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Abstract: Solar thermal systems are a long-standing technology that is receiving increased attention,
in terms of research and development, due to ambitious climate change targets and the need for
renewable energy solutions. Integrated collector-storage solar water heaters (ICSSWHs) are a potential
contributing solution and numerous studies have focussed on the optimisation of their thermal
performance and efficiency. A major drawback of these systems is the heavy heat losses experienced
during non-collection periods. To combat this, various heat retention strategies have been proposed
and evaluated, including baffles plates, additional insulation, multiple glazing layers, selective
coatings, and phase change materials. This paper aims to bring together these studies through
a systematic review of the existing literature surrounding the performance of ICSSWH systems,
focusing on heat retention. This review provides a comprehensive and up-to-date point of reference
on relevant research and developments for researchers in this field.

Keywords: integrated collector-storage solar water heater (ICSSWH); thermal performance;
technological development; heat retention; solar energy

1. Introduction

The current global situation sees ever increasing fossil fuel use with a subsequent increase in
climate impact. Given the commitments made to reduce greenhouse gas emissions and mitigate climate
change [1], the move towards renewable energy sources need to be accelerated. Solar energy has great
potential to contribute a near zero-carbon solution to the world’s energy demand [2]. In Scotland
the consumption of heat accounts for 53% of the energy consumed by homes and businesses and the
nature of the Scottish climate requires a large proportion of this demand to be dedicated to space
and water heating. Domestic hot water use is the second most significant energy use in the home at
approximately 13% of total Scottish heat energy demand [3]. On average, Scotland has a 10% greater
number of degree days than the UK as a whole, thus necessitating additional space heating. Therefore,
solar hot water systems present a promising alternative to fossil fuel powered heating. Given the high
specific heat capacity of water there is great potential for energy gain and storage in these systems,
often yielding efficiencies of up to 70% [4].

There are several types of solar thermal systems; the most common, commercially available
ones being the flat-plate and evacuated tube collectors. A hybrid flat-plate system, the integrated
collector-storage solar water heater (ICSSWH) has certain advantages over its more prevalent
opponents. The absorber plate and storage tank of the ICSSWH are combined into one compact
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unit offering great space saving capabilities unlike other flat-plate and evacuated tube collectors; which
require a bulky external water storage tank and, consequently, additional piping, pumps, and valves
which increase the heat loss and failure points within the system. Heat loss is a major drawback for solar
thermal systems, especially during non-collection periods and overcast days. To combat this, numerous
recent studies have focused on improving heat retention and system efficiency. This paper aims to
critically review such bodies of knowledge, identify existing trends, challenges, and opportunities,
and single-out areas for further research.

2. Background

The evolution of solar water heaters (SWHs) has been an impressive journey beginning in
America with the first of its kind, ‘The Climax Solar-Water Heater’, patented in 1891 [5]. However,
once extensive oil and gas reserves were discovered research into these systems halted until the early
1970s [6]. Presently, interest in solar water heating has been revived in response to global initiatives
aimed at the promotion of renewable energy technologies in order to mitigate greenhouse gas (GHG)
emissions [7,8]. There are numerous different models of SWH systems but they all have the same
goal—to deliver hot water to the end-user when required, efficiently, and at a reasonable cost. Figure 1
shows an ICSSWH and illustrates the general key components of a SWH: an absorber surface to collect
incident solar radiation, a storage tank (either combined with the collector or a distributed system),
glazing with high transmission, insulated housing for the collector/storage unit, and cold water inlet
and hot water outlet pipes.

The three most common SWH designs are concentrating collectors, evacuated tube collectors, and
flat-plate collectors. The choice of which design to employ can be determined by the environmental
conditions and the heating requirements of the end-user. Flat-plate collectors have varying designs
(serpentine, parallel tubes or ICSSWH) and, as the cheapest of the three options, are used extensively for
domestic water heating applications due to the performance advantages relative to cost [9]. They collect
both direct and diffuse radiation which is advantageous in overcast conditions, also solar tracking is
not required thus lowering system cost and complexity. The majority of studies surrounding these
systems aim to evaluate and optimise their performance, including optical efficiency, thermal efficiency,
and heat retention. There have been a number of papers (see Table 1) over the last decade aiming to
review these heat loss reduction strategies and to appraise the work being conducted in the area of
thermal performance.
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Table 1. Summary of papers reviewing the current research and outcomes surrounding design factors
of solar thermal systems.

Reference Year Title System(s) Reviewed Design Aspects Reviewed

[6] 2006 Integrated collector storage solar
water heaters ICSSWH

Additional insulation; Baffles; Cavity
evacuation; Collector material; Glazing;
phase change material (PCM); Reflectors;
Selective absorber surfaces

[4] 2011 A comprehensive review on solar
water heaters Thermo-syphon Additional insulation; Collector material;

Glazing; Selective absorber surfaces

[10] 2013
Review of solar water heaters
with integrated collector-storage
units

ICSSWH
Additional insulation; Baffle Plates;
Glazing; Inlet valve configuration; PCM;
Reflectors; Selective absorber surfaces

[11] 2013 Solar water heating systems and
their market trends

ICSSWH; Thermo-syphon;
Direct/indirect circulation; Air

Additional insulation; Baffle plates; PCM;
Reflectors

[12] 2013 Recent advances in the solar water
heating systems: A review

Flat-plate; Evacuated tube;
compound parabolic concentrator
(CPC)

Additional insulation; Baffle plates;
Collector material; Glazing; Reflectors;
Selective absorber surfaces

[13] 2013
A review of solar collectors and
thermal energy storage in solar
thermal applications

Non-concentrating (inc. flat-plate);
concentrating collectors

General overview of current technologies;
Fins; PCM

[14] 2014

Review of water-heating systems:
General selection approach based
on energy and environmental
aspects

ICSSWH; Thermo-syphon; Active;
PV/T; PCM

Fins; PCM; Reflectors; Selective absorber
surfaces

[15] 2015 Building integrated solar thermal
collectors—A review PV/T & solar thermal General overview of current technologies

[16] 2015
Integrated collector storage solar
water heaters: Survey and recent
developments

ICSSWH Additional insulation; Baffle plate/inner
sleeve; PCM; Thermal diodes

[17] 2015 Performance enhancement of
solar collectors–A review

Flat-plate; PV/T; Evacuated tube;
Compound parabolic Nanofluids; Selective absorber surfaces

[18] 2016
Innovation in flat solar thermal
collectors: A review of the last ten
years experimental results

Flat-plate; ICSSWH; PV/T
Additional insulation; Collector material;
Fins; Nanofluids; Selective absorber
surfaces

[19] 2016 A review of water heating system
for solar energy applications

Flat-plate; Evacuated tube;
Concentrating; ICSSWH Auxiliary immersion heating; Nanofluids

[20] 2016
Recent developments in
integrated collector storage (ICS)
solar water heaters: A review

ICSSWH Additional insulation; Baffle plate/inner
sleeve; Thermal diodes

Table 1 provides a summary of recent review papers in the field of solar thermal systems, detailing
the types of systems and the design aspects reviewed. Of the review papers listed, only a handful
evaluate the array of thermal optimisation methods available in one article. Smyth et al. [6] present
the most comprehensive review of the technical aspects of ICSSWH systems. Kumar and Rosen [10]
also review a number of optimisation strategies, collating key literature. However, the main problem
is the distributed nature of the information with regards to heat retention strategies and the need
for that information to be updated. Therefore, the aim of this paper is to present an up-to-date,
comprehensive review of the current research pertaining to the improvement in thermal performance
and heat retention with a particular focus on ICSSWH systems.

