
Modeling and design for electromagnetic
surface wave devices
Luigi La Spada1 , Sajad Haq2, and Yang Hao1

1School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK, 2QinetiQ Ltd,
Farnborough, UK

Abstract A great deal of interest has reemerged recently in the study of surface waves. The possibility to
control andmanipulate electromagnetic wave propagations at will opensmany new research areas and leads
to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and
design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of
transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of
amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved
from modeling to the final design. The proposed approach is validated to be versatile and allows ease in
manufacturing, thereby demonstrating great potential for practical applications.

Plain Language Summary There is a crucial interest in exploring electromagnetic waves traveling
on materials surface. The study and manipulation of such waves is the key to develop technological and
industrial solutions to reduce and mitigate important issues in the design of real-life platforms, for different
application fields, ranging from microwave to optics. We propose a general theory for designing perfect
surface wave cloaks; such a theory creates a robust link between truly arbitrary surfaces and their analogue
material properties in an intuitive manner. Most importantly, with slight modifications, the underlying theory
can be applied to other physical phenomena that are described via wave equations.

1. Introduction

Surface waves typically exist at the interface between two different media, for any flat or curved stratified
structures [Polo et al., 2013]. Electromagnetic waves can propagate as surface waves if they can be “guided”
along a refractive index gradient material or an interface between two media having different dielectric con-
stants [Hill and Wait, 1978]. In mechanics, a common example of surface wave is gravity wave propagating
along the surface of liquids (i.e., ocean waves). Gravity waves [Gill, 1982] can also occur within liquids, at
the interface between two fluids with different densities. Elastic surface waves can travel along the surface
of solids, with an amplitude that typically decays exponentially with depth into the substrate: typical exam-
ples are the Love [Love, 1911], Rayleigh [Viktorov, 2013], and surface acoustic waves [Oliner, 1978].

Despite all the different types of surface waves, they are widely used in many practical applications. For elec-
tromagnetic surface waves, their characteristic of being acutely sensitive to any variation of the refractive
index represents the basis for high-Q sensors [Iovine et al., 2014]. Moreover, their use in enhancing light
absorption of photovoltaic solar cells gained huge attention and many techniques to increase the efficiency
of light harvesting have been investigated [La Spada and Vegni, 2016]. Applications of surface waves are also
in communications [Vegni and Loscrì, 2016]: their use in optical technology can reduce dissipation and pro-
moting short-, as well as, long-range communications, bringing the advantages realized with optical fibers
to the nanoscale.

One of the most recent and popular application is the design of invisibility cloaks, which is used to effec-
tively render the object invisible from impinging electromagnetic waves. Several approaches have been
proposed over the years to accomplish this aim, ranging from the classical scattering cancellation
approach [Chen et al., 2012] to other well-established technologies based on the use of frequency selec-
tive surfaces [Munk, 2005]; transmission-line networks [Alitalo et al., 2008]; parallel-plate [Alitalo and
Tretyakov, 2010], and metamaterials [Ni et al., 2015]. Unfortunately, all such approaches suffer from several
drawbacks: they are dependent on the geometry and shape of objects to cloak, not suited for electrically
large dimensions, relying on material properties not easily found in nature and extremely sensitive to
material losses and polarization changes.
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The aim of this work is to present a general approach for designing devices able to control and tailor electro-
magnetic surface waves for both amplitude and phase. First, an analytical model is derived to describe the
surface wave propagation properties in terms of amplitude and phase (section 2), providing a detailed
description of the field configurations. Then, by exploiting such analysis, the design procedure will be
reported (section 3), giving us more physical insights onto the electromagnetic characteristics of the struc-
ture. Finally, to validate both the model and design steps, a practical realization for surface wave cloaking
has been developed (section 4): three different samples (flat plane, uncloaked, and cloaked object) have been
compared. The device shows good performances in reconstructing properly the wavefronts for both ampli-
tude and phase.

2. Surface Wave Device Modeling

Dielectric slabs, with or without any associated metal, are used to contain the wave energy within a given
space and guide it toward a specific direction. Usually, these are referred to as dielectric waveguides, and
the field modes that they can support are known as surface wave modes [Richmond, 1959]. To simplify the
model, let us reduce the problem to a 2-D one by considering the width in the x-direction infinite, so that
∂/∂x = 0. Even though the dimensions of the structure are finite in practice, the two-dimensional (2-D) approx-
imation not only simplifies the model but also gives us in-depth physical insights of surface wave propaga-
tion. We also assume that the waves are traveling in the ±z directions, which are infinite. Inside the
dielectric slab waveguide, waves bounce back and forth between its upper and lower interfaces at an inci-
dence angle greater than its critical angle. When this is accomplished, refracted fields outside the dielectric
slab form evanescent (decaying) waves. These characteristics can be analyzed by treating it as a boundary-
value problem (modal analysis) and/or by using geometrical optics (ray-tracing). Since we are interest in con-
trolling both amplitude and phase wave properties of electromagnetic waves, we will apply both: the first
approach to solve relevant wave equations satisfying prescribed boundary conditions and the second
method to model the phase propagation of the wave along the structure.

