STRENGTH GRADING OF TIMBER IN THE UK IN 2018

Dan Ridley-Ellis

Centre for Wood Science & Technology, Edinburgh Napier University (UK) & secretary of CEN TC124 WG2 TG1 "task group for machine grading settings & visual grading assignments for EN1912"

SUMMARY

This paper summarises the state-of-the-art of strength grading of UK-grown timber. It lists the following information along with the primary references: visual grading grades and strength class assignments; grading machines with approved settings for machine control; the species, size ranges and strength class combinations covered; and grade determining properties of UK specific strength classes.

KEYWORDS: grades, classes, machine strength grading, visual strength grading

INTRODUCTION

In the UK, structural timber is graded under the system set out by the harmonised European standard EN14081-1:2016 and supporting standards. It sorts rectangular cross-section timber into categories based on required characteristic values of grade determining properties. For normal construction timber those are usually bending strength, bending stiffness and density (at 12% reference moisture content). Strength and density are specified as fifth percentiles and stiffness by the mean. Secondary properties are calculated from equations in EN384:2016 (or may be determined by testing). At time of writing EN14081-1:2016 is not yet cited in the OJEU and an amendment is underway to resolve this, but this does not affect the content of this paper. This is related to a misunderstanding that new (and already existing, but newly mentioned) strength classes are limitations, when in truth they are more options for industry.

This paper covers the position as of May 2018 and is for information only. The primary references should be consulted, noting that new assignments and settings can be added, existing ones can be changed, and even the definition of EN336 strength classes may change. The machine grading reports are confidential, but the reference number helps to identify the settings table. Contact machine manufacturer or a Notified Body to obtain more information.

CURRENT GRADING POSSIBILITIES

There are two parallel systems for grading: visual and machine, both of which follow the same basis: timber is sorted into grades according to a non-destructive assessment that is predictive of the grade determining properties, and the collective characteristic properties of the timber sorted into those grades determines the strength class (see Ridley-Ellis *et al.* 2016a for a more detailed explanation). Strength class is usually specified with reference to EN338:2016, but properties can be declared directly, or by means of a user-defined strength class. The latter is convenient when grading as part of a fabrication process, or for a specific customer, since it makes better use of the real properties of the graded timber (see Ridley-Ellis *et al.* 2016b for discussion of the potential for this, and illustration with UK grown timber). The definition of UK specific strength classes is repeated in Table 5. TR26 is in longstanding common usage in the trussed rafter industry in the UK. The other strength classes are new. Species are commonly grouped for grading, and the individual species not differentiated (see Table 2).

Visual grading is carried out according to grading rules that are usually (but do not have to be) national standards. Assignment to a strength class is specific to a combination of grading standard and timber source. The assignments for UK grown timber are listed in Table 3 and Table 4.

Class	5 th percentile	Mean	5 th percentile	Reference
	strength	stiffness	density	
	(N/mm^2)	(kN/mm^2)	(kg/m^3)	(first report to use)
	Ben	ding		
TR26	28.3	11.0	370	EN14081-4:2009
C16+	18.5	8.0	330	TG1/201410/34rev
NapierSA	25.0	11.0	375	TG1/201703/27rev
NapierSB	22.0	10.0	360	
NapierSC	16.0	8.0	320	
NapierSD	15.0	7.0	310	
NapierLA	30.0	13.0	480	TG1/201703/26rev
NapierLB	28.0	12.0	440	
NapierLC	21.0	9.0	400	
NapierLD	20.0	8.0	390	
NapierDA	35.0	13.0	460	TG1/201804/25
NapierDB	30.0	12.0	460	
NapierDC	16.0	10.0	400	
NapierDD	14.0	9.0	400	

Table 1: Definition of UK specific strength classes (reference moisture content is 12%)

Table 2: Species (see also EN13556:2016)

