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Abstract 

Internet of Things (IoT) has been paving the way for a plethora of potential applications, which 

becomes more spatial and demanding. The goal of this work is to optimise the performance 

within the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) in the network 

layer. 

RPL still suffers from unbalanced load traffic among the candidate parents. Consequently, the 

overloaded parent node drains its energy much faster than other candidate parent nodes. This 

may lead to an early disconnection of a part of the network topology and affect the overall 

network reliability. To solve this problem, a new objective function (OF) has been proposed to 

usher better load balancing among the bottleneck candidate parents, and keep the overloaded 

nodes lifetime thriving to longer survival.  

Moreover, several IoT applications have antagonistic requirements but pertinent, which results 

in a greater risk of affecting the network reliability, especially within the emergency scenarios. 

With the presence of this challenging issue, the current standardised RPL OFs cannot 

sufficiently fulfil the antagonistic needs of Low-power and Lossy Networks (LLNs) 

applications. In response to the above issues, a context adaptive OF has been proposed to 

facilitate exchanging the synergy information between the application and network layers. 

Thus, the impact of the antagonistic requirements based on context parameters will be 

mitigated via rationalizing the selection decision of the routing path towards the root node.  

We implemented the proposed protocol and verified all our findings through excessive 

measurements via simulations and a realistic deployment using a real testbed of a multi-hop 

LLNs motes. The results proved the superiority of our solution over the existing ones with 

respect to end-to-end delay, packet delivery ratio and network lifetime. Our contribution has 

been accepted initially to be adopted within the standard body Internet Engineering Task Force 

(IETF).  
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1 
 

1 Introduction 

 

 

 

1.1 Shallow Foundation 

ith unprecedented potentialities of Low-power and Lossy Networks (LLNs) 

and Machine-to-Machine (M2M) [1],  the connectivity of the constrained 

devices (things) have become a reality, which opened the door to its fullest 

extent for the Internet of Things (IoT). Indeed, the prosperity of IoT is owed essentially to the 

standardisation efforts along with academia for new standards protocols, which enabled the 

LLNs to afford a durable infrastructure for a plenty of IoT applications with a low intrusive. 

Therefore, by the end of this decade, it is widely expected to observe the massive increase of 

the connected things that roughly touch every aspect of our daily life. This chapter gives an 

overview about the research conducted in this thesis. 

 

W 
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1.2  Motivation  

With IoT era, the cost of miniaturisation, computing, networking has been reduced, 

thus, this bunch of tiny and cheap devices paves the way for more proliferation of new IoT 

applications, starting from smart homes to smart cities. This will connect heterogeneous 

devices that will be counted in billions within the next decade, and the vast majority of those 

connected things will be low-power, with varying degrees of complexity, according to industry 

anticipation [2]. In this vision, the research community strives with many precious efforts to fit 

the needs and the challenges of this newcomer (i.e., IoT) since the last decade [3] [4] [5] [6] in 

terms of the restricted processing and memory, the scarcity of energy, and their high 

susceptibility to intervention. Their efforts concluded to the deficiency of the current protocols 

and there is a persistent need for new protocols in line with the emergence of the IoT 

applications. The standards bodies, the Internet Engineering Task Force (IETF) and the 

Institute of Electrical and Electronics Engineers (IEEE), have anticipated this necessity. Thus, 

up to now, their efforts have been fruiting different protocols across all layers, such as the IEEE 

802.15.4 protocol in the physical and MAC layer, Pv6 Routing Protocol for Low-Power and 

Lossy (RPL) in the network layer, and the Constrained Application Protocol (CoAP) in the 

application layer, and ended up with a new IoT stack as depicted in the Figure 1.1.  

 

 
Figure 1.1 Protocol Stack for IoT 
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Given the fact that the routing protocol is one of the main pillars of networking 

architecture, and confidently foreseeing its necessity for LLNs, RPL has swiftly become the 

de-facto routing protocol for IoT. Moreover, as RPL is the only standardised routing protocol 

for LLNs so far, then the number of the published work about RPL has been distinctly 

increasing every year according to the statistical distribution curve shown in [7]. In fact, it is 

expected to keep this proliferation increasing monotonically as RPL is meant to be one of the 

main building blocks to underpin LLNs within the IoT trend. However, this protocol is still in 

need for more enhancements, in terms of load balancing, power consumption, and context-

awareness. Henceforth, here from this point, our motivation took place and the research within 

this thesis came to focus on.  

1.3 Problem Definition 

Despite the existing research efforts such as in [8] [9] [10], which have been focused to 

address the limitations of the constrained devices within the design of the standards protocols, 

yet there is a room for enhancing the standard protocols and dealing with the gaps that need to 

be filled. Hence, these gaps can be identified as follows:  

 First, RPL is dealing with non-uniform distribution in large-scale LLNs in addition to 

the uniform ones, which leads to unfairness distribution for the number of children and 

to inequitable data traffic. Hence, the load imbalance is considered as a significant 

weakness in this protocol in terms of fairness in the number of children among parents. 

Thus, the energy of the overloaded nodes will be drained much faster than other nodes. 

Moreover, this problem has more harmful impacts if the overloaded node is a bottleneck 

node (i.e. those are within the first hop to the root), which may result in early 

disconnection in the part of the network that is covered by that overloaded parent, and 
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consequently affect the network reliability negatively. Therefore, the traffic balancing 

is a key issue that urges to be considered within the design of RPL protocol. 

 Second, with IoT era, a plethora of applications has been emerged. Nevertheless, these 

quotidian applications may have antagonistic requirements (e.g. end-to-end delay and 

lifetime) which are susceptible to increase the risk of performance degradation of RPL 

protocol. In fact, that is due to changing the priority of these antagonistic requirements 

as a result of emergency scenarios or in response to a new context. Consequently, this 

challenging issue is associated with building the best topology in RPL, which cannot 

sufficiently fulfil the antagonistic requirements of the LLNs applications. 

This thesis strives to address the following questions: 

1) What constitutes a better traffic distribution among the overloaded nodes in 

RPL compared to the existing solutions?  

2) Can the RPL Destination Oriented Directed Acyclic Graph (DODAG) 

construction mitigate the risk of the bottleneck nodes in LLNs?  

3) How can RPL be a more reliable protocol in emergency scenarios considering 

the coexistence of the antagonistic requirements within IoT applications? 

4) Will the benefit of the adaptive routing technique for the antagonistic 

requirements lead to improvements in the performance and quality of networks?  

 

1.4  Aim and Objectives 

The main aim of this thesis is to enhance the performance of the current standard routing 

protocols of IoT, in particular of RPL protocol. To focus on that goal and get past that standstill, 
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we proposed several algorithms to ensure better load balancing, confirming energy-balanced, 

and constructing paths based on the context in RPL to mitigate the impact of the antagonistic 

requirements. 

To achieve the overall aim, several objectives have been set as follows:  

 Objective 1: The first objective is to gain an in-depth knowledge and master 

the state-of-the-art about IoT concepts, the potential applications, the new 

standards stack of IoT with more focus on routing protocol, and investigate the 

major issues and concerns related to RPL protocol. 

 Objective 2: The second objective is to scrutinise and analyse the features and 

the drawbacks of the current standard RPL objective functions (OFs).  

 Objective 3: Designing new algorithms with the aim of endorsing the reliability 

in RPL in terms of load balancing, context adaptive, and mitigating power 

consumption and the antagonistic impact on LLNs applications. 

 Objective 4: Evaluating the proposed algorithms performance metrics, such as 

lifetime, PDR, and end-to-end delay, and their techniques via configuring a real 

testbed nodes environment alongside appropriate software simulator tool.   

 

1.5  Thesis Contributions 

1.5.1 Key Outcomes 

The impact and applicability of this work goes beyond academia and extends to be included 

within the standards body, which has been initially accepted to be adopted within the standard. 
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The key outcomes of this study in the form algorithms, and protocol improvements are listed 

as follows: 

 Firstly, a new OF has been proposed using a new metric and novel technique, to achieve 

a better distribution in the number of direct children among the candidate parents, in an 

attempt to balance the load traffic and keep the battery lifetime thriving for a longer 

time.  

 Secondly, new technique of distribution in the number of children has been widen to 

accommodate the entire path towards the root rather than the number of direct children 

only.  

  

 Thirdly, a context-adaptive OF has been proposed to facilitate exchanging the 

information between application and network layers. The key property is to optimise 

the selection decision of the routing path towards the root node adaptively, by 

juxtaposing the antagonistic requirements within the application, according to the new 

context triggers.  

 

1.5.2 List of Publications during this research 

 M. Qasem, A. Y. Al-Dubai, I. Romdhani and B. Ghaleb, “Load Balancing Objective 

Function in RPL” Internet-Draft-roll-rpl-load-balancing-02. Internet Engineering Task 

Force (IETF) 2017. 

 M. Qasem, A. Y. Al-Dubai, I. Romdhani and B. Ghaleb, “A New Efficient Objective 
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1.6  Thesis Structure 

The remainder of this thesis is organised as follows. In Chapter 2 more details about 

IoT definition and their potential applications, with more focus on the applications with 

emergency scenarios. Chapter 3, the literature review, provides a further discussion of the state 

of the art research presents, across all layers, the different protocols of the standardisation 

efforts on Low-power and Lossy Networks (LLNs) of IoT stack with more attention has been 

given for the RPL protocol. It also gives the reader the essential foundation for understanding 

the rest of this thesis. The next chapter is Chapter 4, the tools for IoT are presented, including 

the existing LLNs operating systems along with their main features, and the testbed hardware 
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as an experimental environment along with main features of the simulator used in this thesis. 

In Chapter 5, the load-balancing issue in RPL is identified and investigated. Accordingly, a 

new Load Balancing OF for RPL is introduced to improve the balance of traffic via improving 

based on the number of child nodes among the overburdened parent nodes in the OF, to ensure 

network lifetime maximization. The thesis also explored the synergy between the context 

parameters and RPL routing protocol, which further alleviates risks caused by the application 

antagonistic needs as given in Chapter 6. Furthermore, an adaptive OF based on the context is 

proposed to decrease the impact of the antagonistic requirements throughout the emergency 

scenarios. Additionally, the network lifetime is optimised during the non-emergency scenarios 

via the accumulated number of children towards the root node. The implemented OF has been 

tested using real testbed measurements of a multi-hop LLNs nodes in conjunction with 

simulator. The thesis ends by giving conclusions, in Chapter 7, shaped from the current 

research and outlining avenues for future directions. 
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2 
 

2 Background 

 

 

 

 

 

2.1 Introduction 

In this Chapter, a generic historical background of Wireless Sensor Networks (WSNs) is given. 

Then, the IoT definition as a term along with its potential applications are also presented with 

more attention paid to the near future trends of such applications and their influences. 

Moreover, this chapter discusses the essential background to facilitate the understanding of the 

research problems within this thesis. Across all layers, we survey the different protocols of the 

standardisation efforts on Low-power and Lossy Networks (LLNs) of IoT stack, with more 

focus on the protocol RPL in the network layer.  
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2.2 Historical view of WSNs 

The story of the sensors network began with the U.S. Sound Surveillance System 

(SOSUS) in 1952 by U.S. Navy. The point behind it was to sense the Soviet submarines in the 

sea via underwater microphones called hydrophones [11]. Currently, these sensors are utilised 

in notification systems for earthquake [12].     

Also, in 1980 the U.S defence launched another program for WSN called the 

Distributed Sensor Networks (DSN) at the Defence Advanced Research Projects Agency 

(DARPA)[13]. Before that in a couple of years, the Advanced Research Projects Agency 

Network (ARPANET) was working. The aim of the project was ambitious:  “The network was 

assumed to have many spatially distributed low-cost sensing nodes that collaborate with each 

other but operate autonomously, with information being routed to whichever node can best use 

the information”[13]. The point was to figure out whether it is possible to extend the 

ARPANET to sensors network. 

2.3 Low-power and Lossy Networks 

With the beginning of this decade, new terminologies have been proposed to describe 

the new appearances of networks that include the constrained devices [14]. A good example of 

these terminologies is the LLNs (Low-power and Lossy Networks) [15] and Constrained-Node 

Networks (CNNs) [6]. The definition of LLNs is “typically composed of many embedded 

devices with limited power, memory, and processing resources interconnected by a variety of 

links, such as IEEE 802.15.4 or low-power Wi-Fi” [15]. Furthermore, an LLN introduced in 

[16] as “a constrained-node network with certain network characteristics, which include 

constraints on the network as well”. This attention of LLN is owed essentially from the wide 
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range of applications that can be under the umbrella of LLNs, comprising, industrial 

monitoring, smart building and homes, lighting, access control, e-health , environmental 

monitoring, urban sensor networks, energy management and so forth [15]. To enable LLNS 

devices to the mentioned applications, the Standard bodies IETF and IEEE have standardized 

new protocols, as detailed in Section 2.6. Thus, utilising the constrained devices has become 

possible, despite the fact of the limitations of such devices in terms of memory and processing 

capacities, small data rates, and limited energy which typically powered by non-rechargeable 

batteries. 

 

Commonly, the architecture of the constrained devices is almost similar. Figure 2.1 

represents the main components of a constrained device, namely the sensing/actuating unit, a 

central processing (MCU) unit along with operating system (OS) and Memory units, 

communication (sending TX and receiving TR) unit and the power unit [17]. 

As the power consumption is a significant issue for the LLNs devices, it is important to 

get them work at a very low data rate and transmission power aiming at an extended lifetime. 

Figures 2.2 shows a comparison between different wireless devices, in terms of power 

consumptions of transceivers and the microprocessors with respect to their data rates. Among 

Figure 2.1 Architecture of Constrained Device 
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all illustrated devices, MSP430 LLNs devices show the minimum transmission power.  

However, the ZigBee and the Bluetooth devices are located within the medium average in terms 

of power consumption and with similar data rate compares to LLNs devices. However, when 

it comes to Wifi the data rate is much better but on the express of more power consumption 

[18] [19] [20], which does not suit the IoT devices.   

 

Figure 2.2 Wireless devices power consumptions comparison with respect to their 

data rates (Redrawn from [21]) 

 

2.4 Internet of Things 

Capturing the gist of the Internet of Things (IoT) in one definition is quite hard, thus, 

there is a considerable variation in the definition and explanation of IoT. Historically, Kevin 

Ashton from MIT has pioneered the term “Internet of Things” at the beginning of the previous 

decade[22], and then he added: 

“The Internet of Things has the potential to change the world, just 

as the Internet did. Maybe even more so.”[23] 
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In the last few years, the interest in IoT has been a growing due to the advent of new 

applications widely for WSN in different fields. Indeed, this proliferation can be recoganised 

due to the decreasing cost of the maintenance and configuration for IoT devices (things). For 

instance, the lower energy consumption in sensors is preferable, especially in the presence of 

energy shortage that we have on our planet. Furthermore, LLNs as infrastructure for IoT are 

able to work independently without the need to attend from human and that another cutting-

cost factor can be considered. As the future trend for IoT, the U.S. National Intelligence 

Council (NIC) has anticipated the benefits of IoT over the conventional Internet in the civil 

technologies and reported that: 

 “By 2025 Internet nodes may reside in everyday things, food 

packages, furniture, paper documents, and more. Today’s developments 

point to future opportunities and risks that will arise when people can 

remotely control, locate, and monitor even the most mundane devices and 

articles. Popular demand combined with technology advances could drive 

widespread diffusion of an Internet of Things (IoT) that could, like the 

present Internet, contribute invaluably to economic development and 

military capability”[24]. 

Placing the virtual world (i.e., Internet) and the physical world (i.e., Things) together 

semantically means a world-wide network of interconnected objects uniquely addressable [25]. 

Internet is considered as an immense revolution for human, and then IoT shapes the next 

revolution of Internet, taking into account the new manner of collecting information and then 

providing it as services.  

As mentioned earlier, the outstanding concept of IoT is to allow sharing the resources 

and provide them as services within a minimum level of power consumption. Thus, the option 
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to replace the typical ways of using and restricting these resources is on the table. Moreover, it 

can be considered as a further step to reduce the gap between poor and rich people as these 

services will become more affordable. 

In general, IoT architecture has three main components [26]:  

1) Hardware (Things): includes all different devices such sensors, actuator, smartphones 

and Radio Frequency Identification (RFID). Generally, any physical object can deal 

with at least one of the following in digital way [27]: 

 Sensors (light, humidity, temperature, etc.) 

 Communication transceiver (either wired or wireless) 

 Actuators (sound, motors, etc.) 

 Computation (programmable) 

These things are varied in size, capabilities, and functionalities. Figures 2.3 shows a 

widely used IoT device called sky motes [28]. Further details about this device in 

Chapter 4. 

Figure 2.3 Sensor MTM-CM5000-MSP [27] 

 

2) Data storage and analytics: this part represents the storage technique in addition to 

analytics. As the core role of things is to gather information and then offer it as services 
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on demand. In addition, the huge number of these devices is indicating to the massive 

amount of the collected information that should be stowed. Due to this reason, the 

machine learning algorithms have been used at analysis process. 

3) Visualization: this part permits the end-user to interact with the IoT application. 

Moreover, this constituent has been given more consideration to meet the end-user 

needs as it forms the business oriented. 

