distractor items are 

perceptually available (i.e. in a typical PWI paradigm). 

The degree of phonological facilitation observed in the current study did not differ by overlap type, 

and therefore our results do not distinguish between the type of phonological overlap employed in 

articulatory interference experiments and typically included in PWI studies.  Our results do, however, 

confirm that phonological facilitation occurs for monosyllabic picture-names when there is only part-

syllable overlap with a perceptually available distractor.  This finding is crucial to the premise of 

subsequent experiments reported in this thesis, in which we investigate whether representations 

elicited in a top-down manner via prediction produce effects similar to those observed during the 

bottom-up processing of perceptually available stimuli (as is suggested by, for example, Pickering and 

Garrod, 2007). 
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 Prediction elicitation  Chapter 3:  

 

3.1. Introduction 

Our intention in the current thesis is to investigate the speech-motor effects of prediction during 

comprehension. We elicit predictions by auditorily presenting participants with high-cloze sentences 

from which the high-cloze sentence-final target has been excised.  We elicit speech motor activity by 

presenting a picture for naming immediately following auditory presentation of the sentence-stem.  

This approach can be understood as an extended PWI paradigm, in which the “distractor” is predicted 

rather than perceived.  In this chapter we present a study in which we piloted the paradigm, adopting 

the conventional PWI approach of investigating vocal response latencies (see Chapter 2). We situate 

the current study by briefly reviewing studies which have employed a similar paradigm to investigate 

text comprehension, speech comprehension, and speech production processes.  We outline adaptations 

that were necessary in order to allow the paradigm to be employed to investigate phonological-

phonetic level representations.  We then present our findings and discuss their implications for the 

design of subsequent studies within this thesis. 

Early studies of comprehension-based contextual constraint investigated the processes by which text 

is read for comprehension (e.g., Stanovich & West, 1979; Tulving & Gold, 1963; see also Goodman, 

1967 for theoretical background).   The response stimulus was generally a written item presented for 

either word naming (see examples above) or a lexical decision (e.g., Fischler & Bloom, 1979), with 

the outcome measure being vocal or manual response latency.  The speed with which a word can be 

processed for reading (aloud) was found to be related to the likelihood of the word being encountered 

in that context (i.e., its cloze probability), suggesting that in high-cloze contexts participants pre-

activate features of anticipated words (see Chapter 1 for further evidence and discussion).   

Multi-modal studies of the effects of sentential context on picture (and word) naming have principally 

been conducted under the framework of a “Competition Model” of language acquisition, 

comprehension and production (see Bates & MacWhinney, 1989; Li & MacWhinney, 2013; 

MacWhinney, 2008).  This framework, in common with more recent, frameworks that incorporate 

forward-modelling (e.g., Dell & Chang, 2014; Hickok, 2012; Pickering & Garrod, 2013), treats 

production and comprehension as highly integrated.  However, studies conducted under the 

Competition Model framework have generally been designed to investigate the effects of semantic 

and syntactic congruency rather than effects of prediction per se: Sentential context is considered to 

provide semantic and syntactic cues to potential incoming information (see Appendix B for examples) 

which affect ease of lexical access during comprehension.  Picture or word naming latency is treated 

as an index of cue-type strength:  It is assumed that relatively stronger cues will have a greater impact 
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on naming latencies than relatively weaker cues, with cue-picture congruence facilitating picture 

naming and cue-picture incongruence potentially inhibiting naming (see MacWhinney, 2008).   

Experiments conducted under the Competition Model framework indicate that the effect of semantic 

congruency on picture/word naming response times is relatively invariant across modalities (e.g., 

written versus auditory sentential context; Bentrovato, Devescovi, D’Amico, & Bates, 1999; 

Bentrovato, Devescovi, D’Amico, Wicha, & Bates, 2003), languages (e.g., Bentrovato et al., 1999; 

Wicha , Orozco-Figueroa, Reyes, Hernandez, Galvadón de Barreto, & Bates, 2005), and age groups 

(e.g., Roe, Jahn-Samilo, Juarez, Mickel, Royer, & Bates, 2000). In keeping with the findings of text 

processing studies,  response latencies obtained in a “contextually unbiased” neutral context (e.g., 

“The teacher told her to repeat the word BOOK ten times”; “Now please say SPOON”) are longer 

than those obtained in a congruent context (i.e., in a context that provides “strong semantic constraints 

for a target picture name”; Roe et al., 2000, p. 757; e.g., “Peter eats his soup with a SPOON”; see 

Appendix X for further studies and examples).  The effect is relatively invulnerable to repetition 

effects, suggesting that the facilitation arises of a “relatively automatic process” (Roe et al., 2000, 

p.763).  This interpretation is in keeping with comprehension literature in which facilitation associated 

with sentential or semantic context is understood to reflect early-stage activation of candidate 

representations (see Aydelott & Bates, 2004).  Such facilitation is argued to arise of an automatic 

process because it is observed even when participants are not consciously aware of the context 

material, and at short stimulus onset asynchronies and (for review and discussion see Neely, 1991). 

The effect of incongruent sentential contexts appears to be less stable than that of congruent sentential 

contexts, and is found reliably only when the target item mismatches the context both semantically 

and syntactically (e.g., Bentrovato et al., 1999; Bentrovato et al., 2003; Wicha et al., 2005; see 

Appendix B for details of individual studies).   Roe and colleagues (2000) generated semantically 

incongruent trials by re-arranging  the pairing of  sentence stems and pictures so as to generate 

unlikely combinations (e.g., Peter eats his soup with a BOOK).  They found that participants at the 

extreme ends of the lifespan (i.e., 3-5 years and 70+ years of age) were slower to name pictures in the 

incongruent context than in the neutral context (described above), but that this effect was not reliably 

present in younger adults. 

Within the context of the current thesis, it is particularly relevant that Roe and colleagues suggest that 

the inhibitory effect of incongruous sentential context may be explained in terms of speech production 

as well as speech comprehension, proposing that a cued item is activated and “intrudes itself into 

sentence comprehension and/or sentence planning” (Roe et al., 2000, p. 763) thereby evoking 

competition that slows lexical selection.  The inhibitory effect decreased over the course of the 

experiment, a feature which the authors attribute to sentential interference being, “vulnerable to a 

build-up of strategies and expectations across the course of the experiment” (Roe et al., 2000, p. 757).  

They therefore argue that the inhibition effect reflects the operation of strategic as opposed to 

automatic processing.  However, it should be noted that sentence-stems in the neutral condition were 
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shorter, fewer, and presented more frequently than those in the congruent and incongruent contexts; 

this being the case, the relative inhibition effect may simply reflect greater processing costs associated 

with the sentence-stems which provided the incongruous context.  Participants encountered each 

neutral sentence-stem four times over the course of the experiment, whereas constraining sentence-

stems were encountered only once in the congruous context and once in the incongruous context.  The 

within sentence-stem predictability of upcoming words was therefore greater in the neutral context 

than in other contexts.  Attentional deployment varies with predictability (e.g., Fischler & Bloom, 

1979); the longer reaction times observed in incongruous contexts than neutral contexts may be 

attributable to this aspect alone, rather than to strategic processes. 

The studies described above were concerned primarily with the investigation of comprehension 

processes. The same paradigm has been used to investigate speech production processes, specifically 

the relationship between lexical selection and phonological encoding during picture naming (Griffin & 

Bock, 1998; see also Ferreira & Pashler, 2002; Gollan, Slattery, Goldenberg, van Assche, Duyck, & 

Rayner, 2011; Piai, Roelofs, & Maris, 2014).  Griffin and Bock (1998) argue that the paradigm is 

appropriate to investigate this aspect of speech production because “although reading sentence frames 

differs from generating messages, the product of comprehension should be similar to the conceptual 

representations that speakers normally develop” (Griffin & Bock, 1998, p. 329).  They vary sentence 

fragment constraint (i.e. cloze probability) in order to manipulate picture name “redundancy” (i.e. the 

extent to which the picture name is uniquely activated by the specifications and constraints of the 

sentence fragment; high-cloze contexts generate high redundancy).  Redundancy is understood to 

affect picture naming reaction times by facilitating the lexical retrieval process (for discussion and 

evidence see Griffin & Bock, 1998).  Word frequency is understood to affect picture naming reaction 

times at a phonological encoding level, with higher-frequency forms being retrieved more rapidly than 

lower-frequency forms.  Griffin and Bock report that degree of redundancy (cloze-probability) 

interacts with lexical frequency, such that in high-constraint contexts the lexical frequency effect was 

attenuated.  This interaction appears to reflect automatic rather than strategic processing, as it is 

observed even when picture names match the high-cloze ‘predicted’ item in only 20% of trials.  As the 

lexical frequency effect is understood to originate at a later stage in the word production process than 

the redundancy effect, Griffin and Bock (1998) argue that the interaction is best explained under a 

cascaded framework:   They propose that high-constraint contexts prime top-down activation of 

phonological form, but do not consider this to be a prediction process (see Piai, Roelofs, & Maris, 

2014, for discussion). 

The nature of the relationship between sentential constraint and word frequency effects in picture 

naming has been further investigated using both eye-tracking and neural imagining approaches 

(Gollan, Slattery, Goldenberg, van Assche, Duyck, & Rayner, 2011; Piai, Roelofs, & Maris, 2014, 

respectively).  Sentential constraint was found to modulate the power of neural oscillations in the theta 

band (associated with long-term memory access; Bastiaansen, Oostenveld, Jensen, & Hagoort, 2008; 

Düzel, Penny, & Burgess, 2010; Nyhus &Curran, 2010) at least 400ms prior to picture presentation 
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(Piai et al., 2014). This suggests that highly-constrained sentence contexts allow participants to 

preactivate specific lexical representations. This interpretation is strengthened by the finding within 

the same study that during the final 500ms of sentence context presentation, theta band oscillatory 

power was greater when fragments predicted high-frequency targets, than when fragments predicted 

low-frequency targets (i.e. lexical frequency effects were observable prior to picture presentation).   

Further, in highly constrained contexts only, oscillatory power in a broad alpha-beta range (8-30Hz) 

was attenuated during a period extending from 400ms prior to picture presentation onset until 200ms 

post picture presentation onset. This suggests that when context causes participants to pre-activate 

specific lexical representations, they also engage in motor preparation activity (presumably associated 

with preparation for articulation; see de Alegre, Gurtubay, Labarga,  Iriarte, Malanda, & Artieda, 

2004; Neuper, Wörtz, & Pfurtscheller, 2006; Cheyne, 2013 for evidence that motor preparation and 

execution are associated with decreases in oscillatory power across alpha and beta bands).  

In summary, the sentence-constraint/picture naming paradigm has been employed to study text and 

spoken language comprehension and speech production processes. It has consistently been found that 

when a picture (or word) forms the high-cloze target highly-constraining sentence, its naming is 

facilitated.  It is widely accepted that the facilitation effect arises at lexical access level, with 

researchers proposing a variety of mechanisms by which sentence context favours the activation of the 

high-target cloze item over potential competitors.  Researchers differ in the extent to which they 

understand this process to be under strategic control, and in how they interpret the time course of 

activation effects (i.e., concerning whether there is (pre)activation of high-cloze target features prior to 

picture presentation or whether contextual congruity eases processing post picture presentation).  Both 

semantic and syntactic congruity facilitate picture and word naming compared to naming in a neutral 

context which does not constrain upcoming words (e.g., Bentrovato et al., 1999; Bentrovato et al., 

2003). Under the prediction-as-production framework of Pickering and Garrod (2004; 2007; 2013) it 

would be expected that phonological congruity should similarly facilitate picture naming (see Chapter 

1). Whether picture/word naming is sensitive to phonological constraints associated with lexical level 

activation has not previously been directly investigated.  There is indirect evidence, from lexical 

frequency studies, that sentential context induces word form level (pre)activation of high-cloze targets 

prior to picture/word presentation.   

In order to address the question of whether highly predictable material is represented at phonological-

phonetic level within the listener’s speech production system (as proposed by Pickering & Garrod, 

2007; 2013), it was necessary to make certain adaptations to the sentential PWI paradigms described 

above.  As we are concerned specifically with processes that underpin spoken language processing, 

sentential context was presented acoustically:  Acoustic presentation has previously been 

demonstrated to elicit semantic congruency effects (e.g., Roe et al., 2000), but potential form-level 

effects have been investigated only via serial visual presentation of a sentential context (e.g., 

Stanovich & West, 1979; Griffin & Bock, 1998; Gollan et al., 2011; Piai et al., 2014).  The use of 
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acoustic material is crucial to address the suggestion that speech motor activation occurs as listeners 

simulate to-be-heard material via their own speech production system. 

Our approach differs from previous instantiations of the sentential PWI paradigm in that all target 

picture names are monomorphemic monosyllables: As we are concerned with phonological-phonetic 

activation within the production system, it was necessary to experimentally control the morpho-

phonological and phonetic complexity of our target picture names.  Picture names were selected so 

that, within the full set, each name had one onset-overlap partner, one rime-overlap partner and one 

no-overlap partner (e.g., CAN – CAP; CAN – TAN; CAN – TAPE, respectively; see Chapter 2 and 

Appendix C for further details).  Target picture names therefore feature as the high-cloze sentence-

stem targets which act as “distractors”.  In this way the paradigm is directly comparable to that 

employed for the conventional PWI study described in Chapter 2 of this thesis, the only difference 

being that in the experiments reported below the distractor is elicited via prediction arising of 

sentential context rather than being presented orthographically. 

The item set we employ allows us to generate experiments with a fully within items design, in which 

all participants encounter all items an equal number of times in each experimental condition.  This 

minimizes the potential for confounding effects and allows us to directly compare articulation across 

conditions.  However, sentential context effects have not previously been demonstrated for such a 

homogeneous set of items. Our use of the paradigm to investigate potential phonological-phonetic 

effects relies on the assumption that sentential context effects are present (i.e., that distractor words 

are activated at least to a lemma level). We conducted the experiments reported in this chapter in order 

to confirm that this was the case.   

Participants named pictures/words in three contexts: the control context, in which the picture was 

presented in isolation; the match context, in which the picture name formed the high-cloze target of 

the sentence-stem which preceded it; the mismatch (rime-overlap) context, in which the picture name 

was semantically unrelated to the high-cloze target of the sentence-stem which preceded it. The 

mismatch context involves rime-overlap with the target picture name; this allows us to investigate 

whether phonological similarity between targets and distractors does not elicits strategic processing 

such that the classic semantic congruency effect is no longer observable.  If participants activate a 

lexical representation of the high-cloze sentence-stem completion in a manner similar to that in studies 

described above, we would expect picture naming to be facilitated in the match condition as compared 

to the mismatch (rime-overlap) and the control conditions.  Response latencies are the primary 

outcome measure of interest, but we might also expect by-condition differences in error rates:  higher 

error rates in the mismatch (rime-overlap) condition than in the match and control conditions would 

suggest automatic and involuntary activation of high-cloze sentence-stem completions. 
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3.2. Method 

3.2.1.   Participants  

10 adults (6 female, 4 male) with a mean age of 25 years (range, 18 – 40 years) participated in the 

online pre-test.  A different cohort of 11 adults (8 female, 3 male) with a mean age of 19.6 years 

(range 18 – 24 years) participated in Experiment 2a.  A further cohort of 22 adults (18 female, 4 male) 

with a mean age of 19.8 years (range 18 – 26 years) participated in Experiment 2b.  Participants were 

students from the University of Edinburgh research participant pool.  All participants spoke English as 

a first language, had normal or corrected-to-normal vision, and received course-credit for 

participation.  No participant reported a positive history for speech, language, or hearing difficulties.  

All participants provided written consent in line with British Psychological Society guidelines. The 

study was granted ethical approval by the Psychology Research Ethics Committee of the University of 

Edinburgh. 

3.2.2.   Stimuli  

Picture names:  Eighteen monosyllabic concrete English nouns of medium frequency were selected 

for depiction (see Appendix C for a full word list).  Each word had a rime pair within the stimuli list 

(e.g., can-tan), and all words began in either an alveolar or a velar onset in order to conform to 

requirements of planned follow-up articulatory imaging experiments.  Pictures for naming were 

selected from a public-access internet database of colour photographs.  Picture size was standardized 

to a height of 246 pixels (using the ImageMagick tool).   

Prime sentences:  For each of the 18 picture names, 3 high-cloze sentence-stems were generated in 

which the picture-name acted as the high cloze-probability target.  All cloze sentence-stems were pre-

tested via the online survey in order to determine cloze probabilities. Sentences were presented in the 

online survey in the same form that they were to be presented in the main experiment.   Sentence-

stems were recorded at a sampling rate of 44kHz in a sound attenuated recording booth, spoken by a 

female native speaker of English (mean speaking rate was 3.6 syllables per sec).  Prime sentences 

were designed such that the penultimate word (i.e., the word preceding the high-cloze target) ended in 

either a vowel or, occasionally, a fricative.   This allowed all sentences to be cut at the last steady state 

acoustic energy of the word preceding the cloze item, thereby eliminating any acoustic cues as to the 

phonetic onset of the high-cloze target word. Mean sentence length was 10 words, (SD 3). Mean 

sentence duration was 3.384 seconds (SD 0.984 seconds) (range; 0.972 – 5.991 seconds).     

Online pilot norming study: As stated above, we conducted an online pilot study in order to 

determine: (i) cloze-probabilities for the experimental sentence-stems; (ii) naming agreement for the 

experimental images; (iii) potential competing onset words elicited by the experimental images.  The 
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online survey was presented via Limesurvey (Carsten Schmitz, 2011).  Participants, who did not take 

part in any of the studies detailed below, were asked to click on an icon to hear each sentence-stem 

and, after hearing each sentence-stem, to type the word that they thought to be the most likely the 

“missing word”.  Subsequently participants were presented with the experimental images to name, one 

at a time.  Participants were instructed to type the single most suitable name for the picture in each 

case.  The order in which sentence-stems and images were presented was randomized within block 

within the presentation software.  Sentence stimuli were included in the main experiment only when 

cloze probability for the target picture name was .80 or greater (see Appendix C for a tabulated 

summary of cloze-sentences and naming outcomes).  The pre-testing of materials was necessary 

because it was not possible to use prime sentences from established databases due to the word onset 

and syllable structure requirements detailed above. The online pre-test also allowed us to determine 

picture naming agreement and to analyse non-target picture name responses in order to ensure that no 

image used in the experiment generated a potentially confounding response (e.g., a picture of a 

“CAN” being named a “TIN” and thereby activating the onset phoneme of the target’s rime pair, 

“TAN”).   

3.2.3.   Procedure  

3.2.3.1. Experiment 2a   

Experiment presentation was automated using DMdX (Forster & Forster, 2003) and was delivered to 

participants via a Dell XPS 17 on a 17” screen at 1024x768 screen resolution.  Audio was presented 

via over-ear headphones, and sound capture was performed via the PC-internal mic.  Picture-naming 

response latencies were recorded automatically via the “digitalVOX” function in DMdX, set to trigger 

at -6dBA.  Participants’ full responses were recorded using the RecordVocal function, in addition to 

which the experimental session was separately audio-recorded using an H2 Handy Recorder (Zoom 

Corporation).   At each stage of the experimental procedure, picture presentation order was 

randomised via DMdX.  Participants took no more than 30 minutes to complete the experiment in full.   

Participants first encountered each picture during the familiarisation phase, which consisted of two 

stages. In stage one, participants were instructed to “try to remember the picture names”.  For each 

item the target picture-name was presented auditorily, immediately after which the relevant picture 

was presented visually.  The picture name was presented below the image in Calibri 40-point black 

font.  In stage two of the learning-phase, participants were instructed to attempt to name each picture 

when they saw it, before its name appeared on screen. Participants were then presented with each 

picture in turn for naming.   Pictures were presented for 2000ms without text and then for a further 

1000ms accompanied by their target name.  This allowed participants to confirm that they had named 

the picture correctly and, if not, presented a further opportunity to learn the picture name.  The 

familiarisation-phase was followed immediately by the experimental phase.    



38 
 

In the first block of the experimental phase, participants were presented with each picture to name 

once “as quickly and accurately as you can”.   In blocks two and three participants were informed that 

they would hear a number of sentences, all of which would be missing the final word.  Participants 

were informed that they would also see pictures, and that they should name any pictures that they saw 

“as quickly and accurately as possible”. The stimulus onset asynchrony (SOA) between sentence-stem 

end and picture presentation was 0ms in all cases.  Pictures were presented on screen for 2500ms.  In 

the match sentential context the target picture name provided the high-probability cloze for the 

sentence-stem just heard.  In the mismatch (rime-overlap) condition the target picture name was the 

rime-pair of the sentence-stem cloze (i.e. shared a syllable rime with that of the cloze word, but 

differed in onset.  The context in which a sentence-stem was first encountered (match v. mismatch/ 

rime-overlap) was counterbalanced across participants, with each sentence-stem being presented once 

in block 2 and once in block 3.  The two contexts were represented equally across the two blocks.  

Order of within-block presentation of items was randomised within DMdX.  Each participant 

therefore named each picture 6 times in total across blocks two and three (3 times in a match context 

and 3 times in a mismatch/rime-overlap context).  Block 4 was procedurally identical to block 1 

(described above) and involved only picture naming.  Blocks 1 and 4, in which pictures were named 

without a preceding sentence provide the baseline control condition against which performance in the 

sentential contexts was compared. 

3.2.3.2. Experiment 2b  

 In Experiment 2b participants named words rather than pictures.  They were therefore instructed to 

“say the word” rather than to “name the picture”.  The experimental procedure was otherwise identical 

to that in Experiment 2a, with the following exception:  During the familiarisation phase, when in 

Experiment 2a the image was presented screen centre with the written word below it, in Experiment 

2b the written word was presented screen centre with the image presented beneath. 

3.3.   Results 

3.3.1.   A general note on data analysis 

Unless otherwise stated, response latency analyses presented in this thesis were conducted using a 

linear mixed-modelling approach, and were implemented in R 3.1.2 (R Core Team, 2014) via the 

lme4 package, version 0.999999-4 (Bates, Maechler, & Bolker, 2014). This approach provides 

estimated, rather than exact, effect sizes, meaning that it is not appropriate to calculate associated p-

values exactly. We therefore treat |t| > 2 as indicating a statistically significant effect (see Baayen, 

2008).  Unless otherwise stated, we first constructed a maximal model that allowed slopes and 

intercepts to vary by participant and item (picture-name) where feasible (see Barr, Levy, Scheepers, & 

Tily, 2013).  We then employed a backward stepwise approach to remove fixed effects that did not 
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contribute to model fit.  The contribution of the remaining fixed effects to model fit was confirmed via 

forward stepwise testing from a basic model that included only random effects.  Details of the 

confirmed best-fit model are reported in full in each case. 

3.3.2.   Experiment 2a Findings 

3.3.2.1. Error data 

Each participant produced 142 experimental picture names (36 in the control condition, and 53 in each 

of the match and mismatch/ rime-overlap conditions; 1 picture was unintentionally omitted from the 

experiment in both mismatch/rime-overlap and match conditions). Of the resulting 1562 trials, 27 

(1.7%) were errorful responses (either the participant used a non-target name to name the picture or 

did not respond). Error-rates differed by experimental condition (
2
(2) = 12.73, p < .01), being higher 

in the rime-overlap condition (3.55%) than in the match (0.87%) or control (0.51%) conditions. 

Errorful responses were excluded from further data analyses.   

3.3.2.2. Outliers and missing data 

Of the remaining 1535 trials, response latency was below 200 msec in 8.14% of cases, over 1499 

msec in 0.85% of cases, and was not recorded due to mis-triggering of the voice-key in 7.67% of 

cases. The proportion of fast, slow, and mis-trigger trials did not differ by experimental condition 

(
2
(2) < 2.5, p > .05 in all cases). Fast, slow and mis-trigger trials were excluded from further analyses.  

The remaining 1279 data points were included in the analyses described below.  

3.3.2.3. Response latency data modelling 

The outcome measure of interest was picture naming latency.  Naming condition (control, match, 

rime-overlap) was experimentally manipulated and was the predictor of interest.  We also included 

Trial position within the experiment and lexical frequency of the target picture name in the analyses.   

