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Abstract 
 

 

Rheumatoid Arthritis (RA) is a systemic autoimmune disease that develops when the immune 

system loses tolerance to self, resulting in effector cells erroneously causing joint damage. 

Despite advances in biological therapy there is currently no cure for RA. Regulatory T-cells 

(Tregs) can regulate a broad range of immune effector cells when specific antigens (Ag) activate 

them through their individual T cell receptors (TCR). Using retroviral gene transfer, Tregs can be 

modified to express a chosen disease-related TCR, producing an Ag-specific Treg population that 

can target and suppress inflammatory arthritis in murine models. In this study the aim was to 

validate a reproducible method of generating Ag-specific Tregs from human peripheral blood. 

The results of this research demonstrates the successful TCR transduction into isolated human 

Treg cells. This was achieved by completing the outlined objectives to optimise the transduction 

process and the isolation of Tregs from peripheral blood. By sorting on the 

CD4+CD25+CD127dim cell population, Tregs were isolated and the purity of the population 

demonstrated by the high percentage of FoxP3 expressing cells. The results further show that 

FoxP3 is maintained after the transduction process. It is now necessary to demonstrate the 

working functional capacity of the transduced Tregs using a robust antigen-specific suppression 

assay. With the future goal of transitioning this approach into a human clinical setting, the 

method requires further validation to prove a reproducible method of generating Ag-specific 

Tregs from human peripheral blood taken from RA patients. This has implications for the 

advancement for adoptive Treg therapy to treat RA and other autoimmune diseases and will 

highlight the necessity of considering treatments in the context of an inflammatory 

environment. It will be important to understand the nature of any defects in the Treg subsets 

and how these might be corrected. 
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Chapter 1 - Introduction 
 

 

1.1 Autoimmune Disease 
 

In a healthy individual the immune system acts to protect the body against invading 

pathogens, whilst remaining tolerant to, and not responding against self-structures. 

Autoimmune disorders develop when the immune system loses this self-tolerance and 

effector cells respond erroneously against self-antigens inflicting damage, inflammation and 

often chronic pain. The initial event which stimulates the self-attack response is difficult to 

identify, and often occurs years prior to the development of symptoms and once initiated 

cannot, at present, be stopped, hence there is no cure for autoimmune diseases. 

 

Understanding of autoimmunity has greatly advanced, with the identification and 

characterisation of crucial components of the immune system, such as the major 

histocompatibility complex, T-cell receptors and regulatory T-cells (Lleo et al., 2010). Over 80 

autoimmune disorders are now officially recognised and a more detailed knowledge of 

autoimmunity allows diseases to be described as B-cell mediated, or T-cell mediated or both. 

 

1.2 Rheumatoid Arthritis 
 

Rheumatoid Arthritis (RA) is a severe autoimmune disease in which dysregulation of the 

immune system causes the body to self-attack the bones and joints, causing persistent 

inflammation, chronic pain and irreversible joint destruction. The condition is typically 

characterised by the inflammation and proliferation of synovial cells at the joints, however 

RA can affect numerous different joints with a spectrum of severity. 

 

1.2.1 Epidemiology and Genetics of RA 

 

As the most common form of inflammatory arthritis, and the second most prevalent 

autoimmune disorder, RA affects 1% of the world population (Scott, Wolfe, & Huizinga, 

2010). In the UK this is estimated to translate to affect approximately 700,000 individuals. 

The most recent epidemiological study of RA in the UK was published in 2002 (Symmons et 

al., 2002). However, incidences reported in the study are based on diagnosing RA using an 

outdated classification system, and therefore may not be accurate. Despite this, it has been 

clearly established that RA affects woman three times more than men, and the prevalence 

increases with age, resulting in the highest incidence in woman over 65 years of age 

(Symmons et al., 2002). 
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The greatest susceptibility for developing RA is genetic factors (Yamamoto et al., 2015a). There 

are more than 30 genetic regions which have been identified as being associated with the RA 

(Yamamoto et al., 2015b). Currently the most significant link to the susceptibility of RA 

inheritance, and therefore the biggest risk factor is considered to be the presence of HLA-DRB1 

(Human Leukocyte Antigen) alleles associated with MHC Class II (Tezenas et al., 2005). This links 

directly to the ‘shared epitope hypothesis’, which postulates that one possible mechanism of 

pathogenesis in autoimmunity is the structural similarities between HLA variables, which alter 

the MHC-TCR interaction during antigen presentation to T-cells (Gregersen, Silver and 

Winchester, 1987). A number of different HLA genes can specifically confer a high risk of RA, 

with all these genes having structural similarities in the peptide binding groove that has been 

referred to as the ‘shared epitope’ (SE). It has been suggested that high risk of developing the 

condition is therefore linked to inheritance of the shared epitope in the form of a small portion 

of amino acid sequences shared by particular alleles within an HLA subtype. It is now accepted 

that HLA DR4 type has an association with the onset of RA, in particular HLA DR4 alleles 

containing the identified SE (HLA-DRB1*01, HLA-DRB*04). However, as identified by Gregerson 

et al (Gregersen, Silver and Winchester, 1987) when the shared epitope hypothesis was first 

formulated, a number of RA patients do not possess DRB molecules, and the inheritance of DR4 

has also been linked to increased risk of developing other autoimmune diseases. DR4 is 

therefore not considered a specific risk factor for RA, and subsequently genetic screening to 

predict the onset of RA is impossible, further limiting the ability to treat the condition early and 

slow disease progression. 

 

It has been observed that individuals with RA often have increased levels of antibodies 

formed against citrullinated proteins. Citrullination is a post-translation modification in 

which the amino acid arginine is converted to citrulline. The mechanism which initiates 

citrullination has not been definitively established, although there is evidence that it may 

linked to the release of intracellular PAD (Peptidylargine deiminase) enzymes and Ca2+, 

during inflammation-driven tissue damage, leading to the inappropriate extracellular 

citrullination of proteins. Citrullination has also been linked to risk factors such as smoking 

(Luban and Li, 2010). There is an association drawn between the inheritance of SE 

containing alleles and increased levels of anti-citrullination antibodies. It is thought that the 

citrullination process may result in the unintentional alteration of the shapes of antigens 

resulting in better conformation to bind to SE containing alleles (Luban and Li, 2010). The 

presence of anti-CCP antibodies (Anti-Cyclic Citrullinated Peptide), which are produced 

against citrullinated antigens, is relatable to the onset and severity of RA, and therefore link 
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citrullination and SE-alleles associated with DR4, and emphasise the increased genetic risk 

that the DR4 HLA type confers. It should be noted that not all incidences of RA coincide 

with the presence of anti-CCP antibodies, and therefore the condition is often discussed as 

anti-CCP positive RA and anti-CCP negative RA (Schellekens et al., 2000), with different CCP-

variants related to different HLA susceptibility. This is important to consider when studying 

the condition at the serum level. 

 

1.2.2 Diagnosis and Treatment 
 

Classification criteria for the diagnosis of the RA were first published in 1958, revised in 

1987 and further revised in 2015 by the American College of Rheumatology and the 

European League Against Rheumatism (Singh et al., 2015). The classifications characterise 

the condition based on a combination of factors, and the newest modifications were 

introduced in an effort to identify the onset of RA as early as possible, a difficult task as 

often manifestations of RA appear years after the initial development of the disease. The 

newest diagnostic criteria uses a score-based algorithm based on the number of joints 

inflamed, the type of joints, the serology and duration since the symptoms have appeared. 

 

A crucial component used to identify and diagnose RA is the results of serological tests. 

Tests are used to detect the presence, concentration and levels of autoantibodies - an 

antibody that is produced by the body and attacks self-proteins. In RA specifically, two key 

autoantibodies have been identified as being present in high concentrations: Rheumatoid 

factor (RF) and Anti-Citrullinated Protein Antibody (ACPA). The presence of autoantibodies 

is considered an indicator of autoimmune disease, however there is conflicting evidence 

concerning the potential role of autoantibodies in the pathogenesis of autoimmunity. For 

example, high levels ACPA could potentially contribute to the disease, however disease 

remission does not necessarily correlate with a reduction in ACPA levels within a patient. RF 

is considered to be a marker of chronic inflammation, and can therefore be present in 

individuals who do not demonstrate symptoms of RA. This is a factor to be considered in 

the search for potential treatments. The relative concentration and presence of these 

proteins can be used to predict the onset and diagnose the condition. Increased 

concentrations of autoantibodies identified in patient samples can be indicative of RA years 

before clinical symptoms begin to manifest (Forslind et al., 2004). 

 

1.2.3 Current RA Treatments 
 

There is no cure for RA, and current treatments for the condition focus on symptom 

management. The most up to date guidelines in the UK recommend the administration of 
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multiple drugs to simultaneously reduce inflammation and pain (Singh et al., 2015). 

Disease-Modifying Anti-Rheumatic Drugs (DMARDs) are predominately prescribed, and 

these act to suppress the body’s immune system from actively destroying the joints (Press, 

2009). DMARD can refer to any chemical that can be used to treat the underlying disease 

condition and slow progressive joint erosion. A long-term study which examined 

approximately 3000 RA patients over the course of 20 years concluded that there was 30% 

reduction in the development of longer term disability after consistent use of DMARD drugs 

(Wolfe et al., 1994). However, DMARDs target the general immune system and their long-

term use is associated with toxic effects. As the long term continuous use of DMARDs is 

essential for sustained treatment, this emphasises the vital necessity of developing a more 

efficient therapy to treat RA. Analgesics are additionally required for the management of 

pain, and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are recommended to reduce 

inflammation. Steroids are often prescribed for short term pain relief (Ally and Hodkinson, 

2016). This combination of prescriptions represents the life-long challenge for RA patients 

in dealing with the co-ordination of multiple pharmaceuticals for symptom management 

and the possibility of copious side effects which accompany them. 

 

In recent years a new form of DMARDs are available for RA treatment, and these are known 

as ‘biological DMARDs’, or ‘Biologics’. This new class of drugs is increasingly prevalent as 

research increases knowledge of the underlying mechanisms causing RA (Story and Far, 

2013). Biologic drugs are designed to specifically block the production of the damage 

causing chemicals in RA, such as Tumour-Necrosis Factor (TNF) thereby reducing the 

inflammation and joint destruction while avoiding general immune suppression. However, 

since TNF plays an important role within the immune system, blocking the cytokine can 

have demonstrable consequences, and has the potential to increase susceptibility to 

infections. In 2010 the British Society for Rheumatology produced guidelines for the safe 

use of TNF therapies, recommending that caution is required when prescribing anti-TNF 

biologics due to the damaging side effects and the increased risk of infections that 

accompany the treatment (Ding et al., 2010). As with DMARDS, the continuous and life-long 

use of the biologics is required. 

 

It would be greatly advantageous to develop a treatment with the ability to halt re-occurring 

and chronic inflammation, restoring the tolerance of the immune system with long-term 

sustainability. A promising method of achieving this is the genetic modification of a particular 

sub-population of cells known as regulatory T-cells (Tregs) to generate an adoptive therapy. 
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1.3 Regulatory T-cells 
 

In the early 1970’s Gershon and Kondo proposed thymus derived lymphocyte populations 

contained more than one subset of T-cells (Gershon and Kondo, 1970). Early studies of 

autoimmune disease suggested that a suppressor T cell population with the ability to regulate 

and suppress other T-cells existed, with the means of mediating immune tolerance. However 

there was initially no definitive evidence for the existence of a distinct regulatory T-cell 

population as no discriminatory population markers could be identified, and a pure Treg 

population could not be isolated (Moller, 1988). The identification and isolation of Tregs did not 

occur until 1995, when Sakaguchi (Sakaguchi, 1995) demonstrated the elimination of the 

CD4+CD25+ subset in mice resulted in the onset of a multiple autoimmune conditions. 

 

Regulatory T-cells are now an accepted sub-population of T-cells, composing only 2-3% of 

the total T-cell population. Tregs have an important role in preventing and turning off the 

immune response, and evidence suggests that through recognition of self, Tregs can 

dominantly suppress immune responses that may result in inappropriate self-targeting, 

followed by the turning off of the adoptive immune responses (Sakaguchi et al., 2008). 

 

1.3.1 Identification of Tregs 
 

CD25 is the high-affinity alpha chain of the IL-2 receptor, and this receptor is essential for 

the development of Tregs (Furtado et al., 2002). As CD25 is constitutively expressed on 

most Tregs it was identified as a surface marker to be used in combination with CD4 to 

isolate a Treg population. While the use of CD4+CD25+ surface markers is still considered 

the most practical method of characterising and isolating Treg cells unfortunately this 

approach is flawed. Due to the role of IL-2 in T cell inflammatory responses, the expression 

of CD25 on Tcons is upregulated after activation (Hatakeyama et al., 1989), and 

consequently the use of this marker to isolate pure Treg populations can often include a 

contamination of conventional CD4 T-cells. The closest marker identified to isolate a 

genuine Treg population is Forkhead Box Protein 3 (FoxP3), which is a transcription factor 

that has been described as a ‘master regulator’ for Tregs, with a critical function in 

determining the cell lineage function and commitment (Zheng and Rudensky, 2007). It is 

therefore highly expressed and a reliable marker for Tregs. As a transcription factor FoxP3 

persists in the nucleus of cells; this can be detected by flow cytometry however the process 

requires the fixing and permeabilisation of the cells, and therefore FoxP3 cannot be used to 

sort viable cell populations. Furthermore, the upregulation of FoxP3 expression in activated 

Tcons has also been observed (Gavin et al., 2006). 
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CD127 can be used in combination with CD4 and CD5 to obtain a purer population (Liu et 

al., 2006). CD127 is the receptor for IL-7, and is downregulated on T-cells after activation, 

however while T-cells re-express the receptor Tregs demonstrate a reduced expression of 

CD127. Liu et al (2006) isolated a highly purified Treg population using the markers 

CD4+CD25+CD127dim to identify the Treg cells, and further demonstrated a direct link 

between the reduced expression of CD127 and the expression of FoxP3 in Tregs. 

 

It is recognised that more unique surface markers are required for easier identification and 

isolation of Tregs. Seddiki (Seddiki et al., 2017) therefore assessed a large number of 

potential markers, such as the surface proteins CTLA-4 and GITR (Glucocorticoid-Induced 

TNF-R Related), which are expressed by Tregs and are essential for the functional capacity 

of the cells, however cannot be considered unique enough to qualify as effective Treg 

markers. CD4+CD25+C127 low therefore remain the best markers for the isolation of the 

Treg population. 

 

1.3.2 Tregs: Mechanisms of Action 
 

Like all T-cells, Tregs recognise their target through their individual TCR. TCRs are generated 

in such a way that each T-cell has a unique receptor capable of recognising a different 

protein structure, known as its antigen. Hence, in Tregs, it is the individual TCR that enables 

the Treg to recognise antigens and prevent responses that may compromise self-tolerance. 

Natural Tregs that develop in the thymus are a polyclonal population, already primed to 

activate in response to a diverse range of antigenic stimulation. The existence of tissue 

specific Tregs indicates that a portion of Tregs migrate to regional lymph nodes and are 

activated by tissue specific antigens, in addition to the exportation of Tregs to inflamed and 

infectious areas where they can exert their regulatory function (Bluestone and Abbas, 

2003). It is known that Tregs can supress in a number of ways which can be divided into 

contact dependent suppression and contact independent suppression. In order to 

comprehend the potential impact and function of regulatory T-cells within autoimmune 

disorders the mechanisms through which Tregs act must first be understood. 

