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“Wireless Body Area Network, where communication can mean life or 

death…”  

― Marwa Salayma 

“If you want to find the secrets of the universe, think in terms of energy, 

frequency and vibration.” 

                                                   ― Nikola Tesla 

“I speak two languages, Body and English.” 

― Mae West 

“Somewhere in me is a curiosity sensor. I want to know what's over the 

next hill. You know, people can live longer without food than without 

information. Without information, you'd go crazy.” 

― Arthur C. Clarke 

“Life is like riding a bicycle. To keep your balance, you must keep 

moving.” 

                                               ― Albert Einstein 

https://www.goodreads.com/author/show/278.Nikola_Tesla
http://www.azquotes.com/quote/788551?ref=sensors
http://www.azquotes.com/quote/813737?ref=sensors
http://www.azquotes.com/quote/813737?ref=sensors
http://www.azquotes.com/quote/813737?ref=sensors
http://www.azquotes.com/author/2936-Arthur_C_Clarke
https://www.goodreads.com/author/show/9810.Albert_Einstein
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ABSTRACT 

Wireless Body Area Network (WBAN) facilitates efficient and cost-effective e-health 

care and well-being applications. The WBAN has unique challenges and features 

compared to other Wireless Sensor Networks (WSN). In addition to battery power 

consumption, the vulnerability and the unpredicted channel behavior of the Medium 

Access Control (MAC) layer make channel access a serious problem.  

MAC protocols based on Time Division Multiple Access (TDMA) can improve the 

reliability and efficiency of WBAN. However, conventional static TDMA techniques 

adopted by IEEE 802.15.4 and IEEE 802.15.6 do not sufficiently consider the channel 

status or the buffer requirements of the nodes within heterogeneous contexts. Although 

there are some solutions that have been proposed to alleviate the effect of the deep fade 

in WBAN channel by adopting dynamic slot allocation, these solutions still suffer from 

some reliability and energy efficiency issues and they do not avoid channel deep fading.  

This thesis presents novel and generic TDMA based techniques to improve WBAN 

reliability and energy efficiency. The proposed techniques synchronise nodes adaptively 

whilst tackling their channel and buffer status in normal and emergency contexts. 

Extensive simulation experiments using various traffic rates and time slot lengths 

demonstrate that the proposed techniques improve the reliability and the energy 

efficiency compared to the de-facto standards of WBAN, i.e. the IEEE 802.15.4 and the 

IEEE 802.15.6. In normal situations, the proposed techniques reduce packet loss up to 

61% and 68% compared to the IEEE 802.15.4 and IEEE 802.15.6 respectively. They also 

reduce energy consumption up to 7.3%. In emergencies, however, the proposed 
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techniques reduce packets loss up to 63.4% and 90% with respect to their counterparts in 

IEEE 802.15.4 and 802.15.6. The achieved results confirm the significant enhancements 

made by the developed scheduling techniques to promote the reliability and energy 

efficiency of WBAN, opening up promising doors towards new horizons and 

applications.  
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Chapter 1: Introduction 

1.1 Introduction 

Wireless Sensor Network (WSN) has revolutionised our daily lives as it pervades most 

technological applications such as controlling, tracking, monitoring and automation. The 

communication range of wireless sensor applications varies between tenths of metres to 

thousands of kilometres and is able to cover continents [1, 2]. The exigency of WSN has 

been the foundation for developing interconnected and identified devises. Those devices 

can communicate with each other as well as with the Internet, leading to the paradigm of 

what is called the Internet of Things (IoT).  IoT enables direct access to the surrounding 

environment, which boosts the productivity and efficiency [3].  It was not long before the 

IoT revolution shifted its direction to a technology that suited human mobility by devising 

a technology that can be wearable or even implanted in the human body [4].  This 

technology has been a key element in e-health to monitor bodies, and enables new 

applications under the umbrella of different domains, including the medical field, the 

entertainment and ambient intelligence areas [5, 6, 7, 8, 9, 10]. In essence, this technology 

is anticipated to provide a breakthrough in the IoT applications, by providing exceptional 

solutions for taking care of the aging population [4]. This technology forms a special type 

of WSN, namely, the Wireless Body Area Network (WBAN).  

WBAN is usually a small network composed of low-power and low-processing sensors 

that capture body physiological information and send it wirelessly to a central base 

station. An example of a typical WBAN sensor along with examples of  WBAN 

physiological sensor devices are provided in the Appendix. WBAN replaces complex and 

wired healthcare equipment to perform continuous monitoring of vital information 

without limiting users movements [5, 6, 7, 8, 9, 10]. Nevertheless, the unreliability related 

problems of this type of network might lead to life-threatening situations. Given that 

sensors are battery powered and resource-constrained devices, energy depletion can be a 

serious problem to overcome. In addition, the human body absorbs energy when it is 

exposed to Radio Frequency (RF) electromagnetic fields leading to a weak signal. In 
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wireless communications, the reduction in the received signal strength is called signal 

attenuation [11]. Transmission paths are also affected by the uncontrolled, dynamic 

nature of the human body movement, because it causes frequent changes in the network 

topology, which deteriorates the stability of the transmission links, and leads to 

continuous large attenuation in the transmitted signal. Severe attenuation in the signal 

pushes the signal below the receiver sensitivity, which is called deep fade in the signal 

[11, 12].  The dynamic vulnerable medium around the human body causes not only deep 

fading issue, but also long disconnectivity and the unreachability of the sensor node from 

the main network [11, 12, 13]. According to an empirical study presented in [11] and 

conducted on a real WBAN worn by a person doing different daily-activities, it revealed 

that when a deep fade occurs in the WBAN channel, it lasts for at least 10 ms. However, 

if nodes are allowed to operate in a timely, scheduled manner, following contention free 

channel access, such as a Time Division Multiple Access (TDMA) approach, the fading 

becomes the primary source of unreliability. TDMA based channel access helps in both 

channel status prediction and energy saving because the scheduled duty cycles at the 

nodes avoid idle listening and overhearing. 

The IEEE 802.15.4 and IEEE 802.15.6 standards are considered as the WBAN de-facto 

standards. IEEE 802.15.4 supports TDMA channel access by using Guaranteed Time 

Slots (GTSs) in the Contention Free Period (CFP) [14], while IEEE 802.15.6 provides 

TDMA mechanisms through the scheduled allocation slots in the contention free access 

periods [15]. However, TDMA mechanisms adopted by both standards provide static slot 

allocation, whereby each node in the network is obligated to use the channel in its time 

slots whether its link encounters deep fading or not. Although there are some efforts 

proposed in the literature to solve this issue by adopting dynamic slot allocation and 

considering the channel status, the majority of proposed techniques do not avoid the deep 

fade when it occurs. 

To solve this problem, two novel dynamic TDMA based Medium Access Control (MAC) 

techniques are proposed in this thesis. The proposed protocols are discussed in three 

published works in [16, 17, 18]. The first technique is called Dynamic Scheduling Based 

on Sleeping slots (DSBS),  and the second technique is called Dynamic Scheduling Based 

on Buffer (DSBB). Both DSBS and DSBB avoid the deep fade in the channel by allowing 

the nodes to sleep dynamically whenever they detect a deep fade in their links. Avoiding 
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the deep fade in WBAN medium is the first major aim of this thesis. If a node sleeps 

during its active session when the deep fade occurs, more packets will be saved in its 

buffer, and hence that node requires more slots in the next TDMA round than other nodes. 

As a result, proposing dynamic slot allocation scheduling protocols is the second major 

aim of this thesis. The proposed DSBS and DSBB mainly differ in the dynamic slot 

allocation to be adopted by the controller of the nodes in the subsequent TDMA round. 

In DSBS, the controller calculates the number of slots each node has slept during its active 

session due to deep fade, based on which it assigns that node extra slot in the next 

superframe. In addition, DSBS is optimised by considering the buffer information of the 

nodes. The buffer information is encapsulated in the data packet sent by the node. DSBB 

however, follows an opposite approach, because the controller does not need to perform 

any calculations related to the link status of the node. Instead it only checks the number 

of packets in the buffer of each node. This helps to detect whether the node has slept 

during its active session due to deep fade or not. Accordingly, in both DSBS and DSBB, 

nodes with more packets in their buffer get extra slots in the subsequent TDMA schedule.  

The proposed scheduling techniques are evaluated within the heterogeneous contexts that 

might occur in WBAN, and their performance is evaluated against the performance of 

WBAN de-facto standards, i.e. the IEEE 802.15.4 and the IEEE 802.15.6. In essense, this 

work addresses how further packets loss and energy consumption are decreased in both 

the normal situations as well as emergencies, while offering all nodes the chance to use 

the medium regardless of the context. Accessing the medium is only dependent on the 

nodes’ link and buffer status. This is the third major aim of this thesis, and experimental 

results revealed that the proposed techniques proved to have potential in improving 

WBAN reliability and energy efficiency in both normal and emergency situations. The 

proposed protocols are generic TDMA based MAC approaches, which can be applied 

without the need of substantial amendments on any technology, protocol or standard that 

adopts the TDMA based MAC mechanism.  

This chapter introduced the main topic of this thesis. Next, it explains the reasons for 

choosing the area of WBAN as the topic of this thesis in general and the reliability in the 

WBAN medium in particular, and highlights the barriers to achieving a reliable  and 

energy efficient WBAN. The third section details precisely the challenge that the research 

will address ‘Reliable and Energy Efficient scheduling for Wireless Body Area Networks’, 



4 
 

thus reinforcing its novel contribution. Accordingly, the main research aim emerged after 

identifying the thesis problem, along with the objectives to achieve this aim are outlined 

in the fourth section. The fifth section summarises the thesis contributions, which is 

followed by a list of peer-reviewed publications for the thesis achievements, and which 

are presented in the sixth section. Finally, the structure of the thesis is provided in the 

seventh section. 

1.2 Significance of this research 

Developed countries, such as the United Kingdom, are characterised by an increased 

aging population. This adds a pressure on hospitals and the healthcare systems, which is 

accompanied by a massive increase in healthcare costs [5, 6]. Therefore, there is a need 

for an affordable technology that enables online monitoring and which harnesses the 

cheap existing technologies. Such technology should be proactive by adopting RF 

wireless communications and sensor devices. This provided the motivation for the 

evolution of WBAN technology [5, 6].  WBAN comprises a number of heterogeneous 

micro-electro-mechanical systems that send physiological information via Wireless Local 

Area Network (WLAN) to a medical centre (Appendix). WBAN has been a key element 

in e-health to monitor bodies as it enables online monitoring without limiting the human 

movements. Adopting WBAN not only reduces the overload on hospitals as well as 

healthcare costs, but also improves life expectancy, because it enables early detection of 

chronical diseases [5, 6]. This technology allows new applications under the umbrella of 

different domains, including the medical field, the entertainment and ambient intelligence 

areas [5, 6].  Although WBAN provides a solution for the reactive and unaffordable 

current healthcare systems, it suffers from several critical challenges, such as reliability 

and power consumption.  Due to its timeliness, the criticality of its applications as well 

as its challenging issues, WBAN is chosen as the topic of this thesis. 

- Reliability and deep fading in WBAN 

Two components of a sensing device, the wireless transceiver and a sensing unit, normally 

interact directly with the environment, which is prone to various physiological, chemical, 

and physical defects [19]. Even if the hardware is of a good status, the communication 

between sensor devices can be influenced by several factors, e.g. interference, obstacles, 

weather conditions and signal strength [19]. Additionally, the human body absorbs signal 
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energy when it is exposed RF electromagnetic; this energy absorption adversely affects 

the propagation paths [7]. Transmission paths are also affected by reflection, diffraction, 

and the shadowing that occurs because of rapid body movement, body structure and 

posture. Body motion also causes a frequent change in network topology [20]. Those 

factors break the communication path between the sensor devices and their controller, 

leading to links failure. These conditions adversely affect the reliability and performance 

of WBAN, which is characterised by the criticality of the data the nodes should sense. 

Some of the data might be critical to human life; thus, any loss of data could be fatal. 

Nevertheless, WBAN will not be sufficiently adopted unless it proves its reliability, 

especially in emergency situations. An emergency in WBAN is an abnormal monitoring 

context, which is decided by diagnoses performed by the controller through data 

processing, and predefined by doctors. An example of emergency in WBAN is when a 

patient under monitoring falls down, which leads to an increase in their heart rate (more 

than 200 hard rate). 

To meet the aim of achieving a reliable healthcare system, the reliability and Quality of 

Service (QoS) of WBAN ought to be preserved within a desirable percentage while 

maintaining maximum transmission power below a required level [21]. Due to its 

criticality, reliability is chosen as the major challenge that this thesis aims to tackle.  

WBAN reliability faces different and unique challenges compared to other wireless 

networks. For example, the probability of link failures occurring in WBAN medium is 

higher than in WSN. Link failure weakens the signal, and in wireless systems the 

reduction in the received signal strength is called signal attenuation. Due to the 

uncontrolled and frequent body movements, WBAN is prone to continuous and large 

attenuation in the signal, which eventually falls below receiver sensitivity and therefore, 

the signal may not be received at all. This phenomenon is called the deep fade and it is 

one of the primary reasons that degrades WBAN reliability [11, 12, 13]. Although fading 

occurs in all wireless communication networks, it is more problematic in WBAN, due to 

its unpredictability, its frequent occurrences, and its long duration. Deep fade is the main 

reason for the severe packets loss in WBAN medium, and it is noted that packets 

retransmission is no longer a solution for WBAN. This is because if deep fade occurs, it 

persists for at least 10 ms, hence, performing packets re-transmission is useless, which is 

also at the expense of the energy consumption [11, 12, 13]. Ongoing research efforts are 
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focused on various technical issues in WBAN, such as lowering power consumption, the 

design of tiny sensor devices to be inserted in, on, and around the human body, the design 

of an optimal network topology to achieve the highest network performance, proposing 

portable and convenient communication protocols, coexistence with other network 

technologies, infrastructure, the heterogeneous applications of WBAN and so forth [6, 8, 

9, 10, 22]. Nevertheless, few have addressed the anomalous behaviour of WBAN medium 

due to the deep fade phenomena. For those reasons, deep fade is chosen as the main gap 

that this thesis aims to tackle so to achieve a reliable WBAN.   

- Constrained resources (battery and buffer) 

Any proposed solution to achieve a reliable WBAN should be energy efficient. This is 

because WBAN sensors are tiny resource constrained devices (Appendix) that are battery 

powered with small batteries, which makes energy depletion a serious problem. For 

example, some sensor such as the pacemaker should operate for at least five years [8]. 

Therefore, any solution to mitigate the effect of deep fade in WBAN medium ought to be 

energy efficient. Another example of a constrained resource in WBAN devises is the 

nodes’ buffer [11]. The size of the buffer is limited, and when it gets overloaded with data 

packets, this increases packets loss, and hence reduces WBAN reliability. Therefore, not 

only the limited power consumption should be considered, but also the size limited 

packets storage resources.   

- Heterogeneity of  devices, contexts and applications 

Medical sensors might be introduced under various situations; such as normal situations 

and emergency situations. Emergency is a variation in the behavior of the current context 

in a way that could lead to life threatening situations. Emergency could occur when a 

patient with a life threatening disease suddenly falls down, or his ambient environment 

encountered an unpredictable extreme high or low temperature, pressure, oxygenation, 

humidity, and so on.  For example: temperature readings might be higher or lower than 

the average normal temperature, which could be life, threatening. Consequently, WBAN 

has two levels of variation in the reliability requirements of its sensors: amongst 

heterogeneous sensors and within the same sensor, as it might run in different situations 

[5, 23].  Therefore, in addition to energy efficiency, any proposed solution to alleviate the 
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effect of deep fade in WBAN should prove its resilience within the heterogeneous 

contexts that might occur in WBAN. 

- The Medium Access Control (MAC) layer 

Unlike WSN, WBAN is considered a short range wireless network, due to its short area 

communication space and the limitations on the number of nodes where there is no need 

for multi hopping; thus, WBAN often follows a star topology [13]. At the same time, this 

very short range network suffers from a very vulnerable medium. Nevertheless, sensors 

are ought to send their data packets successfully especially in the context of an 

emergency. For these reasons, the majority - if not all- the WBAN challenges are confined 

with the reliability of the MAC layer. Therefore, the proposed solution of this thesis is 

targeted towards the MAC layer of the software layer stack. 

- Why TDMA based MAC? 

Usually, any MAC protocol follows one of three approaches, either contention based 

access, contention free access or hybrid access of both.  In fact, contention based 

techniques are not recommended for WBAN channel access. This is because a contention 

based MAC leads to collision, which is very severe in WBAN medical applications, due 

to the correlation in the physiological data [24]. For example, in an emergency, a group 

of sensors might be involved in transmission, leading to a collision and consequently 

packet loss even if every component of WBAN is working properly, which could be fatal. 

Not only contention based access causes packets loss, but also dissipates energy due to 

packets re-transmission, idle listening and overhearing.  Contention free based MAC 

access, such as the TDMA based techniques are more reliable and energy efficient for 

WBAN, because they avoid the drawbacks of the contention based. Moreover, the traffic 

of medical applications in a normal situation is usually periodic, which makes TDMA 

approaches more suitable for WBAN than other channel mechanisms because the nodes 

are duty cycled in accessing  the medium [24]. Besides, the major goal of this thesis is to 

achieve a reliable WBAN, and hence the proposed solutions in this thesis adopt a TDMA 

MAC based approach for WBAN channel access.  
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- The problem of the traditional TDMA scheduling 

While it is true that TDMA based MAC approaches provide a reliable and energy efficient 

WBAN, the traditional static TDMA scheduling techniques cannot tolerate the 

unpredictability and the long duration of the deep fade phenomenon in WBAN.  In fact, 

to alleviate the effect of the deep fade, the TDMA slot allocation should not be static, it 

should be adaptive according to the channel status. For example, sensor nodes can be 

prohibited from using the medium whenever the deep fade occurs, or otherwise packet 

loss persists and a reliable WBAN would not be achieved, which will also dissipate 

energy.   

This discussion provided motivation to propose dynamic TDMA based MAC scheduling 

approaches for WBAN that tolerate the deep fade phenomenon in WBAN medium, in 

order to boost WBAN reliability. The solution should be energy efficient, and should 

prove its resilience within the heterogeneous contexts of WBAN. 

1.3 Thesis statement 

Due to the sensitivity of the data carried and handled by WBAN, achieving a reliable 

WBAN is crucial. Reliability is a very critical challenge in emergencies, because any 

packet loss could be fatal. One of the main reasons that degrades WBAN reliability is the 

channel deep fade phenomenon. The occurrence of the deep fade is frequent, 

unpredictable and if it occurs it lasts for a long time. Deep fade is the primary reason for 

an increased packets loss in WBAN. Packets’ loss is followed by failed packets re-

transmissions due to the long duration of the deep fade. This not only degrades WBAN 

reliability but also severely dissipates energy. TDMA mechanisms adopted by WBAN 

de-facto standards are not able to provide a reliable and energy efficient channel access 

for WBAN as they provide static slot allocation. Static slot allocation has two major 

drawbacks.  First, each node in the network has to use the channel in its time slots whether 

its link encounters deep fading or not. Second, each node is allocated the same number of 

slots in each TDMA round regardless of its needs. For those reasons, if a node loses data 

packets during its time slots due to deep fade, performing re-transmission will be useless 

because the deep fade of the links, usually persists for a long period of time.  



9 
 

Based on the extensive literature review related to the deep fade phenomenon in WBAN, 

it is found that in many solutions, there is a trend to adopt dynamic slot allocation 

mechanisms to tolerate the deep fade phenomenon. Those efforts vary between re-

ordering the nodes in the schedule when the deep fade occurs [25, 26, 27], delaying the 

channel access when the deep fade is detected [27, 28], and even consider hybrid channel 

access so to distribute the effect of the deep fade between sensors [28, 29]. However, 

none of those techniques consider the unpredictability and the frequent occurrences of the 

deep fade in WBAN medium, and avoid its effect accordingly. Moreover, current TDMA 

approaches do not justify the distribution, and the length of the TDMA time slots, 

especially in normal situations. Regarding emergencies however, the vast majority of 

literature work proposes to allocate nodes in emergency more slots than other nodes, i.e, 

proposes to schedule the nodes according to their traffic context [26, 28, 29]. This is 

problematic if the deep fade phenomenon is considered. This is because in emergency 

context, using the medium for longer time severely increases the loss of the very sensitive 

data and dissipates more energy. Additionally, some-if not all- nodes in normal situations 

are prohibited from accessing the medium in order to give their time slots to the nodes in 

emergencies.  Besides their failure to tackle the deep fade phenomenon, all the new 

proposed techniques require complex amendments to the superfreme structure of WBAN 

de-facto standards. Moreover, nodes rely heavily on the controller to manage channel 

access schedule as these TDMA techniques are fully centralised. However, if the TDMA 

approach is adopted by WBAN MAC, then it is possible to manage packets loss in WBAN 

by avoiding the channel deep fade when it occurs. This can be achieved by allowing the 

nodes to switch off their transceiver whenever they fail to receive acknowledgment frame 

from the controller.  Data packets that arrive during the sleeping phase of the nodes will 

be saved in the buffer. Accordingly, in the next TDMA round, time slots can be allocated 

to nodes dynamically based on their reliability requirements, which is based on both their 

links and buffers status. This presents the bottom line of the proposed solution for the 

presented limitations of the current WBAN TDMA mechanisms.   
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1.4 Research questions 

According to the presented problem statment, which is emerged from the extensive 

literature review related to the thesis problem, the following research questions arose: 

1. Is it possible to avoid the deep fade in WBAN medium, without re-ordering the 

nodes, delaying their medium access or considering hybrid channel access?  

2. Can the nodes decide their links’ status without relying on the controller? 

3. How the nodes can access the medium according to their needs, in both normal 

situation and in emergencies, while considering the deep fade in WBAN medium? 

4. Is there a way to guarantee all the nodes to have a reliable and energy efficient 

access to WBAN medium in both normal situation and emergencies? 

5. Is it possible to satisfy the QoS in emergencies without increasing energy 

consumption? 

6. Is it possible to propose a generic channel access mechanism for WBAN that does 

not require substantial amendments to the superframe structure of the WBAN de-

facto standards?  

7. To what extent considering context awareness in scheduling the nodes in WBAN, 

improves WBAN reliability and energy efficiency? 

1.5 Research aim and objectives  

Based on the extensive literature review related to the thesis problem, and the research 

questions that have been emerged, this thesis aims to propose novel generic, adaptive, 

reliable and energy-efficient MAC channel-access mechanisms for WBAN. The 

protocols should be able to avoid, mitigate and cope with the effect of fading, for the aim 

of achieving the highest possible level of reliability, without increasing energy 

consumption. The proposed scheduling techniques must cope with the heterogeneous 

contexts of WBAN. The new protocols should solve technical difficulties by providing 

techniques that are generic enough, so that amendments to the superframe structures of 

the IEEE 802.15.4 and IEEE 802.15.6 standards are not required. The protocols should 

perform under pre-defined evaluation metrics that concern reliability, including packet 

loss and rapid response, while also considering energy-efficiency. The proposed MAC 

protocols will be compared with the performance of the MAC protocols adopted by IEEE 

802.15.4 and IEEE 802.15.6.    
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The following objectives have to be achieved:  

• A critical analysis of various WBAN challenges and critical issues that render the 

requirements for adopting a reliable WBAN as highly important. 

• An exploration of the principles used by wireless standards such as IEEE 

802.15.4, IEEE802.15.6 to achieve reliable and energy efficient WBAN.  

• An analysis of other MAC protocols proposed to achieve a reliable and energy 

efficient WBAN. 

• A review of existing methodologies that tackle the phenomenon of the channel 

deep fade in WBAN. This requires a thorough review of TDMA based MAC 

protocols that tackle the realistic behavior of WBAM medium. 

• New algorithms, presenting new solutions to overcome the limitations and the 

drawbacks of the existing works. This involves designing, implementing and 

validating the performance of the proposed algorithms.  

• Suggestions for future work to fill in the remaining gaps regarding the traditional 

static and dynamic TDMA approaches for WBAN will be proposed, along with a 

suggestion for other interesting research areas, where the proposed protocols can 

be adopted. 

