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Abstract—Stricter data protection regulations and the poor
application of privacy protection techniques have resulted in a
requirement for data-driven companies to adopt new methods
of analysing sensitive user data. The RAPPOR (Randomized
Aggregatable Privacy-Preserving Ordinal Response) method adds
parameterised noise, which must be carefully selected to maintain
adequate privacy without losing analytical value. This paper
applies RAPPOR privacy parameter variations against a public
dataset containing a list of running Android applications data.
The dataset is filtered and sampled into small (10,000); medium
(100,000); and large (1,200,000) sample sizes while applying
RAPPOR with ε = 10; 1.0; and 0.1 (respectively low; medium;
high privacy guarantees). Also, in order to observe detailed
variations within high to medium privacy guarantees (ε = 0.5 to
1.0), a second experiment is conducted by progressively adjusting
the value of ε over the same populations. The first experiment
verifies the original RAPPOR studies using ε = 1 with a non-
existent recoverability in the small sample size, and detectable
signal from medium to large sample sizes as also demonstrated
in the original RAPPOR paper. Further results, using high
privacy guarantees, show that the large sample size, in contrast
to medium, suffers 2.75 times more in terms of recoverability
when increasing privacy guarantees from ε = 1.0 to 0.8. Overall,
the paper demonstrates that high privacy guarantees to restrict
the analysis only to the most dominating strings.

Index Terms—Privacy Parameter Variation, Privacy Preserva-
tion, Big Data, RAPPOR

I. INTRODUCTION

Big data and the sharing of research data containing Per-

sonal Private Information (PII) such as medical data is grow-

ing, and the necessity of protecting citizens privacy follows

[1], [2]. The General Data Protection Regulations (GDPR) also

widens the scope of PII and increases the responsibility of data

processors and controllers [3]. In order to study tendencies

about a population, data about its members have to be collected

and protecting the privacy of the users is often an ethical and

a legal responsibility for data controllers.

So how can citizen privacy be guaranteed while the data

can still provide analytical value? Researchers propose Privacy

Preserving Techniques (PPT) which allow the sharing of

datasets with PPI while providing a certain degree of privacy

or anonymity for individuals. However, the application of these

PPT’s often compromises the analytical value at the cost of

privacy and vice-versa. RAPPOR [4] is a method that seeks

to bridge this gap by applying Differential Privacy guarantees

to collect data using an algorithm that relies on adjustable pa-

rameters that can provide varying levels of privacy guarantee.

Anonymity and privacy may often be mistaken or inter-

changed. Pfitzmann [5] defines anonymity as not disclosing the

identity of a user reporting on actions, whereas privacy is the

right to not disclosing whether an individual has performed a

given action. As such, anonymity may be harmed given the ex-

istence of a known user in a dataset, while privacy is unharmed

as long as that user’s actions or answers remain unknown [6].

Data collectors have traditionally applied PPT over released

datasets through anonymisation and de-identification tech-

niques. Unfortunately, these are often insufficient, as seen with

the re-identification of AOL users from released, anonymised

search queries [7]. Other examples include the identification

of individuals via correlation of common demographic data

such as zip codes, gender and date of birth [8] or the de-

anonymisation of sanitised data performed on the Netflix Prize

data mining contest [9], [10].

This paper aims to observe the impact of such privacy

parameter variations by applying the RAPPOR algorithm on

three samples generated from a publicly available Android

Malware analysis dataset [11], and thus evaluate the usability

of differential privacy and to establish some configuration

guidelines that satisfy both privacy guarantees and data con-

trollers’ necessities.

II. RELATED LITERATURE

Differential Privacy proposes a new, formal definition of

privacy, and focuses on the study of population statistics while

enforcing a strong deniability of individuals’ data through

the addition of noise [12]. Being the only privacy guarantee

that offers objective metrics about the level of confidentiality

provided by a method [13], the theoretical work started by

Dwork et al [12] has increasingly been incorporated to new

research and practical cases [14]–[16]. Its examples of inte-

gration include Apple, Microsoft and Google [17]–[19].