3. Heat Gain and Retention Strategies

ICSSWH systems are the simplest of the SWH designs, combining the collector and storage
tank into one compact unit. This creates direct contact between the working fluid (water, in direct
systems, as it must be potable) and the absorber plate. As a result, ICSSWH are subject to heavy heat
losses, especially during overcast and non-collection periods [21]. Figure 2 illustrates the heat transfer
mechanisms in a typical ICSSWH system showing the number of ways heat can be lost. The collector
surface absorbs solar radiation and converts it to heat which then gets transferred directly to the water
through convection. Due to the buoyancy effect, thermal stratification builds up in the water body
with the hottest water at the top of the tank where the majority of heat is lost through convection,
conduction and radiation. Convective heat losses occur between the absorber plate and the glazing
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and the air cavity needs to be optimised to act as an insulating gap, promoting convective heat transfer
to the collector whilst also minimising losses when ambient temperatures drop. Conductive heat
loss from the back and side walls, as well as the absorber surface, is a major problem for ICSSWH
systems and they need to be heavily insulated. Long-wave radiative heat losses have the largest
impact and occur between the absorber plate and the glazing, suppressed to an extent by the air cavity.
The glazing needs to have a very high transmissivity as well as optical efficiency to ensure as much
incident solar radiation can reach the collector surface as possible whilst again minimising radiative
losses. Numerous strategies exist to overcome these losses and to promote heat gain. The literature
surrounding these methods of optimising thermal performance will be reviewed in greater detail in
the following segments.
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3.1. Additional Insulation

Insulation is a simple and effective way of retaining heat, particularly at night. The two main
types of insulation are opaque and transparent. Opaque insulation is primarily used around the back
and sides of the systems where ambient heat losses through conduction and convection are high but
there is no need for transmittance of solar radiation [22,23]. A large percentage of heat is lost through
the glazing as this needs to be exposed to gain solar irradiance. This can potentially be alleviated by
partially insulating the air cavity, using transparent insulated glazing materials, and/or by applying
an insulated cover during the night and non-collection periods.

3.1.1. Transparent Insulation Materials (TIMs)

TIMs represent a new class of thermal insulation used to reduce unwanted heat losses from air
gaps and evacuated spaces. TIMs are transparent to solar irradiation yet they can provide good thermal
insulation. Early attempts to use these materials, such as experimental work by McCracken [23], led to
overall decreases in system efficiency, by ~20% during daytime collection, due to their poor solar
transmittance (0.85 in this case). However, research and development of these materials has led to
greater collector performances and they could be greatly beneficial in increasing the solar gain of
thermal energy systems. TIMs include organic-based transparent foams, honeycomb or capillary
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structures, and inorganic glass foams (e.g., silica aerogel). There are numerous configurations available
in terms of cellular geometry, as illustrated in Figure 3 [24].
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irradiance. Adapted from Kaushika and Sumathy [24].

Kaushika and Sumathy [24] conducted a review of solar TIMs, presented in Table 2. It was found
that a honeycomb material had the highest efficiencies when compared with a single and double
glazed system and a transparent slab of methyl methacrylate (MMA). It can also be seen that efficiency
increases with TIM thickness.

Table 2. Efficiency comparison of single glazing, double glazing, MMA slab, and honeycomb cover
system. Data taken from Kaushika and Sumathy [24].

TIM Thickness (m)
Efficiency (%)

Single Glazing Double Glazing MMA Slab Honeycomb

0.025 0.106 0.32 0.299 0.328
0.05 0.11 0.329 0.374 0.41
0.075 0.119 0.346 0.396 0.439
0.1 0.128 0.357 0.404 0.45

Schmidt and Goetzberger [25] determined that, for a single-tube absorber mounted in an involute
reflector, the ICS performance was almost constant for a TIM (polycarbonate honeycomb structure)
thickness ranging from 50–150 mm. Chaurasia and Twidell [26] compared two identical ICS units, one
with TIM and the other without. The system with TIM had a total heat loss factor of 1.03 W/m2K, with
hot water at temperatures 8.5–9.5 ◦C higher the next morning, compared with 7.06 W/m2K for the
glass only system. The study found that, by using TIM, storage efficiency was 24.7% higher; 39.8%
compared to 15.1% without the TIM. Reddy and Kaushika [27] conducted a series of comparative
studies on the effect of different TIM configurations for a rectangular ICSSWH. It was reported, and
later corroborated [28,29], that an absorber-perpendicular configuration (transparent honeycomb
structure immersed in an air layer) exhibited superior efficiencies over corresponding absorber-parallel
configurations (multiple covers of glass/plastic films). Reddy and Kaushika [27] concluded that the
double-wall structured polycarbonate TIM sheet was the most effective configuration and a system
with a thickness of 10 cm can achieve average solar collection and storage efficiencies in the range of
20–40% and bulk water temperatures between 40 and 50 ◦C.

3.1.2. Opaque Insulation

A number of studies have experimentally reviewed the collector performance of fully-versus
partially-exposed designs. Tripanagnostopoulos et al. [30] evaluated the performance of two
double-vessel systems utilising asymmetric compound parabolic concentrator (CPC) reflectors where
one had both tanks fully exposed while the other was partially exposed. The latter showed improved
heat retention during non-collection periods but the fully exposed design exhibited greater collection
efficiency. Smyth et al. [31] investigated two ICSSWH systems enclosed within a concentrating collector.
One system was a fully exposed, 1.0 m long cylindrical tank and the other a 1.5 m long tank with the
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top third heavily insulated. Unlike Tripanagnostopoulos et al. [30], the insulated system exhibited
a 13% increase in collection efficiency and increased thermal retention of up to 37% in the upper
insulated section due to stratification. However, these results are perhaps reflecting the greater storage
capacity and lower average water storage temperatures of the 1.5 m tank. Chaabane et al. [32] also
found, through a numerical CFD study, that a partially insulated tank effectively retained heat during
non-collecting periods. For the studied CPC mounted ICS system the authors found that the additional
insulation did affect the optical efficiency, with slightly lower water temperatures observed–up to
7.5 ◦C difference between the insulated and non-insulated systems. However, this trade-off was
worthwhile with higher temperatures (up to 7 ◦C) at the start of the collection period and a ~25%
reduction in thermal losses.