Group	Common name	Botanical name	Reference
British spruce	Sitka spruce PCST	Picea sitchensis	EN14081-1:2016 (§B2)
WPCS	Norway spruce PCAB	Picea abies	
British pine	Scots pine PNSY	Pinus sylvestris	EN14081-1:2016 (§B2)
WPNN	Corsican pine PNNL	Pinus nigra laricio	
Larch	European larch LADC	Larix decidua	EN14081-1:2016 (§B2)
WLAD	Hybrid larch LAER	Larix x eurolepsis	
	Japanese larch LAKM	Larix kaempferi	
Douglas-fir	Douglas-fir PSMN	Pseudotsuga menziesii	EN13556:2003 (Tab2)
Oak	European oak QCXE	Quercus petraea	EN13556:2003 (Tab1)
		Quercus robur	
Sweet chestnut	Sweet chestnut CTST	Castanea sativa	EN13556:2003 (Tab1)

Machine grading can be by machine control or output control. Output control requires the producer to periodically test batches of graded timber and, if necessary (by statistical procedures), adjust the grading machine settings to ensure grading proceeds correctly and efficiently. This method is not common in Europe, but it allows the use of any grading machine that meets the general requirements of EN14081. The much more common method is machine control, where settings are determined by previous testing and the grading machines of a certain model are expected to have identical performance. These settings are examined and approved by European Committee for Standardization (CEN) committee

TC124/WG2/TG1 ("TG1"), which consists of a panel of experts with sufficient experience to be able to identify potential problems separate from simple compliance with the standards. See <u>http://blogs.napier.ac.uk/cwst/tg1/</u> for the latest additional rules and guidelines from TG1.

Species	Source	Visual grade	Strength class	Reference
British	UK	GS	C14	EN1912:2012 (§6)
spruce		SS	C18	EN1912:2012 (§6)
British pine	UK	GS	C14	EN1912:2012 (§6)
		SS	C22	EN1912:2012 (§6)
Larch	UK	GS	C16	EN1912:2012 (§6)
		SS	C24	EN1912:2012 (§6)
Douglas-fir	UK	GS	C14	EN1912:2012 (§6)
		SS	C18	EN1912:2012 (§6)
		SS*	C24	PD6693-1:2012 (§6.2)

Table 3: Visual grading assignments when grading with BS 4978

* cross-section area >20,000 mm², width and thickness ≥ 100 mm

Table 4: Visual grading assignments when grading with BS 5756

	0 0 0			
Species	Source	Visual grade	Strength class	Reference
Oak	UK	TH2	D24	PD6693-1:2012 (§6.1)
		TH1	D30	PD6693-1:2012 (§6.1)
		THB*	D30	PD6693-1:2012 (§6.1)
		THA*	D40	PD6693-1:2012 (§6.1)
Sweet	UK	TH1	D24	PD6693-1:2012 (§6.1)
chestnut				

* cross-section area >20,000 mm², width and thickness ≥ 100 mm

Machines currently approved for machine control grading are listed in Table 7 and currently available settings for UK grown timber are listed in Table 8 (spruce) Table 9 (pine) Table 10 (larch) and Table 11 (Douglas-fir). Settings for larch and Douglas-fir are expected for the Precigrader in the near future, as are settings for tiling batten sized spruce for Microtec and Brookhuis machines. Note that machine grading is a separate route from visual grading, and parameters like knot size and ring width are not inherent in the definition of the strength classes, which are concerned with the actual characteristic properties. Note also that the United Kingdom is officially GB in ISO3166-1:2014, but sometimes appears in standards and settings tables as UK. UK is used in this paper as the more familiar abbreviation.

CONCLUDING REMARKS

Timber grading in Europe is fast developing, with new machines, updating of standards and processes, and new visual grading assignments and machine grading settings added regularly. There are grading machine settings for UK grown timber that exceed both the common expectation, and the current industrial practice. As machine grading becomes more accessible to building fabricators it opens up more potential for wider, and more efficient, use of the domestic forest resource. Not all the permitted settings have commercially viable yields.

ACKNOWLEDGEMENT

This work is thanks to the funders of SIRT (Strategic Integrated Research in Timber) project, which includes both wood properties research and standardisation support for the industry.