2.1. Dielectric Slab Waveguide With the Ground: Field Configurations

Before starting to model the structure of interest, we analyze the wave behavior in terms of electric and mag-
netic field distributions in a traditional dielectric slab, as shown in Figure 1a. Typically, the cross section of the
slab would be rectangular with height h and finite width a. According to Zahn [1979], the transverse magnetic
to the z direction (TMz) (transverse electric (TE)) mode fields that can exist within and outside the dielectric
slab must satisfy

∇2Pz x; y; zð Þ þ β2�Pz x; y; zð Þ ¼ 0 (1)

being Pz the potential function representing the fields either within or outside the dielectric slab.

The solution is obtained by using the separation-of-variables method [Collin, 1960], according to the given
geometry and associated boundary conditions. More specifically, within the dielectric slab the potential func-
tion Pz takes the following form [Marcuvitz, 1951]:

Pz x; y; zð Þ ¼ Ad Bd cos βydy
� �

þ Cd sin βydy
� �h i

e�jβz z (2)

For the slab to function as a waveguide, the fields outside the dielectric slab must be of evanescent form.
Therefore, outside the slab we have [Harrington, 1961]

Pz x; y; zð Þ ¼ Ao Boe
�jβyoy þ Coe

�jβyoy
� �

e�jβzz (3)

with β2yd þ β2z ¼ β2d ¼ ω2μdεd and β2y0 þ β2z ¼ �α2y0 þ β2z ¼ ω2μ0ε0 as the wave numbers within and outside
the dielectric slab, respectively; Ai, Bi, and Ci are constants determined by the specific boundary conditions
(i stays for: d as dielectric or 0 as air).

For a dielectric waveguide of height h with the ground plane as shown in Figure 1b, an additional boundary
condition at y = 0 will be taken into the consideration: the vanishing of tangential electric components.
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Examining mathematical expressions (see detailed formulas in the supporting information) for both TEz and
TMz, it is apparent that only tangential electric field components TMz (odd) and TEz (even) satisfy the
boundary conditions and therefore supported by the proposed geometry [Walter, 1965].

Figure 1. (a) Dielectric slab and (b) dielectric-covered ground plane waveguides: geometry (side-view) and even/odd mode field distributions. (c) Curvilinear
grounded structure and propagating modes: air radiative waves (c1), surface waves (c2), and guided modes (c3). (d) Graphical solution of the transcendental dis-
persion equation for the cutoff frequency of a TM (intersection green curve–blue curve) and TE (intersection red curve–blue curve) surface wave modes of the
grounded dielectric sheet. (e) Surface wave propagation constants for the grounded dielectric slab: comparison of analytical model (closed-form formula) and
numerical model of the dispersion equation.
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2.2. Dielectric Slab Waveguide With the Ground: Phase Pattern

Let us assume that a curved slab is bounded above by air and below by the ground plane acting as perfect
electric conductor (PEC), as shown in Figure 1c, such that εr> ε0. The modal picture of waves in the proposed
structure will be shown as the following:

1. Air modes: let us increase the incident angle θi gradually starting at θi = 0. When θi is small, a wave that
enters the slab will be reflected at the bottom from the PEC, refracted by the discontinuity at the slab-
air interface, and will exit into the air provided that θi < θi-air. When the angle of incidence is smaller than
the critical angles, the wave is transmitted to the air at an angle of θi-air, greater than the incident angle θi.
Electromagnetic waves are directed along the direction at the angle of refraction, θair. In this situation,
waves propagate freely in the forms of guided substrate modes within the slab and radiation fields in
the air, as shown in Figure 1c1.

2. Surface wave modes: as the angle of incidence θi increases and reaches the critical angle θi = θi-air, the
refracted angle θair varies more rapidly than the incident angle θi, and eventually reaches at 90°.
Electromagnetic waves are evanescent, which travel along the z axis (parallel to the interface), while
the constant phase planes are parallel to the x axis. There will be no real power transferred normal to
the boundary from the dielectric slab into the air. Such waves take the name of loosely bound surface
wave, as shown in Figure 1c2.