Using an experimental set-up, Souza et al. [33] and Swiatek et al. [34] studied a parallelepiped
ICSSWH system which was partially heated. Souza et al. [33] studied the effect on thermal stratification
within a cavity with a heat flux applied only to bottom 0.2 m while Swiatek et al. [34] built on this and
applied the heat flux to a 0.2 m section in the middle of the cavity. Beyond the heated zone, the front
plate of the cavity in both studies was entirely insulated with extruded polystyrene. Souza et al. [33]
found that by only heating a short section at the bottom of the cavity the evolution of thermal
stratification within the tank was unsatisfactory with a maximum temperature difference of only 4.2 ◦C
being reported. The adaptations made in the later study yielded enhanced levels of stratification, with
a maximum temperature different of 20.1 ◦C [34].

3.1.3. Night Cover

As well as insulating the air cavity, an insulating night cover can be utilised to reduce the issue of
night-time heat losses. Kumar and Rosen [35] undertook a comparative performance investigation of
rectangular ICSSWHs, assessing various heat loss reduction strategies. The following five cases were
assessed: (1) single glass cover without night insulation; (2) single glass cover with night insulation
cover; (3) double glass cover without night insulation cover; (4) transparent insulation with single
glass cover; and (5) insulating baffle plate with single glass cover. They found that the TIM covered
system reached lower absorber plate temperatures than single and double glazed cases due to the
system receiving 10–15% less solar radiation. However, the TIM layer did help retain heat in the water
store during the night, more so than the double glazing and significantly more than the single glazing.
The single and double glazing perform in a similar manner during periods of insolation but at night the
double glazed systems exhibits greater heat retention. Figure 4 illustrates the bulk water temperatures
of the ICSSWH systems over a 24 h period showing that all five cases perform well. However, it is
clear that Cases 2 and 3 maintain the highest temperatures and collector efficiencies, ranging from 57.1
to 79.4% and 57.6 to 81.2%, respectively (Figure 4).
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Figure 4. Daily variation in the bulk water temperature (left) and collector efficiencies for the five
reviewed cases (right). (1) single glass cover without night insulation; (2) single glass cover with night
insulation cover; (3) double glass cover without night insulation cover; (4) transparent insulation with
single glass cover; and (5) insulating baffle plate with single glass cover. Adapted from Kumar and
Rosen [35].
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3.2. Auxiliary Heating

Currently, average total hot water demand cannot be met by SWHs alone due to their diurnal
nature and this is a problem for all solar thermal technologies, particularly in temperate climates such
as Scotland. Garnier [36] tested the thermal performance of an ICSSWH with a 1 m2 absorber area and
50 L capacity. They discovered that the amount of energy required to supply a three-person household
with a domestic hot water demand of 50 L/person/day at 55 ◦C is approximately 7.5 kWh/day,
2747 kWh/year. The amount of energy that the studied ICSSWH could contribute to this demand
is shown in Figure 5; 1107 kWh, or 40% of the yearly energy demand. Therefore, the remaining 60%
would need to be supplied by an auxiliary heater for diurnal demand.
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A solar combi system (SCS) is one way to provide this additional heat requirement, if multiple solar
thermal panels are unfeasible. Sarbu and Sebarchievici [37] summarise the major studies surrounding
SCS in the literature. Drück and Hahne [38] conducted a comparative study of four hot water stores,
each connected to a 10 m2 flat-plate collector area, where the back-up heat method is an immersed
heat exchanger. The authors found that, for a well performing SCS, the most important factors are
good thermal insulation and the optimal configuration of the hot water and auxiliary heating loops.
By using an SCS over a conventional boiler, fractional energy savings of up to 21% can be realised.

A study in Jordan looked at the techno-economic feasibility of a SWH system with a built-in
electric coil as an auxiliary heater compared to a gas geyser system [39]. The author found that
the SWH with the integrated auxiliary heater was more economic due to the longer operational life
expectancy and the number of days where the use of the electric coil is not required. If the number of
days that electricity is used to provide the full daily hot water needs of a family is 120 or less the actual
cost of the SWH system is less than the gas system, over the operational life.

Legionella/Freezing

Due to bacterial growth and freezing potential, most ICSSWHs are currently connected to a
secondary auxiliary heating system. Hot water consumed by the end-user must be at a temperature
that is high enough to kill any bacteria that may have formed in a system, the biggest concern being
Legionella pneumophila. A review on behalf of the World Health Organisation [40] states that Legionella
thrives at 36 ◦C and within a range of 25–50 ◦C. Water temperatures are required to exceed 60 ◦C for
several minutes, at least once a day, to kill off any bacteria. Alternatively, draw off temperatures could
be increased to 70 ◦C which destroys the bacteria instantly. This is potentially unattainable through
solar insolation in a temperate climate such as Scotland, especially in winter months. Therefore,
methods of back-up heating that work in conjunction with SWHs need to be incorporated.
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Freezing is also an issue for ICSSWHs due to their high level of exposure to the elements.
Smyth et al. [6] suggested that systems less than 100 mm deep were at greater risk of freezing and to
prevent damage to the collector and storage tank the depth should be greater than this. Schmidt and
Goetzberger [25] predicted that, for Northern European climates, the risk of freezing only occurs for
ICS systems with a specific collector volume lower than ~70 L/m2 and that damage due to freezing
only occurs if more than 20% of the ICS water content is frozen.

3.3. Baffle Plate/Inner Sleeve

Baffle plates have been used successfully in numerous ICSSWH designs as a method of improved
thermal performance and heat retention. Various studies [41–43] have utilised an insulating plate,
inserted parallel to the absorber plate, which creates a narrow channel with a thin layer of water which
can reach much higher temperatures than the main water body. This system separates the downward
and upward flow, thus decreasing mixing in the storage tank and promoting stratification. Once the
water is heated it is deposited at the top of the tank, allowing colder water to be drawn up into the
channel. Souza et al. [33] studied an ICS system incorporating a stratification plate running parallel
to the absorber surface, which was only heated over the bottom 0.2 m. It was found that there was
not a significant improvement in thermal stratification, with a maximum temperature difference of
4.2 ◦C being achieved. A follow-up study by Swiatek et al. [34] found that a shorter stratification plate
(0.75 m compared to 0.9 m) in the 1.3 m rectangular system improved thermal stratification, with a
maximum temperature difference of 20.1 ◦C. In contrast to Souza et al. [33], Swiatek et al. [34] heated a
0.2 m section in the middle of the tank and reduced the channel gap from 8 mm to 5 mm.