The inclusion of lexical frequency did not significantly improve model fit compared to a null model 

(
2
(1) = 0.31, p > 0.5).  Lexical frequency was therefore not included as a predictor in subsequent 

models.  The inclusion of Trial position significantly contributed to model fit (
2

(1) = 378.77, p < 

0.001), as did the further inclusion of Context (
2
(2) = 8.24, p < 0.05) and the interaction between 

Context and Trial position (
2

(2) = 9.89, p < 0.01).  Further including the interaction between Context 

and lexical frequency did not improve model fit (
2

(3) = 2.12, p > 0.05).The best-fit model therefore 

included as fixed effects Context, Trial position, and their interaction, and allowed slopes and 

intercepts for Context to vary by participants and items (i.e. target picture name).  
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Best fit model 

 Inspection of the best fit model indicated that response latencies reduced numerically over the course 

of the experiment ( = -0.27, se() = 0.14, t =  -1.98).  Response latencies in the match context were 

shorter than those in the control context ( = -101.34, se() =  22.92, t =  -4.422).  Response latencies 

in the Mismatch/ rime-overlap context were longer than those in the control context ( = 47.04,    

se()  = 22.32, t = 2.107).  The effect of Context reduced over the course of the experiment, as 

indicated by an interaction between Context and Trial position: Over the course of the experiment, 

response latencies in the match context decreased less than those in the control context ( = 0.65, 

se() =  0.21, t = 3.14), whereas response latencies in the mismatch/rime overlap context decreased by 

more ( = -0.44, se() =  0.21, t =  -2.10).  Full details of the best fit model are provided in Table 

3.3.1. 

Table 3.3.1: Experiment 2a summary of best-fit model for response latency data (effect stated in ms).   

Fixed Effect Estimate SE t  Random Effect Variance 

Intercept 625.26 24.15 25.89  Image Intercept 272.9 

Position -0.27 0.14 -1.98   MvC 257.6 

 RvC 181.3 

Context     Participant Intercept 3885.7 

 - Match v 

Control 

-101.34 22.92 -4.42   MvC 414.1 

 - Rime 

overlap v 

Control 

47.04 22.32 2.11   RvC 189.2 

Position x 

Context 

       

 - Match v 

Control 

0.65 0.21 3.15     

 - Rime 

overlap v 

Control 

-0.44 021 -2.10     

 

In order to explore whether the duration of the sentential context had an effect on picture naming 

latency we modelled a subset of the data that included only match and rime-overlap contexts (i.e., 

only those contexts in which a sentence-stem preceded picture presentation).  We compared a model 

that contained those predictors included in the best fit model described above to one that that 

additionally included sentence-stem duration as a predictor.  Due to the reduction in data quantity we 

simplified the random effects structure to allow the model to converge.  This was achieved by 
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removing the by-item random slopes for context.  The inclusion of sentence-stem duration contributed 

significantly to model fit (
2

(1) = 108.66, p < 0.01), with response times decreasing as sentence stem 

duration increased. 

3.3.3.   Experiment 2b Findings 

3.3.3.1. Error data 

Each participant produced 144 experimental picture names (36 in the control condition, and 54 in each 

of the match and mismatch/ rime-overlap conditions). Of the resulting 3168 trials, 26 (0.8 %) were 

errorful responses (either the participant used a non-target name to name the picture or did not 

respond). As in Experiment 2a, error-rates differed by experimental condition, (
2
(1) = 6.32, p < .05), 

being higher in the rime-overlap condition (18/1188; 1.5%) than in the match (5/1188; 0.4%). Only 3 

errors were produced in the Control context (representing an error rate of 0.4%).  Errorful responses 

were excluded from further data analyses.   

3.3.3.2. Outliers and missing data 

Of the remaining 3098 trials, response latency was below 100 msec in 11% of cases and was over 

1499 msec in 0.4%. The proportion of fast and slow trials did not differ by experimental context (
2
(2) 

< 3, p > .05 in all cases). Fast and slow trials were excluded from further analyses.  We did not 

identify any mis-trigger trials. The remaining 2730 data points were included in the analyses described 

below.   

3.3.3.3. Response latency data modelling 

As in Exp 2a, the outcome measure of interest was naming response latency (in this case being word 

naming response latency).  Naming context (control, match, mismatch/rime-overlap) was 

experimentally manipulated and was the predictor of interest.  We also included Trial position and 

lexical frequency of the target picture name as predictors in the analyses.   

The inclusion of lexical frequency marginally improved model fit compared to a null model (
2
(1)  = 

3.3708,  p =  0.07).  We therefore retained this predictor in the model, in line with the 

recommendations of Barr and colleagues (2013). The inclusion of trial position did not further 

improve model fit as assessed by a forward step-wise comparison (
2

(1) = 1.77, p = 0.18).  However, a 

subsequent backward stepwise comparison from the maximal model indicated an effect for trial 

position; it was therefore retained in the final best-fit model. The inclusion of context (
2

(2) = 9.57, p < 

0.01) further improved model fit, as did the inclusion of the interaction between context and trial 

position (
2
(3) = 18.88, p < 0.01).  Model fit was not improved by including the interaction between 

context and lexical frequency (
2

(2) = 0.8331, p > 0.5).  The best-fit model therefore included as fixed 
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effects lexical frequency, trial position, context, and the interaction between context and trial position, 

and allowed slopes and intercept to vary by participants and items (i.e. target word name) for context.  

Best fit model 

Inspection of the best fit model indicated that response latencies were lower for higher frequency 

lexical items ( = -12.46, se() = 6.42, t =  -1.94).  Response latencies in the match context were 

shorter than those in the control context ( = -29.44, se() =  13.76, t =  -2.140).  Response latencies 

in the mismatch/rime-overlap context were longer than those in the control context ( = 60.07, se()  

= 13.68, t = 4.39).  As in Experiment 2a, the effect of context reduced over the course of the 

experiment, as indicated by an interaction between context and trial position: As in Experiment 2a, 

over the course of the experiment response latencies in the mismatch/rime overlap context decreased 

more than those in the control context ( = -0.46, se() =  0.12, t = -3.72).  Numerically, response 

latencies in the match context decreased over the course of the experiment by less than those in the 

control condition.  However, unlike in Experiment 2a, this difference was not statistically significant 

( = 0.15, se() =  0.12, t =  1.20).  Full details of the best fit model are provided in Table 3.3.2. 

Table 3.3.2: Experiment 2b summary of best-fit model for response latency data acquired in 
Experiment 2b (effects are stated in msecs) 

Fixed Effect Estimate SE t  Random Effect Variance 

Intercept 513.54 23.87 21.51  Image Intercept 75.36 

Position -0.21 0.08 -2.58   MvC 40.87 

Lexical 

frequency 

-12.46 6.42 -1.94  RvC 14.82 

Context     Participant Intercept 2593.13 

 - Match v 

Control 

-29.44 13.76 -2.14   MvC 402.08 

 - Rime 

overlap v 

Control 

60.07 13.67 4.39   RvC 522.21 

Position x 

Context 

       

 - Match v 

Control 

0.15 0.12 1.20     

 - Rime 

overlap v 

Control 

-0.46 0.12 -3.72     

 

In order to explore whether the duration of the sentential context had an effect on picture naming 

latency we modelled a subset of the data that included only match and mismatch/ rime-overlap 
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contexts (as for Experiment 2a).  We compared a model that additionally included sentence-stem 

duration as a predictor to one that contained only those predictors included in the best fit model 

described above.  The inclusion of sentence-stem duration did not contribute to model fit (
2

(1) = 0.94, 

p > 0.1).                                                                                                                                                                                                                                                                                                                                                           

3.4.   Discussion        

We developed a variant of the sentential context PWI paradigm which allows us to test for 

phonological-phonetic level speech production effects of prediction during comprehension.   We 

tested whether typical sentential PWI effects are observable within this adapted paradigm.  Across two 

experiments we tested whether the sentential priming effect is present for (a) picture targets and (b) 

written targets.  For both picture and written targets, naming was facilitated when targets matched the 

high-cloze anticipated sentence-fragment completion (compared to naming in isolation).   This result 

is in line with the findings of previous studies (e.g., Roe et al., 2000) and indicates that the sentence-

fragments used in our experiments elicited lexical level activation of anticipated high-cloze 

completions.      

Picture and word name targets matched the high-cloze completion in only 50% of trials, meaning that 

it was not strategically advantageous to participants to predict the high-cloze completion.  As we 

nonetheless observed facilitation, it appears that high-cloze completions are automatically activated 

when sentence-fragments are presented auditorily (as when sentence-fragments are presented visually; 

Stanovich & West, 1979; Griffin & Bock, 1998; Gollan et al., 2011; see Introduction).  This 

interpretation is in keeping with the fact that error-rates were significantly higher when the sentence-

fragment completion mismatched the picture/word name taget than when the two matched or the 

target was named in isolation:  The higher error rates appear to be the consequence of the intrusion of 

involuntarily activated sentence-fragment completions during the picture/word naming production 

process.   

Overall, response latencies decreased over the course of the experiment in both experiments.  This is 

reassuring as it suggests that the experimental procedure engaged participants’ attention throughout.  

An exploration of the interaction between trial position and context reveals that response latencies for 

both picture and word naming in the match context did not decrease over the course of the 

experiment:  It appears that the degree of pre-activation elicited by the high-cloze context may have 

caused naming latencies in the match context to be at floor level.  In the control condition, latencies to 

written words were similarly unaffected by trial position (Experiment 2b), whereas picture naming 

latencies decreased (Experiment 2a).  This may reflect the different processes involved in picture and 

word naming; whilst picture naming requires conceptual and semantic activation, word naming can be 

achieved via grapheme-phoneme conversion (e.g., Coltheart & Rastle, 1994), and the orthographic 

representations involved are argued to have priviliged access to articulation (e.g.,  Costa, 

Alario, & Caramazza, 2005).  Word naming in the control context may have been at floor level (for 
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non pre-activated items) at the beginning of the experiment: Participants would have had many years’ 

experience of linking the written form of our lexically relatively frequent items to the spoken form, 

whereas links between the specific picture form and the spoken form had to be established within the 

experimental session.  Under this interpretation, the word naming facilitation observed in the match 

context must be understood to arise of preactivation prior to presentation of the reponse stimulus. 

For both picture and word naming, response latencies in the mismatch context decreased more over 

the course of the experiment than did those in the control context.  This is consistent with previous 

reports that when a mismatch between sentential context and the item to be named elicits inhibition, 

the effect diminishes over the course of the experiment (e.g., Roe et al., 2000).  This interaction may 

be understood to arise due to the nature of the paradigm either causing participants to strategically 

adjust their strategies, or to (automatically) update their expectations (see Introduction).  Both 

interpretations assume that participants learn to predict the unpredicted. The experiment exposes 

participants to incongruent combinations far more frequently than would be encountered in everyday 

language use; the attenutation of the inhibition effect may reflect participants’ becoming accustomed 

to this.  Alternatively, the effect be explained at an attentional level:  As participants become more 

familiar with the speaker and the sentential material over the course of the experiment, the sentential 

context becomes more predictable allowing greater attentional deployment to the picture/word naming 

process (see Introduction for reference to Fischler & Bloom, 1979):  This interpretation is in keeping 

with the finding that naming latencies decreased as sentential context duration increased, and that this 

effect did not interact with context.   The experiments reported in this chapter do not distinguish 

between potential interpretations of the inhibition effect.  Further, it may be that the interpretations are 

not orthogonal but rather reflect the fact that the paradigm has been deployed under a variety of 

theoretical frameworks. 

In general, it appears that sentential PWI effects are not impacted by adaptations that make the 

paradigm suitable for the investigation of phonological-phonetic level representations. However, we 

did not observe an interaction between lexical frequency and sentential constraint such as that reported 

by others and suggested to reflect word-form retrieval effects (e.g., Griffin & Bock, 1998; Piai et al., 

2014 ).  Within the context of our study, an interaction of this type would take the form of a lexical 

frequency effect being greater in the control context (no sentential constraint) than in the match 

context (high and appropriate sentential constraint).  Our items were deliberately of relatively equal 

lexical frequency, in order to avoid potential masking effects of target and distractor being of 

substantially different lexical frequencies.     It is therefore unsurprising that we did not observe such 

an interaction, as the lexical frequency range employed in our study did not elicit a notable lexical 

frequency effect even in the control condition.  The lack of a lexical frequency effect across the items 

employed in our study is reassuring:  It eliminates the concern that effects arising of prediction might 

be masked by lexical frequency effects allowing  some item-names preferential access to articulation 

regardless of their role (target or distractor; see Miozzo & Caramazza, 2005, for a discussion of 

distractor lexical frequency effects). 
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In addition to confirming that the paradigm was suitable to investigate effects at a phonological-

phonetic level, the experiments reported in this chapter allowed us to compare the relative suitability 

of picture and word targets.  As in previous studies (see Appendix B for details), both picture and 

word naming were facilitated in congruent contexts and to some degree inhibited in incongruent 

context.  Although findings for word and picture naming generally patterned together, there were 

some differences:  How the interaction between trial position and context was expressed differed 

between the experiments; this highlighted the fact that semantic processing is not necessary for word 

naming (see Brysbaert, Fias, & Reynvoet, 2006, for a review of evidence that this is the case).  For 

word naming only, lexical frequency marginally improved model fit; our intention in selecting items 

of relatively equal lexical frequency had been to avoid this (for rationale see above).  These 

differences cause us to prefer picture naming over word naming as an outcome measure, as the focus 

of this thesis is on prediction as it occurs during spoken language processing as opposed to text 

processing. Within the paradigm we employ, picture naming appears to offer increased potential to 

observe the effects of top-down activation of phonological representations whilst being less 

susceptible to potentially confounding effects.  
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 Are listener-generated Chapter 4:  

predictions specified at a speech-

sound level?3  

4.1. Introduction 

4.1.1.   Abstract to paper 

Comprehension of spoken language involves the prediction by the listener of upcoming material.  It 

has been demonstrated that listener-generated predictions of upcoming material can be specified to a 

phonological level, such that a specific word-onset is anticipated (e.g., DeLong, Kutas, & Urbach, 

2005).  The current study investigated whether such word-form specific predictions impact picture-

naming latencies in a manner similar to that observed when a distractor word is actually presented. 

Participants were auditorily presented with high-cloze sentence-stems, in order to elicit word-form 

predictions.  Pictures for naming were presented immediately following the sentence-stem.  We 

systematically manipulated the phonological relationship between the predicted word and the picture 

name.  Across three experiments, naming was facilitated when the picture name fully matched the 

predicted word.  However, naming was neither facilitated nor inhibited when the picture name 

overlapped phonologically with the predicted word.  This finding is in contrast to effects of 

phonological overlap observed when a distractor word is heard or read.  Our findings suggest that 

words which are internally listener-generated (predicted) during comprehension are not robustly 

specified at a speech sound level. 

 

 

                                                           
3
 This chapter constitutes an extended version of a published paper (“Drake, E., & Corley, M. (2015a). 

Effects in production of word pre-activation during listening: Are listener-generated predictions 
specified at a speech-sound level?. Memory & Cognition, 43(1), 111-120.”).  In the current chapter 
data were analysed in R R 3.1.2 (R Core Team, 2014) via the lme4 package, version 0.999999-4 
(Bates, Maechler, & Bolker, 2014), in line with all other analyses reported in this thesis.  There are 
therefore some numerical inconsistencies with data published in the paper; crucially, results do not 
differ in statistical significance or direction.   This chapter includes an extended analysis and 
discussion, to incorporate findings concerning the effect of mismatch at a lexical level when there is 
match at a word form level.  This material was not included in the original manuscript submitted for 
review; it is of interest within the context of this thesis but was outwith the remit of the paper. 
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4.1.2.   Main Introduction to paper 

The speech production system is active during comprehension. Perceiving speech primes the speech 

motor system even when no speech output is required. Articulatory muscles are activated when 

listening to speech sounds but not when listening to non-speech sounds, and such increased 

excitability of the motor system is accompanied by an increase in activity within Broca’s area (Fadiga, 

Craighero, Buccino, & Rizzolatti, 2002; Watkins, Strafella, & Paus, 2003; see also Pulvermüller et al., 

2006).  Activation of motor-speech areas during speech comprehension may reflect backward- or 

forward-looking processes, or both. The production system may be engaged in generating articulatory 

representations to support the maintenance and decoding of heard material; equally, it may be engaged 

in simulating upcoming auditory input via the generation of emulations (Watkins & Paus, 2004; 

Pickering & Garrod, 2004).  Recently, there has been an increased focus on the latter possibility. It has 

influentially been suggested that during comprehension the production system is engaged in 

generating predictions of upcoming material, thereby reducing processing demands on the 

comprehension system, by constraining possible interpretations of incoming material (e.g., Pickering 

& Garrod, 2007; Schiller, Horemans, Ganushchak & Koester, 2009; see also Scott, McGettigan, & 

Eisner, 2009 for a review).  But whereas evidence of speech-motor activation during comprehension is 

compatible with the notion that the listener’s speech-motor system is engaged in generating 

predictions, it does not constitute proof.   In order to confirm such an interpretation, it would be 

necessary to demonstrate that upcoming material in specific is represented via the speech production 

system. 

Although it has not been empirically demonstrated that predictions during comprehension are 

achieved via the speech-motor areas, it has been demonstrated that words are predicted at a surface-

form level during comprehension (DeLong, Kutas, & Urbach, 2005).  When reading sentences which 

strongly predict a noun (such as The day was breezy so the boy went outside to fly...), comprehenders 

exhibit increased N400 amplitudes upon encountering an indefinite article in a form inappropriate to 

the predicted noun (an, where the prediction is kite). The amplitude of this response is correlated with 

the probability that the predicted noun completes the sentence, as determined by previous offline 

testing.  This effect can relate only to the upcoming word’s being specified at a phonological-form 

level, because the distinction between a versus an is empty at a semantic and syntactic level, and is 

based purely on the phonological form of the upcoming word (consonant versus vowel).  

In the current study we investigate whether effects of phonological-form prediction in comprehension 

are observable in a behavioural measure of speech production.  If prediction does involve the 

generation of motor emulations, we would expect to see an effect of prediction in the listener’s own 

speech production system.  Previous findings from picture-word-interference (PWI), picture-picture 

interference (PPI) and sentence-listening paradigms provide some guidance as to the possible nature 

of such an effect (see Chapters 1 and 2 of this thesis). 
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Picture-naming is facilitated when the picture is accompanied by a partially-phonologically-

overlapping written distractor word (as compared to one with no overlap; Damian & Dumay, 2007; 

Lupker, 1982).  When the distractor word is presented auditorily, picture naming is facilitated only 

when there is onset-overlap (Meyer & Schriefers, 1991).  Overall, pictures are named more slowly in 

the presence of a distractor word than in isolation (Meyer & Schriefers, 1991).  This pattern of 

findings may result from the production system being habitually and automatically recruited during 

comprehension, causing presentation of a distractor word to increase the demands on the production 

system, and thereby leading to a general increase in picture-naming latencies (see, Greene, 1988; 

Raney, 1993). If so, the phonological facilitation effects described above may be better understood as 

attenuated inhibition effects, where the inhibition is attenuated as a consequence of the overlap 

between competing representations in the production system. 

In typical PWI experiments the distractor is orthographically represented. In studies in which the 

distractor is a picture, participants must internally generate the lexical form of the distractor, and 

effects of phonological overlap are found in some studies (e.g., Morsella & Miozzo, 2002; Navarette 

& Costa, 2005), but not others (Jescheniak et al., 2009). This difference has recently been attributed to 

aspects of the distractor pictures used (Opperman, Jescheniak, & Görges 2014), rendering comparison 

with distractors which are (implicitly) predicted during comprehension difficult.  However, one study 

in which target (rather than distractor) names were internally generated provides evidence that such 

word forms can be phonologically specified in a way that affects speech production latencies 

(Humphreys, Boyd & Watter, 2010).  In a free-association version of the picture-word interference 

paradigm, each written word had a single, high-likelihood associate (e.g., “cobweb” -> spider).   

Participants named the first word that came to mind as an associate of the written word, while 

ignoring the picture. In phonologically-related trials, the associate and the picture-name shared an 

onset (e.g., “cobweb” → spider; SPOON), whereas in unrelated trials there was no such phonological 

overlap (e.g., “cobweb” → spider; FORK).  Response latencies were significantly shorter in the 

phonologically-related condition than in the unrelated condition, and did not differ from those in the 

control condition
4
 (in which participants did not see any picture). This suggests that there is no need 

for a word to be perceptually available in order to elicit effects at phonological level, and strengthens 

the case for suggesting that the locus of any facilitation is in the production system. If prediction 

during comprehension is production-driven, then we might expect words predicted during 

comprehension to elicit similar phonological effects to those of pictures implicitly named during 

viewing.  

Previous studies concerning the effect of sentence-stem context on picture naming have generally 

investigated integration rather than prediction effects, and have therefore focused on the effects of 

manipulating the semantic and/ or syntactic congruence between the sentence-stem and the picture 

                                                           
4 The statistic for related versus control conditions was not reported, and this conclusion is drawn 

from Table 1 and Fig. 2. 
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name (e.g., Roe, Jahn-Samilo, Juarez, Mickel, Royer, & Bates, 2000; see also Griffin & Bock, 1998; 

Wicha et al. 2005; see Chapter 3 and Appendix B for further details).  Pictures are named fastest in a 

congruent context, more slowly in a neutral context, and most slowly in an incongruent context.  This 

pattern has been interpreted as indicating (prediction-mediated) easing of integration (Griffin & Bock, 

1998; Wicha et al. 2005).  Of course, the effect is also consistent with a prediction-as-production 

account.  This interpretation merits further exploration, particularly in light of evidence that inhibition 

of picture-naming may arise from conflict at the production level, rather than from integration costs 

(Hirschfeld, Jansma, Bölte, & Zwitserlood, 2008; Mahon, Costa, Peterson, Vargas, & Caramazza, 

2007; Nozari , Dell, & Schwartz, 2011; Severens et al., 2011).   

The possibility that sentence context may elicit phonological representations through a process of 

prediction-as-production is suggested by the findings of an error-elicitation study (Ferreira & Griffin, 

2003): High-cloze sentence-stems were presented orthographically to participants as a means of 

semantic priming.  Immediately following sentence-stem presentation, a picture was presented for 

naming. Participants were more likely to (erroneously) utter the high-cloze completion in place of the 

picture name when the high-cloze completion was a semantic competitor of the picture name (e.g., 

nun – PRIEST) than when the two were unrelated (e.g., nun – HAND).  Crucially, with respect to the 

activation of phonological representations within the speech production system, participants were also 

more likely to erroneously utter the sentence completion when it was a homophone of a semantic 

competitor of the target picture (e.g., none – PRIEST).  In the current study we investigate whether 

such evidence of interactivity between lemma and word-form levels within the speech production 

system during comprehension reflects preactivation at a speech-sound level. 

In summary, the speech production system is active during comprehension, and comprehension can 

involve prediction of word-forms at a phonological level.  These findings have been linked in the 

suggestion that prediction during comprehension engages the speech production system.  The present 

study was designed to explore this suggestion directly.  In three experiments, participants heard 

auditory sentence fragments with highly predictable continuations (such as He managed to fix the drip 

from the old leaky…) and named pictures at the offset of the audio. Picture-names were chosen such 

that they corresponded to the predictable word (tap-TAP) or had a partial phonological overlap (tap-

CAP, tap-TAN), or had no overlap (tap-CONE).   In order to maximise the probability of phonological 

effects, each mismatching sentence-continuation corresponded to an image name on other trials (cf. 

Meyer & Damian, 2007). We predicted facilitation of picture-naming in the matching condition 

(compared to an acontextual control condition), as evidence that participants were making predictions 

as a consequence of hearing the sentence stems.  Of interest was whether there was an effect of 

phonological overlap, which would confirm that during speech comprehension, predicted items are 

activated at a phonological level in the production system.  We investigated the effects of two types of 

phonological overlap: segment overlap, such as that associated with the “phonological facilitation 

effect” typically reported in PWI studies (see Chapter 2), and whole word-form overlap, such as that 

associated with homophone mediated lexical mis-selection (e.g., Ferreira & Griffin, 2003, see above).  
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This allowed us to consider the nature of phonological representations that might be active within the 

speech production system during comprehension-elicited prediction. 

4.2. Method 

4.2.1.   Participants 

Twenty-seven adults (10 male) with a mean age of 19 years (range 18–24) participated in Experiment 

3a. Twenty-one further adults (7 male) with a mean age of 20 years (range 18–26) participated in 

Experiment 3b.  Finally, a further twenty-one adults (7 male) with a mean age of 20 years (range 18-

27) participated in Experiment 3c. Participants were students from the University of Edinburgh, who 

either received course credit or were paid for participation. One participant in each of Experiments 3a 

and 3b identified themselves as multilingual subsequent to the recordings; data from these participants 

was excluded from the analyses.  All remaining participants were monolingual speakers of English. 

No participant reported relevant language or visual impairments.  Written consent was provided, in 

line with British Psychological Society guidelines.  

4.2.2.   Stimuli 

We used identical sets of sentence-stems and of pictures across the three experiments. Sentence-stems 

were chosen such that they strongly predicted the following word; depending on the condition in 

which they were encountered, pictures had names which either corresponded to the predictable word, 

overlapped with it phonologically, or were unrelated. The experimental items comprised twelve of the 

pictures used in the experiments described in Chapter 3. We reduced the experimental items from the 

18 used in the previous experiments in order to: (i) avoid the experiment being so lengthy that 

participants would begin to feel fatigue and/ or exhibit attentional drift; (ii) ensure that phonological 

overlap was as extensive in word initial position as it was in word final position (i.e., 2 segments in 

each context; see Appendix C for details). A further 12 pictures acted as filler items. 

