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Abstract 

The arrival of a non-native species to has the potential to shape native communities by 

influencing ecological interactions such as predation, foraging, competition and disease 

transfer. A designation of invasive is applied to an introduced non-native species that has 

the potential to threaten the continued wellbeing of a native species, pose a risk to human 

health or negatively impact the economy. The European bullhead (Cottus perifretum) is a 

freshwater benthic-dwelling fish that is native to England but considered invasive in 

Scotland. The species was first reported in Scotland in the 1950's and thriving populations 

are now established in the waters of the Clyde, Forth and Tweed catchments. Bullhead 

presence is thought to negatively impact native stone loach (Barbatula barbatula) and 

brown trout (Salmo trutta) parr, due to shared preferences for habitat and prey resources. 

They are also thought to prey upon the eggs of native Atlantic salmon (Salmo salar) and 

brown trout, two species that are of high commercial value in Scotland. In other areas of 

introduction, bullheads have been found to increase parasite infection rates in native fishes. 

The species therefore has the capacity to incite competition and alter parasite/host 

interactions in areas of introduction, to the potential detriment of native fauna and the 

Scottish economy. The European bullhead has been the subject of considerable taxonomic 

scrutiny in recent years, resulting in its reclassification as a species complex. What was once 

considered a single species with a distribution encompassing Europe, Russia, Asia and 

Scandinavia, has been shown to consist of at least 15 distinct species. Genetic examination 

of bullheads from England confirmed the presence of Cottus perifretum, not Cottus gobio as 

traditionally listed in all UK literature and legislation. Native English bullhead is currently 

protected under Annex II of the European Commission Habitats Directive 92/43/EEC, based 
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on the historic assumption that the species present is C. gobio. Analysis of the taxonomic 

identity of Scottish bullheads has remained outstanding. 

In this study the invasive status of bullhead was explored by examining feeding and 

parasitological interactions between bullheads and native freshwater communities in south-

east Scotland. An assessment of the feeding preferences of native brown trout and stone 

loach in the presence and absence of bullheads tested competition for prey resources. 

Parasitological interactions were investigated by examining the shared parasite fauna of 

bullheads and native fish and invertebrate species. Bullheads from the Clyde and Forth 

catchments were analysed to provide a molecular and morphological description of this 

introduced species. 

Phylogenetic analysis of COX1 sequences obtained from Scottish bullheads, and a pair-wise 

distance calculation based on a Kimura 2-parameter model, showed that samples clustered 

in a distinct clade with English C. perifretum. Significant intraspecific variation was reported 

in all morphological features examined, but pooled data also revealed a resemblance to the 

published description provided for C. perifretum. Scottish bullhead is therefore confirmed to 

be an introduced pocket of the native English species, which is considered under threat in 

some areas due to habitat modifications and population decline. Comparisons between the 

dietary compositions of bullheads, brown trout and stone loach showed that the prey 

selection of brown trout and stone loach varied in the sample locations that contained co-

occuring bullheads, when compared to locations where bullheads were absent. However, no 

direct evidence of trophic competition between bullheads and either brown trout or stone 

loach was reported. An examination of parasitological interactions recovered eight parasite 

species from four distinct taxonomic groups in total, of which four species (Echinorhynchus 
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truttae, Apatemon gracilis, Diplostomum volvens and Raphidascaris acus) were shared 

between bullheads and one or more native fishes. Echinorhynchus truttae was also shared 

with gammarid crustaceans. Bullhead presence was found to coincide with D. volvens 

infections in European minnow (Phoxinus phoxinus) and a reduced prevalence of E. truttae 

in brown trout.  

Diplostomum volvens was only reported from minnow found in sites with bullheads, 

strongly suggesting bullheads were responsible for introducing this parasite to native 

minnows. Bullheads functioned as an alternative host for E. truttae, diluting brown trout 

parasite loads and reducing overall infection rates in sites where bullhead and brown trout 

co-exist. The findings reported for both feeding preference and parasite burdens in the 

presence and absence of bullheads suggest that bullheads do have some effect on the 

ecology of native species, but these are considered minimal and unlikely to impact the long-

term survival of native species. Eradication of Scottish bullhead may contradict the 

conservation effort that is currently in place. Given the current lack of evidence to validate 

bullhead's invasive qualities and the recent confirmation of its genetic lineage, revisiting the 

designation of the bullhead as invasive is warranted. Active eradication should be treated 

with caution until a significant negative impact can be proven.  
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Chapter 1. Introduction 
 

1.1 Freshwater Fishes in the British Isles 

Native (or indigenous) species are those that occur naturally within a given area and are 

thought to have done so since before the Neolithic period (Manchester and Bullock, 2000). 

Natural dispersal and migration of these species occur independently of human interference 

(Copp et al., 2005). Non-native (also referred to as 'alien' or 'exotic') species are those that 

have been introduced outside of their natural range by direct or indirect anthropogenic 

actions (Jeschke et al., 2014). The terms 'non-native' and 'introduced' can therefore be used 

interchangeably.  

At the end of the last ice-age, some 13,000 to 15,000 years ago, an ice cap covered Scotland 

and the northern half of England and Wales. Two main theories have been put forth to 

explain the presence of obligate freshwater fishes in the British Isles after the ice cap began 

to retreat. Schindler (1957) proposed the existence of glacial refuges in areas of southern 

England that were not covered by the ice sheet. It was suggested that some freshwater 

species were able to survive in these locations, and therefore predate the last period of 

glaciation in the UK. This theory is contested by Wheeler (1977), who reasoned that 

deoxygenated waters and extreme temperatures during this period would have made 

essential processes such as gonad maturation, spawning and fry development extremely 

difficult. Wheeler (1977) put forth the widely accepted theory that a large number of 

freshwater species arrived in Great Britain by a land bridge that spanned the North Sea for 

300 years and connected England to the continent. This region contained freshwater rivers 

that flowed to England from tributaries of the River Rhine (Maitland, 1994), and were the 



2 
 

precursors for a number of major eastern English rivers including the Humber, the East 

Anglian and the Thames (Wheeler, 1977). A number of obligate freshwater species currently 

found in Britain, such as ruffe (Gymnocephalus cernuus), spined loach (Cobitis taenia), silver 

bream (Blicca bjoerkna) and barbel (Barbus barbus), are thought to have arrived by these 

means (Lucas et al., 1998).  

Truly native Scottish freshwater fish species are few in number. As the land bridge did not 

extend north to northern England and Scotland, colonization of Scottish waters by the same 

means was not possible. Fish that were found in the freshwater regions of Scotland at the 

time were those with marine-associated ancestors (e.g. Atlantic salmon (Salmo salar) and 

brown trout (Salmo trutta)), or the capacity to survive in the ice lakes and glacial rivers still 

present at the time (Maitland, 1994). Euryhaline fishes, the majority of which spawn in fresh 

water, found Scottish waters easily accessible and became established as resident Scottish 

fauna. Many Scottish estuarine species (e.g. common sturgeon (Acipenser sturio), sea bass 

(Dicentrarchus labrax), and grey mullet (Chelon labrosus)) are thought to have been present 

in Scottish estuaries for thousands of years (Maitland, 1974). As the ice sheet retreated, 

many of the freshwater fish species found in England gradually migrated north to colonize 

new river systems. Those that reached Scotland took up residency alongside the relatively 

small number of species that had recently colonized these waters, to establish the 

communities of native fish fauna still found in Scottish rivers and lochs today.  

Other freshwater species that arrived more recently in Scotland's history did so either 

through natural dispersal, expanding their native range from other areas of the British Isles, 

or by human-mediated introductions. Natural dispersal between unconnected water bodies 

can result from fish egg adhesion and subsequent transport on the feet of waterfowl, or 
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opportunistic migration during flooding events (Maitland, 1994). Although these events are 

uncommon, flooding between closely associated water bodies is a probable method of fish 

transport. Waterfowl transport of invertebrate eggs is considered an important means of 

invertebrate introduction in freshwater systems (e.g. Figuerola and Green, 2002), but the 

desiccation of fish eggs that would occur during transport, fish preference for the 

positioning of eggs under gravel and rocks, and the high number of individuals required to 

successfully establish a population make this a less likely method for the introduction of 

most new fish species. It is more likely that anthropogenic actions, whether intentional or 

accidental, have been responsible for the majority of fish introductions that have occurred 

in British waters (Campbell, 1971). Maitland (1987) gives a detailed historical account of 

Scottish fish stocks and the northward range expansion of fish from English waters. The 

Victorian era saw the import of a large number of non-native species from England, Asia and 

North America, as the fashion for housing collections of rare exotic species and stocking 

sport fish spread. A surge in the number of freshwater fishes resident in Scottish waters 

followed. Since the 19th century, anthropogenic actions have almost doubled the number of 

Scottish freshwater fish on record (Maitland, 1977).  

It has since been estimated that invasive species constitute 38% of all freshwater fish 

species currently found in Scotland (Maitland, 2004). A species is considered invasive when 

its presence is found to be detrimental to the economy, pose a threat to public health or 

threaten the continued survival of native fauna. The European bullhead of the Cottus genus 

is one such fish, currently considered invasive in Scotland due to the overlap in feeding and 

habitat niche that exists between native stone loach (Barbatula barbatula) and brown trout 

fry, and its perceived capacity to displace native fishes. 
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1.2 Bullhead Dispersal in the British Isles 

Bullheads are indigenous only to south-east England (Maitland and Campbell, 1992) and are 

now well distributed throughout England and Wales (Smyly, 1957; Tomlinson and Perrow, 

2003; Carter et al., 2004; Boon and Lee, 2005). A dense population of bullheads in the Clyde 

catchment in the west of Scotland was first documented by Patton (1951) and Gemmel 

(1962). Specimens were reported in the Gogar Burn just outside Edinburgh in the late 1960's 

(Morris, 1978). Maitland (1977) documented a Scottish distribution encompassing the Earn 

area of the Clyde, and the Gogar and Leith areas of the Forth catchment. The waters of the 

Clyde and Forth catchments still support the majority of established bullhead populations in 

Scotland, although a small population of bullheads have now also been reported in the Ale 

water of the Tweed catchment (J. Hunt 2017, pers. comm. 19 January 2017) (Figure 1.1). 

Anthropogenic introductions are considered the likely explanation for bullhead presence in 

Scotland (Maitland, 1972; Tomlinson and Perrow, 2003), although its lack of economic or 

angling value have lead some authors to question whether this was done with intent (Mills 

and Mann, 1983).  
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Figure 1.1. Distribution of non-native bullhead in the British Isles (NBN Atlas) 

 

1.3 Bullhead Life History 

Thriving populations of bullhead can be found in both lakes and rivers in the British Isles. 

Scottish populations are restricted to lowland rivers but English bullheads inhabit a range of 

water types, including the lowland chalk streams of southern England and the relatively 

acidic moorland streams of northern England (Mann and Orr, 1969; Fox, 1978). Rheophilic 

individuals are more common, and show a preference for fast flowing stony stretches of 

rivers and streams (Newdick, 1979). Fish are found closely associated with the stones and 

rocks of the river bed, surrounded by a substrate of firm sand or gravel. Mark recapture 

studies have shown that bullheads possess a strong homing instinct, with large numbers of 

recaptures recorded in the same area over repeated chronological sampling (Smyly, 1957). 

Males are territorial and spend the majority of their time around a home stone, which they 
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will defend during mating time using croaking vocalisations and head-nodding threat 

displays (Tomlinson and Perrow, 2003).  

Bullheads are generally inactive during the day, displaying short bursts of activity at dawn 

and dusk when chasing prey. They are considered opportunistic feeders and will prey upon a 

range of available invertebrates. Smyly (1957) compared the diets of river and lake dwelling 

bullheads in England and attributed the dietary variations observed to local and seasonal 

availability. Individuals were found to select moving prey that could be actively stalked, 

showing a strong preference for invertebrate bottom fauna such as the nymphs of mayfly 

and stonefly, caddisfly larvae; and representatives of the genera Gammarus and Sialis.  

Physiologically, bullheads are highly adapted to the benthic environment they favour. The 

species is sexually dimorphic but both sexes exhibit dark mottled skin, flattened 

dorsoventral tapering and no swimbladder (Tomlinson and Perrow, 2003) (Figure 1.2). 

Males possess a wider head and larger mouth in comparison to the narrow head and 

pointed snout of the female (Morris, 1954). Growth rates vary between the sexes, with 

males generally growing more rapidly than females (Mann, 1971). Mature males also 

possess a triangular genital papilla which is absent in the female, and display darkened head 

colouration and a whitish-yellow trim along the anterior section of the dorsal fin during the 

breeding season (Smyly, 1957).  
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Figure 1.2. Scottish bullhead specimens. (a) Dorsal view showing lateral tapering of the 
body and dark mottled skin of adult bullhead from the River Almond. (b) Lateral view of 
tapering along the anteroposterior axis of adult bullhead from the River Almond 
  
 
Breeding generally takes place between March and April, although slight regional and 

altitude variations occur. Male bullheads create a nest underneath their home stone in 

preparation for the arrival of a gravid female. The nest is defended against rivals by threat 

displays such as head nodding, raised gill covers and dorsal fins, and body undulations; all of 

which collectively function to make the defending male appear larger (Morris, 1954). Once a 

nest is complete, the male will remain sedentary inside, with its head protruding slightly 

from the entrance until the appearance of a gravid female. Morris (1954) gave a detailed 

(a) 

1cm 

(b) 



8 
 

account of the behaviours that precede spawning. The female predominantly remains 

upside down in the nest, near the roof where the eggs will be deposited. The male then 

positions himself alongside the female, twisting his body to bring their tails close together. A 

distinct mating display then follows, with the male nodding vigorously, erecting his dorsal 

fins and pushing himself up on his pelvic fins. This behaviour may continue for some time 

until spawning commences.  

Females produce eggs approximately 2-2.4mm in diameter, with clutch size determined by 

the age and length of the female. Fecundity is positively correlated to female length, age 

and ambient water temperature, but negatively affected by local fish population density 

(Abdoli et al., 2005). Smyly (1957) noted clutches of 50-250 eggs in English bullheads, but 

Abdoli et al. (2005) recorded some females in France that produced almost 900 eggs. 

Fertilization occurs externally. After reproduction the spent female leaves the nest and the 

male remains to protect the fertilised eggs. Smyly (1957) observed an instance in which a 

second female then entered the nest and produced a new batch of eggs with the same 

male. Morris (1954) also recorded males with two gravid females inside the nest 

simultaneously. Parental care of egg clutches is the sole responsibility of the male. Rare 

examples of paired parental formations have been documented but are considered 

exceptional (Morris, 1954). Throughout egg development, males move oxygen-rich water 

over the developing eggs by fanning their pectoral fins. Fanning frequency and intensity vary 

with ambient water temperature (Morris, 1954). Experimental removal of the male at this 

time quickly results in the development of fungi unless the eggs are placed in running water 

(Smyly, 1957). During this period of development, males can come under attack by other 

larger individuals, who seize the parental male by the head using their jaws (Smyly, 1957; 

Morris, 1954). Fighting will cease as soon as the smaller male moves away from the stone, 
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thereby leaving his eggs to the mercy of the in-coming larger male (Smyly, 1957). Bisazza 

and Marconato (1988) noted a high number of incidences of unmated larger males 

displacing smaller egg-guarding males from their nests. Females show preference for males 

already guarding egg clutches, so this behaviour is thought to ultimately improve the male's 

chances of attracting a mate (Bisazza and Marconato, 1988).  

Newly-hatched fry disperse into the surrounding substrate, to grow and develop in the same 

stretch of water in which they were spawned. The species exhibits a limited migratory 

capacity, despite the rapid spread throughout water bodies that has been reported within 

its Scottish range. Dispersal throughout a catchment is likely a consequence of forced 

movement due to high population densities, downstream flooding events and human-

mediated translocations. High population densities and habitat dominance have facilitated 

bullhead's establishment in Scotland, lending weight to its invasive designation. 

1.4 Taxonomic Considerations and Bullhead Legislation  

The narrow home range and limited migratory capacity of bullheads make this an ideal fish 

to study in the context of speciation, as different populations rarely have a chance to mix 

and share genetic material. Speciation events occur when different evolutionary linneages 

are formed by reproductive isolation (de Queiroz, 1998), usually driven by sexual selection 

(Panhuis et al., 2001), habitat specialisation (Rice and Salt, 1990) or an extrinsic barrier 

(Palumbi, 1994). In the context of bullhead speciation, species groups are defined by the 

phylogenetic species concept (Mishler, 1985), wherein species are represented by an 

irreducible group of monophyletic organisms that share a set of derived and inherited 

characteristics.  

 It has historically been considered that a single species, Cottus gobio, spans Europe, with 

different countries maintaining isolated populations of the same species. Early studies used 
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morphological characteristics to attempt to distinguish specimens from different 

populations (e.g. Koli, 1969). The regional variations uncovered led Kottelat (1997) to 

propose the C. gobio species complex, a grouping of multiple distinct species that have 

previously been considered a single species with a European-wide distribution. Advances in 

molecular techniques have subsequently shaped our understanding of Cottus taxonomy, 

confirming the existence of fifteen distinct species all previously misidentified under the C. 

gobio species complex (Freyhof et al., 2005) (Table 1.1). Of these, a single species, Cottus 

perifretum, has been described for the British Isles. The tissue used for this analysis was 

from a limited range of locations in England, and failed to take into account the introduced 

populations of unknown origin in Scotland. As such, classification of Scottish bullheads 

remains unresolved.  

Despite these advances in Cottus taxonomy, all publications and legislation concerning 

bullheads in the British Isles continue to reference the species C. gobio. This is of particular 

relevance to environmental management decisions, as C. gobio is presently listed under 

Annex II of the European Commission Habitats Directive 92/43/EEC. As C. gobio has 

historically been considered a single species with a European-wide distribution, declining 

populations of bullheads in other areas of Europe prompted a continent-wide protection 

order on the species, in an attempt to help threatened stocks recover. Despite thriving 

numbers of bullheads across England and established populations in Scotland, current UK 

legislation therefore protects bullheads within their native English range. Revisitation of this 

legislative order seems warranted given the recent updates in Cottus taxonomy. 

Classification of Scottish bullheads will facilitate this process, by establishing whether 

individuals resident in Scottish waters are genetically similar to English C. perifretum, and 

confirming the current distribution of C. perifretum in the UK.  
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Table 1.1. Taxonomic classification and range description of fifteen species of the genus 
Cottus historically confused under the C. gobio species complex (Freyhof et al., 2005) 
 

Species Distribution 

 

C. gobio 

 

Northern Baltic basin in Scandinavia to stream Maurine in south-western German Baltic basin; coastal 

Sweden, Finland and Russia southwest to Estonia; River Danube (excl. upper tributaries of Save and 

Arges); Rivers Elbe, Rhone and Weser; tributaries of upper Rhine north to Mainz (Germany); uppermost 

tributaries of the River Tevere (Italy); Adriatic drainages from River Potenza (Italy) to River Zrmanja 

(Croatia) (excl. Timavo spring); and Steenputbeek stream in Scheldt drainage (likely introduced). 

 

C. poecilopus Carpathian streams draining to the Danube, Dniestr, Vistula and Odra; Baltic Sea basin; central Finnish 

lakes; several streams in southern Finland; several lakes in northern Germany, Lake Hańcza (Poland), 

River Skjernaa drainage (Denmark); southern portion of Lake Onega drainage; and River Orb east to 

River Lena (Siberia). 

 

C. ferrugineus Tributaries of the Adriatic Sea 

 

C. petiti Streams from the River Lez (France) 

 

C. hispaniolensis Southern Pyrenean drainage of the River Garonne (Northern Spain) 

 

C. koshewnikowi Drainages of the Upper River Volga, River Ural and River Dniepr (Russia), northern and eastern Gulf of 

Bosnia (Finland), northern Sweden and Baltic tributaries west of Estonia 

 

C. pellegrini Upper Tisza basin (Ukraine) 

 

C. microstomus Dniestr drainage of Black Sea basin (Ukraine and Moldova), River Odra and Vistula (Poland) in the 

Southern Baltic drainage 

 

C. aturi Drainages of River Adour (France) and River Nivelle (Spain) 

 

C. duranii Upper Dordogne, Lot and Loire drainages (France) 

 

C. rondelati Hérault drainage (France) 

 

C. perifretum River Scheldt (Belgium), Seine and lower Loire (France), Rhine (Germany), Garonne drainage (France 

and northern Spain) and all rivers of Great Britain 

 

C. rhenanus Lower Rhine (Germany) and Meuse drainages (Belgium and the Netherlands) 

 

C. scaturigo Timavo spring (northeastern Italy) 

 

C. metae Upper Save (Slovenia, Croatia, Bosnia and Herzegovina and Serbia) in the Danube drainage  

 

C. transsilvaniae Upper Arges (southern Romania) 
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1.5 Ecological Considerations of Introduced Bullheads in Scotland 

In order to be considered invasive on ecological grounds, a species must threaten the 

continued health and survival of native biota. These threats can be unpredictable and result 

from either direct biological interactions or indirect secondary influences. Direct biological 

interactions are termed biotic impacts, and encompass ecologica processes such as 

competitive displacement due to prey and habitat availability, hybridisation and disease 

transfer. Indirect influences are factors such as habitat modification, wherein the presence 

or actions of an introduced species alter the existing habitat to make it inhospitable to 

resident natives.  

The biological impacts of invaders are perhaps the most documented in invasive studies. 

Hybridisation is considered a common and significant problem in fish conservation 

(Allendorf et al., 2001). The consequential loss of genetic variability and potential for hybrid 

offspring to outcompete parental lineages can have severe consequences for long-term 

species survival. Hybridisation has been uncovered between several freshwater fishes both 

in the UK and abroad (e.g. in Scotland, Maitland, 1987; USA, Muhlfeld et al., 2017). Hybrids 

have also been recorded between distinct Cottus species that were previously grouped 

under the C. gobio species complex (e.g. Mavárez and Linares, 2008; Stemshorn et al., 2011; 

Vítek et al., 2014). Competition for food resources is a common consequence of invasions 

and can impact several interconnected ecological processes. The introduction of non-native 

rainbow trout (Oncorhynchus mykiss) in Northern Japan prompted a shift in prey selection 

by the native Dolly Varden charr (Salvelinus malma), and was found to coincide with the 

restructuring of stream and riparian food-webs (Baxter et al., 2004). Chinese mitten crab 

(Eriocheir sinensi), invasive in some regions of the UK, show a preference for Gammarus 
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pulex amphipod prey, which forms a significant portion of the diet of native white-clawed 

crayfish (Austropotamobius pallipes). As a result, their presence was shown to influence 

productivity and energy transference throughout native communities (Rosewarne et al., 

2016). The interconnected nature of such interactions highlights the need for a community-

based approach when evaluating the impact of an invasive species.  

Indirect impacts are often more difficult to detect, as they usually occur alongside more 

direct biological interactions. The introduction and subsequent spread of North American 

signal crayfish (Pacifastacus leniusculus) in the UK has restricted habitat availability and 

habitat quality for native benthic fishes (Guan and Wiles, 1997), displacing local populations 

of stone loach (Barbatula barbatula) and bullhead in English waters. Their role as vectors for 

the crayfish plague disease agent Aphanomyces astaci has also been well documented (e.g. 

James et al., 2017). This disease is fatal to native white-clawed crayfish (Austropotamobius 

pallipes), despite causing limited pathological affects in its original P. leniusculus host. 

Strauss et al. (2012) introduced the term 'disease mediated invasion' to define such cases, 

wherein invasive species transfer an invasive pathogen to a native population. Invasive 

species can bring with them novel parasites and disease agents that can spread rapidly to 

native species and threaten the survival of native fauna. Once introduced, these parasites 

and pathogens can remain in native communities even without the continued presence of 

their original host. The introduction of Anguillicoloides crassus, a nematode accidentally 

introduced to the UK by the Japanese eel (Anguilla japonica), has had a catastrophic effect 

on European eel stocks by significantly compromising swimbladder function, despite no 

current occurrence of A. japonica in UK waters (Barry et al., 2014). The role of invasive 

species as vectors for parasite and disease transfer is often overlooked in invasion ecology, 

but is potentially the most significant consequence of non-native species establishment. The 
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introduction of non-native parasites to a native community may drive some of the changes 

in ecological processes that are commonly reported. Amundsen et al. (2013) noted that 

parasites played a key role in driving the changes in food web structure that resulted from 

the introduction of invasive fishes in a Norwegian lake. Prenter et al. (2004) reviewed the 

literature documenting the role parasites play in invasion success in their concise review. 

Parasites have ultimately been shown to both influence a host's chance of initial invasion 

success, and provoke long-term impacts on the native communities to which they are 

introduced. Their potential involvement in community dynamics should therefore not be 

overlooked in invasive studies. 

The Scottish bullhead is thriving in areas of introduction, and is considered a highly 

successful invader due to the high population densities found in these regions. The 

ecological factors that have led to its successful establishment, and the impacts of its 

presence in Scottish waters, have not been examined in any published works. Bullheads are 

known to share macroinvertebrate prey with native brown trout (Salmo trutta) and stone 

loach, with which they also share similar habitat preferences. Such a close association in 

both feeding and habitat requirements implies competitive interactions with native species 

are highly likely. In other areas of introduction, where bullheads from the C. gobio species 

complex are considered invasive, the species has been shown to spread parasites and 

increase infection rates in native fishes (e.g. in Finland, Ieshko et al., 2013; and Czech 

Republic, Moravec, 2001). A study into the parasite fauna of bullheads and co-habiting 

Scottish fishes would allow this relationship to be explored, and determine if host/parasite 

interactions have been influenced by the arrival of non-native bullheads to Scottish waters.  
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1.6 Scope of This Project and Research Aims 

Developments in our understanding of the C. gobio species complex have resulted in the re-

classification of the British fish species traditionally considered to be C. gobio as C. 

perifretum, based on material analysed from three English rivers (Freyhof et al., 2005). To 

date, no genetic analysis has been conducted on resident populations of Scottish bullhead. 

Given that current legislation and management protocols within Scotland and the rest of the 

British Isles are based on the presence of C. gobio, the need to establish the true identity of 

the Scottish bullhead species is clear. Taxonomic classification of Scottish bullheads, through 

morphological and molecular examination, is the first aim of this study and will form the 

basis of the first part of this thesis. 

A level of ambiguity also exists concerning the invasive status of bullheads in Scotland. In 

order to put forth a case for their invasive or neutral status, and hence a proposed change in 

the legislation relating to the management of this species, it is necessary to determine if 

there is a case for considering Scottish bullhead invasive. The second aim of this thesis is to 

investigate the ecological interactions between introduced bullheads and native Scottish 

fauna in this context. Competition from feeding niche overlap between bullheads and other 

native fishes, and parasitological interaction with native fauna, are potential sources of 

conflict that have been documented in other areas where bullheads have been introduced. 

Investigating the feeding preferences of bullheads, stone loach and brown trout will shed 

light on the prospective feeding niche overlap between these species, and hence the level of 

interspecific competition that exists for prey resources. The close association and similar 

dietary preferences between bullheads and native benthic fishes suggests that the sharing 

of parasites is also likely. Previous studies of introduced bullheads across Europe have 
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demonstrated that bullheads have the capacity to facilitate the spread of parasites to native 

fish communities. An analysis of the parasite links between introduced bullheads and native 

fishes will therefore help to determine whether introduced bullheads pose a significant risk 

to the survival of native Scottish fauna. An examination of feeding niche overlap and shared 

parasite fauna will form the second part of this thesis. Results will help to clarify if 

conditions for an invasive designation on the basis of ecological grounds are met. 

Once the taxonomic classification for Scottish bullheads has been determined and several of 

the parameters for invasiveness have been tested, evidence for the revisitation of UK 

legislation pertaining to all UK bullheads is put forth. Recommendations for an updated 

management strategy in the context of future policy changes are explored in the final 

chapter, in order to provide scientific outputs that contribute to the continued preservation 

of native freshwater communities in the UK.  
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Chapter 2. Study Location and Sample Collection 

2.1 Location 

This study focused primarily on the river systems of Edinburgh, Midlothian and West 

Lothian. Material was also collected from the Clyde catchment for use in Chapter 3, in which 

the taxonomic identity of Scottish bullhead was investigated. No material was collected 

from the Ale Water in the Tweed catchment, as this recently established population was 

unknown to the author at the time. Sampling locations were selected on the basis of 

communities known to contain bullheads Cottus perifretum and bullhead-free control sites. 

Multiple unconnected water bodies were examined, in order to maximise community and 

genetic diversity. 

