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Abstract 26 

The endothelium plays an important role in cardiovascular regulation, from blood flow, 27 

to platelet aggregation, immune cell infiltration and demargination. A dysfunctional 28 

endothelium leads to the onset and progression of cardiovascular disease (CVD). The 29 

aging endothelium displays significant alterations in function, such as reduced 30 

vasomotor functions and reduced angiogenic capabilities. This could be partly due to 31 

elevated levels of oxidative stress and reduced endothelial cell turnover. Circulating 32 

angiogenic cells, such as endothelial progenitor cells (EPCs) play a significant role in 33 

maintaining endothelial health and function, by supporting endothelial cell 34 

proliferation, or via incorporation into the vasculature and differentiation into mature 35 

endothelial cells. However these cells are reduced in number and function with age, 36 

which may contribute to the elevated CVD risk in this population. However, lifestyle 37 

factors, such as exercise, physical activity obesity, an dietary intake of omega-3 38 

polyunsaturated fatty acids, nitrates, and antioxidants, significantly affect the number 39 

and function of these circulating angiogenic cells. This review will discuss the effects 40 

of advancing age on endothelial health and vascular regenerative capacity, as well as 41 

the influence of diet, exercise, and obesity on these cells, the mechanistic links and the 42 

subsequent impact on cardiovascular health.  43 
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The Aging Endothelium 51 

 52 

The inner lining of all blood vessels consists of a single monolayer of endothelial cells. 53 

These cells play a key role in diffusion and transport of nutrients, gases from the blood 54 

to surrounding tissues, as well as being central to the control of blood flow via the 55 

endothelium’s ability to secrete vasoactive substances, such as nitric oxide (NO) and 56 

prostacyclin (PGI2). The endothelium also plays a role in our immune system, whereby 57 

it controls the adhesion, rolling and trans-endothelial migration of leukocytes to sites 58 

of tissue damage and/or infection. The maintenance of the endothelium is key for 59 

optimal health, and specifically cardiovascular health, as endothelial dysfunction often 60 

precedes cardiovascular disease (CVD). 61 

 62 

Advancing age is associated with endothelial dysfunction (1-4), which is highly 63 

predictive of cardiovascular event risk and mortality (5, 6). Aging is also associated 64 

with increased endothelial susceptibility to apoptosis (7). These aging effects are 65 

potentially due to elevated levels of vascular tissue oxidative stress (8) which may 66 

contribute to uncoupling of endothelial NO synthase (eNOS) (9), key for NO 67 

bioavailability via the conversion of L-arginine to NO. Elevated levels of pro-oxidant 68 

free radicals, such as superoxide, have been found in vascular tissue from aged 69 

compared to younger rats (8). This elevated production of superoxide leads to the 70 

formation of peroxynitrite (10), which has been observed to stimulate the uncoupling 71 

of eNOS (9).  72 

 73 

A recent meta-analysis also demonstrated that peripheral vascular resistance is also 74 

elevated in aging populations, with negative alterations in smooth muscle function in 75 
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older compared with younger men and women (11). Upon specific dilator 76 

administration, such as nitroglycerine or sodium nitroprusside, older adults display 77 

reduced dilator capacity, indicative of reduced smooth muscle function. This has been 78 

attributed to decreased expression of soluble guanylyl cyclase in smooth muscle cells 79 

(12), attenuating the cell’s ability to relax, subsequently leading to impaired 80 

vasodilation and peripheral blood flow. It is clear that the deleterious impact of aging 81 

on vascular resistance is due to, in part, alterations in endothelial NO release, as well 82 

as smooth muscle function, but there are also data to suggest that changes in vascular 83 

resistance due to age may be related to abnormal responses to the metaboreflex (13). 84 

  85 

In addition, angiogenic capabilities are reduced with advancing age in both mice (14-86 

17) and human studies (18), which may contribute to the increased CVD risk amongst 87 

the elderly (19, 20) due to insufficient repair or replacement of damaged endothelial 88 

cells. This is highlighted in animal models, with the ability to re-vascularisation in 89 

response to vascular trauma or occlusion is reduced with age (21, 22), suggestive of an 90 

impaired endothelial regenerative capacity. 91 

 92 

Endothelial Regeneration and Advancing Age 93 

 94 

It was previously thought that endothelial cell turnover was wholly maintained by the 95 

proliferation of vascular resident endothelial cells. However, in 1997, researchers 96 

discovered a circulating cell subset which had the ability to differentiate into mature 97 

endothelial cells in vitro (23), and these researchers termed these cells ‘endothelial 98 

progenitor cells’ (EPCs). These cells were human CD34+ cells, and after a period of 7 99 

days in culture expressed mature endothelial cell markers (VEGFR2, CD31, E-selectin, 100 
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eNOS). These cells could also form tubes on fibronectin-coated plates in vitro (23, 24). 101 