Ziapour and Aghamiri [44] looked at the effect of the channel width on collector efficiency in a
two trapezoid ICSSWH system and found that a gap of 6 mm had the highest performance. Kumar
and Rosen [35] studied a rectangular ICSSWH with an insulating baffle plate and single glazing.
They found that absorber plate temperatures peaked at 63 ◦C during the day then suffered heavy
losses during the night, dropping by approximately 30 ◦C. However, in the cylindrical ICSSWH
configuration presented by Smyth et al. [31,45,46] it was found that by perforating the baffle plate,
to avoid the heat build-up at the top of the channel that hinders flow, night-time heat losses could
be reduced by 20% as the plate prevents reverse flow in the absence of a heat source. The operating
principle of this perforated baffle plate is illustrated in Figure 6.
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Sokolov and Vaxman [47] and, in a follow-up study, Vaxman and Sokolov [48] assessed a triangular
system with a baffle plate and achieved an efficiency of 53%. Smyth et al. [31] presented results on
an experimental analysis of a 1.5 m cylindrical ICS vessel, mounted within a reflector cavity, with the
upper third heavily insulated and a perforated inner sleeve acting as a baffle. They showed that 60%
of the thermal energy stored within the vessel could be retained over a 16 h non-collection period.
The most efficient configuration was the 1.5 m vessel, with the top third insulated, no insulated cover
during the non-charging phase, and a perforated inner sleeve. It outperformed the same configuration
without the inner sleeve by 1.3% and the 1 m vessel with no insulated upper section and no inner
sleeve by almost 7%.

El-Sebaii [49] studied the thermal performance of a shallow solar-pond, a batch system similar
to ICSSWH, with an integrated baffle plate. Thermal performance was found to improve with the
inclusion of the baffle plate. The highest daily efficiencies, up to 64.3%, were achieved using a plate
without vents and positioned at approximately two-thirds of the total height of the collector. However,
when a baffle plate with vents was used the performance is less dependent on its position within the
pond. It was also shown that the baffle plate material had a negligible impact on water temperature
throughout the pond, ranging from 58 ◦C to 59.1 ◦C to 60.3 ◦C for mica, aluminium and stainless steel,
respectively. These results conformed to those previously reported by Kaushik et al. [41]. The baffle
plate also allowed the pond to retain hot water overnight, reaching temperatures of 71 ◦C in the late
afternoon and providing water at temperatures of 43 ◦C in the early morning the following day.

3.4. Fins

In 1907, Charles L. Haskell [50] patented a solar heater design incorporating ‘struts’ for improved
heat conduction as well as structural stability (Figure 7). Since then, ‘struts’, or fins/extended surfaces,
are commonly used in commercial evacuated tube and flat-plate collectors, protruding out from the
collector pipes to enhance heat transfer to the working fluid. In ICSSWH systems, these fins can be
placed directly into the water body, i.e., storage tank, and extend throughout the full depth allowing
heat to be transferred through conduction to the areas that are not in close contact to the absorbing
surface. Youcef-Ali [51] conducted an optimisation study evaluating the impact of fin length and
various glazing types on thermal performance. The author studied a solar air collector with offset
rectangular plate fin absorbers and found that they generated a higher heater transfer versus a flat-plate
alone. The flat-plate collector, with double glazing, produced an efficiency of 38% against 64% for the
offset absorber plate with 50 mm fins.
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Gertzos and Caouris [52] optimised the arrangement of structural and functional parts in a
flat-plate ICSSWH experimentally and numerically. Their aim was to eliminate the stagnation area
near the geometrical centre of the stored water body and provide structural stability. The authors
found that the presence of fins had no effect on the outlet water temperature as the increase in heat
transfer rate was insignificant due to their small area, which was dwarfed by that of the tank. Li and
Wu [53] studied the effect of extended fins on improving heat performance in shell-tube thermal energy
storage units with phase change materials (PCMs). They found that by incorporating fins into the tube
design the charging time could be shortened by up to 20%, depending on the PCM material used.

Work conducted by Muneer et al. [22], which was later ratified by Junaidi [54], led to the inclusion
and optimisation of elongated fins inside a box-type ICSSWH to improve heat transfer throughout the
water body. Junaidi [54] carried out simulations on both a finned and un-finned SWH and determined
that the finned collector performed significantly better. Currie et al. [9] analysed the optimisation of fin
length and thickness for an even heat distribution throughout the storage tank without disrupting
flow patterns. The prototype subsequently tested by Garnier [55] utilised four 3 mm-thick aluminium
fins mounted vertically in a square shaped collector. These were found to improve both the thermal
performance and structural strength of the ICSSWH (Figure 8). A 13% increase in heat transfer was
found, as a direct result of the fin installation. Mohsen and Akash [56] also studied the performance of
a box-type ICSSWH with extended heat transfer fins. They found that the use of fins can improve the
cumulative efficiency of the system by 9%, during the month of November in Jordan.

Following a numerical study by Chaabane et al. [57], the thermal performance of a cylindrical
ICSSWH, mounted in a CPC, was improved by the inclusion of rectangular radial fins. This work was
based on, and validated by, the experimental data presented by Chaouachi and Gabsi [58]. The fins
create a modified surface that enhanced the convective heat transfer due to their higher characteristic
length. This resulted in a double-edged sword with higher water temperatures and reduced thermal
losses during the charging period but higher thermal losses during non-collection periods. The authors
also noted a significant correlation between fin length and average water temperature, convective
heat transfer, and heat retention. Three fin lengths were modelled, 15, 30 and 45 mm, and in all cases
the 45 mm fins produced the best results during day-time operation. As the fin depth increases so
does the availability of hot water; temperatures over 50 ◦C were maintained for 6.5 h and more than
10 h for a fin length of 15 mm and 45 mm, respectively. During night-time operation, the thermal loss
coefficient is higher for the cases with fins, with a slight increase in the coefficient with increasing fin
depth. However, the higher temperatures and longer heat retention gained during the day means a
better overall performance for the finned ICS over un-finned. The author suggests a night insulation
cover to combat the radiative heat losses.
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3.5. Glazing

Solar water heaters generally include a glazed aperture over the absorber area with an optimised
air gap to suppress upward convection and minimise heat losses, whilst maintaining a high
transmissivity [59]. Glass is the most commonly used material as it is resistant to degradation from
ultraviolet (UV) radiation and it has a very good transmittance to solar radiation (up to 90%), as well
as a low transmittance to the thermal radiation emitted by the absorber [10,60]. Still, approximately
60% of heat loss in residential buildings can be attributed to the glazed areas [61] and this is no
less important in an ICSSWH system. There are numerous ways to improve thermal performance
and heat retention through the type and configuration of the glazed aperture including multilayer,
vacuum, aerogel, and PCM glazing as well as low-emittance coatings. The most common options are
reviewed below.