Thirteen sample sites were selected in total, encompassing four separate river systems 

across Edinburgh and the Lothians, and one location in the Clyde catchment (Table 2.1). The 

overall Water Framework Directive (WFD) 2015 classification of each location ranged from 

moderate (Earn Water) and moderate ecological potential (Burdiehouse Burn), to bad 

ecological potential (Braid Burn) and poor (all others) (SEPA, 2015) (Table 2.2). It should be 

noted, however, that overall WFD classifications are based on a "one-out, all-out" system, 

resulting in sites receiving the lowest designation of all parameters considered (Hering et al., 

2010). The biological parameters measured showed a greater range of values and more sites 

receiving moderate or high status when invertebrates and fish were considered 

independently. 
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Table 2.1. Information on the 13 sampling locations used throughout the study. Locations 
are listed by site name, river system, geographical location, chapters in which specimens 
from the location were used; and the presence and absence of bullheads within the fish 
community 

 

* Sites named by water body in Chapter 3 and a site-specific name in Chapters 4 and 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Water Body
Relevant 

Chapter(s)

Bullhead 

Present/Absent

Brox Burn River Almond 55° 55' 51.58" N 3° 29' 53.42" W 3 Present

Earn Water White Cart Water (River Clyde) 55° 45' 10.85'' N 4° 19' 42.19" W 3 Present

Breich Water River Almond 55° 52' 09.51'' N 3° 34' 22.84'' W 5 Absent

Carlops River North Esk 55° 47' 30.34'' N 3° 03' 54.57" W 4, 5 Absent

Happy Valley River Almond 55° 52' 07.88'' N 3° 36' 31.36'' W 4, 5 Absent

Killandean Burn River Almond 55° 52' 33.48'' N 3° 33' 03.82'' W 4, 5 Present

Kirkliston Niddry Burn (River Almond) 55° 57' 01.05'' N 3° 24' 25.49'' W 4, 5 Present

Murieston Water River Almond 55° 51' 39.82'' N 3° 30' 45.53'' W 4, 5 Absent

Oatridge College Ecclesmachan Burn (River Almond) 55° 56' 50.86'' N 3° 30' 42.38'' W 4, 5 Absent

Braid Burn Braid Burn 55° 57' 22.04" N 3° 07' 01.39" W 3, 4, 5 Present

Burdiehouse Burn Burdiehouse Burn 55° 56' 44.55'' N 3° 04' 43.06" W 3, 4, 5 Present

Livingston/River Almond* River Almond 55° 53' 21.69'' N 3° 30' 05.69'' W 3, 4, 5 Present

Newbattle Abbey/River North Esk* River Esk 55° 52' 57.24'' N 3° 03' 54.57'' W 3, 4, 5 Present

Location
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Table 2.2. 2015 WFD classification parameters for the 13 sampling locations used throughout this study (SEPA, 2015). Parameters are either 
given a pass/fail designation (specific pollutants category and each of the metal contaminant parameters) or ranking from poor to high (all 
other parameters). All parameters are colour coded based on their designation

 

Brox Burn Earn Water Breich 

Water

Carlops Happy 

Valley

Killandean 

Burn

Kirkliston Murieston 

Water

Oatridge 

College

Braid Burn Burdiehouse 

Burn

Livingston Newbattle 

Abbey

Overall status Poor Moderate Poor Poor Poor Poor Poor Poor Poor

Bad 

ecological 

potential

Moderate 

ecological 

potential

Poor Poor

Overall ecology Poor Moderate Poor High Poor Poor Poor Poor Poor Poor Moderate Poor Poor

Physico-chemical parameters - High Moderate High Good Good Poor High Poor Good Good Moderate Good

Soluble reactive phosphorus High High Moderate High Good Good Poor High Poor Good Good Moderate Good

Dissolved oxygen High High High High High High High High High High High High High

Acidity - High High High High High High High High High High High High

pH High High High High High High High High High High High High High

Biological elements Poor Moderate Poor Poor Poor Poor Poor Poor Poor Moderate Moderate Poor Poor

Invertebrate animals Good - - - - High - - - - - Good -

Macroinvertebrates (RICT/WHPT) Good - - - - High - - - - - Good -

Macroinvertebrates (ASPT) Good Good Good High Moderate High Good High Good Moderate Moderate Good Good

Macroinvertebrates (NTAXA) High High High High High High High High High High High High Good

Fish Poor High Poor Poor Poor Poor Poor Poor Poor High High Poor Poor

Fish barrier Poor High Poor Poor Poor Poor Poor Poor Poor High High Poor Poor

Aquatic plants - Moderate - - Moderate - - - - Moderate Good Moderate Moderate 

Macrophytes - Good - - Good - - - - Good Good Good High

Phytobenthos (diatoms) - Moderate Moderate - Moderate - Good High Good Moderate High Moderate Moderate 

Specific pollutants - Pass Fail Pass Fail Pass Pass Pass Pass Pass Pass Pass Fail

Iron - - Pass Pass Pass Pass - Pass - - - Pass Pass

Ammonium Pass Pass Fail Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass

Manganese - Pass Pass Pass Fail Pass - Pass - - - Pass Fail

Morphology Good Good Good High Good Good Good High Good Bad Moderate Good Good

Overall hydrology Good Moderate Moderate High High High High High High High Good High Good

Modelled hydrology Good Moderate Moderate High High High High High High High Good High Good

Hydrology (medium/high flows) High Moderate High High High High High High High High High High Good

Hydrology (low flows) Good High Moderate High High High High High High High Good High High

Hydromorphology Good Moderate Moderate High Good Good Good High Good Bad Moderate Good Good
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Fishes from multiple locations were used in Chapters 3, 4 and 5 of this study. Where 

possible, an attempt was made to maximise the amount of information that could be 

extracted from each individual, in order to prevent unnecessary fish removals from native 

communities. Some locations did not yield sufficiently high numbers of sympatric native 

fishes or identifiable stomach contents, and have therefore been excluded from the relevant 

chapters of this study. The sampling locations utilised in each chapter are specified in the 

individual methods sections.  

2.2 Specimen Collection 

2.2.1 Fish Communities 

Bullheads from the Earn Water were donated by Dr. William Yeomans of the Clyde River 

Foundation. Specimens were collected in the summer of 2016 and frozen immediately after 

sampling. Individuals were then transported on ice and stored in a -20°C freezer at 

Edinburgh Napier University until further investigation. 

Fishes collected from the east coast sites were collected under the license held by Dr Robert 

Briers at Edinburgh Napier University. Sampling took place during the summer of 2014 and 

2015, (for all sites except Murieston and Carlops) and 2015 and 2016 (Murieston and 

Carlops). Fishes were collected by electro-fishing using a Smith-Root LR-24 backpack 

electrofisher, with voltage automatically adjusted to reflect the conductivity at each site. 

Three successive ten minute runs were completed, and the captured fish population 

assessed (Figure 2.1). Thirty-five bullheads were selected from locations containing 

bullheads, along with a representative sample of the sympatric fish community, relative to 

the population density and availability at each site. Across all communities, the fish fauna 
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included bullheads, stone loach (Barbatula barbatula), brown trout (Salmo trutta), 

European minnow (Phoxinus phoxinus) and European flounder (Platichthys flesus) (Figure 

2.2). With the exclusion of bullheads, individuals were only taken when populations were 

considered robust enough to support their removal. This was determined by electrofishing 

success at the end of the three successive electrofishing runs, based on the number of 

individuals recovered and the age classes represented in each population (based on fish 

body lengths). Maintaining stable bullhead populations was not a concern due to the 

extremely high population densities evident across Scotland and the invasive designation of 

the species. The brown trout population at Carlops was deemed too small in 2016 to allow 

for the removal of any fish, resulting in only one year of samples available for this location. 

Specimens of minnow and stone loach were restricted to adult sizes, and a mixture of parr 

and adult brown trout were selected. A mixture of adult and juvenile life stages of bullheads 

and flounder were also taken. Fishes that were retained for the study were exposed to a 

lethal dose of 100mgL¯¹ benzocaine solution by trained personnel, placed in individual 

plastic bags and transferred immediately to a laboratory freezer (maintained at -20 °C). All 

other fishes were returned to the river. Sites were revisited the following year for another 

sampling session. 
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Figure 2.1. Fish capturing and sorting during fieldwork (a) banner and hand-net trapping of 
fish captured by electrofishing, and (b) recording of fish numbers after three successive 
runs. (a) Courtesy of the Forth Fisheries Trust 

 

Figure 2.2. Fish species sampled from across Edinburgh and the Lothians that were used in 
the study (a) bullhead b) stone loach (c) brown trout (d) minnow and (e) flounder. (c) 
Courtesy of Dr Rob Briers 
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2.2.2 Invertebrate Communities 

Invertebrate sampling was conducted in May of 2014 and 2015 (all sites except Murieston 

and Carlops) and 2015 and 2016 (Murieston and Carlops). Freshwater invertebrates were 

collected with standard fine-mesh sweep nets using a kick-sampling method (Figure 2.3a) 

(Barbour et al., 1999; AQEM, 2002). At each site the river was divided equally between two 

samplers. A simultaneous three minute kick-sample was conducted across each half of the 

river, with sampling effort distributed evenly across the river to cover all available habitats 

equally. Rocks and large pieces of vegetation that were inadvertently collected during the 

process were examined in-situ at the end of the three minutes and discarded after any 

clinging invertebrates had been removed (Figure 2.3b). Invertebrates from each sample site 

were then placed in an individual 3 litre collection jar containing a sample of river water, 

and transported to the laboratory for immediate processing (see Chapter 4). This process 

was repeated over two consecutive years. 

 

Figure 2.3. Invertebrate collection methods (a) kick sampling technique (b) volunteers 
checking contents of nets to remove large stones and woody debris after sampling 
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Part I: Identification of Introduced Scottish Bullhead 

 

 

 

 

 

 

 

 

 

 

Newbattle Abbey sample site on the River North Esk 
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Chapter 3. Identification of Invasive Bullhead Cottus perifretum (Cottidae, 

Scorpaeniformes) in Scotland based on Morphology and Molecular Phylogenetic Analysis 

3.1 Introduction 

The genus Cottus (Cottidae, Scorpaeniformes) is widely distributed throughout Europe, 

Siberia, North America and Asia, and represents the most speciose taxonomic group of 

freshwater sculpins (Goto et al., 2015). Within Europe, a number of distinct species have 

been historically misidentified under the species name Cottus gobio, commonly known as 

the European bullhead. What was once thought to be a single species with a continent-wide 

distribution is now considered a species complex (Kottelat, 1997), and at least 15 species 

have subsequently been described across Europe (Freyhof et al., 2005).  

Morphological descriptors were historically used to distinguish between similarly related 

species. Variations in Cottus morphological characteristics both between and within 

populations across Europe have been well documented. Nybelin (1958) divided European 

Cottus species into two groups based on the number of pores present on the chin. Those 

within the C. gobio group possess one median chin pore whilst two pores are present in 

specimens of Cottus poecilopus. Koli (1969) examined a selection of northern European 

bullheads to determine geographical variations in external morphology. Three 

morphological features showed considerable variation: the distribution and 

presence/absence of skin prickling, the number of pores found along the lateral line, and 

the overall length of the lateral line. The density and distribution of skin prickling was found 

to best distinguish bullheads from different regions, albeit with considerable variation 

within populations. Prickling was most evident in specimens from northern Sweden, the 

inland waters of Finland and the former eastern Soviet Union. Bullheads originating from 
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Britain, the majority of Sweden and the region extending from the Pyrenees to the 

Carpathian mountains showed a lower density of prickling overall, with prickles completely 

absent in some specimens. These results led Koli (1969) to propose the existence of two 

morphological strains of bullheads that originated from separate post-glacial migratory 

pathways, with a secondary zone of intergradation in regions where these pathways 

historically overlap. Molecular studies have subsequently exposed an intergradation zone in 

the Rhine that contains two distinct species which also interbreed, resulting in hybrids 

(Englbrecht et al., 2000).  

Traditional morphological descriptors were unable to satisfactorily resolve the taxonomic 

uncertainty present within the European bullhead species complex, but through 

combination with molecular markers a more detailed picture of European Cottus phylogeny 

has been uncovered. The early examination of allozyme markers from different populations 

across Europe provided a measure of heterozygosity that had not previously been observed. 

Studies were conducted across south-western Germany and the connecting water bodies of 

France (Riffel and Schreiber, 1995; 1998); north-east Bavaria (Hänfling and Brandl, 1998a; 

1998b), and southern France (Eppe, 1999), and showed significant allozyme diversity 

between populations of bullheads from within the same drainage basin. Mitochondrial DNA 

(mtDNA) and microsatellite loci have also been used to examine genetic relationships 

between populations in Finland (Kontula and Väinölä, 2004) and the drainage waters of the 

Adriatic (Šlechtová et al., 2004). On a larger scale, a comprehensive phylogeographical 

analysis across the majority of the C. gobio European range was conducted by Englbrecht et 

al. (2000), based on 12 new microsatellite loci that were published in an earlier study 

(Englbrecht et al., 1999). Analysis of molecular distances between haplotypes of different 

populations identified six distinct clades within the C. gobio species complex. The results 
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were consistent with the genetic variability within the Rhine basin documented in earlier 

allozyme studies (Riffel and Schreiber 1995; 1998). Volckaert et al. (2002) identified a 

seventh clade in the Brittany-Loire region of France and described a larger geographical 

range for the North Sea and Lower Rhine clades than previously recognised. Subsequent 

studies have been able to assign populations to these clades based on mtDNA from closely 

associated populations (Knapen et al., 2003) and microsatellite markers from populations 

distributed across Europe (Hänfling et al., 2002). After analysing all available publications 

describing the genetic diversity within European cottids, Freyhof et al. (2005) ultimately 

confirmed the existence of nine genetic lineages across Europe, containing fifteen distinct 

species. 

A detailed summery of the molecular advances that have helped to restructure the C. gobio 

species complex is presented by Freyhof et al. (2005). The authors assimilated this 

knowledge and combined it with their own detailed analyses of morphometric and 

morphological characteristics of individuals from across Europe, in order to resolve the 

taxonomic uncertainty surrounding the European bullhead. Of the fifteen confirmed 

European Cottus species, a single species, Cottus perifretum, was described for Great Britain 

(Freyhof et al., 2005). The material examined from the British Isles was taken from a limited 

number of location in England, where bullheads are a native species. Within the British Isles, 

bullheads are widely distributed across their native range in England and Wales (Smyly, 

1957; Wheeler, 1977; Tomlinson and Perrow, 2003; Carter et al., 2004; Boon and Lee, 2005), 

and found in four catchments in Scotland, where the species is considered invasive. An 

invasive designation is in place owing to a perceived threat to native salmonids and other 

fishes, due to competition and displacement from niche overlap (e.g. Pihlaja et al., 1998; 

Carter et al., 2004; Elliott, 2006), and bullhead consumption of salmonid eggs (e.g. Smyly, 
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1957; Gaudin and Caillere, 2000; Palm et al., 2009). Bullheads are thought to have been 

introduced to Scotland in the 1950's (Smyly, 1957; Maitland, 1972, Maitland, 1977; 

Tomlinson and Perrow, 2003), although a lack of economic or angling value has led some to 

suggest the introduction was accidental (Mills and Mann, 1983). The waters draining into 

the Clyde and Forth estuaries and a small area of the Tweed catchment constitute the only 

known occurrences of bullheads in Scotland. 

Differences in morphological characteristics exhibited by bullheads from across England 

were noted by Wheeler (1977), who reported two distinct morphologies in eastern England; 

a smooth skinned form with a complete lateral line extending across the length of the body 

wall, and a second morph with spinulose (prickled) skin and an incomplete lateral line. The 

finding of two separate spawning tactics in bullheads from the north and south of England 

by Fox (1978) appeared to support the idea of two separate genetic lineages in the British 

Isles. Hänfling et al. (2002) examined microsatellite markers in specimens from a range of 

locations across the described range of C. perifretum, and found a close association 

between specimens from the north of England and Wales. A noticeable divergence was 

found when comparing these specimens against those of southern England and the Scheldt. 

An isolation by distance analysis of the Northern England and Wales grouping showed that 

the high levels of association observed were not simply a result of the close geographic 

proximity of the sampled populations. Significant genetic variability is therefore evident 

between bullhead populations in southern England and those found in northern England 

and Wales.  

Freyhof et al. (2005) were limited in the material they were able to examine from Britain. In 

their analysis, samples from the River Wensum and Great Ouse in Southeast England 
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followed the general species description given for C. perifretum, but individuals examined 

from the River Wharfe in Yorkshire showed some differing morphological features, with an 

elongated body shape and a decrease in the amount of prickling present under the pectoral 

fin. No examination was conducted on specimens of bullhead originating from the novel 

populations that have established in Scotland. As the origin of Scottish bullhead populations 

is unknown, further investigation into the morphological and molecular characteristics of 

individuals from the northernmost limits of the British range will further our understanding 

of the level of speciation present within the British Isles. Confirmation of taxonomic identity 

is of particular importance owing to the emphasis placed on C. gobio conservation across 

Europe and throughout England. Detailed molecular and morphological analysis will also 

provide evidence to support the species' designation as invasive in Scottish waters. 

3.1.1 Aims and Objectives  

This study aims to provide a taxonomic identity for Scottish bullhead by conducting 

molecular and morphological analysis of bullheads from the Forth and Clyde catchments. 

The results of these analyses are compared to the descriptions provided for English C. 

perifretum and those of the other European Cottus species previously grouped under the C. 

gobio species complex. Results are discussed in the context of taxonomic revisions within 

the genus Cottus, and their contribution to our understanding of bullhead's invasive 

designation in Scotland. Although the exact timing and location of bullhead introduction is 

unknown, it is hypthesised that Scottish populations have originated from specimens that 

have been translocated from England; and that Scottish bullheads are therefore a genetic 

match to the English bullhead C. perifretum. 
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3.2 Methods 

Specimens were collected from five sites on the east coast of Scotland and one location on 

the west coast (Figure 3.1). Samples from the east coast covered four separate rivers (the 

River North Esk, Burdiehouse Burn, Braid Burn and River Almond) and two locations on the 

same river that were separated by impassable barriers (Brox Burn and River Almond). 

 

Figure 3.1. Location of sampling sites used for molecular and morphological analysis (a) 
Earn Water sample site within the Clyde catchment in the west of Scotland (b) five 
sampling sites within the Forth catchment on the Scottish east coast 
 
 
 

 

(a) 

(b) 

(b) (a) 
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3.2.1 DNA Isolation, PCR and Sequencing 

Fish were thawed at room temperature for 30 minutes in preparation for morphological 

examination and tissue sampling for DNA extraction. Specimens were examined under an 

Olympus SZ51 dissection microscope and the organs exposed using a cranio-caudal incision 

from the gill covers to the vent region. Approximately 25mg of muscle tissue and 10mg of 

liver were then extracted from each individual and placed in individual sterile epindorf 

tubes. DNA was extracted from liver and muscle tissue using Qiagen® DNeasy Blood and 

Tissue kit (Qiagen, Hilden, Germany), as per the protocol provided. A 30 minute RNA 

digestion step using 1µl RNAseA (5µg/ml) was added to the end of the lysation process to 

ensure a purified end product. The mitochondrial gene Cytochrome c oxidase I (COI) was 

PCR amplified using the combination of primers COI FW 5'-TTCTCGACTAATCACAAAGACATT- 

3' and COI REV 5'-TAGACTTCAGGGTGACCAAAGAATCA-3' (Sonnenberg et al., 2007), and 

puReTaq Ready-to-go PCR beads (GE Healthcare). The total reaction mix comprised 2.5µl 

DNA, 1µl COI FW primer, 1µl COI REV primer, 20.5 µl dH₂O and a PCR bead. PCR 

amplifications consisted of a 15 minute initial denaturation phase at 95°C; followed by 45 

cycles of: 20 seconds at 94°C (denaturing), 90 seconds at 52°C (annealing) and 90 seconds at 

72°C (extension); and a final extension phase at 72°C for 8 minutes. PCR products 

corresponding to the expected size were then gel isolated using a 25 minute electrophoresis 

process, and extracted from the gel using an Ultraclean® 15 DNA purification kit (Mo BIO, 

California, USA). The DNA content of each purified product was measured using a Nanovue 

spectrophotometer. A final sequencing mixture composed of 2µl of either COI FW or COI 

REV primer, and 75ng/15µl DNA (with the discrepancy in volume made up with dH₂O), was 

obtained. Forward and reverse reactions were sequenced by Eurofins Genomics in 

Germany.  
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3.2.2 Morphological Analysis 

Bullhead specimens from the River Almond (n=33), River North Esk (n=35), Burdiehouse 

Burn (n=55), Braid Burn (n=35), Brox Burn (n=34) and Earn Water (n=37) were examined for 

both quantitative and descriptive morphological features. Morphological characters were 

selected based on their capacity to discriminate between bullhead populations in earlier 

publications (Koli, 1969; Riffel and Schreiber, 1998; Freyhof et al., 2005). These included 

meristic traits commonly observed in fish studies and bullhead-specific factors concerning 

the distribution and density of modified dermal skin prickles (Figure 3.2 and 3.3). The 

coverage and extent of prickling was reported as a visual estimate of the percentage of the 

posterior body wall covered in prickles. When conducting fin ray counts, rays extending 

from the same pterygiophore were counted as 1.5 rays, as in the work of Freyhof et al. 

(2005). Body weight, standard length (from tip of the snout to end of hypural complex) and 

full length (from tip of the snout to tip of caudal fin) were also recorded for each specimen. 

All examinations were completed with the assistance of an Olympic SZ51 dissection 

microscope using magnifications ranging from 0.8x - 4x. 
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Figure 3.2. Bullhead morphological features of interest. (a) Skin prickles on dermal 
surface, (b) prickling dorsal and ventral to the lateral line, (c) complete lateral line (Ll) 
extending down the body wall, (d) pectoral fin displaying fin rays 
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Figure 3.3. Schematic representation of morphological characteristics examined in Scottish bullhead specimens
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Meristic traits were compared across each population. Statistical analysis was conducted 

using Minitab Statistical Software version 17. As assumptions for parametric analysis were 

not met for meristic trait data, non-parametric analysis was undertaken using Kruskal-Wallis 

testing with post-hoc Mann-Whitney U tests between selected variables. A Holm-Bonferroni 

correction was applied to all results (Holm, 1979). Variability in standard length and counts 

for second dorsal fin, anal fin and pectoral fin rays for bullheads examined from all locations 

were explored using box plots. As the distribution of prickling was normally distributed, a 

Pearson correlation analysis was applied to the grouped bullhead data to determine if the 

proportion of the body covered in prickles was related to standard body length. A one-way 

ANCOVA was conducted to compare skin prickling distribution with standard length, whilst 

controlling for location variability.  

3.2.3 Molecular Phylogenetic Analysis 

The obtained COI sequences were identified by BLAST analysis. Phylogenetic analysis was 

undertaken using the six mtDNA COI sequences of Scottish bullhead amplified in this study 

and those of 32 other species within the genus Cottus published in Genbank. Sequences 

from Atlantic salmon (Salmo salar) and European ruffe (Gymnocephalus cernuus) were 

added to the alignment as an outgroup. Sequences were aligned using Geneious 

(http://www.geneious.com, Kearse et al., 2012), with visual editing to confirm placement 

accuracy. An alignment of 475 base pairs was obtained after all gaps had been excluded. The 

alignment was analysed with Maximum Likelihood (ML) and Bayesian methods.  

ML and bootstrap analyses were undertaken using the programme PhyML (Guindon and 

Gascuel, 2003; Guindon et al., 2010) with the Tamura-Nei (TN) model of nucleotide 

substitutions (Posada and Crandall, 1998) and a γ -distribution with a fixed proportion of 
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invariable sites and a transition/transversion ratio (Ti/Tv) estimated from each data set (40-

taxon alignment: six rate categories, γ = 0.156). The computation was completed under the 

TN93+G+F substitution model, using Akaike information criterion (AIC).  

Bayesian analysis was performed using MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001; 

Ronquist and Huelsenbeck, 2003). The program was set to operate with a GTR substitution 

model, γ - distribution and four Monte Carlo Markov chains (MCMC; default temperature = 

0.2). A total of 10,000,000 generations were calculated based on trees sampled every 100 

generations, with a prior burn-in of 25,000 generations (2,500 sampled trees were 

discarded). The 75,000 post-burn-in trees obtained were used to construct a majority-rule 

consensus tree, where reported posterior probabilities correspond to the frequency at 

which a given node occurred in a post-burn-in tree. 

A pair-wise distance calculation based on Kimura's two-parameter model (Kimura, 1980) 

was performed on the same alignment, using MEGA 7.0 (Kumar et al., 2016). 

3.3  Results 

3.3.1 Molecular Phylogenetic Analysis 

Analysis of the six Scottish bullhead sequences described in the study, along with sequences 

of other Cottus species from across North America, Asia and Europe, showed separation 

within the Cottus genus based on broad geographic groupings (Figure 2.4 and 2.5). ML 

support for the deepest branches of the phylogenetic tree was fairly low, at less than 50%. 

Higher support was found with Bayesian posterior probabilities, which strongly supported 

the first initial grouping of the North American Cottus species (with values ranging from 0.91 

to 1), but were less supportive of the sister branch, which grouped Cottus species from a 
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mix of geographical locations (Bayesian posterior probability value of 0.54). Weakly 

supported deep branches in this phylogenetic tree suggests that the separation between 

members of the Cottus genus is not well defined in this study.  

Clustering is evident within the European Cottus species analysed in this study. Support for 

the European grouping is high (Bayesian posterior probability of 0.9871 and ML output 

85%). Three distinct clades are visible within the European Cottus group, along with the 

separation of four distinct species that do not cluster well with any of the other species 

groupings, or each other. Scottish bullheads form a clade with English C. perifretum, which is 

well supported by Bayesian posterior probability analysis (0.98) and moderately supported 

by our ML bootstrapping model (73%). The direct sister clade to C. perifretum is comprised 

of C. hispaniolensis and C. duranii, of northern Spain and France respectively. Cottus gobio 

and C. aturi formed a third clade as sister to the former two. The species C. rhenanus, C. 

rondeleti, C. scaturigo and C. microstomus come off the same node independently, and do 

not cluster with any of the other European Cottus species. There are three distinct clades 

within Europe, but the overall support for these groupings within the European species is 

relatively low based on ML analysis (Figure 3.4). Support is higher based on Bayesian 

analysis. 
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Figure 3.4. ML tree of an alignment of 40 Cottus COI mtDNA gene sequences (40-taxon alignment: six rate categories, γ = 0.156), produced 
using the TN model of nucleotide substitutions, a gamma distribution and invariable sites. Numbers denote ML bootstrap percentages. 
Bootstrap values of less than 50 % are excluded. Sequences of Scottish bullhead derived from this study are shown in black boxes. All other 
Cottus species are listed along with their NCBI accession numbers. Species geographical ranges are shown by coloured bars, separating 
specimens from North America (red), Asia and Europe (orange), Asia (blue) and Europe (green)  
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Figure 3.5. Bayesian tree output of phylogenetic analysis of 40 Cottus COI sequences. Values are inferred using a GTR substitution model, γ - 
distribution and four Monte Carlo Markov chains (MCMC; default temperature = 0.2). Numbers represent Bayesian posterior probabilities. 
Bayesian values less than 0.50 are excluded. Sequences of Scottish bullhead derived from this study are shown in black boxes. All other 
Cottus species are listed along with their NCBI accession numbers Species geographical ranges are shown by coloured bars, separating 
specimens from North America (red), Asia and Europe (orange), Asia (blue) and Europe (green) 
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A pair-wise distance calculation performed on 38 Cottus COI mtDNA sequences showed an 

extremely high degree of similarity between Scottish bullhead and English C. perifretum. No 

differentiation was found within the British sequences except the Brox Burn, which was only 

marginally distinct, yielding a 0.21% divergence from the other British specimens (Table 3.1). 

