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Abstract. Critical infrastructures such as nuclear plants or water supply systems 

are mainly managed through electronic control systems. Such systems comprise 

of a number of elements, such as programmable logic controllers (PLC), net-

working devices, and actuators. With the development of online and networking 

solutions, such electronic control systems can even be managed online. Even 

though network connected control systems permit users to keep up to date with 

system operation, it also opens the door to attackers taking advantages of such 

availability. In this paper, a novel attack vector for modifying PLC memory is 

proposed, which affects the perceived values of sensors, such as a water flow 

meter, or the configuration of actuators, such as a pump. In addition, this attack 

vector can also manipulate control variables located in the PLC working memory, 

reprogramming decision making rules. To show the impact of the attacks in a real 

scenario, a model of a clean water supply system is implemented in the Festo rig. 

The results show that the attacks on the PLC memory can have a significant det-

rimental effect on control system operations. Further, a mechanism of detecting 

such attacks on the PLC memory is proposed based on monitoring energy con-

sumption and electrical signals using current-measurement sensors. The results 

show the successful implementation of the novel PLC attacks as well as the fea-

sibility of detecting such attacks. 
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1 Introduction 

The evolution of Industrial Control Systems has improved the application of computer-

based management systems in industrial settings. For instance, in water industries, the 

technology has improved the reliability and quality of water services, but as a result it 

has increased the likelihood of targeted cyber events that could lead to disruption in the 

water supply. Currently, Industrial Control Systems (ICS) are facing new threat vectors 

design to extract sensitive information or disrupt operations. One of the biggest recent 

attacks occurred in May 2017, using the WannaCry ransomware [1] that affected a con-

siderable number of computers running Windows operating system across the globe. 

This attack affected not only desktop computers, but industrial and social infrastructure 

facilities as well. For instance, Renault, Nissan and Honda were forced to suspend op-

erations because their facilities were infected. In another example, the ExPetr (Petya) 

attack [1], which was discovered in Jun 2017, affected power sector companies, 

transport industry and even the Chernobyl radiation monitoring station. Such attacks 

are becoming increasingly more sophisticated, and the risk of disrupting industry oper-

ations if growing. 

 

 

Although cyber-attacks to critical infrastructures, such as water plants, have increased 

globally [2], growing awareness of the risk does not necessarily result in companies 

implementing better security protocols and safer systems. When cyber-attacks are iden-

tified publically, the focus is frequently on security breaches in industries such as bank-

ing and retail [3]. Although, according to a number of reports, cyber-attacks on vital 

infrastructure such as electrical grids and water distribution systems have increased 

considerably. For instance, on November 21th, 2001, hackers gained access to a clean 

water utility in Springfield, USA and destroyed a pump [4]. The attackers stole the 

access credentials by first breaking into a computer belonging to the utility's SCADA 

software vendor. The control system under attack kept turning on and off, resulting in 

the burnout of a water pump. According to the forensic report, the hackers may have 

had access to the water plant two months prior the attack. This attack resulted in about 

56000 people without water.  

 

This paper proposes a novel attack vector to the PLC memory and a mechanism of 

detecting this type of attack, by monitoring the energy consumption and other electrical 

signals. To validate this approach, a model of an un-interrupted clean water supply sys-

tem was constructed in the Festo rig [5]. This paper is organized as follows. Section 2 

describes the related work in the field. Section 3 gives a brief overview of the PLC 

operation. Sections 4 refers to the testbed used to conduct this research. Section 5 de-

scribes the attacks performed to the PLC memory. Section 6 proposes a new method of 

attack detection by analyzing energy traces. Section 7 indicates the results obtained. 

Section 8 presents the conclusions. 



 

2 Related Work 

In this section, existing work related to anomaly detection techniques for SCADA sys-

tems are discussed. Detecting attacks is challenging, as in particular attacks change 

over time and such attacks may be using previously unknown attack methods. For this 

reason the authors have focused on applying machine learning approaches to the task, 

with the goal of making such detection easier and more effective.  