 

1.3.3 Suppression by Tregs 
 

1.3.3.1 Contact-dependent suppression 

 

Cell contact-dependent mediated suppression by Tregs was first suggested after in vitro 

investigations indicated that when co-cultured, but separated by a semi-permeable 

membrane, Tregs failed to suppress Tcons (Sakaguchi et al., 2001). A number possible 

mechanisms have been described. 
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One hypothesis suggests that contact-dependent suppression is mediated through the GITR 

receptor, which is constitutively expressed on Tregs. The activation of the GITR receptor has 

been acknowledged to halt suppression: Gondek et al (Gondek et al., 2005) noted the 

upregulation of the molecule GZ-B (granzyme B) after activation of the GITR receptor during 

contact-dependent suppression. GZ-B is a serine protease which can induce apoptosis in 

targeT-cells, and therefore the upregulation of this molecule through cell contact with T-

regs highlights a potential mechanism for suppression. This is further emphasised by the 

reduced ability of Tregs removed from GZ-B knockout mice to suppress effector cells. Other 

mechanisms of contact-dependent suppression have been described, for example, it has 

been suggested that Treg contact-dependent suppression utilises the molecule cyclic 

adenosine monophosphate (cAMP), the upregulation of which can reduce IL-2 and inhibit T-

cell growth (Bopp et al., 2007). The range of published research investigating Treg mediated 

suppression highlights the complexity surrounding the function of Treg cells. 

 

The most interesting mechanism of contact-dependent suppression, in the context of 

considering the potential role of Tregs in autoimmunity, is the direct interaction of Tregs 

with antigen presenting cells (APCS). This is mediated through the expression of cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) on the surface of Tregs: CTLA-4 binds directly 

with a high affinity to the surface proteins CD80 and CD86 expressed on the APCs, blocking 

the required co-signal for the activation of conventional T-cells. CTLA-4 knockout mice have 

a high mortality from the rapid develop autoimmune multi-organ failure (Klocke et al., 

2016). This mechanism of suppression therefore requires the Treg to be activated by the 

antigen presented by the APC, as Tregs will not interact with APCs in the absence of antigen 

activation, and is therefore an Ag-specific method of suppression. Additionally it requires 

the presence of mature APCs with upregulated expression of CD80/CD86. However it is 

interesting to note that research has indicated that immature APCs can activate naïve Tregs 

despite the low expression of CD80/86 (Mahnke et al., 2002). 

 

1.3.3.2 Contact-Independent suppression 

 

There is accumulating evidence to suggest key roles of cytokines IL-10 and TGF-β in Treg 

mediated suppression. IL-10 is a cytokine with documented functions in immunoregulation, and 

suppresses the expression of MHC class II while inhibiting the production of inflammatory 

cytokines and interfering with the proliferation of Tcons (Bluestone and Abbas, 2003). Similarly 

TGF-β acts to inhibit conventional T-cells, and downregulates cytokine receptors that promote 

cell survival, including IL-2 receptor, which is essential for cell 
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survival. Interestingly CTLA-4 knockout mice demonstrate increased secretion of IL-10 and 

TGF-β, suggesting that Tregs utilise a combination of contact-dependent and independent-

suppression (Bluestone and Abbas, 2003). 

 

1.3.4 Linked Suppression and Infectious Tolerance 

 

Whilst Tregs require recognition of a specific antigen to become activated and suppress, once 

activated, Tregs can suppress conventional T-cells (Tcons) specific for any target, provided they 

are co-localised. APCs play a crucial role by providing proximity required for this process 

through the simultaneous presentation of different antigens. This phenomenon is known as 

linked suppression and is essential in preventing the broad range of self-responses that may be 

initiated (Thornton and Shevach, 2017). This is likely to be particularly important in curing 

autoimmune disease where the original inciting antigen may not have been identified. 

 

A  B 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Diagram describing the Treg characteristics linked suppression and infectious 
tolerance. (A) describes linked suppression, where the Treg is capable of supressing the effector 
cell of different specificity when the two peptides are presented by the same APC. (B) shows 
infectious tolerance, in which tolerance to a peptide is passed onto surrounding cells. 

 
 

 

Tregs have also demonstrated a capacity for infectious tolerance, a process in which 

tolerance towards specific proteins can be promoted among surrounding T-cells, and this 

allows for a long term sustained suppression of Tcons (Waldmann et al., 2006). As with 

linked suppression, the role of the APC is primary to the process of infectious tolerance, and 

the introduction of activated APCs into a tissue graft can help to restore immune 

homeostasis (Sakaguchi et al., 2009). Within the tissue microenvironment, Tregs specific for 

antigens presented by the APCS can exert influence over the APC to induce the surrounding 

effector cells to convert into adaptive T-regs. This increases suppression and maintains long 

term tolerance in a self-perpetuating fashion, a highly attractive function of Tregs in the 

context of exploiting the population to generate an effective autoimmune therapy. 
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1.4 Adoptive Treg Therapy 
 
 

Adoptive therapy describes a treatment that involves the re-introduction of cells into a 

patient to cure a disease. Adoptive cell therapy has been actively researched with the aim 

of both suppressing immunopathology (using Tregs) and enhancing immune responses to 

eradicate disease (using conventional T-cells). Adoptive T-cell therapy is also an active area 

of cancer research, with the aim of targeting tumours through the re-introduction of killer 

T-cells that have been genetically modified to express a tumour-specific receptor (Restifo, 

Dudley and Rosenberg, 2012). 

 

In the context of this project, adoptive therapy describes the re-introduction of a Treg 

population that has been modified to specifically suppress the inflammation caused by RA. 

It should be noted that this therapy could be applied to target any chosen autoimmune 

condition. 

 
 

1.4.1 Potential of T--regs to Treat Autoimmune diseases 
 

 

The transfer of a T-cell population depleted of regulatory T-cells into animal models can induce 

the development of autoimmune diseases. This was demonstrated by Sakaguchi (Sakaguchi et 

al., 2001) who also observed that the onset of autoimmunity could be reversed by re-

introduction of Tregs into the depleted mouse model. Moreover, a rare genetic disorder known 

as ‘IPEX’ (Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) which 

results in an absence of functional Treg cells is typically fatal due to early life onset of severe 

autoimmune conditions (Ochs, Gambineri and Torgerson, 2007). It is becoming evident that 

regulatory T-cells have a role in autoimmunity, and there is a potential to study and exploit this 

cell population in pursuit of a treatment for autoimmune disease. 

 

Advantages of utilising Tregs as a therapeutic are evidenced throughout the literature. 

Promising results published from studies conducted in 2003 report the introduction of Treg 

cells establishes a cure of colitis in mouse models (Liu et al., 2003). Inflammatory colitis was 

induced in mice via infection before mice were treated with an injection of effector T-cells, 

followed by the introduction of isolated Treg cells. The authors report that mice injected 

with the Treg cells at early time-points did not develop any indication of colitis, and the 

conclusions state that Tregs have a clear positive therapeutic effect in the treatment of the 

condition (Liu et al., 2003). The transfer of regulatory T-cells into lymphopenic mice 

exhibiting Collagen-Induced Arthritis (CIA) has resulted in a significant decrease in both the 
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progression of the disease and levels of inflammatory proteins, with long term reduction in 

inflammation (Morgan et al., 2005). The adoptively transferred Tregs were observed 

localised in the joints, indicating the ability of Tregs to localise and control inflamed areas. 

CIA is an autoimmune disease that has similar mechanisms and symptoms to RA, and 

subsequently the study of CIA in mice has previously been considered a representative 

model for studying RA in humans. 

 

In 2011 the first human clinical trial utilising adoptive Treg therapy to prevent Graft-Versus-

Host-Disease (GvHD) was published (Di Ianni et al., 2011). Adoptive Treg transfer produced 

promising results, evidenced by Treg treatment that been demonstrated to prevent GvHD. This 

is a condition that results when T-cells present in a donor bone marrow (BM) transplant 

recognise the recipienT-cells as foreign, inciting a damaging response. The Treg population was 

isolated and purified before being re-introduced into participating patients, and after a 12 

month follow up 46.1% of the patients who had been indicated to have a high chance of re-

lapse prior to treatment were reported to be disease free. The paper concludes that the 

adoptive Treg therapy prevented GVHD and enhanced patient recovery (Di Ianni et al., 2011). 

However, it is unlikely that a similar treatment involving the transference of a large number of 

polyclonal T-cells is likely to produce a successful treatment in autoimmune conditions. 

 

The transfer of polyclonal Tregs has the potential to suppress and prevent disease progression, 

however this has been achieved only using a large number of Tregs and is observed only at Treg: 

Teffector ratios of 0.5:1 or 1:1 in vitro (Tang et al., 2004). This low efficiency could be due to the 

low percentage of Tregs specific for the target antigen present within the polyclonal population, 

as determined by the T-cell Receptor (TCR) expressed by each Treg. The use of Tregs expressing 

TCR’s specific for disease related peptides is therefore important for the appropriate activation 

of Tregs at a targeted suppression site. Tang et al compared the effect of polyclonal Tregs and 

Ag-specific Treg treatment on disease onset and progression in diabetic and non-diabetic mice. 

Tregs were isolated from TCR transgenic mice, and the suppressive capabilities of the Ag-

specific Tregs tested against an expanded polyclonal population. Ag-specific Tregs suppressed 

effector T-cells with significantly higher efficiency compared to polyclonal Tregs when tested in 

vivo, with only a small number of cells required to exert a suppressive response which could be 

observed at ratios of 1:9 Treg: Teffector. In contrast polyclonal Tregs were required at ratios of 

1:1 for an effect to be seen, requiring a large number of cells (Tang et al., 2004). Furthermore 

the high ratios of Treg: Teffector cells that would be required for an observable effect is not 

representative of physiological levels, highlighting the inefficiency of polyclonal Treg transfer. In 

contrast Ag- 
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specific Tregs have been shown to exert an effect with 100-fold higher efficiency, and only 

small numbers of cells would be required for adoptive transfer (Tang et al., 2004). 

 

1.4.2 Generation of Ag-Specific T-reg Populations 
 

The isolation and generation of populations of Ag-specific Tregs presents a challenge. As 

previously mentioned, the specificity of Treg cells is determined by the expressed TCR, and 

therefore the generation of a population of Tregs with uniform specificity for a targeted 

antigen would require precision isolation and expansion of particular Treg clones. Research 

investigating the use of Ag-specific Tregs in animal models have utilised genetically altered 

animals that express a single TCR specific for an identified antigen, known as TCR-

transgenic, as a reliable source of Ag-specific Tregs. However, there is no equivalent 

method for the generation of human Ag-specific Treg cells. 

 

For the realistic advancement of Treg adoptive therapy it is necessary to explore the generation 

of sufficient populations of Ag-specific Tregs. A retroviral gene transfer method has been used 

to transduce a specific TCR to a purified population of polyclonal Tregs (Wright et al., 2009). The 

phenotype and function of the transduced Tregs was tested 3 days after the transduction 

protocol, and flow cytometry showed that approximately 60% of the Treg population was 

expressing the transduced TCR, and was therefore Ag-specific. Tests of the functional capacity 

of the receptor demonstrated increased suppression of effector cells in the presence of the 

target antigen, indicating the activation of the Ag-specific TCR. These promising results were 

further investigated in an in vivo setting. The stability of the adoptively transferred transduced 

Tregs was demonstrated using a partially lymphopenic mouse model, from which blood samples 

were taken after 2 and 4 weeks. Further analysis showed the introduced Tregs maintained their 

typical characteristics. To investigate the ability of the Transduced Tregs to actively demonstrate 

Ag-specific suppression in vivo an antigen-induced arthritis mice model was used, in which T-cell 

mediated tissue damage was induced. It was shown that transduced Tregs have the ability to 

supress damage and decrease inflammation when the target peptide was present in the same 

localised area, with swelling in the joint significantly reduced compared to negative controls. 

The results therefore provide compelling evidence for the efficacy of Ag-specific Treg adoptive 

therapy. Additionally the transduced Treg suppression of the effector cells was shown to occur 

even when the effector cells hold different antigen specificity, presenting clear evidence of 

utility of linked suppression in controlling autoimmune inflammation without targeting the 

pathology causing antigen. As previously discussed, this is an important characteristic of Tregs 

that allows for targeted suppression of inflammation caused by unknown antigens. 
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Brusko et al isolated and expanded a human polyclonal Treg population in vitro, before a 

specific TCR was introduced into the population using retroviral gene transfer method (Brusko 

et al., 2010). The expression of the introduced TCR on the polyclonal T-cell population was 

tested using flow cytometry. The transduced Tregs were selectively enriched by using antigen 

specific activation of the newly introduced TCR, resulting in a population of Tregs with 66.1% 

that express the same TCR and were therefore antigen specific. Ag-specific Tregs generated in 

this manner demonstrated Ag-dependent suppressive function. The In vivo capabilities of the 

generated population was investigated through adoptive transfer into transgenic mice, and in 

comparison to polyclonal Tregs the transduced Ag-specific Treg population demonstrated much 

higher efficiency, requiring a lower number of cells for notable effects. Overall the method was 

able to generate a sufficient number of functional Ag-specific Tregs from low peripheral blood 

volumes, and in a time sufficient manner. 

 

The generation of an Ag-specific Treg population needs to be optimized for human Treg 

cells, which will first be required to be isolated and expanded from peripheral blood. The 

generation of a pure Treg population presents a challenge due to the small population size 

combined with the difficulty in defining specific cell markers to target the correcT-cells. 

Furthermore, contaminating effector T-cells still present during the expansion of a Treg 

population has the potential to outgrow the Treg population and generate a significant 

contaminating and potentially pro-inflammatory T-cell population (Koenen et al., 2008). 

Particular subtypes of Tregs have been observed to exhibit phenotypic instability, with the 

down-regulation of FoxP3 noted. The down regulation of FoxP3 has been directly correlated 

with a loss in regulatory function, but also been linked to a resulting switch to become Th17 

cells. Th17 cells are a pro-inflammatory population and have been associated with 

pathogenic activity (Koenen et al., 2008). It is therefore imperative to develop a method 

that allows the isolation of a Treg subset that confers both functionality and stability. 

Hoffman et al identified that a subset of Tregs, CD4+CD25+CD45RA+, can be expanded in 

vitro to produce a homogenous Treg cell line that is ideal for use in adoptive therapy. 

CD45RA+ cells have been shown to maintain high suppressive capability upon stimulation 

to differentiate into mature Tregs and proliferate in vitro, and have demonstrated the 

ability to maintain FoxP3 expression after expansion (Hoffmann et al., 2017). 