Manufacturer	Name	ID*	Description
Tecmach Ltd	Cook Bolinder	1	Mechanical bending
	Computermatic	2	Mechanical bending
	Micromatic		
VTT	Raute Timbergrader	3	Mechanical bending
Microtec	EuroGrecomat-702	4	X-ray
s.r.l. – GmbH	Goldeneye 702	5	X-ray
	EuroGrecomat-704	6	X-ray & mechanical bending
	Viscan	8	Longitudinal resonance
	EuroGrecomat-706	9	X-ray with longitudinal resonance
	Goldeneye 706	10	X-ray with longitudinal resonance
	Viscan Plus	20	Longitudinal resonance with x-ray density
	Viscan Compact	22	Longitudinal resonance with density
	Viscan portable with	29	Portable, longitudinal resonance with
	balance		density
	Viscan portable	30	Portable, longitudinal resonance
Dynalyse AB	Dynagrade	7	Longitudinal resonance
	Precigrader	12	Longitudinal resonance with density
Brookhuis	MTG 960	11	Portable, longitudinal resonance with
Applied			density
Technologies	MTG 920	19	Portable, longitudinal resonance
BV	MTGbatch 962/966	23	Longitudinal resonance with density
	MTGbatch 922/926	24	Longitudinal resonance
Dimter GmbH	Grademaster	13	Longitudinal resonance with density & knots
Luxscan	Escan FWM/FW	14	Longitudinal resonance with density
technologies	EScan FM/F	26	Longitudinal resonance
(now Weinig	OptiStrength XE	33	X-ray with longitudinal resonance
Group)	OptiStrength X	34	X-ray
Concept Bois	Triomatic	15	Ultrasonic time of flight & pin indentation
Structure SARL			density
Automatisation	CRP	16	Mechanical bending
J.R.T Inc			
XYLOMECA	Xyloclass T	17	Longitudinal resonance with density
	Xyloclass F	21	Flexural resonance with density
SARL Esteves	Noesys	18	Flexural resonance with density
Rosén & Co	Rosgrade	25	Longitudinal resonance
Maskin	Rosgrade plus	28	Longitudinal resonance with density
Innodura	E-CONTROL model	27	Longitudinal resonance with density
	AC		
Innovativ	WoodEye Strength	31	Longitudinal resonance with density & laser
Vision AB			tracheid grain angle
	WoodEye Strength	31 32 35	0

 Table 5: List of grading machines for machine control

* ID relates to the TG1 machine number for naming the ITT reports (settings tables)