4.2.2.1. Filler items 

 In order to protect against strategic response bias arising of experimental items being encountered in a 

sententially unpredicted (incongruent) context twice as often as they were encountered in a 

sententially supported (congruent) context, we introduced filler items that were encountered in a 

supportive context only, thereby balancing the supportive and non-supportive contexts encountered 

within participants across the experiment.  This allowed us to investigate the possibility that the 

sentential context in which an item has recently been encountered leads to an updating of the lexical 

activation of that item.   
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Target names for filler pictures were monosyllabic and did not overlap with experimental picture 

names at syllable onset or rime.  Filler items were included in order to minimize participants’ 

conscious attention to phonological aspects of the picture names, and to maintain an even balance 

between trials in which pictures corresponded to predicted or unpredicted names. Filler items were 

selected from cloze normed sentences reported by Block and Baldwin (2010).  The cloze probability 

of all filler sentences was .8 or greater, all cloze items were imageable and target cloze items were 

preferred picture names in British English (the original sentences reported in Block and & Baldwin 

were tested on an American-English speaking population).  All filler target cloze words were of a 

CVC structure in order not to be distinguishable in this respect from experimental items. 

4.2.2.2. Experimental items  

Experimental pictures had been pre-tested online for name-agreement (see Chapter 2 and Appendix C: 

median agreement = .8; mean = .7) and their names were all monosyllabic concrete nouns of medium 

frequency (mean log10CD  = 2.93, SD = 0.41, range = 2.07-3.91; SUBTLEX-US database, Brysbaert 

& New, 2009).   There were 36 experimental sentence-stems, 3 of which predicted the name of each 

of the 12 experimental pictures, as determined by pre-test (see Chapter 3 and Appendix C:  all cloze-

likelihoods > .8).  Similarly, 3 of 36 filler sentence-stems predicted the name of each of the 12 filler 

pictures. Sentence-stems were recorded by a female native speaker of British English in a sound 

attenuated room at the University of Edinburgh.  Mean speech rate of the experimental sentence-stems 

was 3.9 syllables per second, and mean duration was 3.2 seconds (see Appendix C for full details).  In 

experimental trials, we manipulated the phonological relationship between the word predicted by the 

sentence-stem, and the accompanying picture presented for naming.  In Experiment 3a, we included 

matching (e.g., tap-TAP), onset-overlap (e.g., tap-TAN), and rime-overlap (e.g., tap-CAP) conditions.  

We compared naming latencies in these conditions to those in a control condition where the picture 

was named following backwards speech (maintaining the ‘speech-like’ qualities of the sentence-stems 

but ensuring that there were no linguistic cues).    In Experiment 3b we replaced the onset-overlap 

condition with a no-overlap condition (e.g., tap-CONE).  In Experiment 3c we replaced the rime-

overlap condition of Experiment 3b with an onset-overlap condition, allowing for direct comparison 

of the onset-overlap and no-overlap conditions;  response times differed between these two conditions 

in the word association study of Humphreys et al. (2010; see above for details).  In each experiment, 

all experimental pictures occurred in all conditions for all participants, allowing each picture to act as 

its own control in a fully within-participants and within-items design. 

4.2.3.   Procedure   

As in Experiments 1 and 2, the stimuli in all experiments were presented using DMdX (Forster & 

Forster, 2003).  Each experiment began with a familiarisation phase, during which participants saw 

each of the 24 experimental and filler pictures accompanied by its printed name, and named the 

picture aloud. Each picture and corresponding name appeared three times in total. In each experiment 
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the familiarisation procedure was followed by 5 experimental blocks. Blocks 1 and 5 were included 

principally in provided a control condition comparable to that used in Experiments 1 and 2 (see 

previous chapters).  For the purposes of the current study these blocks allowed us to confirm that 

participants were able to correctly name all pictures when these were presented in isolation.  Each 

picture was presented on its own, and named aloud. Participants viewed a fixation point in the centre 

of the screen for 2.9 seconds (which was the mean duration of the sentence-stem recordings used in 

other blocks), immediately prior to the presentation of the picture-to-be-named.  Participants were 

instructed to name each picture as quickly and accurately as possible (as they had practised during the 

familiarisation phase).  In blocks 2, 3, and 4 participants again viewed a fixation point, but this time 

while listening to a sentence-stem.  The picture-to-be-named was presented immediately at the offset 

of the last word of the sentence-stem.  Participants were again instructed to name pictures as quickly 

and accurately as they could. In each of blocks 2, 3, and 4 each experimental picture was presented 4 

times; once in each experimental condition and once in the backward-speech control condition. Each 

sentence-stem was heard by each participant once per block, and once per condition across the three 

blocks. We manipulated the condition in which a picture was encountered by altering the sentence-

stem with which it was presented.  Item presentation within each block was fully randomised so that 

all conditions were interleaved with one another and with filler items. 

Picture-naming response latencies were automatically recorded, together with full auditory responses, 

by the experimental software.  We also made an independent audio-recording of each full session. 

Participants took no more than 50 minutes to complete an experiment.  

4.3. Results 

Analyses were conducted using the lme4 package, version 1.1-7, in R 3.1.2 (Bates, Maechler, Bolker, 

Walker, Christensen, Singmann, & Dai, 2014; R Core Team, 2014).  As throughout this thesis, for 

response times we used linear mixed-effects models fit by maximum likelihood; error responses were 

analysed using binomial mixed-effects models, fit using Laplace estimation.  Response time models 

included log trial position as a predictor to account for practice effects throughout the experiment.  

Error models did not include this predictor as, due to the low number of errors produced, models 

including log trial position did not converge.  In each case we included the effects of context 

(matching, rime-overlap, onset-overlap [Experiment 3a], matching, rime-overlap, no-overlap 

[Experiment 3b], matching, onset-overlap, no-overlap [Experiment 3c], backward speech) on the 

response variable of interest.  The context predictor was orthogonally coded, as detailed below for 

each experiment. Following suggestions made by Barr, Levy, Scheepers, and Tily (2013), each model 

was ‘maximally specified’, with both intercepts and slopes, as well as their correlations, allowed to 

vary by participants and, where possible, by items.  In linear analyses we treated t value of 2.00 or 

above as significant, due to complexities in estimating the degrees of freedom associated with 

predictors (Baayen, 2008). 
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4.3.1.   Experiment 3a Findings 

In Experiment 3a there was a total of 4368 recorded experimental responses (including 624 responses 

in the simple picture naming context and 938 in each of the experimental contexts), of which 70 

(1.6%) were errors, either because of lexical intrusion of the word predicted by the context, or because 

of other factors (such as failure to record a response).  Table 4.3.1 provides a summary of error 

numbers by condition. We first modelled likelihood of producing an error, using a subset of the data 

which included all experimental trials but not the control trials.  Errorful trials were then removed 

from the data, leaving 4298 data points, allowing us to perform an analysis of response latencies to 

correct picture names. In each analysis we used orthogonal contrasts for the context predictor, such 

that we first compared observations for the match condition to those for all other conditions; second, 

we compared the two conditions in which a word different to the picture was predicted by the context 

(mismatch conditions) to the backward control condition; and third, we compared the two mismatch 

conditions (rime-overlap vs. onset-overlap). 

4.3.1.1. Error data 3a 

To avoid empty cells, we analysed total error numbers, rather than contextual errors alone. The model 

did not include a random effect of context by items, due to a failure of a model containing this 

specification to converge.  Including a fixed effect of context significantly improved model fit (χ
2

(3) = 

27.5, p < .001).  The coefficients showed that there were significantly fewer errors in the match 

conditions than in the other three conditions combined (β = -0.32, SE(β) = 0.12, z = -2.72, p < .01), 

and that there were more errors in the two overlap conditions than in the backward control condition 

(β = 0.41, SE(β) = 0.13, z = 3.17, p < .01).  There was no difference between the two overlap 

conditions (z < 1).  Table 4.3.3 gives details of the model coefficients. 

Table 4.3.1: Recorded errors in Experiments 3a-c: Figures refer to total errors/numbers of errors in 
which distractor was produced in error (percentages in brackets). 

Exp  Context 

 Control Match Rime overlap Onset overlap No overlap Backward 

3a 5/-- 
(0.8%) 

5/--  
(0.5%) 

23/18 
(2.5%/1.9%) 

29/24 
(3.1%/2.6%) 

-- 8/-- 
(0.5%) 

3b 3/-- 
(0.6%) 

4/-- 
(0.6%) 

23/20 
(3.1%/2.8%) 

-- 16/14 
(2.2%/1.9%) 

8/-- 
(1.1%) 

3c 1/-- 
(0.2%) 

1/-- 
(0.1%) 

-- 18/17 
(2.7%/2.6%) 

12/10 
(1.8%/1.5%) 

6/-- 
(0.9%) 
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Table 4.3.2: Fast and slow responses excluded from further analyses in Experiments 3: Figures 
indicate raw number of responses that were below 100ms (‘fast’) or above 2499ms (‘slow’), and (in 
brackets) percentages of non-error data points in each condition. 

 

4.3.1.2. Response latency data 3a 

The model of response times included log trial position and context as predictors, as well as fixed and 

random intercepts, and the random effects of log trial position and context by-participants, and of 

context by-items.  The fixed effect of context significantly improved model fit (χ
2

(3) = 44.7, p < .001).  

Model coefficients showed that participants’ responses became faster as the experiment progressed (β 

= -11.7, SE(β) = 4.8, t = 2.42), and that participants were faster to correctly name pictures in the 

match context compared to the other three contexts (β = -18.2, SE(β) = 2, t = -9.15).  There were no 

differences within the three non-matching contexts (ts < 1).  Table 4.3.4 gives details of the model 

coefficients. 

4.3.2.   Experiment 3b Findings 

In Experiment 3b, twenty participants produced 3360 responses (480 in the original control context, 

and 720 in each of the experimental contexts).  Fifty-four (1.6%) (51) of these responses contained 

errors.  Errors are summarised in Table 4.3.1.  In analyses of response times and of error rates, we 

used orthogonal contrasts similar to those for Experiment 3a, such that the matching condition was 

compared to all other sentential contexts, the two contexts which elicited mismatching predictions 

were compared to the backward control contexts, and finally, these two contexts (rime-overlap vs. no-

overlap) were compared to each other.   

  Context 

Exp Control Match Rime 
overlap 

Onset 
overlap 

No overlap Backward 

 
fast slow fast slow fast slow fast slow fast slow fast slow 

3a 48 

(7.7%) 

2 

(0.3%) 

79 

(8.4%) 

1 

(0.1%) 

76 

(8.3%) 

0 

(0%) 

89 

(9.6%) 

0 

(0%) 

-- -- 88 

(9.4%) 

2 

(0.2%) 

3b 8 

(1.7%) 

1 

(0.2%) 

17 

(2.4%) 

7 

(1.0%) 

6 

(0.9%) 

6 

(0.9%) 

-- 

-- 

-- 

-- 

14 

(1.9%) 

12 

(1.7%) 

12 

(1.7%) 

8 

(1.1%) 

3c 43 

(0.9%) 

0 

(0%) 

61 

(0.9%) 

0 

(0%) 

-- 

-- 

-- 

-- 

63 

(0.9%) 

0 

(0%) 

65 

(1%) 

0 

(0%) 

63 

(0.9%) 

0 

(0%) 
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4.3.2.1. Error data 3b 

For Experiment 3b we again analysed total error numbers.  As for Experiment 3a, the analysis did not 

include trial number; nor did it include a random effect of context by items or participants, due to a 

failure to converge.  Model fit was significantly improved by the addition of a fixed effect of context 

(χ
2
(3) = 18.147, p < .001).  Inspection of the coefficients revealed that there were fewer errors in the 

match condition than in the other conditions (β = -0.33, SE(β) = 0.13, z = -2.47, p < .05), and that 

there were more errors in the mismatch contexts than in the backward control context  (β = 0.30, 

SE(β) = 0.13, z = 2.28, p < .05).  There was no difference between the rime-overlap and no-overlap 

contexts (z = 1.14). See Table 4.3.3 for the model coefficients.  

4.3.2.2. Response latency data 3b 

Other than the differences in contexts, details of the response latency model construction were 

identical to that for Experiment 3a. The fixed effect of context again improved model fit (χ
2
(3) = 27.4, 

p < .001). Participants again responded faster as the experiment progressed (β = -15.8, SE(β) = 4.0, t = 

3.96), and were fastest to respond in the match condition compared to the other conditions (β = -19.7, 

SE(β) = 2.4, t = 8.33). There were no differences within the three non-matching conditions (ts < 1.29).  

The model coefficients are given in Table 4.3.4. 

4.3.3.   Experiment 3c Findings 

One participant in Experiment 3c made 22 errors early in the experiment, and was excluded from all 

analyses.  The remaining 19 participants made 37 errors over 2736 responses (1.4%).  Errors are 

summarised in Table 4.3.1.  For our analyses we once again used orthogonal contrasts, this time 

comparing the matching context to all others, the two mismatching contexts to the backward control, 

and finally, the mismatching contexts (onset-overlap vs. no-overlap) to each other.  

4.3.3.1. Error data 3c 

Other than the differences in contexts, the models were constructed in the same way as for the two 

previous experiments.  An analysis of total error numbers did not include either trial number or a 

random effect of context by items. Adding a fixed effect of context significantly improved model fit 

(χ
2
(3) = 20.9, p < .001). There was a statistically significant difference between the match context and 

the other contexts combined, with the match context containing fewer errors (β = -0.603, SE(β) = 

0.25, z = -2.370). The two mismatching conditions resulted in more errors than the backward control 

(β = 0.31, SE(β) = 0.15, z = 2.02). The onset-overlap and no-overlap conditions did not differ (z = 

1.1).  
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4.3.3.2. Response latency data 3c 

When response latencies were modelled, once again the fixed effect of context improved model fit 

(χ
2
(3) = 20.3, p < .001). Participants were quicker to respond as the experiment progressed (β = -15.5, 

SE(β) = 5.0, t = 3.13), and responded fastest in the match condition (β = -14.1, SE(β) = 2.3, t = 6.06).  

No other differences were significant (ts < 1; see Table 4.3.4 for full model details). 

Table 4.3.3: Experiments 3a-c model coefficients (in logits) for the likelihood of producing an error 

Fixed Effect Estimate SE z Random Effect Variance 

Experiment 3a       

Intercept -4.77 0.32 -
15.04 

Participant Intercept 0.77 

Context     Context M v O -- 

   - Match vs. Others -0.32 0.12 -2.72  Context MM v 
BC 

-- 

    - Mismatch vs. Backward 
Control 

0.41 0.13 3.17  Context R v OO -- 

    - Rime vs. Onset Overlap -0.12 0.14 -0.86 Item Intercept 0.26 

Experiment 3b       

Intercept -4.53 0.41 -
12.82 

Participant Intercept 0.69 

Context     Context M v O -- 

   - Match vs. Others -0.33 0.13 -2.47  Context MM v 
BC 

-- 

   - Mismatch vs. Backward 
Control 

0.30 0.13 2.28  Context R v NO -- 

    - Rime vs. No Overlap 0.19 0.17 1.14 Item Intercept 0.00 
 

Experiment 3c       

Intercept -4.97 0.37 -
13.45 

Participant Intercept 0.54 

Context     Context M v O -- 

   - Match vs. Others -0.60 0.25 -2.37  Context MM v 
BC 

-- 

   - Mismatch vs. Backward 
Control 

0.31 0.15 2.02  Context R v NO -- 

   -  Onset Overlap vs. No Overlap 0.21 0.19 1.11 Item Intercept 0.00 
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Table 4.3.4: Experiments 3a-cModel coefficients (in ms) for naming latencies 

Fixed Effect Estimate SE t Random Effect Variance 

Experiment 3a       

Intercept 600.20 22.57 26.59 Participant Intercept 7373.3 

log(trial pos
n
) -11.66 4.82 -2.42  log(trial pos

n
) 320.4 

Context     Context M v O 17.0 

    - Match vs. Others -18.19 1.99 -9.15  Context MM v BC 167.5 

    - Mismatch vs. 
Backward Control 

-0.29 3.89 -0.07  Context R v OO 193.2 

    - Rime vs. Onset 
Overlap 

-5.59 7.44 -0.75 Item Intercept 232.9 

     Context M v O 35.2 

     Context MM v BC 24.2 

     Context R v OO 334.6 

Observations = 3344    Residual  33080.0 

Experiment 3b       

Intercept 732.45 14.09 51.99 Participant Intercept 1759.2 

log(trial pos
n
) -15.66 4.39 -3.57  log(trial pos

n
) 240.5 

Context     Context M v O 33.5 

    - Match vs. Others -19.69 2.35 -8.36  Context MM v BC 82.3 

   - Mismatch vs. 
Backward Control 

1.57 3.70 0.43  Context R v NO 293.5 

    - Rime vs. No Overlap -8.56 6.70 -1.28 Item Intercept 766.9 

     Context M v O 20.4 

     Context MM v BC 59.1 

     Context R v NO 203.7 

Observations = 2746    Residual  17905.5 

Experiment 3c       

Intercept 593.59 29.71 19.98 Participant Intercept 13232.5 

log(trial pos
n
) -15.53 4.96 -3.13  log(trial pos

n
) 289.5 

Context     Context M v O 46.4 

   - Match vs. Others -14.15 2.33 -6.07  Context MM v BC 182.9 

   - Mismatch vs. 
Backward Control 

-1.03 4.03 -0.26  Context OO v NO 31.1 

   - Onset  Overlap vs. 
No Overlap 

-2.44 4.42 -0.55 Item Intercept 132.2 

     Context M v O 1.9 

     Context MM v BC 11.7 

     Context OO v NO 4.5 

Observations = 2447    Residual  20918.4 
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4.3.4.   Lexical (homophone) Analyses  

     

 

Figure 4.3.1:  Experiments 3a-c  response latencies to pictures, reported by category (category 
mismatch = homophone in full-overlap condition, category match = full match in full-overlap 
condition) 

 

The primary manipulation of interest across the experiments reported in this chapter was, as stated in 

the Introduction, the nature of the phonological overlap between the predicted word and the target 

picture name noun. However, some sentence-stems predicted homophones of picture name target 

nouns rather than the nouns themselves (e.g., “There's no such word as can't.  You have to believe that 

you…” CAN; “They raised their glasses in a…”  TOAST).  In such cases the predicted item 

mismatches the picture-to-be-named at a lexical/word-class level (forming a homophone) even where 

there is full phonological overlap between predicted item and the picture name (i.e., in the match 

context).  

Given the controversy within the literature concerning the precise circumstances of homophone 

activation during spoken language comprehension and production (e.g., see Rose, Spalek & Abdel 

Rahman, 2015, for a recent brief review), we wished to confirm that the effects reported above were 

observed across both homophone and full-match sentence-fragment types.  The ensuing analysis is 

exploratory, in that it was not planned into the experimental design.  It can, however, provide some 

insight as to whether facilitation observed in the match condition might be explained solely at a 

lemma level, or whether phonological level activation contributes to the facilitatory effect observed in 

the match context:  If the facilitation effect occurs only for full lexical match sentence-fragment types, 

we might assume that that only semantically appropriate pictures can benefit from comprehension-

elicited prediction.  Conversely, if facilitation effects are observable for homophones, we can remain 

confident in our assumption (detailed above) that predictions are active in some way at a word-form 

level.   
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We therefore performed supplementary analyses to investigate the effect of lexical mismatch.  These 

analyses included data acquired in the phonological overlap contexts only (i.e., the backward context 

was excluded as we assume it could not elicit lexical predictions).  For each sentence-stem, we 

determined whether the high-cloze target had the same meaning as the picture it was encountered with 

in the match condition (e.g., “The fire alarm’s gone off again; someone must have burnt the …” 

TOAST; referred to as “full match”) or whether it shared only phonological form (e.g., “They raised 

their glasses in a …” TOAST; referred to as “homophone”).  Where the sentence fragment predicted 

the picture name lemma in the match condition, the trial was considered to be a “full match”; where 

only the phonological form matched, the trial was considered to be a “homophone”. Of the 36 

experimental sentence-fragments, 11 (31%) fell in the homophone condition
5
.   

We would expect any effect of category (mis)match (full match v. homophone) to be observable only 

in the full phonological overlap context:  The full overlap context is the only context in which the 

relationship between the predicted item and the target picture name differs according to sentence-stem 

category (full match/ homophone).  This is because only the full overlap context allows the predicted 

item to match the picture name at a lexical level.  We retained all contexts in the homophone analyses 

reported below.  This allows us to address whether any effect observed is a property of the 

relationship between the item predicted by the sentence-fragment and the picture, as opposed to some 

other property of the sentence-fragments themselves.  If the former is the case, an effect would be 

observable only in the full overlap context, whereas if the latter is the case we would expect to 

observe the effect across contexts.  

We modelled the effect of category (mis)match (full match v. homophone) on response latencies 

following the principles described above (see Results).  Slopes and intercept for Context were allowed 

to vary by participant for Experiments 3a, 3b and 3c, and by item for Experiments 3b and 3c (allowing 

the slope to vary by item for Experiment 3a caused the model not to converge).  Including trial 

position as a predictor led to model non-convergence in a number of cases:  Trial position was 

therefore not included in any of the models reported below (for effects of Trial position see main 

analyses above).  For each experiment we modelled the effects on response latency of phonological 

Context, Category (full match v. homophone), and their interaction.  We report details of the best-fit 

model in each case (see Table 4.3.5. for full details; see Figure 4.3.1 for plots of condition means).   

4.3.4.1. Experiment 3a homophone findings 

As above, the fixed effect of Context improved model fit over a null model (χ
2
(2) = 36.8, p < .001); 

participants were quicker to respond in the Match context than the Rime-overlap and Onset-overlap 

                                                           
5
 Three of these represented not only a lemma mismatch but also a syntactic mismatch, in that the 

picture name was a noun and the sentence-fragment predicted a verb.  This contrast is of theoretical 
interest but the numbers involved in this study were too low to justify a statistical analysis.  Previous 
studies suggest that syntactic congruency interacts with semantic congruency (e.g., Bentrovato et al., 
2003; see also Appendix B) 
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contexts (β = - 24.4, SE(β) = 2.9, t = -8.29).  Again, as expected from the results presented above, 

response latencies did not differ significantly between the two partial overlap contexts (Rime-overlap 

and Onset-overlap:  (β = -5.9, SE(β) = 5.3, t = -1.1).  Including Category (i.e., full match v. 

homophone) and its interaction with Context did not further improve model fit (χ
2
(1) = 1.2,  p > 0.1; 

χ
2
(3) = 4.9,  p > 0.1 respectively). 

4.3.4.2. Experiment 3b homophone findings 

 The fixed effects of Context, Category (full-match v. homophone), and their interaction each 

contributed to model fit (respectively, χ
2
(2) = 30.0, p < .001; χ

2
(1) = 9.1, p < .01; χ

2
(2) = 10.1; < .01 in all 

cases). As in previous analyses, participants were quicker to respond in the Match context than in the 

Rime-overlap and No-overlap contexts (β = - 16.6, SE(β) = 4.8, t = -3.4).  Under the current analysis, 

participants were quicker to respond in the Rime-overlap context than in the No-overlap context (β = - 

19.1, SE(β) = 9.2, t = -2.1).  Overall, participants were quicker to respond in the Match category than 

the Mismatch category (β = -23.5, SE(β) = 7.4, t = -3.2).  The effect of Category was greater in the 

Match context than other contexts (β = -14.7, SE(β) = 4.8, t = -3.0), and did not differ between the 

Rime and No-overlap contexts (β = 15.3, SE(β) = 9.5, t = 1.6).  See Figure 2.3.1 for a plot. This 

suggests that, in cases where the picture name fully matched the prediction at a phonological level, 

picture naming latencies were shorter when the sentence fragment predicted the picture name as a 

lexical item rather than simply a homophone.  For example, the image TOAST would be responded to 

more quickly following the sentence fragment “The fire alarm’s gone off again; someone must have 

burnt the …”,  than following the sentence fragment “They raised their glasses in a …”. 

4.3.4.3. Experiment 3c homophone findings 

As for Experiments 3b, the fixed effects of Context and Category (full-match v. homophone) 

contributed to model fit (respectively χ
2

(2) = 19.4, p < .001; χ
2

(1) = 7.5;  p < .01 in both cases).  The 

interaction of Context and Category marginally contributed to model fit (χ
2
(2) = 5.7, p = 0.06) and was 

therefore retained in the best-fit model reported in Table 4.3.5.  Participants were quicker to respond 

in the Match context than in the Onset-overlap and No-overlap contexts (β = - 11.5, SE(β) = 4.9, t = -

2.4).  Response latencies did not differ significantly between the Onset- and No-overlap contexts (β = 

-11.6, SE(β) = 7.7, t = -1.5).  Overall, participants were quicker to respond for sentence-stems that in 

the Match context predicted the same lexical item as the picture name (β = -21.8, SE(β) = 7.7, t = -

2.8).  The effect of Category (full-match v. homophone) was greater in the Match Context than other 

contexts (β = -10.6, SE(β) = 5.2, t = -2.0), and did not differ between the Onset- and No-overlap 

contexts (β = 12.2, SE(β) = 9.1, t = 1.3).  