 

1.4.3 Tregs in Rheumatoid Arthritis 

 

An important consideration for Treg adoptive therapy is the involvement of Tregs in the 

initial onset and perpetuation of autoimmunity. Conflicting research has been published; a 
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review of the role of Tregs published in 2011 collated research investigating the number and 

function of peripheral Tregs in a number of autoimmune disorders including RA. For each 

condition investigated, the review located results that indicated a combination of increased, 

decreased and normal peripheral Treg numbers, with the function of cells being inconsistently 

found to be either normal or defective. This particular review paper referenced 17 papers 

regarding RA, with 6 papers stating a decreased number of peripheral Tregs, 3 suggesting 

increased numbers, and the remaining 8 stating normal peripheral Treg numbers. The studies 

date from 2004 – 2009, it is likely that the earlier studies will produce less reliable conclusions 

as a result of using less specific cell markers to identify the Treg population throughout the 

research (Miyara et al., 2011). However some research has utilised more specific cell markers, 

and included FoxP3 purity checks alongside cytokine analysis to confirm that FoxP3 population 

studied is in fact Tregs and not recently activated T-cons with upregulated FoxP3. Considering 

results taken from such studies the evidence suggests that the peripheral blood of RA patients 

contains normal numbers of Treg cells. However, unpublished research from our lab has 

suggested that the ratio of Ag-experienced Tregs (CD45RO) in comparison to naïve Tregs 

(CD45RA) is different in the peripheral blood of RA patients compared to controls. The finding of 

the altered ratio of naïve/adaptive Tregs in the peripheral blood of RA patients therefore has 

implications for the advancement for adoptive Treg therapy in the treatment of RA. Recent 

research investigated the state of Tregs from the peripheral blood of chronic RA patients 

through analysis of the phenotype, cytokine expression, suppression abilities and gene 

expression profiles of the CD4+CD25+CD127dim CD45RO and CD45RA subsets. After analysing 

results from 43 RA samples, compared to 42 healthy controls, no statistically significant 

differences were observed (Walter et al., 2016). However, while not observed in all patient 

samples, some CD45RO Tregs from RA patients were noted to have an impaired ability to 

supress certain inflammatory cytokines. 

 

Despite the observed normal numbers of Tregs in the periphery, it will be important to 

understand the nature of any potential defects in the Treg subsets and how these might be 

corrected. There is conflicting information concerning the functional capacity of Tregs in 

patients with RA. Early research reported no defects in the function of Tregs, based on the 

observation that Tregs (CD4+CD25+) isolated from the RA patients demonstrated the 

suppression of Tcons in vitro. However, it has since been noted that Tregs from RA patients 

demonstrate an inability to suppress inflammatory cytokines typically produced from 

conventional T-cells. Ehrenstein et al (Ehrenstein et al., 2004) analysed the functional 

capacity of Tregs isolated from 27 RA patients, the results indicated that the Tregs isolated 
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from RA patients failed to inhibit the production of inflammatory cytokines in comparison 

to the healthy controls which demonstrated successful suppression. Flores-Borja (Flores-

borja et al., 2008) investigated potential defects in CTLA-4 in Tregs isolated from the 

peripheral blood of RA patients, and noted significantly reduced expression of CTLA-4 on 

the cells compared to healthy controls. This research therefore linked the inability to 

suppress inflammatory cytokines with a defect in the accumulation of CTLA-4 on the 

surface of Tregs. The TCR associated signalling of the RA Treg population was reduced, 

however function could be restored by treating the cells with a reagent known to induce 

surface accumulation of CTLA-4. The conclusion was drawn that CLTA-4 abnormalities in 

Tregs may underlie issues with suppression by Tregs in RA. CTLA-4 is considered an 

important mechanism in contact-dependent mediated suppression. Adoptive Treg therapy 

will rely on Ag-specific direct contact dependent interaction with APCS, which allow the 

bystander suppression of effector cells also in contact with the APC, and negate the need to 

identify a specific antigenic target. It is therefore an important to consider the potential 

defects that could be encountered in the isolated cells that will be involved in this contact. 

This emphasises the necessity to design a robust test of the functional capacity of isolated 

and modified cells, but also highlights the potential for future research to further 

investigate and potential correct defects as part of the adoptive therapy for RA. 
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1.5 Project Overview 
 

The combined characteristics of Tregs provide compelling insight into the potential of a Treg 

Adoptive Therapy to suppress RA induced inflammation without general suppression of the 

immune system. The overall aim would be the re-establishment of normal immune tolerance 

and cure of the disease. The crucial next step is the translation of Treg adoptive therapy 

research into a human setting, and the successful demonstration of the generation of an Ag-

specific human Treg population that could be re-directed to target autoimmune damage. The in 

vivo demonstration of linked suppression in the mouse models encourages the hypothesis that: 

Ag-specific human Tregs, that have been designed to specifically target a disease-associated Ag, 

could successfully suppress inflammation and damage. Unpublished research has begun to 

investigate the best methods and targets to achieve this in the context of RA. 

 

First a suitable TCR for transduction into Tregs has to be identified. The TCR must recognize 

a relevant Ag presented by an MHC class II molecule on an antigen-presenting cell. 

Unpublished work from my host lab has utilized the TCR MS2.3C8-TCR to demonstrate the 

therapeutic potential of Tregs in RA treatment as it is specific for a protein presented by 

HLA-DR4 which is known to be the largest genetic factor influencing RA development, and is 

identified in a large number of patients (Hammer et al., 1995). Ag-specific targeting of a 

relevant RA-associated peptide will therefore allow the activation of Tregs at sites of RA 

induced pathology. 

 

Aims and Objectives 

 

Aim of the Research: To generate functional Ag-dependent suppressive human Tregs using 

TCR gene transfer. 

 

Research Hypothesis: Human Tregs isolated from peripheral blood can be genetically 

modified to express a chosen TCR, thereby generating a functional Ag-specific Treg 

population. 

 

Objectives: 

 

1. Set-up and optimise protocols for the retroviral transduction process. 
 

2. Set-up and optimise protocols to isolate and sort Tregs from human peripheral blood. 
 

3. Establish robust protocols for the successful TCR transduction of Tregs. 
 

4. Demonstrate the functional capacity of Ag-dependent Treg mediated cell suppression 

through the use of suppression assays. 
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Continuation of the research would then focus on applying the validated protocols to RA 

patient blood samples. This will require the isolation of CD45RA+ Tregs from peripheral 

blood taken from RA patient samples to be used in the transduction procedure.  
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Chapter 2 – Materials and Methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 

Figure 2: Work-flow diagram of the overall processes required for eventual TCR transduction. The viral 
supernatant used as a tool to transfer the TCR DNA into the target cells must first be generated, and 
this process is depicted in 1. Similarly the target cells must be isolated from fresh blood. 2 
demonstrates how the target cells and generated virus are brought together in the transduction 
process using the retronectin fragment to facilitate DNA transfer.  
 
2. 1 Ethics and Sample Population 

 

Ethics forms for working with human samples were submitted and approved by the Ethics 

boards at Edinburgh Napier University. Blood samples from healthy controls were taken from 

volunteers by a trained phlebotomist and each participant was fully informed of the study 

requirements and asked to sign a form confirming voluntary participation. Participants included 

both males and females, of the age range 20-30 years. 

 

2.2 Retroviral Vectors and DNA preparation 
 

2.2.1 Transformation and Purification. 

 

The TCR DNA used in the final transduction procedure had to be transformed using a high 

efficiency transformation protocol, utilising NEB-5-alpha Competent E.coli cells. The 

transformation was performed by following the protocol provided by NEB (New England Biolabs, 

UK). NEB 5-alpha Competent E.coli cells were stored at -80°C until use. The E.coli cells were 

thawed on ice prior to being used in the protocol. The DNA to be transformed was diluted with 

nuclease free water in sterile conditions down to an appropriate 
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concentration for the procedure, using the recommended DNA concentration of 100ng of plasmid 

DNA. 

 

Briefly, 5µL of the DNA plasmid was added to and mixed through gentle pipetting with 50µL of E.coli cells 

before the cell-plasmid mixture were stored on ice for 30 minutes. A sample containing cells only was 

included as negative control. Samples were then heat shocked for exactly 30 seconds at 42°C before 

being incubated for a further 5 minutes on ice. 700µL of SOC (super optimal broth) media was added to 

each transformation tube and the samples were incubated with 250rpm shaking for 60 minutes. At the 

end of the incubation cells were plated on prepared LB agar plates by spreading the cells across one half 

of the plate and sequentially spotting the cells down the corresponding half of the plate to create a 

dilution. The plates were incubated overnight at 37 °C , after which a starter colony from each plate was 

inoculated in 5mL of LB broth and further incubated for 8 hours before being purified. 

 

After the transformation process the plasmids were purified using the Qiagen plasmid Purification 

kit, and following the provided protocol (Qiagen, 2012). The kit contains Buffer P1, Buffer P2, Buffer 

P3, Buffer QBT, Buffer QC and Qiagen-Tip 100. In addition the kit provides RNase A and Lysate Blue 

which were added to Buffer P1, after which Buffer P1 was stored in the fridge as per 

recommendations. The rest of the kit was stored at room temperature. 

 

500µL of each starter colony was diluted in 500mLs of LB broth and centrifuged at 6000g for 15 minutes 

at 4°C. After centrifugation bacterial pellets were re-suspended in 4mL of Buffer P1 (with added RNAse A 

and Lysate Blue). 4mL of Buffer 2 was added and the solution vigorously mixed and incubated at room 

temperature for 5 minutes. 4mL of Buffer P3 was then added, and again the solution mixed by inverting 

before being incubated on ice for 15 minutes. Samples were centrifuged at 20,000xg for 30 minutes at 

4°C and the supernatant removed before samples were centrifuged again at 20,000xg for 15 minutes to 

ensure the removal of particulate material, and the plasmid containing supernatant carefully collected. 

 

The Qiagen-100 tip was prepared by pipetting 4mLs of the provided QBT buffer through the column, 

which was allowed to empty by gravity flow. A further 2x10mLs of the Buffer QC was additionally added 

before the plasmid containing supernatant was applied to the Qiagen 100-tip. The DNA was then eluted 

through the addition of 5mLs of Buffer QF, before the addition of 3.5mL isopropanol. Samples were then 

centrifuged for 60 minutes, using a rotatory arm centrifuge at 5000g. The supernatant was removed and 

the DNA pellet re-suspended in 70% ethanol before another centrifuge at 5000g (rotatory arm) for 60 

minutes.  

Under sterile conditions, the supernatant was carefully removed and pellets allowed to air 

dry before being suspended in sterile water and analysed on the nanodrop for the purity 

and concentration. 

 



 

Due to the limitations of the laboratory equipment, the centrifuge suggested in the Qiagen 

protocol was altered from the recommended 30 minutes at 15,000g, and instead samples 

were centrifuged for 60 minutes, at 5000g using a rotatory arm centrifuge. 

 

2.2.2 Analysis of DNA 
 

2.2.3.1 Gel Analysis 

 

DNA samples were run on a 1% agarose gel (0.5 agarose, 50mL TAE buffer), with 2.5µL of 

Safe-view (NBS Biologics LTD). TAE buffer was composed of 48.4g Tris Base, 11.4mL glacial 

acetic acid and 3.7g EDTA. Samples were run in duplicate at two different concentrations: 

100ng/5µL and 300ng/5µL. 3µL of loading dye was added to all samples, which were run 

alongside a 1 Kb DNA ladder (Bioline Hyperladder). 

 

The gels were run at 120 volts for approximately 30 minutes before being removed from 

the gel tank. 

 

2.2.3.2 Nanodrop 

 

After the initial calibration of the Nanodrop (Thermofisher, Rockford IL, USA2000) with sterile 

nuclease free water, 1µL of each DNA sample was run. For DNA samples the purity is indicated 

by the 260/280 ratio, which was taken as acceptable if within the range of 1.8-1.9. 

 

2.3 Cell Culture 
 

2.3.1 Cell Culture Media 
 

The growth medium used for each cell type is shown in table 2.1: 

 

Table 2.1: Components of Media used for Cell Culture 

 

Cell Line Medium Supplemented 
   

Phoenix-Ampho IMDM (Thermofisher) L-Glutamine, 100Units/mL 

  Penicillin, 100µg/mL 

  Streptomycin, FBS 
   

Jurkat RPMI 1640 (Thermofisher) L-Glutamine, 100Units/mL 

  Penicillin, 100µg/mL 

  Streptomycin, FBS 
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ThP1 RPMI (Thermofisher)  L-Glutamine, 100Units/mL 

    Penicillin, 100µg/mL 

    Streptomycin, FBS 
     

Primary T-cells RPMI OR TexMACs L-Glutamine, 100Units/mL 

 (Thermofisher)  Penicillin, 100µg/mL 

    Streptomycin, AB Serum 

    (TexMACS) 
     

 
 

 

2.3.2 PBMC Cell Isolation 

 

Peripheral Blood Monocytes (PBMCs) were isolated from blood samples using Lymphoprep 

(Axis Shield, Biodundee, StemCell Technologies, 2017), following the protocol supplied. 

Blood samples were diluted at a 1:1 ratio with sterile PBS and cells isolated within an hour 

of initial blood collection. The Lymphoprep solution was layered with the sample by 

inserting a strippette to the bottom of the sample and carefully allowing the Lymphoprep 

solution to flow out underneath the blood sample in the tube, before taking care to remove 

the strippette without affecting the blood: Lymphoprep layer interface. Samples were 

centrifuged according to the parameters: 20 minutes, 137 RCF, 880g RPM, 9 Acceleration 

and 0 Break. Note it was imperative to remove the brake on the centrifuge to avoid 

disrupting the layers formed by the cells as they migrate through the solution at the end of 

the centrifuge cycle. After centrifugation the samples separate into three distinct layers 

according to the differential migration speed of the cell types within the blood sample. Red 

blood cells aggregate at the bottom of the tube as the base layer and the top layer formed 

is composed of granulocytes which can migrate through the Lymphoprep due to their 

density. PBMCs settle at the interface between the plasma and Lymphoprep layer. 

 

Using Pasteur pipettes the PBMCs were carefully removed from the interface layer and 

transferred into a clean falcon tube, taking care not to disturb the formed layers. The 

isolated cells were washed in RPMI media before a final 15mintue centrifuge step (400g, 

temperature 20, and brake normal). 

 

In order to reduce retention of platelets a final centrifuge step was included at the end of 

the protocol (200g for 15 minutes at 20°C). 
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2.3.3 EasySep Human CD4+ T-Cell Isolation 
 

PBMCs were CD4 enriched following Stemcell technology, protocol for EasySep T-cell 

isolation kit (StemCell Technologies, Vancouver, Canada), which depletes non-CD4 cells 

using a magnetic column. Cells were counted and prepared in EasySep buffer at a 

concentration of 5x10^7 cells/ML. The enriched cell suspension was transferred into a FACS 

collection tube for immediate CD25 isolation using the Miltenyi isolation protocol (Miltenyi 

Biotec, Bergisch, Germany, 2012a). 

 

2.3.4 Miltenyi Protocol for bead isolation of CD4+CD25+CD127dim T-cells. 
 

The isolation kit used was the Miltenyi Biotec CD4+CD25+CD127dim Regulatory T-cells 

isolation kit (Miltenyi Biotec, Bergisch, Germany, 2012a). PBMCs were counted and 

suspended at a concentration of 40µL MACS buffer (500mL Sterile PBS, 0.5% Bovine Serum 

Albumin, 2mM EDTA ) per 10^7 cells. 