 

In [6], a behavior-based attack detection and classification scheme for a Secured Water 

Treatment (SWaT) system is proposed using machine learning algorithms. SWaT is an 

operational scaled down water treatment plant with six main processes, though they 

studied intrusions against only one of the processes. Here, Best-First Tree (BFTree) 

shows the best results in terms of precision and accuracy of detection and classification 

in comparison with their other eight selected machine learning algorithms. They used 

18 attacks based on exploiting 10 different issues in three different subsystems to build 

the model to evaluate their selected nine machine learning algorithms. The three places 

that their attacks occurred were inflow into the process (4 attack types in total), outflow 

from the process (2 attack types in total), and the water level of the tank (4 attack types 

in total). Their attacks were based on the model proposed by [7] with the aim to mislead 

the PLC by providing false sensor or actuator information. For instance, for the attack 

on inflow, one of the attacks changed the operating value of the flow indicator sensor 

to above the normal operating range, which falsified input flow rate and gave a wrong 

impression to the PLC that the relevant sensor was faulty. In one of the outflow attacks, 

the value of the main pump’s status was set to “closed”. This made the PLC turn on 

the backup pump while the main pump was still running, which can damage pumps or 

burst pipes. Likewise, for an attack on the water level aspect of the tank, the value of 

the water level sensor was changed to below the normal minimum level, which in turn 

made the outflow and filtration process stop.  

 

In [8], a Support Vector Machine (SVM) was employed, and a proposed an Intrusion 

Detection System (IDS) with a discriminant model to detect cyber-attacks on Industrial 

Control Systems (ICS) was presented. Their proposed model was based on a commu-

nication profile analysis which considers only packet intervals and packet length. Their 

testbed contained two water tanks prepared with control devices and controlled auto-

matically. For their experiments, they created two datasets that included penetration 

test dataset and normal dataset each consisting of 10 sub datasets. While the former was 

constructed during the period of a four-stage penetration test, over which malicious and 

benign packets are labelled based on their source IP address, the latter was built 

throughout the normal operation of the system. For each dataset, packet interval and 

packet length was captured. For their penetration tests, they used the Metasploit Frame-

work (Rapid7) and then Wireshark to capture packets. In their results they identified a 

significant difference between attack packets and normal packets in terms of packet 

intervals and packet lengths.  

 



In [9], big data analysis and behaviour observation techniques were employed for 

cyber-attack detection within a simulated critical infrastructure: a pressurized water 

cooled nuclear reactor. The simulated system includes a water source, two water tanks, 

a condenser, a reactor, a generator, acid tank, and emergency coolant. In their simula-

tion, each component has a corresponding observer to extract physical information 

about behavior and construct two datasets: one with a smaller and one with a larger 

number of features and events. They constructed features by taking the maximum, min-

imum, mean and median of water tank level, steam output, and energy creation for 32 

mechanical components and 9 system components, which is sampled at 4Hz (4 times 

every second) for a 24-hour simulation. After specifying the constraints for the water 

tank, steam output, and energy creation, they observed the minimum and maximum 

levels regularly. If the levels recorded are lower or higher than the expected minimum 

or maximum values then the system behavior identified it as abnormal, otherwise it is 

identified as normal behavior. They then used five supervised data classifiers to detect 

attacks. Addressing their captured results, in the initial evaluation, the classifiers were 

able to produce a reasonably good accuracy, which in turn was significantly increased 

in their second evaluation by increased the number of the events as well as the number 

of the features captured per event. 

 

In [10], unsupervised machine learning algorithms for anomaly detection in water treat-

ment systems was examined using a dataset collected through the same SWaT testbed 

as [6], which was a scaled-down raw water purification plant. They applied and com-

pared two unsupervised argorithms: Deep Neural Network (DNN) including a layer of 

Long Short-Term Memory (LSTM) architecture followed by feedforward layers of 

multiple inputs and outputs, and a one-class Support Vector Machine (SVM) in which 

DNN performs slightly better than one-class SVM in general. They used logs from the 

testbed that were available online [2] which contained benign and malicious events 

collected from network traffic, in addition to the data collected from all 51 sensors and 

actuators available in SWaT over eleven days of continuous operations. This included 

seven days of continuous normal operation in addition to four days of 36 attack scenar-

ios representative of typical network-based attacks on Cyber-Physical Systems (CPSs). 