The results above indicate that naming facilitation seen in the Match (i.e., full phonological-overlap) 

context was reduced when the target picture name Category did not match that predicted by the 

sentence-stem.  That is, the response latency facilitation effect seen for picture names that 
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phonologically matched the predicted item was reduced for homophones compared to words that fully 

matched the prediction at a lexical as well as a phonological level.  In order to confirm that the 

Context effect remained even when Category did not match (i.e., for homophone responses), we 

modelled response latency for each Category condition separately (full-match and homophone).  Data 

obtained in each experiment were subsetted by the Category condition in which they were obtained 

(full-match/ homophone).  For each subset a model was constructed in which Context acted as a fixed 

predictor. Intercepts were allowed to vary by participant and item; slopes were allowed to vary by 

participant.  In each case, including Context as a fixed predictor improved model fit over a null model 

(in all cases χ
2

(2) > 6.5,  p < 0.05).  In all cases participants responded faster in the full-overlap context 

than in any other context, with no other between context differences being statistically significant (see 

Table 4.3.6 for full details of models).  This finding that the facilitation effect is present for 

homophones suggests that the experimental paradigm did elicit activation of predicted items at a 

word-form level, if not a phonological segment level, and that the picture does not need to be 

semantically congruent with the sentence-fragment in order for facilitation to be observed. 
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Table 4.3.5: Experiments 3a-c model coefficients (in ms) for naming latencies (sentence contexts 
only) 

Fixed Effect Estimate SE t Random Effect Variance 

Experiment 3a       

Intercept 545.11 11.27 48.37 Participant Intercept 2485.6 

Cloze.match NA NA NA    
Context     Context M v O 52.15 

    - Match vs. Others -24.36 2.94 -8.29  Context RO  v OO 215.44 

    - Rime vs. Onset Overlap -5.88 5.35 -1.10    
        Item Intercept 215.80 

Observations = 2506    Residual  33500.8 

Experiment 3b       

Intercept 677.29 17.87 37.90 Participant Intercept 4560.1 

Cloze.match -23.53 7.378 -3.19    

Context       

    - Match vs. Others -16.62 4.83 -3.44  Context M v O 103.1 

   - Rime vs. No Overlap -19.10 9.23 -2.07  Context RO v NO 282.7 

  Cloze.match*Context -8.56 6.70 -1.28 Item Intercept 667.5 

- * Match vs. Others -14.70 4.843 -3.03  Context M v O 26.8 

- * Rime vs. No 
Overlap 

15.33 9.53 1.61  Context R v N 154.7 

Observations = 2054    Residual  18853.0 

Experiment 3c       

Intercept 538.06 29.71 19.98 Participant Intercept 8638.0 

Cloze.match -21.81 4.96 -3.13    

Context       

   - Match vs. Others -11.48 4.87 -2.36  Context M v O 98.1 

   - Onset v No Overlap -11.64 7.68 -1.52  Context OO v NO 34.6 

Cloze.match*Context    Item Intercept 72.9 

- * Match vs. Others -10.57 5.19 -2.04  Context M v O 19.1 

- * Onset vs. No 
Overlap 

12.23 9.15 1.34  Context OO v NO 4.5 

Observations = 1832    Residual  20854.0 



63 
 

 

Table 4.3.6: Experiments 3a-c model coefficients (in ms) for naming latencies (sentence contexts 
only, data sub-setted by category type; full match and homophone) 

Fixed Effect Estimate SE t Random Effect Variance 

Exp 3a – full match 
      

Intercept 541.87 11.20 48.4 Participant Intercept 2492.9 
Context    Item Intercept 132.9 
    - Match vs. Others -27.87 3.18 -8.62 Participant Context M v O 22.37 
    - Rime vs. Onset Overlap -1.48 7.35 -0.21  Context RO  v OO 63.88 

Observations = 1743    Residual  31694.1 

Exp 3a – homophone       

Intercept 550.74 13.65 40.35 Participant Intercept 3003.5 

Context    Item Intercept 247.3 

  - Match vs. Others -18.40 5.55 -3.31 Participant Context M v O 131.0 

  - Rime vs. Onset Overlap -13.90 9.88 -1.41  Context RO  v OO 247.3 

Observations = 763    Residual  36352.7 

Exp 3b - full match 
      

Intercept 652.64 17.87 39.14 Participant Intercept 4287.8 

Context    Item Intercept 608.1 

    - Match vs. Others -30.98 4.83 -8.17 Participant Context M v O 156.8 

   - Rime vs. No Overlap -3.57 5.00 -0.71  Context RO v NO 88.4 

Observations = 1432    Residual  18041.1 

Exp 3b - homophone       

Intercept 679.08 18.58 36.55 Participant Intercept 4928.1 

Context    Item Intercept 714.7 

    - Match vs. Others -17.60 4.67 -3.77 Participant Context M v O 19.9 

    - Rime vs. No Overlap -13.44 12.18 -1.10  Context R v N 1359.6 

Observations = 622    Residual  21033.2 

Exp 3c – full match 
      

Intercept 516.12 21.29 24.25 Participant Intercept 8239.9 

Context    Item Intercept 39.8 

   - Match vs. Others -22.46 3.15 -7.14 Participant Context M v O 41.5 

   - Onset vs. No Overlap 0.55 5.45 0.10  Context OO v NO 112.4 

Observations = 1266    Residual  19624.1 

Exp 3c - homophone       

Intercept    Participant Intercept 9418.7 

Context    Item Intercept 268.7 

 - Match vs. Others -11.51 5.66 -2.03 Participant Context M v O 200.6 

 - Onset vs. No Overlap -12.65 8.35 -1.51  Context OO v NO 36.7 

Observations = 566    Residual  2355380 
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4.3.5.   Filler v Experimental Item Analyses 

Across the three experiments, filler items appeared in only the match and control contexts, whereas 

experimental items appeared in contexts in which the target picture name was semantically 

incongruent with respect to the context in which it was presented.  When filler items were predicted 

by the sentence-stem they were always presented for naming.  When experimental items were 

predicted by the sentence-stem they were presented for naming in one-third of cases.  If mismatch 

between a predicted item and item presented for naming affected future lexical activation levels  

during prediction or naming on subsequent trials containing the same stimuli we would expect to see a 

reduced effect of trial number on experimental stimuli (encountered in all contexts) compared to filler 

stimuli (encountered only in predicted or neutral contexts).  We tested for this using the subset of the 

data from Experiments 3a, 3b and 3c that included only the contexts in which both filler and 

experimental items appeared (i.e., the acontextual picture naming and full phonological overlap 

contexts).  We modelled response latency as a function of trial number, item type (filler v. 

experimental), and their interaction.  Model coefficients indicated again that, overall, participants 

became quicker to name pictures as the experiment progressed (β = - 0.15, SE(β) =  0.06, t = -2.62).  

Participants were generally quicker to name filler items than to name experimental items (β = -27.4, 

SE(β) = 9.1, t =   -3.01).  It is likely that this difference arose due to item properties.  This 

interpretation is supported by the fact that the interaction between trial position and item type 

indicated that the effect of trial position was smaller for filler items than for experimental items (β = 

0.16, SE(β) = 0.06, t = 2.82)..  It appears then that in the current experimental paradigm mismatch 

between a predicted item and a presented item did influence subsequent prediction strength in an item-

specific manner. 

4.4. Discussion 

In three experiments, we showed that the time to name a picture after hearing a sentence fragment 

which strongly predicted a given distractor word was faster if the picture name coincided exactly with 

the distractor than in any other condition.  Counter to expectations, there were no response latency  

differences between the remaining conditions: Naming times did not differ whether the predicted 

word overlapped at the onset with the picture name, or at the rime, or where there was no overlap at 

all between distractor and picture name.  Moreover, the naming latencies for these conditions were the 

same as for a backward control condition in which no specific word could have been predicted from 

the auditory context. These findings stand in contrast to picture-word interference paradigms in which 

a distractor is explicitly presented, either in writing (Damian & Dumay, 2007; Lupker, 1982; Chapter 

2 of the current thesis), auditorily (Meyer & Schriefers, 1991), or pictorially (Humphreys et al., 2010).  

In each of these cases, phonological overlap has been shown to facilitate picture-naming relative to 

no-overlap conditions.  An initial interpretation of the present findings is therefore that, although 
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upcoming material is predicted during comprehension, any involvement of the production system 

stops short of a speech sound level of representation. 

A potential objection to this interpretation is that the present experiment may not have induced 

participants to predict specific words at all:  Instead, the faster naming of pictures which happened to 

match predictable words may have been due to the ease with which those picture names could be 

semantically integrated with the preceding context.  In cases of phonological overlap, there would still 

be a semantic mismatch, and therefore relative difficulty of integration. However, this explanation 

seems unlikely, because each picture was named several times throughout each of the present 

experiments.  Since the picture names were also used as the words predicted by sentence fragments, it 

is highly likely that specific words would have been activated at each trial, due to extensive repetition. 

In line with this suggestion, the majority of recorded errors (60% and 62% in Experiments 3a and 3b 

respectively) were cases where the words predicted by the sentence fragments were accidentally 

produced in lieu of the picture names.   The fact that distractor names were overtly produced suggests 

that these names were fully specified at the lexical, and hence the phonological, level.  This 

interpretation is further supported by the findings that: (i) the naming of homophones of predicted 

lexical items was facilitated, and; (ii)  participants were significantly more errorful in the phonological 

overlap conditions than in other conditions, suggesting an effect of phonological representation at a 

monitoring level (see Severens et al., 2008).  Moreover, the delay in naming pictures in the backward 

control condition relative to the match condition militates against a purely integration-based account, 

since in this condition there is no semantic context with which the picture name can be integrated. 

Given that distractor words are predicted, the question arises of whether the naming latency 

differences between the match and other conditions are due to inhibition of mismatching picture 

names, or to facilitation of names that match.  Of note is the fact that participants made relatively few 

errors in the backward-speech control condition, despite the fact that the associated response latencies 

patterned with the various overlapping conditions. This suggests that, at least in the control condition, 

specific words were not predicted and could not have led to interference. Moreover, in the 

experiments reported in this chapter, words predicted in the no-overlap condition were as vulnerable 

to semantic inhibition as were words in the partial phonological overlap conditions (i.e., rime-overlap 

and onset-overlap).  When vulnerability to inhibition was kept constant in this way, partial 

phonological overlap between the distractor and the picture name did not affect response times, ruling 

out a suggestion that inhibition and facilitation effects may have been masking each other in the 

experiments reported in Chapter 3.  Taking these considerations together, it seems that facilitation, but 

not inhibition is implicated in the present experiments; and, importantly, that facilitation only occurs 

when a word which is predicted exactly matches at a form level the name to be produced for a picture. 
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4.4.1.   General implications 

Over three experiments, we found no evidence to suggest that comprehension-associated predictions 

gave rise to inhibition within the production system, although we did find evidence of a facilitatory 

effect.   However, this effect does not appear to extend to phonological representations accessible 

specifically to the speech-production system at segment level:  Causing participants to produce words 

which overlap phonologically with words predictable through comprehension does not give rise to 

facilitation of production, unless the overlap is complete (and therefore the picture-name matches the 

predicted word at levels other than the phonological segment).  On the assumption that phonological 

assembly precedes articulation in production, this further implies that the speech-motor system is not 

involved in making specific predictions. 

One way to reconcile these findings with evidence that the speech-motor system is activated during 

comprehension may be to suggest that this activity is associated with performance rather than with 

content (e.g., Rothermich, & Kotz, 2013; Scott, McGettigan, & Eisner, 2009). According to such a 

view, presentation of an auditory sentence-stem would automatically engage prediction processes.  

One aspect of prediction would be estimation of the timing of the speaker’s production, and 

preparation to respond (related to the so-called “how” pathway), reflected in speech-motor activity.  

Predictions at the lexical-phonological level (the “what” pathway) would not rely on the speech-motor 

system (see Hickok, 2012).  In the context of the present experiments, the auditory contexts would 

consistently alert listeners to the likely moment at which a picture might appear.  The facilitation 

effect seen in the full-overlap condition would relate to the “what” channel, and would not involve 

motor-speech activation.  

This interpretation is not inconsistent with the conclusion drawn in a previous study, that 

phonological-form expectations are generated during the comprehension of high-cloze sentences 

(DeLong et al., 2005).  It is in no way implicit in that conclusion that such phonological expectations 

would be accessible to the speech-motor system. The way our findings differ from those of DeLong 

and colleagues recalls the suggestion that phonological representations incorporate separable levels of 

representation (e.g., Hickok, 2012; Goldrick & Rapp, 2007):  Predictions of another’s speech may be 

specified at a phonological level that is driven by lexical or auditory representations, but not 

necessarily implemented at a phonological-articulatory level.  Of note in this respect is the finding that 

phonological word-form effects arising of sentential constraint are associated with central processing 

costs, whereas phonological overlap effects observed in a conventional PWI paradigm are not 

(Ferreira & Pashler, 2002).  Ferreira and Pashler argue that this difference indicates that phonological 

overlap effects arise at an execution stage, whereas word-form effects arise at a selection stage. Under 

that interpretation, the current finding that comprehension-elicited prediction facilitates the naming of 

homophones but not partially overlapping phonological forms suggests that predictions are selected at 

an abstract lexical level but are not represented at a speech-motor level.  
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If auditory sentence-stems do enable prediction via a “how” pathway, the question remains as to why 

picture-naming latencies were not relatively delayed in the backward-speech control condition: 

Backward speech may not offer sufficient cues at either a semantic prosodic level from which timing 

can be estimated (Brown et al., 2012; Londei et al., 2010). Of course, failure to find an effect cannot 

be interpreted as evidence that there is no such effect.  However, this pattern of findings does raise the 

question of whether speech-motor activity would be recorded in this condition, and if not, whether the 

benefits of “how” prediction might be relatively small, at least in the context of the present rather 

artificially constrained task. 

Of course, the possibility remains that response latencies do not reliably reflect activation levels 

through the production system to articulation (although such a suggestion would effectively 

undermine a substantial body of work).  If, however, we align ourselves with the picture-word 

interference literature and accept that the time taken to name a picture is likely to be influenced by 

pre-activation of relevant phonological representations, the present experiments strongly suggest that 

“what” prediction during comprehension does not appear to occur at a phonological-articulatory level, 

and thus that the speech-motor activation associated with language comprehension does not reflect a 

detailed prediction of upcoming content. 
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 Exploring speech as Chapter 5:  

action: An ultrasound imaging 

approach 

5.1. Introduction 

In the first part of this thesis we adopted a response latency approach in order to address the question 

of whether predictions elicited during comprehension are represented within the listener’s speech-

motor system.  We perceptually classified responses as “correct” or “errorful”, with only correct 

responses being included in the response latency analyses.  Results suggested that items predicted 

during comprehension are not represented at a speech-motor level.  However, we note that vocal 

response latencies do not provide a means by which to directly observe motor speech behaviour, and 

perceptual categorisation of responses as correct or errorful does not capture fine grained variation in 

motor-speech execution (see Gafos & Goldstein, 2012 for a review of how the “choice of 

observables” has impacted theoretical conclusions). Such variation in motor speech execution, 

observable via articulatory imaging, has been shown to systematically reflect the activation of higher-

level representations (e.g., Davidson, 2005; McMillan & Corley, 2010; Pouplier, 2007).  In the 

following chapters (Chapters 6 and 7) we report studies in which we employed ultrasound tongue 

imaging to capture and analyse speech as an action.  This provided a means to observe directly if, and 

how, predictions elicited during comprehension impact motor speech execution.  

In this chapter we briefly outline the limitations associated with the use of speech reaction time data to 

address topics concerning speech as action.  We review electromyographic evidence concerning motor 

activity observed to occur during the response latency period in manual response studies.  We 

consider the difficulties that arise when EMG methodology is applied to speech, as opposed to 

manual, motor activity, and we review alternative articulatory imaging approaches that have been 

adopted in order to explore the relationship between cognition and action during speech production. 

We consider how the findings of articulatory imaging studies might relate to claims concerning the 

involvement of the speech production system in prediction during comprehension.  We then introduce 

the ultrasound imaging and analysis approach that we employ in this thesis in order to investigate the 

involvement of the speech production system in prediction during comprehension. 

5.2. Motor activity during response making 

Voice-key response latency records the point at which the sound level associated with a vocal 

response exceeds a pre-determined threshold, as opposed to the onset of articulation.  It therefore 
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records an acoustic rather than an articulatory event. The acoustic event that acts as a voice key trigger 

is preceded by innervation of muscles involved in producing speech (for discussion and evidence see 

Kessler, Treiman, & Mullennix, 2002; Rastle, Croot, Harrington, & Coltheart, 2005; Rastle & Davis, 

2002).   Acoustic response latency therefore does not provide direct information about speech as an 

action (although acoustic material following voice key triggering may provide indirect information 

concerning articulation; e.g., Kello, Plaut, & MacWhinney, 2000; Damian, 2003).  Under an 

assumption that motor variability during speech production is “motor noise”, this lack of information 

about speech as an action is unproblematic.  However, studies of manual response latencies have 

revealed that motor activity during response making can relate systematically to the psychological 

and/or environmental conditions under which a response is made (e.g., Hasbroucq, Possamaï, Bonnet, 

& Vidal, 1999; Coles et al., 1985; Eriksen et al., 1985; Smid, Mulder, & Mulder, 1990).  If this is also 

the case for speech responses, voice-key methodology such as that employed in this thesis up to this 

point may not be an optimal approach to investigate whether the speech motor system is implicated in 

prediction during comprehension. 

The use of thumb muscle electromyography (EMG) has allowed manual response latencies recorded 

in button push experiments to be fractionated into an initial, purely cognitive, phase (a “pre-motor 

response time”) and a subsequent phase during which muscle activity is observable (a “motor 

response time”; Boulinguez, Jaffard, Granjon, & Benraiss, 2008; Tandonnet, Burle, Vidal, & 

Hasbroucq, 2004; see also Klapp, 1996, for discussion of response time fractionation into central and 

peripheral components).  Fractionation of manual response times has revealed that the motor response 

component is longer under conditions where there is conflict between potential responses than in 

conditions where there is no potential conflict. This is the case even when by-condition differences in 

stimulus presentation are not strictly relevant to the response required of the participant, for example 

in Simon and Eriksen flanker tasks (Simon, 1990; see also Lu & Proctor, 1995; for EMG evidence see 

Hasbroucq, Possamaï, Bonnet, & Vidal, 1999; Coles et al., 1985; Eriksen et al., 1985; Smid, Mulder, 

& Mulder, 1990). This finding confirms that variability in motor execution during response making is 

not simply “noise”, but can relate systematically to the psychological conditions under which the 

response is made. 

In addition to revealing systematic variability in the duration of motor response making, EMG studies 

indicate differences in the nature of motor response making.  During the motor response period, it is 

sometimes possible to observe EMG activity associated with a response that would be incorrect under 

the circumstances.  Such activity may be associated with an overt error (i.e., depressing the wrong 

button), but it can also be observed in cases where the overt response is correct.  Such responses are 

referred to as “incorrect-correct” responses.  Response latencies in trials involving “incorrect-correct” 

are typically longer than those in trials involving “correct-correct” responses.  Incorrect-correct 

responses are more commonly observed in incongruous trials than congruous trials, suggesting that 

conflict between a stimulus dimension and a response requirement expresses itself at a motor level.  
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Findings of the type described above have led to the conclusion that incompatibility between an 

irrelevant stimulus dimension and a response dimension slows stimulus evaluation and evokes 

response competition (Fournier, Scheffers, Coles, Adamson, & Abad, 1997).  Longer pre-motor 

response times are thought to arise due to slowed stimulus evaluation, whereas longer motor response 

times are thought to reflect response competition between two simultaneously active response 

channels, observable in EMG activity. The fact that response competition is observable in motor 

output has been central to the proposal that, during human information processing, information can 

cascade from one processing level to another in a continuous manner (for a review see Van ‘t Ent, 

2002).  This suggests that if we are to investigate the nature of motor representations during speech 

processing via a conflict-inducing approach, it may be necessary to investigate motor activity during 

response making.  If anticipated input is represented within the speech motor system during 

comprehension, there will potentially be response conflict when the picture-to-be-named is 

incongruous with the sentential context.  Evidence of conflict at an articulatory level would support 

the proposal that prediction during comprehension involves the production system at a speech-motor 

level.   

An attempt has previously been made to apply an EMG approach in order to fractionate speech 

reaction times into pre-motor and motor elements (Riès, Burle, & Alario, 2012).  It is considerably 

more complex to apply this technique to the investigation of speech responses than to the investigation 

of manual thumb push responses:  Thumb press measures are taken from the flexor pollicis brevis 

muscle.  This muscle is directly involved in the thumb flexion process required to achieve the button 

press. EMG signals from the facial muscles involved in lip movement during speech production can 

be captured but, as Riès and colleagues (2012) note, these muscles are not necessarily those involved 

in producing a vocal response as captured via a voice key.  The relationship between EMG activity 

and voice key triggering is therefore considerably less direct than that between EMG activity and 

button push triggering.  Further complexities are introduced by the fact that it is particularly difficult 

for participants to attain the relaxation of facial muscles prior to stimulus presentation necessary for 

successful EMG fractionation of the response time.  Interpretation of lip movement data is also more 

complex that of thumb movement data; each thumb has its own musculature, whereas lip movement 

associated with the production of differing sounds shares a muscle system within which muscle fibres 

are interdigitated (see Mowrey & MacKay, 1990, for examples and details).  

Although techniques to allow fractionation of speech response times are in their infancy, 

informational cascade during speech production has been investigated using alternative approaches.  

Early evidence of informational cascade from phonological to articulatory levels was obtained through 

the use of intra-muscular EMG to examine muscle fibre motor-unit activation during production of 

error-eliciting tongue twisters (Mowrey & MacKay, 1988; Mowrey & MacKay, 1990).   This allowed 

the researchers to investigate whether speech activity contains traces of conflict at a cognitive level 

comparable to that revealed by the “incorrect correct” button push responses described above.  Due to 

the invasive nature of the intra-muscular recording technique, the researchers themselves acted as the 
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two participants.  EMG records indicated anomalous activity in some perceptually correct productions 

(analogous to the “incorrect-correct” push button responses described above).  This behaviour was  

noted particularly when there existed competition between two potential responses (in this case, 

competition between active representations of the speech sounds /s/ and /ʃ/, as in the tongue twister 

“She sells sea-shells on the sea shore”).  Anomalous activity was gradient in nature, falling within a 

range between that observed in typical (“canonical”) tokens and that observed in perceptually errorful 

tokens.  In line with the manual EMG data described above, this finding indicates that, when 

environmental or psychological conditions cause multiple representations to be simultaneously active, 

this activation can cascade to a motor execution level.  In the case of tongue-twisters, the 

simultaneously active representations are generally considered to be abstract segments specified at a 

phonological level: It has been proposed that such cascading from higher to lower levels during 

speech processing is a form of forward modelling of the type proposed under the Pickering and 

Garrod model (e.g., Dell, 2013; see Chapter 1 for further details on forward modelling and the 

comprehension-as-production account).  

5.3. Speech imaging approaches and findings 

The invasive EMG methodology employed by Mowrey and MacKay does not lend itself to use with 

typical participant groups. However, cascade during speech production has been further explored by 

coupling the use of error elicitation techniques with speech imaging approaches that allow dynamic 

recording of the location of the tongue during speech production.  Imaging techniques employed 

include electropalatography (EPG; McMillan, Corley, & Lickley, 2009), electromagnetic 

articulography (EMA, e.g., Pouplier, 2003; Pouplier & Goldstein, 2010; Slis & Van Lieshout, 2013) 

and ultrasound speech imaging (sometimes referred to as ultrasound tongue imaging; UTI; McMillan 

& Corley, 2010). All three approaches provide information about tongue location over time; this 

information is central to an understanding of speech production as the tongue is the primary active 

articulator involved in speech production.  EPG records contact between the tongue surface and the 

hard-palate at a temporal resolution of up to 100 Hz. EMA records tongue and lip flesh point location 

at a temporal resolution of up to 400 Hz (see Kim, Lammert, Ghosh, & Narayanan, 2014, for details). 