3.5.1. Glazing Layers

The study by Kumar and Rosen [35], reviewed in Section 3.1.3, looked at various heat retention
strategies for a rectangular ICSSWH system. They found that a double glazed system maintained the
highest temperatures and collector efficiencies which shows that thermal retention can be improved
with multiple glazing layers. However, the amount of insolation transmitted to the absorber plate
is reduced. In spite of this, Bishop [62] studied a high volume ICS water heater (two 170 L tanks),
designed for use in freezing climates, which incorporated six glazing layers—one top sheet of low-iron
glass and five sheets of high transmission polyester film with an overall solar transmittance of 70%.
It was concluded that a twin-tank system with a total area of 2.88 m2 produced enough water at
50 ◦C, in January, for a family of four in the climate of Denver, Colorado, USA. This suggests that
the reduced heat gain due to lower transmittance is, at least, balanced by the heat retained due to
the greater thermal resistance of the multiple layers. In freezing climates, where solar insolation is
presumably weak, this is highly beneficial as heat loss to the ambient environment will cripple any
ICSSWH system. However, in locations where temperatures remain above freezing, with sufficient
solar insolation, multiple glazing layers may reduce collector efficiency as well as significantly increase
the cost of the unit.

Youcef-Ali [51] also advocated for a multi-glazed system in a study of a solar air collector.
The author experimentally compared two types of transparent cover; double and triple glazed.
The triple glazed system produced a better thermal performance reaching efficiencies up to 68%
while the double glazed system peaked at 64%. The triple glazing shows a reduced transmission
of solar energy but this is outweighed by the greater heat retention. AL-Khaffajy and Mossad [63]
reviewed the optimisation of air cavities between glazing layers for a solar water heater with double
glazing. This air gap has a strong influence on heat loss as it determines the level of convective motion
between the absorber plate and subsequent layers of glazing. In the simulation, the air gap spacing
between the absorber and the lower glass cover (L1) and between the lower and top glass cover (L2)
ranged from 15–50 mm. It was found that the lowest heat loss was achieved with the combination of
L1 = 40 mm and L2 = 25 mm.

Another addition to multiple layers is vacuum glazing which offers a low heat loss, high optical
transmittance solution. A double-glazed system with a vacuum gap between the glass sheets aims
to eliminate conductive and convective heat transfer [61]. The issue of the glass layers collapsing in
on themselves due to the high pressure of the vacuum can be combatted by inserting support pillars
that have a minimal impact on optical performance [64]. Han et al. [65] found an overall heat transfer
coefficient of 2.55 W/m2K for a 1 m2 double-glazed sample with a vacuum gap. The experiments
considered the heat conduction through the support pillars and edge seal and the radiation between
two glass sheets. As reported by Jelle et al. [66], SPACIA-21 a product from the Pilkington Company
(Tokyo, Japan) (Figure 9), shows excellent promise with an overall heat loss coefficient of 0.70 W/m2K
and a small external thickness of 21 mm, as opposed to a comparable multilayer glazing configuration
at 40 mm. Cuce and Riffat [67] included translucent aerogel support pillars into a vacuum glazing
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design and modelled their impact on thermal performance and found a 44% reduction in the panels
U-value. The authors indicated that a lower U-value could be reached if the number and distribution
of the support pillars is optimised.Energies 2018, 11, x FOR PEER REVIEW  12 of 26 
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Vacuum glazing appears to be a promising option, however, there is an issue with conductive
heat loss through the contiguous seal enclosing the glass sheets. Fang et al. [68] conducted a study on
triple vacuum glazing and the impact of the edge seal on overall thermal transmission. They found
that with smaller glazing size there is a larger ratio of heat conduction through the edge seal to that
of the total glazing area. A 1 m2 sample demonstrated a total thermal transmission of 0.49 W/m2K
compared to 0.65 W/m2K for 0.5 m2, equating to a 24.6% decrease. The width of the edge seal also
made a significant impact on heat transmission. Increasing it from 3 mm to 10 mm resulted in a
24.7% and 25% increase in thermal transmission for indium and solder glass edge seals (with no frame
rebate), respectively.

3.5.2. Selective Coatings/Glazing Material

A number of studies investigated the use of selective coatings on glass apertures [69–73].
A low-emissivity selective coating is designed to suppress infrared radiation exchange and acts
as a selective reflector. Commonly used materials for these coatings have a transmission near zero
for longwave infrared (i.e., energy radiated from warm objects) and low reflectivity for shortwave
infrared (i.e., solar energy). Therefore, solar energy will be able to penetrate due to the low reflectance
of the coating whilst heat emanating from a solar collector will be blocked by its low transmissivity.
Bainbridge [72] found that double glazing with a selective transmission film worked as well as
a night cover in reducing night-time heat losses. However, infrared reflective coatings reduce the
transmission of solar radiation and Ahmadzadeh and Gascoigne [69] suggested that, for most operating
conditions, the overall performance is better with plain glazing. Although, Muneer et al. [74] state
that a low-emissivity coating has little effect on daylight transmissivity with a 5% reduction, from 80%
to 75% transmission, when one layer is added to a double-glazed window. This may seem like a
significant decrease but when compared to the almost 50% reduction in the U-value it may be a
fair trade.

These selective coatings can aid transmission and retention of solar radiation, however, they come
with a high production cost and the cost-benefit ratio is low [61]. Also, the coatings are susceptible
to abrasion and dust accumulation over time, thus reducing solar radiation gain and overall system
performance, as well as increasing maintenance [10]. It is possible to use plastic films or sheets instead
of glass for the glazing material as they have high transmittance and low emittance of solar radiation.
However, they are prone to deform at high temperatures and become opaque due to yellowing from
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UV radiation [60]. A polycarbonate sheet can also be used as it is weather-proof and UV-resistant [75].
A review by Kumar and Rosen [35] shows that either a double-glazed system or a single-glazed system
with an insulated night-time cover are the most advantageous options in terms of heat gain and
retention as well as economic feasibility.

3.6. Inlet Pipe Configuration

Thermal stratification within a water store is an essential contributor to overall efficiency. A fully
mixed water body not only has a lower maximum temperature but also less capacity for heat gain.
The level of stratification within a storage tank depends on the charging and discharging cycles of the
SWH; the flow rates and water velocities; the size and shape of the system and; the size and location
of the inlet and outlet pipes [6]. The design and configuration of the inlet pipe can have a significant
impact on thermal stratification as it can be used to control flow velocities and thus reduce turbulent
mixing [76–78]. Diffuser designs differ greatly and include slotted tubes, pipes with inverted cups,
solid baffle plates, perforated circular plates, radial-flow disks, distributed nozzles, and perforated
tubes [79]. Hegazy [80] experimentally tested three inlet geometries (Figure 10) and found that all the
designs promoted good thermal stratification. The slotted inlet slightly outperformed the perforated
and wedged pipes and the design is also simpler and cheaper to manufacture.
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Chung et al. [81] analysed the impact of diffuser configuration on the thermal stratification within
a rectangular water storage tank. Three diffuser types were studied—radial plate, radial adjusted
plate, and H-beam. The results ratified the knowledge that diffuser shape has a significant impact
on thermal performance and that the design should be tailored to the aspect ratio of the storage tank.
In this case, the H-beam produced a thicker thermocline (and therefore higher thermal stratification)
than the radial diffusers. The difference between the radial plates was minimal. Dragsted et al. [82]
compared a new inlet diffuser design with well-established ones, illustrated in Figure 11.
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The results found that performance depended on flow rate. At higher flow rates (4 L/min) designs
B and C performed the best while design D worked better at lower flow rates (1 and 2 L/min). During
charging periods design D showed the best performance due to the greater number of perforations.