1.6 Thesis contributions 

To the best of our knowledge, the literature has not reported so far any MAC protocol 

that avoids the deep fade phenomenon in WBAN medium, and reduces the nodes energy 

consumption in both normal and emergency situations, while offering all nodes the 

chance to use the medium regardless of the context, and without making any amendments 

to the current WBAN de-facto standards. To fill in this gap, this thesis makes six-fold 

contributions: 

1. Develop a technique that avoids channel deep fade, which is explained in Section 3.2. 
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2. Introduce an adaptive scheduling technique that dynamically allocates the nodes time 

slots by analysing their channel status, and which is optimised by including the buffer 

status. This technique is presented in Section 3.3.  

3. Propose another dynamic scheduling technique, which assigns time slots to nodes 

according to their buffer status only as it reflects their links’ status. This technique is 

presented in Section 3.4. 

4. Evaluate the performance of the proposed techniques in both normal and emergency 

situations, which are discussed in Chapter 4 and Chapter 5 respectively.  

5. Propose a third technique, which investigates whether considering context awareness 

in WBAN scheduling improves WBAN reliability and energy efficiency. This 

technique is illustrated in Chapter 6. 

6. Develop an approach to parametrise the length of the TDMA schedule through 

choosing a suitable slot size. This approach is presented in the validation 

methodology of the proposed protocols in both the normal situation and the 

emergencies, which are presented in Section 4.3.2 and Section 5.4 respectively. 

1.7 Peer-reviewed publications during the study 

During the process of conducting this thesis, several publications have been yielded, 

wherein each publication marks the achievement of some objectives of the overall aim of 

the thesis. The most recent publication presents all the thesis contributions in an article 

submitted to IEEE Transactions on Green Communications and Networking [18].  

This IEEE journal article highlights the performance of the proposed protocols in the 

heterogeneous context of WBAN. This IEEE journal article is an extended version to a 

previous paper presented at IEEE International Conference on Communications (ICC'17), 

which is one of the two flagship IEEE conferences in the field of communications, and at 

which some major telecommunications discoveries have been announced. The IEEE 

ICC’17 paper summarises the main achievements of the thesis which are the proposed 

dynamic reliable and energy efficient TDMA scheduling approaches for WBAN [17].  

The preliminary results of the proposed protocols are also published and were presented 

at the 19th Conference of Open Innovations Association (FRUCT) [16]. Publications 

regarding WBAN started by a comprehensive ACM survey that covers the concept of 
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WBAN technology, its challenges, applications, and standards [5]. The aforementioned 

achievements preceded by two publications (one of which is a book chapter published 

by Springer International Publishing), which focus on improving the energy efficiency 

of IEEE 802.15.4 for WSN [30, 31]. The details of the publications achieved throughout 

the PhD period are as follows:  

• M. Salayma, A. Al-Dubai, I. Romdhani, and Y. Nasser, “Reliability and energy 

efficiency enhancement for emergency-aware wireless body area networks 

(wban),” IEEE Transactions on Green Communications and Networking, pp. 

1–1, February 2018.  

• M. Salayma, A. Al-Dubai, I. Romdhani, and Y. Nasser, “New dynamic, reliable 

and energy efficient scheduling for wireless body area networks (wban),” 

proceeding in 2017 IEEE International Conference on Communications 

(ICC), May 2017, pp. 1–6. 

• M. Salayma, A. Al-Dubai, and I. Romdhani, “Reliability and energy efficiency 

enhancement in wireless body area networks for e-health,” proceeding in 19th 

Conference of Open Innovations Association (FRUCT), Nov 2016, pp. 203–

211. 

• M. Salayma, A. Al-Dubai, I. Romdhani, and Y. Nasser, “Wireless body area 

network (wban): A survey on reliability, fault tolerance, and technologies 

coexistence,” ACM Computing Surveys, vol. 50, no. 1, pp. 3:1–3:38, Mar. 

2017.  

• M. Salayma, A. Al-Dubai, I. Romdhani, and M. B. Yassein, “BARBEI: A New 

Adaptive Battery Aware and Reliable Beacon Enabled Technique for IEEE 

802.15.4 MAC,” book chapter in Advances in Network Systems. Advances in 

Intelligent Systems and Computing, M. Grzenda, A. Awad, J. Furtak, J. Legierski, 

Eds. Cham: Springer International Publishing, 2017, pp. 317– 335.  

• M. Salayma, A. Al-Dubai, and I. Romdhani, “Battery aware beacon enabled IEEE 

802.15. 4: An adaptive and cross-layer approach,” proceeding in Federated 

Conference on Computer Science and Information Systems (FedCSIS), Sep 

2015. IEEEXplore, Conference Proceedings, pp. 1267–1272. 
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1.8 Thesis organisation 

• Introduction - This chapter introduces the topic of the thesis. It has also presented 

the motivation behind tackling this research. Thesis statement, a list  of the 

emerged research questions, and the aim and objectives of the research were 

identified. Moreover, it provided an abstract view of the thesis contributions. 

• Literature Review – The concepts of WSN, and WBAN in general are provided. 

Thereafter, WBAN is discussed in details by introducing its applications and its 

unique characteristics. The latest trends in wireless communication to adopt such 

networks are introduced. The theoretical concept behind WBAN challenges is 

provided, which highlights the challenge of reliability and the phenomenon of 

channel deep fade in WBAN in particular. In order to provide justification for the 

novelty of this research, an in-depth review of the existing TDMA based 

approaches, which tackle the deep fade phenomenon as an attempt to provide both 

reliable and energy efficient WBAN is discussed. 

• The Reliable and Energy Efficient Scheduling Algorithms – According to the 

emerged research questions, and the identified thesis problem, this chapter 

presents the proposed approach, which aims to provide a reasonable and favorable 

answers to the presented research questions. The proposed approach addresses the 

limitations found in the literature by achieving a reliable and energy efficient 

WBAN. The proposed approach involves two novel and dynamic scheduling 

techniques, which are discussed separately in details in this chapter. 

• Validation Methodology – This chapter highlights the methodology that will be 

followed to evaluate the proposed approach. The simulation setup, the topology 

and the evaluation metrics are also introduced. It explains the scenarios adopted 

for evaluating the performance of the proposed techniques in the context of the 

normal situation. It also provides an illustration of the justifications, for the 

experimental results achieved. 

• WBAN in Emergency Situations – This chapter identifies the context of 

emergencies, and illustrates the approach to handle emergencies in simulations. It 

explains the methodology and the scenarios for evaluating the performance of the 
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proposed techniques in the context of an emergency. It also provides an 

illustration of the justifications, for the experimental results achieved. 

• Context-Aware Communication –This chapter investigates whether considering 

heterogeneous traffic contexts in scheduling the nodes is beneficial for WBAN 

especially in emergencies. The chapter proposes and validates a third context 

aware technique that is integrated into the solutions proposed in Chapter 3. It 

explains the scenarios adopted for evaluating the performance of the proposed 

technique, and provides justifications for the experimental results achieved. 

• Conclusions and Future Directions – The final chapter concludes the thesis and 

highlights thesis limitations. Furthermore, the chapter provides the future work to 

further enhance the proposed solutions. Besides WBAN, the chapter opens new 

interesting and emerging research areas where the proposed protocols can be 

deployed as a promising future direction.
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Chapter 2: Literature Review 

2.1 Introduction 

The first decades of the last century heralded a revolution in wired communication: they 

brought about an almost magical technological evolution especially sensing data and 

communications. It did not take long for people to realise however that this technology 

was inefficient, especially when it came to wiring costs, mobility and independent 

connections. Such inefficiencies have been the key driving forces towards the evolution 

of wireless technology [1]. Wireless communication has revolutionised our daily lives as 

it pervades most technological applications such as controlling, tracking, monitoring and 

automation [2]. The communication range of such applications varies between tenths of 

metres to thousands of kilometres and is able to cover continents. Most wired sensors 

were replaced with wireless ones, thus forming a wireless network of sensors 

characteristic of the WSN era and beyond under the umbrella of the Internet of Things 

(IoT) paradigm. IoT enables direct access to the surrounding environment, which boosts 

the productivity and efficiency [3].  It was not long before the IoT revolution shifted its 

direction to a technology that suited human mobility by devising a technology that can be 

wearable or even implanted in the human body [4]. This technology is characterised by 

low cost, energy constrained, tiny, heterogeneous sensor nodes that form a special type 

of WSN, namely, the WBAN [5, 6]. Examples of WBAN sensor devices are provided in 

the Appendix.  

A WBAN comprises sensors that capture physiological information and send it to a 

central base station through wireless communication. WBAN replaces complex and wired 

healthcare equipment as it is able to continously monitor the body’s vital statistics without 

limiting an individual’s movements [5, 6]. WBAN sensor devices are supposed to provide 

real time feedback without causing any discomfort, thereby providing a greater deal of 

flexibility and mobility to the user. More importantly, the data provided by WBAN gives 

doctors a better view of a patient’s situation as this data is gathered during a patient’s 

normal activities in a natural environment [32].  The criticality of WBAN applications, 

the dynamic environment within which they operate (limited to the human body), the 
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vulnerability of WBAN medium, its frequent and dynamic topology and the heterogeneity 

of the deployed sensor devices confirm that WBAN has special characteristics that 

impose key challenges in designing an efficient and resilient WBAN. For instance, a 

WBAN has to be reliable as any abnormality could be life threatening for the person 

dependent on this technology.  

This chapter discusses the theory behind the main topics covered in this thesis and 

presents the key relevant background information to the subject. The second section 

presents a general overview of WSN, and covers the background of the Personal Area 

Networks (PANs). WBAN concept is introduced in the third section, which provides a 

review of key characteristics and applications facilitated by this networking technology. 

The third section then explores a wide variety of communication standards and methods 

deployed in this technology. Additionally, the third section investigates the reliability 

challenge in WBAN, and places a substantial emphasis on the other challenging issues 

pertaining to the heterogeneity of WBAN devices and power consumption along with 

some suggested trends in these aspects. The fourth section reviews literature work that 

tackles the reliability challenge of WBAN from MAC layer perspective. It highlights the 

TDMA based scheduling techniques proposed for WBAN along with their drawbacks. 

This chapter is summarised in the fifth section. 

2.2 Wireless Sensor Networks (WSN) 

As its name indicates, a Wireless Sensor Network (WSN) is a network constructed from 

sensing devices that communicate with each other and with the surrounding world via a 

wireless communication medium [1, 2]. Sensing devices, which are usually referred to as 

sensor nodes or motes, convert the actual world into a virtual one by detecting, gathering, 

processing and emitting the sensed data to a central station usually referred to as a Base 

Station (BS) or sink node [1, 2]. This opens the door to a limitless number of wireless 

applications including monitoring, such as industrial and health monitoring applications, 

and tracking of people, animals and vehicles [1]. It is therefore not surprising that WSN 

has attracted interest the world over. The characteristics of such applications impose 

design constraints on sensor nodes in order to enable them to achieve intended goals. 

Sensor nodes are typically cheap, light, multitasking, battery powered devices [1, 2]. 

Sensor nodes may be scattered across areas ranging from a tenth of a meter to thousands 

of kilometers where they cannot be easily recharged, so it made sense to make them 
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battery operated to enable them to be used for long term monitoring that lasts for months 

or even years [1].  

The battery is one of four basic components that make up the sensor node. These tiny 

devices comprise a sensing component which is responsible for sensing the target 

environment, a microcontroller which resembles the device brain through which all 

processes, including communication and signal processing, are controlled and the 

transceiver which is responsible for the transmission and reception of wireless signals 

when it is switched on (when there is no activity in the medium it stays idle or goes into 

sleep mode). Sleep mode helps promote the sensor node lifetime, which is controlled by 

the battery unit which in turn controls the lifetime of the WSN as a whole [1]. The 

appendix provides examples for WSN biosignals devices, which are used for healthcare 

pusposes.  

Technological and economic constraints imposed on the design of sensor components, 

especially on the battery unit, led to an increased number of researchers focusing on the 

design of the WSN’s energy efficient algorithms and standards, one of which is the IEEE 

802.15.4 standard discussed in Section 2.2.2. 

2.2.1 Wireless Personal Area Network (WPAN) 

The term Wireless Sensory Network calls to mind hundreds or thousands of sensor nodes 

scattered across large scale areas. This is not always the case as applications which 

operate within a very small range area (less than 10m), which is typically referred to as 

Personal Area Network (PAN), are very common. Bluetooth technology is one example 

of a wireless technology that supports PAN and commonly used in our personal life [33]. 

Bluetooth has decreased in popularity because it has failed in the automated multi-

hopping arena [33]. WSN technology has led to many other applications helping to make 

our lives easier. However, these applications need special attention especially when it 

comes to energy consumption. On the one hand, the current WSN technology research 

areas are rich in algorithms and protocols that purport to achieve efficient energy 

consumption; on the other hand, other technological applications continue to be 

developed which have their own characteristics and thus demand special attention and 

monitoring [33]. For example, multi-media based applications are high speed constrained 

applications that require complex processing capabilities with very high QoS, which often 
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need to work in wide range areas, which will affect power consumption and peripherals’ 

size, complexity and cost [33]. The protocols designed for such applications need to 

provide features to also suit home and industrial automated applications which transfer 

simple information at low data rate with ultra-low power consumption within very short 

range areas.  

Clearly, none of the existing protocols can meet the requirement to be energy efficient 

while still being robust enough to be able to tackle critical situations and utilise the 

medium efficiently. The core problem is that the existing protocols are specific to the 

applications they are proposed for, and might not be able to meet the requirements of 

other applications [33]. Therefore, in order to overcome this problem there is the need to 

adopt a reliable and globally applicable standard, such as the proposed IEEE 802.15.4 

standard. The IEEE 802.15.4 standard is discussed in the following subsection.  

2.2.2 IEEE 802.15.4 standard 

As stated above, most wired sensors are now being replaced with wireless ones, thus 

marking the emerging era of WSN. WSN consists of sensing devices that can 

communicate with each other and with the surrounding environment via a wireless 

communication medium [34]. A huge number of sensor nodes are often scattered in 

unreachable areas and WSN is often battery powered and cannot be easily recharged. 

Thus, energy conservation is one of the main concerns in the area of WSN. Many studies 

that focus on designing WSN energy efficient algorithms and standards based on IEEE 

802.15.4 have emerged recently [34]. The IEEE 802.15.4 standard has been proposed by 

the IEEE 802.15 Task Group 4 (IEEE 802.15 TG4) to support the physical and MAC 

layers of the layer stack of the ZigBee technology. IEEE 802.15.4 MAC supports two 

types of devices, namely, Full Functional Devices (FFDs) and Reduced Functional 

Devices (RFDs). FFDs act as regular coordinators and/or as sink nodes. If both features 

are used, the node is typically referred to as a Personal Area Network Coordinator 

(PANc). In contrast, RFDs act as ordinary end devices [14, 30, 31, 33, 34, 35, 36]. Despite 

these differences, both FFDs and RFDs communicate with each other, forming two types 

of topologies, star and peer to peer topologies. Peer to peer topology is further classified 

into cluster tree and mesh topologies. All of the supported topologies must have one 

PANc. In a star topology, all network nodes can only communicate with the PANc in 
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their active period. In mesh network topology, all devices can talk to each other directly 

to broadcast messages [37].  

The IEEE 802.15.4 standard  adopts three different RF bands that work through different 

data rates distributed all over the world. The most popular RF is the 2.4 GHz. Choosing 

to operate through the 2.4 GHz band is reasonable because it is capable of operating 

without a license across the globe while offering the highest data rate out of the 16 

operating channels. This RF also demands less power resources because the transceiver 

does not need to  work for long periods due to the high data rate it offers [14, 30, 31, 33, 

34, 35, 36]. 

The IEEE 802.15.4 MAC layer operates both in beacon enabled or beaconless modes. In 

the beacon enabled mode, the FFD broadcasts regular beacon frames that synchronise 

nodes when they need to access the channel [14]. The time between two successive 

beacons is referred to as the Beacon Interval (BI), which is virtually divided into 16 

equally sized slots. The BI duration is specified by the Beacon Order (BO) parameter 

according to the following formula [14, 30, 31, 33, 34, 35, 36]: 

 

                                   𝐵𝐵𝐵𝐵 =  aBaseSuperframeDuration × 2𝐵𝐵𝐵𝐵                                   (1) 

 

Nodes can use the channel during the whole BI period or can sleep through some time 

portions depending on the Superframe Order (SO) parameter. This parameter decides the 

Superframe Duration (SD) active session according to the following formula [14, 30, 31, 

33, 34, 35, 36]:  

                                    𝑆𝑆𝑆𝑆 =  aBaseSuperframeDuration × 2𝑆𝑆𝐵𝐵                                  (2) 

 

where 0 ≤ SO ≤ BO ≤ 14, The aBaseSuperframeDuration value depends on the slot 

duration according to the following formula: 

 

               aBaseSuperframeDuration =  aBaseslotDuration × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠                 (3) 
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All these concepts can be grouped under one concept: the Duty Cycle (D). This is the 

percentage of time the node is awake within the time period between two successive 

beacons. D is mathematically expressed as [14, 30, 31, 33, 34, 35, 36]: 

                                                 𝑆𝑆 = 𝑆𝑆𝑆𝑆
𝐵𝐵𝐵𝐵

                                                        (4) 

When a node needs to access the medium, it has to locate the beginning of the next time 

slot in order to compete for the channel based on the Carrier Sense Multiple 

Access/Collision Avoidance algorithm (CSMA/CA). This time portion is referred to as 

the Contention Access Period (CAP) [38]. Furthermore, the standard gives PANc the 

authority to assign a number of slots to some nodes exclusively. During these slots these 

nodes have sole use of the channel, which is why such slots are referred to as Guaranteed 

Time Slots (GTS). The optional period, which includes those slots is referred to as the 

Contention Free period (CFP) and includes seven GTS(s), which are preserved optionally 

after CAP. The CFP along with the GTS(s) resemble a TDMA based MAC mechanism. 

CAP and the optional CFP together are referred to as the Active Period as this is the time 

during which nodes can be active and use the medium. Its duration is often referred to as 

the SD [14, 30, 31, 33, 34, 35, 36]. The standard deals with time in terms of the backoff 

period unit which, in the beacon enabled mode, is aligned between the slot boundaries 

and is indicated by aUnitBackoffPeriod, which equals 20 symbols or 0.32 ms. The lengths 

of the periods discussed are assigned through the beacon frame, which is transmitted in 

the first time slot (slot 0) [14, 30, 31, 33, 34, 35, 36]. IEEE 802.15.4 superframe structure 

is depicted in Figure 2-1. 

 
Figure 2-1: IEEE802.15.4 MAC superframe structure [33]. 
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BO and SO values control the performance of beacon enabled IEEE802.15.4. Small BO 

values lead to frequent beacon frames and consequently increase beacon overheads, 

which, in turn, drains more power in a shorter period of time. Small SO values, on the 

other hand, decrease the nodes’ active time while increasing the sleep time period. 

However, while small SO values might save energy, they increase delay and adversely 

affect throughput. This is because nodes which do not have enough time to send their data 

frames during the current Superframe, will defer their activity to the next Superframe and 

therefore attempt to send their data packets in one go causing a collision. Clearly, this 

situation becomes worse as the number of nodes increases [34]. Beacon overhead, 

collision and packet retransmission are all causes of early battery charge depletion. 

It is worth mentioning that each IEEE 802.15.4/ZigBee node has two addresses, the 64 

bit MAC unique address and the 16 bit PAN local address (nodes in different PANs may 

have the same network addresses). Thus, the IEEE 802.15.4/ZigBee network can support 

up to 264 nodes globally, while each single PAN can support up to 216 nodes. However, 

PANc can accommodate up to two to eight active nodes at the same time as the basic 

network building block is the piconet. In a piconet, the point to point communication is 

between two nodes: one master node and one slave node. The point to multiple (single 

cell) communication is between two and eight nodes: one master node and two or more 

slaves. The multicell communication is between two or more piconets [33, 34].  

2.3 Wireless Body Area Networks (WBAN) 

Our world is facing a rapid growth in population which is accompanied with an increase 

in the average lifetime expectancy of individuals, especially in the developed countries, 

leading to an increasing number of people who are over 65 years old [39]. Given the 

population chart shown in Figure 2-2, 23.6% of the United Kingdom’s population is 

expected to be over 65 by 2050.  Figure 2-2 reveals that not only the United Kingdom is 

characterised with population aging, but the majority of the developed countries lead this 

phenomenon.  The ratio of people of age 16-64 to those who are over 65 will be 2.5:1 in 

the United Kingdom [39]. 
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Figure 2-2: Statistics of population aging in developed countries [39]. 

 

Unfortunately, chronic and fatal diseases such as cancer, cardiovascular and asthma 

disease are often diagnosed too late. Consequently, this increases the death rate of 

individuals who are diagnosed with such diseases [5, 6]. Early detection would mitigate 

the impact of such diseases and increase the sufferers’ life expectancy. Furthermore, 

traditional monitoring systems do not provide a complete picture of a patient’s status as 

the bodily functions are monitored too infrequently. The lack of early detection and 

effective monitoring of diseases affect increases health care cost and adds a huge load to 

health care systems with limited financial resources [5, 6]. This calls for more affordable 

and scalable systems that are able to move current health care in the direction of early 

disease diagnosis and proactive wellness management [5, 6].  

Wireless technologies, including WSN and WPAN, nanotechnologies and the Internet 

provide the means through which economical solutions could be found for health care 

systems. Such technologies suggest the idea of using tiny, smart, low-power, micro 

sensors and actuators to sample physiological data and then forward it to a remote server 

through wireless communication (Appendix) [40]. While WPAN devices operate within 

very small range area (less than 10m), the communication range of WBAN  devices would 

be narrower than that of WPAN as they are limited to the human body area where they 

could be worn or implanted [41]. A comparison between WBAN and other wireless 

technologies, such as WPAN and WLAN in terms of data rate, frequency, coverage, 
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topology and power requirements can be found in [6]. Actually, WBAN is considered to 

be the next generation of WPAN. A typical WBAN is shown in Figure 2-3.  

Though WBAN comprises the typical characteristics of both WSN and WPAN, it also 

has its own characteristics and thus its own requirements [40]. WBAN saves lives by 

allowing early detection of abnormal situations through wearable and implanted 

monitoring devices. It allows continuous and real time monitoring with no human or 

mechanical intervention, which improves the quality of the achieved results. Moreover, 

WBAN offers patients the ability to carry out their normal activities without interruption 

while their vital signals are monitored, as they are no longer required to stay in hospital 

or stick to a medical service. The adoption of WBAN should reduce health care costs, by 

lessening the need for expensive in-hospital monitoring [5, 6]. Such benefits have 

motivated practitioners in other fields, such as sports, the military and the entertainment 

field to adopt it in their systems [41]. WBAN however has special requirements which 

reflect the challenges it confronts. The following subsection discusses the WBAN 

requirements, caharaceristics and the main WBAN devices which are due to its special 

nature. The classification of the various applications that can be facilitated by WBAN is 

presented in the third part of this section, followed by the four popular standards proposed 

for WBAN, and finally the most important WBAN challenges featured in the literature to 

its special nature.  

 
 

Figure 2-3: Typical WBAN.  
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2.3.1 Characteristics of WBAN 

WBAN sensor devices are used to sense and communicate vital signals. They allow 

continual monitoring of an individual’s physiological parameters and are able to provide 

real time feedback without causing any discomfort, thereby providing greater mobility 

and flexibility to the user [32]. More importantly, the data provided by WBAN gives 

doctors a clearer view of a patient’s status as this data is gathered during a patient’s normal 

activities in a natural environment. WBAN devices are characterised by their 

heterogeneity [42]. In other words, they vary in their capabilities, tasks, sizes, sampling 

rates, required resources and levels of intelligence. The criticality of WBAN applications, 

the dynamic environment within which they operate (which is limited to the human body) 

and the heterogeneity of the sensor devices they employ, mean WBAN has special 

characteristics, which are presented below.  

A. Types of devices 

As the name indicates, WBAN comprises tiny devices with communication capabilities 

(Appendix). Based on their functions and roles, these devices are divided into three 

classes. This section presents a brief taxonomy of WBAN devices according to their 

functionality. This taxonomy is summarised in Table 2-1.  