Source	Size (mm)	Combinations	[Machine]	Reference
Boulee	& report by	Comonations	& table	Reference
UK IE	35-75 x 60-300	[C24/C16] [C18] [C16]	[1]-1	TG2/0801/03
-	Timbersolve			TG1/0211/15
UK IE	35-75 x 60-300	[C24/C16] [C18] [C16]	[2]-1	TG2/0801/03
	Timbersolve			TG1/0211/15
UK IE	35-80 x 70-260	[C24/C16] [C16]	[5]- <i>1</i>	EN14081-4:2009
	HFM		also [10]	TG1/1005/08
UK IE	35-82 x 57-275	[C24/C16] [C22/C14] [C18]	[5]-17	TG1/0211/13rev
	Napier Uni	[C16]	also [10]	
UK IE	20-83 x 47-275	[C24/C16] [C22/C14] [C18]	[5] <i>-34</i>	TG1/201410/38rev1
	(*A) Napier Uni	[C16] [C16+]	also [10]	
UK IE	34-83 x 57-275	[C24/C16] [C22/C14] [C20/C14]	[5]-48	TG1/201703/21rev
	Napier Uni	[C18] [C16] [C24/C16+] [C16+]	also [10]	
UK IE	35-82 x 57-275	[C22/C14] [C18] [C16]	[8]-18	TG1/0211/10rev
	Napier Uni		also [10]	
UK IE	20-83 x 47-275	[C22/C14] [C18] [C16] [C16+]	[20] [22] [8]-32	TG1/201410/35
UKIL	(*A) Napier Uni		[8]-32 also [10]	101/201410/33
	(A) Nupler Oni		[20] [22]	
UK IE	34-83 x 57-275	[C24/C16] [C22/C14] [C20/C14]	[8]-45	TG1/201703/25rev
	Napier Uni	[C18] [C16] [C24/C16+] [C16+]	also [10]	
		[C27/C16] [C24/C16] [C22/C14]	[20] [22]	TC1/0211/14
UK IE	35-82 x 57-275	[C27/C16] [C24/C16] [C22/C14] [C18] [C16] [C16] [TR26/C16]	[10]-22	TG1/0211/14rev
UK IE	Napier Uni 20-83 x 47-275	[C27/C16] [C24/C16] [C22/C14]	[10] 12	TG1/201410/39
UKIE	(*A) Napier Uni	[C18] [C16] [TR26/C16] [C16+]	[10]-43	101/201410/39
UK IE	34-83 x 57-275	[C27/C16] [C24/C16] [C22/C14]	[10]-58	TG1/201703/22rev
UKIL	Napier Uni	[C20/C14] [C18] [C16] [C27/C16+]	[10]-50	101/201/03/22100
	Mapier Oni	[TR26/C16] [TR26/C16+]		
	25.00 57.075	[C24/C16+] [C16+]	[20] (TC1/0211/12
UK IE	35-82 x 57-275	[C24/C16] [C22/C14] [C18]	[20]-6 also [10]	TG1/0211/12rev
UK IE	Napier Uni 20-83 x 47-275	[C16]	[20]-25	TC1/201/10/27
UKIE	(*A) Napier Uni	[C24/C16] [C22/C14] [C18] [C16] [C16+]	[20]-23 also [10]	TG1/201410/37
UK IE	34-83 x 57-275	[C10] [C10+] [C27/C16] [C24/C16] [C22/C14]	[20]-39	TG1/201703/24rev
UKIL	Napier Uni	[C20/C14] [C18] [C16] [C27/C16+]	[20]-39 also [10]	101/201/03/24160
	παριεί Οπί	[TR26/C16] [TR26/C16+]		
	25.00 57.075	[C24/C16+] [C16+]	[00] <i>(</i>	TC1/0211/11
UK IE	35-82 x 57-275	[C24/C16] [C22/C14] [C18]	[22]-4	TG1/0211/11rev
	Napier Uni	[C16]	also [10]	TC1/201410/26
UK IE	20-83 x 47-275	[C24/C16] [C22/C14] [C18]	[22]-24 also [10]	TG1/201410/36
UK IE	(*A) <i>Napier Uni</i> 34-83 x 57-275	[C16] [C16+] [C27/C16] [C24/C16] [C22/C14]		TG1/201703/23rev
UNIE		[C20/C14] [C18] [C16] [C27/C16+]	[22]-37 also [10]	101/201/05/25160
	Napier Uni	[TR26/C16] [TR26/C16+]	uiso [10]	
	24.00 75 55	[C24/C16+] [C16+]	5003.50	
UK IE	34-83 x 57-275	[C24/C16] [C22/C14] [C20/C14] [C18] [C16] [TR26/C16]	[29]-20	TG1/201703/23rev
	Napier Uni	[C18] [C10] [1R20/C10] [TR26/C16+] [C24/C16+]	also [10] [22]	
	1	[][0=010.]	[22]	

Table 6: Machine settings for British spruce WPCS (Picea sitchensis, P. abies)