2.5 IoT Applications 

Over the recent years, there has been a prolific growth in the research of IoT. Nowadays, 

the potential of IoT applications can be recognised in a vast range of different domains, with 

varying degrees of complexity, due to the wealthy market opportunities in this field. To this 

end, the research teams strive to sort out the challenging problems of IoT that are standing as 

an obstacle to release the best IoT products, and so far their progress is due to some applications 

in different disciplines [3] [29], such as: 

 Home (Health, Security, Utilities, and appliances) 

 Transport (logistics, Traffic, Parking, emergency services) 

 E-health (remote care, monitoring) 

 Community (smart metering, factories, retail, Monitoring environment) 

 Defence and Military  

 Smart Cities 

In addition to the disciplines mentioned above, IoT has a significant potential in 

Emergency Management and Real-time applications [30] [31].  IoT applications can be mostly 
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classified into two categories based on the data assembly approach: time-driven and event-

driven. In the first category, the date is collected periodically based on a predefined interval to 

monitor the environment, a place, or for instance a particular incident or a phenomenon in 

nature. The second one can be used to start reading the data once a specific event is detected 

where the emergency management can take a place for IoT applications. In general, IoT 

application will be part of every aspect of our life as Figure 2.4 explains.  

 

Figure 2.4 Forecast connections by sector from 2016 to 2024 

 

Figure 2.4 [32] shows clearly the potential of IoT market in several disciplines. This 

forecasting study, which was conducted in 2017 by Ofcom, illustrates the number of connected 

IoT devices in the UK was roughly 13.3 million by the end of 2016. However, this number is 

predicted to rise up [32] at a Compound Average Growth Rate (CAGR) of roughly 36%, to 

155.7 million connected devices by the end of 2024. 
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Moreover, the study concluded that there are several factors will influence the adoption 

of the IoT across all disciplines and domains. 

2.6 Overview standardisation efforts on LLNs 

The Open Systems Interconnection (OSI) stack conceptualises networking into seven 

layers as shown in Figure 2.5.a.  However, this stack has been minified to five layers as shown 

in TCP/IP stack [33] Figure 2.5.b, where both of the presentation and session layers have been 

merged into the application layer. With IoT era, the current protocol in TCP/IP stack cannot 

accommodate the needs of the newcomer (IoT), thus, the standards bodies IETF and IEEE 

anticipated this necessity and introduced new stack to meet the needs of the constrained devices 

(things) as shown in Figure 2.5.c [3], [34]. In the coming sections, we will come across different 

layers and protocols of the standardisation efforts on LLNs of IoT stack. 

 

Figure 2.5 The Evolutionary of IoT stack 
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2.7 IEEE 802.15.4 Protocol  

The IEEE 802.15.4 standard [35]designates the physical and the Media Access Control 

(MAC) for low-rate wireless personal area networks (LR-WPANs). Mainly the IEEE 802.15.4 

protocol aims to easy installation, reliable data transfer, short-range operation, extremely low 

cost, and a sensible battery life while maintaining a simple and elastic. A summary of some 

features of a LR-WPAN is given in Table 2.1. 

Table 2.1 LR-WPAN Features  

Feature Specification 

Over-the-air data rates 250 kb/s, 100kb/s, 40 kb/s, and 20 kb/s 

Topologies Star or peer-to-peer  

Allocated extended addresses 16-bit short or 64-bit  

Time slots allocation Optional allocation of guaranteed time slots (GTSs)  

MAC 
Carrier sense multiple access with collision avoidance 

(CSMA-CA) channel access 

Reliability Fully acknowledged protocol  

Power consumption Low power consumption 

Energy constraint Energy detection (ED) 

Link quality Link quality indication (LQI) 

Number of channels vs Band 
16 channels in the 2450 MHz band, 30 channels in the 

915 MHz band, and 3 channels in the 868 MHz band 

 

The participated devices within IEEE 802.15.4 could be one of two types: either a full-

function device (FFD) or a reduced-function device (RFD). An FFD device can act as a 

Personal Area Network (PAN) coordinator or a coordinator, or a device. Thus, an FDD can 

communicate to RFDs or other FFDs. Whereas an RFD communication is restricted only to an 

FFD device. Given this limitation in RFD devices, then the amount of data that intended to 

transfer to FDD is low.  



C H A P T E R  2   B A C K G R O U N D  

  

19 | P a g e  

Another main difference between FDD and RFD based on the intended role for each 

type. Considering the un-slotted access approach, a device, normally the gateway (FFD), needs 

to remain always awake, however, the awake of RFD is on demand i.e. when it is required. 

This extremely mitigates the power consumption to the least level, on the other hand, 

consequently, increases the router the power consumption. 

According to the application requirements, an IEEE 802.15.4 LR-WPAN may operate 

in one of two topologies: either the star topology or the peer-to-peer topology.  

The topologies within IEEE 802.15.4 LR-WPAN fall into one of three types according 

to the requirements of the application: the star, the peer-to-peer or the cluster-tree topologies 

as illustrated in Figure 2.6. 

 

Figure 2.6 IEEE 802.15.4 Topologies 

In a star topology, all the traffic between devices must pass through the primary 

controller, i.e. the PAN coordinator. The main responsibilities of the PAN are, initiating, 

routing, and terminating the communication in the network. Conversely, in a peer-to-peer 

network, any two nodes within the range of each other they can communicate, where one node 
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is chosen as the PAN coordinator. Obviously, the elasticity in this type of topology is much 

better, enabling all types of mesh networks, but on the expenses of increasing the power 

consumption. For this reason, it is recommended to keep the PAN coordinator with mains 

powered, whereas powered the rest devices with battery. The cluster-tree topology comes to 

combine the previous two topologies together. In this case, some of the edge nodes could be 

out of the radio coverage, however, these nodes might still interconnect through the clusters. 

2.8 IEEE 802.15.4e (TSCH) 

IEEE 802.15.4e-amendment1 was released in 2012 [36] which has been combed later 

on to the next revision of IEEE 802.15.4 in 2015 focusing on the key feature named Time 

Synchronized Channel Hopping (TSCH). TSCH provides a robust channel hopping technique 

to address the emerging needs of industrial requirements. The first commercialization of TSCH 

technology is owing to Dust Networks, driven from Time Synchronized Mesh Protocol 

(TSMP) [37] which has been effectively adopted in Wireless HART networks [38] [39]. In 

short, the authors in [40] study the general functional enhancements of IEEE 802.15.4e (Low 

Energy, Information Elements, Enhanced Beacons, MAC Performance Metric, and Fast 

Association). Moreover, along with TSCH mode, IEEE 802.15.4e states another four MAC 

behaviour modes[40], namely,  Deterministic and Synchronous Multi-channel Extension 

(DSME), Low Latency Deter Radio Frequency Identification Blink (BLINK) ministic Network 

(LLDN), Asynchronous multi-channel adaptation (AMCA). 

TSCH integrates time-slotted access, which is originally defined in 802.15.4MAC 

protocol, with channel hopping capabilities. This smart combination provides the ability to 

anticipate energy efficiency, communication reliability, and high network throughput [41]. 

Furthermore, by eliminating collision among competing nodes can, in turn, achieve 
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deterministic latency. Furthermore, the time synchronization in TSCH is vital to attain ultra-

low-power operation in addition to channel hopping to secure a reliable network [42] [39].  

As the topology TSCH is self-governing, it can be used to accommodate any network 

topology such as a tree, star, partial or full mesh. Typically, all the aforementioned features of 

TSCH are applied in wide domains include oil and gas industry, manufacturing different 

products such as (food/brew, chemical, pharmacological). water/waste treatments, green 

energy production, and climate control [36]. 

2.9  6TOP 

 However, TSCH schedule still lacks for management, thus, in Nov 2013 IETF charted 

a working group called 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) to enable IPv6 

on top of TSCH [44] [39]. The goal of 6TiSCH is to provide high throughput and minimum 

latency that are ideal for Industrial WSNs such as WirelessHART and ISA100 [45]. Given the 

heterogeneity of the standards and devices, 6TiSCH introduces a so-called minimal 6TiSCH 

configuration [46] to guarantee a reasonable level of compatibility. The key point in 6TiSCH 

networks is the distributed scheduling among the nodes, which can be achieved by the 6TiSCH 

Operation sublayer protocol named 6top Protocol (6P) [47], this protocol enables the 

interaction among the neighbour nodes to add/delete timeslots called cells.  Moreover, 6top can 

run one or several scheduling functions which specifies when to add/delete the cell [46]. 

Finally, the work on 6TiSCH is still ongoing, however, it is anticipated to be the standard for 

LLNs industrial monitoring applications. 

2.10  6LoWPAN 

The adaption layer (header format) 6LoWPAN (IPv6 over Low power WPAN)[35] [48] 

standardised by IETF  to adopt the connection between IPv6 protocol (network layer) and IEEE 
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802.15.4 protocol (Mac layer). Enabling the transmissions of IPv6 Packets over IEEE 802.15.4 

Networks of the constrained devices is demanding for many LLNs applications. To open the 

door for such tiny, ubiquitous devices to participating natively over the Internet, several efforts 

have been taken place to arm the intermediate layer 6LoWPAN with a number of techniques 

[49] as follow: 

 A) Compression technique: IETF standardised RFC 6282 [50] due to the limited 

bandwidth (127 bytes) provided by the IEEE 802.15.4 protocol to fit only 60-80 bytes for a 

User Datagram Protocol (UDP) payload. In this technique, the extra bytes have been minimized 

and resized. In more specific words, compressing the IPv6 header without the 8 bits field of 

the hop limit.  

 B) Fragmentation: Normally, the IPv6 payload does not fit the payload of the IEEE 

802.15.4, so the fragmentation is the only option in this case. 6LoWPAN plays an essential 

role to guarantee the right assembling of the fragmented packets over multiple hops. 

 

Figure 2.7 6LoWPAN has three architectures types 
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Figure 2.7 illustrates the 6LoWPAN three architectures types, namely, the simple 

LoWPAN architecture, the extended LoWPAN architecture and the ad-hoc LoWPAN 

architecture. Unlike the ad-hoc, the simple and the extended types need an infrastructure to 

operate which are mainly used in smart homes and buildings applications. Clearly, every node 

within the architecture can be either a router (R) and edge router, or a host (H). 

2.11   IPv6 Routing Protocol for Low-Power and Lossy Networks  

Given the remarkable pragmatic connection between LLNs and IoT, and the fact that 

LLNs is emerging and underpinning the infrastructure of IoT, IPv6 Routing Protocol for Low-

Power and Lossy Networks (RPL) has swiftly become the de-facto routing protocol for IoT. 

Indeed, that achievement can obviously be seen from adopting RPL by the ZigBee Alliance 

companies within their technologies along with IEEE 802.15.4 MAC and PHY layers [51]. The 

standards body IETF established the Routing Over Low-power and Lossy networks (ROLL) 

working group to design a routing protocol for LLNs. So, ROLL considered the route-over 

approach [33] to propose RPL in 2012 [53].  

Generally, existing routing protocols for WSNs and LLNs can be categorised either as 

proactive, reactive, or hybrid. In proactive protocol every node within the topology maintains 

a routing table that continuously evaluates the routes [54] [55]. RPL is considered as a proactive 

(table driven) distance vector routing protocol, as the routing tables are updated frequently in 

two different modes, namely, storing and non-storing modes, as detailed in Section 2.11.3.  

While, in the reactive approach, the route is created towards the destination on demand, 

so-called on-Demand routing protocols. In this approach the routing information, driven form 

route discovery events, play an essential role to build the cache tables. These types of protocols 

are ideal only when the load traffic is low, but not an option in the real-time applications where 
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the delay is a critical factor. The 6LoWPAN Ad Hoc On-Demand Distance Vector (LOAD) 

Routing protocol [56] relying on the flooding technique, if any node is willing to send then the 

network will be flooded with the route request. The following sections will present in brief the 

major components of RPL. 

2.11.1 RPL Control Packets 

To maintain the  Destination Oriented Directed Acyclic Graph (DODAG) construction, 

new types of Internet Control Message Protocol (ICMPv6) [57] control messages have been 

proposed in RPL. The type of each message can be identified using the code field within the 

message format as shown in Figure 2.8. 

 

 

Figure 2.8 RPL ICMP messages [58] 

 

 DODAG Information Object (DIO): This control message holds the 

configurable parameters RPL that can be learned (such as RPLInstanceID) to 

find an RPL Instance, select a DODAG parent set, and maintain the DODAG 

construction. The starting point begins when the DODAG root broadcasts the 
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DIO message to the downstream neighbour nodes and enable Point-to-

Multipoint traffic in an upward direction. DIO messages hold the 

RPLInstanceID, DODAG root identity, routing metrics, rank, objective function 

and DODAGID. These messages are sent periodically with the cumulative 

sequence number in order to start the parent selection process. 

 

 Destination Advertisement Object (DAO): The DAO message is dedicated to 

propagating destination information upwards along the DODAG. Sending DAO 

message, which is in response to a DIO message, is an optional feature in RPL 

for the applications with point-to-multipoint or point-to-point traffic. This 

feature can be enabled, by the identifier Mode of Operation (MOP) within the 

DIO message, either as a storing or non-storing mode. In storing mode, the child 

node unicasts the DAO message to the selected preferred parent, whilst 

unicasting DAO message directly to the DODAG root if the mode is non-

storing. It is worth to point that, in both modes, the feature of receiving an 

acknowledgment (i.e. DAO-ACK) for the sent DAO is optional.  

 

 Destination Advertisement Object Acknowledgement (DAO-ACK): This 

message is sent, in the response to receiving a DAO message, in a unicast 

manner to the DAO sender to acknowledge its willingness to act as a next hop 

node towards the DODAG root. 

 

  DODAG Information Solicitation (DIS): Multicasting the DIS message by 

an RPL node, willing to join the DODAG, to solicit a DODAG Information 

Object from neighbourhood nodes. 
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2.11.2  RANK and DODAG Construction  

To construct and maintain the topology (DODAG) an explicit routing information can 

be transported. According to the DIO base rules [53], RPL employs a number of different 

identifiers within DIO message, among other control information, as shown in Figure 2.9 [53], 

part of these  identifiers are  (1) RPLInstanceID to identify the number of DODAGs if it is 

more than one, (2) DODAGID represents the RPL Instance. (3) DODAGVersionNumber 

shows how many times the DODAG has been reconstructed as part a technique of free loop, 

(4) Rank which will be calculated based on the designated objective function.  

 

Figure 2.9 DIO Format 

RPL relies on DIO control message to initiate the DODAG construction. The first move 

comes when the DODAG root node emits the DIO message to all neighbour nodes. As soon as 

the nearest node receives the DIO message, it adds the sender to its parent list, then calculates  

the rank using equations (2.1) and (2.2) [59] associated with the selected OF. The node decides 

to join this DODAG based on the rank value. If the sender has the same or less rank compared 
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to the child node’s rank then it would opt as a preferred parent, and thus permits all traffic from 

the child node to be received.  

Rank(N) = Rank(PN) + RankIncrease                                                         (2.1) 

RankIncrease = Step × MinHopRankIncrease                                 (2.2) 

where  Rank(N) is the rank of the sender node and Rank(PN) is the Rank of preferred 

parent, Step represents a scalar value and MinHopRankIncrease represents the minimum 

increase in rank between a node and any of its DAG parents. RankIncrease is represented in 

units expressed by the variable MinHopRankIncrease which can be fixed according to the 

configuration. 

variable MinHopRankIncrease 

According to the predefined criteria, the selected objective function defines the way of 

calculating the rank with a monotonical increase fashion in a downward direction, wherein the 

DODAG root has the least rank to guarantee loop-free topology. In this regards, the rank 

embodies the virtual location of the node itself compares to the other nodes within the DODAG. 

In fact, this scaler position might be improved by associating with the lower rank node, which 

is at the same time act as an anchor for the path towards the DODAG root.  

Afterward, the node propagates its own DIO with all updated information (i.e. 

identifiers) to its neighbours as shown in Figure 10.b. In the same context, another scenario 

could emit the DIO, when the node intends to join DODAG it transmits DIS control message 

to its neighbours to solicit DIO message, then join by choosing the preferred parent according 

to the rank. An example of the DIO messages sequence into DODAG construction is depicted 

in Figure 2.10. Heretofore, two objective functions have been standardised by IETF, OF0 [60] 

and MRHOF [59] relying on the metrics hop count and ETX respectively. More metrics have 
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been proposed in [61] such as node energy, throughput, latency, and others. Nevertheless, the 

RPL specification [53] does not obligate any certain OF neither routing metrics to be 

considered and left the door open for further improvements for any new metrics or OF. 

 

     (E) 

Figure 2.10 The sequence of DIOs in DoDAG construction in RPL 

2.11.3  Communication Patterns 

Generally speaking, RPL facilitates three patterns of communications: Multi-Point-to-

Point (MP2P) which is considered as the superior traffic flow in most of  LLN applications 

[53], and it performs the routes from multiple nodes up to the DODAG root. In contrast, the 

traffic in Point-to-Multipoint (P2MP) pattern transmitted from the DODAG root along to the 

multiple nodes according to the needs of some applications. The last pattern called point-to-
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point (P2P) which facilitates the traffic between any two nodes within the same DODAG as 

depicted in Figure 2.11. 