Differential Privacy is a definition of privacy whose ultimate

paradigm states that no new knowledge of any individual

should be learnt from accessing the data [20], [21]. According

to the differential privacy paradigm, the ability of an attacker

to learn something about an individual should not be related

to the presence or absence of the person in the dataset. This

protection can thus be used encourage people to participate

and give more honest answers, as the noise grants an objective

level of maximum leakage, as well as a strong deniability

against any conclusion that an adversary may extract from

isolated records.

Although it is considered the gold standard in current

privacy preservation research by authors like [22] or [23],

some of the originators of core methods insist in saying that
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it is no panacea [24], and that each case must be studied

individually for good tuning of the parameters. As an example

of its recognition amongst scholars, one of the papers where

the method was initially presented [12] was given the Test-of-

Time award [25].

III. METHODOLOGY

The RAPPOR algorithm is conceived as a client-server

architecture where the response of the clients will be auto-

matically randomised before transferred to the server for the

aggregation with the other responses [26]. This is a non-

interactive process [24], as the original data would not be

recoverable. Using the RAPPOR algorithm, each response is

encoded using Bloom filters [27] on which noise is added [4].

As part of the algorithm, the parameters can be adjusted to

cater for various levels of privacy.

Noise is added to the Bloom filter following the surveying

technique of randomised response [4]. This theory first pro-

posed by [28] and was designed to encourage participants in a

survey to answer more honestly to sensitive questions: A coin

was flipped to decide whether the answer to the question would

be automatically yes or the honest response, providing a strong
deniability to such answer. Probability theory dictates that half

of the population would have answered yes regardless of the
truth. Assuming that the other half of the answers were truthful

and that the proportions in the population are represented

accurately enough on the sample, the real proportion of no
would be the double of the proportion obtained from the

survey.

After the Bloom filter is generated, two different randomi-

sation phases are used to generate the final noisy response [4].

In this paper, we modify the following parameters:

• f Probability of reporting lies.
• p Probability of reporting noise.
• q Probability of reporting a true answer.

A. Data set considerations

Taking the work of Erlingsson [4] as a reference, it can be

extracted that, for ε = ln(3), a dataset of 10,000 answers will
be insufficient to extract useful information. A higher value

of ε should guarantee an improved resemblance between the
recovered information and the original data. Furthermore, the

election of ε = ln(3) is not justified in this original work,
which seems to point that this level of protection is simply

appropriate for testing. A question that naturally arises from

this is: How different values of ε affect the accuracy of the
data?

As Hsu et al. state [22], a procedure for selecting values for

ε that are: optimal; sufficient; and non-excessive is something
that seems to be missing in the literature. This absence, at least

partially, is due to the difficulty of estimating an optimal value

for a single variable that must consider factors such as: the size

and diversity of the dataset; the sensitivity of the information

contained inside this; and the level of accuracy required for

the reconstruction of the noisy response. In the design of such

a system, the main disadvantage of the simplification of a

scenario is the complexity of its optimisation.

Considering this situation, it appears to be evident that

elaborating a general rule for predicting how the variation of

ε will affect the privacy and fidelity levels of a specific dataset
is something far from simple. An empirical demonstration of

a progressive quality degradation of the recovered data as ε
decreases could clarify this matter and help other researchers.

Erlingsson et al [4] also outline the case where there could

be a loss of information due by an over-sized dataset and

its consequent growth of noise after the RAPPOR process:

Smaller, real values could be obfuscated by the noise due

to their proportionally reduced presence, creating a situation

where, literally, more is less. In spite of being a logical

conclusion, this affirmation is not supported by empirical data,

which leads to wonder how and where that inflexion point

could be found.

The paper thus aims to evaluate the effect of the following

on an Android malware dataset:

• Investigate the value of ε. Decreasing the value of ε
will offer noisier results, and these might not be even

useful if the amount of data collected is not enough. How

the variation of this parameter will be affected by the

retrieved data, is thus key to the design of a procedure

that offers reliable information to the data controller while

protecting the privacy of users.

• Investigate the size of the dataset. For the same value
of ε, how will the results be affected on datasets with

different sizes? Comparing results over different popula-

tions can help to estimate the minimum number of reports

needed by different levels of privacy guarantee, as well

as anticipating suitable configurations for practical cases.

If the results obtained are comparable to those offered by

Erlingsson et al [4], this will also verify the procedures

followed by them.