• Wireless sensor node: A sensor node samples physiological attributes, 

communicates this information and provides a response to the information through 

wireless communication. It comprises four components: transceiver, battery, 

microprocessor and the sensor component. WBAN sensor nodes provide wireless 

monitoring for anybody, anywhere and anytime. Nodes can be physiological sensors, 

ambient sensors or bio kinetic sensors [43]. Sensor nodes are classified according to 

their position on the body, as follows:  

- Wearable sensors: These devices are added to clothes or placed on the body to 

gather vital signs, such as the Peripheral Oxygen (SpO2) that measures the oxygen 

saturation level in the human blood which coincides with the cardiac cycle. The 

Electrocardiogram (ECG) sensor that investigates the heart function by sampling the 

heart muscle propagation electric waveform with respect to time (Appendix). The 

Electromyography (EEG) sensor that detects brain electrical activity and the motion 
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detection sensors that combine both accelerometer and a gyroscope to monitor and 

analyse a person’s movements [44, 45].  

- Implantable sensors: These devices are injected under the skin or in the blood 

stream [46]. In Parkinson’s disease, for example, these sensors are used to send 

electrical impulses to the brain through neural simulators. Other applications for 

implantable sensors can be found in [46, 47].  

• Actuators: Actuators are used to administer medicine to a patient. The required drug 

is administered directly in a predefined manner when a sensor detects an abnormality 

or when it is triggered by an external source, according to the doctor’s decision. 

Similar to a sensor node, an actuator consists of a transceiver, battery, memory and 

the actuator hardware that holds and manages the drug. The drugs could be used to 

control blood pressure, the body’s temperature and to treat many other illnesses. The 

actuator is activated upon receiving data from the sensors [6, 22].  

 

Table 2-1: WBAN devices. 
WBAN devices Functionality Examples 

Sensor node Samples and 
communicates 
physiological attributes 
and provides a response 
to the information 
through wireless 
communication for 
anybody, anywhere and 
anytime. 

Wearable: added to 
clothes or placed on 
the body to collect 
vital signs. 

Peripheral Oxygen 
(Spo2), 
Electrocardiogram 
(ECG), 
Electromyography 
(EEG). 

 

Implantable: injected 
under the skin or in 
the blood stream. 

In Parkinson’s disease,  
sensors send electrical 
impulses to the brain 
through neural 
simulators  

Actuators Administer medicine to a patient when a sensor 
detects an abnormality according to the doctor’s 
decision.  

control blood pressure, 
the body’s temperature 
and to treat many other 
illnesses 

Personal Device (PD) Set up communication between a cellular phone 
sensors, actuators wirelessly.  

Can be a specialised 
dedicated unit, such as 
a smart phone 
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• Wireless Personal Device (PD): This device can also be called a Body Control Unit 

(BCU), body gateway or a sink. It is the central unit that is responsible for establishing 

communication between sensors, actuators and a cellular phone in a wireless fashion. 

PD can be a specialised dedicated unit, a Personal Digital Assistant (PDA) or a smart 

phone. A personal cellular phone, for example, can be used to transmit the information 

to and from the human body to the external world. This device is usually more 

resource rich than the sensor nodes and actuators. Its main components are: a 

transceiver; a rich power source; a large processor; and a large memory [6, 22].  

B. Network architecture 

The WBAN architecture can be either of the two kinds described below:  

• Flat architecture: Comprises a PD that collects data and sends it to a remote 

application that is running on a PDA for example [6]. 

• Multitier architecture: Comprises a set of nodes that collect wide physiological 

information in the first tier, send the collected data to a gateway on the second tier, 

which in its turn acts as an interface between the first tier and a server at the third tier 

[6]. Thus, WBAN architecture can be separated into three different tiers: 

- Tier-1 (Intra-WBAN communication): Sensor nodes send body signals to a 

Personal Server (PS), in Tier-1. The processed data is then transmitted to an access 

point in Tier-2 [6]. 

- Tier-2 (Inter-WBAN communication): This tier presents the communication 

between the PS and one or more Access Points (APs). Tier-2 communication aims 

to interconnect WBAN with various networks and communication technologies, 

such as cellular networks and the Internet [6].  

- Tier-3 (Beyond-WBAN communication): This tier is needed in metropolitan 

areas. A bridge is needed to connect Tier-3 with Tier- 2. A PDA can be used as a 

gateway for this purpose. The design of this tier is application-specific. For 

example, a database is considered a crucial part of Tier- 3 for medical applications 

as it includes the medical history and profiles of the patient. This enables access 

to the necessary information of a patient and the notification of an emergency 

through the Internet or a Short Message Service (SMS) [6].  
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C. Communication range and topology 

WBAN is considered to be a short range network due to its space limitation. As is stated 

in [8], the WBAN communication range should be limited to few meters (three to six 

meters). Hence, it is not convenient to follow topologies other than a simple star topology. 

Due to limitations in the nature of WBAN in terms of short space, network architecture, 

transmission techniques and communication protocols, the numbers of nodes in a WBAN 

is limited. According to [48] a typical WBAN comprises a set of nodes which ranges from 

a few devices (actuators or sensors) that communicate with a portable handset to hundreds 

of devices that communicate with Internet through a gateway. However, the majority of 

the work in literature that is geared towards WBAN support up to 6 nodes, not only due 

to the short range of communication over the human body, but also human beings in 

general do not tend to wear more than that [11, 12, 13, 25, 26, 27, 28, 29]. However, as 

stated in [7], each WBAN is allowed to have one hub and, due to limitations in the 

transmission strategy, a hub can support up to 64 nodes. It is stated in [6] that each person 

can have 2-4 hubs coexisting per m2, thus within a six m3, each network can support up 

to 256 nodes. [32] specify that a one second superframe is split into 50 ms nonoverlapping 

time slots allowing 20 nodes to be supported orthogonally. As can be seen, there is no 

general agreement on the maximum number of devices that can be supported by a WBAN 

as the devices’ interaction with the environment and other networks is still a challenging 

issue, yet generally the number of devices in WBAN is limited and much smaller than the 

number of devices in WSN.  

2.3.2 Applications of WBAN 

WBAN applications span from the health care and entertainment fields to sport and the 

military among others.  According to [48], WBAN applications are categorised as either 

medical or non-medical. This section classifies WBAN applications according to their 

target domain of application. Each application is further classified into medical, non-

medical, implanted, and wearable. WBAN fields of applications are summarised in Table 

2-2, which also gives some examples for each WBAN field.  
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Table 2-2: Fields and applications of WBAN. 
WBAN fields Applications types Examples of applications 

Healthcare Medical Wearable ECG, EEG, Electromyography (EMG), 
SpO2, temperature, blood pressure, drugs 
delivery 

Implant Diabetes control 

Non-medical Motion detection 

Secure authentication 

Military and 
defence 

Medical wearable Asses soldier fatigue, detect life threatening situations  

 Non-medical wearable Fire detection, poisonous gas 

Sports Medical wearable Heartbeat, temperature, blood pressure, motion sensor 

Entertainment Non-medical wearable Real time streaming: Video streaming by camera, audio 
streaming by headsets 

Consumer electronics: MP3 player, microphone, camera 

Gaming purposes, virtual reality, ambient, intelligence 
areas, personal item tracking and social networking 

 

Healthcare: This is one of the most promising fields for WBAN. Implanted and wearable 

sensors are used to collect biomedical signals remotely and continually [5, 8, 49]. This 

continual monitoring allows a proactive fatal and anomalies detection which is vital for 

diagnosing heart and brain activities. Actuators help in automatic drug delivery. Some 

applications such as cochlear implants, hearing aids and artificial retinas help enhance the 

life style of human beings [22, 50]. Additionally, given that medical accidents can and do 

happen, WBAN applications can help to reduce them and increase public safety by using 

profiles of previous medical accidents to alert medical personnel before similar accidents 

occur [8, 22, 49]. Consequently, WBAN is expected to improve the management of 

illnesses and reaction to crisis, which will increase the efficiency of health care systems 

[15]. WBAN health care applications can be further classified as follows:  

• Medical applications: WBAN medical applications enable the continual monitoring 

of physiological parameters such as the heartbeat, the body temperature and blood 

pressure. The data collected can be sent through a cell phone, which acts as a gateway, 

to a remote location such as an emergency centre so that the relevant action can be 

taken [5, 22, 43]. WBAN is considered key to the early detection and treatment of 
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patients with serious cases such as diabetes and hypertension [6, 22]. Medical 

applications of WBAN can be further divided according to the position of the medical 

sensors as follows:  

- Wearable applications: Medical wearable healthcare applications include 

temperature monitoring, blood pressure monitoring, glucose level monitoring, ECG, 

EEG, Electromyography (EMG), SpO2, drugs delivery (Appendix). Other 

applications can be found in [6]. 

- Implant applications: These applications comprise nodes implanted either under 

the skin or in the stream of the blood such as in diabetes control systems, 

cardiovascular diseases and cancer detection [6, 49].  

• Non-medical applications: These applications are considered to fall within the 

wearable sensor class of applications and include two applications which are [6]: 

- Motion detection: This application is used to detect, capture, recognise and 

identify body gestures and motions and send alerts to the owner of the application. 

For example, fear increases heartbeat, which leads to sweating and other symptoms. 

Thus, emotional status can be measured and  monitored anywhere and anytime by 

detecting emotion-related physiological signals as is done by the EMG, ECG, EEG 

[6].  

- Secure authentication: This is a very promising WBAN application as it is the 

core of both multi-modal biometrics and electroencephalography. This application 

harnesses physiological and behavioural human body biometrics such as fingerprints 

and facial patterns [6, 22].  

 
Sports: Sport activities and fitness can be improved by keeping a log of vital 

physiological data such as heart beat, temperature and blood pressure. The data can be 

used to avoid sport accidents and injuries and to plan for future training [8, 22, 49]. 

According to [6] WBAN sport applications are considered to be medical wearable 

applications. Such applications enhance professional and amateur sport training 

especially for athletes. For example, they provide the necessary information to enable the 

training schedules of professional athletes to be adapted to make them more effective [6]. 
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Entertainment: Entertainment is also a promising field for WBAN. The film industry 

for example benefits from motion capturing and post production mechanisms to produce 

movies in which actors perform the objects roles [8]. Using the on body accelerometers 

and gyroscopes for capturing motions facilitates the possibility of tracking the different 

positions of body parts. According to [6], WBAN entertainment applications are 

considered to be wearable non-medical applications. WBAN can be used in three types 

of entertainment applications, presented below: 

• Real time streaming: This includes video streaming such as capturing a video clip 

by a camera, as well as audio streaming such as voice communication for headsets 

that are used for listening to explanations, illustrations and multicasting ( for example, 

conference calls) [6]. 

• Consumer electronics: These applications include appliances/devices such as 

microphones, MP3-players, cameras and other advanced human-computer interfaces 

such as neural interfaces [8, 49].  

• Gaming: This includes virtual reality, ambient intelligence areas, personal item 

tracking and social networking [49].  

Military and defence: WBAN provides new capabilities to improve the performance of 

individual and teams of soldiers in military situations. To avoid threats at an individual 

tier, a group of sensors sample important information on the surrounding emerging 

actions and environment. At the team level, the taken information enables the commander 

to coordinate team tasks efficiently. Inter-WBAN communications and security play a 

key role in preventing critical data from being hacked by enemies [8]. WBAN 

applications can be considered as either medical wearable or non-medical wearable as 

follows:  

• Medical military WBAN applications: These types of applications are used to 

assess soldier fatigue and battle readiness and for safeguarding uniformed personnel. 

For example, sensors surrounding soldiers, firefighters or police officers can foresee 

a life-threatening situation by monitoring the level of air toxins [6]. 

• Non-medical military WBAN applications: Such applications involve off-body 

sensors (on buildings) that are used for emergencies. Such sensors are capable of, for 

example, detecting a fire in the home or a poisonous gas and must directly send this 
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information to on and in body devices to notify the wearer of the emergency situation 

[6]. 

2.3.3 WBAN communication standards  

As it is stated in Section 2.2.1, there are several reasons behind the motivation of wireless 

communities to standardise their technologies. Standardisation allows interoperability 

which enables wide use of the products since manufacturers depend on common fixed 

specifications in developing their products [8]. Additionally, customers need not depend 

on a certain vendor. This saves the costs for both the vendors and customers [8]. Due to 

the quite large number of available standards, it is necessary to identify the best solution 

depending on the application requirements. In this regard, the wireless communication 

community has proposed several technologies to support WBAN in addition to the IEEE 

802.15.4, namely IEEE 802.15.6, IEEE 802.15.4a, IEEE 802.15.4j and Bluetooth Low 

Energy (BLE). These standards are presented in more details in the following subsections. 

A. IEEE 802.15.6 standard 

The existing standards (e.g. IEEE 802.15.4) do not meet the regulations of medical 

communication as they fail to support the needs of applications in terms of key issues 

such as reliability, low power, the variety of traffic flows and coexistence [8]. The IEEE 

802.15 Task Group 6 (IEEE 802.15 TG6) has proposed a communication standard that is 

geared toward applications in the vicinity of, or inside, the body, such as in medical, sports 

and military applications [15]. The first draft of the standard was published in 2010 and 

the final draft was released in 2012. It supports low cost, low complexity, very short 

range, and highly reliable and ultra-low power wireless communication. It aims to support 

an array of applications with a range of requirements such as data rates and channel 

bandwidths [6, 8, 15]. To support various applications, the standard offers three 

bandwidths defined in three different physical layers: Narrow Band (NB), Human Body 

Communication (HBC) and Ultra Wide Band (UWB). These physical layers share only 

one MAC layer. The supported data rate ranges between 75.9 Kbps in NB and 15.6 Mbps 

in HBC [6, 8, 15]. As the range, it is limited to 3m for in-body communication and has to 

be at least 3 m for body-to-body communication patterns. The standard allows star and 2-

hops tree topologies [6]. IEEE 802.15 TG6 provides two classifications for devices, 

according to their position in the body: implanted nodes, body surface nodes and external 
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nodes, and according to their functionality: coordinator relays and end nodes. More detail 

about this classification is provided in [15]. 

IEEE 802.15.6 MAC layer: 

The IEEE TG6 proposes only one shared MAC to manage the channel access above the 

three physical layers. It combines both contention and contention-less access techniques 

to support the variety of data flaws that might occur in WBAN, such as burst, continuous 

and periodic traffic. The coordinator splits the time axis or the channel into a successive 

number of superframes. The coordinator bounds the length of superframes through 

beacon frames that are sent in fixed length beacon periods [5, 8, 15] . To access the 

channel, the coordinator chooses one of three access modes; these are illustrated below:  

• Beacon mode with beacon superframe periods: Here, the coordinator sends 

successive beacon frames to specify the beginning and the end of the Superframe, 

which is referred to as the beacon period. The Superframe structure of this mode is 

presented in Figure 2-4 and comprises the Exclusive Access Phase 1 (EAP1), a 

Random Access Phase 1 (RAP1), a Type I/II phase, an Exclusive Access Phase 2 

(EAP2), a Random Access Phase 2 (RAP2), a Type I/II phase, and a CAP. The Type 

I/II phase is sometimes referred to as Managed Access Period (MAP). Table 2-3 

provides more details about the MAC access mechanisms that are offered by this 

access mode. The coordinator uses the beacon frame to specify the duration of each 

access phase in the Superframe structure according to the application requirement. 

The controller can also deactivate those periods by setting the duration to zero. The 

Exclusive Access Phase (EAP) is only used for emergency situations and offers the 

channel exclusively to the high priority data traffic, whereas RAP1 and RAP2 and 

CAP are used for normal traffic. Type I/II phases are used to schedule uplink, bi-link 

and downlink allocation intervals and for polling nodes for resource allocation. In 

CAP, RAPs and EAPs, nodes compete for the channel access following either the 

slotted Aloha or CSMA/CA [5, 8, 15].  
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Figure 2-4: IEEE802.15.6 beacon mode superframe structure.  

 

• Non-beacon mode with superframes: No beacon frame is used in this access mode, 

and the superframe may only comprise either Type I phase or Type II phase as 

expained in [5, 8, 15]. 

• Non-beacon mode without superframes: A coordinator follows an unscheduled 

allocation using unscheduled Type II poll allocation. Thus, each node specifies its 

time schedule in a distributive manner considering either EAP1 or RAP1 as access 

phases, during which it competes for channel access following CSMA/CA [5, 8, 15]. 

From this brief description, it can be seen that these diverse channel access mechanisms 

offer the flexibility to support a variety of WBAN applications. However, the 

parametrisation of the IEEE 802.15.6 Superframe and the selection of the optimal solution 

is not an easy task and requires further study. 

B. IEEE 802.15.4a 

This is a WPAN standard but with an amendment to the physical layer of the legacy IEEE 

802.15.4 to cater for the continuous monitoring needed in health care applications [51]. 

The physical layer of the IEEE 802.15.4a supports UWB signals to provide very low 

power consumption for health care applications due to the Federal Communications 

Commission (FFC) rules. The IEEE 802.15.4a power consumption is much lower than 

Bluetooth and ZigBee. This standard also supports a wide range of data rates to allow 

sufficient transmission of medical signals, such as ECG and EMG. Data rate values vary 

between 125 kbps and 50 Mbps with the compulsory rate being 850 kbps, which is three 

times the 250 kbps data rate supported by IEEE 802.15.4. Thus, the amendment to the 

physical layer aims to achieve a very low power consumption while supporting high 

precision rate [51]. The MAC structure of IEEE 802.15.4a is identical to that of IEEE 

802.15.4. IEEE 802.15.4a MAC supports a Superframe structure with both CAP and GTS 
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enabled to allow a high QoS for applications that require continuous monitoring such as 

ECG. While the CSMA/CA is the mandatory mechanism used for the channel access in 

the CAP of the legacy IEEE 802.15.4, it is not convenient to adopt such a mechanism for 

healthcare applications, as sensing the carriers of the UWB signals is very sophisticated. 

Instead IEEE 802.15.4a adopted ALOHA and slotted ALOHA protocols as its channel 

access mechanism, while CSMA/CA is assigned as optional [51].  

C. IEEE 802.15.4j 

A new amendment to the physical/MAC layers of the IEEE 802.15.4 is now taking place 

by the IEEE 802.15 Task Group 4j (IEEE 802.15 TG4j). The objective of this amendment 

is to develop a technology, which is the IEEE 802.15.4j that supports the Medical Body 

Area Networks applications (MBANs). FCC allows MBAN users to operate within 2360–

2400 MHz spectrum on a secondary basis. The goal of IEEE 802.15.4j is to cope with the 

rules of this MBAN spectrum. At the physical layer, IEEE 802.15.4j provides channel 

schemes that allow coexistence between MBAN devices and other technologies that can 

operate within WBAN band. For more information about the MBAN channelisation 

scheme refer to [52]. IEEE 802.15.4j also provides power friendly techniques at the MAC 

level for WBAN implementation. A case in point is that the IEEE 802.15.4j provides a 

novel channel switching command that allows the MBAN coordinator to abandon a 

portion of the spectrum dynamically to protect its primary devices. This command defines 

a time stamp that assigns the time unit at which the MBAN coordinator should switch to 

a channel. This channel switching mechanism allows to support different WBAN 

priorities and channelises devices according to their priorities, which will improve 

reliability as it avoids collision [52].  

In IEEE 802.15.4, the GTS allocation is static and once the sensor is granted GTS(s), it 

maintains the same number of GTS(s) in the subsequent superframs following the same 

order forming a static synchronisation. IEEE 802.15.4j however, provides an extension 

to the IEEE02.15.4 original supeframe structure by supporting a multi-periodic GTS(s). 

In this scheme, the coordinator grants GTS(s) to its devices every M superframes, where 

M=2N  and N is the GTS period exponent, which can have values from 1 to 8.  This scheme 

is useful for devices that send periodic streams such as heart rate traffic. In those 

applications, devices need to sleep most of the time as they work in low duty cycles. 

Accordingly, adopting multi-GTS(s) scheme will help in saving power as it allows 
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devices to sleep most of the time. Moreover, IEEE 802.15.4j defines other novel schemes 

that help in saving power such as association proxy and coordinator switching [52].  

A comparison between the WBAN MAC mechanisms adopted by the IEEE 802.15.4, 

IEEE 802.15.6, IEEE 802.15.4a, and IEEE 802.15.4j is presented in Table 2-3. 
 

Table 2-3: A comparison between wireless standards that support WBAN. 
Standard 
/Criteria 

IEEE 802.15.4 IEEE 802.15.4a IEEE 802.15.4j IEEE 802.15.6 

Network type WPAN UWB WBAN MBAN WBAN: NB, UWB and HBC. 

MAC  modes Beacon/Non-Beacon 
mode with/without 
superframe. 

 

Superframe 
Beacon mode 
enabled. 

Superframe 
Beacon mode 
enabled. 

Superframe with beacon mode.  

Superframes with non-beacon 
mode.  

Non-beacon mode without 
superframe. 

Access 
mechanisms 

Random access with 
contention in CAP.  

Scheduled access 
without contention in 
CFP. 

Random access, 
contention based 
in CAP. 

Scheduled 
access, 
contention free 
in CFP. 

Random access 
with contention in 
CAP.  

Scheduled access, 
contention free in 
CFP. 

Contention based random access: 
EAP1,RAP1,EAP2,RAP2,CAP.   

Connection oriented contention-
free in TypeI/II. 

Contention 
access 
resource 
allocation 
procedure 

Slotted and un-slotted  
CSMA/CA in beacon 
mode and in non-
beacon mode, in 
CAP. 

slotted or  
unslotted Aloha 
(CSMA is 
optional in 
CAP). 

Slotted CSMA/CA 
in CAP. 

CSMA/CA / a slotted Aloha in 
EAP1,RAP1,EAP2,RAP2,CAP. 

Contention 
free access 
resource 
allocation 
procedure 

Schedule access by 
allocating static GTS 
Allocation persists in 
the upcoming 
superframes.  

(1-periodic in CFP) 

 

 

Schedule access 
by allocating 
static GTS 
Allocation 
persists in the 
upcoming 
superframes.  

(1-periodic  in 
CFP) 

a multi-periodic 
scheduled access 
by allocating static 
GTS. 

(m-periodic in 
CFP) 

Two access modes:  

1-Schedules the allocation of 
slots : one / multiple upcoming 
superframes. (single-periodic or 
m-periodic  allocations) 

2-In unscheduled access: 
unscheduled polling/posting  

 

Specific 
Access for  
prioritised  
(emergency) 
traffic 

No No  No  Yes exclusive access in 
EAP1,EAP2. 
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D. Bluetooth Low Energy (BLE) 

Bluetooth is a popular and widespread short range communication technology which is 

used to connect personal, portable and fixed devices replacing wired communication [8]. 

It is used for several applications that run on tiny button cell battery powered WSN. 

Because of its low price, low power and robustness, it is considered as the best choice for 

short range networks that support the star topology. It is also considered as a good choice 

for WBAN. Bluetooth based technology devices can be configured to either a Basic Rate 

(BR) with an optional Enhanced Data Rate (EDR) or Bluettoth Low Energy (BLE). BLE 

is an ultra-low power consumption configuration of Bluetooth technology. It supports 1 

Mbps data rate. As with the legacy Bluetooth, only star topologies are possible. BLE 

adopts 40 channels of 2.45 GHz Industrial, Scientific and Medical (ISM) band, each 2 

MHz wide [8]. BLE defines two implementation modes: a single-mode, which targets 

applications that require very low power consumption and very small devices and the 

dual-mode, which is an extension to the legacy Bluetooth technology and targets mobile 

phones and personal computers. Recently, devices come with dual mode Bluetooth RF. 

Some medical monitoring devices, such as heart rate belts, are equipped with only BLE. 

The basic limitation of BLE  technology is its communication range, as it does not support 

multi-hop communication [8]. The survey [8] provides a detailed evaluation comparison 

between IEEE 802.15.4, IEEE 802.15.6 and BLE for WBAN, in terms of packet loss rate, 

average delay and the throughput.  

2.3.4 Challenges of WBAN 

As WBAN is a special type of WSN, it inherits many of its challenges. However, several 

new challenges characterise WBAN and a number of problems require better solutions. 