 

A)  Upwards Routes 

In this approach, the DIO messages are utilised to disclose and maintain the routs 

towards the DODAG root as shown in Figure 2.11. Upward routes support MP2P traffic flows 

from the leaves nodes towards the DODAG root. In such a traffic pattern, each node should 

select one node as a preferred parent from the set of one-hop neighbours according to the 

calculated rank that driven from the criteria’s that have been injected within the OF to fit the 

needs of the application. Thus, all traffic in MP2P will be transmitted to the DODAG root via 

these constructed routes in upwards manner. The initiation step of Upwards routs begins with 

broadcasting DIOs by the DODAG root as detailed in Section 2.11.2. 

 

Figure 2.11 Upwards vs. Downwards routs 
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B)  Downwards Routes 

The Downward routes are constructed to support the traffic in both P2MP and P2P 

patterns. The designated routes are maintained via the DAO messages which have been 

proposed as an optional feature [53] in P2P and P2MP traffics. In this context, every node 

associated to the DODAG sends DAO to its preferred parent in a unicast manner. Accordingly, 

the received DAO will be handled based on one of two modes, storing and non-storing modes. 

To identify the mode that should be considered in each node a variable called mode of operation 

(MOP) is identified along with other values in DIO as DIO Base Rules [53], and then signaling 

Down the DODAG values that should be broadcasted by each node has a route to that DODAG 

root. The possible values of MOP have been proposed in [53] as given in Table 2.2. 

In the storing mode shown in Figure 2.12, the sub-DODAG Downward routing tables 

will be stored in addition to child address, based on these routing tables the current node can 

decide to which neighbour to send it, i.e. unicasting the DAO messages only to the DAO parent 

node.  

However, unlike the storing mode, in the non-storing mode shown in Figure 2.13, the 

sub-DODAG Downward routing tables stored only in the DODAG root, i.e. unicasting the 

DAO messages only to the DODAG root node. 

Table 2.2 DIO Mode of Operation (MOP) Encoding 

MOP Value Description 

0 No Downward routes maintained by RPL 

1 Non-Storing Mode of Operation 

2 Storing Mode of Operation with no multicast support 

3 Storing Mode of Operation with multicast support 

 All other values are unassigned 
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Figure 2.12 Storing Mode: Every node has the 

map of subtree 

 

 

Figure 2.13 Non-Storing Mode: Only the 

DODAG root has the map of the tree 

2.11.4 Objective Functions 

The Objective Function (OF) specifies how RPL nodes choose routes within a RPL 

Instance via selecting the potential parents by translating one or more metrics into the rank 

value. The used objective function calculates the rank based on some routing metrics such as 

hop-count, delay, energy, and so forth. 

Up to now, the IETF ROLL working group standardised only two different objective 

functions, namely, Objective Function zero (OF0) [60] and the Minimum Rank with Hysteresis 

Objective Function (MRHOF) [59]. The OF0 was first developed and known as a basic 

objective function that uses only the hop count as a routing metric. In other words, this objective 

function does not take into account any routing metric listed in [61] such as throughput, latency, 

link quality, and node energy. Moreover, the preferred parent in OF0 will be selected based on 

the minimum rank for the neighbour nodes. That means the rank increases strictly from the 

node towards the sink monotonically. Therefore, in OF0, all the forwarded traffic load by the 
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preferred parents towards the sink, do not fulfil any load balancing requirements. On the other 

hand, unlike OF0, MRHOF is slightly more complicated by emphasizing the hysteresis feature 

along with the rank calculation in resulting minimizing the churn (i.e. the frequent change of 

the preferred parent) to mitigate the path cost towards the DODAG root results in better 

network stability. Typically, the hysteresis feature plays a crucial role via permitting the node 

to change its preferred parent only if the new candidate parent rank differs remarkably from 

the current parent rank. A threshold can be pre-defined to compromise between quality and 

stability. If the threshold is too small, then the churn will be increased for the sake of quality.    

Thus, the node’s rank that calculated based on the metrics that are injected into the 

metrics container, which encompasses both metrics and constraints, considered either as link 

or node metrics. The default metric for the standard MRHOF is the Expected Transmission 

Count (ETX) metric. The main goal of ETX is to select routes with high end-to-end throughput, 

which is defined as follows [62]: 

𝐸𝑇𝑋 =
1

𝑑𝑓 × 𝑑𝑟

                                                                        (2.3) 

where 𝑑𝑓 indicates to the forward delivery ratio which is the measured probability that 

a packet is received by a neighbour. The 𝑑𝑟 indicates to the reverse delivery ratio which is the 

probability that an acknowledgment packet is successfully received.  

The expected probability that a transmission is successfully received and acknowledged 

which is represented in 𝑑𝑓 × 𝑑𝑟 . A sender will retransmit a packet that is not successfully 

acknowledged. 

With eyes wide open, the Objective Function is still a controversial part of the 

specification. The argument of many that OF swells the traffic load so it is superfluous for RPL 
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that is observable in [63], the authors proposed DAG-based multipath routing protocol (DMR) 

for routing in mobile sensor networks (MSNs). DMR provides multiple paths to allow mobile 

sensors to find alternative routes on local and global route failures. DMR constructs a DODAG 

by using two routing metrics, hop count and LQI without using the objective function. 

However, the authors compared their protocol to the existing mobile ad hoc network (MANET) 

routing protocols Ad hoc On-Demand Distance Vector (AODV) [64] and the multipath 

AOMDV[65], respectively not to the standard RPL that essentially designed for LLNs.  

Moreover, the key idea of the OFs separation is to bolster RPL elasticity to fulfil the 

variety optimisation requirements, which are highly demanding in handling LLNs applications. 

This freely choose attracts the researchers to propose new metrics and algorithms to enhance 

RPL. 

2.12 Constrained Application Protocol  

Constrained Application Protocol (CoAP) [66] is a web transfer protocol, designed by 

CORE working group of IETF to fulfill the limited capabilities of the constrained nodes. Many 

applications can benefit from this protocol among the constrained networks and LLNs 

particularly machine-to-machine (M2M) applications and automated buildings [67] [68] [66] , 

where there is no place for human intervention. To make this possible, CoAP introduces a 

resource discovery technique by listening to port 5683.The aim of CoAP is to act as HTTP but 

in a compact way within the constrained networks. Thus, CoAP is quite similar to HTTP in 

terms of client/ server model, i.e. the client can make a request on a certain resource already 

identified by URI, then the server response by code. While, HTTP messages interchange 

between client and server simultaneously, whereas, CoAP interchanges are asynchronous over 

UDP, which affected positively on saving energy consumption. CoAP has four different types 
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of messages with a specific role for each, namely, Confirmable, Non-confirmable, 

Acknowledgement, and Reset.  

CoAP located within the depicted entire stack in Figure 2.14 [69] of Lower Layer 

Technologies. In more particular, CoAP can be logically formed in two layers [66], the 

messaging layer to deal with UDP and asynchronous interactions, and the request/response 

layer to  handle the methods and codes as shown in Figure 2.15.  

 

 

                        Figure 2.15 Layering of CoAP 
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Figure 2.14 CoAP Operates Independently of Lower Layer Technologies 



C H A P T E R  2   B A C K G R O U N D  

  

35 | P a g e  

2.12.1 CoAP Message Model 

 CoAP defines four messages types: Confirmable (CON), Non-confirmable (NON), 

Acknowledgement (ACK) and Reset (RST). To identify the message type, a 2 bit within the 

message header has been used as listed in Table 2.3. 

Table 2.3 CoAP messages type 

 

 

 

Generally, each CoAP message has a unique ID to avoid any possibility of duplication, 

which is compacted to 16-bit size and can hold 250 messages/sec from one end-point to 

another. However, due to the asynchronous exchanging of the CoAP messages, they may arrive 

out of order leading to duplication or missing part of the messages.  

To tackle this problem, a mechanism has been used to ensure the reliability in CoAP 

via marking the sent message as a CON message within the CoAP header, which always carries 

either a request or response. Having this approach means that the sender should retransmit the 

confirmable message until receives an acknowledgment message (ACK) with the same 

message ID.  

In this context, the retransmission process can be determined in two parameters:  a 

timeout and the retransmission counter. The default timeout is assigned randomly and the 

retransmission counter is set zero. Thus, if the timeout is over that triggers the retransmission 

process to proceed only if the retransmission counter is still less than MAX_RETRANSMIT. 

Meanwhile, the counter will be increased and the timeout will be doubled (which means the 

waiting time interval (backing-off) will be increased exponentially to ensure congestion control 

Type Name 

0 CONfirmable 

1 NON-confirmable 

2 ACKnowledgement 

3 REST(RST) 
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comfortably. Once the retransmission counter is equaled to MAX_RETRANSMIT or the 

requester receives a Reset message then the failure of transmission process is confirmed. In 

contrast, the transmission will be considered successful if the sender receives acknowledgment. 

Nevertheless, this message could be rejected if the receiver could not process the 

confirmable message (i.e., the message is empty or has an error); in this case, the receiver 

consequently must either reply with a reset message (RST) or simply ignore it.  

On the other hand, if the message is unreliable type then a NON message can be used 

instead. The NON message does not need any ACK message but the message must contain an 

ID for duplicate detection (see Figure 2.16, in this example, 12y7xe). Unlike CON messages, 

the NON-message is dedicated to carry either a request or a response and should not be empty.  

A good example of such a message is the regular update messages collected from the 

peripherals sensors. Nevertheless, if the receiver struggled to process the message then the only 

option is to reject it and reply with reset message (RST) similarly to CON messages. 

Figure 2.16 Unreliable Message Transmission 

2.12.2 Message Format 

The CoAP message components are simply: header, token, optional information, and 

payload. In this regard, it is worth to describe each component and what does it contain in a 

brief. The token value follows the header in the message format, and the given size for the 

token is up to 8-byte length. 

Client                                            Server 

NON [12y7xe] 
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The main role of the token value is to narrate all requests and responses together based 

on request/response matching rules which token is part of them. 

 

Figure 2.17 CoAP message Format 

. The last part of the message is the optional payload, which mainly carries the content 

of the message itself to the recipient as shown in Figure 2.17.  

The description of each component within the CoAP message header are summarised 

in Table 2.4. 

Table 2.4 CoAP message header descriptions 
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2.13  Summery 

In this Chapter, we provided a historical and essential background of WSNs. The IoT 

potential applications are also presented with more focus on the near future trend of such 

applications and their impacts. Moreover, this chapter discussed the essential background to 

facilitate the understanding of the research problems within this thesis. Thus, the evolutionary 

process of the IoT stack has been introduced and how accordingly this stack was generated 

from the OSI and WSNs stacks. We also made an overview of the protocols accommodated in 

the current IoT standardised stack. The protocol RPL in the network layer has been given more 

attention 

 In the next chapter, we survey a range of existing load balancing solutions in RPL as 

part of the literature review along with the current approaches that have been used for the 

antagonistic metrics.  
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3 
 

 

Literature Review  

 

 

 

2.14 Introduction 

In this chapter, we survey a range of existing load balancing solutions in RPL and then 

categorise them as given in Section 3.3. Moreover, the context-awareness in RPL and the 

attributed metrics are presented with new classification given in Section 3.6. Then, the chapter 

concludes with a discussion on the gaps found in RPL protocol, which consequently initiated the 

aim of this study. 

2.15 Load balancing solutions in LLNs 

Given the remarkable pragmatic connection between load balancing and network 

lifetime, and the fact that minimizing the power consumption in WSNs [70] and  LLNs plays 

a key role to extend the network lifetime, which is the focus of the most existing protocols. 

However, the traffic load balancing is also obligatory to improve the entire network lifetime, 

where each node consumes the comparable amount of energy. Generally, when it comes to the 
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structure or to the participating style of the load balancing, the authors in [71] categorised the 

existing approaches into hierarchical and flat routing protocols. In hierarchical approach, the 

network is formed into clusters to prolong the network lifetime and allowing scalability. There 

are two main phases in clustering approach, bootstrapping and clustering. While in the flat 

approach, which is more preferable within the heterogeneous traffic pattern and non-uniform 

distribution [72], the design comes with multi-hop fashion which makes the load balancing in 

this approach more challenging due to the lack of global information.  

2.16 Load balancing in RPL 

In the literature, different classifications can be found for WSNs [73] from different 

perspectives. However, the existing solutions for load balancing in RPL can be categorized as 

follows: 

Figure 0.1 Load balancing Solutions for RPL 

2.16.1 Energy-Aware 

Chen et al. were the first ones to perform energy-balancing routing in WSNs [73]. 

Periodically, the sink selects the path on which to send the data packets, based on the energy 

level of the different paths it maintains. The authors proposed to compute the optimal paths in 

a centralized way, by collecting the whole radio topology at the base station. Since the topology 

may change dynamically, and the overhead is important for such a network, this approach may 

perform poorly in practice.  In [74], the energy-balancing routing approach has been proposed 

Load Balcncing 
Approches in 

RPL

Energy-Aware
Queue and MAC 

Aware 
Congestion 
Avoidance

Multipath
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in WSNs for the first time . It is notable that the vast majority of the existing work in the 

literature focus on the energy issue [75], which normally affected by the imbalance load within 

the RPL. Therefore, most of the proposed solutions strived to introduce the lifetime issue in 

line with load balancing issue. 

In [10] the authors presented an algorithm called A Load Balancing Model for RPL 

(ALABAMO) to tackle the unbalance load traffic problem, by considering the traffic profile. 

Within the proposed OF, ALABAMO employs a hysteresis technique to decrease the 

oscillation of changing the parent. The weighting approach has been used in this solution along 

with two auxiliary constants (MaxETXRatio, MaxWorkloadRatio) to optimise the Expected 

Transmission Count (ETX) with less churn, more elasticity, and better load traffic distribution. 

Thus, the preferred parent will be chosen with the least number of transmitted packets. Despite 

the proposed protocol normalized the network lifetime fairly, however, it could not provide 

better packet delivery ratio (with less 22% in LABAMO-80 and with less 44% in LABAMO-

90) compared to the standards OF MHROF due to selecting the parent with lower quality links. 

This PDR ratio, that this study came with, might be not acceptable in many LLNs applications. 

Another proposed protocol for load balancing in LLNs can be found in [86]. This 

protocol spreads the load through a set of braided paths to minimize the holistic transmission 

cost. However, the minimum cost load balanced multipath protocol omitted the QoS with the 

multi-class minimum cost load distribution scheme. The authors of [87] proposed a mechanism 

to anticipate the remaining energy within bottleneck nodes via suggested a new metric called 

expected lifetime metric. Accordingly, an algorithm has been proposed for multiple parents in 

RPL to boost the network lifetime. That can be achieved through mitigating the number of 

DODAG reconstructions 
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To prolong the survival time of the network, the authors in [76] proposed an algorithm 

combines the node metric along with the link metric to push the energy utilisation to the full 

extent limit as they stated. In this study, a lifecycle index (LCI) measurement has been proposed 

to predict the bottleneck of candidate path. In [77] the authors conducted a performance 

evaluation study for RPL energy-aware routing metrics in grid and random topologies. They 

concluded that using ETX metric in the standard MRHOF [59] might benefit indirectly the 

end-to-end delay towards the DODAG root, however, that affects the network lifetime 

negatively. In [78], the authors proposed a dynamic parent selection algorithm considering the 

recent traffic on the path towards the sink and the remaining energy besides the signal strength 

indicator (RSSI) as a composite metric. The collected information from DIO and beacon in 

MAC layer keeps those metrics updated. Another energy-aware algorithm presented in [79], 

the energy-aware Objective Function (EAOF) improves the network lifetime using the ETX 

metric along with residual energy metric in a lexical manner. The proposed OF has been 

implemented via Contiki/Cooja simulator, and investigated in terms of packet reception ratio 

and network lifetime.  

In [80] the authors propose a remaining energy-aware objective function to equalize the 

residual energy among the nodes in an attempt to prolong the lifetime for the entire network. 

The proposed objective function considers the remaining energy metric along with ETX metric 

in two ways, either considering the two metrics for only the node with the next-hop, or calculate 

both metrics for the entire path towards the DODAG root. Their findings, which have been 

generated from two scenarios in dense symmetric and sparse asymmetric networks, present a 

good progression in terms of the lifetime. However, in terms of the throughput, the MRHOF 

behaves better than the proposed OFs. Moreover, the end-to-end delay was omitted and never 

statistically studied to show the superiority of the proposed OFs over the standard ones.  
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Lastly, the main criticism against relying on the remaining energy as a metric is 

relatively the long time that the OF has to wait/run before recognising the difference in the 

remaining energy among the candidate parents as result of unbalanced load traffic. Moreover, 

the attempt of equalising the power consumption among the nodes could induce extra power 

consumption, especially when selecting a long bypass route to avert the risk of low power 

nodes.       

2.16.2 Queue and MAC aware 

The authors in [44], [95], [82], [83] highlighted the congested (overloaded) parent node 

problem in RPL, which results in losing many numbers of children packets due to the parent’s 

buffer limitation, in addition to unfair energy consumption. In [8], [81] the proposed protocol 

queue utilisation based RPL (QU-RPL) balances the load and enhances the end-to-end packet 

delivery performance. Fairly, it selects the parent node based on the queue utilisation, in 

addition to the number of hops towards the root by considering the both in the rank calculation, 

which is not completely clear how the hop count has been used in equation 5. The implemented 

protocol has been investigated extensively using testbed multi-hop nodes and the findings show 

a good improvement in terms of end-to-end packet delivery performance. However, the 

attendance of power consumption results, which have been omitted in this study, will add an 

essential clarity element to the entire picture of the proposed protocol performance. While in 

[82], the authors proposed an Adaptive Binary Exponential Backoff (ABEB) Algorithm, which 

defines several parameters to calculate the buffer overflow probability. The proposed algorithm 

presented a good superiority over the compared protocols in terms of packet drop count. 