Generally, their attacks were based on hijacking and modifying network packets 

through the data communication link of the SWaT network, allowing for sensor data 

and actuator signals to be manipulated before reaching the PLCs, pumps, and valves.  

 

In [11], an unsupervised Recurrent Neural Networks (RNN) for anomaly detection was 

proposed using a dataset collected through the SWaT. This considered only a single 

process (Process 1) out of six available processes of the testbed. Addressing their cap-

tured results, they were able to detect the majority of attacks with low false positive 

rate using their proposed RNN approach. The SWaT dataset is available online [2] and 

includes benign and malicious logs captured from the SWaT testbed [6]. The dataset 

collected over seven days of continuous normal operation and four days of malicious 

operation during which 36 attack scenarios were conducted. The attacks have been sim-

ulated by network packet hijacking and manipulation which results in sensor data and 

actuator signals to be manipulated before reaching the PLCs, pumps, and valves. For 



 

the data pre-processing stage, they treated all P1’s sensors and actuators as a numeric 

attribute and normalized each feature by subtracting the mean and scaling to the unit 

variance given. 

 

In [12], an unsupervised SCADA data-driven approach to detect integrity attacks on a 

simulated Water Distribution System (WDS) was proposed. This was based on k-near-

est neighbour technique and includes two stages of: 1) automatic identification of 

consistent and inconsistent state of SCADA systems and 2) automatic extraction of 

proximity-based rules from the identified states to detect inconsistent states. They com-

pared their proposed unsupervised learning approach with three other approaches, two 

of which are based on unsupervised learning and one is based on semi-supervised learn-

ing. Their proposed unsupervised approach shows better performance in terms of de-

tection accuracy and efficiency. For their attack scenarios, they conducted man-in-the-

middle attacks to manipulate process parameters such as: water flow, water pressure, 

water demand, water level, valve status, valve setting, pump status, and pump speed in 

the WDS server. To simulate a realistic scenario, the WDS server reads and controls 

these process parameters in response to message commands from a filed device. In total 

they used three datasets: 1) a publicly available dataset referred to as DUWWTP [13] 

which comes from the daily measuring of sensors in an urban waste water treatment 

plant and 2) their two simulated datasets. The DUWWTP includes 527 observations of 

38 data nodes in which 14 of them are labelled as inconsistent. The simulated datasets 

include 10,500 observations from 23 data nodes for which 100 events are labelled as 

inconsistent.  

 

Attacks documented in previous publications [6][10][11] employed attacks based on 

packet hijacking, manipulation and injection, as well as old techniques like man-in-the-

middle attacks such as in [12], all of which could be detected by Network Intrusion 

Detection/Prevention Systems (IDS/IPS). In this paper the authors propose a different, 

novel attack targeting PLC memory. Additionally, a unique approach to detect attacks 

is proposed for PLC memory based on monitoring the energy consumption of the sys-

tem. 

3 PLC Operation 

The operation of a PLC is straightforward. It makes decisions based on the program 

coded within it by a user. PLCs operate by running a scan cycle and repeat this many 

times per second [14]. Fig 1 represents the PLC scan cycle. It runs checks on the hard-

ware and software for faults when it starts. Afterwards, the PLC runs a three step pro-

cess: input scan, program execution and output scan [15]. 

 

 



 
 

Fig. 1. PLC Scan Cycle 

3.1 Input Scan 

In this scan, the PLC takes a snapshot of the inputs and determines the state of the 

devices connected. Then it saves this information in a data table to use in the next step. 

This speeds up subsequent processing and maintains consistency in cases where an in-

put changes in the period from start to the end of the program [15]. 

3.2 Execute Program 

After getting the information from the inputs, the PLC executes a program, one instruc-

tion at a time, using only the memory copy of the inputs. In addition, during the program 

execution, the PLC may require information allocated in the working memory, such as 

Process Variables (PV).  