A number of studies have shown that such EPCs have the ability to stimulate 102 

neovascularization in rodent (25, 26) and human models (21, 27). However, the origin 103 

of these cells has been widely debated, Some studies show that these CD34+ 104 

vasculogenic progenitors are derived from the bone marrow using tracking models (25, 105 

26), however, there is some evidence to suggest that progenitor cells within tumour 106 

vasculature did not derive from bone marrow (28).  107 

 108 

These cells may maintain endothelial integrity and health via differentiating into mature 109 

endothelial cells, therefore replacing damaged or apoptotic endothelial cells, or via 110 

paracrine means by secreting vasculogenic growth factors such as VEGF, IL-8 (29). 111 

However, via cellular tracking, EPCs from humans transplanted into a mouse hindlimb 112 

ischemic model were found to stimulate neovascularisation and were later found 113 

incorporated in the injured vasculature (21), suggesting that the integrity of the 114 

endothelium may be partly dependent upon the reparative capacity of such EPCs (30). 115 

It is now generally accepted that circulating EPCs that act in a paracrine manner, or as 116 

genuine endothelial precursors, are phenotypically distinct, with the former expressing 117 

CD34, CD133, being CD45bright as well as expressing an endothelial cell surface 118 

antigen, such as VEGFR2 or CD31 (29, 31). Circulating CD34+ progenitors that have 119 

been shown to have potential to differentiate into mature endothelial cells express 120 

CD34, dimly express CD45 (CD45dim), lack CD133 expression whilst also expressing 121 

endothelial cell surface antigens (29, 31). These two distinct phenotypes of EPCs have 122 

been termed ‘early’ and ‘late’ outgrowth endothelial cells because of the time of their 123 

appearance in culture. Early outgrowth endothelial cells (EOC) appear early in culture, 124 

and function primarily via paracrine means, whereas late outgrowth endothelial cells 125 



 6 

(LOC) appear late in culture and have the ability to differentiate into endothelial cells 126 

in vitro (29).  Together, both EOC and LOC can be considered as contributing to 127 

maintenance of endothelial cell integrity, just via differing means. For this review, EOC 128 

and LOC will be grouped together as ‘EPCs’. For more in depth review on EPC subsets 129 

and physiological functions, see review by Medina et al. (32). 130 

 131 

Circulating EPCs are rare in peripheral blood, often making up to 0.05% of all 132 

mononuclear cells in humans (33), however, despite their small number, they remain 133 

independent predictors of endothelial function (34, 35), and mortality in patient 134 

populations (36, 37), with lower numbers often reflecting endothelial dysfunction and 135 

heightened cardiovascular mortality risk. Many studies have demonstrated lower 136 

circulating number and function of EPCs in vascular-related disease states (such as 137 

stroke, cerebrovascular disease, atherosclerosis) compared to age-matched healthy 138 

controls (30, 34, 35, 38-47). The reduction in these cells in the circulation may be due 139 

to an exhaustion of the bone marrow progenitor cell pool due to increased need for 140 

vascular repair (46), and increased apoptosis of these cells (43, 48).  141 

 142 

Older adults display reduced number and function of circulating EPCs (21, 27, 49-54) 143 

which may play a role in the increased CV risk with advancing age (20). Advancing 144 

age is linked with reduced vascular repair mechanisms, as observed by Torella et al. 145 

(22) who found that endothelial repair after balloon injury in a rat model was 146 

significantly reduced in older vs. younger rats. Our laboratory has shown that older 147 

adults display significantly reduced circulating angiogenic cells compared to younger 148 

counterparts, independent of several cardiometabolic risk factors (e.g. fasting glucose, 149 

triglycerides, LDL, HDL) (54). Thijssen et al. (49) also observed reduced circulating 150 
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CD34+VEGFR2+ EPCs in old (67-76 years) vs. younger men (19-28 years), but the 151 

reasons for these differences remain unclear.  152 

 153 

EPC function appears to be affected also by advancing age. EPC migration, 154 

proliferation and tube forming capacity is reduced in older individuals (21, 27, 50-53, 155 