 

The procedure is completed in two steps. PBMCs were treated with the T-cell Biotin 

Antibody cocktail II human, which contains a monoclonal anti-human antibodies for CD8, 

CD19, CD123 and CD127. This acts as the primary labelling agent before the Anti-biotin 

Microbeads were added as the secondary agent. The microbeads are conjugated to a 

monoclonal mouse anti-biotin antibody, and therefore conjugates to the biotin antibody 

acting as the primary labelling agent to the cells. When placed in a magnetic field the 

labelled cells are depleted from the effluent as the magnetic microbeads conjugated to the 

labelled cells causes the cells to be retained within the magnetic field of the separation 

column. The effluent from this step should contain CD4 cells as the Antibody Cocktail 

contains no antibody against this marker. The first step is therefore referred to as a 

depletion of non-CD4 cells, resulting in a pre-enriched CD4 cell fraction. This sample is then 

taken forward to the next separation stage, which involves the magnetic labelling of 

CD4+CD25+CD127dim T-regulatory cells. The pre-enriched CD4 cell effluent is directly 

labelled with CD25 Microbeads II Human, which contain microbeads conjugated to a 

monoclonal anti-CD25 antibody. When placed in the magnetic field the CD4+CD25+ cells 

are caught in the column due to magnetised beads conjugated to CD25. The effluent should 

therefore contain CD4+CD25- cells, conventional T-cells, while the retained sample will be 

composed of the CD4+CD25+CD127dim regulatory T-cells. 

 

Note T-cell Biotin Antibody cocktail II human was added at a concentration of 10µL/10^7 

cells. The pre-enriched CD4 cell effluent was re-suspended in MACs buffer at a 

concentration of 90µL/10^7 total cells. 10µL/10^7 of CD25 Microbeads II was added. 
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2.3.5 Cell counting and Viability 
 

Cells were counted by looking at T-cells under a microscope using FastRead counting slides 

(IMMUNE SYSTEMS LTD). The viability of the cells was assessed using 0.1% Trypan Blue 

viability dye, the uptake of which is blocked by healthy cell membranes, therefore only 

dead cells incorporate the dye and appear blue under the microscope. The cells were 

counted immediately after the addition of the Trypan blue dye. 

 

2.4 Retroviral Transduction 
 

2.4.1 Transfection 
 

The transfection process was performed using Fugene Transfection Reagent, and following 

the optimised protocol provided by Promega (Promega, 2013). The phoenix-ampho 

packaging cells were counted and plated onto sterile plates at a density of 1.5x10^6 cells in 

a total volume of 10mLs IMDM media per plate. The transfection protocol was conducted 

the next day after the cells were allowed to reach approximately 80% confluence. Prior to 

transfection the media on the cell plates was changed and replaced with 5mLs of IMDM 

media. The exact concentrations and quantities of reagents used throughout the research 

is provided in table 2.2. The optimum media volume was kept constant throughout all 

experiments at 250µL and the sterile nuclease free water added to the DNA Eppendorf was 

adjusted to ensure a final volume of 320µL for every experiment. 

 

Table 2.2: Concentration of the reagents used in transfection experiment 

 

Reagent / DNA Concentration 
  

Fugene 1µg/µL 
  

Plasmid DNA 1.5µg/µL 
  

Vector DNA 2.6µg/µL 
  

 
 
 

10µL of Fugene Reagent was mixed with 250µL of Optimum Media in a sterile Eppendorf. In 

a separate sterile Eppendorf, appropriate quantities of vector DNA, plasmid DNA and sterile 

water were mixed through pipetting before the two prepared eppendorfs were combined 

and allowed to incubate at room temperature for 15 minutes, after which incubation the 

Fugene-DNA mixture was carefully pipetted drip-wise onto the prepared plated cells. 

 

Plates were incubated at 37°C overnight, and the IMDM media was replaced with RPMI or 

TexMACS media the following day. Approximately 48 hours after the initial transfection the viral 

supernatant was harvested by carefully collecting the plate media and using a centrifuge 
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cycle to remove any remaining packaging cells (5 minutes, R137, 400G, 20°C). Viral 

Supernatant was stored in -20 in 1mL aliquots until use. 

 

2.4.2 Transduction 
 

The DNA vectors were transfected into packaging cells (Phoenix Ampho cell line 

(AllelleBiotec, 2012)) to create a viral supernatant containing the genes to be introduced 

and incorporated into cells. Retronectin coated plates were prepared as described in the 

Retronectin Product Manual (Clontech). 

 

The required number of wells in a sterile untreated 24 well plate were coated with 1mL of 

Retronectin. This was incubated at room temperature for 2 hours in sterile conditions, 

before the retronectin was removed and stored for future use. The Retronectin reagent can 

be re-used up to 6 times, and the number of times used was recorded at each use. To limit 

contamination Retronectin was aliquoted into 25mL falcon tubes, and after use was 

transferred into a clean sterile tube. Immediately after removal of Rectronectin the wells 

were coated with sterile 2% BSA (filtered) for 30 minutes at room temperature. After the 

inucabation the BSA was removed, and wells coated in RPMI media to avoid drying out. 

 

1.5mL of prepared viral supernatant was added to each well of the RN coated plate. The 

plate was centrifuged for 1 hour 45 minutes (R124, RCF 2000, T-30). 0.5mL of target T-cells 

were added to each well before a final centrifuge for 3 minutes (R124, RCF 300, T-30). The 

plate was stored in the incubator for 48 hours before analysis. 

 

2.4.3 Bead Activation of Cells 
 

T-cells were activated using Dynabeads T-Cell Expander αCD3/CD28 activation beads and 

following the provided protocol (Technologies, 2011). Immediately after sorting 

CD4+CD25+CD127dim and CD4+CD25-CD127high cells were counted and plated in a 6 well 

plate at a concentration of 0.5x10^6 cells per mL in standard culture medium. Activation 

beads were added to cells at 1:1 ratio. Cells were incubated for 2 days (37°C, Co2 5%) 

before being transduced. Beads were removed after transduction by placing the cell 

suspension on a magnetic source (Dynal MPC-L) and retaining the supernatant. 

 

2.5 Flow Cytometry Procedures and Analysis 
 

Flow cytometry data was collected using BD Celesta and analysed using FACSDiva software 

(BD Biosciences) and FlowJo v.9 (FlowJo LLC BD Biosciences). A full 30min clean was 

performed prior to any analysis, and the calibration conducted using CST beads (BD 

Biosciences). 
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2.5.1 Cell surface staining 
 

0.2-0.5x10^6 cells were counted and washed in FACS buffer (500mL PBS, 0.5% BSA, 2mM 

EDTA) before being re-suspended in FACS tubes with 50µL of FACS buffer. 5µL of target 

antibody was added to the cell suspension and incubated for 15 minutes at room 

temperature, protected from light. Cells were washed twice more before either being 

suspended in 400µL FACs buffer for Flow analysis, or suspended in residual volume by 

vortexing before intracellular staining. A list of the antibodies used can be found in section 

2.5.5. 

 

2.5.2 Intracellular FoxP3 staining 
 

Intracellular FoxP3 staining was completed using the FoxP3 Intracellular Buffer Set 

(ebiosciences, 00-5523-00), and following the Thermofisher, Rockford IL, USAprotocol for 

intracellular staining (Thermo Fisher Scientific). The incubation period for intracellular 

staining was 60 minutes, at room temperature in the dark. After staining the samples were 

suspended in 400µL FACS buffer for analysis. 

 

2.5.3 FACS sorter Staining 
 

Cells were counted and washed in FACS buffer and supernatant aspirated before cells were 

re-suspended in the residual volume. 0.5µL of antibody per 1x10^6 cells was added and 

samples incubated at room temperature for 15 minutes. Cells were washed in FACS buffer 

and suspended at a concentration of 20x10^6/mL before samples were passed through 

40µm cell mesh strainers. 

 

2.5.4 Cell trace Violet staining 
 

The protocol supplied with CellTrace Violet (CTV) Proliferation Kit (Invitrogen, Carlsbard CA, 

USA) was followed (Invitrogen, 2010). Cells were counted and suspended in PBS, and CTV 

stock solution was added at a concentration of 1µL/mL of cell solution. 

 

2.5.5 Antibody List 
 

Table 2.3: Antibodies used throughout the research project 

 

Antibody/Flourochrome Clone Required concentration 
   

CD4 FITC  0.25µg / test 
   

CD25 PE BC96 0.25µg / test 
   

CD127 PE-Cy5 HIL-7R-M2I 0.25µg / test 
   

mTCRβ B711 H57-597 0.25µg / test 
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FoxP3 CF694 259D/C7 0.25µg / test 
   

 

 

2.6 In Vitro Cell Assays 
 

2.6.1 T-Reg Inspector 
 

Sorted Tcons and Tregs were counted and re-suspended in appropriate volumes of RPMI 

media as indicated by the Treg Suppression Inspector protocol (Miltenyi Biotec, Bergisch, 

Germany,). T-cons were stained with CellTrace Violet. The cells and beads were added to a 

96 flat-bottomed plate as described in the protocol. After 5 days the cells were harvested 

and analysed using flow cytometry. 

 

2.6.2 CD3/CD28 Activation Bead Proliferation Assay 
 

Cells were stained following the CellTrace Violet protocol (Invitrogen, Carlsbard CA, USA, 

2010), and activated using the CD3/CD28 Dynabeads (Technologies, 2011). Cells were 

counted and plated in a 6 well plate at a concentration of 0.5x10^6 cells per mL in standard 

culture medium. Activation beads were added to cells at 1:1 ratio. One well of cells were 

harvested and analysed using flow cytometry every 24 hours, for 5 days. 

 

2.6.3 Monoclonal Antibody Suppression Assay 
 

Tcons were stained according to the CellTrace Violet protocol (Invitrogen, Carlsbard CA, USA, 

2010)). 1x10^5 Tcons was added to each well of the 96 well plate in a volume of 100µL, as 

shown in table 2.4. Tregs were counted and suspended in the appropriate volume, before being 

added to the wells to achieve the Tcon:Treg ratios shown below. Monoclonal antibody CD3 

(HIT3a ebiosciences. Or OKTαCD3 ebiosciences) and CD28 (CD28.2 ebiosciences) were added at 

a concentration of 1µg/mL, and the total volume of each well was made up to 200µL with RPMI 

medium where necessary. The plate was incubated for 5 days in standard incubation conditions 

before wells were harvested and analysed by flow cytometry. 
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Table 2.4: 96 well plate set-up for the Treg suppression assay using monoclonal 

antibodies to activate the T-cells. 

 

Ratio/Conditions Tcon Number Treg Number Tcon Treg 

(Tcons:Tregs)   Volume (µL) Volume (µL) 
     

Unactivated Tons (No 1x10^5 - 100 - 

antibodies)     
     

Unactivated Tregs - 1x10^5 - 100 

(No antibodies)     
     

Tcons alone 1x10^5 - 100 - 
     

Tregs alone - 1x10^5  100 
     

1:1 1x10^5 1x10^5 100 100 
     

2:1 1x10^5 0.5x10^5 100 50 
     

4:1 1x10^5 0.25x10^5 100 25 
     

8:1 1x10^5 0.125x10^5 100 12.5 
     

Unstained Tcons 1x10^5 - 200 - 
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Chapter 3 – Results 
 
 

 

3.1 Isolated Cells from Healthy Control Samples 
 

3.1.1 Isolation of Tregs using CD4+CD25+CD127- Miltenyi Kit 
 

The T-cells were isolated from PBMCs using a magnetic sorting method, performed using 

the manual magnetic separation columns. PBMCs were stained with magnetic conjugated 

antibodies targeted to specific cell markers, the aim of which is to cause the retention of 

the cells within a magnetic field, allowing unlabelled cells to be washed through. 

Magnetically labelled cells can then be eluted, allowing recovery of multiple cell types 

(Miltenyi Biotec, Bergisch, Germany, 2012b). 

 

The procedure was completed in two steps: PBMCs were treated with the T-cell Biotin 

Antibody cocktail II human, which contains monoclonal anti-human antibodies for CD8, 

CD19, CD123 and CD127. Depletion of cells with these surface markers removes cytotoxic 

T-cells (CD8), B cells (CD19), dendritic cells (CD123). The antibody cocktail acts as the 

primary labelling agent before the Anti-biotin Microbeads were added as the secondary 

agent. The microbeads are conjugated to a monoclonal mouse anti-biotin antibody, and 

therefore conjugates to the biotin antibody acting as the primary labelling agent to the 

cells. When placed in a magnetic field the labelled cells are depleted from the effluent as 

the magnetic microbeads conjugated to the labelled cells causes the cells to be retained 

within the magnetic field of the separation column (LD column). The effluent from the LD 

column should therefore contain CD4 cells as the Antibody Cocktail contains no antibody 

against this marker. The LD effluent was then taken forward to the next separation stage, 

which involves the magnetic labelling of CD4+CD25+CD127dim T-regulatory cells. The pre-

enriched CD4 cell effluent was directly labelled with CD25 Microbeads II Human, which 

contain microbeads conjugated to a monoclonal anti-CD25 antibody. When placed in the 

magnetic field (MS column) the CD4+CD127dimCD25+ cells are caught in the column due to 

magnetised beads conjugated to CD25. 

 

Samples were taken at each stage of the process, as indicated in table 3.1. These samples 

were stained for surface markers CD4, CD25 and CD127 and analysed by flow cytometry in 

order to monitor the progress of the cell isolation. The PBMC sample was accepted as the 

positive control population, and an unstained PBMC sample was included as a control to 

demonstrate the success of the staining process and to establish gating for flow cytometry. 
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Table 3.1: Expected cell surface marker levels on isolated cell populations using the Miltenyi 
Biotec CD4+CD25+ isolation kit. 

 

Sample Fraction 
  

PBMC CD4, CD25 and CD127 present 
  

LD Effluent population CD4 Enriched (CD25 and CD127 present but not 

 enriched) 

  

LD Retained population Absence of CD4 
  

MS Effluent population CD4+, CD25-, CD127high 
  

MS Retained population CD4+, CD25+, CD127dim 
  

 

 

CD4 Enrichment 

 

Figure 3.1 shows a comparison of the results obtained from the cell surface staining of the 

LD effluent (CD4 enriched) and LD retained (CD4 depleted) cell populations. After repeating 

the depletion of non-CD4 cells, the LD Column of Miltenyi Cell Isolation Kit was observed to 

consistently fail to efficiently enrich CD4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1: Bead sorting of PBMCs using Miltenyi Biotec CD4+CD25+ isolation kit fails to 
enrich CD4 portion of isolated PBMC. Magnetic beads conjugated to a cocktail of 
antibodies is added to the PBMCs, before the PBMCs are run through a magnetic column 
intended to retain the non-CD4 cells and allow a CD4 enriched fraction to flow through as 
the effluent. CD4 FITC stained PBMC fractions were analysed by flow cytometry. (A) Shows 
the fraction of cells retained within the magnetic column is high in CD4, (B) shows the 
column effluent is low in CD4, suggesting the isolation kit has failed to enrich CD4 cells. (C) 
demonstrates the proportion of CD4 positive cells in the fluid that has been eluted from the 
LD column, and is therefore supposed to represent a CD4 enriched fraction. Plots represent 
three independent experiments. 