3.3 Output Scan 

The outputs will be updated when the execution of the program ends, using the tempo-

rary values in memory. The PLC updates the status of the outputs by writing to the 

memory locations associated with each output [15].  

4 Testbed  

A model of an uninterrupted clean water supply system using the Festo rig [5] was 

implemented to support the investigation. To simulate clean water demand of a small  
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Fig. 2. Water demand models. 

 

town, a water demand model was constructed which is represented in Fig 2. The X-axis 

represents 24 hours of a day and the Y-axis represents the value applied to the space of 

memory addressed to the proportional valve. It can be argued that the simulation only 

represents one week and in some cases the water demand might variate depending on 

various factors over longer periods. For instance, water demand during the summer 

might be higher than during the winter, or even during the holidays. However, for ex-

perimental purposes the water demand model ignores such variances. Fig 3 represents 

the network implementation where the attacker is connected to the control network 

along with the PLC and Supervisor Console. The sensors and actuators, which are con-

nected to the PLC inputs and outputs, are shown in Fig 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Testbed implementation. 



4.1 Normal Operation 

An uninterrupted clean water supply system was modelled. In this model, the water 

reservoir is assumed to be a continuous naturally filtered water supply that that is 

pumped up to the supply tank. Fig 4 represents the control process diagram implemen-

tation. In normal operation tank B101 simulates the clean water supply which is 

pumped up to the reservoir tank B102. The valve V102 simulates a non-return valve; 

therefore, the water does not return when the pump is not operating. The flow in the 

pipe is measured by a flowmeter FIC/B102. The ultrasonic sensor LIC/B101 placed at 

the top of tank B102 measures the water level. In this model, a cascade control aiming 

to maintain the required water level SetPoint (SP) is implemented. The ultrasonic sen-

sor reading is the process variable PV for the cascade outer loop and the flowmeter 

reading is used as the process variable for the cascade inner loop. The proportional 

valve V106 simulates the water demand for a small town. Finally, the water returns to 

tank B101.  

5 PLC Memory Corruption 

The previous section showed a brief summary of the PLC operation, and in this section 

three novel PLC memory corruption attacks are introduced. 

 

5.1 Attack to the PLC inputs 

In this attack, the aim is to overwrite the bytes of memory assigned to the external 

sensors in the PLC. This attack affects the control process because the PLC uses wrong 

readings while executing the internal code that will define the PLC outputs. Crafted 

ISO 8073/X.224 COTP packets are sent over the network to the PLC. This attack is 

repeated constantly as the PLC updates the input table at the start of each cycle. For 

instance, in Fig 4 the control system maintains the tank B102 level at a determined 

setpoint by controlling the pump 101.  
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Fig. 4. Clean water supply system control diagram 



 

 

 

The control process is configured to maintain the reservoir tank setpoint at 6 litres. In 

the first scenario, the attacker tampers with the memory used to hold data from the 

ultrasonic sensor, so that the tank appears to contain 1 litre of water. The reaction of the 

control system is to achieve the setpoint by speeding up the pump, which results in 

overflowing the B102 tank.  

5.2 Attack to the PLC Outputs 

In this attack, the aim is to overwrite the memory associated with the outputs in the 

PLC. The same attack logic is employed as in the previous attack. However, the main 

difference is in the devices targeted during this attack. The aim to overwrite the memory 

associated with the pump with the intention of increasing its speed to overflow tank 

B102 showed in Fig 4. To achieve this, crafted packets are injected with values that 

require the pump work at 100% of its capacity. This is reminiscent of the Stuxnet [16] 

attack discussed earlier where the attack increased and decreased the values injected in 

the PLC Output memory. In this paper, we plan to increase and reduce the speed of the 

pump at the time to emulate overflowing and emptying the tank B102.   

5.3 Attacks to the PLC working memory 

As discussed before, the PLC is composed of different memory elements, such as work 

memory, retentive memory, etc. The work memory contains the PLC code that is exe-

cuted at runtime [14]. Process variables such as the setpoint are allocated in this part of 

the PLC memory. In this scenario, the memory associated with the setpoint variable is 

modified. Two different values can be controlled, namely the high and low setpoints 

for a system. In the attack the setpoint value is modified by steady increasing and de-

creasing it. This is similar to the attack proposed in [17] and [18]. However, they pro-

posed a theoretical approach while in this work it was physically implemented. 