B. Experimental Design

The experiments proposed in this paper attempt to design

different scenarios that will allow the study of the effects

produced by the variation of privacy parameters. It will

thus observe the differences between original data and data

recovered from the RAPPOR reports, and also between data

recovered from different scenarios, this is, the scenarios with

the same number of malware sample reports but different

values of ε and vice-versa.
RAPPOR requires a dataset with a considerable size and a

wide variety of participants. Special interest is often put on

finding data related to smartphones, as these devices contain

a significant amount of potentially sensitive information about

their users, and a considerable volume of data is collected

from them on a regular basis [29]. The chosen candidate

is a smartphone dataset destined for security research [11].

This dataset collected information about the devices of the

participants, at the same time that a fake piece of malware

was leaving traces. The election of this dataset is caused by

the presence of process names as one of the pieces of data
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collected, establishing similarities between this experiment

and the one performed by [4]. Process names are a suitable

parameter for RAPPOR, as they are translated into a set of

strings, some of which should have a very strong presence,

such as system processes and common applications, while

others should scarcely appear.
1) Alteration of the Dataset: The dataset used is partially

available in public and fully by request [11]. In this work,

the partial public dataset was used, even in spite of the lack

of variety of users, as there are more than enough pieces of

data when sub-sampled. The field UUID, which represents the

UNIX millisecond timestamp of the reports’ collection, was

used as a field by which the records were grouped by, using

them as different RAPPOR users. As Listing 1 shows, more

than 300,000 users could be obtained using the UUID field

(a considerable number compared to the 10,000 users from

the second experiment made by Erlingsson et al [4]). This

represents each user as a one-time collection of the status of

the phone. With around 46 reports per user, compared to the

18 of Erlingsson et al [4], this sample should be more than

enough to obtain accurate results from RAPPOR. It could be

argued that this adaptation would change the meaning of the

data, but the experiment seeks to observe differences in the

distributions of recovered data, and not to learn from it.

Aside from the two attributes mentioned before (UUID

and process name), the rest of the data was obviated, as

it was not necessary for the experiment, making it more

simmilar to the original experiment. In the dataset, the column

"PackageName" was used to name the running processes.

While it is true that the column “ApplicationName" would

have provided a more human-readable output, the former one

was chosen as some applications contained unusual characters

that could lead to code execution errors.

Listing 1. Count of unique strings in [11]

>> awk ’BEGIN{FS=" , "}{ p r i n t $2 ; } ’

Ap p l i c a t i o n . csv | s o r t | un iq | wc − l
>> 307051

2) Election of Population Sizes: In their first experiment,
Erlingsson et al [4] used three different populations of 10,000;

100,000; and 1,000,000 responses to demonstrate the effect

of the reports collected and the quality of the retrieved

information. By using similar sizes, this experiment will allow

the verification of their empirical work. Looking at the dataset

that was chosen, even extracting one report from each user

would produce a sample of 307,051 records, as seen in Listing

1. In order to produce smaller samples, a selection of users is

chosen to obtain a reduced amount of records.
3) Election of ε Values: In differential privacy, the accept-

able limits of the privacy guarantee parameter (ε) range from
0.01 to 10 [22]. The value chosen by Erlingsson et al [4]

is ε = ln(3), which sits in the middle of this range, therefore
being a parameter of medium privacy value. As the experiment

aims to be illustrative for the changes suffered between the

variations of the ε parameter, the high value will be extracted
directly from the upper end (10) of the previously mentioned

range in the literature, while the low value will be 0.1. Tests

were run using 0.01, but no results at all were retrieved (0

detected occurrences of each candidate string). This fact is

illustrative by itself on how low this value of ε may be for
the chosen population sizes, but the same conclusions can

be reached by using ε = 0.1 (as it will be seen in the

following sections), and which also offers more information to

be discussed. Choosing 0.1 over 0.01 also offers an interesting

point of view on the experiment, as the proportion between

adjacent values would be 1:10.