 

Figure 3.1A shows that 29.9% of the lymphocyte population from the isolated PBMCs are 
 

CD4 positive. The expected range is 25-60% (StemCell Technologies, 2017a), and therefore 
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the percentage of CD4 positive lymphocyte cells across the healthy volunteers used 

throughout the research was as expected. Figure 3.1B demonstrates the percentage of CD4 

positive cells within the depleted cell population retained in the LD column after the cell 

depletion process. The primary labelling of the PBMC’s utilised monoclonal anti-human 

antibodies for CD8, CD19, CD123 and CD127, however no antibody is included to target the 

CD4 positive cells at this stage, and therefore it is expected that the LD column retained 

fraction should contain very few CD4 cells. The high percentage of 68.3% positive CD4 cells 

within this population is therefore an unexpected result, which was witnessed across 

multiple repeats. The failure of the LD column to deplete the non-CD4 cell population is 

further emphasised by the low percentage of the CD4 population in the LD column effluent, 

as shown in figure 2.1C, where only 14.4% of the population stains positive for the CD4 

surface stain marker. This population would be expected to be over 90% CD4 positive, as 

published by Miltenyi Biotec (Miltenyi Biotec, Bergisch, Germany, 2012a). To rule out that 

the depletion failure was due to the use of a faulty isolation kit the protocol was repeated 

using two different Miltenyi Biotec CD4+CD25+CD127dim Regulatory T-cells isolation kits 

simultaneously, and samples taken and stained throughout the procedure as before. Figure 

3.2 shows the comparison of CD4 percentage present in the enriched CD4 effluent and the 

depleted CD4 population after isolation using the original isolation kit A (lot 

no.5170317131), and a second isolation kit B (lot no.5170309469). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Page 41 of 82 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Comparison of the ability of two different Miltenyi Biotec CD4+CD25+ cell Isolation 
Kits shows both do not enrich CD4 cells from isolated PBMC samples. CD4 FITC stained samples 
were analysed by flow cytometry. Figures A,B and C show the results of Kit A after staining the 
PBMC (A) CD4 depleted cells (B) and CD4 enriched population (C). Figures D, E and F show the 
results of Kit B after staining the PBMC (D), CD4 depleted cells (E) and CD4 enriched population 

 
(F). The cell isolation using both kits was done simultaneously. The low percentage of CD4 cells 
shown in figures (C) and (F) indicate that neither column have enriched the CD4 cell 
population. Plots represent a single comparison experiment. 

 

It is clear from the results shown in figure 3.2 that both Miltenyi isolation kits failed to enrich 
 

the CD4 cell population after depletion through the LD column. The decision was made to 
 

instead enrich the CD4 cells through the use of Stemcell Technology EasySep CD4 enrichment 
 

kit, which works with a similar mechanism to the Miltenyi kit, involving the addition of an 
 

antibody cocktail conjugated to magnetic beads causing the retention of non-CD4 cells when 
 

the sample is placed in a magnetic field. After the EasySep enrichment, a portion of the 
 

sample was stained for CD4 and analysed by flow cytometry, with an unstained portion of 
 

cells was used as a negative control, and a stained sample of un-enriched PBMC’s included 
 

as a positive control. The results are shown in figure 3.3: 
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Figure 3.3: CD4 T-cells are enriched from PBMC samples by using the Stemcell EasySep 
CD4 Bead Enrichment kit. The EasySep kit depletes non-CD4 cells using an antibody cocktail 
conjugated to magnetic beads, before PBMCs are run through a magnetic column intended 
to retain all non-CD4 cells and allow a CD4 enriched fraction to flow through as effluent. 
CD4 stained PBMC fractions were analysed by flow cytometry. A. shows the flow cytometry 
result shown after the initial PBMC isolation, and presents the proportion of CD4 cells in this 
population. B. shows the same population after the CD4 enrichment using the Easysep Kit. 
Plot represents three independent experiments, after which the fractions were not stained 
and analysed before use in further experiments. 

 

The EasySep CD4 enrichment kit consistently produced an enriched cell population 
 

containing over 80% CD4 positive cells. This isolation kit was therefore used in place of the 
 

Miltenyi kit throughout the research. 
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Isolation of CD25+CD127dim Cell Population (Tregs) 

 

Figure 3.4 shows the flow cytometry data obtained from MS column effluent and the MS 

retained cell population. The MS effluent should contain CD4+CD25- cells, conventional T-

cells, while the sample retained in the MS column will be composed of the 

CD4+CD25+CD127dim regulatory T-cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4: Bead sorting of a CD4 enriched cell population using the Miltenyi Biotec, 
magentic column retains a CD25high CD127dim cell fraction. Magnetic beads conjugated 
to CD25 antibodies is added to the enriched CD4 cell fraction before cells are run through a 
magnetic column intended to retain the CD25high CD127dim (Tregs) cell fraction and allow 
CD25low CD127high (Tcons) to flow through. (A) Represents the data obtained through flow 
analysis of the MS column effluent, and therefore the conventional T-cell fraction. (B) 
Demonstrates the data from flow analysis of the cell fraction retained in the MS column, 
and should therefore show regulatory T-cells. Samples were stained with CD25 PE, and 
CD127 PE-Cy7 for analysis by flow cytometry. Plots represent three independent 
experiments. Cell populations were not stained before use in further experiments. 

 

The MS column did enrich the CD25 population in the retained cell population, as shown by 
 

figure 3.4. However, utilising the EasySep CD4 enrichment kit instead of the Miltenyi LD 
 

depletion means that there is no depletion of CD127high cells and therefore this leads to the 
 

presence of a population of CD25, CD127high cells present in the MS retained population. 
 

Furthermore, the poor efficiency of the CD25 enrichment led to a small population of CD25 
 

positive cells within the MS effluent population. 

 

After the CD25+ and CD25low populations were isolated the samples were stained for FoxP3 
 

to indicate the purity of the Treg population. An isolated Treg population would be expected 
 

to contain over 90% FoxP3 positive cells, while the Tcon population would be expected to 
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demonstrate a lower percentage. The expression of FoxP3 within the Tcon population can 

still be expected, either due to the upregulation of FoxP3 which can occur after Tcon 

activation, or due to anomalies within the FoxP3 staining process, which requires the 

permeabilisation and fixation of cells. Figure 3.5 shows the FoxP3 purities achieved after 

cell isolation using the MS columns: 
 
 
 
 
 
 
 
 
 
 

Tcons FoxP3:  
85% 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.5: Treg and Tcon cells isolated from PBMCs demonstrate high expression of 
FoxP3, which is used to indicate the purity of the Treg population. Purity of the isolated 
populations was determined by staining cell populations for internal marker FoxP3. FoxP3 
PE-cyf596 stained cells were used for flow cytometry analysis. The analysis indicates that 
the Treg population are expressing high levels of FoxP3. Plots represent three independent 
experiments. 

 

The percentage of FoxP3 within the isolated Treg cell population was consistently observed 
 

over 80%. However, the high FoxP3 levels in the Tcon fraction is unexpected and introduces 
 

uncertainty as to the exact cell types in each fraction. To ensure the optimum purity of the 
 

Treg population the decision was made to sort the enriched CD4 population into 
 

CD25+CD127dim Tregs and CD25-CD127high Tcons through the use of Fluorescence 
 

Activated Cell Sorting (FACS) on the FACS Aria II. 
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3.1.2 Isolation of Tregs using FACS sorting 
 

After the CD4 enrichment of the PBMC’s using the EasySep method, samples were sorted 

into Tregs (CD25+CD127dim) and Tcons (CD25-CD127high) by gating on CD4 positive cells, 

and then gating on the two populations to be sorted, as shown in figure 3.6. 
 

A B  
 
 
 
 

 

Tcons FoxP3:  
30% 

 
Treg FoxP3:  
90% 

 
 
 
 
 
 
 

 

Figure 3.6: FACS sorting using FACS Aria II and gating on CD4+CD25+CD127dim, and 
CD4+CD25lowCD127high isolates two distinct populations. FoxP3 staining of the cell 
fractions distinguishes the populations as Tregs and Tcons. (A) shows the FACs sorting of 
CD4 enriched cells into Tregs (CD25highCD127dim) and Tcons (CD25lowCD127high), using 
CD25 PE and CD127 PE-Cy7 to identify the cell population by flow cytometry analysis. (B) A 
post sort purity stain of FoxP3 levels was completed using FoxP3 PE-C7956 for flow cytometry 
analysis, and indicates the high levels of FoxP3 present in the isolated Treg population. Plots 
represent three independent experiments. 

 

After the sort the samples were stained for FoxP3 to indicate the purity of the samples, the 
 

results  are  shown in  figure 3.6B. The high FoxP3 levels  achieved for the  sorted 
 

CD25+CD127dim cell population indicates the high purity of the sample and indicates that 
 

the sorted population is Tregs. It can be seen that the purity of the Tcon population is higher 
 

than expected, and this anomaly was consistently observed. It is possible that the FoxP3 
 

intracellular staining procedure results in a high degree of non-specific binding – this could 
 

be confirmed by using a FoxP3 isotype stain as a control, however this was not included in 
 

the experiment.  It must also be considered that Tcons have the potential to upregulate 
 

FoxP3 after activation, however this is unlikely to be the cause of the increased FoxP3 
 

percentage in this particular experiment as the cells have not been stimulated at the time of 
 

staining. Both sorted cell populations were taken forward to the transduction experiments. 
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3.2 Optimisation and Troubleshooting of Transduction 
 

3.2.1 Transduction Jurkats: Positive Control Validation  

 

TCR Jurkat Transduction Negative Control TCR Jurkat Transduction Positive Control 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7: JurkaT-cells transduced with mTCRβ demonstrate the expression of the TCR on 
64.8% of the population. JurkaT-cells were transduced with TCR specific for MBP and 
restricted to MHC class II. Transduced cells were stained for mTCRβ- chain expression with PE 
mTCR. Plot represent twelve independent experiments. 

 

JurkaT-cells were used as a positive control to indicate the success of the transduction 

process. The transduction of JurkaT-cells using Retronectin was validated by clontech labs, 

who indicated an expected efficiency of 80%. After achieving consistent high transduction 

efficiencies (figure 3.7), a Jurkat transduction was included in every transduction 

experiment. 

 

The transduction of JurkaT-cells provided an indication of issues with the experimental 

process. Over time the transduction efficiency dropped until no transduction was achieved 

(figure 3.8). Transduction is a multi-factorial process relying on the success of multiple 

experiments to produce results. Therefore, in the case of reduced transduction efficiency or 

the failure of transduction it is difficult to isolate the cause of the issue within the entire 

transduction process. Furthermore the transduction efficiency does not indicate whether 

the issues arises with the initial transfection experiment, or the retroviral transduction 

process itself. The reduction in transduction efficiency over time, as seen in figure 3.8, led 

to a series of investigative experiments to determine any issues within the transfection and 

transduction process. Steps were taken to first investigate the transfection efficiency, and 

then further correlate the transfection efficiency to transduction efficiency through the 

inclusion of a GFP marker that could be detected by flow cytometry. 
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Figure 3.8: The transduction efficiency of TCR transduction into JurkaT-cells over time, as 
determined by flow cytometry. 

 
 

After troubleshooting the transfection and transduction processes the consistent 

transduction efficiency at the expected 80% was restored, as seen in figure 3.7. 
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3.2.2 Transfection efficiency 
 

Green Fluorescence Protein (GFP) is a reporter gene, and the expression of the protein is 

easily tracked and monitored. GFP was incorporated into the transfection to test the 

efficiency of the process. GFP was used in place of plasmid DNA at a concentration of 2.6µL, 

following the transfection protocol. Upon successful transfection the PA cells incorporate 

and express GFP, and the fluorescence of this can be detected using Flow Cytometry. After 

the two days incubation, PA cells were scraped from the plates and suspended in FACS 

buffer before being analysed on FITC channel. The percentage of cells expressing GFP is 

taken as the percentage efficiency of the transfection process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.9: The transfection efficiency as determined by the expression of GFP protein in 
phoenix ampho cells after the transfection process indicates an issue with the 
transfection process. The expression of GFP is seen on using the FITC channel. A. Shows the 
GFP transfection using the GFP vector, B shows the GFP expression in the ph-ampho cells 
after transfection using GFP pmax control (Bio.lonza). Plots represent a single experiment. 

 

Initially GFP generated by plasmid purification in the lab was used. Unfortunately, as shown 

by figure 3.9A the initial results produced low or absent fluorescence, indicating the 

absence of GFP uptake in the PA cells, and the failure of the transfection procedure. The 

quality of DNA used in the transfection process is documented to be a contributing factor to 

the success of the process, and so to eliminate this variable the transfection efficiency was 

re-tested using control pMax GFP DNA (Bio.Lonza). Figure 3.9B shows the results of the GFP 

pMax Transfection; the low efficiency suggest that the DNA quality was not the only factor 

influencing the transfection efficiency. In light of this an experiment was designed to test 

other factors known to affect the transfection efficiency: quality of the PA cells and the 

transfection reagent (Fugene). Four different transfections were completed simultaneously 
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with varying conditions, as shown in table 3.2. Controls were included in the form of 

unstained and un-transfected PA cells. 

 

Table 3.2: Experimental conditions for transfection troubleshooting and optimisation 
experiments. 

 

Experiment ONE Conditions Experiment TWO Conditions 
    

1A Ph-Ampho cells A (Date 2A DNA Vector A 
 defrosted: 03/04/2017)  (transformed 
 Fugene Reagent A (lot  1/03/2017) 

 12572700)  Fugene A 

1B Ph-Ampho cells A 2B DNA Vector A 
 Fugene Reagent B (lot  Fugene B 

 000174624)   

1C Ph-Ampho cells B (Date 2C DNA Vector B 
 defrosted:15/05/2015 )  (transformed 19/04/17) 
 Fugene Reagent A  Fugene A 
    

1D Ph-Ampho cells B 2D DNA Vector B 
 Fugene Reagent B  Fugene B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.10: Transfection of Phoenix-Ampho cells with GFP under varying experimental 
conditions suggests that the transfection reagent and cell health affects the transfection 
efficiency. Experiments 1A-D were designed to test the transfection reagent with reagent A 
used in 1A and 1C, and reagent B used in 1B and 1D. Absence of expression of GFP in 1B and 
1D suggests the failure of the Fugene transfection reagent. Experiment 2 shows a repeat 
experiment using new PA cells to increase the efficiency. The absence of expression of GFP in 
2B and 2D further suggests the poor working of the Fugene reagent. The expression of GFP 
was analysed using the FITC channel. Plots represent a single experiment. 
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Figure 3.10 shows the transfection efficiencies achieved for all transfections in experiments 

one and two with the various conditions. The absence of any transfection in experiment 1B 

and 1D indicates that the transfection reagent (B) is responsible for the failure of the 

transfection experiment. The drop in transfection efficiency between conditions 1A and 1C 

suggest that the health of the PA cells is also affecting the final efficiency. 
 

The transfection efficiency achieved for conditions 1A and 1C is still significantly lower than 

expected, and therefore experiment two was designed to confirm the effect of the 

transfection reagent, and further test the effects that the potential DNA degradation of the 

vector DNA may have on the final transfection. As expected the conditions using Fugene 

transfection reagent B achieved no evidence of transfection (2B and 2D). Figure 2A and 2C 

demonstrated increased transfection efficiency compared to the results from experiment 

one, with the best results shown by condition 2C. 