55-57). In an elegant study, Xia, Yang (21) took human EPCs from young and older 156 

adults, and investigated their re-endothelialization ability in a hindlimb ischemia model 157 

in mice, and found that transplanted EPCs from older adults did not stimulate 158 

endothelialization or recovery of perfusion to the same extent as transplanted EPCs 159 

from younger individuals. The underlying mechanisms explaining the age-related 160 

reduction in both EPC number and function are still unclear. It is highly likely that a 161 

combination of age-related increases in oxidative stress (58), bone marrow niche 162 

alterations (59), telomere shortening (56) and other circulating factors (60) may explain 163 

these observations.  164 

 165 

Together, this data strongly suggests a deleterious effect of aging on EPC number and 166 

function (see Table 1 and Figure 1 for summary of the effect of age on EPC number 167 

and function), and studies have investigated the effect of pharmacological interventions 168 

to improve EPC number and function in at-risk individuals (61-64). However, as a 169 

preventative measure, lifestyle modifications may hold significant promise as these 170 

cells are significantly affected by lifestyle factors such as smoking (65, 66), physical 171 

activity/inactivity, and exercise (67-69).  172 

[INSERT TABLE 1 HERE] 173 

[INSERT FIGURE 1 HERE] 174 
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In this review we will cover the influence of various dietary factors on EPC number 175 

and function, and the potential negative impact obesity has on EPCs, finally reviewing 176 

the literature on dietary strategies to induce weight loss, and the subsequent impact this 177 

may have on circulating EPCs to promote cardiovascular health in an at-risk, aging 178 

population. 179 

 180 

Nitric Oxide-Mediated Mobilization of EPCs: Potential for Dietary Nitrate 181 

 182 

Recently, the therapeutic role of dietary nitrate (in the form of beetroot [as a root 183 

vegetable or in concentrated form], watercress, and spinach) in vascular health has been 184 

explored due to the potential to modulate NO bioavailability. Acute and chronic 185 

supplementation of inorganic dietary nitrate has been shown to improve arterial 186 

vasomotor function (70-72), reduce blood pressure in healthy young (73) and older 187 

subjects (72) and reduce arterial stiffness as measured via pulse wave velocity (72). The 188 

potential mechanisms by which dietary nitrate may improve these vascular health 189 

markers include an increase in NO bioavailability. Once ingested, nitrate is reduced to 190 

nitrite in the mouth and gut (74), where it can be absorbed into the circulation. 191 

Elevations of plasma nitrate and nitrite are observed as quickly as within 2 hours of 192 

ingestion of a high concentrated nitrate dose (in the form of beetroot juice) which 193 

subsequently results in significant alterations in both systolic and diastolic blood 194 

pressure within this timeframe (75, 76).  195 

 196 

Recent epidemiological evidence suggests that nitrate has a strong positive effect on 197 

human health. In 2017, researchers found that plasma nitrate was inversely associated 198 

with all-cause mortality in the Offspring cohort of the Framingham Heart Study (77). 199 
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Interestingly, there was no such association with incidence CVD mortality, with their 200 

data also suggesting that the effect of plasma nitrate on mortality was attenuated after 201 

controlling for glomerular filtration rate, suggestive of a protective effect on renal 202 

function. In mice, 3 months of nitrate deficient diet resulted in greater visceral 203 

adiposity, reduced glycaemic control and vascular function (78). Levels of eNOS were 204 

downregulated in the mice fed with the nitrate-depleted diet which may contribute to 205 

the reduced vascular function in these mice.  206 

 207 

In addition to having impact on endothelial function via modulating NO bioavailability, 208 

dietary nitrate may also impact on circulating angiogenic cells. The mobilization of 209 

EPCs has been shown to be eNOS dependent (79), and additionally NO itself can 210 

mobilise these cells via activation of bone marrow matrix metalloproteinase-9 (80) 211 

which itself cleaves membrane-bound Kit ligand from bone marrow stromal cells, 212 

leading to the extravasation of progenitor cells into the circulation (81). This led 213 

researchers to investigate if dietary nitrate can influence progenitor cell number and 214 

function. Indeed, the ingestion of a single dose of nitrate-rich solution led to the 215 

mobilisation of CD34+VEGFR2+ and CD133+VEGFR2+ cells into the circulation 216 

within 1 hour in healthy humans, which was accompanied by increases in stem cell 217 

factor (SCF) and stromal-derived factor-1α (SDF-1α) (82). Within the same study this 218 

effect was abolished with the co-infusion of a NO scavenger (cPTIO) in a mouse model. 219 

A chronic supplementation study in hypercholesterolemic rabbits found that 220 

supplementing with L-arginine, the precursor to NO synthesis, led to a significantly 221 

greater number of circulating CD34+VEGFR2+ EPCs than control 222 

hypercholesterolemic rabbits (83). This data has been supported elsewhere, with a diet 223 

supplemented with L-arginine, in combination with exercise training, resulted in 224 
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elevations in EPCs in mice, compared to exercise alone which also resulted in increases 225 

in circulating EPCs (84). 226 

 227 

Together, these data suggest a potential role for nitrate diets to potentially mobilize 228 