UK IE	34-83 x 57-275	[C22/C14] [C18] [C16]	[29]-20	TG1/201703/25rev
	Napier Uni		also [8] [10]	
	•		[20] [22]	
UK IE	34-83 x 57-275	[C27/C18] [C27/C16] [C24/C16]	[12]-9	TG1/1011/11rev
	FCBA	[C24] [C18] [C16] [TR26/C16] [TR26]		
UK IE	20-83 x 47-165	[C24/C16] [C22/C14] [C20]	[11]-13	TG1/201410/34rev
	(*A) Napier Uni	[C18] [C16]		
UK IE	20-83 x 47-165	[C18] [C16]	[11]-14	TG1/201410/40rev
	(*A) Napier Uni			for green timber
UK IE	34-84 x 84-168	[C27/C16] [C24/C16] [C22/C14]	[11]-18	TG1/201703/27rev
	Napier Uni	[C20] [C18] [C16] [NapierSA/NapierSC]		
		[NapierSB/NapierSD]		
UK IE	20-83 x 47-165	[C18] [C16]	[11]-22	TG1/201410/40rev
	(*A) Napier Uni	(correction of [11]-14)		for green timber
UK IE	20-83 x 47-165	[C20] [C18] [C16]	[19]-10	TG1/201410/33rev
	(*A) Napier Uni			
UK IE	20-83 x 47-165	[C24/C16] [C24/C14] [C22/C14]	[23]-13	TG1/201410/34rev
	(*A) Napier Uni	[C22] [C20] [C18] [C16] [C16+]		
UK IE	20-83 x 47-165	[C22] [C20] [C18] [C16]	[23]-14	TG1/201410/40rev
	(*A) Napier Uni			for green timber
UK IE	20-83 x 47-165	[C22] [C20] [C18] [C16]	[23]-25	TG1/201410/40rev
	(*A) Napier Uni	(correction of [23]-14)		for green timber
UK IE	20-83 x 47-165	[C22/C14] [C20] [C18] [C16]	[24]-10	TG1/201410/33rev
	(*A) Napier Uni			
UK IE	20-83 x 47-165	[C24/C16] [C24/C14] [C22/C14]	[14]-14	TG1/201410/34rev
	(*A) Napier Uni	[C22] [C20] [C18] [C16] [C16+]		
UK IE	20-83 x 47-165	[C22] [C20] [C18] [C16]	[14]-15	TG1/201410/40rev
	(*A) Napier Uni			for green timber
UK IE	20-83 x 47-165	[C22] [C20] [C18] [C16]	[14]-26	TG1/201410/40rev
	(*A) Napier Uni	(correction of [14]-15)		for green timber
UK IE	20-83 x 47-165	[C22/C14] [C18] [C16]	[26]-10	TG1/201410/33rev
	(*A) Napier Uni			

*A: Minimum cross-section area $\geq 1600 \text{mm}^2$

 Table 7: Machine settings for British pine WPNN (Pinus sylvestris, P. nigra laricio)

Source	Size (mm)	Combinations	[Machine]	Reference
	& report by		& table	
UK IE	35-75 x 60-300	[C24/C16] [C16]	[1]-1	EN14081-4:2009
				TG2/0801/03
UK IE	35-75 x 60-300	[C24/C16] [C16]	[2]-1	EN14081-4:2009
				TG2/0801/03