C. Evaluation of Results

Some of the original work by Erlingsson et al [4] offer

limited information about the results of their experiments,

apart from the graphical comparisons between the original and

the recovered distributions. The type of data that this paper

will offer are discrete counts of appearances of each string

with a simple method to evaluate the accuracy. Apart from

the raw number of retrieved strings, each of the scenarios are

evaluated according to the proportion of recovered strings that

were detected with at least 80% accuracy. The proportions are

represented in comparison to the total of the strings detected,

and not to the total of the strings present in the original data.

In a real use case, the actual information of the population

would not be available, and thus it is considered to be more

illustrative representing the information in this manner, as

it depicts how much of the retrieved information is indeed

reliable.

IV. IMPLEMENTATION

A. Code Analysis

RAPPOR’s repository contains the core software for the

server side of RAPPOR, which it is organised into a set

of Python scripts that call R and C++ programs. Other sets

of utilities like client libraries, scripts for server automation

or web applications for easy simulations and data analysis

are also present. A further inspection of the documentation

(under the path doc/data-flow.md) revealed a highly detailed

description of the data needed and the modules to run on them

to obtain reports from original data, and a distribution from

the reports. Unfortunately, a check of the pipeline described in

the documentation (all scripted inside demo.sh) revealed that

some modules had been changed since the documentation was

created, and it is uncertain how these changes could affect the

original results.

B. Maximum Size of the Bloom Filters

Both the Python and the C++ clients offered in the reposi-

tory possess a limit of 32 bits for the size of the Bloom filter

used to generate the reports. In spite of this, according to

the experiments shown on the original paper, the sizes of the

Bloom filters used in them is considerably larger.

In [4], the first experiment uses Basic One Time RAPPOR,

which requires an individual bit for every candidate string,

and considering that 200 candidates were employed and that

the size of the filter has to be a number such as x = 2n,
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the minimum size of this filter had to be 256 bits. The

second, third and fourth experiments used Bloom filters of

128 bits. Thus, it appears that the code used by Erlingsson

et al [4] may differ from the one offered in the GitHub

repository. Consequently, reproducing the exact scenario with

the code available is not possible. However, according to the

experiments made by [4], the size of the Bloom filter should

not affect the retrievability of the data, as it does not alter the

value of ε. A 32-bit Bloom filter with two hashes (used in this
work) offers 322 = 1024 different combinations, more than
enough compared to the 154 candidate strings present in the

experimental datasets.

C. Code Creation

A script [30] was created to automate the process of apply-

ing RAPPOR to a dataset and then retrieve meaningful data

from its outcome. This script essentially takes the necessary

components of the original demo and automated the process

to speed up the process.

D. Dataset Creation and sub-sampling

The data needed for feeding the pipeline consists on a

comma separated file with a header and two columns. The

first column is a unique identifier for every client, and the

second contains the value to encode. Using the previously

described dataset (named Applications.csv) [11], the AWK

command on Listing 2 was performed to extract the data

(dataset.csv) required for further sub-sampled datasets. The
CUT command on the same listing was used to remove blank

lines and extract a unique.txt file with unique strings within
the extracted dataset.

Listing 2. Data extraction from Application.csv

>> awk ’BEGIN{FS=" , "}{ p r i n t $2 " , " $5 : } ’

A p p l i c a t i o n s . csv > d a t a s e t . c sv

>> cu t −d ’ , ’ −f 5 A p p l i c a t i o n s . csv |

s o r t | un iq > un i que s . t x t

From this list, the before mentioned blank space and

the header “PackageName” had to be removed via manual

inspection. A script that creates subsamples from aleatory

selections of reports was elaborated to create the datasets for

the experiment [30]. This script enables to create such sub-

samples choosing the number of users and reports per user to

select. In this way, the populations of 10,000 and 100,000

pieces of data were created by selecting just one report

from users until completing the list, while the population of

1,200,000 pieces of data was constructed selecting four reports

from 300,000 users.

V. EXPERIMENTAL EXECUTION

The values of ε decided on the methodology were ap-
proximated using the ε calculator from [30]. As the number

of hashes affects the recoverability conditions [4], this value

was left unchanged and set to two hashes, the same number

used on the three of the experiments performed by Erlingsson

et al [4]. Table I show the configurations chosen for the

experiment. Each of these sets of values was collected in three

different files with the same structure. The files were named

params_01.csv, params_1.csv and params_10.csv.