3. Waveguide modes: When θi increases such that it passes the critical angle θi-air of the grounded dielectric
slab/air interface, the wave is totally reflected at the slab/air interface. This describes a situation similar to
the case B. The only difference is for the surface wave, traveling parallel to the interface (z axis) with a
phase velocity that is less than that of an ordinary wave in the same medium, and it is rapidly attenuated
in a direction normal to the interface (x direction) with an effective attenuation constant. This wave is
referred to as a tightly bound slow surface wave.

Moreover, due to the presence of PEC underneath, for the total reflection effect at both upper and bottom
interfaces, electromagnetic waves are totally reflected at both interfaces; in this case, we refer to electric
and magnetic fields as guided modes, as shown in Figure 1c3. For these modes, the energy is trapped
within the dielectric slab and diverted toward a given direction. Specifically, the fact that horizontal wave
vector components are equal indicates that electromagnetic waves propagate at a constant velocity
in the z direction, assuming that the thickness of dielectric slab is much smaller than the
operating wavelength.

The distinction between electromagnetic surface and guided waves is generally evaluated by considering
two main aspects: excitation/source and the medium supporting their propagation. In terms of source, for
guided waves to maximize the energy transfer between the source and the material, very simple techniques
can be exploited [Mahmoud, 1991]: the use of an iris or hole, a linear (loop) antenna oriented parallel (perpen-
dicular) to the electric (magnetic) field lines in the waveguide, or the proper excitation of currents matching
those of the desired modes. Excitation of surface waves is not trivial; in fact, specific configurations should be
used to properly excite them such as [Cottam, 1989] prism-coupled configuration, grating coupled, and
waveguide-coupled configurations.

In terms of material used, for guided waves the simplest case is represented by a linear and homogeneous
material (i.e., air or any lossless dielectric) that can be considered infinite extended in the propagation direc-
tion. Similar considerations can be done for more complicated structures such as uniaxial dielectrics or bia-
nisotropic materials. On the contrary, an electromagnetic surface wave is the result of a discontinuity of at
least two materials. It exists at the interface of two half spaces, each occupied by a different material; remove
the interface by making the two partnering materials identical, and the surface wave vanishes. Moreover,
there is no guarantee that at a specific frequency, a chosen pair of partnering materials will necessarily sup-
port the existence of a surface wave.

In general, the configuration of material in the direction normal to the interface (homogeneous, isotropic, and
dielectric or bianisotropic and periodically nonhomogeneous) coupled with the possible sources leads to the
existence of different surface waves at specified frequency ranges and propagating in specific directions,
with different phase speed, attenuation rate, and field modes [Goldstein and Maugin, 2001]: surface
plasmon-polaritons, Zenneck waves, Dyakonov waves, Tamm waves, and the most recent Dyakonov-
Tamm waves.
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3. Design of Surface Wave Devices

In the proposed surface wave designs, we assume that electric and magnetic fields satisfy the following
boundary conditions:

Ez x; y ¼ 0; zð Þ ¼ 0

Ez x; y > 0; zð Þ < ∞

Edz x; y ¼ h; zð Þ ¼ Eoz x; y ¼ h; zð Þ
Hd
z x; y ¼ h; zð Þ ¼ H0

z x; y ¼ h; zð Þ

(4)

By applying conditions (4), the governing equations for the geometry of Figure 1b for TMz (odd) and TEz
(even) modes can be found [Goldstone and Oliner, 1959]:

TM αy0�h ¼ βyd�h
εr

� �
tan βyd�h

� �
(5.1)

TE αy0�h ¼ � βyd�h
� �

cot βyd�h
� �

(5.2)

αy0�h
� 	2 þ βyd�h

� �2
¼ εr � 1ð Þ β0�hð Þ2 (5.3)

A detailed mathematical derivation is present in the supporting information. Now that the TMz
m (even) and

TMz
m (odd) modes and the corresponding dispersion equation have been determined, the next step is to find