EPCs from the bone marrow to maintain or improve vascular health. However, there is 229 

paucity of data in humans, and in clinical conditions whereby such an intervention may 230 

have greater health implications. Future research must also include data on functionality 231 

of such EPC populations to determine potential cellular effects outside of the bone 232 

marrow mobilisation itself. 233 

   234 

Omega-3 235 

 236 

Omega-3 polyunsaturated fatty acids (PUFA) have recently emerged as potential 237 

vascular protective foods. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) 238 

and docosahexaenoic acid (DHA), are primarily found in oily fish, but also found in 239 

plant sources, such as nuts and seeds. Epidemiological data suggested that the ingestion 240 

of omega-3 fatty acids may reduce CVD rates (85). This study observed a 10x reduced 241 

risk of myocardial infarction amongst Greenland Inuits compared to a Danish 242 

population, which may be due to their vastly different intake of omega-3 fatty acids per 243 

day (14g vs. 3g) (86). However, clinical trial data of the impact of omega-3 fatty acids 244 

on cardiovascular and all-cause mortality are mixed with regards to the efficacy of these 245 

fatty acids on health (87-90). 246 

 247 

Omega-3 fatty acids may influence health through affecting plasma membrane 248 

phospholipid composition, which may impact cell signalling via altering membrane 249 
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fluidity, lipid raft structure and substrate availability (91, 92). DHA upregulates eNOS 250 

phosphorylation in human endothelial cells in vitro (93) and suppresses cytokine-251 

induced endothelial adhesion molecule expression (94), suggestive of a potent vascular 252 

benefit. There is also evidence that both EPA and DHA can attenuate H2O2-induced 253 

DNA damage in human aortic endothelial cells via reductions in intracellular oxidative 254 

stress as a result of upregulated levels of heme oxygenase-1, thioredoxin reductase 1, 255 

and manganese superoxide dismutase (95). However, the evidence for a strong effect 256 

on vascular endothelial function is absent in human studies (96).  257 

 258 

Interestingly, omega-3 fatty acids may play a role in angiogenesis. Recent studies 259 

showed that in aged mice, a diet rich in omega-3 PUFA was associated with improved 260 

post-ischemic stroke angiogenesis and neurogenesis (97), and transgenic mice that 261 

overproduce n-3 PUFAs were protected against ischemic stroke, displayed enhanced 262 

post-ischemic angiogenesis and greater survival than control mice (98). Potential 263 

contributions to the augmented revascularization may be due to enhanced VEGF 264 

signalling in resident endothelial cells (98) or via mobilization of angiogenic cells to 265 

the infarct zone and manipulation of their angiogenic functions. In an in vitro-only 266 

study, incubation with EPA or DHA significantly improved EPC colony forming units 267 

and tube formation of these regenerative cells in vitro (99). However, migratory 268 

capacity of these cells, reflective if ability to migrate to ischemic tissue in vivo, only 269 

improved upon co-incubation with both EPA+DHA (99). These results were somewhat 270 

supported by Tikhonenko et al.  (100) who found that supplementing with DHA in a 271 

type 2 diabetes mouse model rescues EPCs in blood and bone marrow, as well as 272 

displaying protective effect of DHA on EPC migration in vitro further suggestive of 273 

protective effect of omega-3 fatty acids on EPC number and angiogenic function (100, 274 
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101). In the only two human supplementation studies, an eight- and six- week fish oil 275 

supplementation period significantly increased number of circulating CD34+VEGFR2+ 276 

cells (102, 103), and also significantly reduced markers of vascular damage and platelet 277 

aggregation (103). These changes in EPCs were not accompanied by changes in 278 

circulating biochemical markers of vascular health, such as total cholesterol, LDL, 279 