Source	Size (mm)	Combinations	[Machine]	Reference
boulee	& report by	Combinations	& table	Reference
UK	43-82 x 92-250	[C27/C16] [C18] [C16]	[1]-4	TG2/0801/03
UK	Timbersolve			TG1/0511/02
UK	43-82 x 92-250	[C27/C16] [C18] [C16]	[2] 5	TG2/0801/03
UK			[2]-5	
LUZ	Timbersolve		[5] 21	TG1/0511/02
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[5]- <i>31</i>	TG1/201410/21rev1
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]	also [10]	TC1/20110
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[8]-29	TG1/201410/18
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]	also [10]	
UK	20-110 x 47-303	[C35/C18] [C30/C16] [C27/C16]	[20] [22] [10]-39	TG1/201410/22
	(*A) <i>Napier Uni</i>	[C24/C14] [C22] [TR26/C14]	[10]-37	101/201410/22
UK	20-110 x 47-303	[C35/C18] [C30/C16] [C27/C16]	[20] 22	TG1/201410/20
UK		[C24/C14] [C22] [TR26/C14]	[20]-22 also [10]	101/201410/20
1117	(*A) <i>Napier Uni</i>			TC1/201410/10
UK	20-110 x 47-303	[C35/C18] [C30/C16] [C27/C16] [C24/C14] [C22] [TR26/C14]	[22]-21	TG1/201410/19
	(*A) Napier Uni		also [10]	TC (C) (C)
UK	20-110 x 47-303	[C35/C18] [C30/C16] [C27/C16] [C24/C14] [C20] [TR26/C16]	[29]-11	TG1/201410/23
	(*A) Napier Uni	[C24/C14][C20][1K20/C10]	also [10]	
UK	20-110 x 47-303	[C35/C18] [C30/C16] [C27/C16]	[22] [30]-9	TG1/201410/23
UK	(*A) <i>Napier Uni</i>	[C24/C14] [C20] [TR26/C16]	also [8] [10]	101/201410/23
	('A) Nupler Oni		[20] [22]	
UK	20-110 x 47-303	[C30/C16] [C27/C16] [C24/C14]	[11]-12	TG1/201410/32
	(*A) Napier Uni	[C22] [C20] [TR26/C16]		
UK	42-112 x 88-307	[C35/C18] [C30/C16] [C27/C16]	[11]-19	TG1/201703/26rev
011	Napier Uni	[C24/C14] [C22] [C20]	[11] 1/	101/201/00/2010
	interpret one	[NapierLA/NapierLC]		
T TTZ	20 110 47 202	[NapierLB/NapierLD]	F101.0	TC1/001/10/01
UK	20-110 x 47-303	[C30/C16] [C27/C16] [C24/C14] [C22] [C20] [TR26/C16]	[19]-9	TG1/201410/31rev
	(*A) Napier Uni		5003.15	TO1/001/100
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[23]-15	TG1/201410/32
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]		
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[24]-9	TG1/201410/31rev
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]		
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[14]-16	TG1/201410/32
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]		
UK	20-110 x 47-303	[C30/C16] [C27/C16]	[26]-9	TG1/201410/31rev
	(*A) Napier Uni	[C24/C14] [C22] [TR26/C14]		
	num gross soction			

 Table 8: Machine settings for larch WLAD (Larix decidua, L. x eurolepsis, L. kaempferi)

*A: Minimum cross-section area $\geq 2000 \text{mm}^2$

1	0 1	r Douglas-fir PSMN (Pseudotsu	0	, ,
Source	Size (mm)	Combinations	[Machine]	Reference
	& report by		& table	
UK IE	33-84 x 68-248	[C35/C18] [C35/C16] [C30/16]	[5]-?	TG1/201804/16
	Napier Uni & NUI	[C27/16] [C24/C16] [C24/14] [C22/C14] [C20/C14] [C20] [C18]	also [10]	
	Galway	[C22/C14] [C20/C14] [C20] [C18] [C16] [TR26/C16]		
UK IE	33-84 x 68-248	[C30/16] [C27/16] [C24/C16]	[8]-?	TG1/201804/17rev1
UKIL	Napier Uni & NUI		also [10]	101/201004/1/101
	*	[C18] [C16] [TR26/C16]	[20] [22]	
	<i>Galway</i>	[C40/C30/C16] [C40/C27/C16]		TC1/201904/12
UK IE	33-84 x 68-248	[C40/C24/C16] [C35/18] [C35/16]	[10]-?	TG1/201804/13rev1
	Napier Uni & NUI	[C30/16] [C27/16] [C24/C16]		
	Galway	[C24/14] [C22/C14] [C20/C14] [C20]		
		[C18] [C16] [TR26/C16]		
UK IE	33-84 x 68-248	[C40/C30/C16] [C40/C27/C16]	[20]-?	TG1/201804/15
	Napier Uni & NUI	[C40/C24/C16] [C35/18] [C35/16]	also [10]	
	Galway	[C30/16] [C27/16] [C24/C16]		
		[C24/14] [C22/C14] [C20] [C18]		
	22.94 = 69.249	[C16] [TR26/C16] [C40/C30/C16] [C40/C27/C16]	[22] 2	TC1/201904/14
UK IE	33-84 x 68-248	[C40/C24/C16] [C35/18] [C35/16]	[22]-?	TG1/201804/14
	Napier Uni & NUI	[C30/16] [C27/16] [C24/C16]	also [10]	
	Galway	[C24/14] [C22/C14] [C20] [C18]		
		[C16] [TR26/C16]		
UK IE	33-84 x 68-248	[C40/C30/C16] [C40/C27/C16]	[29]-?	TG1/201804/14
	Napier Uni & NUI	[C40/C24/C16] [C35/18] [C35/16]	also [10]	
	Galway	[C30/16] [C27/16] [C24/C16]	[22]	
		[C24/14] [C22/C14] [C20/C14] [C20]		
UK IE	33-84 x 68-248	[C18] [C16] [C14] [TR26/C16] [C30/16] [C27/16] [C24/C16]	[20] 2	TG1/201804/17rev1
UKIE		[C24/14] [C22/C14] [C20/C14] [C20]	[30]-?	101/201004/1716/1
	Napier Uni & NUI	[C18] [C16] [C14] [TR26/C16]	[20] [22]	
	Galway			TC1/201004/27
UK IE	33-84 x 68-248	[C35/C16] [C24/C14] [TR26/C16]	[11]-?	TG1/201804/25
	Napier Uni & NUI	[NapierDA/NapierDC] [NapierDB/NapierDD]		
	Galway			
UK IE	33-84 x 68-248	[C35/C16] [C24/C14]	[19]-?	TG1/201804/25
	Napier Uni & NUI	[TR26/C16]		
	Galway	_		
UK IE	33-84 x 68-248	[C35/C16] [C24/C14] [TR26/C16]	[23]-?	TG1/201804/25
	Napier Uni & NUI	[NapierDA/NapierDC]	[] ·	
	Galway	[NapierDB/NapierDD]		
UK IE	33-84 x 68-248	[C25/C16][C24/C14]	[2/1 2	TG1/201804/25
UKIE		[C35/C16] [C24/C14]	[24]-?	101/201804/23
	Napier Uni & NUI	[TR26/C16]		
	Galway			