 

While optimising the transfection an experiment was conducted using a GFP-FoxP3 vector 

construct. This is a retroviral vector, comparable to the TCR vector used in the transduction 

experiment, and therefore can be used to create a viral supernatant which can be further 

used to complete a transduction experiment. The efficiency of the transduction can then be 

correlated to the efficiency of the transfection. This means that a GFP transfection can be 

conducted alongside future transfection experiments as a positive control that provides an 

indication as the final success of the transduction experiment. Figure 3.11 shows the 

correlation between the transfection and transduction efficiencies: 

 

Table 3.3: Conditions for a transfection experiment to test the effects of changing the DNA 
and the Fugene reagent on the final transfection efficiency. 

 

Experiment Three (GFP-FoxP3) Conditions 

3A DNA Vector A 
 Pcl Ampho A 
 Fugene A 

3B DNA Vector A 
 Pcl Ampho A 
 Fugene B 

3C DNA Vector B 
 Pcl Ampho B 

 Fugene A 

3D DNA Vector B 
 Plc Ampho B 

 Fugene B 
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Correlation of Transfection and Transduction Efficiencies 
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Figure 3.11: Comparison and correlation of the transfection efficiencies to the transduction 
efficiencies using the viral supernatant generated with transfection of GFPFoxP3 vector 
suggests that the transfection efficiency can predict the transduction efficiency. . 

 

A lower transfection efficiency of is expected when using the GFP-FoxP3 construct owing to 

the increased size of the DNA vector. It is thought that an increased vector size results in a 

reduced rate of intracellular movement, allowing increased time for DNA plasmid 

degradation and subsequently reduced transfection efficiency (Lukacs et al., 

2000)(McLenachan et al., 2013). However the experiment indicates how a failed 

transfection relates to a failed transduction, as seen in conditions 3B and 3D. The results 

suggest a correlation between transfection and transduction, suggesting that the 

transduction efficiency can be estimated from the transfection efficiency. 

 

After testing the variables affecting the transfection, the highest achieved efficiency was 52% 

(2C). Whilst 52% efficiency is lower compared to the transduction efficiency achieved with 

standard TCR vectors, 52% is a much higher efficiency than has previously been achieved with 

this vector. These conditions were therefore continued moving onwards: PA cells A were frozen 

in liquid nitrogen to create stocks which could be used throughout the rest of the project in 

order to optimise results. Furthermore, pcl-ampho B DNA was used as the vector DNA. The 

factor with the biggest influence was determined to be the transfection reagent, and therefore 

after the optimisation experiments a new transfection reagent (Fugene C, lot 0000245256) was 

ordered. After optimising the conditions of the transfection process, the transduction efficiency 

returned to over 70%, as shown in figure 3.7. 
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3.3 Transduction of Isolated Cells form Healthy Control Samples 
 

3.3.1 Activation of Cells 
 

In order for the retroviral transduction to be successful, it is important for the target 

population of cells to be actively dividing. Further to this, Tregs are a small population and it 

is necessary to first expand the cells after isolation. Prior to the transduction process cells 

were first activated through the use of CD3/CD28 Dynabeads and the addition of IL-2. The 

use of Dynabeads to activate T-cells has a number of advantages over the use of feeder 

cells or APCs, which can be difficult to sufficiently maintain and regulate. Published 

research has shown the beads can expand T-cells in combination with IL-2, and have been 

demonstrated to efficiently expand Tregs with maintained suppressive characteristics. 

 

To ensure the sufficient cell activation cell numbers were tracked over a course of two weeks. 

The average expansion rate was determined to be 2.8x10^4 cells/day across a ten day period. 

This was conducted only once prior to the first transduction experiment to confirm the 

expansion of the cells, however due to the small numbers of the Treg population the decision 

was made not to reduce cell numbers by continuous counting during future experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12: Treg cell numbers increase after in vitro activation with αCD3 and IL-2.  
Cells were counted on days one, six, seven and ten before being used in experiments. 
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The proliferation of Tcons cultured alone and activated with CD3/CD28 beads was tracked 

by staining the Tcons with CellTrace Violet (CTV) and analysing one well of activated cells a 

day over a time course of 5 days. CTV is a fluorescent dye excited by violet wavelength 

range emissions, and can be used demonstrate proliferation of a cell population based on 

the premise that a cell division event will equally divide the fluorescent dye between 

daughter cells, simultaneously demonstrating a half in detected fluorescence and a double 

in cell number (Lyons and Doherty, 2004). The use of CTV has been reported to be sensitive 

to detect up 8 cell divisions (Quah and Parish, 2012). Figure 3.13 shows the proliferation of 

Tcons after activation with the CD3/CD28 Dynabeads. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.13: Proliferation Assay of Conventional T-cells indicates the successful activation 
and proliferation of T-cells. T-cells were stained with CellTrace Violet and activated using 
αCD3/CD28 beads. The proliferation of the cells was analysed using flow cytometry every 
day for a 5 day incubation period. Plots represent three independent experiments. 
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3.3.2 Transduction of Cells 

 

After the optimisation of the transduction process, the following results were obtained for 

the transduction of mTCRβ into the sorted Tcons and regulatory T-cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.14: TCR expression on conventional T-cells and regulatory T-cells indicates the 
success of the TCR transduction process. Cells were transduced with TCR specific for MBP 
and restricted to MHC class II. Transduced cells were stained for mTCRβ- chain expression 
and analysed by flow cytometry. Plots represent three independent experiments. 

 

Over 20% of the cell populations were consistently transduced. It was observed that the 

Tcons transduced with a higher efficiency in comparison to the Treg subset. As the samples 

were transduced at the same time using the same viral supernatant and stained with 

identical conditions, it is possible that the increased transduction efficiency observed within 

the Tcons is due to a more efficient activation of the cells, which would subsequently allow 

for increased proliferation and increased uptake and expression of the transduced DNA. 

After transduction the cells were analysed for FoxP3 in order to ascertain if the purity of the 

cell population is affected by the transduction process. Figure 3.15 shows the purity of the 

sorted cells was maintained after the transduction of the TCR. 

 

The purity of the T-cell population was seen to increase after the transduction procedure; this 

observation could be the result of a number of factors. One variable could be the effectiveness 

of the intracellular staining procedure, as during the initial FoxP3 staining the cell were 

permeabilised overnight, but during the post transduction staining the cells were permeabilised 

for only 30 minutes. A second variable is the health of the cells - post-sort the 
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cells were transported on ice prior to the FoxP3 staining, while post transduction the cells were 

allowed to incubate in optimum conditions. Furthermore the purity of the sorted cells was 

assessed using un-activated cells, while the post-transduction purity stain was conducted 5 days 

after the activation of the cells using CD3/CD28 Dynabeads. The activation of the cells is likely to 

increase the levels of FoxP3 as the cells increase in size and proliferate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tcons FoxP3: 30%  
Treg FoxP3: 90% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tcons FoxP3: 40% 
 
Treg FoxP3: 75% 

 

 

Figure 3.15: Isolated Treg and Tcon cells stained for FoxP3 to indicates the purity of the 
populations is maintained after the transduction process. Cell fractions were stained with FoxP3 
PE-Cf694 to be analysed by flow cytometry. (A) Shows the FoxP3 expression of cells before the 
transduction process, (B) shows the FoxP3 expression of cells after the TCR transduction. Plots 
represent three independent experiments. 
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3.4 Suppression Assays 
 

3.4.1 Suppression Assay: Treg Inspector 
 

To determine the functional suppression of effector T-cells by Tregs the proliferation of the 

effector T-cells can be measured after co-culture with varying ratios of Tregs. Sorted Tcons were 

stained with CTV and co-cultured with titrated numbers of sorted Tregs (unstained). The cells 

were activated using the Miltenyi Treg Inspector kit, which has been optimised for use in Treg 

suppression assays. CD2, CD3 and CD28 biotinylated antibodies are loaded onto anti-biotin 

particles which activate Tcons while the Tregs remain un-activated. When co-cultured in the 

presence of Treg Inspector Particles any reduction in Tcon proliferation is due to the 

suppressive capacity of the Tregs. However, as shown in figure 3.16 the Tcons cultured alone 

with the Treg inspector beads failed to show evidence of proliferation. Consequently, it is 

impossible to determine if the Tregs exerted any suppressive capabilities despite the Tcon:Treg 

co-culture at a one:one ratio demonstrating little evidence of proliferation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.16: Suppression assay set up using Treg Inspector Beads shows no evidence of cell 
activation. Tcons cells were stained with CellTrace Violet and co-cultured with Tregs at various 
ratios for 5 days in standard incubation conditions. The figure shows that after 5 days there was 
no evidence of Tcon proliferation in the Tcons activated and cultured alone, suggesting the cells 
have not been appropriately activated. Plots represent three independent 

 
 

The experiments absence of. Tcon activation using the Treg Inspector kit was unexpected; the 

consistency of the result lead to the hypothesis that the particular Treg Inspector Kit used in 

the experiments was not fully functional. The decision was made to conduct a suppression 

assay using an alternative approach validated in the lab using monoclonal antibodies. 

 

3 .4.2 Suppression Assay: Monoclonal Antibodies 

 

The decision was made to design an assay for activation using monoclonal antibodies (αCD3 
 

(HITa) and αCD28). Sorted Tcons were stained with CTV and co-cultured with titrated 
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amounts of Tregs in a 96 well plate, and antibodies added at a concentration of 1µg/mL. 

Unactivated cells (Treg and Tcon) and unstained Tcons were included as controls. After 5 

days incubation the samples were analysed by flow cytometry, the results are shown in 
 

figure 3.17:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.17: Suppression assay of conventional T-cells activated with monoclonal 
antibodies αCD3 and αCD28 and co-cultured with Treg cells at various ratios shows no 
evidence of cell proliferation. Cells were stained with CellTrace Violet and co-cultured with 
Tregs in standard culture conditions for 5 days. No cell proliferation is seen in any condition. 
Plots represent two independent experiments. 

 

The absence of proliferation seen in Tcons when activated and cultured alone suggest the 

cell population has not been sufficiently activated. The absence of proliferation could be 

the result of a number of variables: the health of the cells, improper staining, unexplained 

cell death, or failure of the monoclonal antibodies to stimulate cell activity. As this was an 

unexpected result, the cell health was not examined prior to the assay and no viability dye 

was included. The inclusion of an unstained control indicates it is unlikely to be an issue 

with the staining. As both the assays conducted were performed on sorted cells directly 

after being held for a number of hours in an ice box for travelling purposes, it is possible 

that cell health has adversely affected the ability of the cells to proliferate. However it 

would be unlikely to completely halt the proliferative processes in the way that was 

observed across the repeats of the experiment. 
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3.4.3 Troubleshooting and Optimisation of Suppression Assays 
 
 

 

An experiment was set up to compare the efficacy of the monoclonal antibodies ability to 

activate Tcons with the CD3/CD28 Dynabeads. The CD3/CD28 bead activation was included 

as a positive control, as figure 3.13 demonstrates the ability of the beads to produce a 

proliferative response. The ability of the beads and antibody’s to activate cells in a PBMC 

sample compared to a CD4 enriched sample was further tested and over a 5 day period 

cells were analysed for evidence of proliferation. A 24 well plate was set up with the 

following conditions: 

 

Table 3.4: Conditions of the 24well plate used for troubleshooting suprresion assay’s. 

 

PBMC Activated by CD3/CD28 Dynabeads 5 Wells 
  

PBMC Activated by Monoclonal AB 5 Wells 
  

CD4 enriched cells Activated by CD3/CD28 Beads 5 wells 
  

CD4 enriched Activated by Monoclonal AB 5 wells 
  

Unactivated PBMC 1 Well (control) 
  

Unactivated CD4 enriched 1 Well (control) 
  

Unstained PBMC 1 Well (control) 
  

Unstained CD4 enriched 1 Well (control) 
   

 
 

The CD3/CD28 provided efficient activation with clear proliferation seen in both the PBMC 

and CD4 samples, as shown in figure 3.18. 
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Day One  
Day Three  
Day Five 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.18: Proliferation assay of PBMC and CD4 enriched cells indicates that both cell 
fractions can be activated and induced to proliferate using αCD3/αCD28 beads. Cells 
were stained with CellTrace Violet before being cultured in standard conditions. Both 
PBMC and CD4 enriched cells demonstrate proliferation across five days of culture. Plots 
represent a single experiment. 

 

The monoclonal antibodies produced clear proliferation in the PBMC sample, however 

there was little evidence of proliferation in the CD4 enriched sample. This is highlighted 

further by comparing the unactivated CD4 enriched sample to the CD4 enriched sample 

analysed 5 days post activation (Figure 3.19). The proliferation of the PBMC sample after 

activation with the monoclonal antibodies indicates that the antibodies are functional, and 

capable of activating the cells. It may be hypothesised that the absence of proliferation in 

the CD4 enriched samples is due to the low affinity signalling of the antibodies, which may 

be incapable of providing a strong enough activation signal. 
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Figure 3.19: Proliferation assay of PBMC and CD4 enriched cells shows that only the 
PBMC fraction is stimulated by αCD3/αCD28 monoclonal antibodies. Cells were stained 
with CellTrace Violet prior to culture in standard conditions. PBMC demonstrate 
proliferation across five days but there is little evidence of proliferation of the CD4 enriched 
cells. Plots represent a single experiment. 

 

The particular antibodies used were chosen specifically for the low affinity signalling in 

order to avoid over-stimulation of the Tcon which would both reduce the efficiency of 

suppression, and more accurately represent the physiological levels of activation. In PBMC 

samples the activation signal would be strengthened by the presence of monocytes which 

would cluster the antibodies allowing greater interaction with the T-cells. To further 

investigate this hypothesis the experiment was repeated utilising monoclonal antibodies 

with a documented stronger activation signal. Figure 3.20 presents the results of the assay 

set up with the OKT3 antibodies, which were chosen for this purpose. 
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Day Three  
Day Five 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.20: Proliferation assay of PBMC and CD4 enriched cells shows that only the 
PBMC fraction is stimulated by OKT3/ αCD28 monoclonal antibodies. Cells were stained 
with CellTrace Violet prior to culture in standard conditions. PBMC demonstrate 
proliferation across five days but there is little evidence of proliferation of the CD4 enriched 
cells. Plots represent a single experiment. 

 

Unfortunately, as can be seen from figure 3.20, the OKT3 antibodies did not appear to 

provide strong enough stimulation to activate the CD4 enriched cells. The activation of the 

PBMC’s seen under the same experimental conditions indicates that the antibodies are 

functional, while the activation of CD4 cells isolated from the same PBMC sample with the 

CD3/CD28 coated dynabeads suggests that the population is capable of proliferating. It 

would be ideal to repeat this experiment with the monoclonal antibodies pre-plated onto 

the assay plate; activation of the CD4 enriched cells under these conditions would indicate 

of the lack of stimulation is caused by the low signalling in the absence of clustering factors, 

such as monocytes, which allow for greater numbers of antibodies to simultaneously 

interact with the T-cells. 
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3.5 Ag-specific Suppression Assays Preparations 
 

Antigen specific suppression assays require the co-culture of effector cells with titrated 

concentrations of Treg cells in the presence of a peptide loaded antigen presenting cell. For the 

activation of modified T-reg cells by the targeted specific antigen, and the subsequent 

suppression of localised effector cells through a contact dependent mechanism, it is essential 

that the APC can present the peptide to the Treg population while simultaneously interacting 

with the effector cell population. It is necessary for the APC to contain the appropriate HLA 

type. To perform in vitro assay’s designed to test the antigen specific activation of modified 

Tregs an appropriate APC cell line can be chosen and transduced with the HLA-DR receptor 

before being loaded with the peptide and added to the suppression assay. 