Ultrasound imaging typically records a mid-sagittal sector of the oral cavity at a temporal resolution 

of ~100 Hz: the image obtained can provide an estimate of the location of the tongue-surface within 

the oral cavity (see below for further details).  EMA and EPG are partially-invasive techniques that 

require the instruments of data collection to be within the speaker’s oral cavity throughout the course 

of data collection.  Ultrasound imaging is non-invasive; in this respect the ultrasound data capture 

process is less likely to interfere with typical speech production processes (e.g., kinaesthetic feedback) 

than are EMA and EPG approaches 

Competition during speech planning has been experimentally invoked in articulatory imaging studies 

through the use of tongue twister, word order competition (WOC) and “Spoonerisms of laboratory 
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induced Predisposition” (SLIP) paradigms.  In keeping with their use of error elicitation paradigms, 

the articulatory imaging studies referred to above have been primarily concerned with the way speech 

is realised rather than the period that elapses between stimulus presentation and acoustic response.  

The use of articulatory imaging approaches allowed these studies to investigate whether competition 

within the speech production system leaves a “trace” in speech motor execution.  Two measures 

obtainable from EMA, EPG and UTI data that have been particularly prominent in addressing 

questions concerning such cascade are: (i) the location of maximal constrictions (i.e., consonant 

realisations) at a given time-point defined from the acoustic record (e.g., Goldstein et al., 2007; 

Pouplier, 2003), and; (ii) the degree of global similarity between different tokens and a canonical 

token (e.g., McMillan, Lickley, & Corley, 2009; McMillan & Corley, 2010). The term “canonical 

token” in this context refers to a perceptually error-free token produced in a competition free 

environment; for example, a token produced in response to a single picture or word presented for 

naming in isolation or for repeated iteration (e.g., “cop  cop  cop  cop” as opposed to “cop top cop 

top”; see Pouplier, 2007; McMillan & Corley, 2010).   

Tongue twister experiments employing speech imaging techniques have provided evidence that when 

alternating word onsets compete during speech production, competing and target onsets gestures can 

be co-produced (for articulatory evidence see Boucher, 1994; Goldstein, Pouplier, Chen, Saltzman, & 

Byrd, 2007; McMillan & Corley, 2010; Mowrey & MacKay, 1990; Pouplier, 2008; for acoustic 

evidence concerning voicing as opposed to manner or place of articulation see; Frisch & Wright, 

2002; Goldrick & Blumstein, 2006; McMillan & Corley, 2010).  Maximal constriction measures taken 

via EMA indicate that, when alveolar and velar gestures compete (for example in the tongue twister 

“cop top cop top”), co-productions involve initial simultaneous movement toward closure at both 

target and competitor location (i.e., for both /k/ and /t/).  In tokens that are perceptually categorised as 

“correct”, movement toward the competitor location is attenuated compared to movement toward the 

target (e.g., Pouplier & Goldstein, 2010).  This attenuated movement is not typically identifiable 

within the acoustic speech signal:  although gestures are coproduced at movement onset (with 

synchronous onset of the overlapping gestures confirming that the coproduction originates in planning 

rather than monitoring), the gesture production develops into a typical target release phase (Pouplier 

& Goldstein, 2010).  In keeping with this finding, global similarity measures obtained via ultrasound 

recording during tongue twister production indicate that traces of the competing phoneme cause 

perceptually correct tokens produced in competing conditions to be more similar to the competing 

phoneme than those produced in non-competing conditions (e.g., McMillan, Corley, & Lickley, 

2009).  

Co-productions have similarly been observed in WOC and SLIP task studies (Pouplier, 2007b; 

McMillan et al., 2009). Both WOC and SLIP tasks exploit expectancy in order to evoke coactivation 

of competing word onsets. Unlike tongue twisters, SLIP and WOC tasks do not rely on multiple 

iterations of target sounds to elicit errors.  This militates against a purely articulatory-level explanation 

of any coproduction phenomena observed. In the WOC task, participants are required to name pairs of 
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(non)words that have just been presented orthographically on screen (e.g., “gope doof”).  (Non)word 

pair presentation is followed immediately by the presentation of an arrow onscreen, which is the cue 

to start naming.  A rightward pointing arrow indicates that the words are to be named in the order that 

they appeared onscreen (i.e., as read from left to right; “gope doof”).  A leftward pointing arrow 

indicates that the words are to be named in reverse order to that in which they appeared onscreen (i.e., 

the word presented on the right of the screen is to be named first; “doof gope”).  All catch trials 

involve a leftward pointing arrow, but these are outnumbered by filler and foil trials which involve a 

rightward pointing arrow.  Naming order expectancy is therefore generated by orthographic 

presentation, and reinforced by trial-type weighting.   Competition arises when the expectancy (to 

name the leftmost word first) is not congruent with the response requirement (to name the rightmost 

word first).  

McMillan and colleagues (2009) employed EPG to record tongue-palate contact during the WOC task.  

Critical trials involved nonwords that contrasted in word-onset tongue-palate contact location (velar 

stop v alveolar stop, as in the example “gope doof”).  Tongue-palate contact over the period of 

complete stop closure (as indicated by articulatory records) was analysed
6
.  Articulatory records 

associated with perceptually “correct” responses produced under incongruent conditions revealed 

instances of “non-canonical” productions.  These non-canonical productions involved double 

articulations, in which tongue-palate contact was observable both at the intended target location and 

the competitor location.  For example, the articulation of “doof” in response to the stimulus “gope 

doof”   might show contact in the alveolar region associated with the target /d/ but also in the velar 

region associated with the competitor “gope”.  This finding is in keeping with the anomalous tongue 

EMG activity reported by Mowrey and MacKay (1990), and confirms that when a response conflicts 

with a stimulus dimension this conflict can be expressed at a speech motor level.  Overall, 

perceptually correct responses in the study by McMillan and colleagues were more similar to the 

competitor phoneme when the non-word target had a lexical competitor than when it did not (e.g., 

“gope” has the lexical competitor “dope” whereas the equivalent competitor for “gofe” is the nonword 

“dofe”).   This lexically conditioned effect suggests that, when a speaker anticipates their own speech 

production, information cascades from at least a lexical level to an articulatory level.  If this is also the 

case for prediction during comprehension we would expect to see similar articulatory evidence in the 

studies described in the second part of this thesis. 

5.4. Speech imaging to study prediction-as-simulation 

In the studies reported in Chapters 6 and 7 we employ speech imaging to investigate whether speech 

planning during comprehension-elicited prediction, as opposed to during production, produces traces 

in articulation.  This allows us to explore whether predictions are represented at a speech motor level, 

                                                           
6
 In this way the articulatory activity analysed was that recorded during the silent stop portion of the 

respective onset consonants 
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as Pickering and Garrod have proposed.  As outlined in Chapter 1 of this thesis, the proposal that 

prediction during comprehension invokes the speech motor system was developed with reference to a 

broad range of evidence concerning: (i) the relationship between bodily motor activity and body 

movement prediction and; (ii) the activation during listening of neural networks associated with 

speech motor activity.   In the current thesis we seek to bridge the gap between these two sources of 

evidence by using articulatory imaging to specifically explore speech activity associated with 

prediction during spoken language comprehension.  We investigate this proposal within in the mixed 

comprehension-production paradigm developed over the experiments reported in Chapters 3 and 4.  

The mixed paradigm is used in light of argumentation that prediction is most likely in a production 

setting (see Huettig, 2015). 

In its most recent exposition
7
, the prediction-as-production framework invokes a production command 

as the source of the efference copy which informs the forward production model on which prediction-

by-simulation is argued to be predicated (Pickering & Garrod, 2013; see specifically Figure 5 and 

relevant discussion).  The authors state that prediction-by-simulation need not involve an “action 

implementer”, although efference copies are generally understood to be copies of a movement-

producing signal sent to an action implementer (e.g., Mathalon & Ford, 2008; Sun et al., 2015), This 

apparent incompatibility remains to be resolved, with one possibility being that the forward models 

proposed by Pickering and Garrod are generated at level more abstract than that of the motor-speech 

command and its associated efference copy (for example, see Sun et al., 2015, for evidence that in 

humans the efference copy may originate within the premotor cortex; see also Niziolek, Nagarajan, & 

Houde, 2013 for discussion of possible sources of the efference copy in human speech production).  

Whilst this issue is undoubtedly pertinent to the development of a biologically plausible, empirically 

testable model, we note that it is not problematic for the interpretation of studies reported in the 

current thesis.  This is because, as described above, previous articulatory imaging studies have 

investigated the speech motor consequences of competition arising within the speech production 

system at a relatively abstract level of representation (usually referred to as a phonological level). 

Given that articulatory consequences are observed in these studies, we can expect to observe 

articulatory consequences of comprehension-elicited prediction if it similarly involves representation 

at a speech sound level within the production system, regardless of whether or not the “efference 

copy” to which Pickering and Garrod (2013) refer originates at a premotor or motor level.   

As detailed above, studies that use a tongue-surface approach to determine points of maximal 

constriction have provided evidence that competing gestures can be “coproduced”, with two 

constrictions being produced at a single time-point where only one constriction would be produced in 

a canonical realisation (e.g., Goldstein et al., 2007; Pouplier, 2008).  Studies that use a global 

difference measure have provided evidence that perceptually error-free articulations realised in a 

competing environment are more similar to the competing gesture than are those produced in a non-

                                                           
7
 Published during the period that research for this thesis was being conducted 
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competing environment (e.g., McMillan & Corley, 2010).  Findings across the approaches are 

potentially consistent:  the presence of an “intruding” constriction gesture (as reported by Pouplier, 

2007, for example) would increase overlap between the target gesture realisation and the competing 

gesture realisation, thereby increasing similarity on a global measure (as reported by McMillan & 

Corley, 2010, for example).  In the current thesis we adapt the analysis procedure developed by 

McMillan and Corley in order to make it possible to explore the time-course of global differences.  

This allows us to investigate articulatory movement during the response latency period.  We outline 

the approach below. 

5.5. The ultrasound imaging approach 

Ultrasound imaging allows dynamic recording of the movements of the tongue during speech, and has 

been valuable in providing information about many aspects of articulation, including those concerning 

lexical and phonological level effects on articulation (see above, see also Stone, 2005, for a 

comprehensive introduction to the technique; see Davidson, 2005, for an example of a study in which 

the technique was used to measure co-articulation in order to address a phonological question).  

Articulator imaging is achieved by placing a Doppler transducer probe (similar to that used in foetal 

imaging) against the under-surface of the participant’s chin.  The transducer emits and receives very 

high-frequency sound waves (inaudible to humans). The sound waves fan out along the midsagittal 

plane, and are reflected at points where substance impedance changes (primarily at the tongue 

surface).  The transducer receives the reflected echoes, from which it is possible to determine the 

location co-ordinates of the surface boundary at which a reflection took place.  The location 

coordinates are then converted into a visual image of the oral cavity in midsagittal section.   

In the following experiments we employ grey-scale images.  The intensity of reflections from any 

given location is represented on a scale from black (no reflection) to white (total reflection).  The 

tongue surface appears as a bright contour on screen, with the tongue root typically pictured on the left 

of the screen and the tongue tip on the right. Changes in tongue position, for example those associated 

with changes in the sound being articulated, are visible as movements of this contour.  Sampling rates 

greater than 300 frames per second (fps) can be achieved.  In the current thesis, data were acquired at 

a rate of 100 fps but were processed at a video rate of ~30 fps for reasons of tractability.  This 

sampling rate allowed us to examine tongue position in relation to key time points determined from 

the auditory data (e.g., the onset of acoustically available speech), and also to investigate frame-to-

frame change in tongue position during the response latency period.   

The ultrasound technique is well suited to psycholinguistically-motivated studies, in that it provides a 

non-invasive and relatively low-cost way to capture tongue movements during speech.  However, 

ultrasound data are notoriously noisy, and are both time-consuming and complex to process.  

Typically, the processing of speech ultrasound data requires considerable manual labour to determine 

the location of the tongue surface (as opposed to other reflective surfaces) at any given point during an 
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utterance.  Although tongue surface contour tracking can be semi-automated, the algorithms which 

permit this generally require guide information obtained through visual inspection and manual 

annotation of the image by the researcher (for further description and an example, see Pouplier, 2008).   

This increases the potential for researcher subjectivity and error to impact findings, and, perhaps more 

significantly, limits the quantity of data which can reasonably be processed.  This constraint means 

that, although data is captured dynamically, analysis tends to be conducted on only a single frame per 

token.   

In the current experiment we were not concerned with the absolute position of the tongue, but with 

whether articulation varies systematically as a function of the relationship between the predicted word 

and the articulated word.  This meant that we were able to use and extend a semi-automated analysis 

approach which does not rely on tongue contour tracing (the Delta approach: McMillan & Corley, 

2010; McMillan, 2008).  This approach allows each token to be represented by multiple frames, 

allowing the dynamics of articulation to be examined and compared across conditions. In previous 

implementations the technique has been employed to allow time-adjusted pairwise comparisons, 

which capture within a single measure the position of the tongue over the full time course of a given 

target articulation.  In this thesis we adapt the approach in order to allow analyses of speech-motor 

behaviour over time (comparable to analysis approaches typically adopted for eye-tracking and EEG 

data).  In addition to making our analyses more directly comparable to those found within the 

comprehension literature, this adaptation allows us to integrate aspects of the two key traditions within 

speech production research:  In keeping with error research we examine spatial aspects of articulation; 

in keeping with response latency research we examine temporal aspects. 
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 Articulatory Imaging Chapter 6:  

Implicates Prediction During Spoken 

Language Comprehension8 

 

6.1. Introduction 

As reviewed in previous chapters, it has been suggested that the activation of speech-motor areas 

during speech comprehension may, in part, reflect the involvement of the speech production system in 

synthesising upcoming material at an articulatorily-specified level.  In this experiment we seek to 

explore that suggestion through the use of articulatory imaging.  We investigate whether, and how, 

predictions that emerge during speech comprehension influence articulatory realisations during 

picture-naming. 

6.1.1.   Paper abstract 

We elicited predictions by auditorily presenting high-cloze sentence-stems to participants (e.g., 

“When we want water we just turn on the…”), as in Experiments 2 and 3 (see Chapters 3 and 4).  

Participants named a picture immediately following each sentence-stem presentation. Pictures either 

matched (e.g., TAP) or mismatched (e.g., CAP) the high-cloze sentence-stem target.  Throughout each 

trial participants’ speech-motor movements were recorded via dynamic ultrasound imaging.  This 

allowed us to compare articulations in the match (full-overlap) and mismatch (rime-overlap) 

conditions to each other and to a control condition (simple picture-naming).  Articulations in the 

mismatch condition differed more from the control condition than did those in the match condition.  

This difference was reflected in a second analysis which showed greater frame-by-frame change in 

articulator positions for the mismatch compared to the match condition around 300-500 ms before the 

onset of the picture name.  Our findings indicate that comprehension-elicited prediction influences 

speech-motor production, suggesting that the speech production system may be implicated in the 

representation of such predictions. 

 

                                                           
8
 This chapter constitutes an extended version of a published paper (“Drake, E., & Corley, M. (2015b). 

Drake, E., & Corley, M. (2015). Articulatory imaging implicates prediction during spoken language 
comprehension. Memory & Cognition, 43(8), 1136-1147”). 
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6.1.2.   Prediction within the production system 

When we listen to another person speaking, our own motor system is activated (Fadiga, Craighero, 

Buccino, & Rizzolatti, 2002; Pulvermüller et al., 2006; Watkins & Paus, 2004; Wilson, Saygin, 

Sereno, & Iacoboni, 2004; for reviews see Gambi & Pickering, 2013; Scott, McGettigan, & Eisner, 

2009).  This motor activation appears to reflect two levels of representation; referential resonance and 

communicative resonance (Fischer & Zwaan, 2008; Willems & Hagoort, 2007).  Referential 

resonance describes activation elicited by the linguistic content of the listened-to-material, and 

involves the representation or simulation of motor acts referred to by the speakers (e.g., hearing “kick” 

activates leg areas: Hauk, Johnsrude, & Pulvermüller, 2004; Tettamanti et al., 2005).  Communicative 

resonance describes activation related to the phonetic content, and involves representation or 

simulation of the motor activity involved in speech production itself (e.g., hearing /k
h
ɪk/ activates 

areas involved in the articulation of that sound stream: Fadiga et al., 2002; Pulvermüller et al., 2006).  

This experiment is concerned with the speech-motor activation associated with communicative 

resonance.  We employ articulatory imaging to investigate the suggestion that, as well as reflecting the 

bottom-up processing of auditory material as it is encountered, communicative resonance additionally 

indexes the top-down prediction of to-be-heard material (e.g., Pickering & Garrod, 2007; Schiller et 

al., 2009).  If activity in the speech-motor system were shown to be related to prediction, the speech 

production system would be implicated, as suggested by Pickering and Garrod (2007).    

Predictions would need to be made at least at the level of phonological-phonetic speech sounds for 

relevant activation of the speech-motor system to ensue.  The prediction of phonologically-specified 

representations has been demonstrated during written language comprehension:  In an RSVP reading 

study, participants displayed N400-indexed surprisal upon encountering the indefinite article (a/an) in 

a phonological form that was inappropriate given the predicted upcoming word (e.g., encountering an 

when strongly constrained to anticipate a noun with a consonant onset such as kite; DeLong, Urbach, 

& Kutas, 2005).  However, our response latency findings suggest that the phonological form of a 

predicted word does not facilitate picture naming in the way that is seen in typical PWI experiments 

where the “distractor” word is actually presented (see first part of this thesis).  In contrast to findings 

from PWI studies, including our own, phonological overlap between predicted words and picture 

names was not found to have an effect on response times:  Participants were no quicker to name a 

picture when its name partially overlapped with the predicted word (TAN) than when it didn’t 

(COAT: Chapter 4; see also Severens, Ratinckx, Ferreira, & Hartsuiker, 2008).  It therefore remains 

open to question whether speech-sound predictions are generated during spoken language 

comprehension, and, if so, whether the speech-motor system and the production system more 

generally, are implicated. 

A reasonable interpretation of the evidence by the response latency studies would be that speech 

sounds are not routinely predicted in the production system during spoken language comprehension, 



79 
 

at least not to the extent that they affect the timing of responses.  However, the time taken to name 

pictures may be an inappropriate measure to base such a conclusion on:  In order to complete the task, 

participants had to decide when to speak, and they may have been able to make use of prosodic and 

timing cues from the spoken sentence fragments in order to do so (e.g., Wilson & Wilson, 2005; see 

also Rothermich & Kotz, 2013).  To the extent that participants’ speech timing was governed by 

extrinsic as well as intrinsic factors, subtle differences in naming latencies may have been difficult to 

detect, in contrast to PWI studies, where no extrinsic timing information is available. 

Another reason for treating the behavioural evidence with caution is that there does appear to be 

evidence which implicates motor areas in prediction more generally.  Such evidence derives primarily 

from studies of representational momentum in the perception of human movement (e.g., Verfaillie & 

Daems, 2002; Miall & Wolpert, 1996;  Miall & Reckess, 2002; Huber & Krist, 2004; see Pickering & 

Garrod, 2007; 2013, for discussion with respect to language comprehension).  In order to directly 

investigate the involvement of the speech-motor system in the prediction of upcoming sounds, a more 

appropriate source of evidence than speech timing may be the articulatory movements that are the 

product of activation in the speech-motor areas on an ongoing basis.  If this activation reflects, in any 

part, the prediction of upcoming speech sounds, then we should be able to find evidence for the 

activation in perturbations of speech-sound movements made during the time in which such 

predictions are active. 

We recorded the responses of eight new participants in an experiment which was closely related to the 

response latency experiments reported in Chapter 4.  Predictions were elicited using high-cloze 

sentence-stems, each of which strongly predicted a specific word (cf. DeLong et al., 2005).   

Presentation of the sentence stems was as in the previous experiments:  following each auditorily 

presented sentence-stem (e,.g., When we want water we just turn on the…), participants named a 

picture which either matched the predicted word (i.e. full-overlap; TAP), or differed in onset (i.e., 

rime-overlap; CAP), in a fully counterbalanced design.  As previously, we used pictures rather than 

written words because it has been suggested that written words have privileged access to articulation 

(e.g., Costa, Alario, & Caramazza, 2005).  We anticipated that, in cases where participants were 

anticipating tap but naming a CAP, activation of the speech-motor system related to prediction would 

affect the articulation of cap , such that its onset would be ‘less /k/-like’ than in the case where cap 

was predicted (On his head he wore the school…).  To investigate this, we measured the articulations 

of the same picture names where there was no sentence stem and therefore no potential interference 

from a predicted word.  By calculating the differences between the articulations of picture names in 

experimental and control conditions, we were able to establish whether articulation varied more from 

the control when participants anticipated that they would hear a mismatching word than when a 

matching word was predicted.  By calculating the degree of movement over time in the matching and 

mismatching conditions, we were able to investigate whether there were specific periods during 

articulation where there was more movement in one experimental condition relative to the other. 
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6.2. Method 

6.2.1.   Participants   

Eight participants (7 female) aged between 21 and 40 years took part in the study.  All participants 

were monolingual speakers of English, had normal or corrected-to-normal vision, and reported no 

positive history for hearing or speech-language difficulties.  Participants were recruited from research 

pools at Queen Margaret University and the University of Edinburgh, were paid for their participation, 

and gave written informed consent in line with BPS guidelines.  The study was granted ethical 

approval by the Psychology Research Ethics Committee of the University of Edinburgh (approval no. 

14-1213/1). 

6.2.2.   Materials   

Items were the experimental items used in Experiment 3 (Chapter 4; see Appendix C for details). 

Twelve pictures were used as experimental items; a further two pictures were used as practice items.  

Picture names were single-syllable and represented the 6 rimes /-æn, -æp, -eɪp, -eɪk, -ǝʊn, -ǝʊst/, each 

paired once with the onset /t-/ and once with the onset /k-/ (can, tan, cap, tap, cape, tape, cake, take, 

cone, tone, coast, toast).  As in the previous experiments, the final, high-cloze item was omitted from 

all sentence-stem recordings.   

6.2.3.   Procedure  

Participants wore an ultrasound probe throughout the experiment.  The probe was secured directly 

against the under-surface of the chin using a proprietary helmet (Articulate Instruments: 

http://www.articulateinstruments.com/ultrasound-products/).  This allowed us to record the movement 

of the tongue within the oral cavity during each trial (the tongue is the key active supralaryngeal 

articulator).  Ultrasound images were recorded at a rate of ~30 frames-per-second, with acoustic data 

being simultaneously captured via Articulate Assistant Advanced (Articulate Instruments, 2012; for 

details, see Wrench & Scobbie, 2008). 

As in previous experiments reported in this thesis, the experiment was presented on a laptop, using 

DMdX software (Forster & Forster, 2003).  Participants were trained on the correct name for each 

picture prior to the experiment to ensure that any articulatory differences could be ascribed to 

competition between the predicted word and the picture name, rather than to uncertainty concerning 

the name of the picture. All participants named the pictures with 100% accuracy by the end of the 

training phase (which consisted of 3 exposures to each picture).  
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In all blocks, trial presentation was randomized via the presentation software.  In the first 

experimental block, participants named each picture aloud once.  Participants viewed a fixation point 

in the centre of the screen for 2.9 seconds immediately prior to the presentation of each picture-to-be-

named.  Participants were instructed to name the pictures as soon as they could, but to make sure that 

their naming was accurate.   

In blocks 2 and 3, participants again viewed a fixation point immediately prior to the presentation of 

each picture for naming, but this time while listening to an auditory sentence-stem.  In all trials the 

picture was presented immediately after the end of the auditory sentence-stem. Sentence-stems and 

pictures were paired together within trials so that in half of the trials the sentence-stem predicted the 

picture-name (i.e., match/ full-overlap condition, e.g., On his head the boy wore the school… CAP):  

In the other half of the trials the sentence-stem predicted a name that rhymed with the name of the 

picture presented for naming (i.e., mismatch/ rime-overlap condition, e.g., Jimmy used a washer to fix 

the drip from the old leaky… CAP).  All sentence-stems were presented once in each experimental 

condition.  The condition in which a sentence-stem was first encountered was counterbalanced across 

participants.  Participants encountered an equal number of match and mismatch trials in each of blocks 

two and three.   

Block four was identical to block one (i.e., simple picture naming following a fixation point).  Trials 

from blocks one and four formed the control condition.  Each participant named each picture 8 times 

in total (twice in the control condition, three times in the match and three times in the mismatch 

condition).  In all blocks participants followed the same instruction; to name the picture as quickly and 

accurately as they could.  Including setup, the experiment lasted approximately 30 minutes. 

6.2.4.   Data treatment and analysis approach 

The ultrasound data for each token recorded consisted of a sequence of black and white video frames. 

For each frame, there were 141,824 pixels (517 x 277) which ranged in luminance from 0 (black) to 

255 (white). To make the analysis tractable, we first calculated the average luminance of each 8 × 8 

grid of pixels, resulting in a 2,240-pixel “pixelized” image. 