However, it would be better if the study provided a sheer investigation in terms of the power 

consumption which obviously reflects the quality of the used links instead of the congested 

ones. The author in [84] [85] [86] presented dynamical interaction of MAC IEEE802.15.4 and 

RPL layers in LLNs in a cross-layer manner using the mathematical model approach. Two 
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metrics considering the dynamic behaviour of the MAC and routing. Particularly, the proposed 

protocol relied on the effects of the level of contention to extend the ETX reliability and, thus, 

to improve the load balancing and prolong the lifetime. In this joint model, two new metrics 

have been introduced in MAC layer, the first is R-metric which reflects the extended ETX via 

including the number of losses packets, thus, reflecting the end-to-end reliability between two 

nodes. The second metric is Q-metric which measures the contention level without measuring 

the queues. In [87] the authors propose the M-CoLBA Multichannel Collaborative Load 

Balancing Algorithm with queue overflow avoidance protocol aiming at improving the 

throughput and upgrading the bandwidth capacity via reducing interference and collisions, and 

accordingly congestion awareness. Also, this protocol targeting the losing packets 

minimisation as result of queues overflow, and in return achieving better load balancing. 

Generally, their findings show good progression over the standard RPL, however, one of the 

key elements for any protocol in LLNs is the power consumption. It would be more beneficial 

if this key element has been considered in this analysis.   

2.16.3 Congestion Avoidance 

One of the main issues that can affect the LLNs performance negatively is the 

congestion. The congestion issue has been widely debated and challenged in the literature [88], 

[89] as the crucial impact which can cause as shown in Fig. 3.2. In this section, congestion 

avoidance routing techniques, aimed at averting congestion from incidence. 

 In [90] the authors propose a congestion avoidance (CA-RPL) routing protocol. Using 

a composite metric which comprises several metrics, the link reliability, load balance, and end-

to-end delay alleviation have been targeted to be improved in the proposed protocol. 

Contiki/Cooja has been used to evaluate the proposed protocol. Another new approach has 

been used in [91] called content centric routing (CCR), where the content has been used to 
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construct the routing paths in an attempt to reduce the delay and balance the traffic. While in 

[92] the authors use Buffer Occupancy (BO) alongside ETX as a composite metric to balance 

the traffic and in return mitigate the number of lost packets.  

However, in [93] the authors present the residual energy and the queue utilisation of 

neighbouring nodes as one composite metric, considering the weighting approach to prioritise 

each metric with a higher constant. In this solution, the authors aim to improve the lifetime 

among Smart Grid Advanced Metering Infrastructure (AMI) Networks in Smart City via 

creating energy and congestion routing awareness.      

 

Figure. 0.2 Congested route[88], [89] 
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2.16.4 Multi-path approach 

The multi-path approach has been widely considered in the literature[76][94]in an 

attempt to achieve multifold benefits, such as fault-tolerance, better QaS, and of course better 

load balancing. Among the tree structure, the multi-path or multi-parents approach is not 

preferred to avoid loops. However, in RPL this problem has been tackled using the rank, as 

aforementioned in the previous chapters, the OF calculating the rank and monotonically 

decreases toward the DODAG root [53]. Thus, the multi-path approach has been considered in 

several solutions in the literature.  

The authors in [9] [95] present a new routing metric, namely, expected lifetime (ELT) 

that combines traffic load and link quality [68]. Hence, by utilising ELT, a multi-parent routing 

for RPL has been proposed with aim at balancing the energy consumption over the path towards 

the DODAG root.  The performance evaluation of the proposed algorithms has been conducted 

via WSNet simulations [96], which still insufficient to show the truly behaviour of the resource 

constrained nodes. 

  Also, A multi-path opportunistic algorithm has been proposed in [97]. The authors 

integrate RPL and IEEE 802.15.4 to enable QoS routing and achieve balance power 

consumption among the nodes. Using the WSNet/Worldsens event-driven simulator [96], the 

proposed algorithm attains a slight improvement in terms of end-to-end delay and PDR.  

The authors in [98] attempt to enhance RPL with a multipath trait. The proposed 

algorithm considers the node with the same rank to be selected as a preferred parent rather than 

the node with lower rank as the case in the standard RPL. The load balancing has been 

considered as well by including the residual energy metric along with the hop count to calculate 

the rank. Their findings have been conducted using the OMNET++ simulator which show 

slightly a good improvement, however, considering the churn analysis of switching parents in 
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such an algorithm could give better clarity and accuracy to recognise the superiority of the 

proposed algorithm over the standard OFs. Furthermore, it is not fully cleared from the 

provided results the behaviour of the proposed algorithm compares to the basic or standard 

RPL. 

 Another solution based on multi-path approach proposed in [99]. The authors present 

an energy equalization routing protocol to push the surviving time longer. In the same study, a 

multi-path forwarding route based on the cache utilisation has been proposed, where the 

mechanism which has been used for parent selection was according to a steady probability 

along with the preferred node to mitigate the buffer overload. Their findings show a good 

progress in terms of decreasing the end-to-end delay and the number of DAG reconfigurations, 

and extending the life time. However, the load balancing has not been achieved for the 

bottleneck nodes, i.e. the nodes with one hop towards the DAG root. Surely the role of this 

node is crucial and acting as a gateway, so it is important for any proposed solution for load 

balancing to engage these nodes with positive impact. Finally, the authors in [100] Introduces 

the Parent-Aware Objective Function (PAOF). The proposed solution uses both ETX along 

with the parent count metric, in a lexical manner, to select the best rout towards the DODAG 

root. The authors used Cooja simulator to conduct their results that show a good improvement, 

compared to MRHOF, in terms of Delay and Average Parent Load Density. However, it would 

be nice to show include the power consumption as it is one of the key metrics for such devices. 

 

2.17 Context-awareness Definition 

Among many descriptions of the context, the most comprehensive description has been 

stated by Dey: “Context is any information that can be used to characterize the situation of an 
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entity. An entity is a person, place or object that is considered relevant to the interaction 

between a user and an application, including the user and applications themselves.”[101].  

However, the mentioned interaction in the previous definition is not necessary to be 

exclusive between the user and the application only, it could be between the objects (i.e. 

sensors) themselves [102] as the case in the proposed protocol. The context that can be acquired 

via the sensor nodes could be :( temperature, location, power level, and so forth), generally, 

any information affects the routing might be considered as a context. Thus, the context-aware 

routing, which has a dynamic network, employs the above information (context) to fulfil the 

application requirements. However, the obvious argument in the sense that the context-aware 

routing would be more beneficial in the reactive or proactive routing. It depends on how often 

the context is changing [102], for example, if the context becomes different infrequently then 

the context-aware proactive routing is ideally and vice versa.  

As the RPL is a proactive routing protocol and the context changes in the emergency 

systems is scarce and uncommon, but could be a life-threatening case, then it is highly 

recommended to be a context-aware protocol. In addition, the reliability impact caused by the 

delay during the emergency scenarios is truly critical, which undoubtedly play a crucial role in 

rescue coordination and saving people’s lives. 

2.18 Context awareness in RPL 

Hence, the context contains the information that can be utilised, with utmost elasticity 

without rigid boundaries, to re-prioritise the best metrics that should be used in this case, i.e. 

according to the new context, in such type of applications, in particular within the real-time 

and emergency applications. For this reason, context information is highly in need to be 

considered in RPL. 
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 In response to the above, we need to allow the application layer to feed the routing 

layer with the context information, which can effectively optimise the routing decision as 

shown the cross-layer interaction between the three layers in Figure 3.3 [85]. That could be 

only possible if more than one metric/constraint have been considered within the routing 

decision to fulfil the needs of the application. Hence, the current work of RPL OFs depends 

either on an individual routing metric or on a combination of multiple metrics (composite 

metric) to build the DODAG as given in Fig. 3.4. 

 

Figure 0.3 Application, Routing and Mac interaction 

 

2.18.1 Single Metric 

Undoubtedly using only one metric in the OF, such as the standard OFs i.e., OF0 and 

MRHOF, is a beneficial form to decrease the amount of complexity within the OF. However, 

from the other side, there are some drawbacks that affect the optimisation of DODAG 

construction negatively as result of omitting other metrics within the OF.  
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In the single metric approach, the performance of DODAG would be deflated due to 

the application needs that have not been fitted sufficiently. For instance, if the residual power 

has not been taken into account, then the OF with hop-count metric [60] who are targeting the 

shortest path, may suffer from a failure because of the battery power may run out. Another 

example can be noticed, when the OF depends only on ETX [59] as a routing metric, then the 

latency would be increased as a result of unbalanced load traffic [103] [8], [81], without 

qualms, this has a serious impact on the real time LLNs applications reliability or delay. 

Thus, using the ETX metric in the OF alone is inadequate, as the needed requirements 

are not satisfied in some applications. 

2.18.2 Composite Metric  

A number of research efforts have been strived to develop RPL by combining more 

than one metric in the OF. The existing approaches of combining multiple metrics (composite) 

fall into one of three categories [104]:  

 

 

Figure 0.4 Current OF Metrics Approaches 
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(a) Hierarchical concatenation (Lexical) 

 If two candidate parents provide the same value of the main metric (i.e. the driven 

rank), the secondary metric or metrics are triggered to outweigh one of the parents as preferred 

parent. However, because this similarity case barely happens, it has been considered as the 

main drawback of this approach and discouraged researchers to use it in RPL enhancement 

compares to the other approaches. To overcome this point, combining the metrics lexically 

could be beneficial if the matching of the value conducted based on a range of values rather 

than on a particular value only.  

The key point of the lexical combination is that it is not mandatory to keep the order of 

the participating routing metrics. For instance, the authors in  [105] proposed an algorithm that 

builds short paths in an attempt to mitigate misbehaving nodes that acting greedily or 

maliciously. They combined the Hop Count (HC) metric with Packet Forwarding Indication 

(PFI) metric lexically. In addition, the authors in [79] combined the ETX metric and the 

residual energy (RE) metric lexically in the proposed protocol Energy-Aware Objective 

Function (EAOF). The RE metric will be considered only if the calculated rank via ETX for 

the neighbouring nodes (i.e. potential preferred parents) are quite similar or within the same 

level. In this case, relaying on the maximum RE metric is the option to decide which one is the 

preferred parent. Their findings presented improvements in terms of balance energy 

consumption, and network lifetime.  Another Energy-Aware Objective Function in a lexical 

manner can be seen in [80]. The authors used the remaining energy as a metric besides the ETX 

metric to optimise the preferred parent selection process.   

In [106], a new solution has been proposed named, Cyber-OF: An Adaptive Cyber-

Physical Objective Function for Smart Cities Applications. According to the design of the 

Cyber-OF, the authors inject the alarming information within the DIO packet. Afterward, they 
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consider if the event has been detected then the alarmed node will send a data packet to notify 

the sink (DODAG root). Consequently, that packet triggers the sink to re-build the DODAG 

(topology) again according to a new pre-defined objective function that fits the needs of that 

event. However, being the DODAG re-construction is an event-based will cost more delay and 

more power consumption. Indeed, this technique will affect the quality of service and the 

reliability of another network especially within the big networks such as 200 nodes and more.  

CAEsAR [107], a Context-Aware Addressing and Routing scheme for service 

discovery and to support data-centric communication. The authors utilise RPL trees and 

aggregates context information using Bloom-filters in a probabilistic way [108]. The proposed 

CAEsAR has been compared with two protocols, namely, an adaptive and context-aware 

service discovery protocol for 6Lowpans (TRENDY) protocol [109], and MQTT-SN protocol 

[110], which are both located in the application layer.   

 (b) Linear combination (Additive) 

 In this approach, all the considered metrics will be combined in a linear or additive 

manner to be calculated in one composite metric as shown in equation 3.1.  Using the weighting 

technique, the variable (β) for example, to priories each input (metric).  

Cmetric=β1 m1+β2 m2+⋯+βn mn             (3.1) 

Wherein Cmetric is the output resulting individual metric for parent election, mi is 

different input variables and βi is the corresponding constants factor. The weight of coefficients 

for the input variables is varied based on the importance of the predefined output. This means 

that a larger coefficients factor to a certain variable will result in its higher impact on the 

findings. Thus, the most important parameter(s) can be prioritised according to the application 

needs. However, this approach cannot deal with the opposed requirements. Thus, unlike the 
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Hierarchical concatenation (Lexical) approach, it is obligatory to stick to the order of the 

participating routing metrics. Also, the authors in  [78] proposed a composite metric including 

the residual energy, the hop count, the Received Signal Strength Indicator (RSSI), and the ETX 

using the additive approach along with lexical approach as aforementioned. They stated that 

combining metrics shows that more than one routing metric is applicable. The rank in this 

algorithm has been evaluated according to a composition function and then injected into the 

DIO message. Each metric has been given a weight, and the rank is driven from the sum of 

these weights based on the equation 3.1. Although combining two routing metrics or more 

could ameliorate the performance in the DAG but it may, in return, degenerate other 

performance parameters. Thus, considering many metrics within one OF should always reflect 

the needs of the application, otherwise, it would be pointless.   

The authors in [111] attempt to optimise the power consumption via considering the 

battery level into the routing decision. They consider the capabilities of the nodes, either the 

ones that can be recognised prior, such as the nodes battery level, or the ones that can be known 

posterior, for instance, the node’s sleeping mechanism for saving power. They cogitate the 

approach in Context-aware Adaptive Routing (CAR) [112] and Sensor Context-aware 

Adaptive Routing (SCAR) [113], to build the routing decision in a multi-criteria prediction 

technique.  In other words, the driven instantaneous suitability (Si) takes into account the node 

available resources (i.e., battery level and connectivity (duty-cycle)) in a composite metric 

weighting (linear) manner to calculate the node rank. Moreover, [114]  introduces a solution 

for packet loss and power depletion issues in RPL under a hefty load traffic. Hence, the authors 

propose a Context-Aware Routing Metric (CARF) by considering the residual energy and the 

queue utilisation in an attempt to address the dynamicity of traffic and the so-called Equality 

Illusion state issue. However, the proposed OF does not consider the impact of antagonistic 

metrics which has a crucial consequence on the network reliability in emergency scenarios.  
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(c) Fuzzy logic  

Fuzzy logic was first known in 1965 [115], unlike the typical logic concepts (i.e. true 

and false) that also known as Boolean logic or binary. It mainly deals with the partial truth 

rather than the full truth. Therefore, the decision that is provided by fuzzy logic combines 

confronted parameters with various weights to create algebra-reasoning rules (membership 

functions) via probabilistic logic to express the human reasoning (flexible and nonlinear). As 

result, generating an accurate mathematical representation to create a decision matrix. 

Generally, a fuzzy logic system has four units: Fuzzifier, Inference, Fuzzy Knowledge Base, 

and Defuzzifier, as illustrated in Figure 3.5. 

Fuzzy logic has been used for WSN for routing such as in [116], for logistics 

applications [117], for MAC optimisation [118] [119]and for others approaches [120]. The 

authors in[121] proposed a QoS-aware fuzzy logic objective function. The holistic objective 

function combines four different metrics, namely, battery level, hop count, delay, and ETX to 

select the best route towards the DODAG root. Primarily, the authors defined and categorized 

three properties of the good route (1) real-time: which can be evaluated according to the end-

to-end delay, (2) Reliability: this property can be judged based on the packet reception ratio 

(PRR) in addition to the RSS and ETX, (3) Energy Efficiency: based on the power consumption 

 

Figure 0.5 Fuzzy Model 
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or the residual energy. The add-on from this study can be recognised by using the fuzzy logic 

to combine different and heterogeneous metrics in RPL.     

Also in [117], the authors used the fuzzy logic to propose Context-aware Monitoring 

Model for Wireless Sensor Networks in Logistics to extend the node lifetime. Their proposed 

technique used the temperature as a context input to build the fuzzy rules within the fuzzy 

knowledge base (rules base). Hence, the set of the corresponding actions have been classified 

in three categories (Alarm, Monitoring, and Normal). Overall, their model utilised the context 

to adjust the rate of sending the data packets according to the mentioned categories 10sec, 1 

minutes, and 2 minutes respectively. However, the routing protocol i.e., RPL has not been 

considered. 

The authors in [122] propose four different OFs to use in one application. These OFs 

are stored in a DATABASE module to construct new DODAG by switching between them, 

using fuzzy logic rules, according to the requirements of the application. However, building 

new DODAG to fit the application requirements according to the context, results in more delay 

especially in the big network and that may not work effectively in the real-time and emergency 

applications. 

2.18.3 Further discussion on RPL OFs: 

In [123] and [124] the authors analysed the performance of the network formation 

process using a ContikiRPL simulator. Among other parameters, they verified how the two 

different OFs (i.e. OF0 and MRHOF) influence the average number of hops and the average 

node energy. The observed differences are insignificant due to the choice of the OFs and their 

specific parametrization, which results in analogous outcomes when computing the rank. 