TABLE I
VALUES CHOSEN TO OBTAIN DIFFERENT ε FOR THE EXPERIMENT

ε f h p q

0.1 0.75 2 0.5 0.55
1.0743 0.50 2 0.5 0.75
10.0184 0.01 2 0.05 0.90

A. Report Generation

Using the parameter files, different series of reports were

generated using the pipeline.sh script from [30]. This script

runs the pipeline for the three different datasets and the three

different parameter groups, creating a total of nine different

scenarios. After the generation of the scenarios, each set

of files (params.csv, counts.csv and map.csv) was uploaded

into the original analysis web application from [19]. The

application offered a summary file with estimation data and

a results file with the estimation of the appearance of the

different candidate strings.

The file results.csv, together with the original dataset for that
concrete experiment, was used to generate the final comparison

file through the script depicted using a summary generator

[30]. The resultant file compares the counts of candidate

strings in the original distribution versus the estimation. There-

fore, this file is suitable for being used on plotting software

to obtain the final graphics.

VI. EVALUATION

To establish an objective and precise evaluation methodol-

ogy, the results were compared by two criteria: Cases with

different population size but identical ε values, and cases with
different ε value on the same population.
1) Data Presentation: The information collected from the

experiment is shown in Figures 1-4. These figures will be

referenced throughout the section while the obtained results

are evaluated. In order to summarise the data extracted from

the experiment, Table II depicts the number of strings detected

by the analysis after these had been encoded in RAPPOR

reports.

2) Data Analysis: In order to illustrate more objectively the
results obtained, a statistical collector script [30] calculates the

number of detected strings that approximated the real count

with a 20% maximum margin of error, as defined in Table

II. This value is chosen to discard values too distant to the

original one.

A. Varying ε Values

The value of ε determines entirely the level of protection
provided by differential privacy. According to McSherry [31],

an ε ≤ 0.1 should be considered as a strong guarantee

of privacy, while an ε ≥ 10 should be considered as a

weak guarantee. In this section, these “strong” and “weak”
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TABLE II
RAW RESULTS OF HIGH, MEDIUM, AND LOW PRIVACY GUARANTEES

Population ε True strings RAPPOR strings 80% accuracy

10k 0.1 121 0 0
10k 1.0 121 7 1
10k 10.0 121 39 23

100k 0.1 140 1 0
100k 1.0 140 14 7
100k 10.0 140 60 40

1,200k 0.1 143 2 0
1,200k 1.0 143 47 24
1,200k 10.0 143 77 60

levels will be tested with the previously generated datasets,

to evaluate the quality of the recovered data that RAPPOR

can offer in these situations. An intermediate level of ε = 1,
equidistant to the other two values by a proportion of 1:10, is

also included to show the transition and appreciate better the

changes that the recovered data suffer as the value of ε varies.

ε = 0.1: Table II shows how none of the recovered pieces
of data from the smaller ε value could retrieve a single string
with less than a 20% margin of error. Even being ten times

higher than the smallest value found in literature [32], this

restriction appears to be too constraining to be useful in, at

least, datasets of the sizes used for this experiment. This also

confirms the conclusions of [31], saying that such a low value

for ε produces considerably noisy responses, prone to offer a
very high false positive rate. In the case of Sarwate et al [32],

it could be justified the use of such a small value, as their

project focuses on machine learning, a field where processing

substantially larger datasets are rather common. Nevertheless,

without further testing, it is not possible to determine whether

the differential privacy mechanism concretely implemented by

RAPPOR would successfully retrieve useful information in

such conditions.

ε = 1.0: Replicating the same privacy parameters used in
the experiments of Erlingsson et al [4], Figures 1-3 show how

significant the size of the population is when choosing privacy

values on RAPPOR. On the smallest population (Figure 1),

only some of the most popular strings are detected, with a

clear false positive at the tail of the distribution. Only 1⁄7 of

the detected values are accurately approximated, as given in

Table II.

In the medium population of 100,000, shown in Figure 2, the

most popular strings are properly retrieved to a certain level of

acceptance, with 50% of the detected values within the range

of 20% error. The tail still shows some false positive results,

but they are smaller in proportion and more evenly distributed

over the candidate strings. Despite the fact that the head of the

estimated distribution seems to start shaping closer to the real

data, only a few strings come close enough to the original,

being difficult to accurately determine even the heavy hitters.