HDL, triglycerides or fasting glucose (103), suggestive of a direct effect on cellular 280 

survival (104) and/or mobilization. These effects of omega-3 fatty acids on EPCs are 281 

not long-lasting, as six weeks after cessation of the omega-3 fatty acid-rich diet, 282 

circulating EPCs returned to pre-diet levels (102). 283 

 284 

These data strongly suggest despite not having clear benefits on vascular function in 285 

humans, omega-3-rich diets may augment the number and function of circulating EPCs 286 

which may have clinical significance for endothelial repair, and may be of interest to 287 

older adults who display such EPC dysfunction. 288 

 289 

Mediterranean Diets 290 

 291 

Mediterranean diets typically contain high levels of olive oil, fruits, nuts, vegetables 292 

and cereals, and often include moderate intake of fish and poultry, with low intake of 293 

red and processed meats. There is strong evidence that supports the use of a diet rich in 294 

olive oil, fruit, nuts, vegetables and low in red meats for the prevention of CV events 295 

and CVD (105, 106), with a meta-analysis indicating a reduced risk ratio for CV 296 

incidence or mortality, cancer incidence or mortality, and neurodegenerative disease 297 

incidence with for those adhering to such a diet (106). The proposed mechanism for 298 

such effect on cardiovascular health may be due to specific effects on reducing 299 
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atherosclerosis-associated inflammation (107), such as circulating high sensitivity C-300 

reactive protein (CRP) and interleukin-6 (IL-6) (107, 108). After 2 years of a 301 

Mediterranean diet, an improvement in endothelial function was observed, as well as a 302 

reduction in carotid intima-media thickness (cIMT)  (107) and insulin sensitivity also 303 

improved significantly (107, 108). 304 

 305 

One year of a ‘Mediterranean’ diet, rich in olive oil, fruit, vegetables, fish, legumes, 306 

and wholegrain foods  improved vascular conductance in a group of older adults (mean 307 

age: 56 years) more so than a year-long exercise training intervention (109), indicating 308 

that the diet could be a beneficial strategy for preventing CV issues with aging, once 309 

again, potentially due to reductions in inflammatory biomarkers or improvement in 310 

antioxidant status (110, 111). Considering also, the high omega-3 content of such a diet, 311 

potential vascular health benefits of a Mediterranean diet may be also due to the 312 

reductions in oxidative stress via the biological effects of EPA and DHA. 313 

 314 

Several studies have investigated the impact of these types of diet on circulating EPCs 315 

in a variety of human populations (metabolic syndrome, type 2 diabetics, and the 316 

elderly), showing significant promise in modulating endothelial repair capacity. In 317 

those with type 2 diabetes mellitus, 4 years of the diet resulted in a significant increase 318 

in CD34+VEGFR2+ and CD34+CD133+VEGFR2+ EPCs at both year 2 and year 4 319 

timepoints (108). There was an absence of any change in these markers of endothelial 320 

repair capacity in a parallel low fat diet. The elevations in EPCs were concomitantly 321 

observed alongside reductions in inflammatory biomarkers CRP, and reductions in 322 

cIMT. Interestingly, the increases in EPCs were inversely associated with cIMT in the 323 

Mediterranean diet group (108). After only 8 weeks, such a diet resulted in significant 324 
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increases in CD34+VEGFR2+ EPCs in individuals with the metabolic syndrome, 325 

however, this increase was superseded by combination of diet plus exercise intervention 326 

over the same duration (112). 327 

 328 

In an aging population of both men and women (>65yrs), a 4 week dietary intervention 329 

resulted in >100% increases in circulating CD34+CD133+VEGFR2+ EPCs in 330 

participants undertaking a diet rich in olive oil, vegetables, and fish, as opposed to a 331 

low carbohydrate diet enriched with PUFA, and a significant reduction in endothelial 332 

microvesicles (indicative of endothelial damage and/or activation) (113). Once again, 333 

these changes were irrespective of cardiometabolic risk factor changes. Cesari et al. 334 

(114) found that circulating number of EPCs 335 

(CD34+VEGFR2+/CD34+CD133+VEGFR2+) were related to olive oil consumption, 336 

dietary vegetable servings and ‘Mediterranean diet score’ (a score of adherence to a 337 

Mediterranean diet devised by Panagiotakos et al. (115)) in a large population of 338 

nonagenarians. However, longer duration interventions in this aging population, as well 339 

as functional assessment of endothelialization are lacking and thus are required to fully 340 

elucidate the impact of such diet on endothelial regeneration and repair. It must also be 341 

acknowledged that it is difficult to attribute the improvements in these vascular 342 

reparative cells to a certain aspect of the diet due to the wide variety of components of 343 

the diet. 344 

 345 

Physical Activity and Exercise Effects on Endothelial Progenitor Cells 346 

 347 

Exercise and physical activity has potent cardiovascular effects. These include 348 

prevention or reversal of plaque formation in the vasculature (116, 117), improved 349 
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endothelial function (118-121), and angiogenesis (122-124) in a variety of human 350 

populations. Single bouts of exercise have the remarkable ability to stimulate the 351 

mobilization of EPCs from peripheral tissues such as the bone marrow, into the 352 

circulation for up to 72 hours post-exercise (54, 68, 125-129). However, some studies 353 