Authors in [125] indicated initial simulation results on the performance of RPL and loading in 

centralized architecture and scenarios that used less than or equal 50 nodes. However, the 
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traffic patterns, as well as the size of the network tested are still limited. Several researchers 

have also tried different methods to optimise routing metrics, and OFs for RPL to meet different 

requirements in specific application scenarios [126] [127]. Moreover, in [128] the authors use 

the clustering mechanism to improve the energy efficiency of RPL, By using the cluster head 

node, the clustering probability approach has been considered in competition mechanism 

In [129] the authors investigated two OFs using the simulator in addition to testbed 

motes.  The results of the simulation and experimental measurements revealed that a simple 

hop-count OF leads to a shorter path length at the cost of a higher power consumption. As a 

mean to increase the lifetime of the network besides the efficient packet delivery ratio, both the 

energy and the link quality metrics should be used in the OF to obtain an energy efficient 

network performance. However, if the energy routing metric has been used alone in the OF 

then it may result in a high packet loss ratio [130]. 

 

2.19 Current Limitations in RPL from the OF perspective  

The design of RPL tends to lid the limitations of LLNs nodes. However, the load 

balancing is still a challenging issue in every tree-based topology, and RPL one of them. 

Typically, every single node has more than one decision to take regarding the parent, 

consequently, the parent node either has the entire traffic or nearly no traffic at all [131]. Thus, 

the standard RPL OFs are used to build a DODAG where the bottleneck nodes may suffer from 

unbalanced traffic load. As a result, the overloaded parent node would drain its energy much 

faster than the other candidate parent nodes, which might result in early disconnection the part 

of the network that is covered by that overloaded parent. It is expected that RPL comes with a 

load balancing-aware OF along with the standards, however, none of the standardised OFs 

support load balancing [7]. This serious issue has a crucial impact on the lifetime of these types 
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of nodes and may affect the network reliability negatively. Therefore, a reliable and energy 

efficient topologies balancing the load traffic among the overloaded nodes to ensure node 

lifetime maximization is highly demanding especially with the scarcity of energy in LLNs. 

Another key issue should be addressed in the current RPL in terms of the antagonistic 

requirements. Some of the quotidian applications consider or use the antagonistic metrics 

within their routing protocols due to their needs in different scenarios. For example, the 

contradiction between the metrics end-to-end delay and lifetime, which will result in a 

destructive impact on the performance of the parent selection as well as the quality of service 

(QoS) of the protocol. Consequently, the decision accuracy of prioritising the best metric to 

use to build the routing topology (DODAG in RPL case), which is driven by the OF according 

to the new context, may not pay off the expected result.
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2.20 Load Balancing Solutions Summery  
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ALABAMO 

[10] 
√    41 Testbed Optimised ETX  √  

Could not provide better PDR Compares 

to MRHOF 

[81] √ √   100 

Cooja/ 

Contiki 

3.0 

Hop count, 

residual energy, 

Queue utilisation 

 √  

It would be better if it is tested using real 

testbed as well. Also, the best weight for 

each metric is varied and depends on the 

application. 

[78] √ √  √ 144 WSNet 
RSSI,  residual 

energy 
√ √  

WSNet still insufficient to show the truly 

behaviour of the resource constrained 

nodes 

EAOF [79] √    26 
Cooja/ 

Contiki 

ETX,  residual 

energy 
√   

The number of nodes is quite small, can be 

increased easily, to optimise the result 

more, as the tool is a simulator. 
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[94]  √    35 

Cooja/ 

Contiki   

2.7 

ETX,  residual 

energy 
√   

The throughput in MRHOF behaves better 

than the proposed OF 

QU-RPL 

[81] [8] 
 √    Testbed 

hop count, queue 

utilisation 
 √  

Power consumption analysis has been 

omitted 

ABEB [82]  √   
N/

A 

Cooja/ 

Contiki 
Buffer overflow √   

End –to-end delay and power consumption 

analysis are needed 

[84] [85] 

[86] 
 √   

N/

A 

Mathe-

matical 

model 

(Extended ETX) 

R-metric and Q-

metric 

 √  
Synchronising the MAC layer with the 

routing layer to balance the traffic. 

M-CoLBA  

[87]  
 √   80 

Cooja/ 

Contiki 

2.7 

Node delay, 

queue utilisation 
 √  

The power consumption has not been 

investigated in the purposed solution. 

CA-RPL 

[90] 
  √ √  

Contiki/ 

Cooja 

link reliability, 

load balance, end 

to end delay 

 √  

Optimising the proposed solution using 

Fuzzy logic technique might be worth idea 

to compromise all these metrics together.   

CCR [91]   √  20 

Cooja/ 

Contiki 

2.7 

data traffic 

status, remaining 

energy, content 

variation 

 √  

Giving the limited memory of the LLNs 

devices, it cannot fit all the different types 

of contents.  

[92]   √  35 Cooja/ 
Buffer 

Occupancy, ETX 
 √  

The proposed protocol could generate 

more churn as result of changing the 

parents. 
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Contiki   

2.7 

[93]   √  100 

Cooja/ 

Contiki 

3.0 

residual energy, 

queue utilisation, 

ETX 
√ √  

Mismatching between the proposed rank 

calculation equation 9 (based on weight) 

and the proposed scheme description 

(based on lexical approach). 

[9] [95]    √ 50 WSNet 
traffic load, link 

quality 
 √  

WSNet still insufficient to show the truly 

behaviour of the resource constrained 

nodes. 

[97]    √ 256 

WSNet/

Worlds-

ens 

ETX, Delay,  

time budget 
√   

It would be better to be deployed in in 

testbed devices. 

[98]    √  
OMNET

++ 

residual energy,  

hop count 
√   

Churn analysis was not investigated, and 

the behaviour of the proposed algorithm is  

not fully clear compares to the basic or 

standard RPL 

[99]    √  N/A 
cache utilisation, 

less churn  
√   

The load balancing has not been achieved 

for the nodes with one hop towards the 

DAG root. 

[122] √    14 Cooja 

Hop count,  

ETX,  residual 

energy, 
  √ 

Building new DODAG to fit the applicat-

ion needs according to the context, results 

in more delay especially in the big 

network and that may not work effectively 

in the real time and emergency 

applications. 
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2.21  Summary 

In this chapter, load balancing techniques for RPL were surveyed and classified based 

on the energy-aware, queue and MAC aware, congestion avoidance, and multi-path. Then, the 

context-awareness has been discussed as a definition and its impact on the routing protocols, 

in particular on RPL. Further discussion has been conducted in terms of compromising more 

than one metric in RPL in three different approaches to comprise more than one metric within 

one OF, namely, Lexical, Weighted, and Fuzzy logic. The chapter ended up with categorizing 

the current approaches in the literature for all current solutions for load balancing in RPL. 

Afterward, we concluded the current limitations in RPL from the OF point of view, which 

shaped the aforementioned researched questions in Chapter 1.    

The following chapter presents a new solution to balance the traffic considering the 

number of children within the OF. 
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4 
 

3 Tools for IoT  

 

 

 

3.1 Introduction 

This Chapter surveys the existing LLNs operating systems along with their main 

features. Moreover, the setting up of the real testbed hardware as an experimental environment 

also will be presented. Then, an overview description of the tools that have been used as a 

simulator or a testbed is given, alongside the methodology that has been followed in this 

research. From the existing work, the chapter concludes with a discussion of the baseline 

specifications of the LLNs operating systems.   
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3.2 LLNs Operating Systems (Overview) 

The importance of LLNs Operating Systems (OS) lies in the vital prop to simplify the 

design, coding, testing, and maintenance of IoT software. Typically, a decent combined 

solution needs to take into account both the hardware platform and the OS (which comprises a 

protocol stack). The most common OS among IoT teams is Contiki, however, other OSs are 

flattering the researchers as well, such as RIOT and Tiny OS. The next sections present several 

OSs that are the most active in the IoT domain. 

3.2.1 Contiki 

Contiki is a lightweight, highly portable open source operating system developed in C 

language and dedicated for devices with constrained resources such cases in WSNs and IoT. 

The Swedish Institute of Computer Science (SICS) released the first version of Contiki in 

2003[132], which was supporting only IPv4, however, afterward the uIPv6 stack has been 

included and became fully supported in addition to the other IoT standards such as 6LoWPAN, 

RPL, and CoAP. Technically, Contiki has two main partitions the core and the loaded programs 

[132] as illustrated in Figure 4.1 [96]. The core part contains the kernel, libraries, the program 

loader, device drivers along with communication stack for the communication hardware. Due 

to the limited memory within the constrained devices, the Event-driven programming is ideal 

solution in such case to allocate the needed memory on demand of event. However, the tools 

to help the programmer control the coding of the explicit state machines, i.e., the blocking wait 

abstraction within the event-driven, are missing among the common programming languages 

for embedded systems, for example, C and nesC [133] . Therefore, Contiki uses a unique 

extremely lightweight, stackless threads called the protothreads [133], enabling highly 

efficient context switching. Unlike the conventional multi-threading, which needs too large 

memory overhead because of allocating a different stack for each thread, while a protothread 
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only needs to allocate two bytes of memory for each protothread. This novel technique offers 

a conditional blocking wait statement, PT_WAIT_UNTIL(), to compromise between multi-

threaded and event-driven kernel to mitigate the memory-constrained embedded systems 

consumption to the minimum level alongside with more compact code required. In this regard, 

two types of event are supported within Contiki kernel: asynchronous and synchronous events.  

Furthermore, to build an efficient and portable storage abstractions, Contiki enables 

interfaces via a file system called Coffee file with a tiny and constant RAM footprint per file 

[134] with low overhead. Another important feature is the timer, hence, the real-time clock for 

synchronization reasons and for real-time applications can be provided as well. Contiki has 

mainly two types of timers, namely, etimer and rtimer. The etimer generates timed event, 

however, the rtimer usage for the callback functions. 

The first version of Contiki was released in 2003. A team of developers from the 

industry and academia developed it. The Contiki project was led by Adam Dunkels of the 

Networked Embedded Systems Group at the SICS, and since then other developers were 

 

Figure  

programs 

Figure 3.1 Partitioning into core and loaded programs 
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involved to provide it several new features, and the whole picture of Contiki architecture shown 

in Figure 4.2 [135]. 

 

A couple of versions have been released for Contiki, the last one was Contiki 3.0 [136]. 

However, recently a new Contiki cross-platform has been released on Nov 2017 named 

Contiki-NG 4.0, which licensed under the 3-clause BSD license. Contiki-NG concentrates on 

one hand, on the Next-Generation IoT devices such as ARM Cortex M3 and other 32-bit 

MCUs. On the other hand, on reliable and secure standard protocols like IPv6/6LoWPAN, 

6TiSCH, RPL, and CoAP [137]. 

3.2.2 TinyOS 

TinyOS is a free event-driven operating system written in nesC, a dialect of C, and developed 

at the University of California at Berkeley for WSNs nodes to meet their limited resources 

 

Figure 3.2 Contiki Architecture 
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(e.g., 8K bytes of program memory) [138] [139]. The footprint of OS fits in 400 bytes [140]. 

The components of TinyOS programs are independent computational entities. These 

components have three computational elements: commands, events, and tasks. Both events and 

commends are techniques for inter-component communication. However, tasks are dedicated 

for intra-component concurrency [139], [141]. Overall, TinyOS can be considered as an event 

driven approach [142] similar to Contiki. 

TinyOS has a sole execution stack and considered as a non-blocking approach. 

Consequently, all I/Os with a duration more than a few hundred microseconds are 

asynchronous and have a callback. To optimise the native compiler calling, TinyOS utilises 

nesC’s features to associate these callbacks, named events. Considering TinyOS, as enables to 

achieve high synchronization with one stack in a non-blocking TinyOS, then the complex logic 

components should be written by linking many small events handlers together. A TinyOS 

component can execute a task that has been scheduled to be run later by OS. Hence, using GNU 

toolchain, the compiling of TinyOS code into a small binary became possible [19] [143]. The 

architecture of TinyOS illustrated in Figure. 4.3. 

 

 

Figure 3.3 TinyOS Architecture 
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3.2.3 RIOT 

RIOT is a free, open source microkernel operating system, developed by a grassroots 

open community to bridge the gap between OS for WSNs and traditional full-fledged OS on 

the Internet and to meet the requirements of IoT[144] [145]. The energy-efficiency, small 

memory footprint, modularity, real-time capabilities, and supporting the low-power 

constrained devices using C and C++ languages, all together shape the identity of RIOT OS. 

In addition to including cryptographic libraries, data structures (bloom filters, hash tables, 

priority queues) [146] and more. 

 

Figure. 4.4 concludes the different components of the RIOT structure. The kernel 

contains the scheduler, inter-process-communication, thread synchronization, and supporting 

data-structures and type definitions. In terms of CPU and board, one CPU dedicated for each 

board, but the CPU can be part of many boards. The driver is required for any external device 

such as sensor or actuator, which is placed on a subdirectory named with a certain device. All 

the network stack implementations and the network stack agnostic code as header definitions 

or network types can be found within the sys/net component. 

 

Figure 3.4 RIOT Architecture 
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RIOT comes with support for some external libraries such as ccn-lite, microcoap. RIOT 

comprises that with a custom Makefile for each supported downloadable library with several 

patches to guarantee the compatibility with RIOT. The Makefiles along with patches are within 

the pkg directory. 

3.2.4 Common IoT OS Comparison 

 

To summarize, the below table provides several features of the afore-discussed OS [29] 

[147] [148], which can be used as a check-list to choose the proper OS.  

 

 Contiki Tiny OS Riot OS 

Language 

support 
C nesC C/C++ 

Programming 

Model 

event-driven, 

protothreads 
event-driven Multi-threading 

Supported 

Protocols 

RPL, COAP, uIPv4, 

uIPv6, , 6LowPAN, 

MAC IEEE802.15.4, 

TCP/ UDP 

RPL, 

6LowPAN, 

COAP, MAC 

IEEE802.15.4, 

TCP 

uIPv6, 6LowPAN, 

MAC 

IEEE802.15.4, RPL 

Real-Time Partially No Yes 

Scheduler Cooperative Cooperative 
Pre-emptive, 

tickless 

Supported Miro 

Controller Unit 

(MCU) 

AVR®, MSP430™, 

ARM®, Cortex-M®, 

PIC32, Skymote/TelosB 

AVR®, 

MSP430™, 

Skymote/TelosB 

AVR®, MSP430™, 

ARM®, Cortex-

M®, x89 

Min RAM <2KB <1KB ~1.5KB 

Min ROM <30KB <4KB ~5KB 

Dynamic 

Memory 
Yes Yes Yes 

 

Table 4.1 Common IoT Operating System Features 
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3.3 Methods and Tools 

In this study, two types of tools have been used to investigate the aforementioned 

research problems: 

3.3.1 Simulation Environment: Cooja  

The Cooja simulator[149] is widely used among the research community of IoT, and 

the percentage of the published work that has been conducted via Cooja in this area reaches 

63% [7]. Cooja can be considered as a hybrid approach in terms of the cross-level emulation 

and simulation tool based on Instant Contiki 2.7 operating system. 

Cooja [150] is an elastic Java-based simulator dedicated for WSNs based on Contiki 

Operating System [132]. The simulated node in Cooja can be of a different type in terms of on-

board software, also the simulated hardware. Clearly, the flexibility feature of Cooja enables it 

to replace or extend many parts smoothly, such as plug-ins or radio medium. 

Being Cooja is written in Java, which facilitates any willing for extension via Java 

Native Interface (JNI) calls from the Java environment, to comprise with Contiki OS, to link it 

with sensor node software that implemented in C. Additionally, the software of sensor node 

itself can be run in two ways:  running on the simulator as compiled native code for the 

platform, or running on the emulator as an actual sensor node MSP430 at the hardware level 

[151]. The stack which is considered for Cooja is Contiki uIPv6 stack as shown in Figure. 4.5: 
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HTTP/ IETF CoAP 

TCP/UDP 

uIPv6 IETF RPL 

IETF 6LoWPAN 

MAC (CSMA) 

Radio duty cycling 

(X-MAC/ContikiMAC) 

IEEE 802.15.4 PHY 

Figure 3.5 Contiki uIPv6 stack 

In this regard, Cooja is a hybrid tool in terms of the cross-level emulation for real 

hardware and simulation virtual nodes. In other words, joining the low-level simulation of 

device hardware with the simulation of the high-level protocols [150], [152]. That leads to 

getting one of the significant features of Cooja, which is allowing the simultaneous simulations 

at three different levels: Network Level, Operating System Level, and Machine code 

instruction level. Hence, Cooja has been designed to work on three different levels - that it 

enables the so-called cross level simulations [28]. 

The key features can be concluded as follows: 

 The simulation can be conducted for varied types of motes within a single simulation. 

 It supports various radio mediums [153]. 

 Can be extended easily, for instance adding new plug-ins.  

 It allows simulation at three different levels simultaneously [154]. 

 As an emulator, it gives a lot of specifics in regard of the node’s hardware. 
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Lastly, the aforementioned features of Cooja, in particular, supporting the hardware-

level simulations are the crucial reasons to consider it as a simulator for this study. 

3.3.2 IoT Testbed Environment 

For experiments, a distributed indoor testbed environment has been configured, using 

Tmote Sky/TelosB nodes designed by Berkeley [28] . One of the nodes is configured as a root 

of DODAG while the remaining nodes operated as the sender to send the generated packets 

towards the root node. All the nodes are running the Contiki operating system version 2.7 and 

forming a routing tree via using RPL routing protocol. The placement of the nodes/motes is 

fixed. The experiments were with a single root node for each configuration. It is worth to point 

that more than one term is used to refer to those devices such as “constrained nodes” and “LLNs 

nodes” [42]. 