Comparisons between the Scottish bullhead sequences derived from this study and all other 

Cottus species examined showed higher divergence, although low interspecific divergence 

was shown across Europe. All sequences originating from specimens previously confused 

under the C. gobio species complex yielded interspecific divergence values of 1.50 % or 

lower. Similarly low values within this threshold were found between European cottids and 

C. sibiricus, originating from Siberia, and between C. sibiricus and C. ricei of Alaskan/north-

west American origin. Cottus species originating from North America showed substantially 

higher divergence from the sequences derived in this study (ranging from 1.72-8.87%). 
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Table 3.1. Pair-wise distance calculations of COI mtDNA sequences across 38 Cottus species, based on the Kimura 2-parameter model 

(Kimura, 1980). Values represent percentage sequence divergence. Sequences from Atlantic salmon and European ruffe are also included as 

an outgroup. Values in bold represent comparisons of British bullhead. The box contains comparisons across European bullhead species all 

previously confused under the C. gobio species complex

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1. Brox Burn -

2. River Almond 0.212 -

3. River North Esk 0.212 0.000 -

4. Burdiehouse Burn 0.212 0.000 0.000 -

5. Braid Burn 0.212 0.000 0.000 0.000 -

6. Earn Water 0.212 0.000 0.000 0.000 0.000 -

7. Cottus perifretum 0.212 0.000 0.000 0.000 0.000 0.000 -

8. Cottus gobio 1.070 0.855 0.855 0.855 0.855 0.855 0.855 -

9. Cottus duranii 0.640 0.426 0.426 0.426 0.426 0.426 0.426 0.857 -

10. Cottus hispaniolensis 0.640 0.426 0.426 0.426 0.426 0.426 0.426 0.857 0.000 -

11. Cottus aturi 1.501 1.285 1.285 1.285 1.285 1.285 1.285 0.854 1.286 1.286 -

12. Cottus rhenanus 0.640 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.854 -

13. Cottus microstomus 0.640 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.854 0.000 -

14. Cottus scaturigo 0.640 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.854 0.000 0.000 -

15. Cottus rondeleti 1.070 0.855 0.855 0.855 0.855 0.855 0.855 0.857 0.857 0.857 1.286 0.426 0.426 0.426 -

16. Cottus poecilopus 9.602 9.366 9.366 9.366 9.366 9.366 9.366 9.631 9.631 9.631 9.602 9.130 9.130 9.130 8.633 -

17. Cottus sibiricus 1.718 1.501 1.501 1.501 1.501 1.501 1.501 1.502 1.502 1.502 1.936 1.069 1.069 1.069 1.502 8.868 -

18. Cottus ricei 1.939 1.722 1.722 1.722 1.722 1.722 1.722 1.725 1.725 1.725 1.720 1.288 1.288 1.288 1.725 8.154 1.504 -

19. Cottus perplexus 6.696 6.467 6.467 6.467 6.467 6.467 6.467 6.953 6.475 6.475 7.414 6.475 6.475 6.475 6.002 8.633 6.230 6.011 -

20. Cottus girardi 6.485 6.256 6.256 6.256 6.256 6.256 6.256 6.267 6.267 6.267 6.485 5.793 5.793 5.793 6.267 8.706 5.549 5.332 6.029 -

21. Cottus bairdi 5.090 4.866 4.866 4.866 4.866 4.866 4.866 4.874 4.874 4.874 4.627 4.411 4.411 4.411 4.874 8.180 4.621 3.946 6.723 3.052 -

22. Cottus aleuticus 6.696 6.467 6.467 6.467 6.467 6.467 6.467 6.475 6.475 6.475 6.934 6.002 6.002 6.002 5.534 8.121 5.761 5.541 4.404 6.247 6.963 -

23. Cottus tenuis 8.375 8.142 8.142 8.142 8.142 8.142 8.142 8.154 8.154 8.154 8.621 7.666 7.666 7.666 7.666 9.900 7.898 7.677 4.642 7.458 7.677 5.323 -

24. Cottus tallapoosa 6.953 6.723 6.723 6.723 6.723 6.723 6.723 7.216 6.734 6.734 7.677 6.734 6.734 6.734 7.216 11.205 6.723 6.267 7.485 6.289 5.341 8.690 8.924 -

25. Cottus rhotheus 6.256 6.029 6.029 6.029 6.029 6.029 6.029 5.567 6.040 6.040 5.315 5.567 5.567 5.567 6.040 8.940 5.323 4.642 7.458 2.833 2.387 7.702 8.924 5.588 -

26. Cottus pitensis 6.467 6.238 6.238 6.238 6.238 6.238 6.238 6.723 6.247 6.247 6.704 6.247 6.247 6.247 5.775 7.424 6.002 5.315 1.288 5.567 5.784 3.498 4.419 7.228 6.505 -

27. Cottus klamathensis 8.868 8.633 8.633 8.633 8.633 8.633 8.633 8.646 8.646 8.646 9.116 8.154 8.154 8.154 8.646 10.925 8.387 8.166 6.051 8.441 8.660 6.505 1.728 9.934 9.934 5.824 -

28. Cottus hypselurus 7.888 7.655 7.655 7.655 7.655 7.655 7.655 7.666 7.666 7.666 7.405 7.183 7.183 7.183 7.666 8.646 6.934 6.238 7.909 6.040 4.621 8.868 9.631 7.446 5.557 6.953 10.649 -

29. Cottus hubbsi 5.315 5.090 5.090 5.090 5.090 5.090 5.090 5.098 5.098 5.098 4.851 4.634 4.634 4.634 5.098 8.690 4.397 4.181 6.734 2.610 1.944 7.216 8.180 5.588 2.170 5.793 8.675 5.323 -

30. Cottus gulosus 6.943 6.713 6.713 6.713 6.713 6.713 6.713 6.723 6.723 6.723 7.183 6.247 6.247 6.247 5.775 8.399 6.002 5.784 0.640 5.803 6.495 4.181 4.651 7.962 7.228 1.509 6.063 7.677 6.505 -

31. Cottus cognatus 5.775 5.549 5.549 5.549 5.549 5.549 5.549 5.557 5.557 5.557 5.308 5.090 5.090 5.090 5.557 8.427 4.851 3.719 6.963 3.278 0.640 7.204 7.921 5.577 2.610 6.019 8.909 4.851 2.165 6.734 -

32. Cottus chattahoochee 6.953 6.723 6.723 6.723 6.723 6.723 6.723 7.216 6.734 6.734 7.677 6.734 6.734 6.734 7.216 10.686 6.723 6.267 7.485 6.289 5.341 8.690 8.924 0.426 5.588 7.228 9.934 6.963 5.588 7.962 5.577 -

33. Cottus carolinae 5.083 4.858 4.858 4.858 4.858 4.858 4.858 4.866 4.866 4.866 5.315 4.404 4.404 4.404 4.866 8.441 4.627 3.952 5.549 3.284 2.833 6.734 6.963 4.189 3.518 5.557 7.934 5.557 3.064 5.323 3.058 4.189 -

34. Cottus caeruleomentum 5.549 5.323 5.323 5.323 5.323 5.323 5.323 5.332 5.332 5.332 5.083 4.866 4.866 4.866 5.332 9.191 5.090 3.952 6.256 3.511 2.165 7.216 7.689 4.883 2.392 5.323 8.675 4.397 2.392 6.029 2.387 4.883 2.392 -

35. Cottus beldingi 6.926 6.696 6.696 6.696 6.696 6.696 6.696 6.704 6.704 6.704 6.689 6.230 6.230 6.230 6.704 9.340 5.768 5.302 8.131 6.475 5.768 7.666 7.636 7.666 6.485 7.173 7.878 7.878 5.076 7.898 6.002 7.666 6.011 5.541 -

36. Cottus leiopomus 6.943 6.713 6.713 6.713 6.713 6.713 6.713 6.247 6.723 6.723 6.943 6.247 6.247 6.247 6.723 10.631 6.002 5.784 7.424 5.784 5.784 7.204 8.387 7.934 6.029 6.953 8.633 6.696 5.557 7.193 6.019 7.446 5.557 5.090 4.419 -

37. Cottus confusus 6.011 5.784 5.784 5.784 5.784 5.784 5.784 5.793 5.793 5.793 6.011 5.323 5.323 5.323 5.793 9.462 5.083 4.866 6.267 3.291 2.605 6.723 6.974 5.107 3.284 6.040 8.441 5.567 2.610 6.278 2.828 5.107 2.833 2.610 5.768 5.549 -

38. Cottus asper 7.173 6.943 6.943 6.943 6.943 6.943 6.943 7.435 6.953 6.953 7.898 6.953 6.953 6.953 6.475 8.633 6.704 6.485 0.854 6.505 7.204 4.866 5.341 8.194 7.947 1.725 6.770 8.399 7.216 1.071 7.446 8.194 6.019 6.734 8.621 7.909 6.986 -

39. Salmo salar 27.928 27.632 27.632 27.632 27.632 27.632 27.632 26.999 27.679 27.679 27.247 26.999 26.999 26.999 26.663 26.165 26.707 26.372 26.576 24.012 24.012 26.328 26.372 24.615 24.048 25.954 27.045 25.954 23.730 26.285 24.651 24.615 24.689 24.367 23.449 25.954 24.974 26.244 -

40. Gymnocephalus cernuus 22.544 22.511 22.511 22.511 22.511 22.511 22.511 22.855 22.855 22.855 23.101 22.234 22.234 22.234 21.927 22.790 22.758 23.449 23.484 22.822 21.044 22.060 22.267 24.443 22.234 23.204 22.577 23.696 21.621 23.204 21.896 24.443 21.621 21.621 24.240 24.565 22.822 22.544 22.036 -

Sequence



51 
 

3.3.2 Morphological Analysis 

A substantial amount of intraspecific variation was exhibited in all morphological traits 

examined (Figures 3.6 to 3.8). Significant differences in second dorsal fin ray counts 

(Kruskal-Wallis test; H = 21.69, df = 5, p < 0.05), anal fin ray counts (Kruskal-Wallis test; H = 

22.03, df = 5, p < 0.05) and pectoral fin ray counts (Kruskal-Wallis test; H = 67.11, df = 5, p < 

0.05) were found between populations (Figure 3.9). Values obtained were compared with 

those published for native English bullheads (Maitland and Campbell, 1992; Kottelat and 

Freyhof, 2007). Results showed a larger variation in pectoral fin rays counts, anal fin ray 

counts and second dorsal fin ray counts than has been previously described for bullheads in 

Britain (Figures 3.6 to 3.8). 

Bullheads sampled from the Earn Water had a higher average number of pectoral fin rays 

than bullheads from all other locations (Figures 3.6 and 3.9). Values for the Earn Water 

differed significantly from all other groups (Mann-Whitney U test; Earn Water and River 

Almond W = 811.5, N1 =33 , N2 = 38, p < 0.001; Earn Water and River North Esk W = 875.5, 

N1 = 35, N2 = 38, p < 0.001; Earn Water and Burdiehouse Burn W = 1739, N1 = 55, N2 = 38, 

p < 0.001; Earn Water and Braid Burn W = 880.5, N1 = 35, N2 = 38, p < 0.001; Earn Water 

and Brox Burn W = 749, N1 = 34, N2 = 38, p < 0.001). Significant differences in pectoral fin 

ray counts were also found when comparing the River Almond and Burdiehouse Burn 

(Mann-Whitney U test, W = 1788, N1 = 33 N2 = 55, P = 0.002).  
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Figure 3.6. Pectoral fin ray count frequencies for examined bullheads across six sample 
sites in Scotland. Arrows and corresponding dashed lines indicate the range of values 
reported for bullhead in Britain by Maitland and Campbell (1992). For Figures 3.6 to 3.9, 
River Almond N=33, River North Esk N=35, Burdiehouse Burn N=55, Braid Burn N=35, Brox 
Burn N=34, Earn Water N=37 

 

Anal fin ray counts differed between pairings of the River Almond with the Braid Burn 

(Mann-Whitney U test W = 898.5, N1 = 33, N2 = 35, p = 0.0021) and the River Earn (Mann-

Whitney U test W = 931.5, N1 = 33, N2 = 38, p = 0.002). Significant differences were also 

found in the pairings of the Brox Burn with the Braid Burn (Mann-Whitney U test W = 1485, 

N1 = 35, N2 = 34, p = 0.001) and the River Earn (Mann-Whitney U test W = 965, N1 = 34, N2 

= 38, p = 0.001) (Figures 3.7 and 3.9).  
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Figure 3.7. Anal fin ray count frequencies for examined bullheads across six sample sites in 
Scotland. Arrows and corresponding dashed lines indicate the range of values reported for 
bullhead in Britain by Maitland and Campbell (1992) and Kottelat and Freyhof (2007) 
(blue)  

 

The second dorsal fin rays of the River Almond samples differed significantly from those of 

the River North Esk (Mann-Whitney U test W = 909.5, N1 = 33, N2 = 35, p = 0.0015), the 

Burdiehouse Burn (Mann-Whitney U test W = 1129, N1 = 33, N2 = 55, p = 0.0009) and Braid 

Burn (Mann-Whitney U test W = 897, N1 = 33, N2 = 35, p = 0.0012) (Figures 3.8 and 3.9).  
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Figure 3.8. Dorsal fin ray count frequencies for examined bullheads across six sample sites 
in Scotland. Arrows and corresponding dashed lines indicate the range of values reported 
for bullhead second dorsal fins in Britain by Maitland and Campbell (1992) and Kottelat 
and Freyhof (2007) (blue) 
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Kottelat and Freyhof  
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Figure 3.9. Comparison of ray counts from the second dorsal fin, anal fin and pectoral fin 
of bullheads collected from six sample sites in Scotland. The inter-quartile range, median 
values (  ) and outliers ( ) are shown for each population. Statistically significant 
comparisons of group medians based on Mann-Whitney U tests (Holm-Bonferroni 
adjusted p < 0.0023) are given in parenthesis above each data series, where the presence 
of a number indicates a significant difference between the data series and that group. 1 = 
River Almond, 2 = River North Esk, 3 = Burdiehouse Burn, 4 = Braid Burn, 5 = Brox Burn, 6 = 
Earn Water    

In terms of general morphology, an oval-shaped dorsal fin, rounded pectoral fin and four 

pelvic fin rays were found on all bullhead examined, as is consistent with features described 

for specimens of C. perifretum (Freyhof et al., 2005). A membrane attaching the first and 

second dorsal fin and a second connecting the caudal dorsal fin with the body wall were also 

present in all specimens, regardless of their origin. All fish examined showed dense skin 

prickling around and inferior to the pectoral fin, although the coverage of prickles across the 

body wall varied greatly between specimens of all sizes. A Pearson correlation analysis 

showed that standard body length was not an effective predictor of prickling coverage in the 
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Scottish bullhead examined when all samples were grouped (r = - 0.086, n=225, p = 0.2). The 

results of ANCOVA showed that there was not a significant difference in prickling coverage 

for fish of different length, when location influences were controlled (F = 0.07; df = 1, 218; p 

= 0.795).  

An attempt was made to identify Scottish specimens using the key to genera of European 

Cottidae provided in Kottelat and Freyhof (2007). The key could only be applied to juvenile 

individuals (considered to be those with standard length ≤ 50mm), greatly reducing the 

number of specimens that could be identified using this means (n=21 Burdiehouse Burn, 

n=26 Brox Burn, n=30 Earn Water) (Figure 3.10), but those that were of an appropriate size 

were confirmed as C. perifretum. 

 

Figure 3.10. Variability within standard length (mm) measurements of examined bullheads 
from six sample sites in Scotland. The dashed line indicates the 50mm length threshold for 
specimens that were identified using the key supplied in Kottelat and Freyhof (2007). Data 
outliers ( ) are shown for the River Almond
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3.4 Discussion 

Phylogenetic analyses of mtDNA sequences obtained from Scottish bullhead, in conjunction 

with those reported for other Cottus species, provided evidence of three distinct clades 

within Europe. In addition, four other European species were found to be closely related but 

not strongly associated with any of these clades. The combined results of Englbrecht et al. 

(2000) and Volckaert et al. (2002) revealed seven clades within Europe. The description of 

species ranges and cladistics given in Freyhof et al. (2005) supported six of these clades, 

including a clade containing C. perifretum confirmed by specimens from both Great Britain 

and the continent. The results of this study verify the presence of a clade containing C. gobio 

(clade I of Englbrecht et al., 2000); one containing C. duranii (clade VII of Volkaert et al., 

2002), and a clade containing C. perifretum (clade IV of Volkaert et al., 2002). In addition, 

results of this study grouped C. hispaniolensis alongside C. duranii, and C. aturi with C. 

gobio. The clade consisting of C. gobio and C. aturi was not well supported (59% bootstrap 

support and 0.76 Bayesian posterior probability). Englbrecht et al. (2000) and Freyhof et al. 

(2005) positioned C. aturi into a different clade, and the low support exhibited by ML and 

Bayesian analysis in the results section of this chapter implies an alternative position within 

the phylogenetic tree is possible. The clade consisting of C. hispaniolensis and C. duranii was 

moderately well supported (70% ML and 1 Bayesian posterior probability output), and 

would suggest that the two species are closely related. Cottus scaturigo, C. microstomus, C. 

rhenanus and C. rondeleti were all found among the European Cottus species, but did not 

form a strong association with any particular group. Šlechtová et al. (2004) were unable to 

discriminate between C. rondeleti and other closely associated Cottus species using mtDNA, 

but a morphological description that described the new species C. rondeleti was given by 

Freyhof et al. (2005). Similarly, Šlechtová et al. (2004) and Englbrecht et al. (2000) were 
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unable to distinguish C. scaturigo from neighbouring C. gobio using molecular methods, 

although Freyhof et al. (2005) used morphological evidence to describe the new species C. 

scaturigo.  

The ML tree produced through bootstrap analysis showed that, with the exception of C. 

poecilopus, all European cottids grouped closely together. Cottus poecilopus was 

distinguished from other European Cottus species by Koli (1969), who noted morphological 

differences in chin pore arrangement (one pore is found in all species grouped under the C. 

gobio species complex and two pores are found on C. poecilopus). The genetic dissimilarity 

of C. poecilopus from other European Cottus species agrees with the morphological 

differences. Bayesian support for the divergence of the European cottids was high (0.99), as 

was the support for the British clade containing C. perifretum and the Scottish bullhead 

samples of this study (0.98). Bootstrap values were somewhat lower, giving moderate 

support at 85% and 73% respectively. Hillis and Bull (1993) found that bootstrap values 

≥70% correspond to at least a 95% probability that the simulated clade obtained is real. The 

combined results of Bayesian and ML analysis are therefore deemed complimentary. This is 

further verified by the results of pairwise distance calculations conducted across all Cottus 

sequences. Five of the six Scottish bullhead sequences and the sequence given for C. 

perifretum showed no divergence when compared against each other, and the sixth 

sequence showed only 0.21% divergence from the other British bullhead samples. 

Interestingly, there was also no divergence found when comparing the two European 

sequences C. hispaniolensis and C. duranii; and the collective grouping of C. microstomus, C. 

rhenanus and C. scaturigo, despite each being considered an independent species. The ML 

tree produced in this study showed that the sequences within these two groupings were 

found within the same clade, with very little distinction between sequences. A high degree 
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of genetic similarity is therefore expected, and the determination of species-level 

distinctions between these populations has already been the subject of other, more 

detailed, studies (e.g. Freyhof et al., 2005). Although the comparison between the newly 

sequenced Scottish bullheads and the sequence already published for C. perifretum has 

produced a similar result showing minimal divergence, nothing in the analyses suggest that 

any of the compared British sequences differ on a molecular level. Whilst mtDNA typically 

evolves faster than single-copy nuclear DNA (Avise, 2000), mtDNA genes are integral to the 

speciation process (Gershoni et al., 2009; Lane, 2009) and have been described as an 

unambiguous measure of species identity in a recent publication (Hill, 2016). COX1 

genotypes have been integral to phylogenetic studies for decades and are highly effective at 

defining species boundaries (Hill, 2016). The results obtained from COI mtDNA analysis of 

Scottish bullhead therefore demonstrate that Scottish bullhead are taxonomically similar to 

C. perifretum, representing an isolated branch of the same species. The published C. 

perifretum sequence used in this study originated from Belgium (Sonnenberg et al. 2007), 

and is therefore within the southern England and Belgium group described by Hänfling et al. 

(2002). The documented similarity between this sequence and those obtained from Scottish 

bullheads in this study does not support the distinctions shown in northern and southern 

British bullheads, or British bullheads and those from Belgium, that were discussed in 

Hänfling et al. (2002). However, the application of microsatellite loci, as employed by 

Hänfling et al. (2002), is known to provide a robust assessment of genetic relatedness 

(Chistiakov et al., 2006), and could explain the distinctions provided through microsatellite 

analysis that were not reproduced in this study.  

A combined approach is considered optimal when examining taxonomic identity, due to the 

long-standing belief that misinference can occur when mtDNA results are studied in 
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isolation (e.g. Rognon and Guyomard, 2003; Hurst and Jiggins, 2005). Combined 

morphological and molecular characteristics have been successfully applied in other studies 

of European bullhead to discriminate between populations, hybrids and species (Riffel and 

Schreiber, 1995; Riffel and Schreiber 1998; Kontula and Väinölä, 2004; Freyhof et al., 2005). 

The examination of morphological traits in Scottish bullhead uncovered a greater variation 

in meristic factors than had previously been described for C. perifretum (Maitland and 

Campbell, 1992; Freyhof et al., 2005; Kottelat and Freyhof, 2007). When data from each of 

the six sampling locations were compared, significant differences were found between 

populations in median ray counts from the second dorsal fin, pectoral fin and anal fin, 

although the ranges overlapped. Differences were also very slight, with significant results 

being obtained from one ray differences in median counts, as was the case with pectoral fin 

ray counts in the Earn water (median value of 14 for the Earn Water and 13 for all other 

sites). Across these analyses no one location was differentiated for all three of the 

morphological traits, nor found to be uniquely different from the other Scottish populations. 

The River Almond and Brox Burn are the only two locations used in this study that are from 

the same river system. Counts of anal fin rays proved to be similar for both locations, and 

distinctly different from the Braid Burn and Earn Water populations. As bullhead are a 

relatively sedentary and territorial species (Tomlinson and Perrow, 2003), mixing between 

populations in restricted to high flow, downstream flooding events or rare density-mediated 

migration. It is therefore probable that populations within the same river system would 

exhibit morphological differentiation. The variation exhibited by our specimens is 

considered a result of natural variation and can be attributed to the higher quantity of 

specimens examined in this study compared to the small number available in reference 

material (e.g. Freyhof et al., 2005). Adaptive radiation may be a contributing factor, due to 
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the limited migratory capacity of the species and lack of genetic mixing, but is unlikely given 

the species was only introduced to Scotland in the 1950's.  

Skin prickling has proven a useful measure of identifying different bullhead populations in 

Northern Europe (Koli, 1969; Kontula and Väinölä, 2004), but was applied with less success 

in Eastern Europe (Oliva and Hensel, 1962). Kottelat and Freyhof (2007) described dense 

prickling in juvenile C. perifretum but stated that prickling is greatly reduced or absent in 

mature males. Koli (1969) also noted that larger specimens possess less prickles than 

smaller individuals due to resorption of spines after the onset of maturity. The influence of 

age on prickling density in Scottish specimens was examined by considering the relationship 

between standard body length (as a proxy for age) and prickling coverage. Results showed 

no significant relationship between these factors in the east coast locations of the River 

Almond, River North Esk, Burdiehouse Burn, Braid Burn and Brox Burn. A positive 

relationship between standard body length and prickling coverage was produced in the Earn 

Water analysis. This is unexpected given that prickling density is thought to decrease with 

age. The relationship is moderate, reflecting the high variability of the data. The lack of 

relationship shown across other sites could also suggest that standard body length is a poor 

proxy for age, such that age-dependant prickling coverage is not examined fully in this 

analysis.  

All bullhead examined in this study had some degree of skin prickling and a complete lateral 

line. This is contrary to the smooth-skinned form with a complete lateral line, and prickled-

skin form with incomplete lateral line described in England by Wheeler (1977). However, 

results are in keeping with the description given for British bullhead in other studies 

(Maitland and Campbell, 1992; Freyhof et al., 2005; Kottelat and Freyhof, 2007). Of the 
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morphological traits examined, the presence of dermal prickling, complete lateral line and 

presence of a membrane connecting the last anal fin to the body wall were attributes found 

in Scottish bullhead that have been previously assigned to C. perifretum (Freyhof et al., 

2005; Kottelat and Freyhof, 2007). The key to genera of Cottidae in European freshwaters 

provided by Kottelat and Freyhof (2007) can only be applied to species under 50mm in 

length, due to the perceived change in prickling coverage with age. The specimens of 

Scottish bullhead meeting these criteria were examined using this key and were all 

identified as C. perifretum. This classic form of identification is a practical non-invasive 

approach, but the size restrictions in place requires additional methods of identification to 

be applied to adult specimens. The combined morphological and molecular approach 

utilised in this study has provided a more reliable means of identification. This method has 

shown that Scottish bullhead and C. perifretum are taxonomically equivalent, as proposed in 

the original hypothesis, thereby confirming the presence of the native English bullhead, C. 

perifretum, in Scotland.  
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Part II: Exploring the Ecological Interactions of Introduced 

Scottish Bullheads with Native Fauna, to Address the 

Criteria for Invasive Designation 
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Chapter 4. Dietary Overlap Between Introduced Bullhead Cottus perifretum and Native 

Freshwater Fishes in Scotland 

4.1 Introduction 

The successful establishment of an invasive species can have significant ecological 

consequences for native biota. Impacts can be seen at a range of biological levels, from 

genetic and behavioural changes in individuals, to community and ecosystem-level impacts 

(Parker et al., 1999; Simon and Townsend, 2003). In communities where an invasive species 

shares a similar ecological niche to a native species, direct competition for habitat and prey 

can occur. Such circumstances can potentially lead to behavioural and morphological 

adaptations in native species, competitive exclusion or extinction events (Mooney and 

Cleland, 2001).  

Behavioural and ecological changes resulting from the arrival of an invasive species have 

been well documented in the aquatic environment. The introduction of Nile perch (Lates 

niloticus) to Lake Victoria for sports fishing is thought to be responsible for the loss of 200-

300 species of native cichlid (Smout, 2003). Miller et al. (1989) looked at all known 

contributing factors in the extinction of North American freshwater fishes throughout the 

twentieth century and cited the introduction of invasive species as the second most 

significant factor, superseded only by physical habitat alteration. Changes in habitat 

complexity within benthic communities have been reported as a result of the establishment 

of the invasive zebra mussel (Dreissena polymorpha) and golden mussel (Limnoperna 

fortunei) across multiple continents (Burlakova et al., 2012). Competitive exclusion by 

introduced brown trout (Salmo trutta) is thought to have fragmented the distribution of 

native fish in Australasia (Crowl et al., 1992; McIntosh, 2000). Alterations in the feeding 
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habits of native species are a common consequence of invasions, as are changes in the 

foraging activity of other trophic levels (e.g. Simon and Townsend, 2003). The disruption of 

trophic cascades has also been demonstrated in studies investigating the establishment of 

invasive carp (Cyprinus carpio) in a number of continents (e.g. Khan et al., 2003; Wahl et al., 

2011), and the introduction of Arctic charr (Salvelinus alpinus) and three-spined stickleback 

(Gasterosteus aculeatus) in Norway (Amundsen et al., 2013). The relative connectivity of 

aquatic systems, significant human activity associated with these regions and the mobility of 

piscivorous predators between unconnected regions render freshwater systems vulnerable 

to the spread of invasives. Early identification and careful monitoring of communities at risk 

from invasion-mediated changes to ecological processes is of fundamental importance to 

maintaining biodiversity and preventing the loss of native species.  

In Scotland, competition between introduced bullheads (Cottus perifretum), native stone 

loach (Barbatula barbatula) and native brown trout (Salmo trutta) is likely, due to an 

overlap in their ecological niche. All three species exploit similar invertebrate prey sources, 

and have a shared habitat preference. A convoluted food web exists in mixed communities, 

in which brown trout adults can prey upon bullheads and stone loach (Mann and Orr, 1969; 

Tomlinson and Perrow, 2003), but adult bullheads can consume brown trout fry (Gaudin and 

Heland, 1884; Gaudin, 1985). Competitive displacement of native fishes by bullheads and 

their potential to prey upon the eggs and young of salmonids are largely responsible for the 

species' invasive designation in Scotland. Despite this, both interactions remain untested in 

Scottish communities containing novel bullhead populations.  

Shared habitat requirements have been documented both in general descriptions of habitat 

preference for bullheads, stone loach and brown trout fry, and in studies examining 
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competition for habitat resources. Bullheads and stone loach have a relatively small home 

range, residing in shallow crevices produced by stony substrates in slow flowing, well-

oxygenated waters (Smyly, 1955; 1957). In rivers supporting populations of brown trout, 

these habitats also provide refuge for fry during late spring (Armstrong et al., 2003). Rapid 

development is essential for brown trout fry at this critical life stage and the selection of 

optimal habitat has a marked influence on growth (Höjesjö et al., 2004). Brown trout fry and 

stone loach are known to cohabit the same crevices under stones (Smyly, 1955), 

demonstrating peaceful coexistence between these species, however there is also 

significant overlap in their invertebrate prey choices. The relationship between brown trout 

fry and bullheads is less clear, with different studies providing contradictory results. Brown 

trout fry have been found to utilise less optimum habitat in the presence of adult bullheads 

under experimental conditions, showing a preference for margins of an artificial channel 

and maintaining cryptic colouration, indicating they are under stress (Roussel and 

Bardonnet, 1999). These findings were contradicted by Louhi et al. (2014), who investigated 

dietary variations and competition for habitat between Alpine bullheads (Cottus poecilopus) 

and brown trout juveniles (0+ and 1+ age classes) in an artificial set-up, and found that 

brown trout juveniles forced co-occurring bullheads into sub-optimal habitats. These 

conflicting results suggest that bullhead and brown trout interactions vary between 

populations, and are likely related to community dynamics and the availability of suitable 

shelter. As brown trout develop, they will migrate downstream and seek out deeper habitat 

with more vegetative cover (Armstrong et al., 2003). Competition for habitat between 

brown trout fry and bullheads in Scotland is therefore temporary, due to the transient 

nature of this developmental stage. In contrast, feeding niche overlap between bullheads, 
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stone loach and brown trout of all age classes is potentially a consistent source of 

competition. 