 Table 9: Machine settings for Douglas-fir PSMN (Pseudotsuga menziesii)

Note: ITT tables are not yet updated, so numbers are not available at time of writing

REFERENCES

Articles:

RIDLEY-ELLIS D., STAPEL P. and BAÑO V. (2016a): Strength grading of sawn timber in Europe: an explanation for engineers and researchers. European Journal of Wood and Wood Products, **74** (3): 291-306.

RIDLEY-ELLIS D., ADAMS S. and LEHNEKE S. (2016b): Thinking beyond the usual strength grades – with examples of British spruce and larch. In Proceedings of the World Conference on Timber Engineering (WCTE 2016), August 22-25, 2016, Vienna, Austria, ISBN 978-3-903039-00-1, 2016

Standards (note that all the ENs and ISO are also British Standards):

BS4978:2007+A2:2017: Visual strength grading of softwood. Specification. British Standards Institution, London.

BS5756:2007+A2:2017: Visual strength grading of temperate hardwood. Specification. British Standards Institution, London.

EN338:2016: Structural timber. Strength classes. European Committee for Standardization, Brussels.

EN384:2016: Structural timber – determination of characteristic values of mechanical properties and density. European Committee for Standardization, Brussels.

EN1912:2012: Structural Timber. Strength classes. Assignment of visual grades and species. European Committee for Standardization, Brussels.

EN14081-1:2016: Timber structures – Strength graded structural timber with rectangular cross section. Part 1: General requirements. European Committee for Standardization, Brussels.

EN14081-4:2009: Timber structures. Strength graded structural timber with rectangular cross section. Machine grading. Grading machine settings for machine controlled systems. European Committee for Standardization, Brussels. (withdrawn)

ISO3166-1:2014: Codes for the representation of names of countries and their subdivisions. Country codes. International Organization for Standardization, Geneva.

PD6693-1:2012: Recommendations for the design of timber structures to Eurocode 5: Design of timber structures. General. Common rules and rules for buildings. British Standards Institution, London.

Grading reports (confidential):

FEWELL A.R. (2001): TG2/0801/03: Derivation of grading machine settings for UK spruce using the method proposed in prEN14081.

Authors to be confirmed (2005): TG1/1005/08: title to be confirmed (a report by HFM)

RIDLEY-ELLIS D. and MOORE J. R. (2011): TG1/0211/10rev: Derivation of ViSCAN Grading Machine Settings for British spruce.