3.7. Phase Change Materials (PCM)

Latent heat storage materials, also known as phase change materials (PCMs), are an increasingly
popular method of extended heat energy storage and can be applied in many solar energy
applications [83–85]. During daytime charging the PCM store excess thermal energy as latent heat by
changing phase. During non-collection periods, as hot water is withdrawn for domestic use fresh, cold,
water replaces it with no solar energy for heat gain. Therefore, the stored latent energy is released
as the PCM change phase and revert back to their original state. There are different classes of PCM
including organic compounds, inorganic materials, and eutectic mixtures [86]. One of the benefits of
PCM is that, by storing excess energy, the heat losses that occur when the collector is at its highest
temperature are reduced, thus enhancing system efficiency [87].

With regards to PCM integration into ICSSWH, a few studies have been conducted to determine
the thermal performance [18,88,89]. Tarhan et al. [90] investigated the effect of PCM on the temperature
distribution within the water tank. Three trapezoidal ICSSWH systems were analysed, one without
PCM to act as a reference heater and two with different configurations of organic PCM (Figure 12).
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The first set-up utilised myristic acid, in a PCM storage tank, as an absorber plate (Figure 12B)
and in the second set-up lauric acid in the PCM storage tank was used as a baffle plate (Figure 12C).
The configuration with myristic acid proved to have the highest overall performance with water
temperature differences up to 4 ◦C after the cooling period. This is due to the solidification temperature
of the myristic acid, it solidifies at 51–52 ◦C and acts as a thermal barrier so the absorber plate essentially
becomes a night cover. The reference collector, with no PCM, reached higher peak temperatures during
the collection period but this heat was lost during the night.
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Chaabane et al. [89] carried out a numerical study of a CPC mounted ICSSWH system with two
different PCM—myristic acid and RT42-graphite. The authors also found myristic acid to be the
most beneficial as it reaches higher maximum temperatures during the day and allows better heat
preservation during the night, with water temperatures almost 30 ◦C higher than a non-PCM system
after 18 h of operation. The thermal efficiency of the system without PCM is only slightly higher
during the collection period but drops below the PCM configurations overnight. Hamed et al. [86] also
did a numerical study, analysing the charging and discharging performance of a rectangular ICSSWH.
The type of PCM used in the calculations was not stated, only the thermophysical properties. As with
the other studies the inclusion of a PCM resulted in a longer charging time, reaching lower peak
temperatures, and higher available temperatures during the non-collection period with a maximum
temperature difference of almost 9 ◦C.

However, the use of PCMs in thermal energy storage is limited and often unavailable on a
commercial market due to economic and environmental constraints [85]. Choosing the right type of
PCM and the position within an ICS system is crucial to its effective function [89]. Also, the evaporation
associated with certain types of PCM requires enormous changes in volume of the storage materials
making storage complex and impractical [86]. Many organic PCMs have a low rate of heat transfer
as well as low thermal conductivity and for small scale applications, such as domestic solar water
heating, the cost of this technology is still too great [85].

3.8. Reflectors

ICSSWH systems can absorb both diffuse and direct solar radiation and an easy way to enhance
the level of diffuse radiation collected is to apply strategically positioned reflective surfaces. In terms
of ICS systems, the most common configuration of collector and reflector is the compound parabolic
concentrating (CPC) collector. A cylindrical water store is set into a reflective trough which reflects
incident radiation to the absorber. Devanarayanan and Kalidasa Murugavel [91] conducted a
comprehensive review of the development and progress surrounding ICSSWH with integrated CPC.
The authors classified the different configurations of integrated compound parabolic concentrator
storage solar water heater (ICPCSSWH) systems based on the associated absorber. The main
conclusions from this review were that ICPCSSWH systems are cost-effective and simple to construct
with a satisfactory thermal efficiency that can compete with flat-plate thermosyphonic units (FPTU).
Also, they have a short response time across discharging and recharging. Drawbacks, however, include
their lower optical efficiency, especially at lower sun angles (i.e., winter), high heat losses, particularly
during non-collection periods, and only moderate thermal stratification within the water store.

Souliotis et al. [92,93] carried out research studies on ICSSWH systems mounted in CPC
reflector troughs with the aim of assessing the thermal performance and enhancing the night-time
heat retention. The authors found that seasonal variation has little impact on optical efficiency
for the experimental location (Patras, Greece) with values ranging from 77% in winter to 79% in
summer [92]. When compared with a FPTU, the ICS system has poorer heat retention with the bulk
water temperature, after 24 h, being 7 ◦C lower. However, during the charging period the ICPCSSWH
has a greater system efficiency and thermal stratification due, in part, to the partial vacuum in the
annulus between the absorber and storage of the ICS unit. This added thermal diode improves the
operation of the system but high thermal losses, poor stratification, and optical efficiency are still
observed. These results were reiterated in a later study with a bulk water temperature difference of
12 ◦C between the FPTU and ICS models, after 24 h [93]. However, thermal losses can be improved by
incorporating double glazing into the design.

Varghese et al. [94] carried out a study on a cylindrical ICPCSSWH in Delhi, India, with the aim of
improving heat retention by including an air gap in the side walls (the arms of the CPC). They found
maximum experimental efficiencies of 38% and water temperatures of 53 ◦C. By introducing an air gap
the maximum outlet temperature can be enhanced and continues to rise even after collector efficiencies
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drop. This is due to the thermal barrier, created by the air gap, between the absorber and the ambient
air which decreases the thermal loss coefficient by up to 52.5%, depending on water temperature.

Not all reflector mounted ICS systems utilise cylindrical collectors, however. Ziapour et al. [95]
analysed the performance improvement of a rectangular PV/T system which incorporated reflectors
that acted as removable insulation covers (Figure 13). The findings of the numerical model showed
that the reflectors effectively reduced the night-time heat losses whilst increasing the level of solar
radiation incident on the absorber plate. With reflectors, peak diurnal temperatures reach 69.2 ◦C;
9.5 ◦C highly than a system without reflectors. Water temperatures in the morning (6 a.m.) are also
much higher with values up to 54 ◦C compared to 31 ◦C, thus offering a 43% improvement. The angle
at which the reflectors are mounted has a strong influence on the total solar radiation incident on the
absorber plate and a model optimising these angles was presented.
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Although reflectors have potential, their shape and size are not practical for mounting on a pitched
roof. The impact on the aesthetics of the structure might be off-putting for prospective consumers.
The issue of wind loading is also magnified with these ICS configurations as their bulky and protruding
nature makes them more susceptible to higher wind loads. This would be especially prominent in the
case of the latter study as the reflectors, which are open during the day, could be damaged in high
winds. Ziapour et al. [95] made no mention of the impact of wind in their numerical study, however,
this would be an important consideration under practical application.