A survey of the differences between WBAN and WSN is given in [40]. Practical adoption 

of WBAN could not be achieved without tackling the various technical, ethical and social 

challenges this type of networks faces. The main objective is to achieve a reliable network 

with minimum delay and maximum throughput while considering power consumption by 

reducing unnecessary communication such as a control frame overhead, idle listening and 

frame collisions. User requirements such as privacy, safety, ease of use, security and 

compatibility are also of great importance. The most challenging issues concerning 

WBAN are detailed in this section. This thesis will put a great deal of emphasis on the 

reliability challenge, which is discussed in the following subsection.  
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A. Reliability  

WBAN demands a high degree of reliability as it directly affects the quality of patient 

monitoring [22, 41]. Undetected life-threatening situations can lead to fatality [22]. The 

main requirement is that the monitored data is received correctly by the health care 

professionals. Thus, reliability is a crucial issue in WBAN. Reliability can be considered 

either end-to-end or on a per link base [22, 53]. Examples of reliability include 

guaranteed, in-order and in time data delivery [22]. In order to achieve a reliable network, 

there are three basic characteristics that any network technologies, programmed services 

and protocols need to address: fault tolerance, QoS and security [53]. Designing protocols 

for unforeseen problems is an essential element of WBAN design because it is necessary 

that the WBAN work continuously for users who rely on it. This requires that the WBAN 

design and architecture be fault tolerant. A network is called fault tolerant if it is able to 

control the influence of the failure limiting it from effecting the rest of the components 

[53]. It is also built in a way that enables quick recovery when such a failure occurs. The 

survey in [5] provides a comprehensive study for fault tolerance challenge in WBAN and 

proposes solutions that could fill in the gaps found in the literature. 

WBAN medical applications create higher expectations for the quality of the delivered 

services as for such applications any constant breaks, pauses, delays or packet loss could 

be fatal especially in emergency situations. Therefore, quality of service or QoS is also 

an ever-increasing requirement of WBAN.  QoS could be achieved through well-designed 

WBAN protocols that can prioritise network traffic. QoS also means that all packets 

arrive on time and in their correct order [45, 53]. This requires strategies that avoid or 

could manage traffic congestion. Network channel bandwidth is the capacity of the 

network to carry data during a specific time [53]. Network bandwidth is measured 

according to the number of bits that can be transmitted in a single second. Channel 

congestion occurs when more than one source is trying to use the channel simultaneously 

and channel bandwidth usage exceeds its availability. In this case, the network has more 

bits to transmit than what the bandwidth of the communications channel can deliver [53]. 

In most cases, when the volume of packets is greater than what can be transported across 

the network, then packets are queued and wait for the channel to become available. The 

more the packets are queued, the sooner the memory will be filled up which will increase 

the number of the dropped packets. Packets are queued and wait in a buffer. When the 

buffer is overloaded, this is called buffer overflow [50]. Such issues should be considered 



39 
 

when tackling the reliability in WBAN, so to meet user expectations, especially in 

emergencies.  The third requirement that should be addressed to achieve a reliable WBAN 

is Security. Security is of primary importance, especially in medical and military 

applications and it should be addressed in terms of privacy and confidentiality. Security 

is fully addressed in [6, 9, 53].  

Despite that there are solutions to achieve a fault tolerant and secure that provides QoS in 

WSN, achieving a reliable WBAN remains an important challenge. The primary factor 

that hinders achieving a reliable WBAN is the vulnerability of WBAN channel due to its 

unique characteristics. The realistic behaviour of WBAN channel is rarely considered in 

literature, which when it does it considers an ideal characteristics of WBAN channel 

inherited from WSN medium. Additionally, WBAN medium can be easily interfered by 

other RFs that operate within the same channel bandwidth. Understanding the uniqueness 

of the characteristic of WBAN medium is of high importance and is presented below.   

• Unique characteristics of WBAN channel    

Generally, attenuation is a term used in wireless communication to refer to the reduction 

in the received signal strength, whether its analog or digital signal. This is why attenuation 

is usually measured in decibels or dBs. Sometimes attenuation refers to the loss in the 

received signal. Typically, in wireless networks, which is of longer transmission paths 

compared to WBAN, the wireless signal is attenuated due to the long distance between 

the source and the destination. However, in WBAN, the signal power is attenuated due to 

other factors and mainly due to human body nature and its dynamic movement [12]. 

The variation in the signal attenuation due to multiple parameters is called fading. Those 

parameters include the RF, time, geographical position, and other variables. The fade 

length is expressed in average outage duration [11].  In wireless communications, fading 

could occur due to the weather (due to rain), multipath propagation, or due to shadowing. 

Shadowing is the fluctuation in the received signal power due to obstacles in the 

propagation path of the signal. In WBAN the shadowing, occur due to rapid body 

movement, body size and posture [6, 7, 12, 20]. Uncontrolled and dynamic nature of body 

movements causes frequent change in network topology, which is a very complicated 

issue, as nodes might move with regard to each other due to the correlation between some 

moving parts of the body [6, 7, 20]. Moreover, the human body absorbs energy when it 

https://en.wikipedia.org/wiki/Multipath_propagation
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is exposed to RF electromagnetic waves that heat the surrounding tissues [6, 7]. The rate 

at which the human body absorbs RF energy, which is defined as the Specific Absorption 

Rate (SAR), should comply with the FCC regulations, to allow the approval of new 

MBANs, i.e. short-range, low-energy wireless networks capable of connecting medical 

devices [7]. Besides tissue heating, signal energy absorption deteriorates the propagation 

paths in WBAN. 

Those reasons deteriorate the stability of the transmission links and causes large and 

continuous attenuation in WBAN signal. This severe attenuation pushes the signal energy 

below the level required to achieve a reliable WBAN communication. This level is called 

receiver sensitivity and it is very limited in WBAN due to its resource constrained and 

tiny nodes, which are accompanied by very small antenna [12]. When the signal falls 

below required reliable communication level, this is called deep fade. In other words, 

deep fades are the fades that bring the signal below radio sensitivity [11, 12]. Continouis 

period of deep fade or continouis period of attenuation below sensitivity is called outage 

[12].  

The strength of the received signal in WBAN is used as an indication of the WBAN 

channel status. The work in [11] and [12] analysed WBAN channel characteristics by 

conducting an empirical study on a real WBAN worn by a person doing different daily 

indoor and outdoor activities. Results revealed that WBAN channel has a slow changing 

behavior. In particular, it is found that at any short period, the channel gain is correlated. 

However, the aggregation of all those short periods results in an independent signal. This 

indicates that the WBAN channel can be in a good status for a long time, yet also means 

that channel status can be bad for long time too. The poor status of WBAN medium is 

primarily due to the shadowing, which attenuates the signal strength continuously and 

causes deep fade in the signal.  

The occurrence of the deep fade in WBAN medium is frequent, unpredictable and when 

it happens, it persists for a long time.  In essence, the empirical study in [11] and [12] 

revealed that when a deep fade occurs in the WBAN channel, it lasts for at least 10 ms. 

Deep fade in WBAN medium not only cause packets loss but also long disconnectivity 

and unreachability of the sensor node from the main network.  The study in [13] shows 

statistics about the duration of the deep fade for each node’s link and how frequent the 

signal falls below receiver sensitivity for that link.  The slow changing behaviour of 
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WBAN medium helps in predicting the channel status of WBAN in the upcoming periods. 

For instance, adopting appropriate MAC protocols that consider the long durations of the 

deep fade in WBAN channel could boost WBAN reliability. 

• Interference and coexistence 

There are many causes of interference in WBAN. Interference occurs when several people 

wearing WBAN devices exist in each other’s range; this causes off-body interference. 

Off-body interference may also occur in cases of collision from external sensors [6, 54]. 

On-body interference occurs between on-body devices deployed in one WBAN. The 

coexistence issues become more prominent with higher WBAN density [54]. Due to the 

unpredictability of  body movements, it is very easy for multiple WBAN to move in and 

out off the range of each other’s [6]. Figure 2-5 shows the types of interference that might 

occur in WBAN and when multiple WBAN coexist in the same location. Typically, 

WBAN operates within a free licensed ISM band that is 2.45 GHz. This band is shared 

amongst other radio technologies such as Wi-Fi, Bluetooth, IEEE 802.15.4/ZigBee and 

other technologies [8]. Techniques to minimise and avoid interference should be 

addressed because of the strict requirements of WBAN in terms of reliability especially 

in emergency events. This could be achieved by assessing the performance of WBAN in 

terms of packet loss rate and delay in the existence of interfering technologies [8].  

 

 
Figure 2-5: WBAN interference [6]. 
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The long duration of the deep fade in WBAN meduim as well as the intereference and  

coexistence issues lead to severe channel impairments. This affects sensor channel 

allocation startegies and even the common mechanisms mentioned in the literature to 

mitigate interference might not be sufficient [7, 20]. Channel impairments increase Bit 

Error Rate (BER) and cause unreliable data transmission as critical data might not be sent 

in real time and the doctor might mistakenly diagnose the patient, which could be fatal 

[6]. Moreover, the packet loss increases data retransmission, which increases power 

consumption. Power consumption is the second challnge in WBAN and it is discussed in 

the following subsection. 

B. Constrained resources 

WBAN has fewer and smaller nodes with smaller components compared to the other 

WSN. Devices in WBAN are generally battery powered which adds more constraints on 

power consumption in communication [23].  The power required by nodes in WBAN 

varies according to the application type. All implanted nodes are required to operate for 

multiple years. Pacemakers, for example, need to operate for at least five years [8]. 

Therefore, the transmitting power must be as low as possible, for which it is essential to 

design ultra-low power radio transceivers. WBAN protocols have to be able to minimise 

power consumption without sacrificing reliability. A common technique is to allow 

devices to sleep for most of the time and thus lower the duty cycle [8]. However, 

balancing between power consumption and average end-to-end delay should be 

considered [8]. The first point to consider when choosing a wireless technology for 

WBAN is the power usage [6]. WBAN peak power demands in idle mode vary between 

0.001 mW and 0.1 mW and  requires up to 30 mW in active mode [6]. Wireless 

technologies focus on minimising the average current drawn from the battery by duty 

cycling the active and sleep periods of radio. Further improvements are necessary to 

reduce the drawn peak current in sensing technologies, radio hardware and integrated 

circuits [6]. The issue of minimising interference and increasing WBAN lifetime by 

adopting transmit power control requires further attention. A discussion on meeting this 

challenge can be found in [7]. Some studies reviewed in the literature focus on scavenging 

energy from body heat or motion [8]. Power consumption challenge is deeply discussed 

in [6, 8].  
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Besides the small power sources, WBAN devices have small buffer sizes, which adds 

constrained on the storage of the arrived packets.  In emergencies, the traffic increases 

which adds burden on the limited sized buffer, and hence buffer will be quickly 

overloaded, and packets will be dropped from the buffer, which is another factor for 

packets loss in WBAN. Buffer overflow can be handled by proposing MAC techniques 

that consider buffer information. For example, nodes with more packets in their buffer 

require to access the medium as soon as possible.  

C. Heterogeneous devices and applications 

Since sensors in WBAN capture different kinds of data, reliability is a key issue. For 

instance, sensors vary in their sensed traffic rate as this depends on the type of application 

and data to be sent [23]. Bit rate values vary between less than 1 Kbps to 10 Mbps [8]. 

Inherently, some sensors sense more critical data than others. For example, heart rate 

related data is more critical than motion detection data and hence should be served first 

under the condition of lack of shared resources [23]. Moreover, the same sensor might be 

in different states that vary in their criticality. Hence, the reliability grade may change 

dynamically at runtime [23]. For example, the human temperature might be normal and 

require a normal level of reliability, but when the temperature suddenly goes over or under 

the natural limit, the reliability requirement becomes much more rigorous. As a 

consequence, WBAN needs to dynamically guarantee reliability for the sensor nodes. 

Assuring a dynamic level of reliability for different sensors is a challenge of great 

importance. Table 2-4 shows bit rate and some QoS requiremets for a number of WBAN 

applications.  

Another important challenge is the antenna design in terms of height, size and material 

shape. These factors, as well as sensor limitations and breakdowns change the network 

operational conditions, which consequently leads to incomplete and erroneous sensor data 

[7]. Due to these challenges, the design of these networks requires the definition of new 

protocols with respect to those used in general purpose WSN. 
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Table 2-4: Heterogeneous requirements for some WBAN applications [47]. 
Application Bit Rate Delay Bit Error Rate (BER) 

Deep brain simulation < 320 kbps < 250 ms < 10-10 

Drug delivery < 16 kbps < 250 ms < 10-10 

Capsule endoscope 1 Mbps < 250 ms < 10-10 

ECG 192 kbps < 250 ms < 10-10 

EEG 86.4 kbps < 250 ms < 10-10 

EMG 320 kbps < 250 ms < 10-10 

Glucose level monitor < 1 kbps < 250 ms < 10-10 

Audio streaming 1 Mbps < 20 ms < 10-5 

Video streaming < 10 Mbps < 100 ms < 10-3 

Voice 50 -10 Mbps < 100 ms < 10-3 

 

2.4 MAC Protocols for WBAN 

Unlike WSN, WBAN is considered a short range communication network due to the short 

communication space and the limitations on the number of nodes where there is no need 

for multi hopping; and therefore, WBAN often follows a star topology [13]. At the same 

time, this very short range and scale network suffers from a very vulnerable medium due 

to the deep fade phenomenon. However, nodes still need to access the medium 

successfully, and their data packets must be received in a reasonable time, in the same 

order and in the same way when sent without the lowest percentage of packet loss. For 

those reasons, the majority - if not all- the WBAN challenges are confined with the 

reliability of the MAC layer,  for which proposing MAC techniques present a number of 

unique gaps, and makes designing reliable and energy efficient WBAN a challenge. These 

observations provided motivation to tackle WBAN from MAC layer perspective. 

Generally MAC protocols are grouped into two categories: contention based access and 

contention free access [24]. In contention based access, nodes compete in accessing the 

medium, which leads to channel congestion and packets collision. As it is stated in 

Section 2.3.5, channel congestion leads to a buffer overflow, which increases packets loss 

[53]. A collision is very likely to occur in WBAN because physiological data is correlated. 

For example, in an emergency, a group of sensors might be involved in transmission, 

leading to collision and consequently packet loss, which could be fatal even if every 
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component of WBAN is working properly [28, 29]. Besides packets loss, collision 

dissipates energy due to packets re-transmission. Additionally, contention based MAC 

requires nodes to stay idle, and research in this arena revealed that idle listening consumes 

as much energy as transmitting. During idle listening, it is highly likely that some nodes 

receive data packets that are not designated to them. This phenomenon is called 

overhearing which is another factor for energy dissipation. Channel congestion, packets 

collision, idle listening, overhearing and energy dissipation are reasons for why the 

contention based MAC protocols are not recommended for WBAN channel access [24].  

The study in [24] reveals that the contention free based access MAC protocols achieve a 

more reliable and energy efficient WBAN than the contention based protocols. TDMA 

based MAC is one of the typical contention free access mechanisms that is widely used 

in literature to achieve a reliable and energy efficient wireless networks. By following 

TDMA based MAC, nodes are scheduled in accessing the medium. Each node uses the 

channel at a specific time slot and sleeps at other nodes’ time slots. Consequently, this 

strategy avoids the major drawbacks of the contention based MAC algorithms, which are 

the collision, idle listening and overhearing. Moreover, the normal traffic of WBAN 

medical applications is usually periodic, and TDMA approaches are very suitable for this 

kind of traffic because the nodes are duty cycled to use access the medium. It could be 

argued that the complexity of scheduling is one of the major drawbacks of the TDMA 

based algorithms for a scalable network [24]. However, since WBAN is a short range and 

non-scalable network, the complexity of scheduling is not an issue. 

TDMA based MAC protocols can help in anticipating the status of WBAN channel. This 

is because, if nodes can operate in a timely, scheduled manner following a TDMA 

approach, then nodes can realise that the reason behind loosing packets is the deep fade 

in their links with the controller. Other reasons, such as packets collisions, would be 

unlikely because the nodes follow contention free channel access mechanism. 

Additionally, since deep fade persists for a long time, then TDMA based techniques could 

help in anticipating the channel status in the upcoming periods. Due to those reasons, this 

work adopts the TDMA based MAC for WBAN channel access.  

Although the study in [24] surveys multiple contention and contention-free based MAC 

protocols [55, 56, 57, 58, 59, 60], and recommends TDMA based MAC techniques for 

WBAN channel access, it discusses the presented literature work from energy efficiency 
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perspective only.  The vast majority of the work proposed in the literature, consider the 

ideal behavior of the channel status in WBAN. Nevertheless, WBAN cannot be studied 

in isolation with the realistic characteristics of its channel status, which involve the deep 

fade phenomenon. Tolerating the deep fade phenomenon in WBAN medium is crucial, 

and to date the work described in the literature remains limited.  

The following subsection discusses the drawbacks of the traditional static TDMA 

approaches adopted by WBAN de-facto standards, and discusses why their adopted 

TDMA based techniques fail to provide a reliable and energy efficient WBAN.  Next, 

Section 2.4.2 highlights the main dynamic TDMA based MAC approaches proposed in 

the literature to overcome the limitations of the two standards by tackling the deep fade 

phenomenon in WBAN medium, those solutions are classified into four categories.  

2.4.1 Static TDMA based MAC scheduling  

As it is stated in Section 2.3.4, the IEEE 802.15.4 and IEEE 802.15.6 standards are 

considered as the WBAN de-facto standards. IEEE 802.15.4 supports TDMA channel 

access by using GTS(s) in the CFP [14], while IEEE 802.15.6 provides TDMA 

mechanisms through the scheduled allocation slots in the contention free access periods 

[15].  Section 2.2.2 and Section 2.3.4 discusses the principles of the supeframe structures 

of those standards in more details. Although the two standards support TDMA based 

channel access in the contention free period of their superframe, their mechanisms do not 

provide enough reliability and energy consumption efficiency. This is because TDMA 

mechanisms adopted by the standards provide static slot allocation. Static TDMA 

scheduling has two drawbacks. First, each node in the network is obligated to use the 

channel in its time slots whether its link suffers from deep fade at a given time or not. 

Second, each node is allocated the same number of slots in each TDMA round regardless 

of its needs. For those reasons, if a node loses packets during its time slots due to deep 

fade, performing re-transmission will be useless because the deep fade of the links persists 

for a long time. In addition, offering the node, the same number of time slots in each 

round is not useful, and there is a need to propose solutions that help in parametrising the 

TDMA schedule and the select the optimal number of time slots according to nodes needs’ 

requirements in each round. Although the IEEE 802.15.4j supports a multi-periodic 

GTS(s) to solve the problem of the static GTS allocation provided by the legacy IEEE 

802.15.4 standard [52], the major goal of IEEE 802.15.4j amendment is to reduce the 
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energy consumption of medical devices of periodic traffic, and it does not consider the 

channel status in WBAN. In fact, to alleviate the effect of the deep fade, the TDMA slot 

allocation should be dynamic according to the channel status.  

2.4.2 Dynamic TDMA based MAC scheduling 

There are several MAC schemes that attempt to tackle reliability in WBANs by proposing 

dynamic scheduling techniques. Those solutions vary between tolerating the deep fade of 

the medium by reordering the nodes in the schedule, delaying the channel access period, 

or by exploiting both the contention and contention free access mechanisms in a hybrid 

manner. Some of the proposed techniques consider the heterogeneity of the traffic context 

in WBAN, while others do not. Those solutions are presented in the following subsection. 

A. Reordering nodes in the schedule 

Tselishchev et al. in [25] proposed to change dynamically the order of nodes in the TDMA 

schedule according to the deep fading in the channel to minimise its effect. In [25], the 

hub observes the performance of nodes’ links on the previous superframe and schedules 

nodes on the upcoming superframe accordingly. Those nodes whose links are observed 

good in the previous supeframe are synchronised before the nodes of bad links. Yet, the 

order of nodes with good links in accessing the channel is flipped according to when their 

links status was observed. The advantage of flipping the order of the nodes in the TDMA 

schedule is to harness the good status of the link as fast as possible before it goes to a bad 

state. Liu et al. in [26] followed the same approach proposed by Tselishchev et al. in [25] 

and [27], and suggested to re-order the nodes in the next TDMA schedule when the deep 

fading occurs in the current one. However, changing the nodes order assures a slight 

reduction in packet loss rate over the static scheduling algorithm only. This is because the 

hub assumes that the deep fading of the links always occurs at the beginning of the active 

sessions of the node. In fact, the occurrence of the deep fade of the links is unpredictable. 

Deep fade might occur during the node’s active period or at the end of the node’s session 

as well, which means that the flipping technique might not contribute to any improvement 

and it might make things rather worse. 
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B. Delaying channel access 

Tselishchev et al. in [27] tried to improve their solution in [25] by suggesting that packet 

retransmission should be delayed to the subsequent superfames because direct packet re-

transmission is useless, and at the expense of energy consumption. Tselishchev et al. also 

suggested a number of allocation slots larger than the number of nodes in the network, 

and thus having extra slots dedicated for packets retransmission. Extra slots are adaptively 

allocated anywhere in the superframe according to the energy budget of the nodes.  

Rezvani and Ghorashi in [28] also adopted a similar strategy and suggested delaying the 

transmission of nodes in normal situations to the end of the superframe structure when 

deep fade occurs. However, this does not guarantee successful packets delivery, due to 

the unpredictability of the occurrences of the deep fade of the links, which is at the 

expense of power consumption. 

C. Hybrid channel access 

Other solutions suggested that the effect of the deep fade in the channel could be 

distributed by allowing nodes to contend in accessing the channel. Liu et al. in [29] 

suggested that the effect of the deep fade could be mitigated by adopting a hybrid 

superframe structure that involves both contention and contention free channel access 

techniques. The superframe based MAC protocol proposed in [29] is called Context 

Aware MAC (CA-MAC). CA-MAC inherits the basics of the IEEE 802.15.4 beacon 

enabled superframe structure, and comprises three parts: the beacon frame, the contention 

based period which’s duration changes dynamically according to the level of fading in 

the channel, and the third part is the contention free period which follows the TDMA 

mechanism. Scheduled-based slots are allocated adaptively for nodes based on traffic 

intensity. To relax the effect of the channel deep fade, Liu et al. in [29] estimate the 

channel status in the current TDMA round. Accordingly, if the channel suffers from deep 

fade, nodes are allowed to contend in accessing the medium in the next superframe 

structure, so that the deep fade of the channel is distributed between nodes. Although their 

solution considered the collision that could occur in the contention based period, they did 

not consider the energy consumption. Moreover, distributing the effect of the deep fade 

between the nodes does not offer a good solution as the node that transmits during the 

contention access period might have a poor link, which is also at the expense of power 

consumption. 
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Rezvani, and Ghorashi in [28] suggested adopting contention access approach for non-

medical traffic and for medical data in emergencies (the proposed superframe in [28] is 

also based on the IEEE 802.15.4 superframe structure). However, due to the availability 

of contention-random based access period, collision, idle listening and overhearing are 

likely to occur between nodes. This increases packet loss and dissipates energy. 

Moreover, the node which accesses the medium in the contention based access could have 

a poor link status as well. As a result, packets will not only be lost due to the deep fade in 

the channel, but also due to collisions. 

D. Heterogeneous traffic consideration 

In their proposed work in [28], Rezvani, and Ghorashi handled three types of traffic: the 

normal medical traffic, the emergency medical traffic, and the non-medical traffic. The 

separation between the non-medical, normal medical, and emergency medical traffic is 

adaptive, according to channel condition and the user’s medical situation. As mentioned 

previously, the proposed superframe structure comprises contention and contention free 

channel access mechanisms. Nodes with non-medical traffic contend in accessing the 

medium in CAP, whereas the nodes with normal medical traffic access the medium in the 

Normal TDMA period (NTDMA). The hub specifies a time slot to check for an 

emergency. During this time slot, the hub examines the channel to check if it is busy or 

not, if it is busy then it decides there is an emergency. Nodes in emergencies follow two 

mechanisms, they first try to compete in accessing the medium with the non-medical 

traffic in CAP, and if their transmission attempts fail, they are given extra slots to use the 

medium in the Emergency TDMA period (ETDMA). Although Rezvani and Ghorashi 

considered that using CAP for emergencies is not reliable due to collision with the non-

medical traffic, offering more time to the nodes in an emergency will not solve the 

problem either and could be even worse.  This is because, a longer time in accessing 

medium exposes the nodes to longer deep fade durations, which lead to an increase of 

loss of sensitive data and severely consumes energy. In addition, due to the channel deep 

fade, an emergency could not be detected in the first place. Moreover, the proposed 

technique requires a very sophisticated superframe structure while nodes in an emergency 

might wait for multiple supeframes, which increases packet delays. The authors claimed 

a guarantee of less than one second for emergency transmission, however, as stated in [5] 

the delay requirements in emergencies should be less than 125 ms.  
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Liu et al. considered emergencies in their two proposed works in [26] and [29], and 

proposed a technique that changes nodes’ transmission duration according to their 

monitoring context, i.e. nodes in emergencies are given more slots than other nodes, due 

to their increased traffic load.  In [26] Liu et al. proposed a constraint, which suggests that 

the transmitted information in an emergency should be larger than the minimum 

throughput. Minimum throughput is correlated with the sampling rates that is decided by 

doctors according to the medical scenario. This constraint is achieved by offering nodes 

in emergency more slots than other nodes. In their next work in [29], Liu et al. adopted a 

similar approach, but without providing a reliability constraint or slot allocation 

procedure. When the master node detects an emergency, it offers those nodes that are 

related to the monitoring context more slots that other nodes. However, as WBAN is 

composed of a very vulnerable medium, offering emergency nodes extra slots could not 

be beneficial at all. This is because if a node is in an emergency situation and has a poor 

link status, and has been allowed to access the valuable medium for longer time periods, 

then more sensitive information will be lost, which adversely reduces WBAN reliability. 