have failed to show any changes in circulating EPCs in the post-exercise recovery 354 

period (49, 130). The response to exercise is duration and intensity-dependent (127), 355 

but also dependent on human population investigated, with the evidence showing those 356 

with CVD (131-133), and older adults (54) display an attenuated response. EPC 357 

mobilization in response to exercise is said to be due to changes in circulating 358 

chemoattractants, such as VEGF, G-CSF and SDF-1α (68, 129, 134), however, 359 

mechanistic studies in exercise and EPC mobilization are lacking. 360 

 361 

It is not just single bouts of exercise which may have this profound effect on EPCs, but 362 

studies investigating the effect of regular exercise and physical activity on these cells 363 

generally report increases in EPC number and/or function (27, 52, 69, 122, 135-139), 364 

even in older adults (27, 52). After a 3-month home-based aerobic exercise intervention, 365 

older men, who had displayed significantly reduced basal EPC number and migratory 366 

function, improved their EPC number and function nearly 2-fold (52). Xia et al. (27) 367 

reported improvements in both in vitro and in vivo function of EPCs from older adults 368 

who had underwent a 12-week aerobic exercise program using a carotid artery injury 369 

mouse model. The researchers took EPCs from older adults before and after the exercise 370 

program, and injected these into the left carotid of athymic nude mice after inducing 371 

carotid injury. Endothelial regeneration was evaluated by measuring the area of re-372 

endothelialization in the denuded artery 3 days post-injection. The improvement 373 

observed in re-endothelialization due to EPCs from older individuals post-training was 374 



 16 

accompanied by improvements in intracellular CXCR4 signalling, which is key for 375 

EPC homing to sites of injury (41).   376 

 377 

It is clear that single bouts and regular prolonged exercise can improve circulating 378 

number and function of these vasculogenic cells in humans, This improvement has been 379 

aligned to improvements in vascular function, and reduced arterial stiffness, offering a 380 

key mechanism by which exercise may benefit cardiovascular health in older 381 

populations. The potential effects of exercise and physical activity on EPCs in aging 382 

has been reviewed in depth elsewhere (67). 383 

 384 

Obesity 385 

 386 

Obesity is heavily linked with the development of key variables of the metabolic 387 

syndrome and type 2 diabetes mellitus (T2DM). The worldwide incidence of CVD and 388 

metabolic abnormalities, such as T2DM is increasing, and obesity is a significant risk 389 

factor. Data suggests that those who are overweight or obese are 50-75% more likely 390 

to develop CVD than those who are ‘normal weight’ (140). This is likely to be driven 391 

by inflammatory pathways, including adipose tissue-derived tumour necrosis factor-α 392 

(TNF-α) (141), which may affect endothelial function specifically via activation of 393 

NADPH oxidase and subsequent production of superoxide (142). Endothelial 394 

dysfunction with obesity precedes the development of atherosclerosis, with impaired 395 

vasodilator functions apparent (143), potentially as a direct result of impairments in the 396 

L-arginine-NO pathway. Therefore, obesity-induced endothelial dysfunction may be a 397 

primary cause of the increased CVD risk in this population. 398 

 399 
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Obesity may promote endothelial dysfunction via effects on endothelial regeneration 400 

and repair mechanisms, such as bone marrow-derived EPCs. Fadini et al. (144) 401 

observed a negative association between components of the metabolic syndrome, and 402 

CD34+ progenitor cell count, with accumulative scores of the metabolic syndrome 403 

strengthening this inverse relationship. Several studies report inverse relationship 404 

between BMI and circulating total progenitor cells and EPC count (144, 145). 405 

Furthermore, other studies have reported that obese men with metabolic syndrome had 406 

40% fewer circulating EPCs than healthy age-matched controls (146). Interestingly, 407 

EPC proliferative capacity reflected reductions in circulating EPCs in obese compared 408 

to lean individuals (147). The same group showed that the in vitro pro-angiogenic 409 

function of EPCs was also impaired with obesity in 50+ year old individuals, with 410 

impaired stimulated release of both VEGF and G-CSF, which may be linked to the 411 

finding that these EPCs displayed higher expression of caspase-3, a pro-apoptotic 412 

intracellular signal (148). In a murine model of obesity, obese animals displayed 413 

impaired in vitro angiogenesis, suppressed EPC mobilization in response to limb 414 

ischemia, and reduced incorporation into aortic vessels after LPS-induced vascular 415 

damage (149), confirmed by other animal models also showing impaired recovery of 416 

blood flow after limb ischemia accompanying the reductions in ischemia-induced PC 417 

mobilization (150). In humans, EPC adhesion, migration and angiogenesis in vitro were 418 

significantly lower than lean individuals (151). The ability of EPCs to home to sites of 419 

ischemia, adhere and migrate are key roles of EPCs in order for these cells to exert their 420 

vasculogenic function. These findings suggest that obesity suppresses the angiogenic 421 

potential of human EPCs to home to sites of vascular damage or tissue ischemia, and 422 

to promote blood vessel growth and repair. 423 

 424 



 18 

There is clear evidence for obesity-mediated EPC dysfunction, which may be as a result 425 

of associated inflammation, impaired glucose tolerance and elevated oxidative stress. 426 