Figure 3 shows how retrievability increase significantly

given greater amounts of data. In spite of this, with 10

Fig. 1. Noise on 10,000 responses using ε = 1

Fig. 2. Noise on 100,000 responses using ε = 1

times more data than the previous sample, the growth of

the proportion of strings detected within 20% becomes more

steady. This situation, inverted from the one described in the

transition from 10,000 to 100,000 users, could imply that a

higher increase in the number of reports is largely beneficial

to detecting new strings, but not as helpful in increasing the

accuracy of recovered data.

ε = 10: With the weakest privacy guarantee, on the smallest
dataset, 32% of the original strings are recovered and 59% of

these within 20% error margin. In comparison, on the biggest

dataset 54% of the original strings are recovered, 59% of

these within the 20% error margin of the true number of

appearances. Thus, the number of accurate strings recovered

may not increase drastically between the two data sizes, but

there are significantly more strings detected on the larger

population. As it was expected from what was learnt from

literature, the original and the estimated distributions match

almost perfectly.

The amount of detected strings has a small growth from the
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Fig. 3. Noise on 1,200,000 responses using ε = 1

previous population size, compared to the growth of strings

detected with an 80% of precision, which could indicate that

the strings with smaller appearances cannot be detected even

with disproportionately sized datasets, while increasing the

number of reports collected contributes significantly to the

accuracy of the strings detected.

In the 100,000 population and with ε = 1, the recovered
distribution already adopts very closely the shape of the

original dataset, as Figure 2 shows. 66.7% of the recovered

strings are inside the 20% margin of error.

B. Same Population Sizes

The samples exposed earlier will be now grouped by

population size, with the intention of evaluating the effects

of altering ε on the same original distribution, and judge how
this affects the retrievability of the data.

Population of 10,000: In the transition from ε = 0.1 to
ε = 1, only 14.3% of the strings appear to be detected with

precision. It is interesting to notice that, according to Figure

1, the most important strings in the original distribution would

not be present in these groups, as their estimated values are

considerably distant from the original. This could be due to the

concentration of these values on a reduced number of cohorts,

making the detection more difficult with this level of privacy

guarantee. Passing from ε = 1 to ε = 10, the proportion
of detected strings grows acceptably, while 59% of these are

within the 20% margin of error and thus providing a highly

accurate detection rate.

Population of 100,000: A high growth of the 20% limit

is shown on the first transition from 0.1 to 1 ε value, going
from 0% to 50%. Figure 2 shows how the most accurate

values concentrate around the head of the distribution, while

the tail remains barely detected. Changing ε to 10 causes the
estimation to grow considerably closer to the original data,

with a more modest growth in the 20% error limit.

Population of 1,200,000: Even the largest of the populations
show no successful results when being processed through the

more restricting privacy parameter. Although the detection

of the biggest string may be seen, not even this value is

approximated within at least 80% accuracy. The transition to

ε = 1 recreates the head of the distribution rather accurately
(Figure 3), with 27.6% of the strings accurately detected.

The least demanding privacy restriction provides 77.9% of the

strings detected with less than a 20% error.

C. Further details of high privacy guarantees

As seen in the paper by Erlingson et al [4], limited privacy

guarantees were tested against three different population sizes.

Additionally, privacy guarantees were selected based on pop-

ular values in literature and did not present detailed results

on varying the privacy parameters. This section outlines the

results of applying RAPPOR on the three datasets with varied

privacy guarantees between ε = 0.1− 1. Similar to the results
previously exposed, which are comparable and verifiable to the

results in [4], this evaluation will be based on the raw results

in Table III. Looking at Table III, six results are shown for

each population size, and further visualisation of these can be

seen in Figure 4. Figure 4 outlines a scatter-plot of the strings

retrieved with 80% accuracy observed for each ε variation,
normalised over the true number of strings in each population

for each dataset.