The realistic indoor testbed environment contains 22 LLN Tmote Sky nodes distributed 

over the university building as shown in Figure.4.6. The IEEE 802.15.4 motes can measure 

temperature, relative humidity and light via embedded sensors as shown in Figure 4.7, and 

Contiki operating system compliant [132].  

 

 Figure 3.6 Testbed nodes topology in Merchiston campus premises 
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All the nodes used in the distribution are with a compliant Texas Instruments MSP430 

processor with a transmission speed of 250 kbps, and a CC2420 radio working in the 2.4GHz 

~ 2.485GHz band and an external +5 dBi SMA antenna. The transmission power within the 

range -25dBm ~ 0dBm will be fulfilled by 2xAA batteries to power each node as provided in 

Table4.1. USB support is also provided to host computer for configuration and data acquisition. 

The following Figures show the front and the back sides of the Temote Sky board.  

Figure 3.7 Tmote Sky Sensor Boards Front Side 

 

Figure 3.8 Tmote Sky Sensor Boards Back Side 
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 Processor Model Texas Instruments®  MSP430F1611 

Memory 48KB /10KB/ 1MB 

ADC 12bit resolution 

Interfaces UART, SPI, I2C  USB 

RF Chip Texas Instruments®  CC2420 

Frequency Band 2.4GHz ~ 2.485GHz 

Transfer Rate 250Kbps 

RF Power -25dBm ~ 0dBm 

Range ~300m(outdoor), 40~50m(indoor) 

RF Power Supply 2.1V ~ 3.6V 

Antenna Dipole Antenna / PCB Antenna 

Light 1 Hamamatsu® S1087 Series 

Light 2 Hamamatsu® S1087 Series 

Temperature 

& Humidity 
Sensirion® SHT11 

Power 3V (2xAA Battery Holder Provided) 

 

Table 3.1 Specifications of Skymote [155] 

The market has plenty and varies of motes as illustrated in Table 4.2. However, the Tmote 

Sky/TelosB nodes are the best platform that outfits the need of our research. 

Architecture Model Radio-Chip MCU RAM Flash 

AVR 

MicaZ CC2420 ATmega128L 4 KB 128 KB 

Waspmote 8 radios ATmega128L 8 KB 128 KB 

MSP430 

Skymote CC2420 MSP430F1611 

48KB 

10KB 

1MB 

48 KB 

XM1000 CC2420 MSP430F268 8 KB 116 KB 

ARM 

CC2538 
integrated 

802.15.4 radio 
ARM7MC13224 

16 KB 

32 KB 

128 KB  256 

KB 512 KB 

Econotag 
integrated 

802.15.4 radio 
ARM7MC13224 96 KB 128 KB 

 

Table 3.2 Specifications of typical constrained devices[21] 
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3.4 Summary  

In this chapter, we showed the operating systems design thoughts for IoT and embedded 

systems. The focus was on the main features of three common OS systems alongside the basic 

concepts and compared the current operating systems. It can be concluded that the quandary of 

building a complete OS on resource-constrained sensor nodes is underlined by the fact that 

only a scarce have been built in the last few years of research on LLNs. The main features of 

the common IoT OS are summarised in one table. Then, this chapter presented some feature of 

the simulator Cooja with some feature that allowed to be the chosen simulator to conduct the 

experiments of this study. Furthermore, generic concepts about the hardware testbed devices 

have been given in this chapter, in addition to a description of the configured real environment 

that has been used in this study.  The following chapter presents a new solution to balance the 

load traffic in RPL considering new metric and technique within the OF. 
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 5 
 

4 An Efficient Load Balancing Objective 

Function for RPL 

 

 

 

 

4.1 Introduction 

In this chapter, the load-balancing issue in RPL is identified and investigated. 

Accordingly, a new Load Balancing Objective Function for RPL is introduced to improve the 

balance of traffic via improving the fairness distribution in the number of child nodes among 

the overburdened parent nodes, to ensure network lifetime maximization. To implement the 

proposed objective function, the number of child nodes is injected in the sent DIO message to 

consider it within the Rank calculation. Furthermore, a new utilisation technique has been used 

to mitigate any potential extra overhead. Finally, a new RPL metric has been introduced to 

improve the balance of the traffic load over the LLNs nodes.  
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4.2 Background and Motivation 

The routing protocol RPL has been designed with several robust features such as 

exiguous delay, quick configuration, loop-free topology, and self-healing to fulfil the needs of 

the constrained devices (things). However, the load imbalance is considered as a significant 

weakness in this protocol, as clearly presented in the literature review chapter, which affects 

the network reliability negatively.  

More specifically, RPL is dealing with uniform distribution in large-scale LLNs in 

addition to the non-uniform ones, which leads to unequal data traffic. Consequently, it may 

result in significant load imbalance, and the energy of the overburdened nodes will be drained 

much faster than other nodes. Moreover, this problem has more harmful impacts if the 

overloaded node is a bottleneck node (i.e., those are with the first hop to the DODAG root) as 

depicted in Figure 5.1 for nodes 2 and 3.  

Accordingly, the severely congested (overloaded) parent node drops many numbers of 

children packets due to the parent’s buffer limitation [82]. Moreover, the connection over the 

overloaded parent towards the DODAG root will be fragile, for instance, the entire traffic 

through node 3, as it is the only link (i.e., acts as a gate) to the DODAG root in such a scenario. 

This consequently leads to disconnecting this part of the network if the energy of node 3 is 

depleted.  
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Figure 4.1 Random Topology 

 

Generally, the load balancing is still a challenging issue in every tree-based topology. 

The reason behind that, typically, every single node has more than one decision to take, 

consequently, the parent node either has the entire traffic or nearly no traffic at all [131].  Due 

to the fact that RPL is tree-based protocol, this serious problem befalls due to the parent 

selection policy in DODAG construction as shown in Figure 5.2, which is only rely on the base 

of the first received DIO, regardless the received DIO comes from an overloaded parent node 

or not. Thus, this node (i.e. node 3) will polarise more nodes to choose it as preferred parent.  
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Figure 4.2 The sequence of DIO in DODAG construction in RPL 

To this end, the child nodes persist with the current parent as the quality of the link 

(represented in ETX metric) influences the calculated rank of this parent node, although it 

deteriorates with more load (i.e. with more children). The ETX metric is calculated as follows:  

ETXnew = β · ETXold + (1 − β) · ETXpacket               (5.1) 

where ETXpacket is the total number of transmissions of a packet before being 

successfully received or dropped and β is the learning ratio (β =0.9 in ContikiRPL). 

Also, Contiki-RPL normalizes the ETX using an exponentially weighted moving 

average (EWMA) [156] [157] filter to mitigate the counting of oscillations. Furthermore, it is 

hard to develop an estimator of the link quality in RPL as DIO messages are not sending 

periodically according to the Trickle Timer [158]. As aforementioned, ETX metric is clearly 



C H A P T E R  5   N E W  E F F I C I E N T  L B - O F  

  

79 | P a g e  

insufficient to recognise the load traffic. For that purpose, it is necessary for a new parent 

selection technique to tackle this problem.  

Back to our example, the only conceivable scenarios to change the current parent (i.e. 

node 3) to another candidate parent (node 2) are as follow: first, if the current parent dies due 

to battery depletion. The second possibility, when the lossy percentage becomes higher than 

before, so no acknowledgement message can be heard from the preferred parent for a certain 

period of time. 

Figure 5.3, sheds more light on the problem, by identifying it in steps. In Figure 5.3 (a) 

nodes 5 and 6 are within the shared area of nodes 3 and 2. However, nodes 5 and 6 select node 

3 as a preferred parent to have in total 4 child nodes and leave node 2 only with one child (node 

4) as depicted in Figure 5.3 (b). 

Furthermore, in attempt to hand over nodes 5 and 6 to node 2 and force them to select 

node 2 as a preferred parent, we increased the number of child nodes of node 3 from 4 to 12 

children as shown in Figure 5.3 (c). Yet, the nodes 5 and 6 stick to node 3 as a preferred parent 

even if this parent deteriorates with more load (i.e. being a parent for more children) and despite 

that node 2 has only one child. A further step has been taken to investigate this issue by 

increasing the number of nodes within the shared area to up 8 nodes as shown in Figure 5.3 

(d), where culminated node 3 by dominating 18 child nodes. Although node 2 has only one 

child node, node 3 still dominates all the nodes within the shared area (i.e., eight nodes) 

regardless the total number of the child nodes it has 18 child nodes as summarized in the table 

provided in Figure 5.3 (e). 

 It is notable that the connection of all nodes through node 3 is fragile as it is the only 

the link to the DODAG root with an overloaded bottleneck node, thus, disconnecting part of 
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the network if node 3 dies. In particular, this serious problem occurs in RPL due to omitting 

the number of children in existing parent selection technique. 

 

Figure 4.3 The unbalanced parent selection approach in RPL 

 

(a) (b) 

(c) (d) 

Parent Node Number of Children Children from the shared area 

2 1 0 

3 18 8 
 

(e) 
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This is a key sample of how the fairness of child nodes distribution can be used to 

achieve even better level of load balancing. As we proposed in the literature review chapter, 

the existing work is thriving to address the load balancing issue in RPL from various 

perspectives as shown in the load balancing solution summary in Section 3.7. 

4.3 The Proposed Load Balanced OF 

Our proposed load balanced objective function (LB-OF leverages the lifetime of the 

entire network routed, via balancing the data traffic by taking into account the number of 

children for each candidate parent. Basically, several steps have been put forward as follows:  

(1) Amended the DIO option format, (2) A new utilisation technique for the amended 

DIO, (3) New RPL metric to balance the traffic load. A summary of LB-OF operation is 

described in Algorithm 1.  
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(1) The amended DIO option format Typically, the DIO carries the RPL InstanceID, 

DODAG identifier, version number, Rank and the objective function that has been used to 

calculate the rank. We amended the DIO by injecting the chosen parent ID into the broadcasted 

DIO as illustrated in Figure 5.4.  

(2) A new utilisation technique for the amended DIO: Generally, in the upward routes 

the root initiates the DODAG construction by sending the first DIO message as shown in Fig. 

1 (a). Once other nodes receive this DIO, they select the sender as a preferred parent, and then 

they start calculating their own ranks based on the assigned objective function. After that, each 

node broadcasts its own DIO message (i.e. the updated DIO that contains the newly calculated 

rank value) to all neighbours including the chosen preferred parent who sent the original DIO 

message as Figure 5.4 (b) depicts.  

In the standard objective functions, the preferred parent ignores the DIOs that come 

from its child. So here in our example, the root drops any DIO, whether this DIO message is 

sent by node 2 in Figure 5.4 (b) or sent by node 4 in Figure 5.4 (c). In this stage, we aim to 

allow each parent to count its number of children to normalize the load balance based on it. 

However, that is not possible in the upward routes, as the only control message that can be 

acknowledged by the destination is the Destination Advertisement Object (DAO) message in 

the downward routes.  



C H A P T E R  5   N E W  E F F I C I E N T  L B - O F  

  

83 | P a g e  

 

Moreover, the DAO messages can be only sent if the DODAG has been already 

constructed, and our aim is to recognise the number of children for each parent while the 

DODAG is under construction not after that (i.e. in the upwards routes not in the downwards 

routes). Alternatively, a handshaking mechanism between parent and children can be set up, 

but this also brings an extra overhead for the entire network and subsequently increases the 

power consumption massively. To overcome this problem, we propose LB-OF using a new 

technique as detailed below. 

In the LB-OF algorithm, the received DIO from the child node is counted by the preferred 

parent node using a special buffer (set) created for this purpose. As mentioned in step (1) the 

amended DIO contains the ID of the chosen preferred parent. Thus, the node matches its own 

ID with the preferred parent ID that is inserted in the DIO message, then increments the number 

of children set by one for this node if there is a matching.  

 

Figure 4.4 Utilising the ignored DIO 
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Hence, this technique evades increasing the overhead that can be caused by the 

handshaking process for the entire network. In addition, we utilise the coming DIO and allow 

each preferred parent to distinguish the number of its children during the DODAG construction 

stage. In this regard, it is worth to point why the DIO, in particular, has been considered to 

count the number of child nodes rather than the DAO messages. The explanation for this 

located in the RFC 6550 page 78, “If the MOP is 0, indicating no Downward routing, nodes 

MUST NOT transmit DAO messages and MAY ignore DAO messages.” [53]. Thus, the 

downward routes is an optional feature in RPL, the proposed idea targeting the RPL mode of 

operation without downward routes. 

(3) Balancing the load traffic: As aforementioned, being a preferred parent for more 

children means more overhead and unbalanced load consequently drained its own energy 

much faster than other candidate parents did. To solve this problem, a new metric has been 

proposed. The children set created in step (2) provides each preferred parent how many 

children it has. Based on that, we consider the number of children in the rank calculation 

rather than only ETX.   

In more specific words, the parent with the least number of children will be elected 

as preferred parent. To this end, the balance has been achieved by declining the number of 

children of the overloaded bottleneck node. As a result, the majority of children will choose 

another preferred parent according to the lower rank, and surely has less number of 

children. An illustrative example is given in Figure 5.6, where the unbalanced load traffic 

can be noticed in MRHOF, where node 3 has 16 children and node 2 has only one child. 

On the contrary, using LB-OF both bottleneck candidate parents have almost the same 

number of children, node 3 would have 9 children and node 2 would have 8 children.  
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It is worth to point that this metric (i.e. the number of children) is implemented 

within the option field to avoid any extra overhead. 

 

4.4 Experiments and Evaluation  

The conducted experiments in this chapter are divided into different scenarios and 

different densities. These scenarios are designed for evaluating the conventional OFs (OF0 and 

MRHOF) in RPL which are commonly used for constructing the RPL DODAG in the natural 

environment for different IoT applications. Thus, we have considered the random distribution 

topology not the grid one, as the unbalance of traffic mostly comes from the unfairness 

distribution in particular among the tree-based oriented routing protocols as the case in RPL. 

Our focus in these scenarios is concentrated on the bottleneck nodes (i.e., the nodes within the 

first hop to the DODAG root) for the critical consequences of these nodes failure.  

Moreover, due to the scarce energy within constrained nodes and the multi-hop manner 

in RPL, the load balancing consideration has a crucial impact on the power consumption and 

 

 

Figure 4.5 The bottleneck nodes 
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the network lifetime, especially for, which are typically battery-operated. For that reason, the 

most sufficient metrics to consider within the evaluation are packet delivery ratio (PDR), 

energy consumption balancing, and network lifetime. The purpose of these scenarios is to apply 

the newly proposed routing module, alongside a diverse number of parameters to evaluate the 

performance of the aforementioned metrics of the network. 

4.4.1 Simulation Setup 

To evaluate our objective function, we conduct simulation experiments using the Cooja 

simulator [136] using Contiki Operating System 2.7 [132] . The simulation parameters are given 

in Table 1. 

Table 4.1 SIMULATION CONFIGURATIONS FOR EXPERIMENTS 

Parameter  Value 

Operating System Contiki 2.7 

Node Type TMote sky [28] 

Routing protocol RPL 

MAC/adaptation layer ContikiMAC/ 6LowPAN 

Radio Environment Unit Disk Graph Medium (UDGM) 

Number of nodes 18,50,100 

Simulation duration 30, 80 min  

Full battery 3000 mJ 

Transmission range 100 m 

Data packet timer 60 sec 

RPL parameters  MinHopRankIncrease = 256 

Mote start-up delay  1000 msec 

Simulation area  400×300 m 

DIO interval min      12 msec 

DIO interval doublings 8 msec 

Deployment mode  Random 

 

4.4.2 Results Analysis 

Figure 5.6 compares the power consumption between the two critical nodes (i.e. node 

2 and node 3) using two different objective functions. In the conventional objective functions 

MRHOF and OF0, the traffic load is concentrated on the node 2 as it has more children than 
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node 3, this is because node 2 is always sends its DIO before node 3. Consequently, this leads 

to a significant difference in power consumption. In contrast, in LB-OF, the load balancing has 

been achieved by taking into account the number of children for each node as a metric.  

Clearly, the power consumption of node 2 is mitigated in LO-OF and then relatively 

stabilized. The main reason behind that is the regression in the number of children from 14 to 

only 8 children for node 2. On the other hand, node’s 3 power consumption is increased as it 

became a parent for more children (i.e., 6 children) than before (1 child). Therefore, the gap 

between those two critical nodes has been massively declined using the new LB-OF objection 

function, and undoubtedly the traffic load is balanced. 

Likewise, in Figure 5.7 we increased the density of network to 50 nodes rather than 17 

as the previous scenario. Thus, we ended up with the same behaviour in Figure 5.6. However, 

the power consumption levels for both nodes using LB-OF has been raised compared to the 

 

Figure 4.6 Power Consumption Balancing 18 nodes 
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results illustrated in Figure 5.6.  The main reason behind this is the parent churn, i.e., the 

fluctuation in the number of children for each parent is quite frequent. That can be concluded 

from Figure 5.8, where the high fluctuation can be observed at the first 12 mins. Subsequently, 

node 2 and node 3 became parents for 8 nodes and 6 nodes respectively. Not surprisingly, the 

freely chosen of the preferred parent with less number of children comes with a cost. However, 

this churn stabilizes until the end of the second period (33-52) mins, and then fluctuates again 

but with less oscillation, and that expected, as the number of children for each preferred parent 

has not stabled yet. Since then, each parent sticks with its number of children with a churn 

equals to zero as clearly exhibited in Figure 5.8. 