Moreover, according to their performance evaluation, accessing the channel for a longer 

time in emergencies consumes more energy. In addition, the extra slots offered to the 

nodes in emergencies are taken from the rest of the nodes, and thus, in emergency 

situations, not all the nodes in the network will have the chance to use the medium. 

To conclude, in normal situations, all previously discussed techniques allocate a static 

number of time slots to nodes and do not justify the allocation criteria for the slots, or the 

slot length used for such allocation. It is important to justify the parametrisation of the 

slot length, as it is the basic building block of the TDMA schedule. In addition, their 

implementation requires complex amendments to IEEE 802.15.4 and IEEE 802.15.6 

superframe structures. Moreover, nodes rely heavily on the controller to manage the 

channel access schedule as these TDMA techniques are fully centralised. The drawbacks 

of the dynamic TDMA based MAC protocols that tackle deep fade in WBAN medium 

are summarised in the following points: 

1. None of the proposed techniques consider the unpredictability of the occurrence 

of the deep fade phenomenon. Therefore, none of them can avoid the effects of 

the deep fade. 

2. Neither time slot allocation nor the slot durations are justified in normal situations. 
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3. The vast majority of the proposed techniques tend to offer nodes in emergency 

more slots than other nodes, which is very problematic in the occurrence of the 

deep fade, because it severely increases the loss of the sensitive data and dissipates 

more energy.  

4. All proposed techniques, which consider emergencies suffer from a dramatic 

increase in energy consumption due to the high load of traffic. 

5. The extra slots offered to nodes in emergency are usually taken from other nodes, 

therefore some nodes will be prohibited from accessing the medium. Accordingly, 

not all nodes have the chance to use the medium when an emergency occurs. 

6. In all the proposed techniques, only the controller decides the status of the links 

of the nodes, which makes the proposed approaches fully centralised.  

7. All proposed techniques are based on the supeframe structure of the IEEE 

802.15.4 and the IEEE 802.15.6, thus they are not generic and require complex 

amendments to the superframe structures of the standards. 

Indeed, the long duration of the deep fade could be harnessed in two ways: by adopting 

TDMA based MAC approach, a node has a sole use of the medium at a certain time slot. 

Accordingly, the node itself can realise that the reason behind losing its packets is the deep 

fade in the link between itself and the controller. In addition, when a node is in deep fading, 

it can realise that this phenomenon might last for a long time and therefore performing re-

transmission is useless. In other words, the node predicts its link status in the upcoming 

time-periods in the channel. Following this prediction, the node can take direct action 

whenever it detects that its link is poor during its time slots without relying on the 

controller. This idea is the entrance point to the proposed techniques, presented in Chapter 

3, which also provides an answer to the first two research questions presented above.  

2.5 Conclusions 

This chapter has provided the background to the topics that are covered in this thesis. First 

the chapter presented an overview of WSN and WPAN. Next, the chapter investigated 

WBAN in details. A description of WBAN was provided along with a justification of why 

this technology has potential in various applications. The features and requirements that 
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characterise WBAN and differentiate it from WSN were also presented. A number of 

communication standards that support WBAN are highlighted.   It has been shown that 

several key challenges need to be solved to design a WBAN, which meet the applications’ 

and the user’s needs. One of the challenges is achieving a reliable WBAN with very high 

QoS, especially in the medical applications. Appropriate scheduling, duty cycling and 

interference-avoidance methods should be implemented at MAC and physical layers to 

reduce BER and packet loss [6]. Other essential parameters to consider including the end-

to-end delay and the capability to provide a fast reliable reaction in emergency situations 

[23, 28, 29]. The QoS requirements of WBAN applications must be met without 

degrading performance or increasing network complexity [21]. The limited energy 

resources in WBAN call for energy efficient channel access mechanisms in terms 

acknowledgement, retransmission, along secure correction and error detection strategies 

[6, 8]. Besides power resources, other resource constraints should be considered, such as 

the buffer which is of a limited size due to the tiny WBAN devices.  

To meet these challenges, the design of WBAN requires the definition of new protocols 

other than those proposed for WSN. In essence, a special attention should be made to the 

MAC layer, because WBAN often adopts a star topology, all the challenges revolve 

around the channel access, at the same time WBAN should guarantee a successful packets 

transmission especially in emergencies, despite the vulnerability of WBAN, which suffers 

from the phenomenon of the deep fade. Deep fade in WBAN channel is a unique 

phenomenon that distinguishes WBAN from other networks. Deep fade represents a 

serious challenge that degrades WBAN reliability, because its occurrence is frequent, 

unpredicted, and when it occurs, it persists for long time, which increases packets loss 

and degrades energy consumption. Ongoing research efforts are focused on various 

technical issues in WBAN, such as lowering power consumption, proposing portable and 

convenient communication protocols, coexistence with other network technologies, 

infrastructure, the heterogeneous applications of WBAN and so forth [6, 8, 9, 10, 22, 23]. 

Nevertheless, few have addressed the anomalous behaviour of WBAN medium due to the 

deep fade phenomena. For those reasons, deep fade is chosen as the main gap that this 

thesis aims to tackle to design reliable WBAN solutions.  In depth review of the literature 

work that tackles the issue of reliability and channel deep fade in WBAN, their limitations 

and drawbacks are presented in Section 2.4. 
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Literature work suggests that TDMA based MAC techniques are more reliable and energy 

effect than other medium access techniques. However, static TDMA techniques adopted 

by the standards are not suitable for WBAN channel access, because they do not avoid 

the channel deep fade when it occurs, which increases packets loss and dissipates energy.  

To solve the drawbacks of static TDMA techniques, several approaches are proposed in 

literature to alleviate the effect of deep fade by adopting dynamic TDMA based MAC 

techniques.  Those approaches are classified in Section 2.4 into four categories. None of 

the proposed techniques avoids the challenge of the deep fade in WBAN medium, 

because the occurrence of the deep fade is unpredictable.  Moreover, considering the deep 

fade in the WBAN channel should not be isolated from the other challenges of WBAN, 

which are energy consumption and the heterogeneity of its applications. Hence, other 

ways should be proposed, which avoid the deep fade in the WBAN channel, and prove 

its resilience in the various contexts and without increasing energy consumption. This 

thesis addresses these issues by proposing a novel and dynamic TDMA based scheduling 

protocols that provide reliable and energy efficient WBAN. The proposed protocols avoid 

the channel deep fade and tolerate the heterogeneity of the traffic. Those protocols are 

discussed in the Chapter 3.  
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Chapter 3: The Reliable and Energy Efficient 

Scheduling Algorithms  

 Introduction 

As it is discussed in Section 2.4, none of the proposed TDMA techniques avoids the deep 

fade in WBAN medium. This is very problematic especially in emergency situations.  The 

vast majority of the work in literature do no justify the distribution of the time slots 

between nodes or the slot duration, and those who do, they do not consider the channel 

deep fade in the slot allocation strategy. Literature work that consider channel status in 

WBAN are not generic and require sophisticated amendments to the superframe 

structures of the IEEE 802.15.4 and IEEE 802.15.6 standards.   

This chapter presents the proposed solution to solve the discussed drawbacks of the 

TDMA techniques proposed in the literature. The proposed solution comprises three 

TDMA based MAC algorithms, which are generic enough to be adopted by any protocol, 

standard or communication technology that provides TDMA based capabilities. The 

proposed solution emphasises that the phenomenon of the deep fade in the medium should 

be strictly avoided, and the time slot allocation should be dynamic while considering the 

channel status, the node’s buffer requirements, and energy efficiency. The first part of the 

solution is presented in the second section of this chapter and is called Adaptive Sleep 

MAC. It enables the nodes to avoid the deep fade in the medium by allowing them to 

sleep dynamically whenever they detect a deep fade in their links. In order to achieve 

fairness in utilising the medium, and to avoid buffer overflow, two novel dynamic slot 

allocation techniques are proposed.   

The first technique is called Dynamic Scheduling Based on Sleeping slots (DSBS) and is 

presented in the third section of this chapter, and the second technique is called Dynamic 

Scheduling Based on Buffer (DSBB) and is presented in the fourth section of this chapter. 

Both DSBS and DSBB uses the Adaptive Sleep MAC. Besides, both DSBS and DSBB 

schedules the nodes dynamically, yet they differ in their slot allocation strategy. In DSBS, 
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the controller calculates the duration the node spent in avoiding the medium due to the 

occurrence of a deep fade in the node’s link. According to the estimated time, the 

controller offers the nodes that didn’t have the chance to use the medium in the previous 

TDMA round, more slots than other nodes.  In DSBB however, the controller follows an 

opposite approach, as it calculates the number of packets that are saved in each node’s 

buffer, which reflects whether the node avoided using the medium in the previous round 

or not. Consequently, both DSBS and DSBB validate each other, as in both of them, nodes 

with more packets in their buffer get extra slots in the subsequent TDMA schedule. This 

chapter is summarised in the fourth section. 

  Adaptive Sleep TDMA MAC 

This solution provides an answer to the first two research questions presented in Section 

1.4. After a successful association with the controller, nodes send TDMA slot request 

frames to ask the controller to assign them a number of TDMA slots. The initial number 

of TDMA slots to be requested is one of the configuration parameters of the network, and 

it should be parametrised once the network is established. In order to achieve the highest 

level of reliability, the TDMA schedule has to be configured in a way that all the slots in 

the TDMA are occupied by the nodes leaving no availability for extra free time slots. In 

addition, at the beginning of the network operations, the slots of the TDMA schedule 

should be distributed equally between the nodes. After receiving the TDMA slots request, 

the controller records the number of slots requested by each node in a control frame that 

specifies the TDMA schedule. This control frame manages the network and specifies the 

parameters values of the TDMA schedule. The control frame is similar to the beacon 

frame adopted by the IEEE 802.15.4 and the IEEE 802.15.6 standards. Using this frame, 

nodes are scheduled to access the channel when the controller receives the TDMA slot 

request. If the request has been accepted first, the associated node will use the channel 

before others. Besides, the controller offers each node a number of time slots equal to the 

number of requested slots. The controller advertises the schedule using the control frame. 

Therefore, a node will wake up during its allocated time slots and try to transmit its 

packets. The node should receive an acknowledgment from the controller after every 

successful packet transmission. If the node fails to receive an acknowledgment frame, 

then the node assumes that its link suffers from a deep fade, and thus will not perform 

packet re-transmission. In addition, the node will shut down its transceiver and continue 
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sleeping until the TDMA current round finishes. Other nodes will continue to use the 

channel according to the schedule. The pseudocode of Adaptive Sleep TDMA MAC is 

depicted in Figure 3-1.  

 

 
Figure 3-1: Adaptive Sleep TDMA MAC
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3.3 Dynamic Scheduling Based on Sleeping Slots (DSBS) MAC 

Allowing the nodes to sleep during their active period leads to unfairness in utilising the 

medium, hence it will increase the number of packets in the node’s buffer. At very high 

traffic rates, this will cause a buffer overflow. As a result, if the packets are not lost due 

to deep fade, they are more likely going to be lost due to buffer overflow. Moreover, 

sleeping during active session increases packet delay. Therefore, optimised solutions 

are required to solve the delay, unfairness and buffer overflow issues without 

increasing the size of the buffer. Optimised solutions can be achieved by dynamically 

allocating the resources according to nodes’ requirements. Consequently, the 

proposed DSBS technique is based on the sleeping duration of the nodes. For example, 

extra slots can be allocated to the nodes that have more packets in their buffers. 

Typically, nodes which have slept during their active period in the previous round 

would logically have more packets in their buffer compared to others (assuming nodes 

transmit identical amount of traffic rates). 

At its basic level, in this step, traffic prioritisation is not considered. Since all the time 

slots in the TDMA schedule are occupied and as the number of time slots in any 

TDMA schedule is finite and limited, the only possible way to give nodes extra slots 

is to borrow these slots from other nodes whose links have not suffered from fading 

in the current round. This is to relax the constraint on their buffer and to meet at the 

same time the delay requirement, which is 250 ms at maximum for normal traffic [5]. 

Each node should be allocated a number of slots equal to the number of slots it slept 

during the previous round. By recording the time at which the node slept, and when the 

node’s active session ends, the controller can decide for how long the node has slept 

during its active time slots and allocates a number of slots accordingly. The DSBS 

pseudocode is depicted in Figure 3-2. To have a better description of the DSBS, the 

following definitions are provided. 

Definition 1: Let N and n be the total number of nodes in the network and the total 

number of the TDMA schedule slots respectively, ∀Ni ∈ N  ←  S slots is assigned to Ni 

once the network is established, where S = n/N. 

Definition 2: Given a slot length L, the node’s total channel access time is denoted 

as Ti, where Ti = Si × L. 
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Definition 3: Let the time recorded by the timer for a node be ti, then the number of 

slots the node has slept will be E = ti/L, where E ≤ S. Accordingly, as long as there 

are enough slots in the schedule, the controller (CRL) assigns Ni extra slots E. 

Therefore, in the next round, Ni will be assigned a total number of slots Si = S + E 

slots. Note that if E ≤ 1 then there is no need for the controller to offer Ni any extra 

slots in the next round and there will be no change in the TDMA original schedule. 

Thus, at any round, 1 ≤ E ≤ S, and more than one node could sleep during its active 

session due to the deep fade in the channel. 

DSBS works as follows: During the TDMA round, the controller should expect to 

receive packets from the nodes according to the TDMA initial schedule. If the 

controller does not receive what it expects from a certain node at a certain time, it 

switches on directly a clock timer and keeps it activated until the end of the active time 

duration of that node. This timer will record how long that node is sleeping. Therefore, 

during any TDMA round, if at least one node sleeps during its active period, the CRL 

creates a list and saves the identifiers (IDs) of nodes with bad links along with the 

calculated number of slots they slept. The ID of a node is the node’s index in the 

network. The nodes in the list can acquire an extra number of slots E as long as there 

are enough slots to distribute. The group of nodes that are not included in the list is 

denoted as Nr. Nr refers to the remaining nodes which had a good link status in the 

previous TDMA round, and therefore do not require extra slots for the next round. 

Accordingly, a minimum number of slots that each Ni ∈ Nr can acquire should be 

defined. This threshold is denoted as slotsMinValue. If the number of the remaining 

slots in the schedule is not enough to be distributed over Nr, then the extra slots for 

the nodes in the list should  be decremented until there are enough slots to distribute 

over the nodes that are not in the list. This is to avoid any Ni ∈ Nr from acquiring a 

number of slots less than slotsMinValue. However, in some conditions, the opposite 

case might occur, i.e., after allocating the nodes in the list extra slots, and allocating 

slotsMinValue each node in the set Nr, a number of remaining slots in the schedule 

might still be available. In this case, those remaining slots will be allocated to the 

nodes that buffered more packets. 

To achieve fairness between nodes, a new field is added to the node’s data packet to 

carry its current buffer load. Besides calculating the sleeping time of the node in the 

current round, CRL sorts nodes according to the value of their buffer field, which is 
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added to the node’s last received data packet. Accordingly, in the next round, after 

assigning extra slots to nodes with bad links, the remaining number of slots are assured 

to be distributed equally over the Nr, whereby each Ni ∈ Nr is assigned slotsMinValue, 

then any extra slots will be granted to nodes according to the number of packets in 

their buffer. Using this approach, the slot allocation will consider a node’s 

communication requirements and avoids fading in the channel. It is worth mentioning 

here that this technique should take place just in case at least one node had a bad link 

during the previous TDMA round. Otherwise no change should take place on the next 

schedule and nodes should be re-allocated a number of time slots S equivalent to the 

number they requested when the WBAN was established. Accordingly, DSBS 

provides an answer to the third research question presented in Section 1.4, because it 

allows the nodes to access WBAN medium according to their needs, which depend 

on their link’s status and buffer load. In the sequel, two examples are presented 

implementing DSBS. 

Example 1: Assume that the total number of nodes in the network is N = 5. If the 

total number of the TDMA schedule is n = 15 time slots, then each node in the network 

Ni should be assigned Si = 3 slots. If the slot length L = 3 ms, then for each Ni ∈ N , 

the node’s total channel access time Ti = 9 ms. Let’s assume N3 slept during its active 

session for t3 = 6 ms, then the number of slots N3 has slept is two slots, which also 

means that the number of extra slots the node should acquire is E = 2. Accordingly, 

the CRL creates a list L = N3, 2.  Therefore, in the next round, N3 will be assigned a 

total number of slots Si = 5 slots (three original slots + two extra slots). The rest of the 

nodes in Nr = N1, N2, N4, N5 will be offered the slotsMinValue. If slotsMinValue is 

set to two for example, then the overall number of the allocated slots will be 13 slots. 

The remaining unassigned two slots will be offered to those nodes with the highest 

number of packets in their buffer. 

Example 2: Now, assume that there is another node recorded in the list L, which 

requires extra slots, L = N3, 2, N4, 3. This means that in the next round, N3 should be 

assigned a total number of slots S3 = 5 slots, N4 should be assigned a total number of 

slots S4 = 6 slots. As the total number of slots in the TDMA schedule n = 15, then 

there is no enough time slots to distribute over Nr = N1, N3, N5. Because according to 

this calculation, the overall number of slots that should be allocated to the nodes in both 

lists L then Nr will be 17, whereas the total number of slots of the TDMA schedule is 
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15. In this case, the number of slots for N4 should be decremented to five, and N3 

should be allocated just four slots. Consequently, there will be enough time slots to 

distribute over Nr = N1, N3, N5 as each Ni ∈ Nr will be allocated the slotsMinValue. 

 

 
Figure 3-2: Dynamic Scheduling Based on Sleep Slots (DSBS). 
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3.4 Dynamic Scheduling Based on Buffer (DSBB) MAC 

This section provides another solution for the third research question presented in 

Section 1.4. When the node sleeps during its active period, the packets during this 

time will be stored in its buffer. Assuming a basic scenario where nodes send packets 

at Constant Bit Rate (CBR) with the same packet arrival rate, then the number of 

packets in the node buffer could help to estimate the sleep duration. Therefore, in the 

second technique, the nodes are offered extra time slots based only on the number of 

packets in their buffer. Nodes with the highest number of buffered packets will be 

allocated more slots in the next round. The following definitions are proposed to help 

in the description of the proposed approach. 

Definition 4: Let T be the time each packet takes from the moment it is transmitted 

by the node until it receives the acknowledgment frame and let L be the slot length, then 

the capacity of each time slot to hold packets is given by C = L/T . Accordingly, if one 

slot can occupy C packets, then two slots can occupy 2C packets, and three slots can 

occupy 3C packets, and so on. 

Definition 5: Let x be the number of packets in the buffer, and C the number of 

packets that can be carried by a time slot (or the capacity of a time slot), then the 

extra slots E allocated to nodes according to the number of packets carried in their 

buffer can be calculated as follows: 

                                   𝐸𝐸 =
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                          (5) 

The pseudocode of DSBB is depicted in Figure 3-3. Similar to DSBS technique, 

nodes can be allocated extra slots according to the number of packets in their buffer, 

as long as there are enough slots remaining to cover all nodes. When there are no 

enough slots in the schedule to offer nodes extra slots, then each Ni ∈ Nr acquires 

slotsMinValue. However, if all the nodes have been allocated the required slots, the 

remaining slots in the schedule will be eventually granted to those nodes that carry 

more packets in their buffer. Example 3 depicts a scenario of DSBB. Accordingly, 
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DSBB allows the nodes to access WBAN medium according to their needs, which 

depend on their link’s status and buffer load. 

Example 3: If we assume that T = 1 ms and the slot length L = 3 ms, then the capacity 

of each time slot to hold packets C = 3/1 = 3 packets. As each node is originally 

allocated S = 3 slots, then the three slots can hold nine packets. Assume that in the 

current TDMA round, N3 sends its data packet to the CRL and the buffer field of N3 

is x3 = 6 packets, then the number of the extra slots that should be offered to N3 for 

the next TDMA schedule, is E = 2 slots. So in total S3 = 5 slots. The procedure of 

distributing the slots over the remaining nodes is identical to the one presented in 

Example 1 in Section 3.3. 
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Figure 3-3: Dynamic Scheduling Based on Buffer information (DSBB). 
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3.5 Conclusions 

This chapter introduced the proposed techniques to achieve a reliable and energy efficient 

WBAN. The proposed protocols enables the network sensors to avoid the deep fade 

without relying on the controller, by allowing them to switch off their transceivers when 

their links encounter deep fade in the medium. This provides an answer to the first two 

research questions presented in Section 1.4. The proposed algorithms exploit the deep 

fade in the nodes’ links and use it as a criterion to dynamically allocate slots to nodes. 

The proposed protocols differ in their dynamic slot allocation approach. The first 

scheduling technique is called DSBS. DSBS distributes the time slots over nodes based 

on the time duration they slept on their previous TDMA round. Besides, DSBS is 

optimised by considering the number of packets in the nodes’ buffer. The second 

scheduling technique is called DSBB.  DSBB distributes the time slots over nodes based 

only on the number of packets in their buffer, which reflects whether the node has slept 

in the previous TDMA round due to deep fade or not. Consequently, the proposed 

techniques avoid deep fade in the medium and distribute the time slots over nodes 

according to their reliability requirements, which is related to their links’ status and the 

number of packets in their buffer. The proposed protocols provide two alternative 

solutions for the third research question presented in Section 1.4. The proposed 

techniques are generic and they do not require substantial amendments to the IEEE 

802.15.4 and IEEE 802.15.6 superframe structures. Only one extra buffer field is added 

to the data packet format. This provides a solution for the sixth research question 

presented in Section 1.4. Therefore, the proposed techniques can be adopted by any 

technique, technology or standards that adopts TDMA based MAC.  

The proposed protocols should be tested for their ability to achieve a reliable and energy 

efficient WBAN and in various contexts.  In Chapter 4 and Chapter 5, the performance 

of the proposed protocols is evaluated in the context of a normal situation and 

emergencies respectively. 
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Chapter 4:  Validation Methodology  

4.1    Introduction 

This chapter discusses the methodology adopted in evaluating the performance of the 

proposed protocols. In general terms, the wireless communication community utilises 

three approaches to evaluate the performance of wireless protocols; these are: 

mathematical analysis; simulation analysis; and test-bed evaluation. Test-bed evaluation 

provides the most accurate results, but rather is very expensive [61]. Both mathematical 

and simulation methods are effective and can be complementary, however, this work will 

tackle the latter for several reasons. On the one hand, the research community 

recommends the use of simulation methods when evaluating wireless network protocols, 

because they readily allow for reproducible environmental conditions. On the other hand, 

the complexity of each layer of the network stack on its own discourages the system 

mathematical evaluation, and the layering interactions multiply the complexity of the 

analytical analysis [61]. More importantly, the majority of the literature work, which 

related to this study target the WBAN de-facto standard [25, 26, 27, 28, 29], and the 

proposed techniques are evaluated using simulation, and since the performance of the 

proposed technique will be compared with the performance of WBAN standards, a similar 

method will be employed.  