1) Different impact on different population sizes: The in-
creased privacy guarantees affect the smallest dataset of 10,000

reports significantly, with no strings accurately detected with

strict privacy guarantees. This is, however, expected, as there

was just one string discovered in the previous experiment

(Table II), and stricter privacy guarantees would generate

greater levels of noise. The RAPPOR strings detected increase

and decrease through the varied privacy parameters, but never

approach the 80% accuracy barrier at any point for the small

dataset, except from ε = 1. When observing the results of the
100,000 population, interesting conclusions can be extracted,

as the impact of decreasing privacy guarantees affects the re-

covery greatly at first, but then its growth slowly decays when

arriving to the more relaxed privacy guarantee values. It may

appear that the analytical value of using ε = 0.6 over ε = 0.7
remains the same even considering that the privacy guarantee

decreases. Nevertheless, as it was previously mentioned, dif-

ferential privacy and the RAPPOR algorithm performs better

on larger populations, with these inconsistencies being due

to the randomisation factor of the process. When observing

the 1,200,000 response data, a similar behaviour can be seen

when observing the impact of ε = 0.6 and ε = 0.7. However,
the overall accuracy is severely affected in comparison to

the smaller dataset. Logically, the smaller dataset is already

performing poorly and thus cannot be affected further, in

contrast to the larger dataset, which has over 15% strings

detected using ε = 1.0 and down to 0.08% when increasing

the privacy guarantees.

VII. CONCLUSIONS AND FUTURE WORK

This paper defined an experiment that created different

scenarios for altering the RAPPOR input values, and verified
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TABLE III
HIGH PRIVACY PARAMETER VARIATION RESULTS

Population ε True strings RAPPOR strings 80% accuracy

10k 0.5 121 1 0
10k 0.6 121 2 0
10k 0.7 121 0 0
10k 0.8 121 3 0
10k 0.9 121 1 0
10k 1.0 121 7 1

100k 0.5 140 8 2
100k 0.6 140 11 3
100k 0.7 140 12 3
100k 0.8 140 16 4
100k 0.9 140 15 5
100k 1.0 140 14 7

1,200k 0.5 143 22 11
1,200k 0.6 143 26 15
1,200k 0.7 143 28 17
1,200k 0.8 143 33 17
1,200k 0.9 143 35 21
1,200k 1.0 143 47 24
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Fig. 4. Privacy Parameter Variation comparison between population sizes

that the results obtained by Erlingsson [4] in their experiments

are repeatable, ensuring the quality of their work. However,

utmost care must be taken when deciding on the privacy

parameters of RAPPOR. It was discovered that ε = 0.1 was
a privacy guarantee too high to be met even in the most

optimistic of the scenarios, so it remains uncertain whether

this value would be usable for bigger populations. The 10,000

responses population only offered reliable results when the

privacy guarantee was lowered to almost non-existent levels

(ε = 10). It was appreciated that, after a certain threshold
of population size, data started to be meaningful, observing

great increases of accuracy from ε = 0.7 and higher for both
the 100,000- and 1,200,000-sized datasets. After that initial

growth, the rise of acceptable detected strings slowed, starting

to increase the precision of the already discovered data instead.

This lead to the conclusion that, from the aforementioned

threshold onwards, collecting more reports would increase

the quality of the retrieved data, but not the raw number of

detected strigs.
One area of development is the difficulty of generating

Bloom filters larger than 32 bits. Even though the results

from Erlingsson et al [4] have been successfully verified, this

difficulty prevents the replication of the exact conditions of

their empirical work. Altering the code to make this feature

available would significantly improve the work done in this

paper. Also, this would help to create a more versatile tool,

adaptable to different situations. Additional tests over different

Bloom filter settings would also verify that the variation of

the size of the filters does not affect the recoverability of the

reports, as [4] assure.
The smallest of the chosen values of ε showed that is

was impractical for populations of up to 1,200,000 reports.

A possible additional check would be to determine if such

a constraining privacy guarantee can be used with larger

populations, or if, on the contrary, this value makes RAPPOR

generate reports that are too noisy to be of any use.
Choosing three different sizes, the sub-sampled datasets

were created by randomly selecting one report per user for

the two smaller populations, and four different reports per user

for the largest one. Testing populations of the same size with

a different number of users and responses per user (e.g., one

response for 1000 users, two responses for 500 users, four

responses for 250 users. . . ) could help to further understand

the influence of the characteristics of the population in the

recoverability of the reports.
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