In order to analyse the pixelized ultrasound images, we first inspected the relevant audio file 

independent of the visual data and blind to the experimental condition, using Audacity 

(http://audacity.sourceforge.net). We identified two key moments during the participants’ productions 

of each word: the acoustic release of the onset consonant, and the end of the vowel. The acoustic 

response latency was taken to be the time between stimulus (picture) presentation and the acoustic 

burst of the onset consonant of the picture name (i.e. the onset of a target-specific acoustic signal 

visible in the waveform).  It was possible to determine this period for 7 of the 8 participants
9
.  Time-

                                                           
9
 The onset of picture presentation was determined as being the point at which the acoustic 

presentation of the sentence-stem stopped.  In the case of the one participant excluded from the 
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points based on the audio recordings were also used to select portions of each video for further 

analysis. Different portions of video were used for different purposes, as described in the relevant 

sections below.  Once a portion of video had been extracted, it was expanded or contracted to a 

standardised number of video frames, using an averaging algorithm.  This allowed us to control for 

slight differences in video frame rate and in articulation timings. 

Differences between standardised video sequences were calculated using the Delta technique 

(McMillan & Corley, 2010).  The pixels in each frame were represented as a 2,240-dimensional 

vector, with each dimension taking values between 0 (black) and 255 (white).  Differences between 

pairs of frames were calculated as the Euclidean distances between vector representations; and 

differences between sequences of frames were calculated as the average by-pair Euclidean distance.  

This quantity, in arbitrary units, is referred to as the Delta distance. 

When analysing the ultrasound video, we initially generated a data quality metric by calculating 

‘discrimination scores’ for the data recorded in each session (see “Recording Quality” below). These 

discrimination scores were then used as weighting factors in a series of regressions examining the 

effects of the experimental manipulations (with the consequence that observations with higher 

discrimination scores had more influence on the reported outcome). First, we examined the degree to 

which participants’ productions were affected by auditory sentential context, by comparing the 

degrees to which their experimental articulations varied from control articulations in matching (full-

overlap) and mismatching (rime-overlap) conditions (see “Differences Between Conditions”). Second, 

we examined the degree of movement over the time-course of each articulation, allowing us to 

examine the time-course of articulatory differences due to context (see “Time-Course of 

Differences”). We begin with an illustration of issues with recording quality and the derivation of the 

discrimination score, before presenting each of the experimental analyses in turn. 

6.2.5.   Recording Quality 

A problem with ultrasound recordings of articulatory movements is that they can vary greatly in 

quality, due to individual differences in the tongue and oral cavity, noise in the recordings, and 

ultrasound probe slippage, among other factors. However, such differences are difficult to detect at 

recording time. 

In the present study we reduced the impact of this issue by generating discrimination scores. We 

conceptualised recording quality as the ability to discriminate between the six different CV onsets 

used throughout the present paradigm (/kæ/, /keɪ/, /kǝʊ/, /tæ/, /teɪ/, /tǝʊ/). We used ultrasound video 

beginning 0.1s before consonant onset (acoustic burst), and ending at the offset of the steady-state 

vowel. The relevant section of each video was digitised and quantised into 8 frames, each of which 

                                                                                                                                                                     
response time data, the recording of the sentence-stem presentation was not loud enough to permit 
reliable annotation. 
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represented approximately 33 ms of recorded time. For each participant, we then created a table of the 

Delta distances between each possible pair of articulations. Initially, we used multidimensional scaling 

(Gower, 1966; Mardia, 1978) over two dimensions to visualise the relationships between a 

participant’s recordings. Figure 6.2.1 shows data from the participants we judged, by visual 

inspection, to have produced the ‘best’ and ‘worst’ recordings (least and most noisy recordings). 

Whereas the left-hand plot clearly shows that ultrasound analysis using the Delta approach is capable 

of distinguishing articulations, the right-hand plot shows that this capability is at the mercy of the 

noise that is inherent in ultrasound recordings. 

In order to deal with this problem, we generated a ‘discrimination score’ for each participant and each 

CV onset, designed to calculate how well a given CV such as /keɪ/ could be discriminated from the 

other CVs in the experiment (here, /kæ/, /kǝʊ/, /teɪ/, /tæ/, /tǝʊ/).  These calculations were based on 

articulations from the control conditions only, since we predicted additional variability in articulation 

in the experimental conditions. Using the tables of Delta distances calculated above, we divided the 

mean distance between control articulations of words which didn’t share a given CV onset by the 

mean distance between words which did share that onset.  The more discriminable the words sharing 

an onset were from the other words, the higher the discrimination score was.  Discrimination scores 

ranged from 1.25 to 2.43 (mean 1.62; SD 0.29). Table 6.2.1 shows the discrimination scores 

calculated for the participants shown in Figure 6.2.1. 

Table 6.2.1: Discrimination scores calculated for the participants shown in Figure 6.2.1 

CV CV(IPA) Participant A Participant B 

ke (/keɪ/) 2.39 1.3 

ko (/kəʊ/) 2.43 1.42 

ka (/kæ/) 2.32 1.32 

te (/teɪ/) 2.00 1.36 

to (/təʊ/) 1.97 1.28 

ta (/tæ/) 2.14 1.25 

 

Scores are calculated from the control articulations only, and represent the degree to which 

articulation of a given CV can be distinguished from other CVs in the ultrasound recordings. 
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Figure 6.2.1: Multidimensional scaling of Delta differences between all articulations produced by 
each of two participants, measured from 0.1s before consonant onset to vowel offset 

The plots show (left) that the Delta technique is highly capable of distinguishing articulations, but that 

(right) ultrasound recordings can be subject to noise. Words in black represent recordings from control 

conditions, and words in grey correspond to experimental conditions. 

In keeping with the approach to response latency analysis reported in previous chapters of this thesis, 

analyses of the treated data were all conducted using linear mixed effects models with maximally 

specified random effects structures (following  Barr, Levy, Scheepers, & Tily, 2013). 

6.3.  Results 

Individual audio and ultrasound recordings were obtained of each participant’s articulatory 

movements during each trial, and were digitized to video. Each participant produced 96 picture names 

(24 in the control conditions, and 72 in the experimental conditions). Of the resulting 768 recordings, 

27 (3.5%) were discarded because of failures either to record audio, or to properly register ultrasound. 

There was no difference between conditions in the proportions of recordings removed (
2
(2) = 2.62, p 

= .27). The remaining 741 recordings were used in all subsequent analyses, including the calculation 

of discrimination scores described in the Methods section above.  Note that the portion of a recording 

used to calculate the discrimination score (acoustic onset forward) differed from that used in the main 

analyses reported below (acoustic onset backward).  
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6.3.1.   Response Latencies    

When participants named pictures in the match condition (mean RT = 515 ms; se = 11 ms ) the 

acoustic burst occurred sooner than in the mismatch condition (mean RT = 632 ms; se = 12 ms)  or 

control condition (mean  RT = 606 ms; se = 15ms).  We conducted a mixed-effects regression analysis 

of the effect of sentential context (match, mismatch, or control) on RTs.  The model included both 

intercepts and slopes which could vary by participant and by picture name. Random effects for 

intercepts and slopes were allowed to correlate. This constitutes the maximal justified random effects 

structure, in line with recent recommendations for confirmatory hypothesis testing (Barr, Levy, 

Scheepers, & Tily, 2013).  Using orthogonal contrasts, the model confirmed that response latencies in 

the match condition were significantly shorter than in the mismatch and control conditions ( = 110, 

se = 28, t = 3.96), and that response times did not differ between mismatch and control conditions ( = 

20, se = 31, t = 0.63).  This pattern replicates the patterns for the relevant conditions (rime-overlap and 

control) reported in the response latency studies in which this paradigm was employed (see Chapter 

4). 

6.3.2.   Acoustic durations 

We had manually segmented the acoustic portion of picture name responses in order to provide time-

locking points for the ultrasound analyses (see Method, above).  This enabled us to investigate 

whether there were systematic by-condition differences in the acoustic durations of; (i) the consonant 

burst; (ii) the vowel segment; (iii) the whole syllable to the final consonant.  The effect of Context on 

these measures was investigated by, in each case, comparing a null model that contained only random 

effects (intercepts and slopes by context for participant; intercepts only by context for item) to a model 

in which Context was included as a fixed effect.  In no case did including Context as a fixed effect 

improve model fit (
2
(2) = 3.64,   p = 0.16; 

2
(2) = 2.56, p = 0.28; 

2
(2) = 1.76 , p =  0.4143 for 

consonant burst, vowel segment, and whole syllable durations respectively). 

6.3.3.   Ultrasound Analysis    

All regression models reported here were weighted (Carroll & Ruppert, 1988), using the CV-specific 

discrimination scores described in the Methods section. To avoid misrepresenting the effective power 

of the experiment, discrimination scores were scaled to a geometric mean of 1.  This allowed 

recordings which were better able to capture relevant differences between control articulations to have 

greater influence on the outcomes of the analyses, without arbitrarily excluding recordings which may 

have been of poorer quality. In this context, it should be noted that the discrimination measure is 

independent of within-cell variation about the mean (correlation: r = −0.01). 
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6.3.3.1.  Differences Between Conditions 

The effect of context on articulation was investigated by comparing articulations in experimental 

conditions to reference articulations from the control condition. Here, we were primarily interested in 

the production of the onset consonant /k/ or /t/, since the rimes in picture names never differed from 

the rimes predicted by context. Accordingly, we extracted ultrasound video starting half a second 

before the consonant onset and ending at the consonant release (approximately 17 frames of video at 

30 fps). All recordings were averaged into 17 frames; for each participant, we then proceeded as 

follows. First, we created participant-specific reference articulations of the onset consonants /k/ and 

/t/, by averaging the luminance of each of the 2,240 pixels frame-by-frame for all of 17-frame 

sequences representing control articulations of words beginning with /k/ or /t/ respectively. We then 

calculated a Delta score for each individual articulation produced in the experimental conditions, 

representing the (mean frame-by-frame Euclidean) difference between a particular onset articulation 

and that participant’s mean control articulation of the same onset (see McMillan & Corley 2010).
10

 

The Delta scores thus obtained were subjected to a mixed-effects regression analysis, examining the 

effects of onset (/k/ or /t/) and of context (match or mismatch) on deviance from mean control 

articulation. Together with these fixed effects and their interaction, our model included intercepts 

which could vary randomly by participant and by picture name. As in previous response latency 

analyses, the slopes associated with each fixed effect and the interaction could vary by participant, and 

the slope associated with context could vary by picture name (item). Random effects for intercepts and 

slopes were allowed to correlate. This model therefore includes the maximal justified random effects 

structure (Barr et al., 2013). Predictors were centred about their means prior to analysis. We 

considered coefficients to differ reliably from zero where |t| > 2 (see Chapter 3). Because our 

conclusions were based on model coefficients, we fit models using restricted maximum likelihood, to 

reduce the probability of Type I errors. 

Discrimination score weighted regression 

Discrimination score weighted regression showed that a numerical tendency for participants to 

produce /t/ onsets which differed more from the participant-specific /t/ controls than their /k/ 

productions differed from the /k/ controls failed to reach significance ( = 9.98, SE() = 5.77, t = 

1.73). Participants were, however, affected by sentential contexts, such that onsets produced in the 

mismatching condition differed more from their controls than did those produced in the matching 

                                                           
10 Due to the nature of ultrasound recordings, a number of pixels in each frame are more-or-less 

randomly grey. However, pixels at clear physiological junctures tend to be more deterministically coloured, and 
there are likely to be similarities in luminance patterns across frames for similar tongue positions within a given 
speaker. Similarities between pixels will tend to reduce Delta values, allowing us to distinguish signal from noise. 
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condition (  = 10.89, SE() = 5.05, t = 2.15). The effect of context did not differ by onset consonant 

(t = 0.58)
11

 .  Table 6.3.1 gives full details of the regression model. 

Table 6.3.1: Model coefficients (in Delta units) for differences from Control condition:  Details of 
Context by Onset model. 

Fixed Effect Estimate() SE() t  Random Effect Variance 

Intercept 286.87 8.99 31.90  Participant Intercept 589.61 

Context (mismatch 

vs match) 

10.89 5.05 2.15   Context 39.37 

Onset (/t/ vs /k/) 9.98 5.76 1.73   Onset 38.03 

Context * Onset 5.62 9.63 0.58   Context*Onset 82.64 

         Item Intercept 39.16 

          Context 63.73 

Observations = 559     Residual  2159.63 

 

6.3.3.2. Time-Course of Differences 

In order to investigate the time-course of articulation we extracted standardised ultrasound videos 

corresponding to the period from 1 second before consonant onset to consonant release 

(approximately 32 frames of video at 30fps). Using the same vectorisations as for Delta calculations, 

we then calculated Euclidean distances between successive frames of standardised ultrasound video, 

producing a sequence of 31 inter-frame values which represent moment-by-moment degree of 

movement for a particular articulation.  These values are related to ‘speed’ of articulatory movement 

rather than ‘velocity’, since they do not include information on the direction of movement.  However, 

it is possible to determine at which points in time participants’ tongues tend to be moving quickly 

between frames, and at which points they are more stationary; these values are then used to provide 

plots of the speed of tongue movements over time in different experimental conditions. 

  Euclidean distances between successive frames of ultrasound were compared by experimental 

condition using a series of mixed-effects regression analyses, investigating the effects of onset, 

context, and their interaction at each time point. Models were fit using restricted maximum likelihood 

                                                           
11 Regression without weights showed the same general pattern of results, although the difference between 

onsets reached significance: /t/s differed more from their controls than did /k/s ( = 10.99, SE() = 5.28, t = 

2.08); mismatching onsets differed more than matching onsets ( = 10.94, SE() = 5.26, t = 2.08); there was no 
interaction (t = 0.64). 
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and included maximally justified random effects, as described in the previous section. Models were 

weighted by CV-specific discrimination scores. Effects were considered reliable where |t| > 2. 

There were no interactions between Onset and Context at any time-point. Effects of Onset were found 

from approximately -217 to -117 ms and  -83 to -50 ms, reflecting more frame-to-frame movement for 

/k/ at the earlier epoch and more movement for /t/ just prior to consonant release. Effects of Context 

were found from approximately -483 to -283 ms and from -50 to -17 ms, reflecting more frame-to-

frame movement in the mismatch (rime-overlap) condition in each case. 

Because of the cumulative risk of a Type 1 error associated with multiple independent tests of this 

nature, we do not consider isolated significant differences further, but instead focus on time-points 

when there are clusters of differences.  Figure 6.3.1 illustrates the differences between conditions over 

the time-course of articulation.

 

Figure 6.3.1: Articulatory movement over time in producing the onsets of picture names which 
match or do not match predictions from the sentence stem. 

 

The x-axis represents time milliseconds prior to the acoustic response (i.e. the response latency period between 

picture presentation and acoustic picture naming).  The y-axis represents the amount of change in the ultrasound 

image between two consecutive frames of the ultrasound record (averaged by condition).  This can be loosely 

interpreted as the extent of articulatory movement between frames. Time zero represents the release of the /t/ 

or /k/ onset. Lines show the Euclidean distances between vectors of pixel intensity for successive (normalised) 

frames of ultrasound video, together with by-participant standard errors. y-axis is log-scaled to help with viewing 

of differences. Filled circles correspond to transitions at which there is a significant difference (at |t| > 2 for 

mixed models weighted by discrimination score, with participants and words as random effects) between 

mismatched and matched onset productions. 
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6.4. Discussion 

We recorded ultrasound images of tongue movements while participants named pictures.  In one 

experimental condition, the name of the picture matched the most likely continuation of a spoken 

sentence stem that the participant had just heard; in another, the picture name was a mismatching 

name which began with a different consonant.  We used two approaches to compare articulation 

across matching and mismatching conditions, and found in both cases that articulation prior to the 

consonant release differed between conditions.  The by-condition difference confirms that predictions 

made as a listener can affect production.  More specifically, the finding demonstrates that prediction 

from another’s speech affects the motor execution of one’s own speech, suggesting that top-down 

prediction may involve simulation of the motor activity involved in speech production. 

In the first analysis, we compared summarised articulatory movements directly, and found that 

participants’ articulations in the mismatch (rime-overlap) condition differed more from their average 

articulations in a control condition when a mismatching word was predicted than when the prediction 

was of a matching (full-overlap) word.   One potential account of this process might be that, compared 

to the faster matching condition, articulation is simply slowed in the mismatching conditions.  Under 

this hypothesis, apparent differences in variability would, in fact, be due to differences in the timings 

of articulatory gestures.  However, two aspects of the data militate against this view.  The first is that 

the differences in naming latencies between match, mismatch, and control conditions do not align with 

the differences in articulations.  Both the mismatch and control conditions result in slower naming 

latencies than the match condition; if articulation speed explains the differences in the first analysis, 

then the mismatch articulation should be more similar to the control than the match articulation.  In 

fact, the opposite is the case. 

The second argument against an account based on speed of articulation comes from the second 

analysis, in which we inspected the frame-by-frame degree of movement involved in each articulation.  

We achieved this by measuring the differences between consecutive frames of each ultrasound video 

in experimental conditions.  The resultant measurements encompassed the second or so leading up to 

the acoustic release of each onset consonant, and showed that where there were differences between 

conditions, the mismatch condition showed greater movement.  Again, these findings are inconsistent 

with the view that differences in the mismatch condition can be ascribed to generally slower 

articulatory movements associated with a longer response latency.   Taken together, the analyses 

provide prima facie evidence for an influence of linguistic prediction on the manner, rather than the 

timing, of articulatory movements when the person making the prediction has to speak. 

The time-course analysis additionally reveals that the period during which the frame-to-frame change 

is greater in the mismatch condition is relatively early in the articulatory gesture, at around 500-300ms 
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before the onset of the picture name.  After this period the articulatory trajectories in the two 

conditions converge, and are statistically indistinguishable by 280ms prior to the acoustic release, and 

for the remainder of the articulation.  This reflects the facts that the onset of articulatory movement in 

the mismatch condition occurs significantly earlier in relation to acoustic release than in the match 

condition; and that less articulatory movement is required overall to achieve the acoustic target in the 

match condition than in the mismatch condition.  In other words, articulation in the match condition is 

ultimately more efficient than in the mismatch condition.  To produce words that mismatch a 

prediction generated as a listener is not only more demanding at a cognitive level (pace response 

latencies), but also more demanding at a motor-execution level. 

Findings from the visuo-motor control literature suggest that the ‘inefficiency’ seen in the mismatch 

condition may be due to articulation in that condition involving a movement toward the (incorrect) 

predicted target.  Perturbation of movement towards an incorrect target has been observed to be the 

case when two stimuli “try to control the same speeded motor response” (Schmidt & Schmidt, 2009, 

p.595; in that case, of movements with a stylus towards a location that either matches or mismatches 

the location of a masked prime). As upcoming predicted lexical items can be specified at least as early 

as presentation of the preceding word (DeLong et al., 2005; see Introduction), it is possible that in the 

current experiment both the predicted item and the item-to-be-named were “trying to control” the 

motor response.  The analyses employed in the present study do not allow us to directly address this 

possibility; it may be feasible to address the question more directly in future studies, given advances 

in clarity of ultrasound recordings.   

Whatever the specifics of the influences on participants’ articulations, articulations are qualitatively 

affected by the presence of lexical representations which have been generated entirely endogenously; 

the ‘competing’ predicted words were the product of the participants’ semantic prediction systems, 

having a endogenous rather than an exogenous origin.  We were able to observe anticipatory speech-

motor consequences associated with predicting from another person’s speech.  To that extent, the 

current study directly implicates the listener’s speech-motor system in the top-down prediction of 

upcoming material at the level of communicative resonance.  

It appears that anticipatory activation in the speech-motor system is largely outside strategic control:  

Prediction of the upcoming item was not beneficial to overall performance in the experimental 

context, and experiments reported in Chapter 4 indicate that mismatching predictions do not generally 

produce temporal inhibition.  Although likely to be automatic, the activation may be specific to 

situations in which the listener anticipates their own role as a speaker (as one does in dialogue: see 

Rommers, Meyer, Piai, & Huettig, 2013, for evidence that the neural processing of linguistic material 

differs depending on whether  one expects to be required to speak or not). 

Having considered how the data inform our understanding of the issue that the study was specifically 

designed to address, we turn briefly to a more general issue:  The time-course of articulator 
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movements in the current study strongly suggests that stimulus-related lingual movement occurs well 

before the acoustic response onset, at a point when cognitive processing would be expected to be 

ongoing.  This finding is perhaps surprising in light of psycholinguistic models of picture naming, 

which generally involve a sequence of at least four processes prior to the initiation of articulation (for 

a brief recent review see Strijkers & Costa, 2011).  According to mappings of  the time course of 

picture name production processes determined via meta-analyses of neuroimaging studies (Indefrey & 

Levelt, 2004; Indefrey, 2011; see also Laganaro, Python & Toeppel, 2013), motor programming and 

execution occur only in the final 150 ms prior to acoustic onset of the target picture name.  However, 

the current experiment indicates that articulation starts much earlier, in line with electromyelographic 

(EMG) data presented by Riès and colleagues (2012) which showed that speech-associated muscular 

innervation is observable around 380 ms prior to acoustic response onset (Riès et al., 2012; see also 

Schuhmann, Schiller, Goebel & Sack, 2012).  This study confirms the conclusion drawn from Riès et 

al. (2012) that if we are to further understand the processes involved in speech production it will be 

necessary to consider effector activity as an important observable outcome and time-course marker, in 

addition to the acoustic onset more typically used as a time-locking point.
 
 

The generalizability of the findings reported here may be impacted by the relatively low number of 

participants tested. In fact, due to pragmatic difficulties with data collection, this is a common issue 

with speech-motor studies (comparable numbers of participants are reported by Davidson, 2005; 

Pulvermüller et al., 2006; Pouplier, 2008; Watkins & Paus, 2004; Watkins, Strafella, & Paus, 2003).  

In the case of the current study, this concern may be partially mitigated by the fact that the pattern of 

response latencies was in keeping with that reported in previous chapters, in which participant 

numbers were in keeping with those typically employed in psycholinguistic research. 

Given this caveat, this experiment has demonstrated the importance of articulatory measurement in 

two ways.  As discussed above, muscle activation and motor movements associated with articulation 

appear to start much earlier than supposed in existing psycholinguistic models. This suggests that the 

use of articulatory information may be important if we are to develop greater insight into the processes 

of speech production.  For example, in previous work the present authors investigated the acoustic 

onset times to name pictures in a paradigm very similar to that employed here.  On the basis that there 

were no facilitatory or inhibitory effects when the to-be-named picture partially overlapped with the 

predicted word, we concluded that “prediction during comprehension [did] not appear to occur at a 

phonological-articulatory level” (Drake & Corley, 2014). The current study indicates that this was far 

from the final word on the matter:  The second consequence of using articulatory measurement is that 

we are now able to conclude that there clearly is an effect of prediction on articulation to be found, if 

you know where to look.    
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 Are Articulatory Effects Chapter 7:  

of Prediction During Spoken 

Language Comprehension Speech 

Sound Specific?12 

 

7.1. Introduction 

Speech comprehension incorporates the generation of predictions and evokes neural activity within 

speech-motor areas (DeLong, Urbach, & Kutas, 2005; Fadiga, Craighero, Buccino, & Rizzolati, 2002; 

Kutas, DeLong, & Smith, 2011). It has been suggested that the activation of speech-motor areas 

during speech comprehension may, in part, reflect the involvement of the speech production system in 

synthesising upcoming material at an articulatorily-specified level (e.g., Pickering & Garrod, 2007). 

Evidence presented in the previous chapter confirms that predictions evoked during speech 

comprehension have an impact at a speech motor execution level.  In the current chapter we extend 

the scope of the experiment reported in Chapter 6 in order to explore whether the speech motor effects 

reflect speech sound specific predictions.   

The development of experimental methodologies such as eye-tracking, EEG, MEG, and fMRI has 

revolutionised our understanding of the processes involved in language comprehension. It is now clear 

that comprehension involves the top-down prediction of upcoming material as well as the bottom-up 

processing of perceived input (Altmann & Kamide, 1999; DeLong et al., 2005; Federmeier & Kutas, 

1999; Kamide, Altmann, & Haywood, 2003; see Federmeier, 2007, for a review). There is 

considerable evidence to show that listening to spoken language evokes activity within the listener’s 

motor system (Hauk, Johnsrude, & Pulvermüller, 2004; Pulvermüller et al., 2006; Watkins, Strafella, 

& Paus, 2003; see Scott, McGettigan, & Eisner, 2009 and previous chapters for reviews). Such motor 

activity may reflect what is being conveyed (e.g., hearing “kick” activates   motor areas associated 

with leg movement: Hauk et al., 2004; Tettamanti et al., 2005). It can also reflect the process by which 

it is conveyed (e.g., hearing /khIk/ activates areas involved in the articulation of that sound stream: 

Pulvermüller et al., 2006). In the previous chapter we presented findings which implicated speech 

                                                           
12

 The work presented in this chapter has been presented and published in a peer-reviewed 
conference paper (Drake, E., Schaeffler, S., & Corley, M., 2015, Articulatory consequences of 
prediction during comprehension. Proceedings of the 18th ICPhS, Glasgow, 0618.) 
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motor system involvement in the prediction of upcoming input during language comprehension.  The 

evidence we presented demonstrated that changing the relationship between the word predicted and 

picture named has an impact on articulation during picture naming.  The aim of the present 

experiment is to investigate whether the speech motor effects reported in Chapter 6 of this thesis (also 

Drake & Corley, 2015b) reflect motor representation of predicted speech sounds, or whether they arise 

at a more general level. 