 

 

  

Figure 4.7 Power Consumption Balancing 50 nodes 
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The ultimate goal of this protocol is to guarantee better load balancing for the bottleneck 

nodes, in order to avoid the negative impact on the lifetime of one node at the expense of 

another node lifetime, subsequently, allows evading bottleneck nodes. 

 

 

So, we evaluated the network lifetime where Figure 5.9 compares the lifetime between 

the two critical nodes. The unbalanced lifetime is obvious when MRHOF or OF0 is used. 

Contrariwise, LB-OF balances both nodes which allow node 2 to sustain longer and 

minimizing the probability of disconnecting the fragile nodes. Overall, our objective function 

outperforms the standard RPL MRHOF and OF0 in terms of lifetime. 

 

Figure 4.8 Number of children for N2 and N3 (Churn) 
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Figure 5.10 illustrates the packet delivery ratio (PDR) versus network density. The PDR 

is calculated as the ratio of the number of packets received by the border router and transmitted 

by each node. It can be noticed that the results of MRHOF, OF0 and LB-OF are nearly identical 

in terms of PDR when the network density is 18 and with a slight difference when 50 nodes. 

However, LB-OF presents a better PDR than MRHOF and OF0 when the density is 100. As 

the number of the lost packet is increased when one critical node serves the majority of nodes 

and acts as a hub to the root. 

 

  

Figure 4.9 First node to die 
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4.5 Conclusion 

Load balancing is a key issue, but it was not properly addressed when designing existing 

objective functions in LLNs. In this chapter, we proposed a new load balanced objective 

function for RPL protocol to achieve a better workload distribution among all nodes in LLNs 

and battery lifetime thriving for a longer time to come, which in turn to better network 

reliability. A new technique has been used to count the number of children for each parent 

without generating any extra overhead and then injected in the DIO. Thus, better fairness of 

child nodes distribution has been achieved through RPL DODAG construction process. 

Simulation results proved that the proposed load balanced objective function is better than the 

MRHOF and OF0 in terms of balanced power consumption, packet delivery rate, balanced 

lifetime, and balanced number of children for each node.  

 

Figure 4.10 Network PDR 
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The next chapter is addressing the antagonistic requirements issue along with the 

context awareness in RPL and how to optimise the selection decision of the routing path 

towards the root node according to the new context triggers, and taking into account the 

antagonistic requirements mitigation approach. 
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6 
 

5 Context-adaptive RPL for Antagonistic 

Requirements of LLNs Applications 

 

 

 

 

5.1 Background and Motivation 

More IoT applications have secured a prominent part of our life and covered a wide 

range of fields starting from smart homes to smart cities, either in the ordinary or hazardous 

areas. Apparently, the requirements of every application are varied and depend on the specific 

needs of that application that be used to determine the routing metrics. However, some of these 
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requirements may seem antagonistic but also pertinent and has to be within one application. In 

other words,  the performance of the first metric can be affected or influenced on the expenses 

of the other metric(s) and, as such, impossible to fulfill them simultaneously [159] such as, but 

not limited to, network lifetime and minimum-delay requirements. For instance, the 

antagonistic impact in the forest fire detection system can affect the emergency responses, by 

increasing the delay, when a fire is detected. This case requires a specific attention to handle 

an emergency, and it would be more efficient to priorities the minimum end-to-end delay rather 

than the minimum power consumption.  

Moreover, prioritising single metric or composite metric, without considering the new 

context, cannot pay off the antagonistic needs of the LLNs applications sufficiently. This is in 

contradiction with the fact that any delay in the emergency scenario should be mitigated to the 

minimum level. In this regard, it is worth pointing out that the precise category to define 

whether the application has critical tasks or not is out of this study scope. 

Therefore, there is a need to design new routing mechanisms to mitigate the 

consequences of the antagonistic impact to speed up the delivery of critical data when an 

emergency occurs. In this chapter, we propose a dynamic context-aware Objective Function to 

facilitate information exchange between the application and network layers.  Hence, feeding 

the RPL with the context information, to optimise the selection decision for the routing path, 

is highly recommended in emergency management. In fact, for the sake of efficiency, these 

types of applications should be smart enough to react adaptively via re-prioritising the 

application requirements according to the new context needs.  To address this issue, we propose 

an adaptive OF to operate at the trade-off between the antagonistic requirements for the critical 

IoT applications. Doing so, this chapter provides the following main contributions: 

 



C H A P T E R  6   C O N T E X T - A D A P T I V E  R P L  

  

95 | P a g e  

1) A new category for the existing RPL OF approaches. 

2) A new algorithm for OF lifetime optimisation based on the accumulated number 

of children to introduce less power consumption. 

3) Adaptive OF based on the context that mitigates the impact of the antagonistic 

requirements during the emergency scenarios.  

5.2 The problem statement 

As observed in the related work, RPL is designed with several robust peculiarities such 

as exiguous delay, quick configuration, loop-free topology, and self-healing, in addition, the 

flexible design of the standard. In fact, RPL specification does not only separate the OFs, as 

aforementioned in Section 6.3, it also differentiates between the routing metrics themselves 

and the OF owing to foster the level of resilience and additivity.  

Despite the numerous proposed algorithms for OFs, which have been exploiting a great 

deal with building RPL topology as outlined in Chapter 3. However, these efforts either focus 

on combining metrics algorithms or propose new metrics. Whereas the attention that has been 

paid to tackle the antagonistic requirements problem is erratic and with rigid boundaries in the 

literature. To the best of our knowledge, the majority of existing works [30,44,46,90,91,93-

99,102-105,107,108,110-112] only provide different approaches to combining multiple metrics 

in a STATIC manner (unchangeable with the new context) as shown in Figure 6.1. 
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Figure 5.1 OF approaches for composite metrics 

In short, this chapter highlights the problem of compromising the antagonistic 

requirements in two contradiction scenarios: 

5.2.1 The impact of antagonistic requirements on an emergency scenario 

Typically, the metrics that have been used to build the RPL topology reflect the needs 

of particular LLNs application in a specific environment. However, due to the dynamicity of 

the context in any environment prone the application needs to change particularly in the 

emergency scenarios. To this end, restricting the priority within specific routing metrics, to pay 

off the application needs for specific environment parameters, is not sufficient in IoT 

applications. More importantly, the antagonistic requirements problem has more harmful 

impacts in the emergency scenarios as the consequences in such cases become more critical. 

For instance, the coexist of the maximum lifetime and minutest delay requirements are 

impossible to achieve fully functional for both metrics. Those two trade-off metrics are needed 

within one application in some cases. A good example for this can be seen in the forest fire 

detection systems, wherein the lifetime is critical for these constrained devices as they powered 

by a limited battery, and they are in a position where their battery replacement is not an option. 
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Therefore, pushing the lifetime for the entire network, which could contain thousands of nodes, 

is truly necessary.  

On the other hand, minimizing the delay in these types of applications is highly 

demanding, particularly within the emergency scenarios. In such a case, i.e. when the fire is 

detected the priority becomes to receive the notification of the sensing temperature (context), 

which has been triggered by sensing a fire, rather than considering the minimum power 

consumption as a priority in this case. 

To this end, the current standards RPL OFs lacks to react effectively to adapt and re-

shape the topology in such cases, due to omitting the context-awareness of the antagonistic 

requirements. Thus, the challenging question could be how to compromise between the 

antagonistic requirements within one LLNs application?  

Based on the above thoughts, we think there is still a room for RPL enhancement to 

make it more reliable and adaptive to the context accordingly. 

5.2.2 Survival time scenario 

On the other hand, the scarcity of power is still a critical problem in LLNs applications, 

for those powered by a battery in particular analogous to our case, as stated in the previous 

chapter. Therefore, in the literature, many protocols have been proposed to address the lifetime 

problem.  

 

5.3 The Proposed Solution 

This section is devoted to clarify in details our enhancement for RPL in emergency 

scenarios as a result of new context. The aim of the proposed protocol is to help different 

antagonistic requirements to coexist within one LLNs application. Indeed, by the envisioned 
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protocol, the reliability and the lifetime of the entire network routed by RPL will be influenced. 

Two scenarios have been put forward as follows: 

5.3.1 Minimize the power consumption within the Lifetime Scenario 

 In this subsection, we extend the load balanced objective function (LB-OF) [103] [160] 

in attempt to relatively equalize the data traffic, and reduce the power consumption for the 

benefit of network lifetime. Unlike the previous chapter, we take into account the total number 

of the accumulated child nodes for each path towards the sink rather than only the direct child 

nodes for the preferred parent. Moreover, in the previous contribution, the focus was on the 

bottleneck (overloaded) nodes, however, this contribution targets all the nodes along the path 

towards the sink including the bottleneck nodes. Likewise, in the previous contribution, the 

Parent ID has been injected into the DIO which normally embraces the InstanceID, DODAG 

identifier, version number, Rank. However, to avoid increasing any overhead, in case the 

handshaking approach has been used, the ignored DIOs have been utilised instead as depicted 

in Figure 6.2 (a). Typically, any received DIO contains higher rank compares to the node’s 

rank itself then it will be discarded.  

 

 

Figure 6.2 (a) Utilising the ignored DIOs 
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In respect of that, the chosen parent discards any DIO coming from its child as 

demonstrated in Figure 6.2 as detailed earlier in Section 5.3. This discarded DIO that contains 

the chosen parent ID will be employed to calculate the holistic number of children for each 

path towards the sink as proposed in equation 6.1. 

 ∀ 𝑆𝑒𝑛𝑑𝑒𝑟𝑠 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡 𝐿𝑖𝑠𝑡 

 𝐴𝑐𝑁𝐶 = ∑ 𝑃𝑛𝑐(𝑖)𝑛
𝑖=0        (6.1) 

Where the AcNC represents the accumulated number of children from the sink to the 

current hop, i represents the hop count until the current node (n), and Pnc represents the number 

of children for one of the parents on the path towards the sink. 
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By using this technique, each parent will be able to sum the accumulated children for 

the entire path along to the sink, in the upward routes approach, to be used to balance the load 

traffic. In more specific, the path with the least number of children will be selected via choosing 

the last (edge) node of this path as a preferred parent. This new metric will be used in the OF 

to optimise the best parent selection, in turn, that affects the network lifetime positively. For 

the sake of lucidity, Algorithm 1 shows a summary of the extended LB-OF operations along 

with the flowchart in Figure 6.2 (b). 

 

Figure 5.2 (b) The calculation of accumulative number of child nodes flowchart 
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5.3.2 The Emergency Context Scenario 

In this subsection, we consider the forest fire detection system as a case study for the 

emergency scenario. However, this also can be applied in any real-time application such as 

emergency in the navigation systems, the medical response in WSNs disasters systems and 

plenty others. This type of topology is quite common in applications such as environment 

monitoring, where the sensor nodes are distributed in positions of interest capturing the 

required information [111]. As discussed, the reliable route needs to avoid overloaded traffic, 

which is indicated by more number of children, to boost the lifetime. That could mean an extra 

number of hops towards the DAG root, and that consequently augments the end-to-end delay, 

which is undesirable in such real-time applications as the consequences are so critical.  

Therefore, it should be minimized as far as possible, even if that on the expenses of 

other requirements or metrics (i.e., lifetime in our case), which imposes a serious challenge in 

terms of the antagonistic requirements.  

As aforementioned previously in Section 6.2, all the current algorithms focused on 

combining metrics in different manners statically and tried to tackle this problem by 

considering only the routing protocol itself. However, these approaches are not able to take the 

advantage of the context to get the full functionality of non-antagonistic metric(s). 

In other words, the consequences of the antagonistic metrics degenerate to get the best 

potential benefits of specific metric(s) in a certain context. While, considering only the most 

beneficial non-antagonistic metric(s) together for this context apart from the rest metrics, to 

guarantee the best reaction for the network behaviour in such scenarios. 

In the ordinary scenarios, the minimum power consumption is considered as the highest 

priority to prolong the network lifetime. In this case, as depicted in Figure 6.3, node 7 opted 

node 8 as a preferred parent because the path through node 8 has less number of accumulated 
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children, compared to the path through node 3, which means less traffic and defiantly less 

power consumption.  

 

Figure 5.3 Regular (Life-time) scenario 

 However, when a fire is breaking out as shown in Figure 6.4, the temperature to the 

closest node will dramatically increase. As soon as the captured temperature reaches the 

predefined threshold, which has been fixed to 60 degrees, for instance, our algorithm re-

prioritises the application requirements according to the new urgent context. Consequently, in 
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our example, as shown in Fig 5, node 7 selects node 3 as a preferred parent despite the fact that 

node 3 has more accumulated children, however, this number is not a priority any longer in 

this case. 

  

Figure 5.4 Emergency (Minimum delay) scenario 

Henceforth, the selection decision becomes based on the less number of hops, 

which perceived from the antagonistic buffer as shown in Figure 6.4, to notify the DODAG 

root of the minimum end-to-end delay. In this regard, our aim is to recognise the number of 

children for each parent while the DODAG is under construction not after that (i.e. in the 
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upwards routes not in the downwards routes). Alternatively, we could rely on the DAO 

messages to do so, however, as mentioned in the RFC [53, p. 6], “If the MOP is 0, indicating 

no Downward routing, nodes MUST NOT transmit DAO messages and MAY ignore DAO 

messages.”. Thus, the downward routes are an optional feature in RPL, so it is more reliable 

to rely on a compulsory feature rather than optional to engage all types of applications.  

As mentioned, being a preferred parent for more children means more overhead and 

unbalanced load, which consequently drains its own energy much faster than other candidate 

parents did. To solve this problem, a new metric has been proposed. The children set created 

in step (2) provides each preferred parent how many children it has. Based on that, we consider 

the number of children in the rank calculation formula (1) rather than using only ETX. A 

summary of the antagonistic metric operations are described in Algorithm 2. 
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It is worth to point that both metrics of the proposed OF (i.e the accumulated number 

of children and the number of hops) are implemented within the metric container to pass these 

additive values for every node within the DODAG as shown in Figure 6.5.  

 

5.4 IPv6 Traffic Class (Tagging) 

Once the triggered node (i.e., node 7 in Figure 6.6) selects the path with a minimum 

number of hopes, to mitigate the end-to-end delay, possibly this route could be congested with 

more load traffic, which may cause more delay towards the DODAG root. This unwanted delay 

cannot be neglected especially in the emergency cases. To overcome this problem, the IPv6 

traffic class (Tagging)[161] [162] feature has been considered in our solution. Enabling IPv6 

traffic class via tagging any packet comes from the triggered node gives this packet the priority 

to pass over the non-tagged packets, without taking the queue (i.e., by injecting the tagged 

 

Figure 5.5 DODAG Metric Container Format 
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packet in front of the queue). To do so, the queueing in the MAC layer has been considered to 

react to the context scenario, in collaboration with IPv6 protocol in a cross-layer manner.  

    The 8-bit Traffic Class field in the IPv6 header, as Figure 6.6 presents, is designed 

to differentiate between services and overt congestion.  

 

Figure 5.6 IPv6  Header format 

In this sense, it is worth stating that RPL RFC points to the tagging feature to use it in 

the RPL Target Descriptor Option for the DAO message according to the format shown in 

Figure 6.7.  

 

Figure 5.7 RPL Target Descriptor Option Format 

Apparently, the path in Figure 6.4 is not a congested path, so the delay cannot be 

recognised due to the limited traffic. Thus, to investigate the tagging technique in our solution, 

the illustrated topology in Figure 6.8 is considered. Therefore, the number of nodes is increased 
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to reach 52 nodes to raise the amount of traffic and challenge the congested path over 12 hopes 

from the alarmed node 7 towards the DODAG root. Thus, in our OF the information of the 

context goes beyond the network layer towards the queueing in the mac layer where the 

implementation took a place. 

 

Figure 5.8 Tagging Packet in a Congested Path 

 

5.5 Experiments and Evaluation  

To validate the performance of the proposed OF in multihop LLNs, we configured a 

realistic indoor testbed environment, as shown in Fig.7. This testbed contains 22 LLN nodes 

likewise in [163] [164] [8]. The type of the used nodes is Tmote Sky/TelosB which is designed 

by Berkeley [165]. The IEEE 802.15.4 motes can capture temperature, relative humidity and 

light via embedded sensors and compatible with Contiki operating system [132]. All the nodes 

Source of the tagged packet 
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used in the distribution are with an MSP430 processor, a CC2420 radio working in the 2.4GHz 

~ 2.485GHz band and an external +5 dBi SMA antenna. The transmission power within the 

range -25dBm ~ 0dBm will be fulfilled by 2xAA batteries to power each node as depicted in 

Figure 6.9.   

 

(a) Client nodes 

 

 

(b) The DODAG root node 

 

(c) Nodes deployment 

Figure 5.9 The testbed nodes 
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The purpose of this environment is to investigate the impact of the dynamicity on the 

RPL routing performance, to optimise the power saving and achieve the minimum delay in the  

emergency cases, in attempt to mitigate the impact of the antagonistic metrics. We consider 

different densities scenarios that are best for evaluating the conventional OFs in RPL (i.e., OF0 

and MRHOF), these OFs are commonly used for constructing the RPL DODAG in the natural 

environment for different IoT applications. 