Bullheads, stone loach and brown trout of all age classes share a preference for 

macroinvertebrate prey, although terrestrial invertebrates make up a large component of 

the diet of adult brown trout (Bridcut and Giller, 1995) (Table 4.1). All species have been 

shown to vary their diet according to local availability, resulting in a high degree of dietary 

similarity in mixed communities (Hesthagen et al., 2004; Vlach et al., 2013). Some resource 

partitioning is evident in the foraging behaviour of each species. Adult brown trout are 

predominantly drift feeders (Horton, 1961; Chaston, 1968) and are most active during dusk, 

dawn and periods of darkness (Giroux et al., 2000). Brown trout are relatively unselective in 

their feeding choices, consuming a range of prey species based on availability (Michel and 

Oberdorff, 1995) and habitat constraints (Bridcutt and Giller, 1993; Lehane et al., 2001). 

Bullheads and stone loach are benthic feeders (Andreasson, 1971; Glova et al., 1992; Smyly, 

1955; Hyslop, 1982), opportunistically foraging for prey within the benthos (Morris, 1978). 

Bateson (1890) gave a description of foraging activity of stone loach, which pick up the scent 

of a food source and feel around the surrounding area with their barbels to locate their prey 

source. Bullheads feed on mobile prey, stalking swimming invertebrates before striking and 

swallowing prey whole (Smyly, 1957).  
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Table 4.1. Diet composition of juvenile and adult life stages of brown trout, bullheads and 
stone loach. Adapted from Nunn et al. (2012). Shared prey items are shown in bold. 

 

Despite a clear overlap in feeding preferences, studies examining feeding interactions 

between bullheads, stone loach and salmonids have produced conflicting results as to the 

presence of direct competition. No intensive competition was found between sympatric 

Carpathian bullheads (Cottus poecilopus), stone loach and brown trout in Poland, largely 

due to variations in trophic niche exhibited by the trout and bullheads examined (Straskraba 

et al., 1966). Other authors have similarly concluded that bullheads have no significant 

effect on densities of trout or juvenile salmon (Salmo salar) (Carter et al., 2004), and cause 

no significant feeding competition within mixed freshwater communities (Straskraba et al., 

Species Life Stage Prey Selected References

Brown trout Juvenile Chironomid (larvae), Coleoptera, Diptera, 

Ephemeroptera (larvae), Plecoptera (larvae), 

Simulidae (larvae), Trichoptera (larvae)

Frost (1950), Horton (1961), 

Zimmerman and Mosegaard (1992), 

Rincón and Lobon-Cervia (1999), 

Sanchez-Hernandez et al.  (2011)

Adult Chironomid (larvae and pupae), Coleoptera, Diptera, 

Ephemeroptera (larvae), Hymenoptera, Lepidoptera, 

Limnaeidae, Oligochaeta, Plecoptera (larvae), 

Trichoptera (larvae); aerial and terrestrial insects; 

minnows, bullheads and stone loach

Horton (1961), Mann and Orr (1969), 

Lien (1981), Michel and Oberdorff 

(1995), Lehane et al . (2001), Shustov 

et al. (2014)

Bullhead Juvenile Asellidae, Chironomid (larvae), Ephemeroptera 

(larvae), Gastropoda, Simulidae, Trichoptera (larvae)

Hyslop (1982), Welton et al.  (1983), 

Nunn et al.  (2007)

Adult Asellidae, Chironomid (larvae), Ephemeroptera 

(larvae), Diptera (larvae), Gammaridae, Plecoptera, 

Trichoptera; small sticklebacks and brown trout 

juveniles

Mann and Orr (1969), Andreasson 

(1971), Morris (1978), Crisp et al. 

(1978), Shustov et al.  (2014)

Stone loach Juvenile Chironomid (larvae), Chydoridae, Cyclopoida, 

Ephemeroptera (larvae), Oligochaeta, Ostracoda, 

Simulidae, Trichoptera (larvae)

Hyslop (1982); Welton et al.  (1983)

Adult Cladocera, Chironomid (larvae and pupae), 

Ephemeroptera (larvae), Gammaridae, Mollusca, 

Plecoptera (larvae), Simulidae (larvae and pupae), 

Trichoptera (larvae), zooplankton

Smyly (1955), Shustov et al.  (2014)
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1966). Resource partitioning between bullhead and brown trout has been documented in a 

comparative dietary study on bullheads and brown trout in Sweden, where more than 80% 

of the prey consumed by brown trout was terrestrial in origin, compared to the entirely 

aquatic diet of bullheads (Dahl, 1998). In contrast, dietary-mediated competition between 

the two species has been reported in some regions, and was found to result in lower 

densities of trout in areas containing resident bullheads (Gaudin and Heland, 1984; Gabler 

and Amundsen, 1999; Gaudin and Caillere, 2000).  

The results of studies conducted within the UK and Scandinavia also largely contradict the 

perception that bullheads prey upon the eggs and juveniles of Atlantic salmon and brown 

trout. In Finland, Pihlaja et al. (1998) reported that bullhead presence had no effect on 

juvenile salmon densities in the river catchment studied. Within the bullhead's native 

English range, Mills and Mann (1983) failed to show that the species is a significant predator 

of salmonid eggs or larvae. This was confirmed by Mann and Orr (1969), who recovered only 

one trout fry and no eggs from the stomach contents of 1125 bullheads examined. A recent 

study in Sweden found that Atlantic salmon recruitment was reduced in the presence of 

introduced bullheads (Palm et al., 2009), although the majority of other studies that verify 

this behaviour are focused on other members of the Cottus genus interaction with 

salmonids in North America (Foote and Brown, 1998; Biga et al., 1998; Tabor et al., 2004).  

Despite a strongly overlapping ecological niche, foraging habitat segregation between 

sympatric bullheads and stone loach has been reported. Under controlled laboratory 

conditions, Welton et al. (1991) examined feeding rates of both species under different light 

and substrate conditions and recorded higher incidences of bullhead foraging under high 

light exposure for both substrata examined, and more active stone loach foraging in darker 
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laboratory conditions on a silt substratum. In a study investigating cohabiting wild 

populations in the UK, stone loach were found to select smaller invertebrate prey relative to 

stream availability, whereas bullheads actively sought out larger prey individuals (Welton et 

al., 1983). Contradictory results were published by Copp et al. (1994), who examined the 

dietary composition of bullheads and stone loaches in three English rivers and found no 

significant differences in the percentage dietary composition or overall diet of the two 

species. Vlach et al. (2013) also looked at food competition between a number of 

freshwater fish in Central Bohemia and found a substantial overlap between the prey 

selection of bullheads and stone loach.  

There is a high degree of seasonality in the availability of prey and fish predation rates. In 

general, more food is consumed during summer months when invertebrate prey is plentiful 

(Thomas, 1962). Mann and Orr (1969) attributed this behaviour to a seasonal raise in 

ambient temperatures causing an increasing in fish digestion rates. In mixed fish 

communities in Russia, Shustov et al. (2014) suggested that competition for food resources 

during summer months was unlikely, due to high rates of consumption of aerial insects 

exhibited by brown trout. Autumn saw an overlap in the diets of Atlantic salmon parr and 

stone loach, but a reduction in the feeding activity of bullheads. In winter, the feeding 

activity of all species was considered low, resulting in no feeding competition. It was 

concluded that feeding competition was seasonal and likely to only be evident in autumn, 

when salmon parr and stone loach show a high degree of overlap in prey preference. 

Seasonal variations in competition are likely to be similar across freshwater systems in most 

temperate climates. 
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The contradictory results of dietary studies focusing on mixed communities of bullheads, 

stone loach and brown trout make it difficult to predict the extent of feeding niche overlap 

in the Scottish freshwater communities that contain this introduced species. Despite a 

number of studies examining competition between bullheads and native fishes within the 

species' native English range (e.g. Mann and Orr, 1969; Hyslop, 1982; Elliot, 2006), no 

published study has directly looked at feeding competition between introduced bullheads 

and native fishes in Scotland. Morris (1978) examined the diets of Scottish fishes and used 

the results in conjunction with other published works to conclude that, despite an overlap in 

macroinvertebrate prey preferences, there was no clear evidence of competition between 

bullheads, brown trout and Atlantic salmon in Scottish rivers. However, no attempt was 

made to study the stomach contents of sympatric bullheads and native fishes 

simultaneously. A multi-species investigation of stomach contents would build upon the 

knowledge obtained from the work of Morris (1978), and provide a comparative data-set 

some thirty-six years after the completion of the original study. 

Due to the invasive status of Scottish bullheads, an investigation into competition between 

bullheads and native fishes in an important step in determining the full extent of the 

species' influence on Scottish freshwater communities. The capacity to determine levels of 

salmonid egg cannibalisation exhibited by bullheads is constrained by the seasonal 

availability of salmonid eggs. This study was conducted outside this window and, as such, an 

examination of this behaviour is not within the scope of this project. Based on the results of 

other studies, competition for habitats is also thought to be transient and not as significant 

a source of conflict as competition for prey.  
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4.1.1 Aims and Objectives 

Competition for prey resources is the primary focus of this chapter, which aims to 

determine whether the introduction of non-native bullheads to Scottish freshwater 

communities has led to a shift in the dietary selection of co-occurring native fishes. Due to 

the similarity in macroinvertebrate prey preferences described in the literature, it is 

hypothesised that bullhead presence will influence the diets of native stone loach and 

brown trout, potentially resulting in these species preying upon a wider range of 

macroinvertebrates in the presence of bullheads. The feeding preferences of bullheads, 

stone loach and brown trout are explored in order to test this hypothesis, and determine if 

this relationship is a contributing factor in the invasive classification of bullheads in 

Scotland.  

4.2 Methods 

 

Fish were sampled from ten locations across Edinburgh and the Lothians (Figure 4.1). Four 

locations were bullhead-free control sites, containing either a mixed community of stone 

loaches and brown trout or a resident population of one of the species. The other six sites 

contained established bullhead populations and either co-occurring brown trout or stone 

loach, or a mixed community of all three species.  

 



80 
 

 

Figure 4.1. Location of the ten sampling sites used in the study. Locations are marked as 
either bullhead present (    ) or bullhead absent (   ) sites 

 

4.2.1 Laboratory Examination 

4.2.1.1  Invertebrate Communities 

Kick sample contents of the storage jars were run through a 500µm sieve and then placed in 

individual sorting trays. Macroinvertebrates were systematically removed and identified to 

family level, before being placed in a 30ml vial of 70% ethanol with other members of the 

same family. Samples were later quality checked under an Olympic SZ51 dissection 

microscope to ensure accurate identification. Individuals from each family were counted to 

provide a measure of community composition. 

An average weight per individual (g) was obtained for each family group by selecting five 

members of the same family at random and allowing them to air dry for thirty minutes to 

remove residual ethanol. Outer casings (cased caddis flies) and shells (bivalves and 

gastropods) were removed prior to air drying, as per Horton (1961). Each dried individual 
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was weighed and an average weight across all five specimens calculated for each family 

group. For families where only a few individuals were recovered, all individuals were dried 

and weighed and an average taken across the number of available specimens. This was the 

case for Corixidae, Tipulidae (detritovore) and Psychomyiidae (one individual available); 

Lepidostomatidae, Curculionidae, Scirtidae, Ecnomidae, Ephemeridae, Leptoceridae, 

Hydrophilidae (an average of two individuals calculated); Perlidae and Philopotomidae (an 

average of three individuals calculated); and Chloroperlidae and Odontoceridae (an average 

of four individuals calculated). 

4.2.1.2  Fish Stomach Contents 

Fish were thawed in a refrigerated room (ambient temperature 8°C) for one hour (bullheads 

and stone loach) or overnight (brown trout). Prior to dissection, standard body length (to 

the nearest mm), fork length (to the nearest mm) and thawed body weight (g) were 

recorded. To remove the stomach, an incision was made along the ventral surface from the 

vent region to the operculum, exposing the internal organs. All organs were removed from 

the visceral cavity, and the stomach isolated from the rest of the digestive tract by an 

incision at the lower oesophageal sphincter and the caudal margin of the pyloric canal. The 

stomach was immersed in 0.9% saline solution and opened by a continuous incision 

covering the length of the stomach wall. An examination of stomach contents was carried 

out under an Olympic SZ51 dissection microscope at varying magnifications, ranging from 

6.7x to 45x. Organisms were extracted from the stomach contents, then identified to the 

highest possible taxonomic resolution (up to family-level) and results recorded in the 

relevant prey category. Some prey items could only be identified to order level so prey 

categories were created to cover each invertebrate family, incidences of juvenile bullheads, 
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unidentified fish and additional order-level categories covering unknown fly larvae (Diptera), 

mayflies (Ephemeroptera), stoneflies (Plecoptera) and leeches (Hirudinea). Partially digested 

organisms that could not be conclusively identified were not recorded. 

4.2.2 Statistical Analysis 

4.2.2.1  Invertebrate Community Composition 

Invertebrate community data were examined to give an indication of the relative densities 

of each family within a sampling location. The community composition, based on counts of 

individuals, was calculated by working out the percentage of the total invertebrate count 

that belonged to a particular family. This factor was designated the community composition 

by count (CCC). Community composition based on biomass was also determined by 

multiplying the number of individuals of a family group by the group's average weight 

measure, summing the biomass of all family groups from that sample site, and reporting 

each family as a percentage of the total biomass. This factor was designated the community 

composition by biomass (CCB). The percentage of each fish species consuming an 

invertebrate family was then compared to the proportion of the invertebrate community 

comprising that prey group, based on the CCC and CCB. The different age classes of each fish 

species were considered separately, and comparisons made for each location and sample 

year (Figures 4.3 to 4.17). For simplicity, prey categories for which the values obtained for 

CCC or CCB were less than 5% were removed from the tabulated results.  
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4.2.2.2  Stomach Contents 

Comparisons Between Invertebrate Community Composition and Fish Prey Selection 

All fish species were analysed separately and data segregated by sample year and location. 

Brown trout and bullheads were also separated by adult and juvenile (or parr, in the case of 

brown trout) life stages, on the basis of body length (bullheads; juveniles <50mm 

(Tomlinson and Perrow, 2003)), or the presence of parr marks (brown trout). The freezing 

and thawing stages of sample processing caused significant degradation of the stomach 

contents of a number of individuals. Fish with empty stomachs or those containing 

exclusively degraded contents that could not be identified were excluded from the 

statistical analysis. As a result, some sample sites only had data for one species or one year 

of sampling. Stomach contents were reported using the occurrence method, based on the 

presence and absence of a given prey category (Hyslop, 1980; Lehane et al., 2001). For each 

individual, identification of a prey item from one of the prey categories resulted in that 

category receiving a score of one. All prey categories that were not represented within that 

individual's stomach were assigned a zero value. Subsequent incidences of the same prey 

category were not noted. After all fish of the same species from a sample site had been 

processed, the proportion of individuals consuming each prey category was calculated. This 

was done by dividing the number of individuals eating a prey category by the total number 

of fish of that species that were examined. The process was repeated for each combination 

of species, sampling year and location for which data were available.  

The proportion of individuals from each fish species and age class consuming a given prey 

category was then compared to the invertebrate CCC and CCB for each location and sample 

year, using stacked bar graphs. For simplicity, any component of fish dietary composition or 
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the invertebrate community that was under 5% of the total proportion was removed. A 

decision was made not to merge data for age classes and sampling years at each location in 

order to give a fuller picture of the feeding ecology of each species, relative to prey 

availability. Data were not obtained for all combinations of fish species, age class, location 

and sampling year, either due to a lack of identifiable contents in the fish examined or a 

particular species or age class missing from that sampling location. In these incidences, only 

available data for CCC, CCB and the available fish/age class combinations were reported. 

Graphs were not reported for location and sampling year combinations for which no fish 

diet data were available. 

Comparisons Between Fish Species 

In order to determine the effects of bullhead presence on the dietary composition of each 

fish species, it was necessary to merge data for sampling years from each location, and age 

classes for bullheads and brown trout. This created a balanced study design that could 

examine the variation in dietary composition of each fish species, and the direct influence of 

bullhead presence on the dietary composition of stone loach and brown trout. All data were 

square-root transformed to down-weigh the influences of the large proportional data 

obtained for some prey categories in the presence of several categories containing zero 

proportionality. 

Comparisons Between the Dietary Composition of Bullheads, Brown Trout and Stone Loach 

Analyses of the diets of each species were performed using PRIMER version 6 (PRIMER-E 

LTD) and PAST version 3.15 (Hammer et al., 2001). Similarities in the dietary composition of 

bullheads, brown trout and stone loach were examined using non-metric multidimensional 

scaling (MDS) on resemblance data obtained with Bray-Curtis dissimilarity measures. The 
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separation of these groups was further explored by performing a one-way analysis of 

similarities (ANOSIM), based on 9999 permutations and data grouped by fish species. The 

potential influence of multiple testing was addressed by adjusting obtained P-values using 

an integrated sequential Bonferroni significance correction (Holm, 1979). 

Comparisons Between Dietary Composition in the Presence and Absence of Bullheads 

The influence of sympatric bullheads on the dietary composition of brown trout and stone 

loach was analysed using PAST software version 3.15 (Hammer et al., 2001). A two-way 

permutational multivariate analysis of variance (PERMANOVA) was conducted on brown 

trout and stone loach data, using 9999 iterations and Bray-Curtis similarities. Fish species 

and the presence and absence of bullheads were used as grouping factors. To determine 

where dissimilarities existed between the bullhead present and bullhead absent groups of 

fish, Similarity Percentage Analysis (SIMPER) was conducted on the stone loach and brown 

trout data, using bullhead presence or absence as grouping categories.   

4.3 Results 

4.3.1 Comparing Invertebrate Community Composition and Fish Prey Selection 

The selection of prey categories for each of the fish species and age classes examined was 

shown to vary with location and sample year (Figures 4.4 to 4.13). This was commonly 

disproportional to availability within the invertebrate community, as determined by the 

breakdown of the invertebrate community composition, based on numbers of individuals 

(CCC) or dry biomass (CCB). A common key was produced for all figures to facilitate the 

accurate viewing and interpretation of graphs (Figure 4.3). 

 



86 
 

 

Figure 4.3. Key to prey categories used in stomach content and invertebrate community 
analyses 
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Kirkliston 

At Kirkliston, Rhyacophilidae made up 50% of the total invertebrate community composition 

by biomass (Figure 4.4). Baetidae and Ephemerellidae collectively comprised a large portion 

of the invertebrate abundance based on count data. The most commonly consumed prey 

for adult bullhead was the fly larvae Simuliidae, which formed over 40% of the dietary 

composition. Rhyacophilidae and juvenile bullhead each contributed about 15% of the 

overall bullhead prey. Despite the large proportion of Baetidae, Rhyacophilidae and 

Ephemerellidae found at this location, adult brown trout most commonly consumed the 

beetle family group Hydrobiidae (over 20% of prey consumed), and large proportions of 

unidentified caddisfly larvae and Simuliidae.  

 
 
Figure 4.4. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data for adult brown trout 
(N=4) and bullheads (N= 8), sampled from Kirkliston in 2015 
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Killandean Burn 

 

At Killandean burn, the caddisfly larvae Limnephilidae and Rhyacophilidae formed the 

largest proportion of the invertebrate community based on biomass, and the stoneflies 

Baetidae and Leuctridae from the largest proportion by count (Figure 4.5). Consumption of 

fly larvae from the Chironomidae family was common in both adult bullhead and brown 

trout, and formed a substantial portion of the bullhead diet (over 40%). The remainder of 

the dietary composition of both species was a varied mix of invertebrate families. Feeding 

rates of either species were not related to invertebrate availability, as demonstrated by the 

disproportionate consumption of chironomids in relation to availability within the 

invertebrate community.  

 

Figure 4.5. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data for adult brown trout 
(N=6) and bullheads (N=20), sampled from Killandean Burn in 2015 
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Newbattle Abbey 

 

Heptageniidae, Baetidae and Gammaridae dominated the invertebrate community at 

Newbattle Abbey in the 2014 samples (Figure 4.6a). Heptageniidae was an important food 

source for juvenile bullheads and adult brown trout in this location, forming approximately 

30% and 20% of the diets of each fish respectively. Baetidae was the most abundant 

invertebrate based on CCC, constituting over half of the total sample. Feeding preferences 

in brown trout adult and parr reflected this high abundance, although the family group was 

proportionally less significant in the diets of adult bullheads, and absent entirely from the 

diets of juvenile bullheads. 

In the 2015 sample, Simuliidae was the most abundant prey based on CCC information, but 

none were found in the stomach contents of fish. Rhyacophilidae, which was a common 

food source based on CCB, formed about 20% adult bullhead diet and 15% of the total prey 

consumed by adult brown trout. Gammaridae was equally as abundant as Rhyacophilidae 

based on CCB information, and constituted about 15% of bullhead diet and 10% of the diet 

of brown trout, but was absent completely in the diet of stone loach at this location. Almost 

70% of all food selected by stone loach was the stonefly family Baetidae, which was highly 

disproportionate to the availability of Baetidae, as shown by the low values for CCB and CCC 

found for this prey category (under 10% for each composition parameter). The stonefly 

family Leuctridae was an important component of the diets of all fish sampled from this 

location in 2015, and comprised just under 25% and 10% of the CCC and CCB respectively. 
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Figure 4.6. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data. (a) Adult brown 
trout (N=5), brown trout parr (N=6), adult bullheads (N=19) and juvenile bullheads (N=2) 
sampled from Newbattle Abbey in 2014, (b) adult brown trout (N=6), bullheads (N=26) 
and stone loach (N=5), sampled from Newbattle Abbey in 2015 
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Burdiehouse Burn 

Chironomidae larvae, which formed over 20% of the CCC at Burdiehouse Burn in 2014, 

formed a significant portion of the prey consumed by brown trout, bullheads and stone 

loach (Figure 4.7a). Rhyacophilidae contributed over 30% of the total CCB and constituted 

about 20% of adult bullhead diet. Tipulidae larvae and Elmidae, which form approximately 

20% of stone loach (Tipulidae) and brown trout (Capniidae) diet comprise such small 

proportions of the invertebrate community that they are missing from the CCB and CCC 

measures, and must therefore be under 5% of the total count and biomass. 

Analysis of the invertebrate community composition in 2015 showed a similar CCB 

composition to the one found in 2014, although the CCC showed more variation (Figure 

4.7b). Rhyacophilidae and Lymnaeidae were the most abundant prey source based on 

biomass, and Elmidae larvae and Ephemerellidae the most abundant based on count. 

Sampled bullhead showed a preference for Asellidae, Gammaridae and chironomid larvae. 
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Figure 4.7. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data. (a) Bullhead adult (N 
=20), brown trout adult (N=2) and stone loach (N=3) at Burdiehouse Burn 2014, (b) 
Bullhead adult (N=31) at Burdiehouse Burn in 2015 
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Braid Burn 

 

Adult bullheads examined from the Braid Burn in 2014 relied heavily on Gammaridae as 

prey, which formed 60% of the total diet (Figure 4.8a). Asellidae and the flatworm Planaria 

were the only other prey categories consumed in large quantities. The most abundant prey 

sources, based on invertebrate count data, were Baetidae and Elmidae larvae, which were 

not found in the stomachs of any of the bullheads examined. Lymnaeidae, which was also 

missing from stomach contents, had the highest CCB score.  

A range of prey sources were observed for adult bullhead at Braid Burn in 2015 (Figure 

4.8b). The most common food categories, each contributing about 20% of all food 

consumed, were Chironomidae and Hydrobiidae. Both of these categories were equally 

proportional in the diets of sympatric adult brown trout. Asellidae, Ephemerellidae and 

Sericostomatidae were also consumed in higher abundances by the brown trout examined. 

Sericostomatidae had the highest biomass proportion and CCC abundance of all prey 

categories. 
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Figure 4.8. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data. (a) Bullhead adult 
(N=30) at Braid Burn in 2014, (b) Bullhead adult (N=30) and brown trout adult (N=6) at 
Braid Burn in 2015 
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Oatridge College 

 

Ephemerellidae dominated the CCB and CCC at Oatridge College in 2014 (Figure 4.9a). This 

was reflected in the diets of stone loach and brown trout, which each dedicated about 30% 

of their diets to this prey category. Heptageniidae and Baetide were also commonly eaten 

by both species. The consumption of Rhyacophilidae was also reported in both species, and 

seemed to reflect its availability within the community, based on CCB data. 

Ephemerellidae (40%) comprised the most abundant prey available at Oatridge College in 

2015, followed by Leuctridae (25%) and Baetidae (15%) (Figure 4.9b). The CCB showed 

relatively similar proportions of Ephemerellidae, Heptageniidae, Limnephilidae, 

Rhyacophilidae and Gammaridae. The presence of Ephemerellidae, Heptageniidae, Baetidae 

and Gammaridae in the diets of stone loach and brown trout appeared to reflect the 

availability of these prey categories. Adult brown trout selected the caddisfly family 

Rhyacophilidae and additional unidentifiable caddisfly families in almost 20% of their diet. In 

comparison, caddisflies provided approximately 5% of the stone loach diet. 
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Figure 4.9. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data. (a) Brown trout 
adult (N=8) and stone loach (N=31) at Oatridge College 2014, (b) Brown trout adult (N=7) 
and stone loach (N=14) at Oatridge College 2015 
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Livingston 

 

Rhyacophilidae was highly abundant (>70%) at Livingston in 2015, based on CCB data (Figure 

4.10). Baetidae formed about 60% of the prey available based on CCC. Rhyacophilidae was 

present in the diets of adult bullheads (20%) and stone loach (15%), but did not form the 

highest proportion of prey consumed by either species. Baetidae was the second largest 

component of stone loach diet (25%), and was also present in the diets of brown trout 

(15%). The most prominent prey category selected by stone loach was found to be 

Chironomidae (40%), which is absent from the CCB and only forms a small proportion of the 

CCC. Hydrobiidae was an additional significant prey source for bullheads, forming about 20% 

of the total prey consumed. 

 

Figure 4.10. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data at Livingston in 2015. 
Bullhead adult (N=29) and stone loach (N=4) 
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Happy Valley 

 

Gammaridae was the most abundant prey source at Happy Valley based on CCB and CCC 

information, although Limnephilidae (40%) and Chironomidae (25%) made up a large 

proportion of CCB and CCC respectively (Figure 4.11). Stone loach present at this location 

consumed Baetidae and Heptageniidae in equal proportions (approximately 25%), with 

Chironomidae also providing a significant prey source. Despite significant representation in 

the CCC and CCB, Gammaridae was not a common source of prey for stone loach. 

 

Figure 4.11. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data at Happy Valley in 
2015. Stone loach (N=7) 
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Murieston Water 

 

Heptageniidae and Gammaridae dominated the invertebrate community at Murieston 

Water in 2014, based on the CCC and CCB (Figure 4.12a). Baetidae also formed just under 

10% of the CCC. The availability of these prey categories was reflected in the feeding 

preferences of stone loach and brown trout parr. Stone loach consumed Gammaridae in 

extremely high proportions, with any other prey categories contributing less than 5% of the 

prey selected. About 60% of brown trout parr diet was formed of Heptageniidae. 

Chironomidae and Baetidae each provided about 10% of the prey selected. The diet of 

sympatric brown trout adults was highly variable. Heptageniidae and Baetidae were 

consumed in the highest proportions, each contributing about 20% of the total prey 

consumption. 

Heptageniidae, Gammaridae and Hydropsychidae formed the majority of the CCB at 

Murieston Water in 2015 (Figure 4.12b). Baetidae and Leuctridae were also readily available 

in the community, based on the CCC. The diets of stone loach and adult brown trout were 

highly mixed. Baetidae and Chironomidae formed the highest proportion of stone loach 

diet, with each contributing about 20% of all prey consumed. Heptageniidae was the most 

significant contributor to brown trout diet, forming about 20% of the prey composition. 

Multiple other prey categories were consumed at this location. 
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Figure 4.12. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data. (a) Brown trout 
adult (N=7), brown trout parr (N=7) and stone loach (N=5) at Murieston Water in 2014, (b) 
brown trout adult (N=9) and stone loach (N=7) 
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Carlops 

Gammaridae and Rhyacophilidae were abundant prey sources at Carlops, based on the CCB 

(Figure 4.13). The CCC data also showed that Baetidae and Chironomid larvae were also 

highly accessible. Brown trout parr diets relied heavily on Simuliidae larvae, Heptageniidae, 

Ephemerellidae and Capniidae, and with the former three categories each comprising about 

25% of the prey composition. The diets of adult brown trout were far more varied. Baetidae 

and Ephemerellidae each contributed to about 15% of the total prey composition, with 

Gammaridae and Heptageniidae each providing an additional 10%. 