The second section presents general information concerning the simulation tool that will 

be used. In addition, it discusses the simulation setup, the adopted WBAN topology, and 

the performance metrics based on which the protocols are evaluated. The third section 

evaluates the performance of the protocols in the context of the normal situation and it 

considers two scenarios: the first scenario tackles various traffic rates, whereas the second 

scenario considers various slot lengths. The fourth section concludes the chapter and the 

evaluation results.  
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4.2   Simulation environment 

Simulation is a cost-effective method through which to evaluate network behaviour by 

testing a combination of network features [61, 62]. A simulation method is used to 

develop, manage and deploy network systems throughout their entire lifecycle [61, 62]. 

Various simulation environments have been used in the literature to evaluate the 

performance of WBAN. The most approproiate simulators are: TinyOS, NS2, NS3, 

OPNET, QualNet, and the OMNET++. OMNeT++ is not a simulator in itself, but it 

provides the environment and tools to develop other specialised simulators called 

frameworks, such as Castalia and MiXim [63]. Castalia is a framework that is specifically 

targeted towards WBAN. MiXim supports various wireless networks including WSN but 

it is geared towards supporting the mobility in wireless networks, which is why it is called 

the mixed simulator [63].  

 It is essential to study the potential of the proposed scheduling protocols in achieving a 

reliable and energy efficient WBAN by comparing their performance against the related 

TDMA based MAC protocols proposed in the literature for WBAN. However, the IEEE 

802.15.4 and the IEEE 802.15.6 standards are chosen as the benchmark to evaluate the 

performance of the proposed protocols. This is because, firstly, neither the WBAN de-

facto standards nor the new dynamic TDMA scheduling techniques presented in Section 

2.4 avoid the deep fade in WBAN channel. Secondly, all the proposed dynamic 

scheduling techniques presented in Section 2.4.2 are based on the supeframe structure of 

the IEEE 802.15.4 and IEEE 802.15.6, and as long as the problems of the static slot 

allocation adopted by the standard have not been solved so to suit WBAN 

communication, then the WBAN de-facto standards are chosen in the performance 

evaluation process of the proposed protocols. 

Despite that both Castalia and MiXim offer IEEE 802.15.4 standard for WSN 

communication, Castalia is chosen for evaluating the performance of the proposed work 

[63]. This is because, Castalia provides the synchronised beacon enabled mode of the 

IEEE 802.15.4 standard, which is the mode that is going to be used for comparing the 

proposed protocols with IEEE 802.15.4. MiXim, however, supports the unsynchronised 

version beaconless mode of IEEE 802.15.4 which is not suitable for the reliability 

requirement of WBAN (refer to Section 2.2.2) [63], and it is not related to the topic of 
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this thesis. More importantly, Castalia supports WBAN by offering the IEEE 802.15.6 

standard which is not supported by MiXim and the other simulators. Moreover, Castalia 

is a simulator developed by same the team who studied the channel properties of WBAN 

in [11] and [12]. Based on empirical analysis, Boulis et al. in [11] and [12] provide 

statistics for a path loss model between sensors deployed on different positions on a 

person, who been asked to perform different daily activities. The developed path loss 

model for WBAN channel is included in a detailed manual prepared by Boulis et al. for 

Castalia simulator [64]. The online Castalia manual in [64] explains in detail how the 

Castalia simulator can be installed and used. Castalia simulator provides a specific 

scenario for WBAN. It provides the synchronised beacon enabled mode of the IEEE 

802.15.4 standard, as well as the basic characteristics of IEEE 802.15.6 standard. For 

those reasons, Castalia open source simulator is used as the simulation tool for conducting 

the evaluation experiments. 

4.2.1 Topology and simulation parameters 

To carryout the simulation experiments, the latest version of Castalia open source 

simulator, Castalia-3.3 [64] is used with the parameters described in Table 4-1. The 

WBAN topology is composed of six nodes: one controller at the right hip and five nodes 

(four at the four limbs and one in the middle of the chest). The adopted topology is 

depicted in Figure 4-1. 

 
Figure 4-1: The proposed star topology scenario [11]. 
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Table 4-1: Simulation parameters. 
Parameter                  Value 

Simulator Castalia 3.3 

Simulation time (s) 500 

Number of nodes 6 (1 controller and 5 nodes) 

Total number of TDMA slots 15 slots 

slotsMinValue 2 

Buffer size (byte) 32 

Traffic model in normal situation CBR (normal traffic) 

Traffic rate (p/s) (normal situation) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Traffic model in emergencies Poisson traffic 

Slot sizes (ms) 1.875, 3.75, 7.5, 15 

Duty cycle 100% 

MAC packet length (byte) 142 

IEEE 802.15.4 related configurations 

GTS(s) 3 

SO values    4, 5, 6, 7 

IEEE 802.15.6 related configurations 

RAP                               2 slots 

Scheduled access                               15 slots 

MAC Packet length (byte)                               1000 

 

 

The study in [13] shows statistics about the duration of the deep fade for each node’s link 

and how frequent the signal falls below receiver sensitivity for that link. The five nodes 

send 105 bytes data packet (including overhead) to the controller at CBR in normal 

situations. In emergencies however, the traffic follows the Poisson traffic model.  It  is 

worth mentioning that the IEEE 802.15 TG6 provides no specific mechanism or values 

for parameterising the IEEE 802.15.6 superframe [5, 15], but IEEE 802.15 TG4 does [14, 

30, 31, 33, 34, 35, 36]. As it is stated in [14, 30, 31, 33, 34, 35, 36], IEEE 802.15.4 slot 

size duration depends on the value of the SO parameter, which is responsible for 

calculating the active period duration of the IEEE 802.15.4 superframe. Moreover, the 

IEEE 802.15.4 superframe consists of 16 time slots, therefore each one of the five nodes 
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can be allocated three slots at maximum once the network is established. All compared 

MAC protocols adopt 15 time slots TDMA schedule. The slots lengths are calculated 

according to the SO values of the IEEE 802.15.4. The slot that remains after excluding 

the 15 slots for CFP, will be used for CAP wherein nodes contend for accessing the 

channel. Indeed, both IEEE 802.15 TG4 and IEEE IEEE 802.15 TG6 working groups 

recommended that when configuring the IEEE 802.15.4 and IEEE 802.15.6 superframe 

structures there should be a minimum value for the contention based access before the 

contention free period starts. According to our intensive simulations for the IEEE 

802.15.6, it is found that for a successful IEEE 802.15.6 operations, RAP should be at 

least two slots. All the algorithms examined are allowed to operate within 100% duty 

cycle. However, DSBS and DSBB allow the nodes to sleep further in their active period 

when their links encounter deep fade. All the simulation experiments run 20 times, to 

acquire a reasonable confidence interval. The following subsection presents the metrics 

upon which the proposed protocols will be evaluated.  

4.2.2 Performance metrics 

The performance of the proposed protocols will be evaluated according to multiple 

criteria. The metrics chosen are: 

• Reliability: The reliability of the network will be analysed by measuring the packets 

loss. Packets loss is the total number of packets dropped during simulation. The lower 

the value of the packets’ loss, the better the performance of the protocol [34, 65, 66]. 

Packets’ loss is calculated for each node in the network as follows: 

 

𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒𝑡𝑡𝑠𝑠 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 =  ∑𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡 𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒𝑡𝑡𝑠𝑠 𝑖𝑖𝑒𝑒𝑡𝑡𝑚𝑚 𝑁𝑁𝑖𝑖 −∑𝑒𝑒𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑟𝑟𝑒𝑒𝑚𝑚 𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒𝑡𝑡𝑠𝑠 𝑖𝑖𝑒𝑒𝑡𝑡𝑚𝑚 𝑁𝑁𝑖𝑖      (6) 

   

• Timeliness (ms): This metric is measured by evaluating the average end-to-end delay. 

The average end-to-end delay is the time taken by each packet to travel from the 

source node to the controller. This type of delay is normally analysed for all packets 

received at the central controller from each node in the network, and hence the average 

is calculated as follows [23, 34]:  
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𝐴𝐴𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝐴𝐴𝑒𝑒 𝑒𝑒𝑠𝑠𝑚𝑚 𝑡𝑡𝑡𝑡 𝑒𝑒𝑠𝑠𝑚𝑚 𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑 =
∑(𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑟𝑟𝑒𝑒 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 − 𝑠𝑠𝑒𝑒𝑠𝑠𝑚𝑚 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒)

𝑠𝑠𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑡𝑡𝑖𝑖 𝑒𝑒𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑟𝑟𝑒𝑒𝑚𝑚 𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒𝑡𝑡𝑠𝑠 𝑖𝑖𝑒𝑒𝑡𝑡𝑚𝑚 𝑁𝑁𝑖𝑖
 

(7) 

The lower the end to end delay value, the better the performance of the protocol. 

 

• Energy efficiency (nJ): WBAN nodes are resource constrained, the trade-off 

between reliability and the energy efficiency of the proposed protocols will also be 

analysed through simulation. Energy efficiency is measured by calculating the total 

energy consumed by the overall network. As shown in (8), the total energy (Etotal) 

consumed by an RF energy model is the total sum of energies consumed by a sensor 

when performing the four operations, which are: transmitting (Etx), in receiving (Erx), 

being idle (Eidle) and in sleeping (Esleep) [34].  

                                  𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑡𝑡𝑥𝑥 + 𝐸𝐸𝑟𝑟𝑥𝑥 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 + 𝐸𝐸𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑠𝑠                                 (8) 

The lower total energy consumed by a protocol, the better is its performance. 

 

4.3 Performance evaluation in normal situations 

Performance evaluation enables us to check the validity and potential of the proposed 

solution to achieve a reliable and energy efficient WBAN. In this section, the performance 

of the proposed protocols is evaluated in the context of the normal situation. This section 

should provide an answer to the fourth research question presented in Section 1.4 for 

normal situations. It is crucial to evaluate the performance of the proposed techniques on 

various traffic rates that can be followed by sensors in various WBAN applications. It is 

also essential to evaluate the performance of the proposed protocols on different lengths 

of the TDMA schedule. To achieve this, the proposed protocols are evaluated in two 

scenarios. In the first scenario, the performance of the two protocols is evaluated with 

respect to various CBR values, which vary from 5 p/s to 100 p/s. To implement the second 

scenario, instead of changing the number of slots in the TDMA schedule, the performance 

of the protocols is evaluated with respect to various slots lengths. This is because the time 
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slot is the basic building block of any TDMA schedule, and considering various sizes of 

the time slot stretches or diminishes the length of the TDMA schedule according to the 

chosen slot size. More importantly, it is cruicial to achieve a healthy trade-off between 

reliability and energy efficiency for WBAN. Thus, evaluating the performance of the 

protocols on different slot lengths helps in choosing the most suitable slot length for the 

TDMA schedule, which helps in parametrising the protocols. These two scenarios are 

illustrated in detail in the following sections.  

4.3.1 Scenario 1: The impact of traffic rate 

In this scenario, the performances of DSBS, DSBB, IEEE 802.15.4, and IEEE 802.15.6 

are examined over eleven traffic rates, which vary from a very low traffic rate (5 p/s) up 

to very high traffic rate (100 p/s). All the protocols work through 100% duty cycle with 

3.75 ms slot size (SO = 5 for IEEE 802.15.4). Given that each packet takes around 

1.208437 ≈ 1.21 ms from the moment it is transmitted until the node receives the 

acknowledgment frame, each slot can occupy up to three packets.  

As it can be seen from Figure 4-2, DSBS and DSBB achieve less packets loss as opposed 

to the IEEE 802.15.4 and IEEE 802.15.6 standards at all traffic rates. This is because, on 

the one hand, the proposed techniques avoid the deep fade in the channel, which is the 

primary source of packet loss in WBAN, and on the other hand, they distribute the time 

slots between nodes according to nodes’ requirements. As mentioned previously, at the 

beginning of each IEEE802.15.6 superframe and before the nodes follow the 15 TDMA 

slots schedule, nodes follow contention based channel access in RAP of two slots. 

Consequently, during this period, nodes will transmit altogether, which causes collision, 

increases packet loss and therefore will deteriorate the performance of the IEEE 802.15.6 

standard. Moreover, the IEEE 802.15.6 MAC frame size implemented in Castalia-3.3 

simulator is around 1000 bytes, which is very large compared to 142 bytes (including data 

packet overhead), adopted by DSBS and DSBB. Therefore, 3.75 ms slot length is not 

sufficient to transmit the long MAC IEEE 802.15.6 packet and the transmission will be 

deferred constantly to the next superframe. Hence, there will not be enough space for 

saving packets in the nodes’ buffer, because other packets will be waiting for 

transmission, which causes a buffer overflow and increases packets’ loss. This explains 

why IEEE 802.15.6 perform worse than all other protocols.  
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Figure 4-2: Packets loss rate in a normal situation with an increasing CBR(s). 

 

 

Figure 4-3 depicts the results of the end-to-end delay. Apart from 5 p/s, 10 p/s, 90 p/s, 

and 100 p/s, the proposed protocols cause a slight increase in the delay compared to the 

legacy standards. This is because the proposed protocols allow the nodes to sleep 

dynamically whenever their links encounter deep fade. Although this guarantees 

successful packets delivery because the nodes access the medium only when their links 

are in a good status, dynamic sleep according to the link status delays the transmission of 

the data packets. At 5 p/s, 10 p/s, 90 p/s, and 100 p/s however, the proposed protocols 

outperform the IEEE 802.15.6 standard. This is due to two reasons: Firstly, the IEEE 

802.15.6 MAC frame size implemented in Castalia-3.3 simulator is around 1000 bytes, 

which is very large compared to the 142 byte adopted by DSBS and DSBB. Therefore, 

3.75 ms slot length is not sufficient to transmit the long MAC IEEE 802.15.6 packet and 

the transmission will be deferred constantly to the next superframe, which increases the 

packets delay. Secondly, due to the contention based channel access in the two RAP slots 

adopted by the IEEE 802.15.6, the collided packets have to be re-transmitted by the IEEE 

802.15.6, which increases the packets delay. At 5 p/s, 10 p/s, 90 p/s and 100 p/s, the 

number of packets that are deferred for transmission on the subsequent superframe, and 

the number of packets that are re-transmitted due to collision are more than the number 

of packets that are delayed for transmission due to the sleep period adopted by the DSBS 

and DSBB. This explains why at 5p/s, 10ps, 90 p/s, and 100 p/s the proposed protocols 

outperform the IEEE 802.15.6 standard.   
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Figure 4-3: Latency in a normal situation with an increasing CBR(s). 

 

Although the proposed protocols increases packet’s latency, it is necessary to check 

whether this delay exceeds the delay requirements of WBAN, which is as it is stated in 

[5], 250 ms in normal situation. Figure 4-4 depicts the rate of packets that are received 

after 250 ms in a normal situation. It can be noticed that by following the proposed 

protocols, around 6% of the packets are received after 250 ms at maximum (at 100 p/s 

traffic rate).  This is only 3% higher than the performance of the IEEE 802.15.4. The 

maximum number of packets received after 250 ms is caused by the IEEE 802.15.6 at 

100 p/s, and it is around 13%, this is because of the deferred packets transmission due to 

the short slot size compared to the long length of the MAC packet of the IEEE 802.15.6, 

and due to packets re-transmission due to the contention based access in the first two slots 

of the IEEE 802.15.6 superframe as it is explained previously.  
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Figure 4-4: Rate of packets received with a delay over 250 ms in a normal situation. 

 

 

Figure 4-5 shows that both DSBS and DSBB achieve less energy consumption compared 

to IEEE 802.15.4 and IEEE 802.15.6 at all traffic rates. This is because the proposed 

techniques allow the nodes to save energy while sleeping during their active time slots, 

which also avoids un-useful packets re-transmissions. Moreover, nodes are given time 

slots according to their needs, which would avoid an idle listening process that might 

occur if nodes are given more time than they actually need. Looking carefully at the 

results, it is noticed that DSBS achieves less energy consumption compared to DSBB. 

This is because DSBB assigns slots based on the number of the packets in the node’s 

buffer, which increases the probability of a node to get extra slots and use the channel for 

a long time and consequently consume more energy. According to these experiments, 

IEEE 802.15.6 has the worst performance with respect to energy consumption. This is 

because nodes spend two slots in RAP during the contention based access period, which 

adversely increases energy consumption. Nodes need to stay idle while other transmit, 

which in return might lead to collision and consequent re-transmission, which dissipates 

energy. 
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Figure 4-5: Total energy consumption for nodes with an increasing CBR(s). 

 

 

4.3.2 Scenario 2: Changing the slot size 

Results achieved in Section 4.3.1 call for analysing the effect of the duration of 

accessing the channel on the performance of the proposed protocols. In essence, the 

performance of the proposed protocols should be investigated with longer slot 

durations and different slot lengths.  For this purpose, four values of SO were chosen, 

wherein each value contributes to a different value for the slot time length. Those values 

are respectively: SO= 4 (1.875 ms slot length), SO= 5 (3.75 ms slot length), SO=6 

(7.5 ms slot length) and SO= 7 (15 ms slot length). To reflect the heterogeneity of a 

WBAN network, different traffic rates are simulated: Node 1 sends 5 p/s, Node 2 sends 

30 p/s, Node 3 sends 40 p/s, Node 4 sends 15 p/s and Node 5 sends 1 p/s. The remaining 

experimental parameters are identical to those adopted in Scenario1 and presented in 

Table 4-1.  

Figure 4-6 reveals that for all slot lengths, both DSBS and DSBB outperform IEEE 

802.15.4 and IEEE 802.15.6. This means that the proposed protocols achieve more 

reliable WBAN than these standards regardless of the slot size thanks to fair slot 

distribution mechanism. It can be noticed also that the gap between the performance 

of the proposed protocols and IEEE 802.15.6 diminishes at 15 ms slot size. This is 

because the 15 ms slot offers the IEEE 802.15.6 MAC frame enough time to be 
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transmitted during the current superframe duration, which improves the performance 

of the IEEE 802.15.6.  

 

 
Figure 4-6: Packets loss rate for different slot sizes. 

 

 

Figure 4-7 reveals that apart from the 1.875 ms slot length, the proposed protocols result 

in a slight increase in the delay at the rest of the slot sizes as opposed to the legacy 

standards. As it is explained previously, the proposed protocols allow the nodes to sleep 

dynamically whenever their links encounter deep fade, and dynamic sleep according to 

the link status delays the transmission of the data packets. At the slot length of 1.875 ms 

however, the proposed protocols outperform the IEEE 802.15.6 standard. In fact, 1.875 

is very short slot size, which is not sufficient to transmit the very long IEEE 802.15.6 

MAC frame size, and therefore the transmission will be deferred constantly to the next 

superframe, which increases the packets delay as opposed to the performance of the 

proposed protocols and the IEEE 802.15.4 standard.   
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Figure 4-7: Latency in a normal situation using various slot sizes. 

 

 

Although Figure 4-7 reveals that the proposed protocols result in a slight increase in the 

delay, it is worth investigating whether the increase in the delay caused by the proposed 

protocols exceeds the delay requirements of WBAN in normal situation that is 250 ms at 

maximum [5]. This is depicted in Figure 5-8. It can be noticed that by following the 

proposed protocols, around 10% of the packets are received after 250 ms at maximum.  

This is only 5% higher than the performance of the IEEE 802.15.4 and the IEEE 802.15.6. 

However, it is worth noting that this slight increase in the delay is accompanied by a 

dramatic decrease in packets loss as it is depicted in Figure 4-6, and a decrease in energy 

consumption as it is explained in Figure 4-9.  
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Figure 4-8: Rate of packets received with a delay over 250 ms in a normal situation. 

 

Figure 4-9 reveals that for all slot lengths, both DSBS and DSBB achieve less energy 

consumption regardless of the duration of the slot length. As it is explained in Section 

4.3.1, this is because DSBS and DSBB allow the nodes to sleep dynamically during 

their active sessions according to their links status. DSBS still outperforms DSBB. 

This is because DSBS offers the nodes some time slots based on the number of time 

slots they consumed while sleeping during the previous rounds. Thus, nodes will be 

given systematically long time opportunities to stay active, which avoids energy 

dissipation. Looking carefully at Figure 4-9, it is noticed that at 15 ms, nodes consume 

the least power due to the longer time periods the nodes might sleep when they face 

fading, which saves more energy. IEEE802.15.6 consumes much more energy as 

opposed to the other protocols, due to the longer period in performing a contention 

based access in the two slots RAP, as it is explained in Section 4.3.1.   

Results achieved confirm that the proposed protocols improve WBAN performance in 

terms of reliably and energy efficiency in a normal situation, with only 5% (at 

maximum) of the packets received after 250 ms in normal situation compared to IEEE 

802.15.4 standard. 
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Figure 4-9: Total energy consumption in a normal situation using various slot sizes. 

 

4.4 Conclusions 

This chapter presented the approach followed to evaluate the performance of the proposed 

protocols and justified why the simulation approach is adopted in general and the Castalia 

simulator in particular. It presented the topology adopted in simulations, the performance 

metrics and the adopted simulation setup.  In this chapter, the performance of the 

proposed protocols is evaluated in the context of the normal situation, and it is compared 

against the performance of the IEEE 802.15.4 and IEEE 802.15.6.  The heterogeneity of 

WBAN traffic rates as well as various slots lengths are considered in the evaluation 

process. Results revealed that the two proposed techniques improve WBAN reliability 

and energy efficiency significantly regardless of the traffic rate and the slot size. This 

provides an answer to the fourth research question presented in Section 3.4 for normal 

situations.  The two proposed techniques reduce packet loss up to 61% and 68% compared 

to the IEEE 802.15.4 and IEEE 802.15.6 respectively. They also reduce energy 

consumption up to 0.62% and 7.3% compared to the IEEE 802.15.4 and IEEE 802.15.6. 

The achieved results are accompanied with a slight increase in the end-to-end delay. Only 

3% of the packets are received after 250 compared to the IEEE 802.15.4 in the scenario 

of changing the traffic rate, and only 5% of the packets are received after 250 as opposed 

to IEEE 802.15.4 and IEEE 802.15.6 in the scenario of changing slot size. In the next 

chapter, the performance of the proposed protocols is evaluated in the emergency context. 

Chapter 5 will answer the fourth research question presented in Section 1.4, but for 

emergencies.  
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Chapter 5: WBAN in Emergency Situations 

5.1 Introduction 

While some medical sensors work in a normal situation, other medical sensors might 

suddenly require high QoS and exclusive resources when emergency situations occur. 

Usually the throughput of the nodes in emergencies increases at the expense of severe 

energy consumption because nodes related to the monitoring context require more time 

to access the medium in order to transmit their data in a near real-time.  Nevertheless, as 

WBAN is comprised of a very vulnerable medium, allocating nodes in emergencies extra 

slots is very problematic.  This is because if the node in an emergency has a poor link 

status and is allowed to access the valuable medium for longer time periods, more 

sensitive information will be lost, which adversely reduces WBAN reliability and 

dissipates energy consumption. In addition, the extra slots offered to the nodes in 

emergencies usually are taken from the rest of the nodes that sense less important 

information, i.e. operate in a normal situation or which sense environmental information. 

Consequently, in emergency situations not all the nodes in the network will have the 

chance to use the medium. 

The two proposed TDMA protocols in this thesis, consider both the buffer and the channel 

status of the nodes regardless of the context they operate within. In the previous chapter 

the performance of the proposed protocols is evaluated in the context of the normal 

situation only. This chapter evaluates the performance of the proposed protocols in 

emergencies, hence this chapter should provide an answer to the fourth question presented 

in Section 1.4, but for the context of emergencies. This chapter should also answer the 

fifth research question, which questions whether it is possible to satisfy the increased load 

in emergencies without increasing energy consumption.  

In order to evaluate the performance of DSBS and DSBB in emergencies, first we ought 

to define the emergency situation, and how it can be distinguished from the normal one, 

how it can be detected, and what happens when it occurs. These are discussed in the 
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second section and the third section respectively. The fourth section illustrates the 

methodology of applying emergency in simulation and evaluates the performance of the 

protocols in an emergency in three different scenarios which vary in the adopted slot 

length. The fifth section concludes the chapter and the evaluation results. 

5.2 Emergency in WBAN communication 

An emergency is a variation in the behavior of the current context in a way that could 

lead to life threatening situations [26]. It could occur when patients with a life 

threatening disease suddenly changed their activity, or his ambient environment 

encountered an unpredictable extreme high or low temperature, pressure, oxygenation, 

humidity, and so on.  In such circumstances, information related to the monitoring 

context should be transmitted with the highest QoS, without packet loss, and at 

acceptable latency requirements while considering energy efficiency. For  instance, if  

a patient with heart attack falls down, or performs an exercise, the medical staff should 

focus on the heart rate data than other sensors data. Therefore, real-time transmission 

of the data from the ECG sensor device should be guaranteed, while other sensors’ 

data such as EMG will become less important [28, 29]. 