7.1.1.   Somatotopic activation during listening 

Listening to speech-like syllables leads to activation in the speech-motor cortex (S. M. Wilson, 

Saygin, Sereno, & Iacoboni, 2004). This activation is somatotopic: Passive perception of labial onset 

syllables activates the part of the pre-central gyrus associated with the production of lip movements, 

whereas listening to alveolar onset syllables activates the region associated with tongue movements 

(D’Ausilio et al., 2009; Pulvermüller et al., 2006).  Similarly, electromyelographic activity in a given 

articulator is raised when a speech sound involving that articulator is presented (Fadiga et al., 2002; 

Watkins & Paus, 2004; Watkins et al., 2003). Such concomitant speech-motor activation can be 

accounted for in terms of resonance between the comprehension and production systems.  However,  

recent findings suggest a causal role for speech-motor activation during spoken language listening:  

TMS stimulation of specific areas of the speech-motor and premotor cortex been demonstrated to 

affect the process of speech comprehension (Schomers, Kirilina, Weigand, Bajbouj, & Pulvermüller, 

2014): People are quicker to match heard words to pictures when the place of articulation of the word 

onset is consistent with a speech-motor area activated via TMS  than when the area activated relates to 

a competing articulator. 

7.1.2.   Somatotopic activation as an aspect of prediction during 

listening 

As has been reviewed in previous chapters, a number of frameworks include the proposal that neural 

regions traditionally considered to form part of the speech production system are involved in 

predicting the linguistic input which is currently being attended (e.g., Pickering & Garrod, 2007; 

Schiller, Horemans, Ganushchak, & Koester, 2009; Dell & Chang, 2014).  In response to findings 

that; (i) comprehension can involve prediction to a speech-sound level (e.g., DeLong at al., 2005), 

and; (ii) speech listening invokes activation of speech motor regions (see above), Pickering and 

Garrod (2007) proposed that speech motor activation during listening might, in part, reflect synthesis 

of upcoming speech at a speech-motor level. This suggestion was situated in evidence and theory from 

the broader visuo-motor control literature, indicating that our own motor systems are involved in 

predicting the action of others through a process of emulation (e.g., M. Wilson & Knoblich, 2005; for 

a recent review of the evidence see Colling, Thompson, & Sutton, 2014).  
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7.1.3.   Predictive emulation 

Predictive emulation of others’ actions is thought to engage processes more typically associated with 

planning of one’s own actions, specifically the generation of forward models (e.g., Grush, 2004). The 

notion that forward modelling contributes to our ability to predict other’s movements is supported by 

the finding that performing actions interferes with simultaneous action prediction, and that the degree 

of interference is modulated by the degree of overlap between the executed and predicted actions 

(Springer et al., 2011). One source of evidence that has been cited in support of the view that the 

production system is implicated in prediction during comprehension is that listeners are affected by 

metrical and phonological mismatches to predictable information at a suprasegmental level. Metric 

foot structure allows listeners to form temporal predictions about when upcoming salient syllables will 

occur (Lidji, Palmer, Peretz, & Morningstar, 2011). When temporal predictions generated during 

sentence listening are violated, activation levels are raised within an area of the left inferior frontal 

gyrus which is associated with phonological processing (Rothermich & Kotz, 2013). The localisation 

of this effect is distinct from that of effects observed when semantic predictions are violated, and 

implicates subcortical sensorimotor areas in comprehension and prediction. 

Event-related brain potentials also reveal that predictions generated during reading comprehension can 

be specified to a speech-sound level (DeLong et al., 2005; Foucart, Martin, Moreno, & Costa, 2014; 

see Chapter 1 for discussion). An N400 effect is observed when readers encounter an indefinite article 

in a form inappropriate to the anticipated upcoming noun (e.g., ‘an’ when the anticipated noun is kite). 

Because the indefinite articles differ only as a function of the phonological onset of the following 

word, this effect can only be located at a form level (phonological, orthographic, or both), again 

consistent with the view that prediction implicates the production system. We should note however 

that there remains an open question as to whether it is correct to conclude from prediction of 

orthographic material during written language comprehension that the motor activation observed 

during spoken language comprehension reflects specific predictions of upcoming speech sounds. 

In this thesis we investigate the relationship between comprehension and production during prediction 

by causing participants to comprehend, predict, and produce language simultaneously. Of interest is 

whether prediction results in (motor) activation within the production system, and whether this 

activation impacts the subsequent production of spoken words. By a similar logic to that of Springer et 

al. (2011), we might expect performance on the production task to be modulated by the degree of 

overlap between what is predicted and what is produced. We conducted three experiments designed 

along these lines (Drake & Corley, 2015a; see Chapters 3 and 4 of the current thesis). In contrast to 

findings from PWI studies in which the distractor word is physically presented in written or auditory 

form (e.g., Meyer & Schriefers, 1991; see also Chapter 2 of the current thesis), phonological overlap 

between predicted words and picture names was not found to have an effect on response times: 

Participants were no quicker to name a picture when its name partially overlapped with the predicted 



95 
 

word (e.g., TAP-cap ) than when it did not (e.g., TAP-cone; Drake & Corley, 2015a; see also 

Severens, Ratinckx, Ferreira, & Hartsuiker, 2008).  

However, the time at which the response becomes acoustically available is only one source of 

evidence concerning the speech production system. In the same way that visual world eye-tracking 

can provide information on the ongoing interpretation of an utterance, and on the prediction of what is 

likely to be mentioned (e.g., Altmann & Kamide, 1999; Tanenhaus, Spivey-Knowlton, Eberhard, & 

Sedivy, 1995), measures which capture the movements of the articulators during the production of an 

acoustic signal can provide further insight into ongoing speech-motor activation. In Chapter 6 we 

report a study in which we employed ultrasound tongue-imaging to such an end.  The findings 

indicated that where there is a phonological contrast between a linguistically predicted item and an 

item presented for naming, the articulatory path is affected.  Such interference at a motor-speech level 

suggests that the predicted item is in some way represented at this level. 

The additional movement observed in mismatching conditions suggests that to produce a mismatching 

picture name places additional demands on the articulatory system, as well as on the cognitive system 

(as evidenced by increased reaction times). There are at least two possible accounts of the increased 

movement found in the mismatching condition. One is that it is specifically driven by a motor 

representation of a competing (predicted) onset. Perturbation of movement towards an incorrect target 

has been observed to be the case when two stimuli “try to control the same speeded motor response” 

(Schmidt & Schmidt, 2009, p. 595), and in the speech error elicitation paradigms reviewed in Chapter 

5. An alternative view is that it is the existence, rather than the specific nature, of a competing 

prediction which gives rise to increased movement. On this view, response competition, rather than 

the specific details of a competing representation, may be the cause of perturbations in movement (cf. 

Dhooge & Hartsuiker, 2010).  

The two views outlined above can be distinguished by comparing the articulations of picture names 

which match predictions (When we want water we just turn on the. . . “TAP”) to those with matching 

rimes (“CAP”) and those with matching onsets (“TAN”). The first two conditions replicate those 

investigated in Chapter 6 of this thesis (see also Drake & Corley, 2015b). The third condition is an 

addition:  Because the predicted word in the third condition shares an onset with the picture name, any 

speech-motor activation associated with prediction should support the production of the required /t/ 

onset. Perturbations in articulation should therefore be reduced in this third condition relative to those 

for the matching rime (mismatching onset) case. If, on the other hand, perturbations in articulation 

reflect response competition, then the phonological specifics of the predicted word should not be 

relevant; rather, any mismatching prediction should result in greater perturbation to articulation. 

Below, we present the ultrasound study designed to test these hypotheses.  
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7.1.4.   Current Experiment  

Participants named pictures with monosyllabic names directly after hearing high-cloze sentence 

fragments. The fragments predicted either; (i) the name of the picture (match/ full-overlap condition); 

(ii) a word with a matching rime (mismatch/rime-overlap condition), or; (iii) a word with a matching 

onset (mismatch/ onset-overlap condition). On the view that prediction during comprehension invokes 

specific speech-motor activation, picture names with different onsets from the predicted word should 

show articulatory perturbation (predicting “tap” and naming CAP would show perturbation; predicting 

“tap” and naming TAN would minimise perturbation due to predictive activation of /ta/). 

Alternatively, on the view that perturbations in articulation are the consequence of response 

competition, picture names which differ in any respect from the predicted word should show 

articulatory perturbation (i.e., CAP and TAN would show comparable perturbation relative to TAP, 

when “tap” was the high-cloze sentence target).  

7.2. Method 

7.2.1.   Participants  

Twelve monolingual English speakers (9 female) aged between 20 and 28 years took part in the study. 

Participants were recruited from research pools at Queen Margaret University and the University of 

Edinburgh, were paid for their participation, and gave written informed consent in line with BPS 

guidelines. The study was granted ethical approval by the Psychology Research Ethics Committee of 

the University of Edinburgh (approval no. 14-1213/1). 

7.2.2.   Materials 

 Materials were identical to those used by Drake and Corley (2015b; see Chapter 6 of current thesis), 

with the amendment that in the present study we additionally paired sentence stems with pictures 

which had overlapping onsets. Twelve pictures served as experimental items. Each picture 

corresponded to a single-syllable name which paired one of two onsets (/t-/ or/k-/) with one of six 

rimes (/-æn, -æp, -eɪp, -eɪk, -ǝʊn, -ǝʊst/).  A further two pictures were used as practice items. We used 

high-cloze 3 sentence stems which predicted each of the picture names (can, tan, cap, tap, cape, tape, 

cake, take, cone, tone, coast, toast). The 36 sentence-stems were recorded as spoken by a female 

speaker of British English (mean speaking rate = 3.92 syllables/second; mean sentence stem duration 

= 3.10 seconds, range = 1.90–5.29 seconds; see Appendix C).  
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7.2.3.   Procedure  

As in previous prediction experiments reported in this thesis, the experiment was presented on a 

laptop, using DMDX software (Forster & Forster, 2003). Subsequent to training on picture names (all 

participants achieved 100% accuracy), the experiment proceeded in five blocks. In blocks 1 and 5, 

pictures appeared in isolation following a fixation point which was displayed for 2.9 seconds, and 

participants named each picture aloud once. In blocks 2, 3, and 4, the fixation point was accompanied 

by the auditory presentation of a sentence stem (i.e., participants would hear “When we want water we 

just turn on the…”  while the fixation point was visible). Immediately following the sentence stem, 

the fixation point was replaced with the picture to be named. In a third of cases in each block, the 

correct name matched the predicted word (e.g., “tap”- TAP); in a third of cases the name had an 

overlapping rime (e.g., “tap” - CAP); and in a third of cases the onset overlapped (e.g., “tap”-TAN ). 

In each of blocks 2, 3, and 4, all 36 sentence stems were used, and each picture was presented 3 times. 

Combinations of sentence stems and pictures were counterbalanced such that each picture was only 

combined with a given sentence stem once across the 3 experimental blocks. Throughout the 

experiment, participants were instructed to name each picture as soon as they could, without 

sacrificing accuracy. We used Articulate Assistant Advanced (Articulate Instruments Ltd, 2012) to 

capture an acoustic record of participants’ responses and a time-locked ultrasound record of 

movements of the midsagittal tongue contour). Ultrasound images were obtained via a probe secured 

directly against the under-surface of the chin using a proprietary headset (Articulate Instruments Ltd, 

2008), at a rate of  ~100 frames per second (see Chapter 5). 

Acoustic data were manually tagged in Praat (Boersma, 2001) to indicate; (i) the onset of picture 

presentation; (ii) the acoustic burst of the onset consonant during picture-naming; (iii) the onset of 

voicing striation (i.e., vowel onset), and; (iv) the offset of the steady-state vowel. 

7.3. Results 

Recordings from 2 female participants were not analysed further. In the case of one participant, this 

was due to a (technical) failure to record sufficient numbers of ultrasound records. In the other, it was 

not possible to determine relevant timings from the acoustic record (due to experimenter error during 

microphone set-up at the beginning of the experiment). Each of the remaining 10 participants 

produced 132 picture names (24 in the control and 108 in the experimental conditions). Of the 

resulting 1320 recordings, 38 (2.9%) were discarded because of failures to properly record either 

audio or ultrasound (there were no differences across conditions in the proportions of recordings 

dropped: 
2
(3) = 3.8, p = .28). The remaining 1282 recordings were digitized to video at a rate of ~30 

frames per second for further analysis. 
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7.3.1.   Response latencies 

We determined naming latencies manually, by measuring the time between the onset of the picture 

presentation and the acoustic burst associated with the onset of the picture name. When participants 

named pictures in the match (i.e., full-overlap) condition (mean RT = 479 ms; se = 25 ms) they were 

faster than in either the rime-overlap condition (mean RT = 693 ms; se = 38 ms) or the onset-overlap 

condition (mean RT = 674 ms; se = 33 ms). Mixed-effects regression using orthogonal contrasts with 

the maximal justified random effects structure (Barr, Levy, Scheepers, & Tily, 2013) showed that the 

mismatch (i.e., partial overlap) conditions resulted in significantly slower naming latencies than the 

match (i.e., full-overlap) condition (ß = 67.6; se = 8.9; t = 7.6). However, there was no reliable 

difference in naming latencies between the rime-overlap and onset-overlap conditions (ß = 6.8, se = 

11.5; t = 0.6). This replicates the differences found previously for the relevant conditions (Drake & 

Corley, 2015a; 2015b; see also Chapters 3, 4, and 6 of the current thesis)  

7.3.2.   Ultrasound Analysis 

 The ultrasound analysis closely follows that reported in Chapter 6. First, we identified key moments 

during the participants’ productions of each word by inspecting the audio channel using Praat 

(Boersma & Weenink, 2014). These were the acoustic release (burst) of the onset consonant, and the 

end of the steady-state vowel (striation) which followed. These time points were used to extract 

portions of each video for further analysis. Video extracts were expanded or contracted to a 

standardised number of frames using an averaging algorithm (see McMillan & Corley, 2010) to 

control for slight differences in video frame rate and in articulation timings. Each resultant frame of 

ultrasound video constituted a 512 × 277 grid of pixels. Pixels ranged in luminance from 000 (black) 

to 255 (white). In order to achieve data tractability, we processed each frame so that luminance was 

averaged over blocks of 8 × 8 contiguous pixels (see McMillan & Corley, 2010). A vector was 

generated from each frame, with each 8 × 8 pixel block assigned a specific position in the vector. 

Each vector ran from bottom left to top right of the video frame. Vectors formed the basis for 

analyses, which were performed by calculating and comparing Delta scores (McMillan & Corley, 

2010): i.e., the Euclidean distances between individual vectors (frames).  

In order to minimise the effects of noise in the ultrasound images (see Wrench & Scobbie, 2008) we 

performed a preparatory analysis in order to determine the quality of the data acquired from each 

participant for each CV onset. This analysis was performed on ultrasound data acquired between the 

acoustic burst and the end of the steady-state vowel for each token; subsequent analyses were 

performed on data acquired prior to the acoustic release of the onset consonant. We used 

multidimensional scaling (Mardia, 1978) to calculate how well the Delta scores distinguished tokens 

of a given CV onset from tokens of all other CV onsets produced by that participant. This was 
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achieved by determining the mean Euclidean distance of a given vector from: (a) all vectors 

representing different CV onsets; (b) all vectors representing the same CV onset. The Discrimination 

score for each onset for each participant was equal to (a)/(b). Therefore the higher the score the better 

the data discriminated between a given CV onset and others in the picture-name set, and the less noisy 

the data. This information was used to geometrically weight the contribution of each participant’s data 

to subsequent analyses (Carroll & Ruppert, 1988). In this way we were able to avoid arbitrarily 

discarding poor quality data, whilst accounting for the great by-participant variability known to be 

associated with ultrasound articulatory data.  

We used a mixed modelling approach, implemented in R via the lme4 package (Bates, Maechler, 

Bolker, & Walker, 2014).  In line with common practice we report effects as significant where |t| > 2. 

In all analyses we modelled Delta scores as the outcome variable, and included Condition (Match, 

Onset Overlap, Rime Overlap) and Onset consonant (/k/, /t/) as fixed effects, and Participant and 

Picture-name (i.e. item) as random effects. 

7.3.2.1. Location of articulation analysis 

This analysis was performed on articulatory data acquired between -500ms and 0ms of the consonant 

acoustic burst. Data acquired during this period were collapsed to produce one average-luminance 

vector per token. For each item, a reference vector was generated by averaging across all Control 

productions of that item. This allowed us to calculate Delta scores which expressed the degree to 

which tokens produced in the experimental conditions (Full Overlap, Onset Overlap, Rime Overlap) 

differed from those produced in the Control condition. 

Differences between individual articulations and mean control articulations were then modelled as the 

response variable in a linear mixed model (for details of predictor variables and model structure see 

above). Delta scores in the Full Overlap condition were significantly lower than those in the partial 

overlap conditions ( = 1.687, t = 2.108). Delta scores in the two partial overlap conditions (Onset and 

Rime) did not differ significantly ( = 0.506, t = 0.364). This indicates that, in line with our 

prediction, articulation in the Rime Overlap condition differed from that in the Full Overlap condition. 

However, contrary to the prediction of a speech-sound specification hypothesis, articulation in the 

Rime Overlap condition (where there was onset competition) did not differ from that in the Onset 

Overlap condition (where there was not onset competition). 

In order to investigate whether tokens in the Rime Overlap condition exhibited traces of articulatory 

interference, we generated Delta scores that expressed the degree to which tokens produced in the 

experimental conditions differed from the Control reference vector for their onset competitor (i.e., 

rather than comparing tokens of “take” to the reference vector for “take” as above, we compared them 

to the reference vector for “cake”). These Delta scores did not differ by condition (in all cases |t| < 1): 

We did not observe a phoneme-specific articulatory interference effect. 
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7.3.2.2.  Time-course analysis 

This analysis was performed on all ultrasound frames acquired between -1000ms and 0ms of the onset 

consonant acoustic burst for each token (i.e., 31 frames per token). Within each token we calculated 

Delta scores for all inter-frame transitions over the time-course. Higher delta scores indicated greater 

frame-to-frame change associated with greater change in tongue configuration. Delta scores were 

automatically averaged and plotted by condition (Full, Onset, and Rime Overlap; see Figure 7.3.1).  

 

Figure 7.3.1: Frame-to-frame change in ultrasound tongue image during pre-acoustic articulation 

 

We modelled Delta scores at each inter-frame transition via mixed-effects models comparing 

productions in the Onset and Rime Overlap conditions to those in the Full Overlap condition. We 

treated effects as significant only when they clustered across three or more consecutive time-points 

(Lage‐Castellanos, Martínez‐Montes, Hernández‐Cabrera, & Galán, 2010). Effects of condition were 

The x-axis represents time milliseconds prior to the acoustic response (i.e. the response latency 
period between picture presentation and acoustic picture naming).  The y-axis represents the amount 
of change in the ultrasound image between two consecutive frames of the ultrasound record 
(averaged by condition).  This can be loosely interpreted as the extent of articulatory movement 
between frames.  Solid lines indicate the by-condition means at each time point. Faint colour bands 
indicate 95% confidence intervals for the by-condition means.  
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found to be statistically significant (i.e., |t| > 2) for both consonant onsets (i.e., /k/ and /t/) between -

500ms and -300ms. Effects were also significant for /t/ onset items in the time window     -700ms to -

500ms. Significant effects were observed over a longer time period in the Rime Overlap condition 

than in the Onset Overlap condition, but the two conditions pattern similarly, with consistently greater 

frame-to-frame movement in these conditions than in the Full overlap condition. This means that, as 

in the Location of Articulation analysis, we observed an articulatory effect of mismatch between the 

lexical prediction and the picture name. We did not find evidence that this effect was confined to 

situations in which there was onset competition between the predicted word and the picture name.  

7.3.3.   Lexical analysis 

The primary manipulation of interest across the experiments reported in this chapter was, as stated in 

the Introduction, the nature of the phonological overlap between the predicted word and the target 

picture name noun. However, as in the response latency experiment reported in Chapter 4, some 

sentence-stems predicted homophones of picture name target nouns rather than the nouns themselves 

(e.g., “There's no such word as can't.  You have to believe that you…” CAN; “They raised their 

glasses in a…”  TOAST).  As discussed in Chapter 4, in such cases the picture name overlaps fully 

with the prediction at a phonological level but not at a semantic level, and is therefore a homophone of 

the prediction rather than a full match. 

In Chapter 4 we reported that participants were quicker to name pictures when they were a full match 

for the prediction than when they were merely a phonological match (i.e., a homophone).  However, 

homophones were still named more quickly than pictures that overlapped partially at a phonological 

level (i.e., in the rime and onset overlap conditions, referred to in this chapter as the mismatch and 

onset overlap conditions respectively). This confirmed that predictions are active in some way at a 

word-form level.  Results reported in the current chapter suggest that articulatory differences between 

the phonological match and mismatch conditions are not affected by the type of segment level overlap 

between a predicted word and a to-be-named picture.  It therefore appears that articulatory differences 

reflect conflict at whole syllable level and/or at a more general item level.  Homophones conflict with 

predictions at a general level, but do not conflict with predictions at a syllable level.  We further 

analysed the articulatory data acquired in the study reported in the current chapter in order to 

investigate whether articulation of homophones differed from that when pictures fully matched the 

prediction.  Evidence of greater articulatory movement in the homophone condition would suggest 

that the conflict we observed in articulatory records from both partial overlap conditions arose, at least 

in part, at a general (semantic) level.  

We performed a supplementary analysis to investigate whether there was an articulatory difference 

between the homophone and full match conditions.  This analysis included data acquired in the full 

overlap context only (i.e., where the picture name fully overlapped with the predicted item at a 

phonological level; see Figure 7.3.2), although we include plots of data acquired in the mismatch and 
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onset overlap conditions for comparison.  As in Chapter 4, for each sentence-stem, we determined 

whether the high-cloze target had the same meaning as the picture it was encountered with in the 

match condition (e.g., “The fire alarm’s gone off again; someone must have burnt the …” TOAST) or 

whether it shared only phonological form (e.g., “They raised their glasses in a …” TOAST).  Where 

the sentence fragment predicted the picture name lemma in the match condition the trial was 

considered to be a “name”; where only the phonological form matched the trial was considered to be a 

“homophone”. Of the 36 experimental sentence-fragments, 11 (31%) formed category mismatches.  

Only the full overlap context allows the predicted item to match the picture name at a lexical level. 

The analysis approach is identical to that described above to compare articulation by condition, with 

the exception that all data included now came from the full-overlap condition, and the comparison was 

between “homophones” (phonological match) and “names” (full match).   

We modelled Delta scores at each inter-frame transition via mixed-effects models comparing 

productions in the Homophone condition to those in the Name condition. As described above, under 

this approach we treat effects as significant only when they clustered across three or more consecutive 

time-points.  Movement was found to be statistically greater (i.e., |t| > 2) in the Homophone condition 

than in the name condition in only one time-point model ( = 4.01, se() = 1.91, t = 2.10), with the 

following time-point model approaching significance ( = 3.78, se() = 1.90, t = 1.99).  These models 

include data covering a time period from approximately 810ms to 750ms prior to the acoustic onset 

(refer to Figure).  The failure to achieve significance over 3 or more time points means that we do not 

interpret this as indicative of a reliable difference in mean articulatory movement between 

Homophone and Name conditions. This data set therefore does not provide evidence that articulatory 

interference arises as a result of mismatch at a general semantic level. 
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Figure 7.3.2: Frame-to-frame change in ultrasound tongue image during pre-acoustic articulation in 
full-overlap condition (homophone analysis) 

 

 

                                    

Figure 7.3.3: Frame-to-frame change in ultrasound tongue image during pre-acoustic articulation 
rime-overlap condition (homophone analysis) 

 

The x-axis represents time milliseconds prior to the acoustic response (i.e. the response latency 
period between picture presentation and acoustic picture naming).  The y-axis represents the 
amount of change in the ultrasound image between two consecutive frames of the ultrasound 
record (averaged by condition).  This can be loosely interpreted as the extent of articulatory 
movement between frames.  Solid lines indicate the by-condition means at each time point. Faint 
colour bands indicate 95% confidence intervals for the by-condition means.  
 