 

Figure 4.13. Invertebrate community composition based on count and biomass data (CCC 
and CCB, respectively), compared with fish dietary composition data at Carlops in 2015. 
Brown trout adult (N=14) and brown trout parr (N=2) 
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4.3.2 Comparing the Dietary Composition of Bullheads, Brown Trout and Stone Loach 

The MDS plot of the dietary composition of bullheads, stone loach and brown trout shows 

some clustering of species data, particularly in the stone loach and bullhead groups (Figure 

4.14). Several of the brown trout plots are interspersed among the bullhead and stone loach 

clusters, suggesting a higher degree of commonality between the dietary compositions of 

these brown trout and the stone loach and bullhead grouping than is evident between the 

brown trout individuals and the other conspecifics in the analysis.  

 

Figure 4.14. Similarities in brown trout, bullhead and stone loach dietary composition. 
Labels that are closer together show more similarity between the dietary compositions of 
those individuals. The further apart records are on the plot, the less resemblance there is 
between the data sets. Numbers correspond to sample locations, based on the key 
provided 

 

Results of the one-way ANOSIM showed that fish species had a significant but moderate 

effect on the grouping of data in this analysis (P = 0.0066; R = 0.2049). Examination of the 

breakdown of results obtained showed significant differences between the combinations of 

brown trout and bullhead (P = 0.0438, R = 0.1593) and stone loach and bullhead (P = 0.0438 

Location 
1 = Kirkliston 
2 = Killandean Burn 
3 = Newbattle Abbey 
4 = Burdiehouse Burn 
5 = Braid Burn 
6 = Oatridge College 
7 = Livingston 
8 = Happy Valley 
9 = Murieston Water 
10 = Carlops 
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and R = 0.3519), but no significant separation of the brown trout and stone loach data (P = 

0.113, R = 0.1315). The R value obtained for comparisons between the dietary composition 

of bullhead and stone loach suggests that separation of diet composition based on species 

alone accounted for a higher level of segregation than was evident in the other comparisons 

examined. Species is therefore shown to have a moderate influence on the differences 

exhibited in the diet composition of all three fish species, when examined collectively and 

for the combinations of bullhead and brown trout and bullhead and stone loach. 

4.3.3 Comparing Dietary Composition in the Presence and Absence of Bullheads 

Results of the two-way PERMANOVA showed that the diets of brown trout and stone loach 

differed in the presence and absence of bullheads, at a statistically significant level (P = 

0.0449, F = 2.05, df = 1). Data were not shown to separate out on the basis of species (P = 

0.1768, F = 1.4679, df = 1) and there was no interacting effect of fish species on the result 

obtained (P = 0.7236, F = 0.69525, df = 1). As fish species has no significant effect on the 

results, further examination of the differences in brown trout and stone loach diets based 

on grouping of bullhead present and bullhead absent locations was possible. SIMPER 

analysis gave an average overall dissimilarity value of 65.19, when comparing brown trout 

and stone loach in the presence and absence of bullheads. The prey categories Goeridae, 

Chironomidae , Baetidae and Ephemerellidae collectively accounted for over half of the 

total dissimilarity shown between groups (Table 4.2). Goeridae and Ephemerellidae were 

selected for prey in much higher proportions in the sampling locations that did not contain 

bullheads. In the presence of sympatric bullheads, chironomids formed a much higher 

proportion of fish diets. 
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Table 4.2. Result of SIMPER analysis showing the contribution of all prey categories to the 
overall dissimilarity found between combined brown trout and stone loach data, when 
data were grouped by the presence and absence of bullhead. Only prey categories that 
contributed to the total dissimilarity were included. % contribution shows the input of a 
particular prey category to the dissimilarity, and cumulative % shows the running total of 
contributions up to 100%. Mean abundance data for each prey category in fishes in the 
absence and presence of bullheads are also shown 

 

 

 

 

 

Prey Category Contribution % Cumulative %
Mean abundance 

bullhead absent

Mean abundance 

bullhead present

Goeridae 14.22 14.22 0.523 0.0833

Chironimidae 14.13 28.35 0.247 0.5

Baetidae 13.31 41.66 0.442 0.456

Ephemerellidae 9.693 51.36 0.451 0.297

Gammaridae 6.405 57.76 0.212 0.0167

Hydrobiidae 6.184 63.94 0.1 0.15

Potamanthidae 5.179 69.12 0.192 0.075

Capniidae 4.62 73.74 0.0961 0.0833

Simulidae 4.587 78.33 0.0148 0.153

Unknown Fly Larvae 3.697 82.03 0.0569 0.0833

Asellidae 3.353 85.38 0.0145 0.0972

Ancylidae 2.976 88.36 0.0215 0.0833

Erpobdellidae 1.813 90.17 0.00725 0.0556

Unknown Leech 1.662 91.83 0.0139 0.0417

Leuctridae 1.462 93.29 0.0332 0.0167

Lymnaeidae 1.46 94.75 0.0104 0.0417

Rhyacophilidae 1.32 96.07 0.0528 0

Elmidae (Adult) 1.063 97.14 0.0424 0

Sericostomatidae 0.6235 97.76 0.0184 0

Dytiscidae 0.4907 98.25 0.0111 0.00833

Elmidae (Larvae) 0.3331 98.58 0.00725 0

Unknown Fish 0.321 98.9 0 0.0104

Unknown Stonefly 0.2904 99.19 0.0111 0

Unknown Caddisfly Larvae 0.2904 99.48 0.0111 0

Nemouridae 0.2575 99.74 0.0104 0

Glossiphonidae 0.2575 100 0.0104 0
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4.4 Discussion 

An examination of feeding niche overlap between sympatric populations of introduced 

bullhead, native brown trout and native stone loach showed a substantial overlap in the 

range of prey items utilised by all fish. Despite frequent reports of aerial and terrestrial prey 

in brown trout diets (e.g. Bridcut and Giller, 1995; Lehane et al., 2001), no evidence of this 

was found in this study. All fish species analysed shared a fairly similar dietary composition, 

with several invertebrate families commonly exploited by all species. These were larvae of 

the Chironomidae and Simuliidae fly families; nymphs of the most common mayfly and 

stonefly families Heptageniidae, Baetidae and Ephemerellidae; and the crustacean family 

Asellidae. Consumption of these families by all three species is commonly reported 

throughout the literature (Table 4.1). Copp et al. (2005) found that chironomid larvae were 

a preferred food source for cohabiting bullheads and stone loach, despite relatively low 

densities within the invertebrate community. An examination into the feeding preferences 

of brown trout fry in Norway showed high levels of consumption of chironomids in fry diets 

(Skoglund and Barlaup, 2006), which was also found by Sánchez-Hernández et al. (2011). 

The latter also reported active selection of Simuliidae larvae relative to local abundances. 

Consumption of mayfly and stone fly nymphs is also commonly reported for all species (e.g. 

Nunn et al., 2012).  

A previous study into the dietary composition of bullheads in the River Almond by Morris 

(1978) provides the only published account of bullhead diet in Scotland. The crustacean 

family Asellidae and the ephemeropteran family Baetidae formed a large component of 

bullhead diet in the account published by Morris (1978). Bullheads were also found to 
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consume the most plentiful prey source relative to local availability. Asellidae and Baetidae 

were common components of bullhead diet, but Chironomidae, Heptageniidae and 

Rhyacophilidae were also significant prey sources. Six incidences of filial cannibalism were 

noted in bullheads examined in this study (two from Kirkliston and four from Livingston), 

but no predation of brown trout fry was observed. Morris (1978) did not record any 

incidences of cannibalism in Scottish bullheads. Consumption of unrelated conspecifics is 

logical from a survival perspective. It provides a nutritious prey source and minimises future 

competition (FitzGerald, 1992). Filial cannibalism is less easy to rationalise, but is particularly 

prevalent in fishes with parental care (FitzGerald, 1992), such as bullheads. Kondoh and 

Okuda (2002) suggested that filial cannibalism is favoured in conditions where the overall 

population density is high, the population is female dominated, the male care period is long 

or the male's energy reserves are low. Bullhead populations in the areas surveyed were 

extremely dense, and it certainly holds true that male bullheads are heavily invested in nest 

building and guarding during the reproductive period (Morris, 1954; Smyly, 1957). These 

conditions may, therefore, promote an environment in which some males will consume 

young bullheads, as was evidenced in this study. 

Certain invertebrates were more common in the diets of some species over others. There 

was an obvious abundance of adult beetle groups within the dietary composition of brown 

trout, whereas fewer incidences were seen in bullheads and stone loach. This was 

particularly evident at Burdiehouse Burn in 2014 and Kirkliston in 2015. The caddisfly larvae 

Rhyacophilidae was common in the diets of brown trout and bullheads, but less common in 

stone loach (e.g. Burdiehouse Burn in 2015). Separation within the diets of adult and 

juvenile brown trout was also noted, with Gammaridae forming an important component of 
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adult brown trout diets but being absent in the diet of juvenile individuals. All fish species 

examined are considered generalists (Morris, 1978; Michel and Oberdoff, 1995), and 

therefore show a large number of prey categories in their respective dietary composition. 

The variation in proportional consumption of certain prey organisms in brown trout, 

bullhead and stone loach diet may suggest a degree of resource partitioning in these mixed 

populations. Resource partitioning has previously been reported between cohabiting 

bullheads, brown trout and stone loach (e.g. Straskraba et al., 1966; Welton et al., 1983; 

Dahl, 1998), and has primarily been attributed to differences in prey choice due to size (in 

relation to stone loach and bullhead competition) or prey location in the water column (in 

relation to brown trout and bullhead competition). As this study did not take prey size or 

biomass into account, separation by size may have occurred within the diets of examined 

bullheads and stone loach. Segregation based on prey location in the water column was 

demonstrated in this study, as evidenced by the higher proportion of fast-swimming adult 

beetles in the diets of brown trout (such as Braid Burn, Newbattle Abbey and Livingston) 

compared to values reported for bullheads and stone loach. 

Statistical analyses of the dietary composition data obtained for brown trout, bullheads and 

stone loach suggests that a degree of resource partitioning may be evidence in the 

communities observed. ANOSIM results showed significant separation of feeding data 

between the pairings of bullheads and stone loach, and bullheads and brown trout. No such 

separation was observed in the pairings of brown trout and stone loach, based on the 

ANOSIM results and the output of a subsequent PERMANOVA analysis. Despite strong 

similarities in the type of macroinvertebrate prey consumed, the bullheads examined in this 

study did not show a direct overlap in dietary composition with native brown trout or stone 

loach, based on the proportion of individuals observed to be consuming a given prey 
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category. A high degree of similarity, and therefore potential competition, was found when 

brown trout proportional feeding choices were compared with those of examined stone 

loach. It should be noted, however, that both brown trout and stone loach are native 

species that frequently occur in the same freshwater communities.  

Whilst direct comparisons of dietary composition did not provide evidence of feeding 

competition between bullheads and native fishes, differences in dietary selection were 

observed in native fishes when comparing locations with and without resident bullheads. A 

PERMANOVA analysis comparing the feeding preferences of brown trout and stone loach in 

the presence and absence of bullheads showed that fishes in locations containing sympatric 

bullheads had a different dietary composition from those in mixed communities. Local 

variations in the availability of prey would likely have an influence on dietary composition, 

and fluctuations in observed stomach contents between locations would therefore be 

expected. However, the breakdown in prey choices exhibited by each species in each 

location shows that individuals are frequently selecting specific prey categories, rather than 

consuming the most accessible or available option (Figures 4.4 to 4.13). Due to the similarity 

in brown trout and stone loach diets confirmed by the ANOSIM and PERMANOVA results, 

the diets of brown trout and stone loach were pooled to provide a comparison of feeding 

preferences in the locations where bullhead were present, and those where bullheads have 

not been introduced. SIMPER analysis showed that the most significant differences in prey 

consumption were shown in the Goeridae, Ephemerellidae and Gammaridae categories 

(more common when bullheads were absent); and the Chironomidae and Baetidae 

categories (more commonly consumed when bullheads were present). Goeridae are not a 

frequently observed prey resource for any of the species examined and the variation 

observed in the SIMPER analysis is a result of unusually high predation frequencies by brown 
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trout at Carlops, where bullheads are absent, relative to the other locations where bullhead 

are present. This result is therefore attributed to local availability as opposed to the 

influence of bullheads. Direct observations of the dietary composition of each species at 

different sites (shown in Figures 4.4 to 4.13) showed that Ephemerellidae and Gammaridae 

are frequently consumed prey sources for bullheads, brown trout and stone loach, albeit in 

varying proportions. The variation highlighted in the SIMPER analysis is therefore potentially 

a result of bullheads preventing access to these preferred prey species, either through 

predation by bullheads, or the displacement of stone loach and brown trout from optimal 

foraging locations in the water column. 

The presence of resource partitioning implies that each fish species would likely be 

consuming a specific type of prey, whether based on the prey's location within the water 

column or a species' preference for a particular food source. If this were the case, active 

selection of specific prey organisms would be demonstrated. This was tested by comparing 

the invertebrate community composition of each location with the dietary composition of 

each of the fish species. Data obtained from kick samples were used to catalogue the 

invertebrate community and provide a measure of community composition on the basis of 

counts of individuals and biomass. This proportional structuring of the community was then 

directly compared with the proportion of individuals from each the fish species consuming a 

prey category, to ascertain whether each species was foraging relative to community 

availability or was actively seeking a particular prey source. Both bullheads and stone loach 

regularly prey upon the most abundant organisms in some locations, although this was not 

consistently observed. At Murieston Water for both the 2014 and 2015 fish samples, the 

highest proportion of prey consumed by stone loach was Gammaridae. This prey category 

represented the highest proportion of prey available by biomass and count in 2014, and the 
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second highest proportion observed in 2015. Results for Livingston in 2015 showed that the 

consumption of Baetidae and Rhyacophilidae in stone loach and bullheads coincided with 

each of these prey categories representing the highest proportion of the invertebrate 

community by count and biomass respectively. Rhyacophilidae comprised over 70% of the 

available invertebrate prey biomass and was consumed in moderate proportions by stone 

loach and bullheads. In contrast, the caddisfly larvae families Limnephilidae and 

Hydropsychidae represented the second highest and highest proportion of invertebrates by 

biomass at Happy Valley and Murieston Water in 2015, and were missing from the stomach 

contents of all fish examined at those sites. All fish species appear to be selecting for specific 

prey types and, within this grouping, will select the more accessible prey sources relative to 

individual preferences. Clearly some degree of dietary segregation is present, whether in 

relation to the size of prey versus the relative size of the consumer, or the prey's location 

within the water column. This further confirms the separation observed between the 

proportional dietary preferences of bullheads when compared with those of stone loach 

and brown trout, shown by ANOSIM analysis.  

There are several limitations to determining the percentage composition of the 

macroinvertebrate community based on individual counts. The kick sampling method is 

appropriate for sampling aquatic-dwelling organisms, particularly those in the benthos. As 

noted by Horton (1961), attempts to correlate bottom fauna with the amount of food 

available in a given area would be difficult if brown trout predominantly feed on drift 

organisms. The consumption of drift organisms has been commonly reported in both brown 

trout and bullhead. Community composition based on count data does not take into 

account the relative size of each individual, which has a marked effect on the energy it 

provides for a consumer. Several individuals of the smaller family groups, such as 
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chironomid larvae or Elmidae larvae, would need to be consumed to give the energy 

equivalent of one large Gammarus. This was compensated for by obtaining average weight 

values for each family group to allow for the determination of composition on the basis of 

biomass. Variations in the quality of each prey source will also be evident between prey 

categories and cannot be accounted for on the basis of biomass. Invertebrate nutrients and 

elemental composition vary between taxa (Evans-White et al., 2005) and in relation to the 

invertebrate's diet (Wissing and Hasler, 1971). Selection on the basis of these factors is 

therefore hard to evidence by the community composition methods utilised in this study. It 

should also be noted that, due to sampling restrictions, kick samples were conducted 

slightly earlier in the season than fish samples were taken. Results obtained from the kick 

samples are therefore not indicative of the invertebrate community structure that was 

present at the same time fish feeding occurred. However, both samples were conducted 

during the peak of invertebrate seasonal occurrence and fish consumption rates (Thomas, 

1962; Klemetsen et al., 2003), so all available invertebrate classes that would be 

components of fish diets should be represented in the samples.  

Seasonality was found to be a key factor in determining trophic competition between 

bullheads, stone loach, juvenile brown trout and juvenile Atlantic salmon co-habiting in 

Russia (Shustov et al., 2014). The authors found that competition between both salmonids 

with bullheads and stone loach was high in autumn, due to high fish consumption rates and 

reduction in available prey, and low in summer and winter, due to an abundance of prey 

(summer) and reduced feeding activities in fish (winter). Seasonal variance seems likely in 

the fish communities examined in Scotland, and may have influenced the results of this 

study. Results are in agreement with the findings of Welton et al. (1983) and Welton et al. 

(1991), who demonstrated a degree of resource partitioning between cohabiting bullheads 
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and stone loach. An established bullhead population has been present in some of these 

regions for over sixty years, so a degree of trophic competition is likely and may have 

resulted in resource partitioning among the different species present. This is evidenced by 

the selection of specific prey categories exhibited by each species at different locations, and 

potentially shown in the difference in prey resources utilised by brown trout and stone 

loaches in the presence and absence of bullheads. The results of this study also complement 

those of Vlach et al. (2013), who reported an overlap in prey types selected by sympatric 

bullheads, stone loach and brown trout. However, in contrast to Copp et al. (2013), a 

difference in the percentage composition of the diets of bullhead and stone loach (and 

examined brown trout) was demonstrated.  

The generalist nature of bullhead, brown trout and stone loach predation makes it difficult 

to categorise specific prey preferences, particularly when the prey community also varies 

between sample sites. The results of this study suggest that some degree of resource 

partitioning is evident in communities hosting introduced bullheads. Although general prey 

preferences are similar between all three species, direct competition for prey has not been 

evidenced. Each species has been shown to select specific prey items that are influenced by, 

but not restricted to, the most abundance and available prey within a community. Sympatric 

bullheads were found to coincide with variations in prey selection in brown trout and stone 

loach, which is a potential consequence of resource partitioning between the three species. 

This provides some evident in support of the tested hypothesis; that the presence of 

introduced bullheads influences the feeding preferences of native brown trout and stone 

loach in Scotland. 
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Chapter 5. Parasite Links Between Introduced Bullheads and Native Fishes in South-East 

Scotland 

5.1 Introduction 

The close association between parasites, host fitness and host behaviour means that 

parasites can play a key role in the invasion process. They have the potential to modify 

predator/prey interactions between native and invading species and indirectly influence 

interspecific competition (Prenter et al., 2004). Parasites can also be independent invaders, 

producing novel host/parasite interactions that can have catastrophic consequences to the 

survival of native populations (e.g. Meeus et al., 2011). As with the establishment of any 

other non-native species, parasite colonization success is not guaranteed. Factors such as 

host invasion history, parasite life history and host-parasite geography influence the 

potential success of a parasite introduction (Blakeslee et al., 2012). Changes in host/parasite 

dynamics are a common occurrence in biological invasions and can have significant impacts 

on native communities (e.g. Emde et al., 2012). 

There are several possible establishment and transmission processes that can occur 

between introduced species, native species and their respective parasites (Figure 5.1). 

Translocated non-native species commonly escape a large number of parasites from their 

native range when colonizing a new region (Mitchell and Power, 2003; Torchin and Mitchell, 

2004). The enemy release hypothesis suggests that invasive species may be more successful 

in areas of introduction than their native communities, due to a lack of co-evolved natural 

enemies and the loss of parasites during the translocation process (Keane and Crawley, 

2002; Wolfe, 2002). This allows invasive species to achieve higher growth rates and larger 

population densities in novel ecosystems (Drake, 2003), increasing their impacts on native 

communities. A study comparing the parasites of an extensive range of species in both their 
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native and introduced ranges found that individuals generally contained twice the number 

of parasite species in their native range than were recorded in non-native locations (Torchin 

et al., 2003). The loss of parasites when hosts become established in a new community is an 

example of the enemy release hypothesis, where invading individuals can thrive in new 

communities due to a loss of natural enemies; in this case their parasites. An investigation 

into parasite release in the invasive green crab (Carcinus maenas) suggested that a loss of 

parasites before establishment might afford individuals a more rapid growth rate and an 

overall increase in biomass (Torchin et al., 2001). In contrast, Drake (2003) proposed that 

parasite release does not significantly affect invasion success, although the extent to which 

this held true was dependent on host virulence and the proportion of introduced individuals 

that were infected. The relative importance of parasite release is therefore population, 

species and host-specific.  

 

Figure 5.1. Potential scenarios for parasite/host interactions as a consequence of the 
introduction of a parasitised non-native species 
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Parasites that do survive translocation will only thrive in a habitat that is sufficiently rich in 

the obligate hosts required to sustain the parasite's life cycle (Torchin and Mitchell, 2004). 

Strauss et al. (2012) theorised that non-native species infected with virulent parasites are 

unlikely to survive the invasion process, resulting in only avirulent parasites or highly 

tolerant hosts arriving in new locations. Parasites that spread by vertical transmission (those 

that can be passed from parent to offspring) are usually less virulent than those that require 

contact between infected and uninfected individuals, so are more likely to successfully 

invade with their hosts (Prenter et al., 2004). Parasites that are avirulent in one host can still 

cause significant pathogenic responses if successfully transmitted to a novel host, which is 

of particular relevance in invasion studies. Non-native species can transmit their parasites to 

evolutionarily-naive native individuals in a process known as parasite 'spill-over' (Power and 

Mitchell, 2004). The reciprocal of this process is also possible, wherein non-native 

individuals can act as a reservoir for native parasites, increasing parasite spread and 

infection prevalence in native hosts. This process is termed 'spill-back,' and is generally the 

more prominent mechanism of parasite transfer in newly established communities (Kelly et 

al., 2009). Invasive species can reduce infection rates in native species by either functioning 

as an alternative or paratenic host for native parasites, termed the dilution effect, or 

fulfilling the role of dead-end host, wherein parasites infect invasive species but cannot 

continue their life cycle. Introduced parasites may also have the ability to thrive in their new 

community without their original host. The invasive nematode Anguillicoloides crassus, for 

example, is thought to have played a considerable role in the recent decimation of global 

European eel stocks by compromising swimbladder function (Barry et al., 2014). It was 

introduced during the transportation of its native host Anguilla japonica throughout Europe, 
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and has flourished due to its ability to infect a vast range of novel hosts (e.g. Moravec and 

Skoríková, 1998). Novel parasite-host relationships that result from such interactions are 

particularly harmful due to a lack of co-evolution between the parasite and host, leaving the 

host vulnerable to physiological and behavioural exploitation. These changes could result in 

knock-on effects at a community level.  

The relationship between a parasite and its host is complex. Parasites can induce 

behavioural and physiological changes within a host to improve parasite transmission 

success. The consequences of parasite infection vary greatly depending on the host and 

parasite in question, and are influenced by host fitness and the presence of other co-

occurring parasites. Changes to host behaviour that increase susceptibility to predation by a 

parasite's final host have been well documented in fish (Mikheev et al., 2010; Seppälä et al., 

2004; 2005) and invertebrate hosts (e.g. Macneil et al., 2003; Seppälä et al., 2008). The 

acanthocephalan parasite Pomphorynchus laevis has the capacity to influence the olfactory 

system of its amphipod host by removing its ability to distinguish the olfactory cues that 

indicate the presence of a fish predator (Baldauf et al., 2007). Medoc et al. (2009) studied 

infection by the acanthocephala Polymorphus minutus and found that the parasite could 

manipulate its amphipod host to hide in refuges at the water's surface, thereby decreasing 

its host's vulnerability to predation by an undesirable non-host predator. In a recent study 

by Gopko et al. (2017) infections of the digenean parasite Diplostomum pseudospathaceum 

in fish eyes were found to modify their host's behaviour in opposite ways, depending on the 

age of the fish host. When D. pseudospathaceum are at a younger uninfectious stage, fish 

hosts were less active in the water column and therefore less vulnerable to predation by 

aquatic birds. The reciprocal was found in hosts containing mature infectious D. 

pseudospathaceum, who were found to swim more actively and recover from a simulated 
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predation attempt more quickly than a control group, making them ultimately more 

susceptible to predation by piscivorous birds. In modifying the behaviour of host species, 

parasites are able to ensure their continued survival or improve their capacity to spread to 

their definitive host. These modifications can indirectly determine invasion success by 

influencing the competitive fitness, and potentially the survival, of a host. 

Freshwater fish typically host a diverse range of parasite fauna (Poulin, 2016). Within the 

aquatic environment parasite infections can be autogenic, where the life cycle of the 

parasite is completed locally within the aquatic community, or allogenic, where 

intermediary stages are completed in the aquatic environment but further stages of the 

parasite's life cycle are completed on land. Autogenic parasites will typically complete their 

life cycle using a freshwater invertebrate as an intermediate host and one or more fish 

species as subsequent intermediate or final hosts. Allogenic parasites will similarly exploit 

freshwater invertebrates and fishes as first and second intermediate host, but will likely 

have a final adult stage that requires a piscivorous bird or mammal as a host. Allogenic 

parasites have a greater colonization potential than their autogenic equivalents due to the 

increased mobility of their terrestrial final hosts increasing dispersal capacity (Esch et al., 

1988). Typical life cycles of freshwater fish parasites involve the exploitation of amphipods 

or gastropods as intermediate hosts, although numerous other invertebrate species can also 

be utilised depending on the parasite taxa in question. Parasite occurrence in invertebrates 

and fish from within the same community are therefore closely related, validating a 

community-based approach to invasion studies. 

Bullheads have been introduced to a number of different countries across Europe and 

Scandinavia. In other areas of introduction, their presence has been shown to influence 
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parasitological interactions within native communities. A recent investigation into the 

introduction of bullhead in Finland showed limited changes to the overall parasite diversity 

of bullheads, but provided a clear example of parasite spill-over (Ieshko et al., 2013). More 

than 20 years after bullhead were introduced, high densities of the trematode parasite 

Apatemon gracilis were reported in previously uninfected Atlantic salmon parr; a finding 

attributed directly to the establishment and dispersal of bullheads within the river system. 

There has also been documented evidence of parasite spill-back, where invasive bullheads 

have acquired novel parasite infections from native fish. Moravec (2001) recorded 

incidences of bullhead infection with the salmonid cestode parasite Proteocephalus 

longicollis in the Czech Republic, where their role as both paratenic parasite hosts and prey 

for the brown trout final host facilitated the spread of P. longicollis. The similar habitat and 

prey preferences of the two cohabiting species indicate the potential for parasite transfer.  

Despite evidence of parasitological interactions in other areas of introduction, no study has 

been conducted into the parasitological interactions between introduced Scottish bullhead 

and native fish species. Introduced bullhead in Scotland are found in communities 

containing brown trout (Salmo trutta), a species that is of particular importance to the 

recreational fishing industry and the economy (Butler et al., 2009). Bullheads are found in a 

similar habitat to brown trout fry and large adult bullheads will prey upon vulnerable fry 

(Gaudin, 1985). A reciprocal relationship also exists, in which adult brown trout actively prey 

upon smaller bullheads. Bullheads are also closely associated with native European minnow 

(Phoxinus phoxinus) and stone loach (Barbatula barbatula), sharing similar habitat and prey 

preferences. Close parasitological interactions between these species are therefore likely. 

An investigation into parasite links between introduced bullheads and co-occurring fauna 
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will highlight any significant changes in host/parasite relationships that have resulted from 

bullhead arrival in Scotland.  

5.1.1 Aims and Objectives 

The aim of this chapter is to investigate parasitological interactions between bullheads and 

native fauna, to establish whether current host/parasite relationships relate to the arrival 

and establishment of non-native bullheads. As bullheads are responsible for the 

introdcution and spread of parasites in other areas of introdcution, it is hypothesised that 

the bullheads that have been introduced to Scottish freshwater communities will have 

influenced the parasite fauna of native Scottish fishes. Results are used to clarify whether 

invasive criteria for bullheads are met through bullhead-mediated spread of potentially 

harmful parasites. 