5.3 Emergency detection 

The controller detects the context variation in WBAN through data processing and 

analysis. In normal situations, sensor nodes operate within a standard data rate and duty 

cycle to sample and transmit data to the controller. After collecting the data from all 

nodes, the controller processes and analyses the received data, and can detect the change 

in the activity or the context by following one of the context recognition algorithms that 

are applied to the sensors data. Some of these algorithms can be found in [67]. Using such 

algorithms is independent from designing MAC protocols; and how those algorithms 

operate is beyond the scope of this thesis. After analysing the data, if the controller detects 

an abnormality in a physiological signal, it requests more data from the sensor to perform 

precise recognition. To achieve that, the controller orders the associated sensors to 

increase their sampling rate, which results in increasing their traffic rate [26, 28, 29]. 
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5.4 Emergency in simulation experiments 

This section explains how the emergency is investigated in the simulation. In normal 

situations, nodes send data packets at CBR. In emergency situations however, nodes’ 

traffic rate increases and turns to random, and according to the literature, such as the 

work in [26, 29], their traffic rate follows the Poisson model in which packets inter-

arrival rate follows an exponential distribution. Apart from the traffic rate, the 

simulation experiments parameters are identical to those presented in Section 4.2.1. 

At the beginning of the simulation, WBAN is set to operate in a normal situation 

during which nodes follow the CBR traffic model. Each node chooses a traffic rate (R) 

randomly from the range [1-10] p/s, where the inter-arrival time (T) is static, and T = 

1/R. When emergency is detected, two consequences occur: (1) the traffic rate λ of 

those nodes related to the monitoring context increases (in accordance to the increase 

of their sampling rate), (2) nodes’ traffic rate λ jumps abruptly from CBR with static 

inter-arrival time to Poisson traffic rate λ with inter-arrival time of exponential 

distribution. The emergency was applied at two different simulation periods: the first 

period lasted for 100s from 50-150s, during which the inter-arrival time follows the 

exponential distribution of mean 0.02 and rate λ = 50 p/s. The second period lasted for 

150s from 300-450s, during which the inter-arrival time follows the exponential 

distribution of mean 0.01 and rate λ = 100 p/s. In those periods, two nodes are chosen 

to have an emergency. The nodes were chosen in a way that could enable us to evaluate 

the performance of DSBS, DSBB, IEEE 802.15.4 and IEEE 802.15.6 at all possible 

cases that might occur regarding the channel status. As different scenarios involve 

different nodes in  an emergency with different links status, the combinations of nodes 

in emergency vary according to the nodes general links status. Based on the intensive 

simulation of parameters presented in Table 4-1, for five nodes positioned in a WBAN, 

whose links average path loss presented in [4], nodes’ links status can be categorised 

as it shown in Table 5-1, where N1, N2, N3, N4, N5 refer to the five nodes. According 

to this categorisation, there are five nodes with four different links’ status. If we chose 

to apply emergency on two nodes, then we will have seven possible scenarios of two 

nodes in an emergency with different links’ status. The possible nodes’ combinations 

are presented in Table 5-2. 
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The selected nodes are as follows: N1 and N2, N1 and N4, N1 and N5, N2 and N3, N2 and 

N4, N3 and N4, N3 and N5. The performance of the protocols was evaluated using those 

seven scenarios.  Experiments were applied on three slot sizes: 3.75 ms, 1.875 ms, 7.5 

ms, and the experiments were repeated 20 times. It is worth mentioning here that this 

chapter does not consider prioritising nodes based on the sensitivity of their data or their 

relation to the monitoring context. In other words, all nodes will have the chance to use 

the channel, even if they are not in an emergency. The distribution of slots will run 

according to DSBS and DSBB techniques explained in Section 3.3 and Section 3.4 

respectively. This is because the goal of this section is to evaluate whether increasing 

the channel access duration to nodes in an emergency based only on their channel and 

buffer status could improve WBAN QoS and energy efficiency, and whether DSBS and 

DSBB can cope with both emergencies and normal situations. Considering nodes 

prioritisation based on their context is discussed in Chapter 6. The protocols 

performance has been evaluated in terms of packets loss rate, latency and energy 

efficiency. The following subsections present the results of the protocols’ performance 

at each slot length by applying the simulation parameters in Table 4-1 and triggering 

the emergency over the nodes in seven scenarios. 

Table 5-1: Classification of the links’ status of the nodes. 
Link status The node 

Nodes with very good link status N2 

Nodes with good link status N4 

Nodes with bad link status N1 and N5 

Nodes with very bad link status N3 

 
 

Table 5-2: Scenarios of the nodes in an emergency. 
Scenario The involved nodes 

A node of a very good link with a node of a good link  N2 and N4 

A node of a very good link with a node of a bad link  N2 and N1 or N2 and N5 

A node of a very good link with a node of a very bad link  N2 and N3 

A node of good link with a node of a bad link  N4 and N1 or N4 and N5 

A node of good link with a node of a very bad link  N4 and N3 

A node of a bad link  with a node of a bad link  N1 and N5 

A node of a bad link with a node of a very bad link  N1 and N3 or N5 and N3 
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5.4.1 Results of 3.75 ms slot length 

Figure 5-1 depicts the results for reliability performance in terms of packets loss. It is 

clear that our proposed protocols outperform the legacy IEEE 802.15.4 and IEEE 

802.15.6 at all scenarios regardless of which nodes have been chosen for an emergency. 

This is because nodes encountering emergency situation as all other nodes avoid the deep 

fade in the channel and therefore avoids losing their packets. Moreover, nodes are 

allocated extra slots based on their links ‘status and buffer status, which is also beneficial 

for the node in an emergency to cope with the increased traffic rate. It can also be noticed 

that even for a node with very good link, i.e. N2, the proposed protocols still outperform 

the legacy standards, because they always avoid the deep fade in the channel, and thus 

their probability of losing packets is always less than the legacy standards. This means 

that avoiding the deep fade in the channel and re-allocating the nodes extra slots based on 

their channel status and buffer status can tolerate to both normal and emergency 

situations.  

 

 
Figure 5-1: Packets loss rate in an emergency for 3.75 ms slot size. 

 

 

As for the end-to-end delay, Figure 5-2 shows that all algorithms outperform IEEE 

802.15.6, due to the long length of the MAC frame size of the IEEE 802.15.6. However, 

the proposed algorithms perform worse than the IEEE 802.15.4 at all nodes apart from 

the nodes with very good links i.e. N2. This is rational, because nodes have to sleep 
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whenever their links face fading in the channel, and therefore the data packets are 

scheduled for the next TDMA round, which increases the delay of the packets. On the 

other hand, N2 faces fewer sleep opportunities due to its very good link status, which 

explains why its packets have less delay. It can be noticed from Figure 5-2 that in most 

cases DSBB outperforms DSBS. This is because in DSBB allocates the nodes time slots 

based on the number of packets in their buffer. If the node that has to be allocated extra 

slots is also in an emergency, then that node will have more opportunities to send its 

increased traffic load, which decreases the delay of its packets.  

 

 
Figure 5-2: Latency for nodes in an emergency with 3.75 ms slot size. 

 

 

Figure 5-3 reveals that although the latency of the DSBS and DSBB is increased, the 

maximum rate of packets that are received after 125 ms is less than 20%. It can be 

noticed from Figure 5-3 that the maximum rate is at N3. This is because N3 has a bad 

link status and therefore will have more sleep periods than the other nodes. The 

maximum rates at IEEE 802.15.4 and IEEE 802.15.6 are respectively 10% and over 25%. 

By comparing the results with the IEEE 802.15.4, results indicate that the increase in 

the delay in DSBS and DSBB is acceptable as the difference in the maximum rate is 

fewer than 10%. However, this slight increase in the delay is accompanied by a 

noticeable decrease in the packets loss. 
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Figure 5-3: Rate of packets received with a delay over 125 ms for 3.75 ms slot size. 

 

Figure 5-4 depicts the results of total energy consumption. It is clear that IEEE 802.15.6 

performs worse than all other algorithms, due to the contention based access followed 

in its first two RAP slots. It can be noticed that at all nodes DSBS incurs less energy 

consumption compared to DSBB and the legacy standards. This is because DSBS gives 

nodes in emergency fewer opportunities to use the channel than the DSBB. Following 

DSBS, the duration of the extra slots which are allocated to nodes equals to the duration 

of the deep fade that the nodes faced during the previous TDMA round. This could not 

be enough time for nodes in an emergency to send their data packets due to the increased 

traffic loads, which also explains why DSBS results in more delay and packets loss 

than the DSBB. DSBB outperforms IEEE 802.15.4 at all nodes apart from the nodes 

with very good links status i.e. N2 where DSBB consumes slightly more energy than IEEE 

802.15.4 and DSBS. This is because DSBB allocates the nodes extra slots based on 

the current buffer size. Despite that N2 presents a very good link status, its link could 

face fading at some point, and as it is in an emergency, it will have a high load of packets 

in its buffer based on which it will be acquired extra slots. Therefore, N2 will have more 

opportunities to use the channel, which results in a slight increase in its energy 

consumption compared to other protocols.  
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Figure 5-4: Total energy consumption for 3.75 ms slot size. 

 

 

5.4.2 Results of 1.875 ms slot length 

The achieved results for 1.875 ms slot length almost match those achieved for 3.75 ms 

slot size.  

Figure 5-5 reveals that the proposed protocols outperform the legacy standards in terms 

of packets loss in all scenarios, regardless of which node is in an emergency. This is 

because regardless of the scenario, nodes avoid using the medium when their links 

encounter a deep fade. Those nodes are re-allocated extra slots in the next round 

accordingly considering also their buffer status. This gives the nodes a chance to relax 

the pressure on their buffer, and thus avoids buffer overflow, which decreases packets 

loss as opposed to the legacy standards of WBAN.   
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Figure 5-5: Packets loss rate in an emergency for 1.875 ms slot size. 

 

 

Figure 5-6 shows that apart from nodes of very good links i.e. N2, DSBS and DSBB 

result in a slight increase in the end-to-end delay compared to the IEEE 802.15.4. As 

it is explained in Section 5.4.1, this is due to the sleep period of the nodes during their 

active sessions according to the occurrences of the deep fade in the medium. However, 

N2 faces fewer sleep opportunities due to its very good link status, which explains why 

DSBS, DSBB and the legacy standards have a close performance. It is clear from Figure 

6-6 that the proposed protocols outperform the IEEE 802.15.6 at all scenarios. As it is 

explained in Section 5.4.1, this is due to the long size of the MAC frame of the IEEE 

802.15.6, which cannot fit in the very short slot size of 1.875 ms, and therefore packets 

will be transmitted within multiple TDMA schedules, which increases their end-to-

end delay. Unlike the results depicted in Figure 5-2, it can be noticed from Figure 5-6  

that in most cases, DSBB performs worse than DSBS. This because DSBB allocates 

the nodes extra time slots according to the number of packets in their buffer, which 

also depends on the slot size, as it is explained in Equation 5 in Section 3.4. In fact the 

capacity of 1.875 ms slot size is very limited due to its very short size, hence 1.875 

cannot carry enough number of packets from the buffer. This means that packets 

transmission will always be deferred to the subsequent TDMA rounds, which 

increases packets delay. 
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Figure 5-6: Latency in an emergency for 1.875 ms slot size. 

 

Figure 5-7 shows that although the latency of the DSBS and DSBB is increased, the 

maximum rate of packets that are received after 125 ms is around 18%. The maximum 

rates at IEEE 802.15.4 and IEEE 802.15.6 are respectively 15% and over 50%. This 

means that at maximum, DSBS and DSBB result in around 3% more packets with 

delay over 125% compared to the IEEE 802.15.4. The maximum rate can be noticed at 

N3 and N5. This is because both N3 and N5 have a poor link status and therefore will 

have more sleep periods than the other nodes. Results indicate that the increase in the 

delay in DSBS and DSBB is acceptable pairing in mind that it is accompanied by a 

noticeable decrease in the packets loss. 

 

 
Figure 5-7: Rate of packets received with a delay over 125 ms. 
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It is shown in Figure 5-8 that the DSBS consumes less energy than both standards in all 

scenarios. This is because by following DSBS, the nodes are offered opportunities to 

sleep when their links encounter deep fade in the medium, which saves energy.  Not 

only DSBS outperforms the standards, but also it outperforms DSBB. As it is 

explained in Section 5.4.1, this is because DSBS offers the nodes in emergency fewer 

opportunities to use the channel compared to DSBB. Following DSBS, the duration of 

the extra slots which are allocated to nodes equals to the duration of the deep fade that 

the nodes faced during the previous TDMA round, which means not always the nodes 

will have the chance to use the medium for a long time, which saves energy. DSBB 

however, outperforms IEEE 802.15.4 at all nodes apart from the nodes of very good link 

status, where DSBB consumes slightly more energy than IEEE 802.15.4 and DSBS 

which is similar to the results of Figure 5-4 and due to the same reasons.  IEEE 

802.15.6 performs worse than all other algorithms, due to the contention based access 

followed in its first two RAP slots.  

Similar to the results achieved in Section 5.4.1, the overall results achieved for 1.875 

ms slot length confirm that that avoiding the deep fade in the channel and re-allocating 

the nodes extra slots based on their channel status and buffer status can tolerate both 

normal and emergency situations, even in very short time slot size. 

 

 
Figure 5-8: Total energy consumption for 1.875 ms slot size. 
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5.4.3 Results of 7.5 ms slot length 

Figure 5-9 to Figure 5-12 reveal that at the longer slot size, i.e. at 7.5 ms, the proposed 

algorithms still outperform the legacy standards. The only change that we notice is in 

the performance of the IEEE 802.15.6, which now outperforms the IEEE 802.15.4, 

because this slot size suits its packet length as it is explained in Section 4.3.2. 

 

 
Figure 5-9: Packets loss rate in an emergency for 7.5 ms slot size. 

 

 
Similar to the results achieved in Section 5.4.1 and 5.4.2, DSBS and DSBB perform worse 

than the standards in terms of the end-to-end delay. This is because DSBS and DSBB 

allow the nodes to sleep during their active sessions according to their links’ status, which 

delays the transmission of the nodes’ packets to the subsequent TDMA round. However, 

it can be noticed that DSBB outperforms DSBS because of the longer size of the time slot 

compared to 1.875 ms. This matches the results achieved in Figure 5-2, and confirms that 

the longer the length of the time slot the better is the performance of DSBB. This is 

rational, because as it is explained in Section 4.4, the allocation of the extra time slots 

performed by DSBB depends on the slot size of the TDMA schedule as well as the number 

of packets in the nodes’ buffer. The longer the slot size, the larger its capacity to carry 

packets from the nodes buffer, which explains why DSBB outperforms DSBS. 
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Figure 5-10: Latency in an emergency for 7.5 ms slot size. 

 

The increase in the end-to-end delay is acceptable because according to Figure 5-11, 

the maximum rate of packets with delay over 125 ms is fewer than 15% at IEEE 

802.15.4, and it is fewer than 20% at IEEE 802.15.6 whilst DSBS and DSBB has 10% 

more packets with delay over 125 ms compared to the IEEE 802.15.4. This increase 

in the packets end-to-end delay is accompanied by a decrease in the packets loss as it 

shown in Figure 5-9. 

 

 
Figure 5-11: Rate of packets received with a delay over 125 ms for 7.5 ms slot size. 
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When it comes to energy consumption, the results depicted in Figure 12 are similar to 

those achieved in Figure 5-4 and Figure 5-8. DSBS consumes less energy than all other 

protocols and at all scenarios. Only at nodes with very good links, DSBB consumes 

slightly more energy than IEEE 802.15.4 due to the same reasons presented in Section 

5.4.1. IEEE 802.15.6 still performs worse than all other algorithms, due to the 

contention based access followed in its first two RAP slots.  

Similar to the results achieved in Section 5.4.1 and Section 5.4.2, the overall results 

achieved for 7.5 ms slot length confirm that that avoiding the deep fade in the channel 

and re-allocating the nodes extra slots based on their channel status and buffer status 

can tolerate both normal and emergency situations, and regardless of the slot size. 

 

 
Figure 5-12: Total energy consumption for 7.5 ms slot size. 

 

 

Results achieved in this section not only confirm that the proposed protocols allow all 

the nodes to access the medium regardless of the context, but also improves that 

WBAN reliability and energy efficiency  in both normal and emergency situations 

regardless of the slot size. This provides an answer to the fourth and the fifth research 

questions presented in Section 1.4.   
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5.5 Conclusions 

While it is common that the increased transmission opportunities increase throughput, 

at the expense of increased energy consumption, the proposed algorithms proved a 

guarantee of the QoS in WBAN while decreasing energy consumption in both normal 

and emergency situations. Results reveal that Both DSBS and DSBB achieve less 

packets loss and energy consumption as opposed to IEEE 802.15.4 and IEEE 802.15.6, 

while allowing all nodes to access the channel in emergency situations. This provides 

an answer to the fourth and the fifth research questions presented in Section 3.4. The 

two proposed techniques reduce packets loss up to 63.4% and 90% with respect to 

their counterparts in IEEE 802.15.4 and 802.15.6 with an energy reduction up to 13% 

compared to the IEEE 802.15.6. Regarding the end-to-end delay, both DSBS and 

DSBB outperform IEEE 802.15.6, but have a slight increase in the delay over the IEEE 

802.15.4 at all nodes, apart from nodes with very good links’ status where their 

performances are close to IEEE 802.15.4. However, the increase in the delay is 

acceptable and meets the delay requirements, as the percentage of packets received with 

a delay over 125 ms increased only 10% at maximum over the IEEE 802.15.4. We can 

tell from the achieved results, that 3.75 ms slot length contributes in the best 

performance amongst the other two slot sizes. Actually, longer slot sizes expose the 

nodes with poor links to more chances to face deep fade and longer durations in the 

vulnerable medium. Using the proposed protocols, the nodes are going to sleep in order 

to avoid loosing packets, which increases the delay of their packets. On the other hand, 

very short slot sizes, such as the 1.875 ms will not give nodes enough time to access the 

medium, and it is very likely that if the node faces fading during this short period, it 

continues facing it in the next TDMA schedule, because the fading lasts for at least 10 

ms. Other efforts in literature, tended to adopt a longer slot size, such as Liu et al. in 

[26] who adopted 10 ms slot length. This explains why in order to avoid continuous 

packet loss due to the longtime of deep fade, they thought about reordering the nodes 

in the TDMA schedule, which still does not reduce the effect of the deep fade as it is 

explained earlier. However, adopting shorter slot size, such as the 3.75 ms hinders the 

node from occupying the channel for long time, while at the same time offers the node 

enough time to access the channel, which also results in a TDMA with a shorter 

schedule length. Consequently, there will be no need for re-ordering nodes in the 
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TDMA schedule, as a node will not occupy the channel for a long time, and the rest of 

the nodes will get a faster chance to use the channel, which looks as if the order of the 

nodes is changed in the schedule. 
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Chapter 6: A Context-Aware Communication         

6.1 Introduction 

As stated previously, WBAN has several challenging characteristics, one of which is its 

vulnerability to context and environmental changes. Nodes operate in the same context 

can have different reliability requirements (Section 1.2, Section 2.3.5). Although the 

proposed protocols prove their resilience to the heterogeneous traffic in both normal and 

emergency contexts, it is not sensible to provide all the sensors in WBAN with identical 

conditions and resources, because less important data might arise before the critical data, 

resulting in untrusted WBAN communication. In fact, the proposed techniques do not 

consider traffic priotrisation in scheduling the nodes in accessing the medium according 

to their context.   

Moreover, although experimental results achieved in Chapter 4 and Chapter 5 reveal that 

the proposed techniques improve the reliability and energy efficiency of WBAN in both 

normal and emergency situations, this improvement is accompanied with a slight increase 

in the delay. While a low percentage of latency in normal situations is not critical, it is 

crucial to receive the packets in emergencies in near real-time. Prevouis work tends to 

reduce the delay in emergencies in WBAN by proposing dynamic channel access 

techniques according to the context that might occur in WBAN. For example, the 

proposed work in [26, 28, 29] allocate nodes in emergencies more slots than other nodes 

in order to allow fast data transmission in near real time. This is achieved at the expense 

of other less important information sensed by nodes in a normal situation.  

Context-aware WBAN is a network in which wearable and implanted sensors’ situations 

can be described in accordance with the surrounding environment, according to which, 

their behavior can be modified [68]. Context awareness can assist in the interpretation of 

any physical and physiological data being monitored, and accounts for the current 

situation as it effects the body and the surrounding environment [68]. Thus, it can be used 

as a method to dynamically allocate the network resources to nodes, besides their channel 
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and buffer status. This involves prioritising nodes according to their situation, and 

according to the type and criticality of the data they sense. Various approaches can be 

adopted to assign priorities for heterogeneous nodes in different situations. A popular  

method is to check each node’s situation against a specified threshold and then assigning 

priority values accordingly [23]. However, WBAN has two levels of variation in the 

reliability requirements of its sensors: amongst heterogeneous sensors and within the 

same sensor, as it might run in different situations i.e. normal situations and emergencies.  

Therefore, adopting a constant or fixed threshold value for overall WBAN components is 

unlikely to be sufficient in all cases, and hence novel dynamic threshold mechanism and 

values should be considered. This idea is thoroughly discussed in a published survey 

article proposed in [5]. Another method is to to assign priorities for nodes according to 

their position on the human body. For example, ECG sensor is placed on the chest of the 

body and in the emergency context of the heart attack, ECG is assigned higher priority 

than the blood pressure sensors which is placed in the wrist. This approach is adopted in 

[69] and will be adopted in this chapter.  

This chapter investigates whether considering context awareness in allocating the nodes 

the available bandwidth besides the link and buffer statuses is beneficial to WBAN. In 

essence, this chapter investigates whether allowing nodes in emergencies to use the 

vulnerable and dynamic medium of WBAN for a longer time at the expense of other nodes 

in a normal situation, decreases the delay of nodes in emergency and improves WBAN 

performance. Therefore, this chapter should provide an answer to the seventh research 

question presented in Section 1.4. 

The second section of this chapter proposes a third technique, which schedules the nodes 

dynamically according to their context, while considering their channel and buffer status. 

The third proposed is called Dynamic Scheduling Based on the Context (DSBC) and it is 

going to be integrated to both DSBS and DSBB.  The third section presents the evaluation 

methodology of DSBC technique, and discusses the experimental results. The fourth 

section concludes the chapter and the evaluation results.  

6.2 Dynamic Scheduling Based on Context (DSBC) MAC 

During the normal state of WBAN, and as explained in Section 3.2, nodes avoid channel 

deep fade by switching off their transceivers during their active sessions. Thereafter, in 
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the next round, time slots are distributed based on either the duration of their sleep period 

and their buffer status  if the nodes are following DSBS, or based on the number of packets 

in the nodes’ buffer if the nodes are following DSBB, as explained in Section 3.3 and 

Section 3.4 respectively. The controller CRL detects the occurrences of emergencies as it 

is explained in Section 5.3, and when an emergency occurs, the controller switches to the 

emergency state and follows the DSBC technique, which considers the traffic context. 

The pseudocode of DSBC is depicted in Figure 6-1 and it works as follows: 

Throughout WBAN operations, the controller CRL records the number of times each node 

sleeps during its active session. In other words, CRL calculates the frequency of the 

occurrences of the deep fade in the link of each node. When an emergency occurs, those 

nodes that have slept most of the time during the previous TDMA rounds, i.e. their links 

encountered frequent occurrences of deep fade, will be prohibited from accessing the 

medium in the next TDMA round.  Nodes which are prohibited from accessing the 

medium are called penalty nodes as they are banned from accessing the channel, and they 

will donate some or all their slots to nodes in an emergency.  Consequently, in the next 

round, the number of extra slots E that should be offered to a node in emergency equals 

the number of slots offered by a penalty node. There could be more than one penalty node 

and more than one node in an emergency. The following definition describes how CRL 

decides that a certain node is a penalty node. 