βyd, αy0, and βz. This is accomplished by solving the transcendental (5.1) by using numerically or graphically
techniques. Equation (5.3) represents a circle in the βydh-αy0h plane, as shown in Figure 1d. The radius of the

circle is
ffiffiffiffiffiffiffiffiffiffiffiffi
εr � 1

p
β0h, which is proportional to the electrical thickness of the dielectric sheet. Equation (5.1) is

also plotted in Figure 1d. The intersection of these curves implies a solution to both (5.1). As
ffiffiffiffiffiffiffiffiffiffiffiffi
εr � 1

p
β0h

becomes larger, the circle may intersect more than one branch of equation (5.1), implying that more than
one TM mode can propagate. For any nonzero thickness sheet with a relative permittivity greater than unity,
there is at least one propagating TMmode, which we will call the fundamental (or dominant) TM0 mode, with
a zero-cutoff frequency. This means that the TM0 mode will always propagate unattenuated no matter what
the frequency of operation. From Figure 1d the next TM mode, the TM1 mode, will not begin to propagate
unless the radius of the circle becomes greater than π. Once βyd and αy0 have been found for a surface wave
mode, the field expressions can be found consequently. A similar procedure can be developed for TE modes.

Solution methods from transcendental equation obtained by graphical and/or numerical approaches are
approximate. Alternatively, simple analytical closed-form formulas for the first fundamental modes can be
found. Let us start from ((5.1)) and ((5.2)) and define x = βydh and y = αy0h in the range of interest (�π ≤ x ≤ π).
The following identities can be applied to simplify equations (5.1):

x tan xð Þ ¼ x2
π2 � x2ð Þ
π2 � 4x2ð Þ

�x cot xð Þ ¼ � π2 � 4x2ð Þ
π2 � x2ð Þ

(6)

In this way, it is possible to solve analytically the equation systems ((5.1)) to find out rigorously the wave num-
bers βyd and αy0:

TM
y ¼ x2

εr

π2 � x2ð Þ
π2 � 4x2ð Þ

x2 þ y2 ¼ εr � 1ð Þ k0dð Þ2

8><
>:

TE
y ¼ � π2 � 4x2ð Þ

π2 � x2ð Þ
x2 þ y2 ¼ εr � 1ð Þ k0dð Þ2

8><
>:

(7)

The design procedure permits us to establish a relationship between the propagation characteristics of sur-
face waves along the grounded dielectric slab and the geometrical/electromagnetic properties of the med-
ium. To validate the approach, the relationship between the normalized wave number βz/β0 and dielectric
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thickness h/λ0 is evaluated for TE and TM modes. A comparison between the proposed analytical model and
the classical numerical method [Balanis, 1982] is shown in Figure 1e. Good agreement is obtained. With such
a procedure, it is clear what must be done to limit the number of unattenuated modes that can be supported
by the structure and how their characteristics can be manipulated. The proposed approach is crucial to the
design of any surface wave devices in according with specific requirements.

4. All-Dielectric Device for Controlling Surface Wave
4.1. Realization of the Surface Wave Cloak

To validate the aforementioned analytical model and design approach, we demonstrate how to realize a sur-
face wave cloak with inhomogeneous dielectric profiles. The device shall be able to tailor electromagnetic
propagation characteristics of any curved surface to emulate those of a flat one, in terms of both amplitude
and phase. In addition, we apply the theory of transformation optics [Pendry et al., 2006; Leonhardt, 2006] to
link the geometry, material profiles, and the control of electromagnetic waves altogether. The required per-
mittivity profile is evaluated by equating the optical path, crossing the flat plane with homogeneous permit-
tivity, to the one on the curved surface with inhomogeneous materials, in particular, for two orthogonal
paths: the circular (of fixed radius, red) and the radial one (of fixed angle, blue) [Mitchell-Thomas et al.,
2013], as shown in Figure 2a. See detailed formulas in the supporting information.

To physically realize such a profile, a discretization process has been performed on the continuous distribu-
tion to get a simple seven-layered structure, each of themwith a specific dielectric value. In this way, both the
surface and the dielectric slab have linear boundaries, and we can treat each layer with a constant thickness
perpendicular to the surface of the metallic ground plane, as illustrated in Figure 2b. We use the modal
approach (section 2.1) to evaluate the permittivity of the graded-index material: our aim is to bound as much
as possible the electromagnetic field along the structure, to ensure minimal radiation from the surface when
curved surfaces are implemented, and to simplify future manufacturing processes [La Spada et al., 2016]. So
by solving the following equations equation (7), the total permittivity profile has been chosen in the range of
9–15: higher permittivity values are present at the bottom (εr = 15), gradually decreasing when the height of
the object increases (εr = 9).