5.2 Methods 

Eleven sample sites were selected, encompassing four separate river systems across 

Edinburgh and the Lothians (Figure 5.2). Six sampling locations contained established 

bullhead populations and five sites were bullhead-free control sites. Depending on 

availability, fish samples consisted of bullheads, stone loach, brown trout, minnows and 

founder (Platichthys flesus) (Table 5.1).  
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Figure 5.2. Locations of sample sites used in parasitological studies. Bullheads were 
present in six locations (    ), while five locations were bullhead free (   )  

 

Table 5.1. Fish species and sample sizes (n) collected from each location in 2014 and 2015  

 

 

 

 

Kirkliston Killandean 

Burn

Newbattle 

Abbey 

Burdiehouse 

Burn

Braid Burn Oatridge Livingston Breich 

Water

Happy 

Valley

Murieston Carlops

Bullhead n = 34 n = 35 n = 21 n = 31 n = 35 - n = 35 - - - -

Brown trout - n = 13 n = 14 n = 3 n = 5 n = 8 - - - n = 18 n = 16

Stone loach n = 14 n = 2 - n = 3 - n = 35 n = 14 n = 20 n = 20 n = 5 -

Minnow - - - - - - n = 9 n= 1 n= 7 - -

Flounder - - - - - - - - - - -

Bullhead n = 32 n = 33 n = 35 n = 35 n = 35 - n = 35 - - - -

Brown trout n = 6 n = 6 n = 6 - n = 6 n = 7 - - - n = 9 -

Stone loach n = 2 n = 1 n = 6 - - n = 24 n = 5 n = 15 n = 8 n = 8 -

Minnow - n = 8 - - - - n = 25 n = 13 n = 24 - -

Flounder - - - n = 7 n = 10 - - - - - -

2014

2015
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5.2.1 Laboratory Analyses 

5.2.1.1  Fish Dissections 

Fish samples were thawed in a refrigerated room (ambient temperature 8°C) for one hour 

(bullhead, stone loach, flounder and minnow) or overnight (brown trout). Prior to 

dissection, an initial external examination of the body surface, operculum, outer gills, eyes, 

oral cavity and fins was conducted under an Olympic SZ51 dissection microscope, to 

determine the presence of ectoparasites or growth abnormalities. Standard body length (to 

the nearest mm), fork length (to the nearest mm) and thawed body weight (g) were also 

recorded. Each fish was manually dissected using the following protocol: An incision was 

made along the ventral surface from the vent region to the operculum, exposing the 

internal organs. Any visible parasites were removed and their origin recorded. All organs 

were then removed from the visceral cavity, isolated from each other and immersed in 0.9% 

saline solution. Liver weight (g) and body weight (g) after the removal of all organs from the 

visceral cavity were recorded. The heart was removed from the thoracic cavity, followed by 

each of the gill rakers. The cranial cavity was exposed and the eyes removed, whilst the 

brain and surrounding tissues were examined for any signs of parasites. Finally, muscle 

tissue was isolated from the body wall by a bilateral anteroposterior incision from the 

caudal tip of the opercular cavity to the caudal peduncle, following the line of the vertebral 

column. Dissections and examination of organs and isolated tissues were carried out under 

an Olympic SZ51 dissection microscope at varying magnifications, ranging from 6.7x to 45x. 

The organs of the digestive tract and each of the eyes were opened and the contents rinsed 

into the surrounding saline solution. The tissue of all organs was squashed between two 

Petri dishes and carefully examined for the presence of parasites. Saline solution that was 
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used to store each organ and (where relevant) its contents was also inspected. Gill rakers 

were separated and examined independently in a Petri dish containing 0.9% saline solution. 

Recovered parasites were fixed in Formalin-acetic acid-alcohol (FAA) for three hours, before 

long-term storage in 70% ethanol. A few drops of glycerol were also added to vials 

containing nematodes. 

5.2.1.2  Parasite Clearing, Staining and Microscopic Examination 

Fish parasites were subjected to a range of staining, clearing and mounting methods 

depending on the taxa and life stage of each parasite, following the procedures laid out in 

Kruse and Pritchard (1982).  

Digenea  

Digenean specimens were subjected to a clearing and staining process before microscopic 

examination. Each specimen was placed in acetocarmine stain for approximately three 

minutes, then returned to a 70% ethanol solution. Immersion in 80%, 90% and 100% 

ethanol solutions for 30 minutes per solution was then undertaken. Specimens were then 

placed in a solution of equal parts clove oil and 100% ethanol, and left in the solution until 

all ethanol had evaporated (usually approximately 3 hours). The cleared individuals were 

then mounted on microscope slides using Canada balsam, which was left to partially harden 

for several days before specimens were examine using an Olympus BH-2 compound 

microscope.  

Species-level identification of Digenea recovered from the eyes required measurements of 

morphometric and morphological characters. Specimens were subjected to the procedure 

described above, before cellSens software (Olympus Corporation) was used to visualise and 
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accurately measure the following features: body length (BL), body width at the holdfast 

organ (BW), holdfast organ breadth (HB) and length (HL), ventral sucker breadth (VSB) and 

length (VSL), oral sucker breadth (OSB) and length (OSL), distance between lappet peaks 

(DLP) and interior (DLI) and the distance between the ventral sucker and the anterior (VSA) 

(Figure 5.3). Selection of measured characters was based on the work of Shigin (1976), 

Brady (1989) and Cavaleiro et al. (2012). Specimens were photographed using an Olympus 

BH-2 compound microscope. 

 

 

Figure 5.3. Diplostomum morphology (a) Schematic drawing of observed digenean; (b) 
morphological and morphometric features measured in digeneans extracted from the 
eyes of fish hosts (abbreviations explained in the text) 
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Cestoda 

The recovered cestode specimen was identifiable without the use of staining and clearing 

methods. It was examined and photographed under an Olympus SZ51 dissecting microscope 

whilst immersed in a 70% ethanol solution. 

Nematoda 

Nematoda required clearing before microscopic examination. Each specimen was immersed 

in a solution of equal parts 70% ethanol and glycerol. Clearing occurred as the ethanol 

evaporated out of the solution. After approximately four hours, cleared specimens were 

removed and mounted in glycerol jelly to allow for examination and photography using an 

Olympus BH-2 compound microscope.  

Acanthocephala 

Acanthocephalan specimens were subjected to a dehydration and clearing process before 

microscopic examination. The body wall of all individuals was punctured with the head of a 

dissecting needle just after the proboscis, to facilitate mixing of different solutions with 

internal structures. They were then immersed in 80%, 90% and 100% ethanol solutions for 

one hour per solution. Individuals were then placed in a watch glass containing a 1:1 ratio of 

xylene and 100 % ethanol, and left sitting at the interface between the two immiscible 

liquids. Once the specimens fell through the interface of the two liquids and were immersed 

completely in the xylene bottom layer (usually after about 12 hours), they were removed 

and rinsed in a fresh solution of 100% xylene for 30 minutes. Several drops of Canada 

balsam were then added to the xylene and mixed through to form a solution, in which 

specimens were left for a further hour. All Acanthocephala were then mounted on 

microscope slides using Canada balsam, which was left to harden overnight before slides 
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were examined under a compound microscope. Slides mounted with Canada balsam 

required up to two weeks to completely harden. Specimens were examined and 

photographed using an Olympus BH-2 compound microscope. 

Cysts 

Cysts were not stained, as their thick protective wall prevented any stain uptake. Individuals 

were examined and photographed under an Olympic SZ51 dissection microscope at 45 x 

magnification whilst immersed in 70% ethanol, and also squashed between microscope 

slides and viewed under a compound microscope at 40x - 400 x magnification.  

5.2.1.3  Scanning Electron Microscopy 

Reference specimens of acanthocephala from each host fish species, samples of 

unidentified nematodes and examples of the two types of digenean metacercariae were 

observed and photographed using scanning electron microscopy (SEM). Samples were 

dehydrated by placing them in a series of increasing concentrations of ethanol (in 10% 

increments from 70% to 100%) for one hour at each concentration. Each specimen was then 

critical point dried with liquid CO₂, using a Leica EM CPD300. Samples were then attached to 

a specimen stub and sputter coated with gold, before being viewed with a Hitachi S-4800 

scanning electron microscope at an acceleration voltage of 3 kV. 

5.2.2 Statistical Analysis 

5.2.2.1  Fish Parasites  

Data across replicate years were merged for each fish host (where appropriate), due to the 

limited sample sizes obtained for some species/location combinations in a given year. 

Different life stages of the same species were treated separately for the purposes of 
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statistical analysis. All univariate analysis was undertaken using QPweb (version 1.0.13, 

Reiczigel and Rózsa, 2005) and multivariate testing was conducted with PRIMER (version 6, 

PRIMER-E LTD) software. 

Fish parasites - Diplostomum identification 

To allow direct comparisons of each Diplostomum individual based on allometric growth 

alone, the geometric size effect was removed from the results of the morphological and 

morphometric measurements. This was done by logging all data, calculating the mean log 

value for each measured feature and subtracting the mean from each individual. A similarity 

matrix was then constructed based on Euclidean distances (PRIMER, version 6, PRIMER-E 

LTD), and the similarity between Diplostomum recovered from all hosts visualised using a 

multi-dimensional scaling (MDS) plot. A two-way ANOSIM was then conducted to determine 

if significant differences were found between the results when grouped by host species or 

sample location.  

5.2.2.2  Comparisons Across Fish Hosts/Sample Locations 

For each fish host, the prevalence, mean infection intensity and mean infection abundance 

of all recorded parasites at each site were calculated; wherein infection prevalence (P) is the 

proportion of infected hosts in a sampled population among all hosts examined, mean 

intensity (I) represents the mean number of parasite individuals of the same species per 

infected host, and mean abundance (A) is the mean number of parasite individuals per all 

potential hosts examined (Bush et al., 1997; Margolis et al., 1982; Rózsa et al., 2000). 

Confidence intervals, set at 95%, were calculated for each factor. Confidence intervals were 

selected over standard deviations due to the skewed nature of parasite infections, in which 

a small number of individuals will generally host a large proportion of all conspecific 
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parasites, creating a high degree of variability in infection parameters. As per the 

recommendations provided in Rózsa et al. (2000), 95% confidence intervals were 

established for all three infection parameters, using Clopper-Pearson confidence intervals 

(Clopper and Pearson, 1934) for prevalence; and bootstrap BCa confidence intervals (Efron 

and Tibshrani, 1993), based on 2000 bootstrap replications, for mean intensity and mean 

abundance.  

Overall mean intensity values were calculated for each fish species at a given location and 

Log(x+1) transformed to approach normal distribution. A similarity matrix was constructed 

using a Bray-Curtis resemblance matrix (PRIMER, version 6, PRIMER-E LTD), and the 

similarity between species and locations visualised using a multi-dimensional scaling (MDS) 

plot. A two-way ANOSIM was also conducted to determine if significant differences were 

found between the results when grouped by host species or sample location. Records where 

no parasites were reported for a given species in any particular sample location were 

considered outliers and were removed from the MDS plot to improve visual clarity.  

5.2.2.3  Comparisons Between Locations With/Without Bullheads 

Using stone loach and brown trout data, a comparison was made between the prevalence 

and mean intensity of parasite infections in sample locations with and without bullheads. 

This was undertaken for each parasite species using Fisher's exact test (prevalence), and a 

bootstrapped t-test with 2000 bootstrap replicates (mean intensity). A Holm-Bonferroni 

correction (Holm, 1979) was applied to all results to limit the probability of incurring a Type I 

error when carrying out multiple statistical tests in succession (Abdi, 2010). 
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5.3 Results 

In total, eight parasite species from four distinct taxonomic groups were identified from all 

fish examined (Table 5.2). Two unidentified cyst types were also recorded. Of the species 

observed, four different parasites (Echinorhynchus truttae, Apatemon gracilis, Diplostomum 

volvens and Raphidascaris acus) were shared between bullheads and one or more native 

fishes.  

Table 5.2. Observed parasites and their fish hosts. Shaded boxes containing an X represent 
incidences of infection 

 
 

5.3.1 Parasite Descriptions and Identification 

Digenea 

Species: Apatemon gracilis (Rudolphi, 1819) 

Host: Bullhead, stone loach, brown trout, flounder 

Location: Cranial cavity, ocular cavity, thoracic cavity, body cavity, muscle tissue, heart, liver, 

kidneys, gonads, mesenteries, intestinal wall (bullhead and stone loach). Mesenteries 

(flounder and brown trout). 

Life stage: Cyst (second intermediate host) 

First intermediate host: Freshwater molluscs (Palmieri, 1973) 

Final host: Piscivorous birds, particularly anatids (Burton-Beverley, 1972) 

Echinoryhnchus 

truttae

Proteocephalus

 sagittus

Apatemon 

gracilis cyst

Apatemon gracilis

 metacercariae

Crepidostomum

 metoecus

Diplostomum 

volvens

Cystidicola

 farionis

Cystidicoloides

 tenuissima

Raphidascaris 

acus

Bullhead X X X X X

Stone loach X X X X X

Brown trout X X X X X

Minnow X

Flounder X X
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Description: Found embedded in tissues or loose in the thoracic and body cavities. Internal 

structures are visible within some cyst contents but the majority lack obvious internal 

features. All cysts appear to be encapsulated, containing a fluid-filled cavity between the 

outer capsule wall and the internal cyst wall. The cyst wall is of uniform width. The strong 

outer capsule wall is able to withstand significant pressure and manipulation. Attempts to 

penetrate the cyst wall resulted in the brisk expulsion of lipid-rich internal contents. Cyst 

appear to be under significant pressure. Some cysts appear to be in different stages of 

development, with the majority appearing completely transparent and others housing 

opaque centres. Oral and ventral suckers are evident in some specimens (Figure 5.4). Total 

cyst length (including surrounding capsule) is approximately 1.2mm, and width is 0.5mm. All 

cysts are ovoid. Identification, based on the aforementioned features, was aided by the 

description of cyst characteristics given in Blair (1976). Specimens were also found 

embedded in tissues alongside the metacercarial form of the same species, further 

confirming their identity. 
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Figure 5.4. Apatemon gracilis cysts recovered from stone loach (a-c) and bullhead (d-f). (a) 
Cyst (Cy) are shown attached to liver tissue and closely associated with A. gracilis 
metacercariae (M). (b and c) Cysts are shown contained within a secondary capsule, 
separated by the cyst wall (CyW). The oral sucker (Os) and ventral sucker (Vs) are visible in 
some specimens. (d) Attempted extraction of cyst contents results in the rapid expulsion 
of all internal tissue. (e) Completely opaque bullhead cysts and (f) transparent bullhead 
cysts with no visible internal structures 
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Species: Apatemon gracilis (Rudolphi, 1819) 

Host: Bullhead, stone loach, flounder 

Location: Thoracic cavity, ocular cavity, body cavity, mesenteries, intestinal tissue, muscle 

tissue, gonads, heart (bullhead and stone loach). Body cavity (flounder). 

Life stage: metacercariae (second intermediate host) 

First intermediate host: Freshwater molluscs (Palmieri, 1973) 

Final host: Piscivorous birds, particularly anatids (Burton-Beverley, 1972) 

Description: Found loose in body and thoracic cavities, and embedded in organs and 

connective tissues. Metacercariae had a mean length of 1142.29µm (range 556.57-1972.62) 

and width of 670.75 (range 252.75-1181.09) (n = 20).  A lobed holdfast organ projecting 

from the body surface and a small tail structure are visible in all samples (Figure 5.5). The 

ventral hindbody is noticeably depressed and wider than the ventral forebody. Bilateral 

lappets framing the oral sucker are visible in some individuals.  

Metacercariae were often found co-occurring alongside the encysted form of A. gracilis and 

are presumed about to encyst (Blair, 1976). Identification, based on the aforementioned 

features, was confirmed using the key provided in Gibson (1996).  
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Figure 5.5. Apatemon gracilis metacercariae recovered from bullheads (a-d), stone loach 
(e) and flounder (f). Ventral sucker (Vs), holdfast organ (Ho), lappets (Lp) and oral sucker 
(Os) are labelled on stained specimens. (d) 2 x metacercariae (M) embedded in intestinal 
wall  
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Species: Diplostomum volvens (Nordmann, 1832) 

Host: Bullhead and minnow 

Location: Within the vitreous humour of the eye 

Life stage: Metacercariae (second intermediate host) 

First intermediate host: Aquatic snails, usually Lymnaeidae (Voutilainen et al., 2009) 

Final host: Piscivorous birds, primarily gulls (Wootten, 1974) 

Description: Small digenean species with a maximum body length of 570µm (mean = 412 ± 

99) and width of 240 µm (mean = 167 ± 34). The maximum body width is found in roughly 

the centre of the body. Two prominent lappets visible on either side of the oral sucker 

(Figure 5.6). Ventral sucker positioned just caudal to the midpoint of the body. The holdfast 

organ is composed of two separate folds and has a prominent concavity in the posterior 

margin. Specimens are found loose within the vitreous humour of the eye. 

The similarity between the measurements of Diplostomum recovered from each fish hosts 

was shown in an MDS plot (Figure 5.7). A two-way ANOSIM testing for differences between 

host species and sample location showed that there was no significant separation of the 

data by host species (p > 0.05, R = 0.183) or location (p > 0.05, R = -0.081). The 

morphological features reported from both bullhead and minnow were a clear match with 

descriptions given for D. baeri (Niewiadomska and Laskowski, 2002; Faltýnková et al., 2014) 

and D. volvens (McKeown and Irwin, 1995). Following the custom applied in Shigin (1993) 

and Niewiadomska (2010), D. volvens and D. baeri are considered synonyms. Each fish 

species is therefore concluded to be a host for D. volvens.  
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Figure 5.6. Diplostomum volvens recovered from bullhead (a-c) and minnow (d). The 
holdfast organ (Ho), ventral sucker (Vs), paired lappets (Lp) and oral sucker (Os) are 
labelled. The position of the mouth, pharynx and caecum are shown in Figure 5.6 (b) 
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Figure 5.7. Similarities in morphometric features recorded from bullhead and minnow 
Diplostomum, based on Euclidean distances. Samples are labelled by fish species and 
sample location: KL = Kirkliston, NA = Newbattle, BU = Burdiehouse Burn, BR = Braid Burn, 
L = Livingston 

 

Species: Crepidostomum metoecus (Braun, 1900) 

Host: Brown trout 

Location: Intestines and Pyloric caeca 

Life stage: Adult 

First intermediate host: Aquatic molluscs (Awachie, 1968) 

Second intermediate host: Arthropods and amphipods (Awachie, 1968) 

Description: Small specimens of average 668µm in length (minimum 333.28 µm, maximum 

1258.12µm, n = 10). Individuals possess an elongated body, with maximum body width 

roughly in line with the ventral sucker. The ventral sucker is raised from the body surface 

and appears similar in size to the oral sucker. Two distinct eye spots are visible on the dorsal 
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surface (Figure 5.8). Six muscular lobes are arranged in the three pairs around the oral 

cavity, distinguishing C. metoecus from the closely-related C. farionis. Identification, based 

on these features, is confirmed from the descriptions and images given in Thomas (1958), 

Gibson (1996) and Moravec (2002), although the size of specimens recovered were smaller 

in length than values reported in the literature.  

 
Figure 5.8. Specimens of C. metoecus isolated from the intestine and pyloric caeca of 
brown trout (a-d). The ventral sucker (VS) and oral sucker (OS) are similar in size. Eyespots 
(E) and six muscular lobes (Lb) encircling the oral cavity (three visible and labelled) 
facilitate species-level identification 
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Cestoda 

Species: Proteocephalus sagittus (Grimm, 1872) 

Host: Stone loach 

Location: Intestines 

Life stage: Juvenile 

Intermediate host: Freshwater copepods (Hanzelová and Gerdeaux, 2003)  

Final host: Stone loach 

Description: Found loose within the lumen of the intestines. Total body length is 

approximately 5cm and the body (strobila) is clearly segmented into individual proglottids. 

The scolex contains four suckers, arranged symmetrically around the head (Figure 5.9). On 

the basis of the features described above, the recovered cestode fits clearly into the genus 

Proteocephalus, using the descriptions provided in (Chubb et al., 1987). Subsequent 

identification provided in this publication is dependent upon the fish host of a gravid adult 

worm, since juvenile Proteocephalus can be found within the intestinal contents of fish in 

which they cannot mature (Chubb et al., 1987). On this basis, the species could therefore be 

either P. sagittus or P. filicollis. Reproductive organs are not clearly visible in this specimen 

and, as such, species-level identification using this key is not possible. 

The width of the scolex in the recovered specimen is about 500µm, and each sucker 

approximately 200 µm in diameter, giving a scolex to sucker width ration of 40%. Using the 

aforementioned features, the recovered cestode can be identified as Proteocephalus 

sagittus, using the descriptions provided in Scholz et al. (2003) and Scholz et al. (2017). 

Observed measurements provided in Scholz et al. (2017) gave a scolex width range of 324-



148 
 

675mm, a sucker diameter of 122-244 µm and ratio of sucker width to scolex width of 32-

50%. Values obtained in this study were directly comparable to these figures.  

 

Figure 5.9. Proteocephalus sagittus specimen recovered from adult stone loach (a) Body 
shows segmentation (Sg) and (b) four suckers (Su) on the scolex (Sc), used to identify the 
Proteocephalus genus 

 

Nematoda 

Species: Cystidicola farionis (Fischer, 1798) 

Host: Brown trout 

Location: Stomach, pyloric caeca and swimbladder 

Life stage: L3 larval stage (stomach and pyloric caeca) and adult (swimbladder) 

Intermediate host: Gammarus pulex 

Description: The body is tapered at both ends and has a smooth cuticle. Specimens possess 

an elongated pharynx and numerous teeth around the buccal cavity (Figure 5.10). The 

oesophagus is also long, and clearly divided between the narrow muscular region and a 

substantially longer glandular section. The excretory pore is visible roughly where these two 
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areas meet. The nerve ring is found mid-way down the extended oesophagus. No appendix 

is visible.  

L3 larvae were found in both the stomach and pyloric caeca, showing the pathway of larval 

migration within brow trout towards the swimbladder, where larvae develop into their final 

adult stage. Identification was confirmed using the descriptions provided in Smith and 

Lankester (1979) and Moravec (1994). 

 

Figure 5.10. Lateral view of the cephalic region of C. farionis (a-b). Specimens show 
elongated pharynx (Ph), external teeth (T) and muscular portion of the oesophagus (Oe) 

 

Species: Cystidicoloides tenuissima (Zeder, 1800)  

Host: Brown trout 

Location: Intestines and stomach 

Life stage: Adult 

Intermediate host: Several aquatic invertebrates, predominantly mayflies (Aho and 

Kennedy, 1984) 

Description: Individuals possess a thin cuticle with dense transverse striations. The mouth is 

dorsoventrally flattened and contains two subventral sclerotized plates, which are widest at 



150 
 

the dorsal and ventral tips and taper towards the well-developed lateral labia. The labia 

contain dorsal and ventral lobes. The oesophagus is clearly divided into a shortened and 

narrow muscular portion and a wider, elongated posterior glandular region. The nerve ring 

is positioned in the anterior portion of the muscular oesophagus, with the excretory pore 

exiting in the same area (Figure 5.11). Identification was confirmed by the descriptions 

provided in Moravec (1967) and De and Moravec (1979). 

 
 
Figure 5.11. Cystidicoloides tenuissima extracted from brown trout (a) lateral view of the 
cephalic region and (b) nerve ring section (N) visible in the narrower muscular region of 
the oesophagus (Oe) 
 

Species: Raphidascaris acus (Bloch, 1779) 

Host: Bullhead and stone loach 

Location: Liver  

Life stage: L3 larvae (intermediate host) 

Intermediate host: Numerous piscivorous fish species (Koubková et al., 2004) 

Definitive host: Piscivorous fish species such as pike (Esox lucius), burbot (Lota lota) and 

brown trout  

20µm 20µm 

(a) (b) 
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Description: Specimens were found loose or encapsulated in liver tissue. Body is tapered at 

both ends with a smooth cuticle and two deep lateral folds (Figure 5.12f). The head is 

rounded and the buccal cavity terminates in three lips (one dorsal, two ventro-lateral) 

(Figure 5.12a and e). The oesophagus is cylindrical and muscular. The excretory pore is 

posterior to the nerve ring, which is found about a third of the way down the oesophagus. 

No caecum is visible. Identification is confirmed by the description provided in Moravec 

(1994) and Jahantab et al. (2014). 
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Figure 5.12. Raphidascaris acus photographed under a compound microscope (a-c) and 
scanning electron microscope (d-f). (a, e, f) Lips (L) are visible at the termination of the 
buccal cavity. (b) Some specimens found encapsulated in tight coils. (c-d) Body is tapered 
at both ends 
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Acanthocephala 

Species: Echinorhynchus truttae (Schrank, 1788) 

Host: Bullhead, stone loach and brown trout 

Location in host: intestines (brown trout, stone loach and bullhead), stomach (bullhead and 

stone loach) 

Life stage: Adult 

Intermediate host: Gammarus pulex (Awachie, 1965) 

Description: Individuals are found loose in the intestines or attached to the intestinal wall by 

proboscis hooks. The body is a characteristic orange/brown colour when recovered from 

fish hosts, but the colour is lost over time when specimens are stored in ethanol. Body 

length can reach up to 10mm, with a full-extended proboscis measuring an additional 4mm. 

The proboscis contains 13-15 hooks arranged in 20-21 rows. Several caudal rows were held 

within the body cavity in a number of specimens, due to the proboscis remaining partially 

inverted. Visualisation of internal morphology shows relatively long, paired lemnisci and 6 

cement glands, both of which are feature known to characterise acanthocephala of the 

genus Echinorhynchus (Golvan, 1969) (Figure 5.13). Identification was confirmed using the 

descriptions and images given in Brown et al. (1986) and Amin and Christison (2005). 



154 
 

 

Figure 5.13. Echinorhynchus truttae specimens photographed using compound microscope 
(a-c) and scanning electron microscope (d-f). (a) 11 of 13 hooks found per row on the 
partially-inverted proboscis. (b and c) Cleared specimens showing the proboscis (Pr) inside 
a proboscis sheath (PS); two lemnisci (L); testes (Te); 6 cement glands (CG); the seminal 
vesicle (SV) and copulatory bursa (CB). Hooks are shown to be arranged in 21 rows (a and 
f) and uniform in size (d)  
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Unidentified cyst 

Species: Unidentified cyst 1 

Host: Minnow 

Location: Within the vitreous humour of the eyeball 

Life stage: Cyst 

Description: Small kidney-shaped cyst, approximately 100 µm in length and 50 µm wide. The 

widest portion of the cyst is found in the mid section (Figure 5.14). Cyst appears to be fluid 

filled, with air bubbles visible within the liquid/gelatinous centre. The whole cyst is yellow in 

colour. 

 

Figure 5.14. Kidney-shaped unidentified cyst from the vitreous humour of a minnow eye 
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Species: Unidentified cyst 2 

Host: Bullhead  

Location: Within the vitreous humour of the eyeball  

Life stage: Cyst 

Description: Small ovoid cysts, approximately 200 µm long and 150 µm wide. The cysts are a 

true oval shape, with the widest portion of the cyst directly in the centre. Each cysts 

possesses a feathery 'tail.' Numerous bubbles are visible in the liquid/gelatinous centre 

(Figure 5.15).  

 

Figure 5.15. Oval-shaped unidentified cyst from the vitreous humour of a bullhead eye 
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As there were no obvious morphological features visible within the recovered cysts, 

identification is impossible. Their location within the vitreous humour of the eye suggests 

that they are an encysted digenean species, but no further identification is possible. 

5.3.2 Comparisons Across Fish Hosts/Sample Locations 

Apatemon gracilis cysts and metacercariae dominated the bullhead parasite fauna in all 

locations (Table 5.3). The encysted stage was the most common, with prevalence ranging 

from 57.1% to 84.1%. Infection intensity was relatively low, ranging from 2.06 to a 

maximum of 44.1 in the Killandean Burn. Diplostomum volvens was found in all but one 

location, but prevalence, mean infection intensity and abundance were all low (prevalence 

3-10.6%, mean intensity 1-1.14 and mean abundance 0.03-0.15). Raphidascaris acus was 

reported in three out of the six sample sites but infection rates were low, with prevalence 

values ranging from 1.4% to 7.1% and infection intensities never reaching more than one 

parasite per infected individual. Echinorhynchus truttae infections were also relatively rare, 

with a peak prevalence of 32.1% recorded at Newbattle Abbey where the infection intensity 

was low (1.83 parasites per infected individual). A single incidence of infection was reported 

at Burdiehouse Burn. 
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Table 5.3. Prevalence, intensity and mean abundance records for each parasite species 
recovered from examined bullheads, sorted by sample site. Results are summed across 
two sampling years. Values are listed alongside 95% confidence intervals. n = number of 
individuals examined 

 

 

Apatemon gracilis was also the dominant species in the parasite fauna of stone loach (Table 

5.4). As with bullheads, the encysted form was more common than the metacercarial life 

stage. Prevalence of the encysted form was high in all locations except Burdiehouse Burn, 

where A. gracilis was absent in the three examined stone loach. Prevalence ranged from 

15.4% to 100%, with all hosts being infected with between 5.33 and 51.6 parasite individuals 

in five out of seven of the sampling areas examined. Echinorhynchus truttae was the second 

most common parasite infection in stone loach, with infections occurring in Newbattle 

Abbey and the bullhead-free areas of Oatridge College and Murieston Water. Prevalence 

was moderate, ranging from 11.9% at Oatridge College to 66.7% in Newbattle Abbey 

(compared to 32.1% prevalence in bullhead at this site). Overall infection intensity of E. 