 

The appropriate cell line has to be identified for the vector to be transduced into. Previous 

work has successfully transduced the HLA-DR-0401 vector into T2 cells. T2 cells are a 

human lymphocyte cell line that has been mutated to not express most HLA types, 

including HLA DR and therefore the modified cells can be isolated through the use of anti-

HLA DR antibodies. The vector expressing T2 population was sorted using magnetic 

columns using bead conjugated anti-HLA DR antibodies. The T2 cell line Flow cytometry 

using PE conjugated to HLA-DR shows the T2 population expressing HLA-DR-0401. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.21: A Transduction of T2 cells with HLA-DR 0401 demonstrates high expression of 
HLA-DR. B. T2 cells stained for CD80 and CD86 demonstrates high levels of both surface 
markers indicating maturity of the cell line. Plots represent a single experiment. 

 

This demonstrates the generation of an HLA-DR-0401 expressing APC population. The 
 

modified T2 cells were further stained for the expression of CD80 and CD86 to determine the 
 

maturity of the cell population. CD80/86 are essential protein receptors that provide the co- 
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stimulatory signal for T-cell activation through direct interaction with CD28. High expression 

of these surface proteins indicates the increasing maturity of the APC. Upon APC interaction 

with Tregs CD80/86 surface proteins are downregulated through interaction with CTLA-4, 

thereby blocking activation signals to the effector cell population. Mature APC’s 

demonstrate strong activation of Tcons, as the increased expression of CD80/86 on the cell 

surfaces reduces the competition for the ligands and subsequently increasing levels of Tcon 

activation signals are received. An ideal APC for use in suppression assays would therefore 

exhibit a reduced level of CD80/CD86 expression equivalent to immature or unactivated 

APCs. Figure 3.21B shows the CD80/86 expression on the modified T2 cells in comparison 

to the expression with a PBMC population. As can be seen, the T2 cells express high levels 

of CD80/86, indicative of a mature APC population with strong Tcon activation capabilities. 

In unpublished work a suppression assay utilising modified T2 cells failed to show any 

suppression by the Treg cells, and it was hypothesised that this was due to the high 

maturity of the T2 cell line. Further work is required to identify an appropriate cell line with 

lower maturity levels. This is critical to achieving the designed robust antigen-specific 

suppression assay. 
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Chapter 4 - Discussion 
 

4.1 TCR Expression in Transduced T-cells 
 
 

The results show the successful transduction of the chosen TCR into isolated human T-cells, with 

an expression of 19.3-20.7% in Treg cells, and 17.5 - 27.7% in Tcons. Using the same retroviral 

transduction method that was used in this project, Wright et al (Wright et al., 2009) transduced 

a TCR receptor into isolated murine T-cells, with 56.3% in Treg, and 61.8% in Tcon. However in 

unpublished work from the lab working on human RA derived Tregs, there has already been 

success in introducing a TCR with up to 37.9% surface expression. Brusko et al (Brusko et al., 

2010) generated human Ag-specific Tregs through the transduction of a HLA-A*0201 TCR into 

human cells, with achieved TCR expression of 33.5% in Tregs and 16.8% in Tcons. While these 

results are comparable to the transduction efficiencies achieved in this particular project, it was 

observed that in contrast to the results published by Brusko et al, the transduction of the Tcons 

was observed to be consistently higher compared to the Tregs. The retrovirus used during the 

transduction process in this research requires cells to be actively dividing for gene transfer to 

occur (Miller, Adam and Miller, 1990). Therefore the cells first had to be activated prior to 

transduction – the increased efficiency seen in the Tcons was hypothesised to be correlated to 

more efficient activation of the Tcon population, which allows for increased proliferation of cells 

and results in greater uptake and incorporation of the retroviral vector containing the TCR DNA. 

It has been noted by published research that alterations to the retroviral titre in an attempt to 

increase the efficiency of the transduction process does not appear to significantly increase the 

resulting TCR expression, and therefore this was not attempted in this research (Brusko et al., 

2010). 

 

In order for Ag-specific therapy to stand the best chance of success, the maximum TCR 

expression is important. Therefore after a successful transduction the modified T-cell 

populations can be further selectively expanded. A method for doing this is described by Maus 

et al (Maus et al., 2002) who developed artificial APCs which can be used in culture to 

specifically expand antigen specific populations. Brusko et al (Brusko et al., 2010) utilised this 

methodology to expand the transduced Treg population by co-culturing the modified Tregs with 

an artificial APC and the TCR specific peptide, allowing the activation and proliferation of the 

TCR-transduced Tregs. The relative expansion of the modified populations was dependent on 

the initial transduction efficiency. Using this method Brusko et al observed a >5200-fold 

expansion of the TCR-transduced Tregs, increasing the percentage of modified Tregs in the 

population to 66.1%. It would be advantageous to similarly expand the modified 
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Tregs in this research, which would require the design of an artificial APC restricted to HLA-

*0401. 

 

Prior to attempting TCR transduction, Ahmadi et al (Ahmadi et al., 2011) codon optimised 

the gene expression of the chosen TCR, and further modified the structure of the TCR 

through the addition of di-sulphide bond, in addition to murinising the constant alpha and 

beta chains. The introduction of the di-sulphide bond was to reduce the chances of mis-

pairing with the endogenous TCR, while the codon optimisation can increase the gene 

expression of the newly introduced TCR construct. This was conducted on the basis of 

research by Staus et al (Stauss et al., 2008) which investigated the potential to modify TCR 

gene constructs with the aim of improving TCR gene therapy, and stated that by modifying 

the TCR structure dominant TCR, constructs could be generated which suppress the 

expression of endogenous TCR’s present on the targeT-cells. Evidence of the efficacy of this 

approach is provided by Hart et al (Hart et al., 2008), who were attempting to conduct TCR 

transduction to generate a modified T-cell population capable of treating Hodgkin 

Lymphoma. Hart et al observed that their initial transduction resulted in poorly expressed 

TCR’s on the target cell population (human primary t-cells), and it was hypothesised that 

this was directly caused by the introduced TCR’s poor ability to compete for cell surface 

expression compared to the endogenous TCR. After the codon optimisation and 

modification of the TCR, efficient expression on the transduced cells was observed. This 

highlights the importance of choosing and designing an appropriate TCR for the 

transduction process. With the aim of achieving good TCR expression on the modified Tregs 

after the transduction process the TCR used in this project has been both codon optimised, 

murinised and had the addition of di-sulphide bonds. 

 

With the intention of increasing the TCR expression on the modified cell population it is 

necessary to consider the potential factors which can affect low TCR expression, and how these 

may be addressed or overcome. For example, it has been observed that CD3 is a limiting factor 

in the expression of TCR; TCR subunits form a complex with CD3, and this complex is required 

for the surface expression of the TCR receptor. Ahmadi et al hypothesized that after TCR 

transduction, the transduced TCR’s will be in direct competition for CD3 with the endogenous 

TCR, and this was demonstrated in a murine model system by comparing the transduction of a 

TCR alone to the co-transduction of a TCR alongside CD3 complex genes. The co-transfer of CD3 

increased TCR expression by 16-20 fold, indicating that the addition of CD3 can enhance the TCR 

transduction expression, and subsequent 
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activity of TCR modified T-cells (Ahmadi et al., 2011). It would be valuable to validate this 

process using human primary T-cells in vitro. 

 

4.2 FoxP3 Purity of cell Populations 
 

 

The FoxP3 purity of the transduced population was maintained after transduction with 

comparable levels to mock transduced cells. This is consistent with previously published 

research, Wright et al (Wright et al., 2009) reported 88.7% FoxP3 levels in transduced Tregs, and 

Brusko et al (Brusko et al., 2010) reported 98.2%. In this project levels of FoxP3 in Tregs were 

seen to remain consistent, with the average FoxP3 percentage before transduction at 85.2%, 

and post transduction FoxP3 at 85.6% (figures 3.5, 3.6 and 3.15). It was noted that the FoxP3 

purity of the conventional T-cell population was observed to be present at higher levels than 

would be expected, both in the initial measurements and post transduction analysis. The initial 

pre-transduction FoxP3 stain was conducted on unactivated cells, and in contrast the post-

transduced Tcons were activated 3 days before the transduction protocol was completed. The 

increased proliferation in this time could account for observed upregulation in FoxP3 post 

transduction. Published results have reported FoxP3 levels in Tcons at 33.8+-17.9% (Brusko et 

al., 2010), which is lower than the 52.3+-19.6% observed in this research. After single cell 

analysis of FoxP3 expression in human T-cells it was observed that Tcons can upregulated FoxP3 

without demonstrating any regulatory capabilities or converting to Treg cells (Gavin et al., 

2006). It is therefore known that levels of FoxP3 can be upregulated in response to cell 

activation, and indeed Brusko et al observed an upregulation of FoxP3 when the purity of the 

transduced population was measured after following an expansion protocol. In this particular 

research the initial pre-transduction FoxP3 purity stain was conducted on unactivated cells and 

therefore this is unlikely to be the cause of the observed high FoxP3 expression. It is possible 

that the high purity is a consequence of the particular FoxP3 antibody in this research 

demonstrating high levels of unspecific background staining. To test this hypothesis it would be 

ideal to utilise an isotype control for the FoxP3 antibody; this would provide an indication of the 

level of non-specific background staining, which could then be removed from the analysis so 

that only antibody specifically bound to FoxP3 is shown by the flow cytometry results. 

 

 

4.3 Treg Suppression Assay’s 
 

Unfortunately a successful suppression assay was not achieved in this project as the monoclonal 

antibodies failed to produce proliferation. The same concentration of antibodies stimulated a 

proliferative response in PBMC samples, and it was hypothesised that the 
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monocytes present in the PBMC sample aided in the clustering of the antibodies to present 

to the T-cells, allowing increased signal transduction leading to activation and proliferation. 

A proliferation assay was conducted using stronger CD3 antibodies in order to account for 

this, however the CD4 cells activated in isolation still failed to show evidence of 

proliferation. The next step would be to coat the antibodies onto the surface of the assay 

plate, allowing for greater contact between the targeT-cells and antibodies, but 

unfortunately this experiment was not conducted due to time constraints. 

 

An appropriate suppression assay with Tregs could not be set up in the absence of conventional 

T-cell proliferation. Upon demonstrating successful Tcon proliferation with sufficient 

stimulation, the next step would be to set up a Treg suppression assay: the effector T-cells 

would be co-cultured with varying ratios of Tregs to determine the ability of the Treg cells to 

suppress the Tcons in a dose dependent manner. This is a crucial step which demonstrates 

whether the Treg cell population is functioning as expected – while the expression of FoxP3 

indicates a subset of T-cells with regulatory function, the presence of FoxP3 alone does not 

prove the functioning capacity of the cells. Furthermore, as already discussed, the expression of 

FoxP3 can be upregulated in Tcons. By setting up an assay with co-cultured Tregs and Tcons, the 

suppression of the Tcons serves as proof of the working functionality of the Treg population. 

Achievement of this assay will demonstrate whether the transduction process has had a 

negative impact on the suppressive capabilities of the Tregs. Altering the ratios of Treg: Tcons 

allows a more comparable consideration of the suppressive abilities of the modified Tregs when 

present at ratios simulating expected in vivo physiology. When preparing the assays it is also 

crucial to understand the precise treatment of each cell population and consider any affects this 

may have on the results. For example, over stimulation of an effector T-cell population with IL-2 

can lead to overgrowth consequently increasing cell death, which may mistakenly present in an 

assay with co-cultured Tregs as suppression (Yarkoni et al., 2008; Boyman and Sprent, 2012). 

The assay would therefore by designed to include controls of each treated cell line in isolation 

to account for this. Furthermore, it has been observed that Tregs are a particularly vulnerable 

population to culture in vitro and are susceptible to cell death (Taams et al., 2001). This 

occurrence risks presenting as inefficient suppression, and care has to be taken to assess the 

viability of the Treg population prior to inclusion in assays. However, this particular assay does 

not measure the Ag-specific function of the population as the cells are provided with 

stimulation through any TCR on the cell surface, and not specifically activated through the 

introduced TCR on the modified Tregs. The next stage is to validate that the modified Tregs 
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can exert suppressive capacity when activated through the Ag specific stimulation of the 

introduced TCR, and this will require the design of a robust antigen specific suppression 

assay. 

 

Cell proliferation provides only a single measure of T-cell function, and cannot suggest any 

evidence that the actively dividing Tcons are producing pro-inflammatory signals. It would 

therefore be advantageous to measure the level of cytokines in the supernatant harvested from 

prepared assays using ELISA. This analysis has the potential to indicate the ability of the 

modified Tregs to suppress inflammatory cytokines released by effector T-cells. The 

measurement of inflammatory cytokines and IL-2 can produce a clear measurement of 

inflammation. The suppression of Tcon cytokine production by Treg cells is less variable than 

suppression of cell proliferation, and therefore the measurement of cytokine level across 

multiple experiments can provide a clear and consistent indication of Treg function (Mcmurchy 

and Levings, 2012). This can be seen from the results of Wright et al who utilised measurements 

of IL-2 secretion to demonstrate the proliferation of the Tcon population (Wright et al., 2009). 

IL-2 is a key cytokine in relation to T-cell activity, forming negative feedback regulation of T-

cells: IL-2 drives the expansion of Tcons, which further produce IL- 
 

2. The function and development of Tregs requires the presence of IL-2, however Treg cells 

cannot produce the cytokine. The increase in Tcon proliferation therefore increases IL-2 

concentration, driving the action of the suppressive Treg cells, forming the negative 

feedback regulation system. Therefore the reduction in IL-2 levels in suppression assays 

with Treg:Tcon co-culture is an important measure, and may be considered to indicate the 

Treg cells actively utilising the IL-2 present in the assay, suggesting the functional capacity 

of the Tregs. Brusko et al also measured concentrations of IFN-γ and IL-2 after the co-

culture of Treg and Tcons, and observed the suppression of IFN-γ and IL-2 as evidence of 

Treg suppression of Tcons (Brusko et al., 2010). 

 

4.3.1 Design of Antigen Specific Assay’s 

 

The next crucial step is to test the functional capacity of the modified Tregs when specifically 

activated through the stimulation of the introduced TCR by interaction with the target antigen. 