The resultant endothelial dysfunction and suppressed endothelial repair capacity 427 

increases the risk of atherosclerosis in this population. Interventions designed to 428 

stimulate weight loss may have significant health benefits by improving vascular 429 

endothelial health via modulating EPC number and functional capacity. 430 

 431 

Calorie Restriction/Weight Loss Dietary Interventions to Combat 432 

Obesity-Mediated EPC Dysfunction 433 

 434 

Recently, calorie restriction diets have been touted as a potential intervention to 435 

improve health and enhance longevity (152). Recent reports suggest that calorie 436 

restriction may reduce CVD risk through modulating oxidative stress levels (153), and 437 

DNA damage (154). Such diets have been proven to be beneficial for weight loss in 438 

overweight and obese individuals (155, 156) due to the stark effects on reducing 439 

oxidative stress (157) and improving the metabolic profile of obese and older humans 440 

(156, 158-160).  441 

 442 

A 24-week low carbohydrate diet resulted in significant reductions in endothelial 443 

damage biomarkers in overweight post-menopausal women despite no changes in 444 

metabolic profiles (161), suggesting vascular benefit effect of such a diet is independent 445 

of metabolic changes. Added to this, there is a wealth of evidence showing vascular 446 

function benefits of calorie restriction/weight loss diets in obese and older individuals 447 

(162-168). Mechanisms include reductions in NADPH oxidase activity, increased 448 

activation of sirtuin-1, a powerful intracellular antioxidant complex (169), increased 449 
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antioxidant capacity (increased levels of manganese superoxide dismutase) and 450 

increasing tissue eNOS content and NO bioavailability (170). Furthermore, 451 

improvements in vascular function with weight loss strategies may be preceded by 452 

improvements in endothelial regenerative capacity. 453 

 454 

Indeed, preliminary data showed that weight loss strategies may be beneficial for 455 

improving EPC number (171). The extent of reductions in body fat composition in 456 

response to a weight loss diet relate to the extent of EPC improvement in humans (172). 457 

Xin et al. (173) exposed mice to prolonged fasting after cerebral ischemia. They 458 

observed significant upregulation of the antioxidant enzyme MnSOD,  as well as eNOS 459 

in bone marrow-derived EPCs, increased capillary number in the infarct zone, and 460 

improved EPC migratory and tube formation capacity in the fasted mice compared to 461 

control mice. These observations were accompanied by reductions in volume of infarct 462 

zone, which was also further improved by intravenous administration of EPCs from 463 

fasted mice compared to control mice (173), strongly suggesting protective role of 464 

periodic fasting to improve EPC vascular regenerative capacity. Interestingly, exercise 465 

and diet may act synergistically to promote EPC number and function in obese 466 

populations (174). An 8-week combined exercise and calorie restricted diet resulted in 467 

significant improvements in circulating EPCs, and EPC migratory capacity in obese 468 

populations (174). However, the effect of combined strategies in older adults is yet to 469 

be investigated but may hold promise due to the already significant impact of exercise 470 

on EPC number and function (49, 54, 128). 471 

 472 

Future Directions 473 
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Currently, large-scale cohort interventional studies in dietary influence on vascular 474 

regenerative capacity are lacking, especially in aging adults with or without CVD, and 475 

are thus warranted. In addition, other angiogenic cell populations, such as angiogenic 476 

T-cells (175, 176), mesenchymal stem/progenitor cells (177) are being investigated for 477 

their influence of endothelial function through their potent pro-angiogenic capacity, and 478 

may be targets for such therapeutic interventions, such as diet and/or exercise.  479 

Additionally, the role of physical activity and exercise for cardiovascular benefit is 480 

clear, however, more studies are required to elucidate the benefit for older, and frail 481 

populations who are specifically at-risk of CVD and vascular-related disorders. 482 