Nematoda Acanthocephala Cyst 

Location A. gracilis cyst A. gracilis  
metacercariae 

D. volvens 
metacercariae R. acus E. truttae Unidentified  

type 1 

Kirkliston  
(n = 66) 

P 
I 
A 

77.3 (65.3-86.7) 
11.3 (8.1-15.7) 

8.71 (6.11-12.7) 

15.2 (7.5-26.1) 
3.1 (1.2-5.1) 

0.47 (0.18-1.06) 

3 (0.4-10.5) 
1 

0.03 (0-0.08) 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Killandean  
Burn 

(n = 68) 

P 
I 
A 

77.3 (65.3-86.7) 
44.1 (32.1-56.7) 
2.33 (1.77-3.27) 

2.9 (0.4-10.2) 
1 

0.03 (0-0.07) 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Newbattle  
Abbey 

(n = 56) 

P 
I 
A 

57.1 (43.2-70.3) 
3.22 (2.5-4.09) 
1.84 (1.27-2.5) 

5.4 (1.1-14.9) 
1.33 (1-1.67) 
0.07 (0-0.2) 

7.1 (2-17.3) 
1 

0.07 (0-0.14) 

1.8 (0-0.96) 
1 

0.02 (0-0.05) 

32.1 (20.3-46) 
1.83 (1.28-2.91) 
0.59 (0.34-1.04) 

7.1 (2-17.3) 
2 (1-3) 

0.14 (0.04-0.52) 

Burdiehouse  
Burn 

(n = 66) 

P 
I 
A 

84.8 (73.9-92.5) 
3.5 (2.8-4.84) 
2.97 (2.3-4.12) 

56.1 (43.3-68.3) 
2 (1.68-2.32) 

1.12 (0.83-1.42) 

10.6 (4.4-20.6) 
1.14 (1-1.43) 

0.12 (0.05-0.23) 

9.1 (3.4-18.7) 
1 

0.09 (0.03-0.17) 

1.5 (0-8.2) 
1 

0.02 (0-0.05) 

1.5 (0-8.2) 
1 

0.02 (0-0.05) 

Braid Burn 
(n = 70) 

P 
I 
A 

70 (57.9-80.4) 
2.06 (1.71-2.47) 
1.44 (1.14-1.76) 

28.6 (18.4-40.6) 
1.55 (1.25-1.8) 

0.44 (0.27-0.64) 

4.3 (0.9-12) 
1 

0.04 (0-0.01) 

1.4 (0-7.7) 
1 

0.01 (0-0.04) 

0 
0 
0 

0 
0 
0 

Livingston 
(n = 70) 

P 
I 
A 

84.1 (73.3-91.8) 
7.16 (5.86-8.74) 
6.01 (4.71-7.5) 

23.2 (13.9-34.9) 
1.81 (1.31-2.94) 
0.42 (0.23-0.77) 

13 (6.1-23.3) 
1.11 (1-1.33) 

0.15 (0.06-0.25) 

0 
0 
0 

0 
0 
0 

1.4 (0-7.8) 
1 

0.01 (0-0.04) 

Digenea 
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truttae was low, ranging from an average of 1.5 to 3 parasites per infected individual. 

Raphidascaris acus and P. sagittus infections were restricted to one location each. 

Prevalence of R. acus infection was higher than the values reported for bullhead, will 18.8% 

of the population at Kirkliston hosting R. acus parasites.  

Table 5.4. Prevalence, intensity and mean abundance records for each parasite species 
recovered from examined stone loach, sorted by sample site. Results are summed across 
two sampling years. Values are listed alongside 95% confidence intervals. n = number of 
individuals examined 

 

 

 

Cestoda Nematoda Acanthocephala Cyst 

Location P. sagittus A. gracilis 

cyst 
A. gracilis metacercariae R. acus E. truttae 

Unidentified  
type 1 

Kirkliston  
(n = 16) 

P 
I 
A 

0 
0 
0 

100 (79.4-100) 
22.9 (14.2-36.3) 
22.9 (14.7-36.9) 

25 (7.3-52.4) 
2 (1-3.25) 

0.5 (0.13-1.31) 

18.8 (4-45.6) 
1.33 (1-1.67) 
0.25 (0-0.56) 

0 
0 
0 

0 
0 
0 

Killandean  
Burn 

(n = 3) 

P 
I 
A 

0 
0 
0 

100 (29.2-100) 
5.33 (3-7) 
5.33 (3-7) 

33.3 (0.8-90.6) 
1 

0.33(0-0.67) 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Newbattle  
Abbey 
(n = 6) 

P 
I 
A 

0 
0 
0 

100 (54.1-100) 
33.7 (19.3-67.5) 
33.7 (19.2-64.5) 

50 (11.8-88.2) 
1 

0.5 (0-0.67) 

0 
0 
0 

66.7 (22.3-95.7) 
1.5 (1-1.75) 
1 (0.17-1.5) 

7.1 (2-17.3) 
2 (1-3) 

0.14 (0.04-0.52) 

Burdiehouse  
Burn 

(n = 3) 

P 
I 
A 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1.5 (0-8.2) 
1 

0.02 (0-0.05) 
Oatridge  
College 
(n = 59) 

P 
I 
A 

0 
0 
0 

96.6 (88.3-99.6) 
33.2 (26.8-41.5) 
32.1 (25.5-40.1) 

49.2 (35.9-62.5) 
4.14 (3.07-5.31) 
2.03 (1.34-2.92) 

0 
0 
0 

11.9 (4.9-22.9) 
2 (1.29-2.71) 

0.24 (0.08-0.49) 

0 
0 
0 

Livingston 
(n = 19) 

P 
I 
A 

5.3 (0.1-26) 
1 

0.05 (0-0.19) 

10 (82.4-100) 
43.5 (31.9-62.6) 
43.5 (31.6-65.3) 

68.4 (43.4-87.4) 
3 (1.85-5.23) 

2.05 (1.11-3.84) 

0 
0 
0 

0 
0 
0 

1.4 (0-7.8) 
1 

0.01 (0-0.04) 
Breich  
Water 

(n = 35) 

P 
I 
A 

0 
0 
0 

100 (90-100) 
22.5 (17.8-27.7) 
22.5 (17.8-27.6) 

40 (23.9-57.9) 
3.64 (2.29-6.14) 
1.46 (0.77-2.73) 

0 
0 
0 

0 
0 
0 

Happy Valley 
(n = 28) 

P 
I 
A 

0 
0 
0 

100 (87.7-100) 
51.6 (39.4-74.9) 
51.6 (38.8-74.4) 

46.4 (27.5-66.1) 
10.9 (5.14-18.5) 
5.07 (2.25-9.81) 

0 
0 
0 

0 
0 
0 

Murieston  
Water 

(n = 13) 

P 
I 
A 

0 
0 
0 

15.4 (1.9-45.4) 
1.5 (1-1.5) 

0.23 (0-0.62) 

0 
0 
0 

0 
0 
0 

53.8 (25.1-80.8) 
3 (1.57-5) 

1.62 (0.62-3.31) 

Digenea 
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Brown trout parasite fauna was characterised by the shared acanthocephalan parasite E. 

truttae, for which it is the preferred host, and salmonid-specific parasites C. metoecus, C. 

farionis and C. tenuissima (Table 5.5). Levels of E. truttae infection were highly variable, with 

prevalence ranging from 5.3% in the Killandean Burn (with an infection intensity of one 

parasite per infected individual) to 81.2% at Carlops (where the infection intensity reached 

22.6 parasites per host). Echinorhynchus truttae was present in fish from all sample 

locations except Braid Burn. Crepidostomum metoecus was the second most dominant 

brown trout parasite, closely followed by C. farionis and C. tenuissima. Out of these parasite 

infections, C. metoecus was the most variable, with only one host carrying just one 

individual at Oatridge College versus five individuals carrying an average of 58.2 parasites 

each at Braid Burn. A single incidence of A. gracilis infection was reported at Burdiehouse 

Burn, where one individual was found to be a carrier of a single A. gracilis cyst. 
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Table 5.5. Prevalence, intensity and mean abundance records for each parasite species 
recovered from examined brown trout, sorted by sample site. Results are summed across 
two sampling years. Values are listed alongside 95% confidence intervals. n = number of 
individuals examined 

 

 

The minnow examined contained a much less diverse range of parasites (Table 5.6). Only D. 

volvens was identifiable, and infections were only reported at the Livingston sample site. 

The parasite was found in moderate infection levels, with 38.2% of individuals infected, 

containing an average of 4.69 parasites each. These values are higher than those reported 

for D. volvens infections in bullhead. The only other parasite recovered from the examined 

minnow was an unidentifiable cyst, also only found in fish from Livingston. Similarly, 

Acanthocephala

Location A. gracilis cyst C. metoecus C. farionis C. tenuissima E. truttae

Kirkliston

(n = 6)

P

I

A

0

0

0

0

0

0

0

0

0

0

0

0

16.7 (0.4-64.1)

7

1.17 (0-2.33)

Killandean 

Burn

(n = 19)

P

I

A

0

0

0

0

0

0

0

0

0

0

0

0

5.3 (0.1-26)

1

0.05 (0-0.16)

Newbattle 

Abbey

(n = 20)

P

I

A

0

0

0

25 (8.7-49.1)

45.2 (21-56)

11.3 (3-23.1)

20 (5.7-43.7)

7.5 (1-19.5)

1.5 (0.15-7.68)

10 (1.2-31.7)

4 (2-6)

0.4 (0-1.28)

55 (31.5-76.9)

4.36 (2.45-6.55)

2.4 (1.15-4.41)

Burdiehouse 

Burn

(n = 3)

P

I

A

33.3 (0.8-90.6)

1

0.33 (0-0.67)

0

0

0

0

0

0

0

0

0

66.7 (9.4-99.2)

2.5 (2-2.5)

1.67 (0-2.67)

Braid Burn

(n = 11)

P

I

A

0

0

0

45.5 (16.7-76.6)

58.2 (44-70.6)

26.5 (10-47.8)

0

0

0

0

0

0

0

0

0

Oatridge 

College

(n = 15)

P

I

A

0

0

0

6.7 (0.2-31.9)

1

0.07 (0-0.2)

0

0

0

20 (4.3-48.1)

11 (10-11.7)

2.2 (0-4.74)

80 (51.9-95.7)

10.8 (4.34-22.6)

8.67 (3.47-19.4)

Murieston 

Water

(n = 27)

P

I

A

0

0

0

22.2 (8.6-42.3)

17.7 (1.33-41)

3.93 (0.26-13.3)

18.5 (06.3-38.1)

3.4 (1.6-6.2)

0.63 (0.19-1.81)

0

0

0

70.4 (49.8-86.2)

11.6 (5.95-30.6)

8.15 (3.89-22.6)

Carlops

(n = 16)

P

I

A

0

0

0

0

0

0

25 (7.3-52.4)

1.5 (1-1.75)

0.38 (0.06-0.75)

0

0

0

81.2 (54.4-96)

22.6 (10.6-38.9)

18.4 (8.18-34.1)

Digenea Nematoda

cyst 
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flounder had a very limited range of parasites, with only a single incidence of an A. gracilis 

cyst and a metacercaria reported (Table 5.7). 

Table 5.6. Prevalence, intensity and mean abundance records for each parasite species 
recovered from examined minnows, sorted by sample site. Results are summed across 
two sampling years. Values are listed alongside 95% confidence intervals. n = number of 
individuals examined 

   
Digenea   Cyst 

Location 
  

D. volvens metacercariae   Unidentified type 2 

      
Killandean 

Burn 
(n = 8) 

P 
I 
A 

 

0 
0 
0 

 

0 
0 
0 

      
Livingston 

(n = 34) 

P 
I 
A 

 

38.2 (22.2-56.4) 
4.69 (2.23-14.3) 
1.79 (0.71-6.84) 

 

5.9 (0.7-19.7) 
1.5 (1-1.5) 

0.09 (0-0.27) 

      
Breich 
Water 

(n = 14) 

P 
I 
A 

 

0 
0 
0 

 

0 
0 
0 

      Happy 
Valley 

(n = 31) 

P 
I 
A 

 

0 
0 
0 

 

0 
0 
0 

                  

 

Table 5.7. Prevalence, intensity and mean abundance records for each parasite species 
recovered from examined flounder, sorted by sample site. Results are summed across two 
sampling years. Values are listed alongside 95% confidence intervals. n = number of 
individuals examined 

   
Digenea 

   
A. gracilis cyst A. gracilis metacercariae 

     
Burdiehouse 

Burn 
(n = 7) 

P 
I 
A 

 

14.3 (0.4-57.9) 
1 

0.14 (0-0.43) 

14.3 (0.4-57.9) 
1 

0.14 (0-0.43) 

     
Braid Burn 

(n = 10) 

P 
I 
A 

 

0 
0 
0 

0 
0 
0 
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Variability in parasite communities was tested using a resemblance matrix and two-way 

ANOSIM to compare mean infection intensities between fish species and locations. The 

results were visualised on an MDS plot (Figure 5.16). There was no significant separation of 

the data by sample location (p > 0.05, R = 0.256) or fish species (p > 0.05, R = 0.911). 

 

Figure 5.16. Log(x+1) transformed mean intensity parasite burden values, separated by 
fish species and labelled by sample location. Outliers representing species/location 
combinations where no parasites were recorded have been removed 

 

5.3.3 Comparisons Between Locations With/Without Bullhead 

Of all parasite infections examined, E. truttae infection in brown trout was found to be 

closely associated with the absence of bullhead (Fisher's exact test p < 0.001). Overall 

prevalence rates were higher in bullhead-free control sites when bullhead 

presence/absence was used as a grouping factor, even in the presence of the stone loach 

alternative host (Figure 5.17). Minnow were also heavily influenced by the presence of 

bullhead, as D. volvens infections were only reported at the Livingston site, where minnow 

and bullheads were sympatric (Table 5.6).  
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Figure 5.17. Prevalence (% infected individuals) of E. truttae recovered from bullheads, 
brown trout and stone loach in seven sample locations. Locations marked with an asterisk 
(*) are bullhead-free control sites 

 

5.4 Discussion 

Parasite infection intensity varies greatly between hosts, populations and locations 

(Crowden and Broom, 1980). Individual host attributes, such as immunity and antiparasite 

behaviour, can influence the infection success of a parasite (Johnson and Hoverman, 2014), 

however the large sample sizes and number of locations examined in this study should have 

exposed any significant host-parasite relationship that exists within the communities 

examined. 

Parasite cross-overs were found between bullhead and all other fish species examined 

(Table 5.2). The cestode Proteocephalus was only found in one stone loach individual and is 

therefore not considered a wide-spread threat to species survival. Similarly, C. farionis, C. 
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tenuissima and C. metoecus were restricted to brown trout hosts and are not directly 

influenced by bullhead presence. The acanthocaphalan species E. truttae, the digenean 

parasites A. gracilis and D. volvens, and the nematode R. acus do, however, utilise bullheads 

as a host and require closer examination. 

Parasites Infecting Native Scottish Fish 

The recovered cestode species was not a fully developed adult, making identification to 

species level using morphological features impossible. This has been overcome in other 

Proteocephalus studies by exploiting molecular markers (Scholz et al., 2003, 2007 and 2017). 

The application of molecular techniques requires specimens to be stored under specific 

conditions, but this single specimen was stored in lower grade 70% ethanol. As such, further 

molecular analyses were outside the scope of this project. Traditional identification of 

Proteocephalus requires confirmation of the definitive host identity. The fish community 

within Livingston, the location in which the specimen was found, is relatively stable. 

Electrofishing results suggest that only bullheads, stone loach, minnow and the three-spined 

stickleback (Gasterosteus aculeatus) are found in this location. Using the information 

supplied in Chubb et al. (1987), Moravec (2001) and Scholz et al. (2007), the only species of 

Proteocephalus that would parasitise any fish species in this community are P. sagittus 

(where the adult form is specific to stone loach), P. filicollis (specific to three-spined 

stickleback) and P. longicollis (a parasite of brown trout that can use bullheads as a 

paratenic host). There are no brown trout in this location and no cestodes were recovered 

from any of the bullheads examined, so the presence of P. longicollis is unlikely. Three-

spined stickleback were not examined in this study, so it is unknown if P. filicollis is present 

in this community. Subsequent studies examining both stone loach and three-spined 
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stickleback from Livingston may confirm if this is the case. The low recovery rate of the 

Proteocephalus species that was found (a single cestode found in one individual out of 19 

stone loach examined, giving a prevalence of 5.3%) suggests that incidences of infection 

within the stone loach are low. A comparable prevalence value of 7.69% was recorded for P. 

sagittus parasitising stone loach in Russia (Shershneva and Zhokhov, 2013), although a 

substantially higher prevalence of 27% has been reported in stone loach examined from the 

Czech Republic (Jarkovský et al., 2004). The low infection rate and the species' preference 

for non-bullhead hosts make this species a low priority within the confines of this study.  

The nematode parasites C. farionis and C. tenuissima were only recovered from their 

preferred brown trout host, as was the digenean parasite C. metoecus. Cystidicola farionis 

has previously been reported in brown trout in Glasgow and East Lothian (Dorucu et al., 

1995), and C. tenuissima in England (Aho and Kennedy, 1987). Awachie (1968) studied the 

parasites of co-occurring brown trout and bullheads in Wales and observed C. metoecus 

only within brown trout. All of these parasite species are therefore known to the UK and are 

not related to the presence or absence of non-native bullheads in Scotland. 

Parasites That Co-infect Bullheads and Native Fishes 

Apatemon gracilis dominated the parasite fauna of bullheads and stone loach in this study. 

Incidences of infection were also reported in flounder and brown trout, although only one 

parasite was recovered in each host, suggesting these were irregular occurrences. Both 

metacercariae and cysts were found in high densities in bullheads and stone loach. Different 

life stages were analysed independently, due to the capacity for parasites to encyst in 

suboptimal conditions, for example when found in a paratenic host. It was initially hoped 

that differences in cyst/metacercariae proportions in each fish host may provide insight into 



167 
 

the suitability of each host, although high levels of both cysts and metacercariae were 

recovered from both fish species, so no host studied appeared to provide more optimal 

conditions for development. Infections were also recorded in the bullhead-free control sites 

of Murieston, Happy Valley, Breich Water and Oatridge College. This implies that bullhead is 

not a preferred host for the parasite and strongly suggests that the species is a component 

of the natural parasite fauna of Scottish stone loach.  

Free-living and encysted metacercariae have been previously recorded in wild stone loach, 

three-spined stickleback, brown trout, rainbow trout and bullheads in Scotland (Blair, 1976; 

Bell, 1996).  Apatemon gracilis metacercariae are the pre-encysted form of the highly 

prevalent A. gracilis cysts. Metacercariae will encyst in the second intermediate host and 

develop into adults once they are ingested by the final host, piscivorous aquatic birds 

(Stunkard et al., 1941). Within the UK, anatids are a known carrier of A. gracilis (Burton-

Beverley, 1972). The parasite has a global distribution, with published studies on cercarial 

and metacercarial developmental stages from specimens in Australasia, Europe, 

Scandinavia, Japan and North America (Antal et al., 2015; Blair, 1976; Blasco-Costa et al., 

2016; Ieshko et al., 2013; Hoffman, 1959; Smith and Hickman 1983; Vojtek, 1964; Yamaguti, 

1933). Prevalence varies greatly by study, with values as low as 17% recorded in invasive fish 

in Hungary (Antal et al., 2015) and as high as 100% reported for metacercariae in Canadian 

brook stickleback during summer and autumn (Gordon and Rau, 1982). In the latter case, 

parasite-induced mortality was also evident during peak periods of infection. Values 

obtained in this study for metacercariae recovered from bullheads (2.9%-56.1%) and stone 

loach (33.3%-68.4%) are also highly variable. If we consider cysts and metacercariae 

together and analyse prevalence purely based on the presence of A. gracilis, prevalence 

values of 100% are found in stone loach from six out of the eight sites analysed (with a 
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minimum of 15.3% reported for Murieston), and prevalence values for bullhead increase to 

reach a maximum close to 100% (47%-93.9%). This would suggest that that A. gracilis has 

the potential to impact the long-term survival of infected fish in these areas of high 

prevalence, as reported by Gordon and Rau (1982). As A. gracilis was found in stone loach 

recovered from bullhead-free control sites and sites containing bullheads in extremely high 

densities, it is unlikely that it was introduced by bullhead. The parasite could potentially 

have spread on the feet or in the excrement of mobile piscivorous birds, but the high 

prevalence and intensity levels found in stone loach from control sites implies incidental 

infections are not the likely cause of parasite spread. As a result, A. gracilis is not considered 

of relevance to the invasive status of bullheads in Scotland. 

Raphidascaris acus was recovered from both bullheads and stone loach. Incidences of 

infection were restricted to areas where bullhead and stone loach coexisted with brown 

trout. This is understandable given brown trout is a common final host for the parasite and 

there are no other large piscivorous fish species in the chosen sample locations. 

Interestingly, no R. acus infection was found in any of the brown trout examined. Prevalence 

is therefore thought to be low within the trout population. There was also no cross-over 

between the location where R. acus was reported in bullhead and stone loach. The 

distribution of infection was higher in bullhead than stone loach, with bullhead infections 

occurring in three locations compared to the single area recorded for stone loach, although 

in each case only one bullhead individual was infected. Overall prevalence is therefore also 

thought to be low in the bullhead and stone loach intermediate host. Raphidascaris acus has 

previously been reported in brown trout and rainbow trout in Scotland (Dorucu et al., 1995). 

Bullhead and stone loach are known carriers of the L3 larval stage (Moravec, 1994), and 

stone loach infections have been reported in other countries Koubková et al., (2004). The 
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low prevalence observed and previous reports of R. acus in Scotland mean this parasite 

species is not likely to be influenced by the arrival and spread of bullheads in Scotland. 

Diplostomum volvens was found in both bullhead and minnow at the Livingston sample site. 

It was also recorded in bullhead from four other sample sites, one of which contained 

minnows that were examined and found to be infection free. No D. volvens infections were 

found in minnows from bullhead free control sites. This suggests that bullheads are the 

primary carrier and transmitter of D. volvens in this region, and could be responsible for 

introducing the parasite to minnows in Scotland. An accurate identification of this species is 

therefore a high priority. Identification of Diplostomum species by morphological features 

can be difficult. Traditionally, the most accurate method of species identification would be 

to extract live metacercariae from fish intermediate hosts and feed them to final stage 

piscivorous birds. The adult digenean stage could then be removed from the digestive tract 

of the bird host and identified using standard morphological features. This controlled 

laboratory technique was successfully employed by McKeown and Irwin (1995) and used to 

give detailed morphological descriptions of D. spathaceum, D. parviventosum and D. 

volvens. Due to the difficulty in distinguishing Diplostomum metacercarial stages using 

classical morphological techniques, more recent studies have found success using molecular 

techniques. Awad and Manhel (2016) were able to distinguish between two metacercarial 

Diplostomum removed from the lens and aqueous humor of European carp (Cyprinus 

carpio), redbelly tilapia (Tilapia zillii) and Himri barbel (Barbus lutes) using Random 

Amplified Polymorphic PCR (PCR-RAPD). Attempts to identify recovered Diplostomum by 

molecular analysis were unsuccessful in this study, and traditional morphological features 

had to be relied on for accurate identification. The key developed by Shigin (1976) was 

utilised, although the author specifically mentions the need to follow his method of 
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preservation and staining for accurate use of this method, which was not possible due to 

the initial sampling technique applied. As such, the size and prominence of necessary 

anatomical features may have been exaggerated or lost during slide staining and fixation. 

The holdfast organ was often difficult to see in Diplostomum originating from minnow 

specimens and it is suspected that the width and length of the holdfast organ may have 

been underestimated in some specimens. Similarly, the lappets of several bullhead 

specimens appeared more rounded and less pronounced than in others. This discrepancy 

could indicate intraspecific variation, or distinguishing characteristics of different species. 

Further statistical analysis was conducted to ensure the same species was present in both 

bullhead and minnows. No distinct separation was found between the morphometric 

characteristics measured from Diplostomum parasitising bullheads or minnows. Due to the 

comparatively smaller size of the minnow host (average weight 2.3g ± 0.6) relative to the 

bullhead host (average weight 7.7g ± 3.1), the differences observed in the MDS plot are 

thought to be a host-specific size effect exemplifying Harrison's Rule (Harrison, 1915; 

Johnson et al., 2005), wherein large-bodied hosts have a tendency to harbour large-bodied 

parasites. Parasite life-history traits such as longevity are also positively correlated with size, 

and host body size relates to parasite body size in these more specialised parasite species 

(Sasal et al., 1999). If bullheads are a preferred host and minnow are parasitised as a 

paratenic host (i.e. one that can be used as a host, but is not necessary to complete the 

parasite's life cycle), Diplostomum could attain a greater size within its preferred bullhead 

host. Both factors could explain the size difference seen in the Diplostomum recovered from 

bullhead and minnow.  

The transmission of Diplostomum species and position they maintain within a host makes 

pathological responses to their presence likely. Cercariae of several Diplostomum species 
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penetrate the eye of fishes and develop into metacercariae in situ. Infections create 

cataractous lenses and impaired vision which handicap the fish host and increase the 

possibility of predation by piscivorous birds, which constitute the final hosts in the parasite 

life cycle (Bush et al., 2001). Bullhead-mediated introduction of Diplostomum could 

therefore cause visual impairment in population of native minnow. It should be noted that 

no pathological effects were seen in any of the specimens examined and generally low 

intensity values were recorded for infected minnows. If this is a relatively new introduction 

of a developing host-parasite relationship it may be something that requires monitoring in 

the future. Historic records do exist for D. volvens infection in minnow in other areas of the 

UK (Nicoll, 1924), although the original method for identifying a Diplostomum species 

through its location in the eye makes older records of Diplostomum infections potentially 

unreliable. Further monitoring of Diplostomum infections in areas of bullhead introduction 

and visual inspection of lenses in situ may help to determine if D. volvens infection rates are 

increasing in native minnow populations. This would help to establish whether D. volvens in 

Scottish European minnow populations constitutes a novel host-parasite relationship, 

brokered by the introduction of non-native bullhead, or whether minnows are a natural 

host for this species. At this time, this association is not thought to be a concerning 

consequence of the arrival of bullheads in Scotland. 

The acanthocephalan parasite E. truttae was found in specimens of bullhead, brown trout 

and stone loach. All individuals recovered from bullhead and stone loach had a proboscis 

that was either partially or completely inverted. Attempts to manually extrude the proboscis 

using a dissection needle or to passively induce eversion using cold distilled water were 

unsuccessful. Identification therefore relied on counting the number of rows visible in the 

exposed portion of the proboscis, where applicable, and observing the structure and 
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position of internal organs in cleared specimens. The E. truttae recovered in this study were 

shorter in length than those reported from Russia (Amin and Christison, 2015) and 

documented in French literature (Golvan, 1969), where specimens reached 20mm in both 

cases. Studies in the British Isles have found specimens of up to 16mm in fully developed 

females (Awachie, 1966). Even in the brown trout preferred host, the maximum length of E. 

truttae observed in this study was 10mm. It should be noted, however, that the brown trout 

examined were relatively small individuals, with an average fork length of 132.5mm (±39.5). 

It could therefore be the case that reduced host sizes in this study have influenced the 

length of acanthocephala recovered from different hosts, particularly in the smaller 

bullhead and stone loach samples. E. truttae has previously been reported as a common 

intestinal parasite of brown trout and rainbow trout throughout Scotland, with intensity 

values reaching 31 (±34 SD) parasites per individual and 93.3% prevalence in a reservoir 

near the Scottish borders (Dorucu et al., 1995). Higher rates of accumulation would be 

expected in an isolated body of water where hosts are limited and repeated infection likely, 

so values obtained in this study are not necessarily comparable. 

A comparison of E. truttae prevalence in brown trout from areas that are bullhead free and 

areas that contain resident bullhead show that infection prevalence is lower in brown trout 

in sample areas that also contain bullheads. This relationship appears to support the dilution 

effect, wherein bullheads act as an alternative host for E. truttae and reduce infections in 

brown trout. This relationship does not extend to stone loach. Brown trout is considered the 

preferred host for E. truttae and its presence in stone loach and bullhead in locations where 

these species co-occur is likely a result of high population densities of the parasite. 

Bullhead-driven decreases in E. truttae infection levels are unlikely to have a significant 
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impact on brown trout survival and is therefore not considered of relevance to an invasive 

designation for Scottish bullhead. 

The Designation of Scottish Bullhead as Invasive From a Parasitological Perspective 

Detailed studies of parasitological interactions between introduced bullhead and native 

fishes are limited. In a similar study into parasite sharing between invasive bullheads and 

native fish species, Ieshko et al. (2013) described a similar parasite fauna to the species 

recovered in this study, in bullheads and salmonids in Finland. Recovered species included C. 

farionis, R. acus, A. gracilis and a species of Diplostomum. In this case, however, the arrival 

of bullheads was thought to be responsible for introducing A. gracilis to native communities, 

which had a significant impact on the mortality rates of native fishes. Bullhead have also 

been shown to spread the cestode parasite Schistocephalus cotti through a catchment as 

they colonize new locations (Chubb et al., 2006; Seppälä et al., 2007). No such relationship 

has been found in this study. 