In terms of the distribution, the random fixed topology has been considered due to it is 

reconcile with our case study that we investigate. In fact, in the wood fire detection application 

,and in similar applications, the grid distribution is not an option due to the massive 

geographical area that needs to cover [166] (for instance 347 million hectares in Canada [167]), 

by the sensors which makes the grid is inapplicable choice.  

 

Figure 5.10 Network deployed in Merchiston campus premises, Edinburgh Napier 

University 
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 The findings are averaged over seven iterations until the results showed a stability. 

These findings are carried out from the distributed testbed nodes in our campus premises of 

Edinburgh Napier University as illustrated in Figure 6.10. In these experiments, we considered 

an infinite buffer size for the DODAG root, and configured the temperature threshold to 32 °C. 

Moreover, in these findings, we considered an infinite buffer size and configured the 

temperature threshold to 32 °C. 

5.5.1 Testbed-Lossy Network 

Figure 6.11 compares the end-to-end delay for the conventional objective functions (i.e. 

MRHOF and OF0) along with the proposed algorithm. The delay measurements carried out 

only for node7 (shown in Fig 6.10) when the captured temperature threshold has been reached. 

Indeed, in this case, the alarmed node (i.e., node7) switches its preferred parent to take the 

minimum delay path towards the DODAG root. As can be observed, the delay in the proposed 

algorithm starts to decline, after reaching the threshold, and then switching the parent from 

node 8 to become node 3. Consequently, the path with a new parent has less number of hops 

and less delay with 7% than the conventional objective functions.  Likewise, in Figure 6.12, 

the delay drops down in the hour 7 (where the temperature became 32°C) in the proposed 

algorithm and then stabilises from hour 8 onward to the end of experiment duration length (i.e. 

for 14 hours). The gain in delay can be clearly explained from Figure 6.13, which shows the 

average delay of using each single or composite metric in our scenario. 
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Figure 5.11 The temperature’s impact on delay 

 

 

Figure 5.12 Delay over the time 
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Figure 5.14. Number of DIOs 

In Figure 6.14, the MRHOF incurs the largest number of DIO overhead, unlike the OF0, 

has least DIO overhead due to the minimum churn. However, as the proposed OF uses a 

composite metric before reaching the configured threshold which generates more churn before 

stabilizing the number of children for each node. 

 

Figure 5.13 Average delay for each metric 
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Figure 5.15 The churn in node7 

 

In terms of the churn (i.e., the frequency of changing the preferred parent), the largest 

number of changes can be observed in the proposed algorithm as depicted in Figure 6.15. This 

oscillation due to the unstable number of children at the early of the first stage of building the 

DODAG, hence, the node 7 keeps changing its preferred parent between node3 and node 8. 

Afterward, node 8 will be selected as a preferred parent until the temperature triggers the node 

7 to switch its preferred parent during the seventh hour. 

Figure 6.16 compares the power consumption for node8 among the aforementioned 

three different objective functions. It can be noticed that the power consumption in the 

conventional objective functions is steady due to the fact that the churn is in the minimum 

level, and node 7 adhered with the selected parent along with all the experiment duration length 

(36 hours). 

 However, in LBOF the power consumption begins with a high level, in resulting of the 

churn within the first hour. Then, the power consumption clearly becomes less when node 7 
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reaching the threshold (i.e. unlike the cases in OF0 and MRHOF, the traffic of node 7 in LBOF 

has been handed over to a new preferred parent (i.e. node 3), and left node 8 (the previous 

preferred parent) with less passing traffic through and definitely less power consumption. It is 

worth to point that with the continual sloping of the LBOF behaviour the superiority of OF0 

will be diminished and that is due to using the hop-count as a metric in both OF0 and LBOF 

after reaching the threshold. 

 

 

 

 

 

 

 

 

Figure 5.16 Power consumption for node 8 

 

 

Figure 5.17 Power consumption for node 3 
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In the same context, node 3 in Figure 6.17 performs in a contrary way compares to node 

8 as node 7 has been handed over to it and became the preferred parent, therefore, the power 

consumption will slightly increase to pass the traffic of the new child. However, before 

switching to another preferred parent (i.e., reaching the threshold), the power consumption was 

declining, as Figure 6.18 clearly shows, which compares the three nodes in every investigated 

OF. 

 

 

   Figure 5.18 Power Consumption for the three nodes in each OF 

5.5.2 Fixed Lossy network by the simulator 

As the lossy ratio within the testbed nodes is out of our control and we cannot fix it on 

a particular ratio, we used the Cooja simulator to configure a fixed lossy ratio to 50% in all 

three compared OFs to investigate the impact of increasing the lossy ratio on the proposed OF. 

The study of this scenario would provide a unique lens to look at the performance of the 

proposed protocol in such a very lossy environment.The well-known Cooja simulator is based 

on Instant Contiki 3.0 operating system [132], which is considered as a lightweight, highly 
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portable open source operating system and dedicated for WSNs and IoT. The simulation 

parameters are given in Table 1. 

Table 5.1 Simulation Parameters 

Parameter Value 

Operating System Contiki 3.0 

Node Type TMote sky 

Routing protocol RPL 

MAC/adaptation                   ContikiMAC, NullRDC/ 6LowPAN 

Radio Environment Unit Disk Graph Medium (UDGM) 

Number of nodes 22-53 

Simulation time 15-36 hours 

Transmission range 50 (m) 

Data packet timer 5,10,15,20,30,60 sec 

Mote start-up delay  1000 msec 

Simulation area  600×500 m 

DIO interval min      12 msec 

DIO interval doublings 8 msec 

Deployment mode    Random 

 

           Figure 6.19 compares the three aforementioned OFs in terms of delay. Verily, 

the proposed protocol performs much better than the conventional objective functions (i.e. 

MRHOF and OF0). The delay in all OFs is much higher than in previous scenario i.e. in Fig.11, 

indeed, that is expected as the lossy ratio has been increased. 
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Figure 5.19 Delay with fixed lossy ratio 

Likewise, the number of DIO increased as shown in Figure 6.20, the most incurred OF 

is the MRHOF and with a small difference between OF0 and the proposed OF. The slight 

difference in these results is partially due to the changing parent in the proposed algorithm. 

 

 

 

 

 

 

 

Figure 5.20 Average DIO 
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Figure 5.21 Power Consumption for node 3, 7, and 8 in each OF 

In terms of power consumption, as can be noticed in Figure 6.21, it has been increased, 

as expected, in all OFs compares to the measurements in Figure 6.18 due to the extra lossy 

ratio. The proposed OF in both node 3 and node 8 clearly overcomes the other OFs as can be 

observed in Figure 6.22 and Figure 6.23 respectively. However, node 7 the OF0 copes the rest 

OFs due to the aforementioned churn. 

 

 

 

 

 

 

 

Figure 5.22 Power Consumption for node 3 
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Figure 5.23 Power Consumption for node 8 

 

5.5.3 Tagging scenario 

As mentioned in Section 5.3, to comprise any extra delay caused by more traffic on the 

path towards the DODAG root, especially if the case is emergency. The illustrated topology in 

Fig. 6.8 has been used to investigate the efficiency of tagging technique to overcome the delay 

problem over the congested path. The findings in Figure 6.24 show the end-to-end delay of the 

tagged packet has been mitigated compared to the delay of the non-tagged packets. Four 

different timers for the data packets are considered (5 -20 sec) and all show that the delay with 

the tagged packet is less than the non-tagged one.  

In terms of the packet delivery ratio (PDR), the superiority of the tagged packet is 

obvious as Figure 6.25 illustrates. The reason behind the improvement of PDR of the tagged 

packet that the number of the lost packet is decreased as shown in Figure 6.26. It is notable 

when the sending rate is 10 the lost packets are more and that due to the limited memory 

capacity of the node, which cannot accommodate the huge amount of data traffic, especially 

for the node with less number of hops from the DODAG root. 
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Figure 5.24 PDR for tagged and non-tagged packets 

 

 

 

Figure 5.25 End-to-end delay for tagged and non-tagged packets 
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Figure 5.26 Lost packet for tagged and non-tagged 

 

5.6 Conclusion 

This Chapter investigates the impact of the antagonistic metrics dynamicity on the RPL 

routing performance on the emergency scenarios. We propose a context-adaptive OF to 

optimise the selection decision of the routing path, in a dynamic manner, to achieve better low-

latency and maximize the lifetime of the network. The proposed OF endorses the robustness 

and elasticity of the current OFs and re-prioritises the metrics adaptively. The results, which 

have been conducted using real testbed devices, show that the proposed OF improves the 

network reliability, during the emergency situation, by reducing the end to end delay up to 

15%. Moreover, IPv6 traffic class (Tagging) approach is considered to mitigate any possible 

delay, which attains about 40% over the non-tagged one, and up to 14% in terms of PDR. For 

the other scenario, i.e. in terms of the lifetime, our OF performs better than the other OFs with 

up to 30% during the non-emergency cases.  
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Thus, a trade-off will have to be made between maintaing the minimum delay in the 

emergency scenarios and the minimum power consumption in the regular scenarios within the 

same application. Next chapter presents the overall conclusion of this thesis and the future 

directions. 
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7 
 

6 Conclusion and Future Work 

 

 

6.1 Introduction 

This chapter concludes the contributions of this thesis. It briefly presents how the 

previous chapters address the raised problems in chapter 1, the key findings along with the 

potential avenues for future research. 

Given the fact that the routing protocol is one of the main pillars of networking 

architecture, and confidently foreseeing its necessity for Low Power and Lossy Networks 

(LLNs), IPv6 Routing Protocol for LLNs (RPL) has swiftly become the de-facto routing 

protocol for IoT. Hence, RPL protocol tends to play a key role towards underpinning the 

infrastructure for a tremendous number of potential IoT applications in the near future, in both 

regular and harsh environments including the real-time applications in inaccessible areas with 

uniform and non-uniform distribution in large-scale networks. RPL is formulated with several 

robust landscapes, which tend to lid the limitations of constrained devices, such as exiguous 

delay, quick configuration, loop-free topology, and self-healing. However, RPL still suffers 
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from some problems that can cause serious consequences on the network reliability, such as 

the unbalanced load traffic and the context awareness of the antagonistic requirements.  

6.2 Thesis Summary 

The main goal of this thesis is to enhance the performance of the current standard 

routing protocols of IoT, namely, RPL protocol. Taking into account the acute contest growth 

of protocols and applications within the IoT paradigm. However, among these protocols, the 

routing protocol RPL was in particular the focus of this thesis, as it is the main de facto protocol 

in low power and lossy networks and machine-to machine networks, which are the backbone 

of the IoT paradigm. Subsequently, the IoT connotation, applications, and the IoT stack 

evolutionary have been discussed. We came across all protocols of IoT stack to show how the 

accumulated efforts contributed gradually to the LLNs protocols to end up with this stack. As 

RPL protocol is the main theme of this thesis, more details and discussion have been given to 

usher the essential background for better understanding of the research problems within this 

thesis. 

Accordingly, a variety of studies and solutions for RPL load balancing with the 

attributed metrics and context-awareness are surveyed, revealing the significant consequences 

of these problems on RPL, and the potential avenues for more solutions in this regards. As part 

of mastering the state of the art, we proposed a new category for the current solutions of RPL 

load balancing and context-awareness, along with a summary comparison of the current works 

to shed the light on some unsolved problematic challenges.  

The current IoT tools and methods are discussed, highlighting the characteristics and 

the main features of: firstly, the details of the common IoT operating systems are summarised, 

secondly, the real testbed devices alongside the widely used simulator so-called Cooja features 

that allowed being the chosen simulator to conduct the experiments of this study. 
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 This thesis has contributed a trivial step towards the load balancing problem in RPL, 

which is in line with the parent selection policy in the OFs within this protocol. This policy 

was investigated extensively through different scenarios. Thus, a new load balanced OF for 

RPL protocol is proposed to achieve a better workload distribution among all nodes in LLNs 

and battery lifetime thriving for a longer survival. A novel technique has been used to count 

the number of children for each parent without generating any extra overhead, and then injected 

in the DIO message. Thus, the better fairness of child nodes distribution has been attained 

through the proposed OF DODAG construction process, and balanced lifetime. Hence, both 

first and second research questions presented in Chapter 1. 

The synergy between the context parameters and RPL routing protocol is explored, 

which further alleviates risks caused by the antagonistic requirements impact. Thus, an 

adaptive OF is proposed based on the context that mitigates the impact of the antagonistic needs 

throughout the emergency scenarios. On the other hand, to optimise the lifetime, during the 

non-emergency scenarios, the accumulated number of children towards the DODAG root is 

considered to introduce less power consumption. The implemented OF has been tested using 

real testbed measurements of a multi-hop LLNs nodes in conjunction with simulator. 

Accordingly, this contribution satisfied the third and fourth research question that introduced 

in Chapter 1. 

6.3 Summary of Contributions 

According to the overall depiction of the research conducted in this thesis, the key 

outcomes of the contributions are as follow: 

The key outcomes of the first contribution: 
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(i) A new classification of the existing load-balancing RPL OF approaches is 

introduced. This classification places a great deal of emphasise on clarifying the 

unsolved issues in this regards, and revealing the direction of the research conducted 

in this thesis.  

(ii) A new utilisation technique for the DIO message has been considered. Typically, 

in the standard OFs, the preferred parent ignores the DIOs that come from its child. 

In the proposed LB-OF algorithm, the preferred parent node counts the received 

DIO from the child node after injecting the DIO with the selected preferred parent 

ID in the options field. This technique avoids increasing any extra overhead and 

allows each preferred parent to distinguish the number of its children during the 

DODAG construction stage. Thus, a better fairness distribution in the number of 

direct children among the candidate parents is achieved. 

(iii) Simulation results show that the proposed load balanced objective function is better 

than the current standards OFs in terms of balanced power consumption, packet 

delivery rate, balanced lifetime, and a number of children for each node. 

 

 

The key outcomes of the second contribution: 

(i) A new classification of the existing RPL OF approaches in terms of the used 

metric(s) is presented. This classification introduces the techniques that have been 

used to comprise more than one metric. 
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(ii) The distribution in the number of children has been widen using new technique to 

accommodate the entire path towards the root rather than the number of direct 

children only. This technique optimises the   routing decision overall path.  

(iii) As the requirements in IoT are generally application specific, then the impact of the 

antagonistic requirements may degenerate the network reliability in emergency 

situations. Thus, the protocol is improved to cater for emergency scenarios, and a 

context-adaptive OF has been proposed to ensure the co-existence of the emergency 

and non-emergency scenarios within one application. In fact, this new OF facilitates 

exchanging critical information between application and network layers to mitigate 

the impact of the antagonistic requirements based on context parameters (such as 

temperature) to rationalize the selection decision of the routing path towards the 

root node. 

(iv) The performance of the proposed OF has been examined using real testbed 

measurements of a multi-hop LLNs nodes in conjunction with simulation 

experiments. The obtained results confirm the superiority of our solution over the 

existing ones with respect to network lifetime, end-to-end delay with up to 15%, 

and 14% in terms of packet delivery ratio. 

6.4 Border impact 

The impact and applicability of the mechanisms and techniques developed in this work 

are expected to go beyond academia theory and expected to be adopted within the standards 

body IETF. Thus, the current standard protocol reliability will be optimised and enhanced to 

accommodate the plethora of the coming IoT applications. Furthermore, emphasising RPL for 

real-time and emergency IoT applications is crucial and might open the door to its fullest extent 

for unpresented applications in many disciplines. Moreover, this research not only make new 
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contributions to the research community but also open up promising doors towards future 

research. 

6.5 Future Directions  

Despite the enhancements that have been conducted in the thesis, however, we believe 

there are further enhancements are envisaged as future directions. Thus, the contributions of 

this thesis can be enriched in a number of avenues:  

Binary modes:  Utilising the binary modes in RPL (i.e., storing and non-storing modes) to 

count the number of children to minimise the overload that can be caused by injecting the 

preferred parent IP address in the DIO message as detailed in the standard draft [160]. In the 

storing mode, DAO message can be utilised for child nodes registration while no-Path DAO 

can be used for de-registration, and thus the number of child nodes will be counted. Hence, to 

minimalise traffic load, there no need to add the Parent IP Address in the DIO message in the 

storing mode. While, in the non-storing mode, the parent address should be considered within 

the DIO along with the hysteresis threshold for the number of children to switch from parent 

to another, the selected threshold depends on the application requirements. Overall, this will 

be determined according to the application requirements. Additionally, using the number of 

children along with another metric(s) (e.g. ETX, number of hops, energy, etc., according to the 

application requirements).to reduce the oscillation of changing the preferred parent. 

Mobility: Furthermore, the mobility feature within RPL is another option to investigate, 

considering the proliferation of IoT applications that need to be accommodated by RPL. Being 

the considered topologies in this thesis were fixed, we believe that the mobility will generate 

more churn and changing the parent address as result of topology dynamicity. Thus, the 

instability situation will result in more power draining causing less reliable network.    
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Heterogeneity: The umbrella of IoT tends to lid different technologies together containing 

heterogeneous nodes, in terms of resources and technologies such as ZigBee, LoRa, Sigfox, 

4G nodes, and so forth.  These heterogeneous nodes differ from routing in a network with 

homogeneous nodes. Hence, with this envision the need to use the hybrid networks that can 

accommodate more than one technology to operate according to the needs and resources 

availability. Thus, these type of networks can underpin the infrastructure for a wide range of 

IoT applications.    
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