4.2. Results and Discussion

The structure under study consists of a metallic curved object, underneath a dielectric bump, above a ground
plane. The device is illuminated by a horn antenna placed at the left, operating in the frequency range of our
interest (Figure 2c). An absorbing layer is used to bound the entire structure in the x-y plane. Three different
samples are considered: a flat dielectric slab with homogeneous permittivity used as a reference (Figure 2d1),
the 3-Dmetallic object with a uniform permittivity distribution (Figure 2d2), and the object with the manufac-
tured cloaking (Figure 2d3).

The device has been studied and designed both analytically [Wolfram Research, Inc, 2014] and numerically by
using a full-wave electromagnetic solver [CST STUDIO SUITETM, 2014]. In the evaluation, all materials are con-
sidered real-life devices, therefore with specific thickness and complex permittivity values (in terms of real
and imaginary part). Here a spectral analysis has been used to decompose the complex signals into simpler
parts by applying Fourier transform [McManus et al., 2016]. In our case, the electromagnetic wave (signal) in
the spatial domain mainly consists of free-space and surface wave. Figure 3 shows the electric field compo-
nent, perpendicular to the surface of the structure: 3-D scanning (Figure 3, left column), magnitude (Figure 3,
middle column), and phase (Figure 3, right column). Here we consider only the Ez component instead of the
full-field representation, since preliminary analytical and numerical analyses revealed that the other electric
field components (along x and y) can be considered negligible compared to Ez (see detailed mathematical
explanation in the supporting information). The distance is measured along a line (of distance d) after the
metallic object to the end of the structure (forward scattering region). The frequency range of interest is
8–12 GHz, where the horn antenna source operates. Figure 3a illustrates the undisturbed field along the flat
case. The flat sample case can be considered as a reference system to evaluate the device’s cloaking perfor-
mance, since the related electric and magnetic field configurations are well known and established in litera-
ture [Moon and Spencer, 1963]. Figure 3b shows perturbation in the electric field of the surface wave when a
uniform dielectric is implemented. We note a large amount of forward surface wave scattering due to the
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creation of destructive interference patterns (the shadow region). Such interferences can be attributed to the
nonperfect coupling of the field along the structure, and the wave encounters the transitions flat-curved-flat.
This phenomenon is observed particularly not only in the phase (right) but also in the amplitude (center). The
magnitude of the scattered field is not too pronounced. In addition, it is visibly clear that the scattered
amplitude does not follow the pattern of the flat plane and furthermore also decreases more rapidly than
the reference surface wave. Figure 3c, shows the cloaking in action: the impinging wave from the left side
is perfectly reconstructed on the right one. The surface wave is guided completely on the interface with
no shadow left behind, as the obstacle is cloaked. Here it is clear that the cloak greatly reduces the
amount of both backward and forward scattering for almost all frequencies considered in the range for
both amplitude and phase. Although the surface wave device was designed to operate at 10 GHz, this
work demonstrates a large bandwidth of operation where the performances are accurate in the
reconstruction of the plane wavefronts: Figures 3d, 3e, and 3f for 8, 9, and 10 GHz, respectively.

Figure 2. (a) Transformation optics principle: the picture illustrates the orthogonal raypaths in the curved space and flat
space: radial geometric path lengths (blue lines), l1 and l2 respectively; circular geometric paths (red circles), s1 and s2,
respectively. (b) Appropriate permittivity profile used to cloak the considered surface: radial cross section of the permittivity
distribution, discretized in seven distinct dielectric layers. (c) Numerical setup used: the device is illuminated by an E-plane
pyramid horn antenna in the frequency range of 8–12 GHz. An absorbing layer (εr = 3.8–j7.2) is used to bound the
entire structure in the x-y plane. (d) Samples evaluated: flat plane, εr = 15 (d1); uniform dielectric curved surface, εr = 15 (d2);
and graded-index distribution (d3). All the three samples have equivalent planar dimensions (140 mm × 140 mm) and
dielectric layer thickness (4.5 mm). The two samples containing the 3-D surface have height equal to 17.1 mm.
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5. Conclusions

In this paper, a new modeling and design approach by combining transformation optics and modal analysis
has been developed. It has been used to design devices with arbitrary geometries in order to freely manip-
ulate and control electromagnetic surface waves on any surfaces. We have presented a generic approach,
which can be scaled up for any frequency operations and mass production. To validate our approach, an
all dielectric surface wave cloaking has been designed and simulated. Analytical and numerical results
showed good performance and accuracy in restoring wavefronts in terms of both amplitude and phase.
The sample device is insensitive to polarization changes and can operate within a wideband of frequencies.
It is worth noting that such an approach is valid not only for electromagnetic waves, but it can also be applied
to any wave-based phenomena, paving the way to a broader range of applications.
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