 The present study provided evidence of parasite sharing between introduced bullheads and 

native stone loach, brown trout, flounder and minnows, across a range of parasite taxa. Due 

to frequent occurrences of the majority of these parasites in areas without bullheads and 

reports of infections in other regions of the UK, Only D. volvens is thought to have been 

introduced by bullheads in this region. Low prevalence rates and infection intensities were 

exhibited in examined European minnows and no pathological changes resulting from the 

presence of D. volvens within the eye were noted. The current infection levels in Scotland, 

and historical reports of D. volvens infections in minnows in other regions of the UK (e.g. 

Nicoll (1924), suggest that D. volvens does not currently pose a threat to Scottish minnow 

populations in the River Almond, Braid Burn, Burdiehosue Burn and River North Esk. The 
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presence of bullheads was found to reduce infection levels of E. truttae in native brown 

trout, which may ultimately benefit the species. Bullheads are therefore not thought to be 

responsible for the introduction or passive spread of parasites that could threaten the 

health of native fish populations. The proposed introduction of D. volvens and the reduction 

of brown trout E. truttae infection rates in the presence of bullheads observed in this study 

do, however, support the hypothesis that introduced bullheads influence the parasite fauna 

of native fishes. Scottish bullheads currently pose a minimal risk to host/parasite equilibria 

within native aquatic communities, and invasive designation on the basis of disease or 

parasite transfer cannot be justified at this time. 
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Chapter 6. Conclusion and Final Remarks 

The reclassification of Cottus gobio as a species complex (Kottelat, 1997) and subsequent 

discovery of at least 15 new Cottus species (Freyhof et al., 2005) brings with it a challenging 

set of issues relating to the historical management of C. gobio, and the legislative legacy still 

in place in a number of European countries. The results produced in Chapter 2 of this study 

have confirmed that a single species, Cottus perifretum, resides in Great Britain, with a 

native range spanning England and Wales, along with sites of introduction in Scotland. 

Current UK legislation is yet to recognise this taxonomic shift, and all legislation and 

management plans pertaining to bullheads in Great Britain continue to list C. gobio as the 

native species. Cottus gobio was considered to have a distribution throughout the European 

continent and established populations in Russia and Scandinavia. Cottus perifretum, on the 

other hand, is limited to the British Isles and small catchments in Belgium, France, Germany 

and northern Spain (Freyhof et al., 2005). The species therefore has a more restricted 

distribution than was originally considered for C. gobio. Cottus gobio is protected under 

Annex II of the EC Habitat's Directive due to the considerable decline of bullheads 

throughout some regions in Europe (Knaepkens et al., 2005). This law was put in place 

before the confirmation of the C. gobio species complex, resulting in the protection of 

bullheads in regions where their population levels are robust. In England and Wales, 

bullheads are abundant in some catchments and considered non-threatened in the UK as a 

whole (Carter et al., 2004). At present, eleven locations in England are listed as Special Areas 

of Conservations (SACs) with bullheads listed as the primary feature responsible for their 

designation (Boon and Lee, 2005). These areas receive enhanced protection measures, with 

the purpose of protecting the vulnerable species recognised in the area. The revisitation of 

the EC Habitat's Directive components of UK law that will likely result from the UK's 
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departure from Europe will provide a window of opportunity for updating legislation 

concerning bullheads in the UK. Changing a scientific name should not, in itself, initiate any 

major legislative changes, however the opportunity exists to consider the implications of 

this taxonomic shift in terms of the population densities of C. perifretum in the UK and its 

designation as invasive in Scotland.  

The second part of this study explored several ecological interaction that tested the validity 

of bullhead's designation as invasive in Scotland. Results from Chapter 4 showed that there 

was no direct feeding competition between introduced bullheads and native brown trout 

and stone loach at the time the study was carried out. However, variations in brown trout 

and stone loach diet were found in the presence and absence of bullheads. This was 

attributed to resource partitioning within communities containing all three species. The 

purpose of this investigation was to test whether an overlap in prey preference could 

produce competitive exclusion in communities containing bullheads and native stone loach 

and brown trout. Competition for prey resources is therefore not considered a significant 

factor in the establishment of bullhead populations in Scotland. Chapter 5 examined 

whether the introduction of bullheads has led to the transfer of parasites that could 

potentially harm native fish populations. Results confirmed that bullheads were unlikely to 

be responsible for the introduction or spread of parasites to native fishes, as incidences of 

parasite sharing involved species that were already known in Scotland. In the case of the 

acanthocephalan parasite Echinorhynchus truttae, the presence of bullheads was found to 

reduce infection levels in native brown trout. Thus, two conditions for invasiveness, 

competitive exclusion through feeding competition and the introduction of a parasite that 

would threaten the survival of native species, have been tested and not met. The potential 

for bullheads to outcompete native brown trout under certain environmental conditions has 
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been documented in other areas of the UK (Elliott, 2006), and there is certainly habitat 

niche overlap between bullheads and stone loach (e.g. Smyly 1955; Smyly 1957). Feeding 

competition in mixed populations of bullheads, brown trout and stone loach has also been 

shown to be seasonally dependent in other regions (Shustov et al., 2014). A more detailed 

investigation into the co-habitation of these species, integrating seasonal changes in 

resource availability, would potentially be of benefit and could clarify the extent to which 

resource partitioning or competition affect native fishes. The final condition for invasiveness 

concerns bullhead's capacity to negatively impact the economy. It's interactions with native 

Atlantic salmon and brown trout are of key importance, given the substantial recreation 

fishing industry that is centred around these two salmonid species in Scotland. Despite the 

perception that bullheads prey upon salmonid eggs (e.g. Mann and Orr, 1969), there is little 

evidence that this happens to a significant level in wild populations. In areas where 

bullheads co-habit with populations of brown trout and Atlantic salmon, it is the opinion of 

most that the salmonid species simply move up-river to a location where bullhead densities 

are lower (Dr. Joanna Girvan, pers comm. June 2014). Indeed, communities containing 

bullheads may also be of benefit to native species given brown trout adults will prey upon 

smaller bullhead individuals (Tomlinson and Perrow, 2003). It is therefore unlikely that the 

presence of bullhead has a significant impact on the Scottish economy, by way of 

interactions with salmonid species. The fundamental problem in communities containing 

introduced bullheads seems to be the significant population densities that are rapidly 

reached. Whilst undertaking fieldwork for this study, it was noted that a site visited in the 

first sampling year from which over 300 mixed age-class bullheads were removed, contained 

equally high numbers when surveyed the following year. Such large population densities 

must have a localised impact on the freshwater community, although this study has been 
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unable to show this in practice. This is considered an area of concern although it appears, 

certainly in the locations examined in this study, that native communities adjust to these 

high population densities and a natural equilibrium is reached in which native species are 

able to thrive.  

The lack of evidence to support an invasive designation for bullheads in Scotland, despite 

large population densities in areas of introduction, poses an interesting management 

conundrum. This is particularly interesting when considered alongside the current stable 

population levels but reduced distribution range of the native English species, C. perifretum, 

relative to the European-wide distribution of C. gobio considered in current UK legislation. 

Bullhead population levels in England have commonly been considered robust (Wheeler, 

1977; Mills and Mann, 1983; Copp, 1992), leading Carter et al. (2004) to suggest an 

exemption of bullhead from the requirements of the Habitat's Directive in the UK. This 

practice has already been undertaken in Finland, where bullhead is an introduced non-

native species (Pihlaja et al., 1998; Carter et al., 2004). However, emerging issues stemming 

from habitat loss and non-native species introduction could threaten species survival in 

some areas. Should English populations become reduced due to habitat depletion from 

introduced North American Signal Crayfish Pacifastacus leniusculus (e.g. Guan and Wiles, 

1997), agricultural or developmental pressures (Tomlinson and Perrow, 2003), Scottish 

locations could provide a vital source of genetic material. Providing there is no clear 

detrimental effect on native species, maintaining ark sites in Scotland, where established 

populations are thriving, could be beneficial. The culling of Scottish bullhead would be 

extremely costly and difficult to achieve. The practice is unlikely to reduce population levels 

in the long term, unless a full fish removal is exercised. It would be beneficial to prevent 

further introduction and continue to monitor any sites where bullheads are present to 
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detect early signs of changes to community dynamics. Current management efforts would 

be best placed in providing biosecurity education to prevent the unnecessary spread of 

bullheads, and monitoring communities containing established bullhead populations to 

ensure native fishes continue to thrive. Revisitation of UK legislation relating to the 

classification and management of bullheads within the UK is certainly required, and the 

evidence supplied in this study suggests that the invasive designation in place for bullhead 

populations in Scotland is potentially unjustified. 
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Appendix I. Described parasites of bullheads, brown trout, stone loach, minnows and 
flounder 

 

Table AI.1. Described parasite of European bullhead species (encompassing historical 
publications listing those within the C. gobio species complex), listing parasite species, 
phyla, select publications documenting infections and geographical locations  

 

 

 

 

 

 

 

 

Species Phylum Geographical location Reference

Allocreadium angusticolle Platyhelminth UK Nicoll (1924)

Apatemon gracilis Platyhelminth Finland Ieshko et al.  (2013)

Apiosoma cotti Ciliophora Finland Ieshko et al.  (2013)

Dermocystidium sp. Ciliophora England Feist et al.  (2004)

Diplostomum volvens Platyhelminth Finland Ieshko et al.  (2013)

Diplozoon paradoxum Platyhelminth UK Nicoll (1924)

Distomum sp. Platyhelminth UK Nicoll (1924)

Echinorynchus truttae Acanthocephala UK Kennedy (1974)

Monostomum cotti Platyhelminth UK Nicoll (1924)

Myxobilatus fragilicaudus Cnidaria Finland Ieshko et al.  (2013)

Nicolla gallica Platyhelminth UK Kennedy (1974); Rumpus (1975)

Phyllodistomum folium Platyhelminth UK Nicoll (1924); Kennedy (1974)

Pomphorhynchus laevis Acanthocephala England and Wales Kennedy (1974); Kennedy (1996)

Pomphorynchus laevis Acanthocephala England Rumpus (1975)

Proteocephalus longicollis Platyhelminth Czech Republic Moravec (2001)

Raphidascaris acus Nematoda Finland Ieshko et al.  (2013)

Schistocephalus cotti Platyhelminth Finland Chubb et al. (2006); Seppula et al.  (2007)

Schistocephalus solidus Platyhelminth Finland Ieshko et al.  (2013)

Tetracotyle percafluviatilis Platyhelminth UK Kennedy (1974)

Triaenophorus nodulosus Platyhelminth UK Kennedy (1974); Rumpus (1975)

Trypanosoma sp. Ciliophora UK Kennedy (1974)

Zschokkella nova Cnidaria Austria Busher et al.  (1992)
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Table AI.2. Described parasites of brown trout, listing parasite species, phyla, select 
publications documenting infections and geographical locations 

 

Species Phylum Geographical location Reference

Acanthocephalus anguillae Acanthocephala UK Kennedy (1974)

Acanthocephalus clavula Acanthocephala Ireland, UK and Norway
Kennedy (1974); Kennedy and Hartvigsen (2000); 

Byrne et al. (2003)

Acanthocephalus lucii Acanthocephala British Isles and Norway Kennedy (1974); Kennedy and Hartvigsen (2000)

Anisakis sp. Nematoda Ireland and UK Kennedy (1974); Byrne et al. (2003)

Argulus coregoni Arthropoda UK Kennedy (1974)

Argulus foliaceus Arthropoda UK Kennedy (1974); McPherson et al.  (2012)

Bunodera luciopercae Platyhelminth UK and Norway Kennedy (1974); Kennedy and Hartvigsen (2000)

Cacullanus truttae Nematoda UK and Norway Kennedy and Hartvigsen (2000)

Camallanus lacustris Nematoda UK and Norway Kennedy (1974); Kennedy and Hartvigsen (2000)

Capillaria salvelini Nematoda UK Kennedy (1974); Dorocu et al.  (1995)

Capillaria sp. Nematoda UK Kennedy (1974)

Chloromyxum truttae Cnidaria UK Kennedy (1974)

Costia necatrix Ciliophora UK Kennedy (1974)

Cotylurus erraticus Platyhelminth UK Betterton (1974)

Crepidostomum cooperi Platyhelminth USA Muzzall, 1986

Crepidostomum farionis Platyhelminth UK and Ireland
Kennedy (1974); Kennedy et al.  (1991); Dorocu et al.  (1995); 

Kennedy and Hartvigsen (2000); Byrne et al.  (2003)

Crepidostomum metoecus Platyhelminth British Isles and Norway Kennedy (1974); Kennedy et al.  (1991); Kennedy and Hartvigsen (2000)

Crepidostomum sp. Platyhelminth UK Kennedy (1974)

Cucullanus truttae Nematoda UK Kennedy (1974)

Cyathocephalus truncatus Platyhelminth British Isles and Norway Kennedy (1974); Dorocu et al. (1995); Kennedy and Hartvigsen (2000)

Cystidicola farionis Nematoda Ireland and UK Kennedy (1974); Dorocu et al. (1995); Byrne et al.  (2003)

Cystidicoloides tenuissima Nematoda UK, Norway, Ireland and USA
Kennedy (1974); Muzzall (1986); Aho and Kennedy (1987); 

Kennedy and Hartvigsen (2000); Byrne et al.  (2003)

Dendriticum ditremum Platyhelminth Scotland Dorocu et al . (1995)

Dermocystidium sp. Ciliophora UK Kennedy (1974)

Diphyllobothrium dendriticum Platyhelminth Ireland and UK Kennedy (1974); Kennedy et al.  (1991); Dorocu et al.  (1995); Byrne et al.  (2003)

Diphyllobothrium ditremum Platyhelminth Ireland and UK Kennedy (1974); Kennedy et al.  (1991); Byrne et al. (2003)

Diphyllobothrium latum Platyhelminth UK Kennedy (1974)

Diphyllobothrium medium Platyhelminth UK Kennedy (1974)

Diphyllobothrium norvegicum Platyhelminth UK Kennedy (1974)

Diphyllobothrium sp. Platyhelminth UK Kennedy (1974)

Diplostomum sp. Platyhelminth UK Kennedy et al. (1991)

Diplostomum spathaceum Platyhelminth UK Betterton (1974); Kennedy (1974); Wooten (1974)

Discocotyle sagittara Platyhelminth UK and Ireland Kennedy (1974); Kennedy et al. (1991); Byrne et al. (2003)

Echinorhynchus salmonis Acanthocephala UK Kennedy (1974)

Echinorhynchus sp. Acanthocephala UK Kennedy (1974)

Echinorhynchus truttae Acanthocephala UK and Norway
Awachie (1965); Kennedy (1974); Kennedy et al.  (1991); 

Dorocu et al. (1995); Kennedy and Hartvigsen (2000)

Epistylis sp. Ciliophora UK Kennedy (1974)

Ergasilus sieboldi Arthropoda UK Kennedy (1974)

Eubothrium crassum Platyhelminth UK and Ireland
Kennedy (1974); Kennedy et al.  (1991); Dorocu et al.  (1995); 

Kennedy (1996); Byrne et al.  (2003)
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Eubothrium sp. Platyhelminth UK Kennedy (1974)

Eustrongylides sp. Nematoda Scotland and England Kennedy (1974); Kennedy et al.  (1991); Dorocu et al.  (1995)

Glossatella sp. Ciliophora UK Kennedy (1974)

Gyrodactylus salaris Platyhelminth UK Kennedy (1974)

Gyrodactylus sp. Platyhelminth UK Kennedy (1974)

Henneguya sp. Cnidaria UK Kennedy (1974)

Ichthyocotylurus erraticus Platyhelminth UK Kennedy (1974)

Ichthyophthirius multifiliis Ciliophora UK Kennedy (1974)

Ligula intestinalis Platyhelminth UK Kennedy (1974)

Myxidium truttae Cnidaria UK Kennedy (1974)

Myxobolus nearobius Cnidaria UK Kennedy (1974)

Neochinorhynchus rutili Acanthocephala British Isles and Norway
Kennedy (1974); Kennedy et al. (1991); Dorocu et al.  (1995); 

Kennedy and Hartvigsen (2000)

Octomitus truttae Ciliophora UK Kennedy (1974)

Phyllodistomum folium Platyhelminth UK Kennedy (1974)

Phyllodistomum simile Platyhelminth UK Kennedy (1974)

Pomphorhynchus laevis Acanthocephala British Isles, Norway and Ireland
Kennedy (1974); Kennedy (1996);  Kennedy and Hartvigsen (2000); 

Byrne et al.  (2003)

Procapillaria salvelini Nematoda British Isles and Norway Kennedy and Hartvigsen (2000)

Proteocephalus neglectus Platyhelminth UK and Norway Kennedy (1974); Kennedy and Hartvigsen (2000)

Proteocephalus percae Platyhelminth UK Kennedy (1974)

Proteocephalus sp. Platyhelminth UK and USA Kennedy (1974); Muzzall (1986)

Pseudocapillaria salvelini Nematoda UK Kennedy et al.  (1991)

Raphidascaris acus Nematoda British Isles, Czech Republic and Norway
Moravec (1970); Kennedy (1974); Dorocu et al. (1995);  

Kennedy and Hartvigsen (2000)

Raphidascaris cristata Nematoda UK Kennedy (1974)

Rhabdias sp. Nematoda UK Kennedy (1974)

Rhabdochona canadensis Nematoda USA Muzzall, 1986

Rhabdochona Sp. Nematoda UK and Ireland Kenedy (1974); Byrne et al.  (2003)

Salmincola salmonea Arthropoda UK and Ireland Kenedy (1974), Byrne et al.  (2003)

Salminicola thymalli Arthropoda UK Kennedy (1974)

Scyphidia sp. Ciliophora UK Kennedy (1974)

Sphaerostoma bramae Platyhelminth British Isles and Norway Kennedy and Hartvigsen (2000)

Spinitectus gracilis Nematoda USA Muzzall, 1986

Tetracapsuloides bryosalmonae Cnidaria Scotland Morris and Adams (2008)

Trichodina acuta Ciliophora Scotland Gaze and Wootten 1998

Trichodina nigra Ciliophora Scotland Gaze and Wootten (1999); Gaze and Wootten (2000)

Trichodina sp. Ciliophora USA Muzzall, 1986

Truttaedacnittis sp. Nematoda USA Muzzall, 1986

Tylodelphys clavata Platyhelminth UK Kennedy (1974); Wooten (1974)
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Table AI.3. Described parasites of stone loach, listing parasite species, phyla, select 
publications documenting infections and geographical locations  

 

 

 

Species Phylum Geographical location Reference

Acanthocephalan anguillae Acanthocephala Russia
Shershneva and Zhokhov (2013)

Acanthocephalan lucii Acanthocephala Russia
Shershneva and Zhokhov (2013)

Allocreadium isoporum Platyhelminth Russia
Shershneva and Zhokhov (2013)

Apatemon cobitidis Platyhelminth Russia
Shershneva and Zhokhov (2013)

Camallanus truncatus Nematoda Russia
Shershneva and Zhokhov (2013)

Crepidostomum oschmarini Platyhelminth Russia
Shershneva and Zhokhov (2013)

Diplostomum chromatophorum Platyhelminth Russia
Shershneva and Zhokhov (2013)

Diplostomum commutatum Platyhelminth Russia
Shershneva and Zhokhov (2013)

Diplostomum helveticum Platyhelminth Russia
Shershneva and Zhokhov (2013)

Diplostomum spathaceum Platyhelminth UK and Russia
Kennedy (1974); Wootten (1974); Shershneva and Zhokhov (2013)

Echinorhynchus truttae Acanthocephala Ireland
Kane (1966)

Gyrodactylus barbatuli Platyhelminth Russia
Shershneva and Zhokhov (2013)

Gyrodactylus cobitis Platyhelminth Russia
Shershneva and Zhokhov (2013)

Gyrodactylus jiroveci Platyhelminth Russia
Shershneva and Zhokhov (2013)

Gyrodactylus nemachili Platyhelminth Russia
Shershneva and Zhokhov (2013)

Gyrodactylus sedelnikowi Platyhelminth Russia
Shershneva and Zhokhov (2013)

Neoechinorhynchus crassus Nematoda Russia
Shershneva and Zhokhov (2013)

Neogryporynchus cheilancristrotus Platyhelminth Russia
Shershneva and Zhokhov (2013)

Nicolla gallica Platyhelminth UK
Kennedy (1974; Rumpus (1975)

Paracaryophylaeus gotoi Platyhelminth Russia
Shershneva and Zhokhov (2013)

Paracoenogonimus ovatus Platyhelminth Russia
Shershneva and Zhokhov (2013)

Phyllodistomum folium Platyhelminth Russia
Shershneva and Zhokhov (2013)

Pomphorynchus laevis Acanthocephala England and Wales
Kennedy (1974); Rumpus (1975)

Poroteocephalus torulosus Platyhelminth UK
Rumpus (1975)

Proteocephalus sagittus Platyhelminth Russia
Shershneva and Zhokhov (2013)

Pseudocapillaria totentosa Nematoda Russia
Shershneva and Zhokhov (2013)

Raphidascaris acus Nematoda Russia
Shershneva and Zhokhov (2013)

Raphidascaris sp. Nematoda UK
Kennedy (1974)

Rhabdochona ergensi Nematoda Russia
Shershneva and Zhokhov (2013)

Tetracotyle percafluviatilis Platyhelminth UK
Kennedy (1974)

Triaenophorus nodulosus Platyhelminth UK and Russia
Kennedy (1974); Rumpus (1975); Shershneva and Zhokhov (2013)

Unionidae gen. Sp. Mollusca Russia
Shershneva and Zhokhov (2013)
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Table AI.4. Described parasites of minnows, listing parasite species, phyla, select 
publications documenting infections and geographical locations  

 

 

 

 

 

 

 

Species Phylum Geographical location Reference

Allocreadium isoporum Platyhelminth UK Nicoll (1924); Kennedy (1974)

Caryophyllaeides fennica Platyhelminth UK Kennedy (1974)

Chloromyxum phoxini Cnidaria UK Kennedy (1974)

Cystidicoloides sp. Nematoda UK Kennedy (1974)

Dactylogyrus auricularis Platyhelminth UK Nicoll (1924)

Dactylogyrus phoxini Platyhelminth UK Kennedy (1974)

Dactylogyrus sp. Platyhelminth UK Kennedy (1974)

Diplostomum cuticola Platyhelminth UK Nicoll (1924)

Diplostomum Phoxini Platyhelminth UK Kennedy (1974); Barber and Crompton (1997); Dezfuli et al.  2007

Diplostomum sp. Platyhelminth UK Kennedy (1974)

Diplostomum spathaceum sp. Platyhelminth UK Kennedy (1974)

Diplostomum volvens Platyhelminth UK Nicoll (1924)

Diplozoon paradoxum Platyhelminth UK Nicoll (1924); Kennedy (1974)

Distomum phoxini Platyhelminth UK Nicoll (1924)

Gyrodactylus aphyae Platyhelminth UK Kennedy (1974)

Gyrodactylus elegans Platyhelminth UK Nicoll (1924); Kennedy (1974)

Gyrodactylus laevis Platyhelminth UK Kennedy (1974)

Gyrodactylus limneus Platyhelminth UK Kennedy (1974)

Gyrodactylus macronychus Platyhelminth UK Kennedy (1974)

Gyrodactylus medius Platyhelminth UK Kennedy (1974)

Gyrodactylus sp. Platyhelminth UK Kennedy (1974)

Ichthyophthirius multifiliis Ciliophora UK Kennedy (1974)

Ligula intestinalus Platyhelminth UK Kennedy (1974); Barber and Huntingford (1996)

Myxobolus sp. Cnidaria UK Kennedy (1974)

Neoechinorhynchus rutili Acanthocephala UK Kennedy (1974)

Phyllodistomum cuticola Platyhelminth UK Kennedy (1974)

Phyllodistomum folium Platyhelminth UK Kennedy (1974)

Pomphorhynchus laevis Acanthocephala England and Wales Kennedy (1974)

Raphidascaris cristata Nematoda UK Kennedy (1974)

Rhabdochona denudata Nematoda UK Kennedy (1974)

Rhipidocotyle illense Nematoda UK Kennedy (1974)

Sphaerostoma bramae Platyhelminth UK Nicoll (1924); Kennedy (1974)

Tetracotyle phoxini Platyhelminth UK Nicoll (1924)

Trichodina acuta Ciliophora Scotland Gaze and Wootten (1998)

Trichodina intermedia Ciliophora Scotland and Wales Gaze and Wootten (1999, 2000, 2001 and 2002)

Trichodina reticulata Ciliophora UK Kennedy (1974)

Trichodina sp. Ciliophora UK Kennedy (1974)

Trypanosoma sp. Ciliophora UK Kennedy (1974)

Tylodelphys clavata Platyhelminth UK Nicoll (1924)
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Table AI.5. Described parasites of flounder, listing parasite species, phyla, select 
publications documenting infections and geographical locations 

 

 

 

 

 

 

 

 

Species Phylum Geographical location Reference

Acanthochondria depressa Arthropoda Scotland Mackenzie and Gibson (1969)

Anisakis sp. Nematoda Scotland Mackenzie and Gibson (1969)

Bothriocephalus scorpii Platyhelminth Scotland Mackenzie and Gibson (1969)

Hysterothylacium aduncum Nematoda Scotland Mackenzie and Gibson (1969)

Cucullanus heterochrous Nematoda Scotland Mackenzie and Gibson (1969); Gibson (1972)

Capillaria sp. Nematoda Scotland Mackenzie and Gibson (1969)

Contracaecum aduncum Nematoda Scotland Mackenzie and Gibson (1969)

Corynosoma strumosum Acanthocephala Scotland Mackenzie and Gibson (1969)

Cryptocotyle lingua Platyhelminth Scotland Mackenzie and Gibson (1969)

Cucullanus heterochrous Nematoda Scotland Mackenzie and Gibson (1969)

Cucullanus minutus Nematoda Scotland Mackenzie and Gibson (1969)

Derogenes varicus Platyhelminth Scotland Mackenzie and Gibson (1969)

Echinorhynchus gadi Acanthocephala Scotland Mackenzie and Gibson (1969)

Hemiurus communis Platyhelminth Scotland Mackenzie and Gibson (1969)

Lecithaster gibbosus Platyhelminth Scotland Mackenzie and Gibson (1969)

Lepeophtheirus pectoralis Arthropoda Scotland Mackenzie and Gibson (1969)

Lernaeocera branchialis Arthropoda Scotland Mackenzie and Gibson (1969)

Phocascaris sp. Nematoda Scotland Mackenzie and Gibson (1969)

Plagioporus varius Platyhelminth Scotland Mackenzie and Gibson (1969)

Podocotyle atomon Platyhelminth Scotland Mackenzie and Gibson (1969)

Podocotyle sp. Platyhelminth Scotland Mackenzie and Gibson (1969)

Pomphorhynchus sp. Acanthocephala UK Kennedy (1984); Mackenzie and Gibson (1969)

Pomphorynchus laevis Acanthocephala England Kennedy (1984)

Porrocaecum sp. Nematoda Scotland Mackenzie and Gibson (1969)

Raphidascaris sp. Nematoda Scotland Mackenzie and Gibson (1969)

Spiruroid Nematoda Scotland Mackenzie and Gibson (1969)

Tetraphyllidean larve Platyhelminth Scotland Mackenzie and Gibson (1969)

Trypanorhynch Platyhelminth Scotland Mackenzie and Gibson (1969)

Zoogonoides viviparus Platyhelminth Scotland Mackenzie and Gibson (1969)
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Appendix II. Parasite species with the potential to co-infect bullheads, brown trout, stone 
loach, minnow and flounder 

 

Table AII.1.: Parasite species that have the potential to infection more than one of the 

species of fish selected in the study

 

 

Parasite Bullhead Brown trout Flounder Minnow Stone loach

Protists

      Dermocystidium sp. X X

      Ichthyophthirius multifiliis X X

      Trichodina acuta X X

      Trypanosoma sp. X X

Digenea

      Diplostomum  sp. X X

      Diplostomum spathaceum X X

      Diplostomum volvens X X

      Nicolla gallica X X

      Phyllodistomum folium X X X X

      Sphaerostoma bramae X X

      Tetracotyle percafluviatilis X X

      Tylodelphys clavata X X

Monogenea

      Diplozoon paradoxum X X

      Gyrodactylus sp. X X

Cestoda

      Allocreadium isoporum X X

      Triaenophorus nodulosus X X

Nematoda

      Capillaria sp. X X

      Raphidascaris acus X X X

      Raphidascaris cristata X X

Acanthocephala

      Acanthocephalus anguillae X X

      Acanthocephalus lucii X X

      Echinorhynchus truttae X X

      Pomphorhynchus laevis X X X X X