 483 

[INSERT FIGURE 2 HERE] 484 

 Summary 485 

Age-related increased CVD risk is due to a plethora of factors. Reductions in 486 

endothelial repair capacity via alterations in both EPC number and functions may 487 

explain the aging impairments in endothelial function, thus promoting atherosclerotic 488 

disease risk. However, lifestyle factors such as diet, exercise and obesity (Figure 2) can 489 

have a significant impact on these vascular regenerative cells, and thus older 490 

populations may be able to attenuate CVD risk through lifestyle modifications.  491 

 492 
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Figures 1110 
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Figure 1. Effect of Aging on Circulating Endothelial Progenitor Cell Number and 1113 

Vasculogenic Function. 1114 
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Figure 2. Possible Effects of Lifestyle Factors on Aging Circulating Endothelial 1136 

Progenitors and Cardiovascular Risk. 1137 
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Tables 1149 

Table 1. Influence of Age on Circulating Endothelial Progenitor Cell Number and Function. 1150 

Reference Subjects EPC Assay Findings 
Xia et al., 2012a 
(21) 

10 young, 10 older males.  Flow cytometry 
CD34+VEGFR2+ 
EPC migration and adhesion 
Human EPC re-endothelialization in mice 

Lower CD34+VEGFR2+ cells in elderly. 
Reduced migration, adhesion and re-endothelialization capacity in 
elderly vs. young males. 

Xia et al., 2012b 
(27) 

25 young, 22 elderly males. 
Resting  

Flow cytometry 
CD34+VEGFR2+/CD133+VEGFR2+ 
EPC migration and adhesion 
Human EPC re-endothelialization in mice 

Lower CD34+VEGFR2+/ CD133+VEGFR2+ cells in elderly. 
Reduced migration, adhesion and re-endothelialization capacity in 
elderly vs. young males. 

Thijssen et al., 2006 
(49) 

8 young, 8 older sedentary 
males. 

Flow cytometry 
CD34+VEGFR2+ 

Lower CD34+VEGFR2+ EPCs in older vs. younger males 

Thum et al., 2007 
(50) 

10 young, 16 middle-aged, 
12 older males.  

Flow cytometry 
CD133+VEGFR2+ 
EPC migration and eNOS gene expression. 

Lower EPC number and migration in older vs. middle-aged and 
younger males. 
Lower EPC eNOS gene expression in older vs. younger adults.  

Heiss et al., 2005 
(51) 

20 young and 20 older male 
and female subjects.  

Flow cytometry 
CD34+VEGFR2+/CD133+VEGFR2+ 
EPC survival, migration and proliferation assays. 

No difference in EPC number between young and older subjects. 
Lower survival, migration and proliferation of EPCs in older 
subjects. 

Hoetzer et al., 2007 
(52) 

10 young, 15 middle-aged, 
21 older men.  

EPC EC-CFU assay. 
EPC migration 

Lower EC-CFU in older and middle-aged adults compared to 
young subjects. 
Lower migration of EPCs from older subjects vs. middle-aged and 
younger adults. 

EPC- Endothelial Progenitor Cells, eNOS- endothelial nitric oxide synthase, EC-CFU- Endothelial Cell Colony-Forming Units. 1151 
 1152 
 1153 
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 1154 

Table 1. Influence of Age on Circulating Endothelial Progenitor Cell Number and Function (Continued). 1155 

Reference Subjects EPC Assay Findings 

Williamson et al. 
2013 (53) 

EPCs from 5 young, and 4 
older subjects. 

EPC apoptosis, migration, and tube formation 
assays 

No difference in proliferation, apoptosis and tube 
formation of EPCs from young and older subjects. 
EPC migration lower in older subjects vs. younger 
subjects. 

Ross et al., 2018 
(54) 

107 males, aged 18-75yrs. 
 

Flow cytometry 
CD34+CD45dimVEGFR2+ 
Cell surface expression of CXCR4 

Age inversely associated with EPC number and cell 
surface CXCR4 expression. 

Yang et al., 2013 
(55) 

10 young, 10 older male 
subjects. 

Flow cytometry: CD34+VEGFR2+ 
EPC migration and proliferative assays. 

Lower EPC number, migration and proliferation in older 
vs. younger subjects. 
 

Kushner et al., 2009 
(56) 

12 young, 12 middle-aged, 
and 16 older sedentary males. 

EPC telomere length Lower EPC telomere length in older vs. middle-aged and 
younger males. 

Kushner et al., 2010 
(57) 

17 young and 20 older males. Stimulated release of EPC-derived pro-
angiogenic cytokines and growth factors 

Lower release of G-CSF from EPCs from older vs. 
younger subjects. 

EPC- Endothelial Progenitor Cells, CXCR4- C-X-C Chemokine Receptor 4. 1156 
 1157 