3.9. Selective Absorber Surfaces

An absorbent coating is often used to enhance the absorption of solar radiation. Black paint is
commonly used as it is a good absorber of radiation within the visible and infrared part of the spectrum
and therefore absorbs the most heat. Due to the low emittance of a black object it can absorb up to
96% of incident insolation [60,96]. For greater absorptivity and lower emissivity, a spectrally selective
absorber surface can be employed. Smyth et al. [6] conducted a thorough review of several studies that
have verified the benefit of selective absorber coatings [72,97–101]. The reviewed studies demonstrated
improved water temperatures but poor heat retention during non-collection periods, compared to a
plain design [99,101]. Cummings and Clark [100] showed that the average annual delivered energy for
a single-glazed selective absorber design would increase in the range of 26–44% compared with a basic
design. This indicates the potential of selective surfaces and optimising the emittance of the coating
could make up the small temperature differences observed [99,102].
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Teixeira et al. [73] presented a numerical model that allows the selectivity of absorber coatings to
be correlated with the collector efficiency. The analysed composite cermet coatings have high spectral
selectivity, with absorption in the range of 0.88 to 0.94 and emissivity ranging from 0.15 to 0.04, and
were subject to three different sputtering conditions—single layer, multilayers and gradient coatings.
The study showed that a graded coating had much higher absorptivity, due to reduced reflectance,
than a pure cermet film. Layered coatings also had much lower reflectance, and therefore greater
absorptivity, for aluminium and copper surfaces, although glass did not follow this behaviour. For both
cases reflectance is less than 10%, over the visible range of 380–780 nm associated with the luminance
of daylight [103].

The type of coating used for the absorber surface is not the only consideration but also the profile;
for example, whether it is planar or corrugated. Kumar and Rosen [104] reported on the thermal
performance of an ICSSWH with a corrugated absorber surface. This surface has a higher characteristic
length and, therefore, a higher surface area exposed to solar radiation. It was concluded that the
corrugated surface had higher operating temperatures for a greater period than the plane surface but a
marginally reduced system efficiency, as a result. As the corrugation depth increases from 0.4 mm to
1 mm, the maximum temperature of the water increases from 53 to 64 ◦C while the efficiency decreases
from 46.8% to 42.4% (with night-time insulation) and 40% to 35% (without night insulation). At a
corrugation depth of 1 mm average water temperatures are 5 to 10 ◦C higher than with a plane surface
during collecting periods.

3.10. Storage Tank/Collector Material

3.10.1. Metals

Traditionally, SWHs have been constructed from metal due to their strength and durability.
The most common are copper, stainless steel, and aluminium. Copper has the highest thermal
conductivity at 385 W/m·K but it is also the most expensive. Therefore, in the interests of developing
a cost-effective solution stainless steel or aluminium are more often utilised [105]. In terms of
structural strength, stainless steel outperforms aluminium which is a ‘soft’ metal and can deform
at high temperature and pressure. Aluminium can also suffer galvanic corrosion when connected
to conventional copper pipework whereas stainless steel is resistant to corrosion [105]. Aluminium
does, however, have a much higher thermal conductivity at 237 W/m·K compared to 14.9 W/m·K for
stainless steel [96]. Heat transfer and the thermal conductivity of the vessel material have a significant
impact on thermal stratification within the water store. Vertical conduction in the tank walls, coupled
with losses to the ambient environment, induces convective currents that rapidly degrade thermal
stratification [6]. This suggests that a material with a lower thermal conductivity could be beneficial in
reducing the convective heat motion, thus enhancing stratification. However, there is the trade-off of
reduced transfer of absorbed heat to the water body.

Ziapour et al. [106] simulated and compared four different types of absorber for passive PV/T
systems. Here, PV panels were mounted onto different absorber plate types of an ICSSWH—an
aluminium plate with fins; aluminium without fins; Tedlar (a highly versatile polyvinyl fluoride
polymer material) and; black painted glazing. The simulation results showed that the aluminium
absorber plate with fins had the highest electrical and thermal efficiencies, with combined PV/T
efficiencies up to 88% [106]. Garnier [36] modelled the impact of stainless steel versus aluminium
on heat transfer, comparing aluminium thicknesses of 3 mm and 1.5 mm and 1.5 mm thick stainless
steel, and found heat transfer rates of 67.3%, 63% and 25.3%, respectively. These computational results
were found to be in close agreement with experimental data. Garnier [36] also conducted a monetary
analysis and life cycle assessment of stainless steel versus aluminium systems. ICS systems strive to
be a “green” technology, therefore, the embodied energy, embodied carbon, and recyclability must
be taken into consideration. The author found that the embodied energy of stainless steel was 66%
less than aluminium and, likewise, the embodied carbon was 26% lower with stainless steel over
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aluminium. This difference could be reduced if the percentage of recycled material in the aluminium
is increased.

3.10.2. Polymer and Composite Materials

The use of solar thermal energy systems has increased dramatically in last decade yet the metal
based collectors, despite a high thermal performance, are still relatively expensive to buy and install [17].
More recently, research has been undertaken on the use of polymer and composite materials for the
ICSSWH components [75,107,108]. These have the potential to simplify ICSSWH construction as well
as decrease the cost of the unit as a whole [75]. Polymers are light-weight and non-corrosive, which
cannot be said for metal based materials [14]. The manufacture of the system would need to be altered
in terms of welding, soldering, mechanical treatment, and assembly (moulding and gluing of the
polymer composite). Frid et al. [75] looked at the use of polymer composite materials in ICSSWH
construction, incorporating only three components—glazing, absorber plate, and storage tank/SWH
casing (Figure 14). The glazing is weather-proof, UV-resistant, plate-type polycarbonate and the
absorber plate is manufactured from a fibre-glass or carbon-filled plastic and coated with a selective
absorber coating. The storage tank is a series of troughs and is integrated with the outer wall of the
system (Figure 14), with the area between the two filled with thermal insulation, to reduce the number
of parts in the unit.
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Figure 14. Schematic of experimental polymer composite ICSSWH design with only 3 components.
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This prototype demonstrated its in-situ operability, however, the engineering solutions applied
in its construction are suitable only for low volume production, and thermal vacuum moulding
of the polycarbonate glazing gave no guaranteed result [107]. This brings into question the mass
reproducibility of the unit as well as its structural integrity. Also, the estimated minimum service
lifetime for the casing, absorbing panel, and glue joints was 7 years at a cost of $70–90/m2 (receiving
surface), an average or maximum expected lifetime was not mentioned [75]. While this is approximately
half the cost of traditional materials, which are in the range of $150–200/m2 (prices commonly
fluctuate), the unit also has half the lifetime with stainless steel and aluminium systems offering
satisfactory performance for up to 20 years. There is an international effort to advance the use of
polymer materials in SWH systems in order to lower the initial cost. However, more research needs
to be done in terms of the structural integrity of the unit, their ability to resist UV degradation, and
overheat protection of the absorber to prevent overrunning the maximum allowable temperature of
the polymer [6,17]. Despite the flexibility and freeze tolerance of polymers they have a lower thermal
conductivity than metals and a much shorter lifetime so in terms of the cost to benefit ratio metals still
have the upper hand [14].