The x-axis represents time milliseconds prior to the acoustic response (i.e. the response latency 
period between picture presentation and acoustic picture naming).  The y-axis represents the 
amount of change in the ultrasound image between two consecutive frames of the ultrasound 
record (averaged by condition).  This can be loosely interpreted as the extent of articulatory 
movement between frames.  Solid lines indicate the by-condition means at each time point. Faint 
colour bands indicate 95% confidence intervals for the by-condition means.  
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Figure 7.3.4: Frame-to-frame change in ultrasound tongue image during pre-acoustic articulation 
onset-overlap condition (homophone analysis) 

 

            

7.4. Discussion 

We reported a study in which we used an automated approach to the analysis of ultrasound tongue 

imaging data in order to investigate whether comprehension-elicited lexical predictions have 

articulatory consequences. Participants named pictures in one control condition and three 

experimental conditions. The experimental conditions differed with regard to the extent that the 

picture name overlapped with a predicted word at a phonological level. Lexical predictions were 

elicited by auditorily presenting participants with high-cloze sentence-stems (i.e. via comprehension). 

Of specific interest was whether comprehension-related predictions elicit cascade from a phonological 

to a motor-speech level as do representations activated during speech production and speech listening.  

Effects of prediction were observed in articulatory data acquired prior to the acoustic onset of picture 

naming. When data were collapsed over the 500ms preceding acoustic onset, articulations were more 

similar to the control productions when there was full overlap between the predicted word and the 

picture name than where there was only partial overlap. This indicates that lexical predictions elicited 

via comprehension can have articulatory consequences.  

The findings of previous error-elicitation studies led us to predict that if motor-speech activation 

during comprehension reflects the representation of upcoming material at an abstract gestural level we 

would observe interference from a competing representation at an articulatory level. We therefore 

investigated whether tokens produced in the Rime Overlap condition, where the lexical prediction 

The x-axis represents time milliseconds prior to the acoustic response (i.e. the response latency 
period between picture presentation and acoustic picture naming).  The y-axis represents the 
amount of change in the ultrasound image between two consecutive frames of the ultrasound 
record (averaged by condition).  This can be loosely interpreted as the extent of articulatory 
movement between frames.  Solid lines indicate the by-condition means at each time point. Faint 
colour bands indicate 95% confidence intervals for the by-condition means.  
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would activate a competing onset representation, were more similar to articulations of the competing 

word than were those in the Onset Overlap. We did not find evidence to support this interpretation.  

We used a time-course analysis to further investigate the nature of the effects on articulation of 

comprehension-elicited predictions. This analysis approach revealed that effects are seen only at a 

relatively early stage during the pre-acoustic phase. During this early time-window, frame to frame 

change is greater in conditions where the picture name does not match the predicted word. However, 

the degree and pattern of frame to frame change did not appear to differ according to whether there 

was phonological conflict at word onset: Articulation in the Onset Overlap condition (in which there 

was no conflict at word onset) differed from articulation when there was a full-word match but not 

from articulation when there was conflict at word onset. This suggests that articulatory effects may 

arise at a whole-word level. It should be noted, however, that picture names were all monosyllabic so 

it is not possible to distinguish between effects arising at a whole syllable level and those arising at a 

whole word level.  

The suggestion that articulatory effects arise at a whole word level is compatible with the early time-

window at which effects are observed, and with the failure to find evidence of phonological 

interference effects. The apparent non-specificity of the articulatory effects observed raises the 

possibility that the articulatory consequences of the lexical predictions reflect general conflict 

monitoring and resolution processes (possibly an articulatory correlate of neural error-related 

negativity).  
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 Conclusion Chapter 8:  

This thesis reports a series of studies that explore how the production system might be involved in 

prediction during comprehension, specifically during prediction at a speech-sound level.  The first part 

of the thesis investigates whether the effects on speech production of sententially-induced lexical 

predictions are comparable to the effects of perceptually presented distractors. This question is central 

because studies implicating the production system in comprehension at a speech sound level have so 

far investigated neural speech-motor activation only in response to perceptually presented stimuli. If 

speech motor representations subserve prediction, they must be evoked prior to the point at which the 

relevant sensory stimulus is presented (see Pickering & Garrod, 2013, p.106).  Their effects should 

therefore be observable at a speech motor level in the absence of an external stimulus. Whilst EEG 

data has provided evidence consistent with the view that participants predict upcoming material at a 

speech sound level (e.g., DeLong et al., 2005), this has not been shown to relate to speech motor 

representations.  The response time study reported in Chapter 2 of this thesis used a PWI paradigm to 

confirm that our materials elicit the typical speech sound effects expected when distractors are made 

perceptually available.  However, in the studies reported in Chapters 3 and 4, where distractors were 

predicted rather than presented, response latencies did not reveal evidence of similar speech sound 

effects. 

In the second part of this thesis, we reported two studies in which articulatory imaging was employed 

in order to directly investigate whether speech-sound predictions are represented at a speech-motor 

level.  Speech motor movement during the response latency period was captured via ultrasound 

imaging.  Data were analysed using an extension of the Delta method approach (McMillan & Corley, 

2010). The extended Delta approach developed in this thesis allowed speech production to be 

investigated as a dynamic motor process rather than as single-point acoustic goal realisation. Speech 

motor movement was tracked over the response latency period.  This approach allowed investigation 

of how the acoustic goal associated with voice-key triggering is realised as well as when.    As stated 

above, the response latency findings reported in this thesis did not provide evidence that segment-

like
13

 representations are activated within the speech production system during comprehension-based 

prediction.  The articulatory findings indicate that predictions elicited during spoken language 

comprehension do have speech-motor consequences.  However, it appears that these speech-motor 

consequences are not specific to overlap between a predicted sound segment and the segment-to-be-

articulated.  

In the current chapter we consider our response time and articulatory findings with reference to recent 

exegeses of the prediction-as-simulation framework proposed by Pickering and Garrod (2004; 2007; 

2013; see also Gambi & Pickering, 2016).  We refer to neurobiologically-inspired and phonologically-

                                                           
13

 we use the term “segment” to refer to representations specified at a conventional phoneme level 
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informed models of speech processing which incorporate the notion of forward models and multiple 

levels of phonological representation.  In particular, we consider our findings with reference to 

Hickok’s instantiation of a Hierarchical State Feedback Control model of speech production (Hickok, 

2012; 2014). 

With respect to prediction as a production activity during comprehension, the Pickering and Garrod 

framework assumes that the listener can covertly imitate the speaker’s utterance, thereby deriving a 

production command associated with that utterance.  The derived production command then allows 

the listener to use the forward modelling process that s/he uses when producing her/his own speech in 

order to predict upcoming (speaker generated) sensory input via the forward model (Gambi & 

Pickering, 2016; Pickering & Garrod, 2013). This process is referred to as “prediction-by-

simulation”
14

.  PWI and sentence completion studies are cited by Pickering and Garrod (2013) as 

sources of evidence that comprehension and production are finely interwoven and that a split between 

the two should be challenged.   Combining features of the two paradigms in order to create a picture 

prediction interference paradigm allowed us to investigate whether the predictive mechanism 

employed during sentence listening resembles the prediction-by-simulation process described by 

Pickering and Garrod.  If participants do indeed use a production command to predict during 

comprehension, we would expect such predictions-of-another to affect production in the same way as 

do other competing representations within the production system, such as those evoked during error 

elicitation and PWI tasks. 

As reviewed and demonstrated in Chapter 2 of this thesis, the picture-word interference effect is 

reduced when the distractor shares initial or final speech-sounds with the picture-to-be-named; the 

relative reduction in naming latencies is generally referred to as a phonological facilitation effect.  The 

effect indicates that distractors are subject to representation at a speech-sound level in a form that 

contacts the speech production system.  If predictions were also represented at a speech-sound level 

within the speech production system we would expect to see a comparable effect.  We did not see 

such an effect.  We consider this finding with reference to the primary model relating to reaction-time 

data, WEAVER++ (see Strijkers et al., 2013 for comment on Pickering and Garrod’s reference to this 

model). 

Under WEAVER++ (Roelofs, 1997; 2002), when a segment is retrieved as part of a lemma’s 

associated phonological code during word production, activation spreads to all the syllabic scores 

with which it is associated.  For example, during naming of a picture CAP, the morpheme <cap> is 

activated following selection of the lemma cap (along with its relevant syntactic diacritics, e.g., noun, 

singular). Activation of the morpheme <cap> elicits retrieval of the segments /k, a, p/, which are 

                                                           
14

 With respect to prediction of another’s speech, the framework provided by Pickering and Garrod 
(2013) differs from earlier proposals made by the same authors:  Earlier work (e.g., Pickering & 
Garrod, 2007) proposed that a comprehender produces fully-specified predictions representing what 
she would say herself if she were the speaker.   
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concatenated to form the syllable score /kap/.  However, retrieval of the segments /k, a, p/ also causes 

activation to spread to other syllable scores that link to one or more of those segments  (e.g., /kan/, 

/kat/, /kab/, /tap/, /map/, /lap/).  In this way, retrieval of a phonological code during production 

planning will always lead to the activation of multiple syllable scores (although under a discrete 

model only one phonetic score is forwarded to articulatory control processes; see Cholin et al., 2006, 

p. 209).   

Under WEAVER++, phonological facilitation in the PWI paradigm is achieved indirectly, via 

activation within the perceptual system: The distractor word is processed within the perceptual 

network, activating relevant phonological segment nodes.  This leads to the activation of 

corresponding segment nodes within the production network.   When these corresponding segment 

nodes are components of the target picture name, its phonological code spell out is speeded up.  This 

ultimately reduces the time lapse between picture presentation and syllable program retrieval. To take 

an example from the study reported in Chapter 2: a distractor word “cap” activates the segments /k, a, 

p/ within the perceptual system.  This leads to the activation of corresponding segments within the 

production network.  The activation of these segments leads to the activation of the syllable progams 

to which they link (for example, /kan/, /kat/, /kab/, /tap/, /map/, /lap/).  Picture naming latency to such 

phonologically overlapping words is therefore reduced, although articulation can be initiated only 

once all the syllabic scores of an intended phonological word have been retrieved.  The finding of 

phonological facilitation reported in Chapter 2 would be accounted for in this way. 

WEAVER++ also allows a direct production route to phonological facilitation, which, unlike the 

indirect route, does not require that a stimulus be perceptually available.  This route was developed to 

account for evidence that the phonological segments associated with multiple candidate lemmas can 

be activated in parallel within the speech production system (Peterson & Savoy, 1998; see also 

Jescheniak & Schriefers, 1998; see also Miozzo, 2002; Navarette & Costa, 2005; Meyer & Damian, 

2007 for evidence from picture-picture naming paradigms).  Under Pickering and Garrod’s prediction-

as-simulation framework, predictions are generated within the production system; phonological 

facilitation would therefore be expected to arise via a direct production route. However, as reported in 

Chapters 3 and 4, we did not observe a phonological overlap effect when distractor words were 

predicted rather than presented.   

Although predictions did not elicit phonological facilitation, homophone naming was facilitated.  This 

suggests that lexical predictions generated during comprehension are in some way represented at a 

speech form level within the production system, although it does not in itself speak to the issue of 

whether speech motor representations are involved.  Homophone facilitation in the absence of other 

phonological facilitation may be accounted for by feedback from a speech sound to a lexical level. 

Alternatively or additionally, it may indicate that the proximal planning unit involved in prediction 

differs from that involved in perception-production:  prediction may involve syllable-sized units 

whereas perception allows segment-size units.  Pickering and Garrod’s speech processing framework 
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does not specifically address the possibility that speech sounds may be represented at multiple levels.  

However, the interpretation suggested above is in line with the speech processing architecture outlined 

in Hickok’s Hierarchical State Feedback Control model of speech processing (HSFC; Hickok, 2012; 

2014).  We return to this matter following discussion of our articulatory imaging findings.  

As reviewed in Chapters 5 and 6, articulatory imaging has been previously been employed to 

investigate the effects of phonological competition during speech production.  Studies have focused 

on competition that arises as participants plan and execute their own speech (as opposed to the 

potential “planning” of others’ speech suggested under the prediction-as-simulation proposal).   The 

phonological competition investigated via error elicitation paradigms is understood to arise of the 

same process that underlies the direct-route phonological facilitation modelled in WEAVER++; 

segments associated with multiple candidates are simultaneously active at a phonological level.  

Activation at lexical and phonological levels cascades to a speech motor level, resulting in multiple 

candidates being simultaneously active during response execution (see McMillan, 2008; McMillan & 

Corley, 2010; Goldrick & Chu, 2014). It has been suggested that such cascade from a planning to 

execution involves forward modelling of the type invoked under the prediction-as-simulation 

proposals made by Pickering and Garrod (2013; Dell, 2013).  

In the speech imaging studies reported in this thesis, the control condition required participants to 

name pictures presented in a non-predictive context, whereas experimental conditions required 

participants to name pictures following a sentence fragment that strongly predicted a specific lexical 

item.  When the prediction and picture name competed at word onset (e.g., cap TAP) articulation 

differed more from the control condition than when the prediction and picture name matched (e.g., cap 

CAP).  This articulatory interference, reported in Chapter 6, is in keeping with previous findings 

concerning production induced competition, and suggested that predictions generated during 

comprehension do involve speech motor level representation as proposed under Pickering and 

Garrod’s prediction-as-simulation account.  However, the design of the experiment reported in 

Chapter 6 did not allow us to distinguish whether articulatory interference during the response latency 

period reflected conflict between onset segments (as in previous studies of production induced 

competition) or between whole syllable units (as suggested by the facilitation of homophone naming 

revealed in the response latency study reported in Chapter 4).  In Chapter 7 we conducted a further 

study, in which we extended the design to include predictions that matched the picture name at word 

onset (e.g., cap – CAN), allowing us to investigate whether articulatory interference reflected 

competition between onset segments:  If predictions were represented as phonological segments 

encoded within the production system, we would expect articulatory interference to be reduced in the 

onset overlap condition (in which prediction and picture name match at onset) compared to the rime 

condition (in which prediction and picture name compete at word onset).  In fact, statistical 

comparisons of articulatory movement over time revealed that articulation in the onset overlap 

condition was indistinguishable from that in the rime overlap condition, with both conditions showing 

greater articulatory movement than the full match condition.   
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Our evidence therefore suggests that predictions elicited during comprehension are not represented at 

a segment level within the speech production system but that predictions are activated and do interfere 

at a speech production level. As reported in Chapter 7, we did not find reliable evidence of 

articulatory interference when predictions conflicted with the picture name at a semantic level but 

fully overlapped at a phonological level (i.e., in the case of homophones).  The fact that we observed 

articulatory interference only when predictions conflicted with picture names at a speech sound level 

favours an account in which articulatory interference reflects processing at a speech sound level of 

representation.  However, the failure to observe evidence in articulation of conflict at a semantic level 

cannot be taken as evidence that conflict at this level does not contribute to articulatory interference.  

We observed reliable evidence of articulatory interference between 500 and 300 milliseconds prior to 

the acoustic response. This falls within the time frame typically ascribed to semantic/syntactic 

processing (see Indefrey & Levelt, 2004; see also Indefrey, 2011) as opposed to phonological or 

phonetic processing (lexical access begins within 200ms of picture presentation; see Strijkers & 

Costa, 2011, for a review).  We therefore consider this account before returning to the topic of types 

of speech sound representation.  

Two aspects of our data militate against a (purely) semantic account:  Firstly, accounts that estimate 

semantic/syntactic processing at the time point that we observe articulatory interference are serial and 

do not allow articulatory involvement at this point.  Whilst our data contrast with the assumptions of 

such accounts, they are in keeping with the findings of other articulatory studies:  Myogenic activity 

associated with speech production has been reported to precede the acoustic onset of speech by up to 

500ms (see Brooker & Donald, 1980) and to be observed as early as 250 ms post stimulus onset (Riès 

et al., 2012; 2014).  Movement-related cortical potentials can be observed up to 600ms before mouth 

opening or phonation (Yoshida et al., 1999; Tremoureux et al., 2014; Galgano & Fround, 2008).  

These timings are consistent with the finding that motor-associated neural activity is commonly 

observed by 300ms post stimulus presentation (see Laganaro, 2016, for review figure).  Our data are 

also in keeping with questions concerning the sequential architecture of speech production assumed in 

the studies that informed the estimates cited above (e.g., Strijkers, 2016; Munding, Dubarry, & Alario, 

2016).  

The second aspect of our data that militates against a purely semantic account of the prediction-related 

articulatory interference effect concerns the processing of homophones (see Chapters 4 and 7).  

Predictions facilitated homophone naming despite being incongruent at a semantic level. Homophone 

naming did not show the articulatory interference effect observed where there was only partial 

phonological overlap between the picture name and the prediction.  As noted previously, these 

findings suggest that predictions do make contact with the speech production system at a word form 

level.  This conclusion stands whether one assumes that homophones share a single word form 

representation, or that feedback from a unique word form representation of the prediction leads to 

lemma level activation of the homophone and subsequent feedforward activation of the picture’s 

unique word form (see Severens, Ratinckx, Ferreira, & Hartsuiker, 2008, for a review):  in both cases 
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word form activation is necessary.  Therefore, when relating our findings to the proposal that 

prediction-by-simulation involves predictive activation of the speech motor system, the question of 

interest concerns how word form predictions might map to activation within the speech motor system. 

This is particularly pressing as our data suggest that word form predictions do not appear to be 

represented at a speech segment level within the listener’s speech-motor system. 

Conventionally, models of both speech production and speech perception have placed considerable 

emphasis on the phoneme as a representational unit essential to speech processing.  Under interactive 

models of speech production, information contained within phoneme representations is transformed 

into motor execution via representation at the feature level (e.g., MacKay, 1987; Dell et al., 1993; 

Kawamoto et al., 1998).   Alternatively, under WEAVER++ (referred to above), phoneme level 

representations allow resyllabification, which then allows activation of the relevant phonetic syllable 

with its associated motor program. Both modelling approaches allow motor execution to be realised 

more quickly when segment level representations receive relatively greater activation (e.g., the 

phonological facilitation effect in PWI).  Under both types of model, we would expect to see 

phonological facilitation effects in response latencies if predictions made contact with the production 

system at a form level. Phonological facilitation was not observed in any of the seven prediction 

experiments reported in this thesis.   

Under WEAVER++, phonetic syllables are informationally encapsulated, and therefore overlap at the 

more abstract segment level would not be expected to reduce the articulatory interference effect.  This 

is in keeping with our articulatory findings.  However, models that treat phonetic syllables are 

informationally encapsulated are not compatible with articulatory data acquired in production studies 

(such as those reviewed above and in Chapter 5), which do show articulatory effects of cascade from 

segment level planning processes (e.g., McMillan, 2008; McMillan & Corley, 2010; Pouplier, 2007; 

Pouplier & Goldstein, 2012).   

To summarise the discussion so far: The articulatory interference we observed in this thesis cannot be 

fully explained as arising of conflict between predictions and picture names at a semantic level. It is 

observed when there is conflict at a syllable level, but does not appear to operate at a speech segment 

(i.e., phoneme) level.  We therefore now consider whether our findings can be understood under an 

account that specifically posits multiple units of speech sound representation.  We choose to refer to 

the Hierarchical Sate Feedback Control model proposed by Hickok (HSFC, 2012; 2014) due to the 

fact that it shares key architectural properties with the framework under which Pickering and Garrod 

make their prediction-as-simulation proposal; both frameworks incorporate forward models and seek 

to integrate production and comprehension processes.  We note however that Hickok himself has 

queried the likelihood that prediction involves activation of the speech motor system (see Hickok, 

2014). 
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The HSFC is primarily “cast” at a phonological level.  A word representation is activated by a 

conceptual representation.  A (neurobiologically) ventral stream links environmental sounds (e.g., 

heard speech) to conceptual representations, whilst a (neurobiologically) dorsal stream links a motor 

movement (e.g., speech articulation) to the sound produced. “Auditory phonological representations” 

are central, in that they act both as targets for speech motor activity and access codes to lexical-

conceptual representations (i.e., an interface between dorsal and ventral stream processes). As a word 

becomes more frequently uttered, motor ‘presets’ emerge via Hebbian learning.  This process allows 

the formation of a “parallel, direct link” between the lexical-conceptual systems and motor-

phonological codes, allowing the lexical-conceptual system to activate the motor and sensory streams 

of speech production in parallel. In this way, activation of a lexical-conceptual representation invokes 

parallel input to both motor-phonological and auditory-phonological components of the phonological 

processing system   Under this account we would anticipate that, should predictions be represented 

within the production system, lexical-conceptual activation of predicted items would result in parallel 

input to motor- and auditory-phonological components of the phonological processing system. 

Phonological (speech sound) representations are distributed over higher and lower level loops and 

ventral and dorsal processing streams: Input from the lexico-conceptual system enters the 

phonological system at a high-level loop (auditory- Spt-BA44).  From this loop there is parallel 

projection to a lower-level somatosensory-cerebellum-motor cortex loop.  Ventral and dorsal streams 

interface through the loops, with the auditory and somatosensory elements being components of the 

ventral stream, and motor elements being components of the dorsal stream.  Crucially, with respect to 

the findings reported in this thesis, the higher level loop involves syllable sized units (an auditory 

syllable target and a motor syllable program) whereas the lower level loop involves phoneme (or 

“feature cluster”) sized units.  Our articulatory data could therefore be explained under an account that 

saw predictions as being represented within the integrated speech processing system at a higher-loop 

level but not at a lower loop level.  We consider whether such a situation could arise under the HSFC 

model. 

Within the HSFC model, input from the lexical-conceptual level to both higher level phonological 

components is excitatory, input from the auditory-phonological level to the motor-phonological-level 

is excitatory, but input from the motor-phonological to the auditory-phonological level is inhibitory.  

Therefore when input to the motor-phonological level matches input to the auditory-phonological 

level, all sensory activation is cancelled, meaning that there is no prediction error and excitation 

proceeds to the lower loop level at which the unit of representation is the segment rather than the 

syllable.  If input to the motor-phonological level does not match that to the auditory-phonological 

level the resulting prediction error allows for correction at the syllable level.  However, because 

auditory-phonological input to motor-phonological representations is excitatory, activation of an 

auditory-phonological representation alone is sufficient to elicit activation of a corresponding motor-

phonological representation.  In the absence of a gating system between higher and lower level dorsal 

(i.e. motor) representations, this would lead listeners to continually shadow heard speech. Hickok 
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therefore proposes a basal ganglia based gating system at this point, which is in place during speech 

comprehension but open during speech production; this has been successfully computationally 

modelled on a small scale (Hickok, 2012a). 

The architecture proposed by Hickok is therefore compatible with our articulatory and response 

latency findings:  Predictions can be understood as being represented within a multimodal 

phonological system.  Within a higher-level loop, which acts on syllable-units, activation from a 

lexico-conceptual source leads to activation within the dorsal (motor) stream.  However, this 

activation does not proceed to the lower-level loop, which acts on segment-units, due to a gating 

system that is active during comprehension activities.  As higher level motor representations of 

predictions are active during processing necessary for picture naming these predictions interfere at an 

articulatory level.  Interference operates at a syllable level but not a segment level because the 

prediction has not been subject to representation at the segment level. We therefore suggest that the 

HSFC model offers a valuable framework under which to consider the involvement of motor stream 

representations during comprehension related prediction. 

We previously noted that, when taken in their entirety, the findings reported in this thesis are not 

compatible with the suggestion that prediction-as-simulation involves a production system as 

modelled under traditional discrete or cascaded approaches.  We suggested that the HSFC provides an 

alternative model under which to consider the proposal that predictions contact the speech production 

system at a speech sound level.  We must now consider whether the HSFC model allows: (i) 

phonological facilitation at the segment level as observed in perceptual PWI studies; and (ii) segment 

level articulatory competition as observed in previous articulatory imaging studies.  The question in 

both cases is whether the experimental conditions would lead to the activation of segment-sized 

representations under the HSFC model.  It appears that in both cases the answer is yes:  In the 

perceptual PWI paradigm, phonological information would enter the system via the lower level loop.  

This loop is associated with segment-units, and we would therefore expect facilitation to operate a 

segment level.  In error elicitation paradigms associated with articulatory evidence of phonological 

cascade, both target and distractor items are intended for production.  Therefore neither item would be 

expected to be subject to activation gating.  This would allow both items to be activated at the lower 

level loop associated with segment-unit representation. 

8.1. Concluding remarks 

Adopting an ultrasound imaging approach allowed us to examine speech as action, thereby providing 

a means to investigate the prediction-as-simulation account proposed by Pickering and Garrod (2004; 

2007; 2013). The articulatory evidence presented in this thesis is consistent with the proposal that 

speech motor representations are activated during comprehension-elicited prediction. However, motor 

speech representation arising during prediction of another’s speech appears to differ from that arising 

during speech perception and speech production:  It appears to involve activation at a syllable level 
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but not at a segment level. This difference can be understood under the HSFC model (e.g., Hickok, 

2012) which, although it was not developed to model a prediction-as-simulation process, incorporates 

the necessary specificity concerning the relationship between speech sound and speech motor 

representations.  
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Appendix A: PWI studies summary 
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Appendix B: Context studies 
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Appendix C: Experimental Item 
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