6 Mechanisms of attack detection 

The detection of attacks in control systems can be seen from different points of view 

because some of these systems are connected to corporate networks; as a result, they 

face targeted attacks like Stuxnet [16] and common attacks such as buffer overflow, 

SQL injection and more. In this paper, attack detection is implemented by monitoring 

the signal of the ultrasonic sensor and the flowmeter. 

 

In the author’s previous work, the feasibility of detecting cyber attacks was demon-

strated in a control process by monitoring the energy consumption of the pump [19]. In 

the first attempt, this was by monitoring the energy consumption of the ultrasonic sen-

sor and the flowmeter; however, these sensors consume a low amount of energy which 

makes monitoring the energy consumption difficult. For that reason, current sensors 



were used instead at the PLC Inputs for the ultrasonic sensor and the flowmeter. This 

means, for instance, it should detect any change to the setpoint variable by monitoring 

the input signal of the ultrasonic sensor. This signal is represented in volts (v).  

7 Results 

The results of the energy consumption records in the pump and voltage signals of the 

ultrasonic sensor and flowmeter are shown in Fig 5. The shaded areas show each one 

of the attacks performed and they are explained as follows. Table 1 summarizes the 

attacks performed to the clean water supply system, in addition it also includes the 

shadow area that is represented in Fig5.  

 

Table 1. Summary of attacks to the PLC Memory 

Shadow 

Area 

PLC 

Memory 
Device Attacked Results 

1 
Working 

Memory 
- Setpoint 

- Signal in the ultrasonic sensor increases/de-

creases. 

- Energy consumption in the pump in-

creases/decreases. 

2 PLC Input 
- Ultrasonic Sen-

sor Reading 

- Signal in the ultrasonic sensor increases/de-

creases. 

- Energy consumption in the pump in-

creases/decreases. 

3 PLC Output - Pump Speed 

- Signal from the ultrasonic sensor in-

creases/decreases. 

- Energy consumption in the pump in-

creases/decreases. 

4 PLC Input 
- Flowmeter 

Reading - Energy consumption in the pump decreases. 

5 
PLC In-

put/output 

- Pump Speed 

- Ultrasonic Sen-

sor 

- System unstable. 

 

 



 

 
Fig. 5. Energy and voltage signals. 

 

Attack on the PLC working memory. When the setpoint suffers a significant change, 

for instance from 6 litres to 9 litres, the pump starts speeding up to achieve the new 

setpoint, as a result, it consumes more energy than expected. In Fig 5, the first shadow 

area from the left-hand side which marked with 1 shows this sudden change. The energy 

consumption of the pump might indicate that an attack is happening in the control sys-

tem, although it does not indicate in which part of the control system it is happening. 

On the other hand, the ultrasonic sensor signal allows monitoring the water level in the 

reservoir tank, and when the setpoint increases, the ultrasonic sensor signal also in-

creases. Thus, the energy monitored in the pump correlated with the ultrasonic sensor 

signal indicating the parts of the control system that have been affected. It can be argued 

that the PLC permits collecting and monitoring the energy of the ultrasonic sensor, as 

a result, it could allow detecting the increment in the setpoint using normal rules. How-

ever, in this scenario, detection does not rely on the information provided by the PLC 



because it might itself be compromised. For that reason, external and independent cur-

rent sensors are preferred.  

In the second scenario, when the setpoint goes from six litres to two litres the pump 

stops working, and the ultrasonic sensor signal decreases. In Fig 5, the second shadow 

area from the left-hand side marked with 1 shows this change in the ultrasonic sensor 

and the pump. Until the setpoint is reached the energy consumption in the pump falls 

to zero along with the flow in the pipe. Afterwards, the pump starts working again to 

maintain the new setpoint. However, the energy used by the pump is lower than the 

normally used.  