RIDLEY-ELLIS D. and MOORE J. R. (2011): TG1/0211/11rev: Derivation of ViSCAN-COMPACT Grading Machine Settings for British spruce.

RIDLEY-ELLIS D. and MOORE J. R. (2011): TG1/0211/12rev: Derivation of ViSCAN-PLUS Grading Machine Settings for British spruce.

RIDLEY-ELLIS D. and MOORE J. R. (2011): TG1/0211/13rev: Derivation of GoldenEye-702 Grading Machine Settings for British spruce.

RIDLEY-ELLIS D. and MOORE J. R. (2011): TG1/0211/14rev: Derivation of GoldenEye-706 Grading Machine Settings for British spruce.

MARCROFT J. (2011): TG1/0211/15: Derivation of Grading Machine Settings for British Spruce for Cook Bolinder and Computermatic/Micromatic Grading Machines.

MARCROFT J. (2011): TG1/0511/02: Derivation of Grading Machine Settings for Larch for Cook Bolinder and Computermatic/Micromatic Grading Machines.

REULING D., DUCCINI J.C. and PERSTORPER M. (2011): TG1/1011/11rev: Sitka spruce and Norway spruce from United Kingdom and Ireland for the Grading Machine Precigrader based on EN14081-2.

RIDLEY-ELLIS D. (2014): TG1/201410/18: Derivation of ViSCAN grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/19: Derivation of ViSCAN-COMPACT grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/20: Derivation of ViSCAN-PLUS grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/21rev1: Derivation of GoldenEye-702 grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/22: Derivation of GoldenEye-706 grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/23: Derivation of ViSCAN-portable grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/31rev: Derivation of MTG 920, mtgBATCH 922 and mtgBATCH 926 grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/32: Derivation of MTG 960, mtgBATCH 962 and mtgBATCH 966 grading machine settings for UK larch.

RIDLEY-ELLIS D. (2014): TG1/201410/33rev: Derivation of MTG 920, mtgBATCH 922 and mtgBATCH 926 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/34rev: Derivation of MTG 960, mtgBATCH 962 and mtgBATCH 966 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/35: Derivation of ViSCAN grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/36: Derivation of ViSCAN-COMPACT grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/37: Derivation of ViSCAN-PLUS grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/38rev1: Derivation of GoldenEye-702 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/39: Derivation of GoldenEye-706 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2014): TG1/201410/40rev: Derivation of MTG 960, mtgBATCH 962 and mtgBATCH 966 grading machine settings for green British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/21rev Derivation of Goldeneye 702 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/22rev Derivation of Goldeneye 706 grading machine settings for British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/23rev Derivation of Viscan Compact and Viscan portable with balance grading machine settings for British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/24rev Derivation of Viscan Plus grading machine settings for British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/25rev Derivation of Viscan and Viscan portable without balance grading machine settings for British spruce.

RIDLEY-ELLIS D. (2017): TG1/201703/26rev Derivation of MTG 960 grading machine settings for UK larch.

RIDLEY-ELLIS D. (2017): TG1/201703/27rev Derivation of MTG 960 grading machine settings for British spruce.

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/13rev1: Derivation of Goldeneye 706 grading machine settings for Douglas fir (IE & GB, C classes).

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/14: Derivation of Viscan Compact and Viscan portable with balance grading machine settings for Douglas fir (IE & GB, C classes).

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/15: Derivation of Viscan Plus machine settings for Douglas fir (IE & GB, C classes).

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/16: Derivation of Goldeneye 702 grading machine settings for Douglas fir (IE & GB, C classes).

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/17rev1: Derivation of Viscan and Viscan portable without balance grading machine settings for Douglas fir (IE & GB, C classes).

RIDLEY-ELLIS D. and GIL-MORENO D. (2018): TG1/201804/25: Derivation of MTG grading machine settings for Douglas fir (IE & GB, C classes).

Contact machine manufacturer or a Notified Body to obtain more information about grading settings tables, their limitations and yields. Please report any errors in this summary to d.ridleyellis@napier.ac.uk