3.11. Thermal Diodes

A thermal diode is a device which causes heat to flow preferentially in one direction and is a
method of heat retention during the night and non-collecting periods, offering improved efficiencies
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and higher temperatures. Mohamad [42] introduced a simple thermal diode into triangular ICS
systems with incorporated baffle plates. The thermal diode design is located at the base of the vessel,
at the entry to the baffle channel, and consists of a light weight plastic ‘gate’ that prohibits reverse flow
(Figure 15). Mohamad [42] showed that reverse circulation at night-time is prevented, particularly
when storage temperatures are high, thus producing storage efficiencies of 68.6% and 53.3% with and
without the diode, respectively.Energies 2018, 11, x FOR PEER REVIEW  19 of 26 
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temperature; Tw—bulk water temperature. Adapted from Mohamad [42].

Sopian et al. [109] introduced a thermal diode into their ICS design and the temperature drop in
the storage tank overnight was reduced from 20 ◦C without a thermal diode to 10 ◦C with a diode.
Creating an evacuated layer between the absorber plate and water cavity is another form of thermal
diode. Souliotis et al. [92] studied an ICS vessel design mounted in a CPC reflector trough where an
annulus between the cylinders is partially evacuated and contains a small amount of water, which
changes phase at low temperature and produces vapour. This phase change creates a thermal diode
transfer mechanism from the outer absorbing surface to the inner storage tank surface. Experimental
results showed that the systems performance, when compared with a FPTU, is as effective both during
day and night-time operation. More recently, Souliotis et al. [110] did a follow-up study on this CPC
mounted ICSSWH system where extensive experimental data was collected over more than two years.
The authors found that the PCM vapour pressure was a crucial parameter and the temperature increase
during diurnal collection periods, at the optimal pressure, reaches 39 ◦C while the maximum heat loss
during night-time operation is 13 ◦C with a thermal loss coefficient between 1.60 and 1.62 W/K. This
performance was shown to be better than a commercial FPTU.
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Smyth et al. [111] also conducted an experimental evaluation of a novel thermal diode in an
ICSSWH to be used as a pre-heater. The collector was tested using a solar simulation facility and
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consisted of three concentric cylinders—the outer glazing, the middle absorbing surface and the inner
storage tank (Figure 16). As in the latter study, the annular cavity between the absorbing surface and
the storage tank is partially evacuated and contains a small amount of liquid/vapour PCM which acts
as a thermal diode. The importance of a transparent aperture cover and cavity back insulation were
highlighted as they are crucial in achieving the saturation temperature which promotes heat transfer
through convection as opposed to radiation only. For the thermal diode mechanism to work effectively
certain temperatures need to be reached and maintained to facilitate the evaporation-condensation
cycle. Overall efficiencies were relatively poor, reaching a maximum of ~36%, but the impact on heat
retention was considerable with a reduction in thermal losses of approximately 40%, compared with
conventional ICS systems.

4. Conclusions

ICSSWH systems have a number of benefits over other solar thermal systems, namely that they
do not require an additional water storage tank, are simple to construct and install and with fewer
associated costs. A consequence of their more exposed nature is the increased level of heat loss,
especially during non-collection periods. This review has presented the numerous innovations and
developments in current research surrounding the improvement in the overall performance of these
ICS systems, amongst others. We have reviewed and discussed the various heat retention strategies
and the impact on thermal performance and efficiency, the associated heat loss mechanisms are
summarised in Table 3. Some methods, such as selective absorber coatings, can have a positive effect
on heat gain whilst the effect on heat losses is negligible and the same level of performance can be
achieved by simpler and cheaper means, such as a night-time cover or double-glazing. Reflectors can
aid the absorption of diffuse solar radiation during collection periods but have a limited impact on
heat retention during the night. Also, their bulky size and appearance would make their installation
difficult and unpleasant, especially for domestic consumers. Research is placing a heavy focus on PCM
for thermal energy storage and they have shown some promise. However, their performance greatly
depends on the chosen materials and their design and thermochemical properties. Furthermore, their
cost and relative complexity to incorporate into ICSSWHs makes them an impractical solution for
domestic hot water systems at present.

Table 3. Summary of the heat retention methods reviewed and the associated heat loss mechanisms.

Heat Gain/Retention Strategy Heat Loss Mechanism Impacted

Additional insulation Reduces convective, conductive, and radiative heat losses

Auxiliary heating Provides additional heat to meet demand/combat bacteria and freezing

Baffle plate/inner sleeve Reduces convective heat losses and promotes thermal stratification

Fins Promotes heat transfer to the bulk water body through conduction

Glazing Impacts on radiative heat losses and transmissivity, creates an air cavity which supresses
internal convection

Inlet pipe configuration Impacts on thermal stratification and therefore heat gain

Phase change materials Can impact on conductive, convective and radiative heat losses depending on their use.
Provides stored heat during non-collection periods

Reflectors Impacts on the level of incident radiation, can reflect radiative heat losses

Selective absorber surfaces Enhances the absorption and reduces the emission of solar radiation

Storage tank/collector material Impacts on conductive heat losses

Thermal diodes Reduces convective heat losses

Potential methods to improve thermal performance that do not add significant cost and complexity
to ICS systems include baffles, multiple glazing layers, additional insulation and fins. Baffles and
fins promote the convection and conduction transfer of heat from the absorber to the water store
while the glazing and insulation prevent convective and radiative heat losses. The combination of
different strategies would be beneficial for the overall thermal performance of the system without
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significantly impacting the efficiency. This paper has gathered together the relevant and up-to-date
research and developments surrounding the performance of ICSSWH systems, focusing on heat
retention, with the aim to provide a concise summary of the current literature for researchers in this
field. PCM are favoured as the saving grace for solar thermal storage. However, they are currently
unfeasible for small-scale, domestic applications. So far, the benefits do not outweigh their cost,
making them unsustainable. Promising avenues for further research that have emerged from this
critical review include enhanced glazing systems, adding additional insulation to portions of the
system, and incorporating baffle plates. Although not considered in this paper, a number of the
reviewed studies noted the importance of flow rate and draw-off frequency on system efficiency.
As such, this is an important consideration for the optimisation of any ICSSWH system and an
interesting avenue for further research.
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Nomenclature

CFD computational fluid dynamics
CPC compound parabolic concentrator
FPTU flat plate thermosyphonic units
GHG greenhouse gas
ICPCSSWH integrated compound parabolic concentrator storage solar water heater
ICS integrated collector-storage
ICSSWH integrated collector-storage solar water heater
PCM phase change materials
PV Photovoltaic
PV/T photovoltaic-thermal
SCS solar combi system
SWH solar water heater
TIMs transparent insulation materials
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