This can be achieved through the design of robust antigen-specific assays in which the co-

culture the Tregs and Tcons in the presence of the target antigen and an appropriate antigen 

presenting cell (APC) is set up. The modified Tregs should be co-cultured with Tcons in the 

presence of an APC pre-pulsed with the target peptide. When the APC presents the peptide that 

the transduced TCR is specific for, the modified Tregs will be stimulated and 
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able to exert suppressive functions. The Tcons must be able to also be activated through 

interaction with a peptide presented by the APC, allowing for Tcon proliferation. As a 

control the assay would be required to be repeated with mock-transduced Tregs: in the 

absence of the transduced TCR the mock Tregs would not be able to be activated, and 

hence unable to exert full suppression. 
 

There are a number of key considerations to account for while designing this assay. For 

bystander suppression to take place, it is essential for the Treg and Tcon to both be able to 

interact with the APC in order to ensure that both subpopulations are sufficiently activated. 

Therefore the Tcons used in the assay would have to be additionally transduced with the 

TCR. For the formation of the TCR: MHC complex required for Treg activation, the APC must 

present the peptide with the same HLA class that the transduced TCR is restricted to. A 

proposed method of achieving this is by transducing the appropriate HLA molecule in a 

retroviral vector into a chosen APC cell line. Previous work has already validated the vector 

HLA*DR*0401, which has been identified as a risk factor in RA, and is therefore a large 

proportion of RA patients possess this HLA type, making it an appropriate HLA type to be 

exploited in this work. The results in section 3.5 demonstrate the success in transducing the 

HLA DR *0401 vector into a T2 cell line. T2 cells are a fusion of a B-lymphoblastoid cell line 

and are MHC class II negative, with no expression of HLA DR (Henderson et al., 1992) the 

presence of HLA DR after the transduction process is therefore a strong indication of the 

successful introduction and uptake of the HLA*DR*0401 vector. However, whilst we were 

unable to validate this new reagent in Ag-specific Treg suppression assays, one concern was 

that the T2 cells demonstrate high levels of the surface markers CD80 and CD86 indicating 

the maturity of the cell line and subsequent ability to be strong stimulators of T-cells. For 

this particular assay, the strong stimulation of Tcons has the potential to limit the efficiency 

of Treg suppression and could mask the genuine suppressive capacity of the modified 

Tregs. Further work may be required to choose a more appropriate cell line for generating 

an APC. A potential cell line for this purpose is the K562 cell line: this is a human 

eyrhroleukamic cell line and demonstrates no expression of either MHC class I or II (Tanaka 

et al., 2010). Similar to the T2 cell line, this means that the success of the HLA*DR*0401 

transduction can be easily analysed by flow cytometry. Research has already been done to 

confirm the ability of transduced K652 cells to simulate HLA-DR restricted CD4 T-cells 

(Tanaka et al., 2010), however further work is required to validate this cell line for use as an 

APC for testing the functional capacity of Tregs within a suppression assay. 
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4.4 Selecting an Appropriate TCR 

 

The mTCR used in this project is restricted to the HLA type HLA-DR*0401, and specific for 

Myelin basic protein (MBP). The protein target of this particular TCR is not specific for the 

RA disease environment, and is being used only as a model to validate the generation of a 

population of functional Ag-specific human Tregs in vitro. One of the crucial challenges of 

this research would be choosing a TCR specific for an appropriate peptide target. One 

advantage of TCR gene transfer to generate the Ag-specific population is that the 

population is not limited to be specific to a TCR already present within the endogenous T 

cell receptor repertoire, but instead a new TCR not present can be introduced. There is 

therefore no limit to the specific peptide which can be chosen as a target. It would be ideal 

to utilise a TCR specific for a disease related peptide that will allow the modified Tregs to 

activate in the RA inflammation sites. It is realistic to anticipate the generation of more 

than one disease specific TCR which can be utilised to treat a wider range of patients, or 

further applied to the treatment of a range of autoimmune disorders. The number of TCRs 

required can be reduced by exploiting the strong association that has been drawn between 

the onset of autoimmunity and particular MHC II class sub types. As mentioned in section 

1.5, there is a genetic association between the inheritance of HLA type DR*04 and the 

onset of RA, and therefore there is a high chance of RA patients being HLA-DR4 positive. By 

choosing a TCR restricted to this particular HLA type it therefore increases the number of 

individuals that are eligible for the treatment, and only a small number of different disease-

related TCRs would be required to generate a powerful adoptive therapy to treat the 

condition. 

 

A further factor for consideration when choosing an appropriate TCR for the gene therapy 

process is the affinity of the TCR for its antigenic target. Lowered T-cell sensitivity may be 

seen as a consequence of reduced TCR expression, but it would also be pertinent to 

consider that the transduced TCR may be demonstrating reduced affinity for the TCR-

peptide-MHC complex. It may be possible to modify the structure of the TCR to increase the 

affinity of the receptor – Robbins et al demonstrated that amino acid substitutions can 

enhance T-cell function as mediated through the receptor, and suggested that key 

substitutions in TCR structure has the potential to increase the efficacy of the TCR (Robbins 

et al., 2008). However, care has to be taken when attempting to increase the affinity of the 

TCR: Linette et al reported severe consequences of adoptive T-cell therapy in a clinical trial 

after engineering T-cells with an affinity enhanced TCR against a HLA-A*A01 restricted 

peptide. The treatment unexpectedly caused severe myocardial damage and cardiogenic 

shock, resulting in the death of two trial participants (Linette et al., 2013). The cause was 
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determined to be an unexpected cross-reactivity of the TCR-enhanced T-cells with an 

unrelated peptide expressed in healthy cardiac tissue. A further risk of increasing TCR 

affinity is the unintended consequence of reducing the activation potential of the TCR. This 

can occur if the binding between the TCR: MHC complex is too strong, and unable to break 

easily, leaving the T-cell unable to engage with multiple receptors sequentially. This was 

described by Thomas et al, who analysed the functional capacity of modified TCRs after 

transduction into human T-cells and noted that while the binding of the modified cells 

improved, the function was not improved (Thomas et al., 2007). 

 

4.5 Potential Challenges of Treg Adoptive Therapy 

 

Tregs persisting in inflammatory conditions do not always maintain a stable phenotype, and the 

downregulation of FoxP3 has been observed coinciding with a switch to a potentially pathogenic 

Th17 phenotype. This differentiation of Treg into IL-17 producing cells is thought to be reliant 

on epigenetic modification, and in the presence of pro-inflammatory cytokines such as IL-1beta 

and IL6. Ayyuab et al (Ayyoub et al., 2009) examined Treg clones and noted that the IL-17 cells 

derived from Treg co-express FoxP3 and transcription factor RORC, and demonstrate a loss of 

suppressive activity. There is a suggestion that the instability of FoxP3 Tregs converting into pro-

inflammatory IL-17 secreting cells play a role in autoimmunity; this was investigated by Zhou et 

al (Zhou et al., 2011) using in vivo mouse models, who noted that a high percentage of FoxP3 

Tregs exhibited a downregulation of FoxP3, and these cells could produce pro-inflammatory 

cytokines and drive the onset of diabetes in NOD mice. As this phenotype switch presents in an 

inflammatory environment, a crucial consideration of this particular research, which is looking 

to introduce Tregs into an inflammatory setting, is to identify methods of maintaining the 

stability of the Tregs. One potential route is to focus on blocking the epigenetic modifications 

that lead to the downregulation of FoxP3. Lal et al (Lal et al., 2009) investigated the epigenetic 

regulation of FoxP3 by DNA methylation, and reported that a specific site present within the 

upstream enhancer of FoxP3 in Tregs remains un-methylated, but in contrasts is observed to be 

heavily methylated within conventional T-cells. The de-methylation of this site resulted in the 

stable induction of FoxP3, while the methylation of this site in Tregs resulted in the 

downregulation of FoxP3. Protecting this site DNA site from methylation is therefore an 

example of how the stability of Treg cells could be enhanced and the suppressive phenotype 

protected. 
 

Additionally particular subsets of Treg cells have been identified which demonstrate increased 

stability; as discussed in section 1.4.1, Hoffman et al (Hoffmann et al., 2017) identified that a 

subset of Tregs, CD4+CD25+CD45RA+, can be expanded in vitro to produce a 
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homogenous Treg cell line that have demonstrated the ability to maintain FoxP3 expression 

after expansion. In contrast the Ag-experienced CD45RO+ Treg subset have been noted to 

downregulate FoxP3 after 2-3 rounds of TCR stimulation in vitro (Edinger et al., 2003). In in 

vitro experiments, Hoffman et al demonstrated that CD45RA+ subsets from the same donor 

maintained FoxP3 expression throughout the 3 week long experiment. This research 

highlights the importance of identifying the most appropriate population to target for 

modification when attempting to create an effective sustainable adoptive therapy. 

 

4.5.1 Adoptive Therapy in an Active Disease Setting 

 

After the identification of naïve CD4+CD25+CD45RA Tregs as a stable population ideal for 

adoptive therapy, the suitability of the isolating and utilising that specific population has be 

considered within an active disease setting. It has to be considered further that the endogenous 

Treg population in an active autoimmune setting may be defective. Unpublished work from our 

lab has observed that in patients with RA there is a significantly reduced number of Ag-naïve 

Tregs compared to healthy controls, and a resulting higher proportion of Ag-experienced Tregs. 

After TCR-transduction it was identified that experienced Tregs were defective in suppressing 

IL-2 production by effector cells in a manner not observed in naïve Tregs from the RA patients 

or either subset from healthy controls. This has implications for the advancement for adoptive 

Treg therapy in the treatment of RA and other autoimmune diseases as it highlights the 

necessity of identifying the appropriate Treg population for use in therapy. Furthermore, it will 

be important to understand the nature of any defects in the Treg subsets and how these might 

be corrected. 

 

One potential method of dealing with potential defects in the endogenous Treg population 

would be to introduce additional genes into the TCR vector, opening up the potential to 

genetically correct any characterised Treg defects. Figure 4.1 shows an overview of the 

vector structure: the presence of the P2A peptide sequence in the vector causes the 

ribosome to skip the synthesis of the peptide bonded at the C-terminus of the 2A peptide, 

therefore allowing the continuous synthesis of the next downstream peptide. This 

therefore allows for the incorporation of an increased number of genes into the vector, 

without increasing the vector size to an unfeasible level (Szymczak and Vignali, 2005). 
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Figure 4.1: Structure of the TCR vector used in the research. 

 

It would be greatly advantageous to exploit this and introduce genes with the potential to 

augment and improve the function of the Ag-specific Treg population. For example, it has 

been observed that while Tregs from RA patients can suppress Tcon proliferation through 

direct contact mechanisms, they appear to be defective at producing anti-inflammatory 

cytokines (Flores-borja et al., 2008). It has been suggested that this is associated with a 

defect in CTLA4 expression and function. To test this hypothesis Flores-bora et al compared 

the surface expression of CLTA4 on RA Tregs to normal control Tregs, and noted that CTLA4 

was reduced on the surface of RA Tregs, with an increased rate of internalisation. 

Furthermore CTLA-4 mediated signalling was impaired, but full suppressive function was 

restored after the artificial induction of CTLA4. It could be possible to include the addition 

of genes into the vector with the ability to correct this defect – this is just one example of 

how defects may be corrected, or the Treg population enhanced. 

 

However, while there is conflicting evidence regarding the function of Tregs within RA, it is 

necessary to also consider the possibility that the Tcons are not fully functional. In light of 

the recent evidence presented by Walter et al (Walter et al., 2016), which indicated that 

there is no defect in the naive or Ag-experienced Tregs from RA patients, it is crucial to 

consider that in certain conditions Tcons may have developed a defect which allows them 

to by-pass or resist Treg suppression. This idea is supported by evidence which indicates 

that the number of Tregs actually increases in RA. Monte et al investigated the interactions 

between Tregs and Tcons in an in vitro RA mouse model, in which the proliferation and 
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function of both cell types at various stages of arthritis was examined (Monte, Wilson and 

Shih, 2008). They observed that while the Treg number increased in an environmental 

setting, this was balanced by a simultaneous increase in the resistance to suppression by 

the conventional t-cells. The authors noted that the APC contributed to the inflammatory 

environment through the release of cytokines which could enhance Tcon resistance to Treg 

suppression, in addition to the promotion of Treg apoptosis. This research emphasises the 

complexity of the inflammatory autoimmune environment. This is in agreement with 

Walter et al, who despite concluding that RA Tregs are not defective, emphasise that their 

findings do not take into account the potential effects that a local inflammatory 

environment may have on the function of Tregs. It is clear that that it will be necessary to 

consider the effects a local inflammatory environment might have on the function of 

modified Tregs introduced as an adoptive therapy. 

 

Chapter 5 – Suggestions for Future Study 
 
 

 

For the completion of this project it would be ideal to demonstrate the working functional 

capacity of the transduced Tregs. This would require the modified Tregs need to be tested with 

a robust antigen-specific suppression assay. To achieve this further work is required to optimise 

the suppression assay conditions, and this may achieved in a number of ways: it would be ideal 

to coat the required antibodies onto the suppression plate surface, or beads, in order to 

increase the cell contact with antibodies, thereby increasing the activation signal. Further to this 

work is required to generate an artificial APC capable of activated HLA-DR*04 restricted cells 

with an appropriate signal strength. As discussed in section 4.3, it would be greatly 

advantageous to further test the suppression assay supernatant and determine the 

concentration of and presence of particular cytokines, with the aim of providing a clear 

indication of the suppressive capacity of the modified Tregs in vitro. 

 

After the validation of the Treg transduction process it would be necessary to validate a 

reproducible method of generating Ag-specific Tregs from human peripheral blood taken from 

RA patients. This will require work to identify the most appropriate population to target for 

modification in an active disease setting. In patients with RA there is a significantly reduced 

number of Ag-naïve Tregs compared to healthy controls, and a resulting higher proportion of 

Ag-experienced Tregs. After TCR-transduction it has already been identified in unpublished work 

that experienced Tregs were defective in suppressing IL-2 production by effector cells in a 

manner not observed in naïve Tregs from the RA patients or either subset 
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from healthy controls. This has implications for the advancement for adoptive Treg therapy in 

the treatment of RA and other autoimmune diseases as it highlights the necessity of identifying 

the appropriate Treg population for use in therapy. Furthermore, the application of this 

approach to a human clinical setting will require close consideration of the potential effect of 

an inflammatory environment on the modified Tregs. It will also be important to understand 

the nature of any defects in the Treg subsets and how these might be corrected. 

 

Chapter 6 – Conclusions 
 
 
 
 

This research has demonstrated the successful validation of the TCR transduction process 

into isolated human Treg cells at the labs at Edinburgh Napier University. This was achieved 

after completing the outlined objectives to optimise the transduction process and the 

isolation of Tregs from peripheral blood. By sorting on the CD4+CD25+CD127dim cell 

population, Tregs were isolated and the purity of the population demonstrated by the high 

percentage of fopx3 expressing cells. The results further show that FoxP3 is maintained 

after the transduction process. 

 

Ag-specific suppression assays are required to generate repeatable data demonstrating the 

functional capacity of the modified Treg cells. Continuation of the research would then 

focus on applying the validated protocols to RA patient blood samples. This will require the 

isolation of CD45RA+ Tregs from peripheral blood taken from RA patient samples to be 

used in the transduction procedure. Unpublished work has previously demonstrated this, 

with data showing successful transduction and suppression assays have been conducted to 

demonstrate the functional capacity of the modified cells. 
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