In the third scenario, the intention is to avoid the sudden change in the energy consump-

tion of the pump and so the attack decreases the setpoint by one over time until the tank 

is empty. In Fig 5, the third shadow area from the left-hand side marked with 1 shows 

this attack. It can be seen that the energy consumption of the pump does not suffer a 

considerable change. However, the signal in the ultrasonic sensor starts to decrease in-

dicating that the tank starts to empty. 

Attack to the PLC Inputs. In this case the memory associated with the ultrasonic sen-

sor signal is overwritten by injecting a value that represents eight litres. As a result, the 

pump slows down and the reservoir tank is reduced to one litre of water. In Fig 5, the 

first shadow area marked with 2 shows this attack. In the second attack, memory was 

overwritten with a value that represented one litre of water, and as a result, the pump 

started working at 100% of its capacity resulting in a rapid increase of water and an 

imminent overflow of the reservoir tank. This attack can be seen in the second shadow 

area marked with 2 in Fig 5. It should be considered that the response of the control 

system to attacks depends on how it is designed and implemented. For this testbed a 

cascade control system was implemented. It worth mentioning that a different technique 

such as Proportional Integral (PI) controller might produce different results to this at-

tack. 

In the next attack, the PLC memory addressed to the flowmeter was overwritten with a 

value that represents 4.1 litres per minute, which is the maximum value that the pump 

provides. This attack does not affect the operation of the control system, because this 

value is used for the inner loop of the cascade control, which is designed to handle high 

amounts of noise. Meaning that the control system is interpreting the attack as noise. In 

addition, the flow in this control system is low, which is another reason for the low 

impact of the attack. In Fig 5, the shadow area marked with 4 shows this attack.  

Attack to the PLC Outputs. In this scenario, the aim is to compromise the pump by 

overwriting the PLC output memory addressed to it. This increased and decreased the 

pump speed by injecting integer values into the PLC memory. In Fig 5, the shadow area 

marked with 3 shows that the energy consumption in the pump starts to fluctuate. It can 



 

be concluded that this affected the control system, however, it does not cause a huge 

impact. Instead, this attack might lead to damage the pump over time and stop com-

pletely the process operation.  

Multiple attacks. In this scenario, an attack was executed on all the devices that are 

part of the control system at the same time, as a result, it affected the entire process 

operation. In Fig 5, the grey area marked with 5 shows the behaviour of the control 

process. In this attack, the memory associated with the pump was overwritten with a 

small value aiming to slow down the pump. In addition, random values were injected 

in the memory associated with the ultrasonic sensor. At the end, the setpoint was mod-

ified to zero. During this attack, the control system operation is highly affected. It could 

be said that performing this type of attacks on real control systems might have the same 

effect compromising the water supply of a certain population.  

 

8 Conclusions 

In this paper, a novel attack vector is proposed for control systems which targets PLC 

memory corruption in three places: PLC input, PLC output, and PLC working memory. 

These attacks were demonstrated in a clean water supply system modelled in the Festo 

Rig to show the impact of the attacks in a real scenario. The execution of these attacks 

showed that it is possible to disrupt the control system operation by overwriting the 

memory locations associated to PLC Inputs and Outputs. In addition, attacks were made 

which modified the setpoint variable located in the PLC working memory. It can be 

concluded that most published research proposes different types of theoretical attacks. 

However, practical implementations are needed to measure the impact of those attacks. 

It can be argued whether the theoretical attacks proposed are applicable in real imple-

mentations. Further, this paper extended our previous work by offering a mechanism 

of detection based on monitoring the energy consumption of the pump and the electrical 

signal from the ultrasonic sensor and the flowmeter. The results show the feasibility of 

detecting the attacks performed to the control system by monitoring the energy and 

voltage parameters. When reducing the setpoint by one until reaching the minimum 

setpoint, the energy consumption in the pump did not show a considerable change. 

However, the electrical signal in the ultrasonic sensor is reduced showing that the res-

ervoir tank is emptying. In future work, the feasibility of attack detection in industrial 

control systems using control engineering techniques will be investigated.  
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