Definition 6: Let F be the frequency of the occurrences of the deep fade in the link of 

each node, and let NE  and NP be the group of nodes in an emergency, and the group of 

penalty nodes, which will be prohibited from accessing the medium in the subsequent 

TDMA round, respectively. If for any node Ni, Fi > TH, then CRL decides that Ni is a 

penalty node and should be included in Np, where TH is a dynamic threshold used by 

the CRL to decide which nodes have slept more than half of the previous network 

operations time.  The value of TH changes dynamically according to the current time, 

and is calculated as follows:  

                                              𝑇𝑇𝑇𝑇 = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑖𝑖𝐶𝐶𝑡𝑡𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖(𝐶𝐶)
2

+  𝛼𝛼                                        (9) 

where α is a number added to check which node has slept more than half the previous 

period. According to Definition 6, the following definition emerges: 
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Definition 7:  If there are nodes in an emergency, i.e. NE   ≠ ∅, and there are penalty nodes, 

i.e. NP ≠ ∅, and the number of emergency nodes is less than or equal the number of penalty 

nodes i.e. |NE| ≤  |NP|, and the emergency nodes are different from the penalty nodes, i.e. 

NE  ≠ NP, then one penalty node offers all its original number of slots S to one node in an 

emergency. Hence, ∀Ni ∈ NE  ←  E  where E = S slots are taken from Ni ∈ NP. If all 

emergency nodes are allocated extra slots E, then the remaining penalty nodes will use 

their slots to access the medium as usual. 

Indeed, there are other three cases that should be discussed: (1) a penalty node is also in 

emergency, (2) the number of penalty nodes is less than the number of nodes in 

emergency, and (3) there are no penalty nodes at all.  

If the node in an emergency is also a penalty node, then allocating that node more slots is 

not beneficial at all, because spending more time in accessing a very poor link increases 

the loss of sensitive data. Therefore, the emergency node will not get extra slots, instead 

it will be assigned only the original number of slots S it has been allocated once the 

network is established, and E = 0. This case can be summarised in the following 

definition: 

Definition 8:  If NE  ≠  ∅, and  NP  ≠ ∅, and for any Ni ∈ NE , if  Ni ∈ NP,  i.e.  NE ∩ NP  ≠ 

∅,  then Ni ←  E =0 

However, if the number of penalty nodes is less than the number of nodes in an 

emergency, i.e. |NP| < |NE|, then the distribution of extra slots over emergency nodes will 

be conducted according to the priority of emergency nodes. Nodes with higher priority 

will get extra slots from the penalty nodes before the rest of the nodes in an emergency. 

Nodes are prioritised according to their relevance to the monitoring context. For instance, 

in the context of a heart attack, the sensor that measures the heart rate activity will be 

assigned extra slots before the sensor that senses the temperature. When all the slots of 

the penalty nodes are offered to nodes in an emergency, and a number of emergency nodes 

remain without being allocated extra slots, then those remaining emergency nodes get 

extra slots from the rest of the nodes, which are in a normal situation, but which do not 

belong to the penalty group. Slots are distributed over the emergency nodes as long as 

there are enough slots to distribute over the rest of the nodes in a normal situation. This 

depends on the parameter of slotsMinValue that was identified in Chapter 3.  



 
 

100 

Likewise, if an emergency state is triggered, and there were no penalty nodes found, i.e. 

If NE  ≠  ∅, but  NP  = ∅,, then the nodes in an emergency will be offered the maximum 

number of slots according to their priority which is related to their monitoring context. 

Extra slots E will be taken from nodes in a normal situation, keeping in mind that the rest 

of the nodes in a normal situation are offered the slotsMinValue.  
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Figure 6-1: Dynamic Scheduling Based on Context (DSBC). 
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6.3 Simulation setup and evaluation methodology 

DSBC is upgraded to DSBS and DSBB resulting in DSBSC and DSBBC, and therefore, 

the performance of DSBSC and DSBBC is compared with DSBS and DSBB as well as 

with the legacy standards. The aim of this section is to investigate the following issues: 

1) whether distributing slots based on the context besides channel status and buffer status 

improve the performance of DSBS and DSBB in emergency especially in terms of the 

delay 2) and whether offering the nodes in emergency longer time in accessing the 

medium at the expense of nodes in normal situation, while considering the realistic 

channel behavior improves the performance of WBAN. 

The protocols are compared against the reliability, which is measured in terms of packets 

loss, timeliness which is measured in terms of end-to-end delay and energy efficiency 

which is measured in terms of total energy consumption. The experiments of this section 

adopt the seven scenarios explained in Section 5.4, wherein each scenario the emergency 

situation is applied on two different nodes, which were chosen according to their channel 

status.  The simulation parameters are identical to those presented in Table 4-1, only one 

new parameter is added, that is α which’s value is set to 10. The IDs of the nodes are used 

to indicate their priority, i.e. N1 is assumed to have higher priority than N2, N2 is assumed 

to have higher priority than N3 and so on.  Experiments are conducted on three different 

slot sizes: short slot size with a length of 1.867 ms, medium slot size with a length of 3.75 

ms and long slot size with a length of 7.5 ms, each experiment is allowed to run 20 times 

to acquire a reasonable confidence interval. The following subsections explain the results 

achieved for each performance metric.  

6.3.1 Packets loss rate 

Figure 6-2, Figure 6-3 and Figure 6-4 reveal that regardless of the slot size, the four 

proposed protocols outperform the legacy standards. However, DSBSC and DSBBC 

perform worse than DSBS and DSBB at all nodes apart from nodes with good link status, 

i.e. N2 and N4 where the performances of the algorithms are close.  This is because by 

following DSBSC and DSBBC, the node in an emergency could also be a penalty, i.e. has 

a very poor link status, such as N3. N3 might not get extra slots E at all, and it will get only 

the original number of slots S, which is not enough to send the increased number of 



 
 

103 

packets stored in its buffer, and, consequently, the packets will be lost due to a buffer 

overflow, not due to channel deep fade. Moreover, it is highly likely that if nodes such as 

N1 and N5, are in an emergency, then there are no penalty nodes found, because according 

to Table 5-1, N1, N5, also have bad links ‘status already. If N1, N5 are not penalty nodes, 

then they will get extra slots from other nodes, as long as the rest of the nodes in the 

normal situation acquire slotsMinValue. However, if the link of the node, which had been 

allocated extra slots suddenly turns to poor afterwards, then the node of that link will 

sleep longer time than the other nodes as it is explained in Section 3.2, which causes a 

buffer overflow and more packets loss. Loosing packets could last during the whole 

emergency period. By following DSBS and DSBB however, nodes will continue getting 

extra slots according to only to their links and buffer statuses, which will occur 

interchangeably during WBAN operations, and thus all nodes at some points will be 

allocated extra slots, and if the nodes that acquire extra slots are also in emergency, then 

that is all that they need to send their urgent data as soon as possible. At nodes with good 

links’ status, i.e. N2 and N4, the proposed algorithms have a close performance with and 

without considering the traffic context. This is because the link status of N2 is stable 

throughout the network operations, and whether N2 gets extra slots according to its traffic 

context, or according to the channel or its buffer status, the transmission of N2 will always 

succeed.  The results of the end-to-end delay and energy consumption are presented in 

Section 6.3.2 and Section 6.3.3 respectively.  

 

 
Figure 6-2: Packets loss rate for nodes in emergencies using 1.875 ms slot size. 
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Figure 6-3: Packets loss rate for nodes in emergencies using 3.75 ms slot size. 

 

 

 
Figure 6-4: Packets loss rate for nodes in emergencies using 7.5 ms slot size. 

 

 

6.3.2 Latency 

As it is noticed in Section 6.3.1, the performances of both DSBSC and DSBBC almost 

follow the same pattern, therefore, in the following subsections both DSBSC and DSBBC 

are referred to as DSBC. Although the aim of proposing the DSBC is to improve the 

performance of DSBS and DSBB in emergencies especially in terms of the delay, Figure 

6-5, Figure 6-6 and Figure 6-7 reveal that DSBC outperforms DSBS and DSBB only at 

nodes with good and very good links status, i.e. N4 and N2 respectively. This is rational as 

allocating extra slots to nodes with good and very good links status offers those nodes 
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longer time in successfully access the channel, which reduces their packets end-to-end 

delay. Besides DSBS and DSBB, DSBC outperforms the IEEE 802.15.4 and IEEE 

802.15.6 at N2. This is because when emergency occurs, N2 is allocated slots more than 

other in order to send its urgent as soon as possible, whereas in the normal state, N2 gets 

extra slots based on its buffer and channel status, and because N2 has a very good link 

status, it always succeeds in sending its packets at the lowest delay possible regardless of 

the context.  

 

 
Figure 6-5: Latency for nodes in emergencies using 1.875 ms slot size. 

 

 

 

 
Figure 6-6: Latency for nodes in emergencies using 3.75 ms slot size. 
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Figure 6-7: Latency for nodes in emergencies using 7.5 ms slot size. 

 

 

Results depicted in Figure 6-8, Figure 6-9, and Figure 6-10 are related to the results 

depicted in Figure 6-5, Figure 6-6, and Figure 6-7.  DSBC outperforms DSBS, DSBB and 

the legacy standards only at N2 and N4. However, it is only when both N2 and N4 are chosen 

to operate together in the same scenario, i.e. Scenario 5, DSBS or DSBB outperforms the 

performance of DSBC at N4. This is because in some cases, the number of penalty nodes 

is less than the number of nodes in an emergency. Therefore, the nodes have to distribute 

their slots over the nodes in an emergency, and the node with higher priority will take 

more slots than other nodes in an emergency, which means N2 will get more slots than N4. 

As a result, N2 will have longer chances to successfully use the medium compared to N4, 

which explains why if the two nodes are in an emergency and operate in the same 

scenario, the delay at N2 is less than the delay at N4.  This explains why at Scenario 5, N4 

has more packets received after 125 ms if it follows DSBC as opposed to DSBS and 

DSBB. For the remaining scenarios, Figure 6-8, Figure 6-9, and Figure 6-10 reveal that 

regardless of the slot length, DSBC increases the rate of packets received after 125 at all 

nodes apart from N2 and N4.  
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Figure 6-8: Rate of packets with a delay over 125 ms using 1.875 ms slot size. 

 

 

 
Figure 6-9: Rate of packets with a delay over 125 ms using 3.75 ms slot size. 

 

 

 
Figure 6-10: Rate of packets with a delay over 125 ms using 7.5 ms slot size. 
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6.3.3 Energy consumption 

Figure 6-11, Figure 6-12, and Figure 6-13 reveal that in general and apart from nodes 

with good and very good link status, i.e. N2 and N4, DSBC consumes slightly less energy 

compared to DSBS and DSBB. In fact, as it is stated in Table 5-1, N3 and N5 have poor 

link status. Therefore it is very likely they will be considered as penalty nodes when an 

emergency situation occurs, and therefore its unlikely N3 and N5 acquire extra slots, 

instead they will be offered the original number of slots S they acquired once the network 

is established. This explains why DSBC consumes a bit less energy compared to the 

proposed protocols, especially when compared to DSBB at it is revealed in Figure 6-12 

and Figure 6-13. Actually DSBB allocates the nodes extra slots based on the number of 

packets in their buffer, and because N3 and N5 are in an emergency, they have an increased 

number of packets in their buffer. Consequently DSBB offers N3 and N5 longer time to 

access the channel compared to DSBC, which results in more energy consumption as 

opposed to DSBC. However, although N1 has also a poor link status, it is revealed in 

Figure 6-13 that DSBC performs worse than DSBS and DSBB at N1 (Scenario 2 and 

Scenario 3). This is because according to its ID, N1 has higher priority in using the 

medium compared to other nodes, which means that if it is not a penalty node, N1 has to 

be allocated more slots compared to other nodes. This offers N1 more time to access the 

medium, which increases its energy consumption.  

 

 
Figure 6-11: Total energy consumption in emergencies using 1.875 ms slot size. 
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It is clear from Figure 6-12 and Figure 6-13 that at scenarios, which involve N2 and N4, 

DSBC performs worse than the proposed protocols. This is rational because N2 and N4 

have very good and good links’ status respectively, and thus when an emergency occurs, 

DSBC allocates N2 and N4 extra slots at the expense of the other nodes. This means that 

N2 and N4 will have a longer time in successfully accessing the channel, and consequently, 

N2 and N4 consumes more energy than other nodes. At the same time, DSBS and DSBB 

offer N2 and N4 extra slots only if they needed to sleep in the previous TDMA round due 

to deep fade, which is unlikely to occur at N2 and N4 because they have a very good and 

good link status respectively. Having more time to access the medium not only causes 

DSBC to perform worse than the IEEE 802.15.4 standard at N2 and N4, but also causes 

DSBC to perform worse than the IEEE 802.15.6 at N2 as it is revealed in Figure 6-13.    

 

 
Figure 6-12: Total energy consumption in emergencies using 3.75 ms slot size. 
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Figure 6-13: Total energy consumption in emergencies using 7.5 ms slot size. 

 

6.4   Conclusions 

According to the achieved results, upgrading DSBS and DSBB with context awareness 

technique does not improve the performance of WBAN in emergencies. Results achieved 

confirm that regardless of the slot length, if we consider the realistic behavior of WBAN 

medium, then allocating the nodes in emergency more bandwidth, while prohibiting other 

nodes from accessing the vulnerable WBAN medium does not improve WBAN 

performance in emergencies. This answers the seventh research question presented in 

Section 1.4. DSBC outperforms the proposed protocols only in terms of the end-to-end 

delay and only at nodes with very good links status, as those nodes will continue using 

the channel successfully. Nevertheless, this improvement is accompanied by a severe 

increase in energy consumption. On the other hand, according to the results achieved in 

Chapter 4, and Chapter 5, both DSBS and DSBB outperform the WBAN de-facto 

standards in terms of packets loss and energy consumption and at an acceptable delay 

performance. The improvements achieved in Chapter 4 and Chapter 5 apply to all nodes 

regardless of their links’ status. More importantly, all the nodes have the chance to use 

the medium in both normal and emergency situations, and no node is prohibited from 

channel access regardless of its context. This contradicts the recommendation proposed 

in the literature, which states that offering nodes in emergencies more slots than other 

nodes improves WBAN reliability and timeliness. However, those claims can be true only 

if idealistic channel behavior is considered and not the realistic one.  To sum up, it can be 

confirmed that due to the poor channel behavior of WBAN, considering traffic context in 
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emergencies degrades WBAN performance in terms of reliability, timeliness and energy 

instead of improving it. Considering only the link and the buffer statuses of the nodes are 

enough to improve the WBAN reliability and energy efficiency in both normal and 

emergency situations. 
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Chapter 7: Conclusions and Future Directions 

7.1   Summary of the work done 

This thesis outlined and discussed the state-of-the-art in WBAN reliability in general and 

the challenge of the deep fade phenomenon in particular. In addition, this thesis highlights 

the importance of tackling WBAN power efficiency, buffer constraints and heterogeneity 

of WBAN contexts and devises (Section 1.2, Section 1.3, Section 1.5, and Section 2.3.4).  

Reliability and efficiency are vital to guarantee the success of the next generation of 

WBANs and their ability to support a rich portfolio of applications, especially in the e-

health field where any loss or erroneous data could be fatal (Section 1.2, Section 1.3, 

Section 2.3.2). It is pointed out thoroughly in this thesis that neither static TDMA 

mechanisms adopted by WBAN de-facto standards, nor the dynamic TDMA slot 

allocation solutions proposed in literutre provide a reliable and energy efficient WBAN 

(Section 1.1, Section 1.2, Section 1.3, Section 2.4).  

In fact, the framework for channel access solutions in WBAN cannot be considered 

favorable for WBAN without avoiding the deep fade, such that the critical data could be 

achieved even though the medium is vulnerable.  The requirements of the nodes in terms 

of their energy and buffer constraints, buffer loads, fairness optimised and utilised 

channel access should also be considered in both normal and emergency contexts (Section 

1.1, Section 1.2, Section 1.3, Section 1.5, Section 2.5).  

Accordingly, this thesis proposes two novel, generic and dynamic TDMA based MAC 

scheduling algorithms to improve the reliability and energy efficiency of WBAN 

(Chapter 3). In essence, the proposed techniques provide reasonable answers to the 

research questions presented in Section 1.4, and propose solutions for the drawbacks of 

the discussed TDMA techniques proposed in the literature for WBAN. The achieved 

answers for the research questions presented in Section 1.4 are as follows: 
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• The first two research questions presented in Section 1.4 have been answered by 

proposing the Adaptive Sleep TDMA MAC technique presented in Section 3.2, which 

enables the nodes to avoid deep fade in their links and without depending on the 

controller. 

• The proposed DSBS and DSBB presented in Section 3.3 and 3.4 reepsctively provide 

a favouirable solution for the third research question presented in Section 1.4. Both 

DSBS and DSBB exploit the deep fade of the links in WBAN and use it as a criterion 

to dynamically allocate slots to nodes (Section 3.3, Section 3.4). Besides the channel 

status, DSBS and DSBB schedule the nodes adaptively according to their needs, 

which depend on the load in their buffer.  

• According to the results achieved in Section 4.3 and Section 5.4, the proposed 

protocols outperform the WBAN legacy standards in terms of packets loss and energy 

consumption and at an acceptable delay performance. This improvement applies to 

all nodes regardless of their links status, and more importantly, all the nodes have a 

chance to use the medium regardless of their context, and no node is prohibited from 

channel access whether it is in a normal situation or in an emergency. This provides 

an answer to the fourth research question presented in Section 1.4. 

• Results achieved in Section 5.4 confirm that in addition to improving WBAN 

reliability and energy efficiency in normal situations, the proposed protocols 

guarantee better QoS in emergencies while minimising energy consumption. This 

answers the fifth research question presented in Section 1.4. 

• All the protocols proposed in Chapter 3 do not require substantial amendments to the 

IEEE 802.15.4 and IEEE 802.15.6 superframe structures. Only one extra buffer field 

is added to the data packet format. This answers the sixth research question presented 

in Section 1.4.  

• Results achieved in Section 6.3 provide a proof that allocating time slots to nodes 

according to their traffic context is not beneficial in improving WBAN performance. 

Considering only the status of the channel and the load in the nodes’ buffer have the 

potential to improve WBAN reliability and energy efficiency in both the normal and 
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the emergency situations. This answers the seventh research question presented in 

Section 1.4 

Additionaly, the experimental results achievd in Section 4.3.2, Section 5.4, and Section 

6.3 reveal that short slot lengths contribute to better performance. This is because a short 

slot gives nodes enough time to access the channel, while it reduces the probability that 

their links will experience deep fade in the channel. This work revealed that careful 

parametrisation of the slot size of TDMA is highly recommended when deploying WBAN 

MAC protocols.  

As a final word, regarding WSN, we used to say: the lifetime of a sensor determines the 

lifetime of WSN, but in relation to WBAN we say: the behaviour of a sensor determines 

the lifetime of the human. Hence, if we cannot achieve the highest degree of reliability 

with 0% error as an acceptable QoS in WBAN, then it is better to shift to wired e-health 

networks despite their limitations on individual’s movements. We must always remember 

that the main objective of WBAN is to improve and extend human life, it is not intended 

to offer luxury. 

7.2   Challenging issues and future work 

The new protocols proposed in this thesis provide a favorable solution to the research 

problem identified in Section 1.3, provide reasonable answers to the research questions 

listed in Section 1.4, and achieve the research aim and objectives listed in Section 1.5. As 

a consequence of doing this work, a number of new questions have been raised. Possible 

answers to those new research questions present sophisticated solutions, and tackling 

them is beyond the scope of a single PhD thesis.  In this section the emerged challenging 

issues are examined in detail, and possible solutions are proposed and discussed in 

Section 7.2.1. 

A crucial point that this thesis has not tackled is the loss of the control frames sent from 

the controller. The proposed protocols in this thesis depend on the frequent control frames 

sent from the controller to manage the network and to sychronise the nodes in the network 

(Section 3.2). In fact, if data packets sent from nodes could be lost due to the long 

durations and frequent deep fade occurrences in WBAN medium, the control frames sent 

from the controller could be lost too. Control frames carry sensitive information and they 
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are sent by the controller successively, and if a control frame is lost at some point due to 

deep fade in the medium for example, nodes will wait for the next control frame, which 

will be sent after the current TDMA schedule ends. This increases the end to end delay 

of the data packets sent from nodes.  More importantly, multiple successive loss of control 

frames would result in erroneous network outputs, because the overall nodes would be 

disconnected from the network, which makes WBAN extremely untrustworthy. 

Therefore, it is crucial to consider this limitation and find solutions that guarantee 

successful transmission of the controller control frames.  

The second challenging issue is that the proposed protocols are based on a re-active 

approach, which allows the nodes first to test the channel status by allowing them to 

transmit a data packet at the beginning of their time slots,  and once a packet is lost,  nodes 

realise that  their links’ encounter deep fade (Section 3.2). Although this method 

minimises packets loss, it does not eliminate it to its lowest level.  Hence, other proactive 

ways should be integrated to the proposed protocols that assist the nodes links’ status 

ahead before the actual packets transmission tasks place, and which gives the nodes a 

chance to take direct actions accordingly. 

Despite the heterogeneity of WBAN sensor nodes, their physiological sensed data is 

correlated (Section 1.2, Section 2.4). For example, both the ECG and hemodynamic 

signals, such as blood pressure, have correlated information, due to the physiological 

correlation of the mechanical and electrical heart functions [42]. Physiological 

information also has a direct correlation with environmental information [28, 29].  

Although correlation in physiological information is already considered in this thesis by 

adopting TDMA based channel access mechanisms (to avoid simultaneous transmission 

of sensors in emergencies (Section 1.2, Section 2.4)), correlation in the medical data can 

be harnessed to overcome various limitations in WBAN medium, one of which is the 

deep in WBAN medium.  Therefore, other techniques that prioritise nodes in an 

emergency, while considering the correlation in the physiological information should be 

upgraded to the proposed protocols.  
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7.2.1 Solutions for the challenging issues 

Regarding the first challenging issue, it is found that low bit rate traffic (up to 50 bps) 

such as security keys and passwords can be transmitted through the human body, without 

the need to implement a customised transmitter equipment. The interesting study in [70] 

reveals that devices with fingerprint sensors or touchpad can be used as transmitters to 

send data information through the human body, which will be received by wireless 

receivers that are in contact with the human body. For example, instead of manually 

typing a secret key or a password for the glucose or blood pressure monitors using a 

smartphone, the patients can touch their fingerprint sensor on the smartphone to directly 

transmit the secret key to the wearable devices on the body using the human body as a 

conductor instead of adopting RF wireless communication [70].  

This idea can be of a great benefit for synchronising nodes in accessing WBAN medium, 

and could provide a potential solution for the first limitation of this thesis regarding the 

continuous loss of control frames sent by the controller. For example, as an alternative to 

the RF wireless medium, control frames from the controller could be sent through the 

human body to precisely schedule the wearable sensors placed on the human body. By 

receiving the control frame, the wearable sensors on the human body can send their data 

packets to the controller, by accessing the RF wireless medium of WBAN as usual. RF 

channel access occurs according to the time schedule received by wearable sensors in the 

control frame, and which is updated dynamically according to any of the two generic 

protocols proposed in this thesis. This not only would overcome the very vulnerable 

wireless medium of the WBAN, but would make the WBAN more immune to security 

attacks.  This will improve WBAN reliability even more and make it more trustworthy. 

Moreover, this solution provides an opportunity to practically evaluate the potential of 

proposed protocols on a test bed rather than only simulation, which would provide more 

accurate results and could help in considering adopting the proposed protocols for WBAN 

in the future.  

The second challenging issue could be tackled by implementing a learning algorithm in 

the controller, which studies the pattern of the occurrences of the deep fade in each node’s 

link during the node’s duty cycles.  This is supposed to be a proactive solution, and it is 

assumed to help in resource allocation decision. This algorithm can be achieved by 
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adopting a Markov-Model of the fading with three states (bad, good, and excellent). 

Because the controller is a resource rich node, this limitation can also be tackled by 

integrating the controller with one of the machine learning techniques, such as the neural 

networks, through which the controller analysis the pattern in the links’ status of the 

nodes.    

Despite the possible problems that could occur due to data correlation in WBAN, existing 

interconnections can be harnessed by performing data fusion. The study in [42]  was 

found to be the first and only study to mention this technique but for fault detection. Data 

fusion can be considered an initial step towards substituting the lost data packets of a 

specific node which’s link encounters deep fade at a certain time. In this approach, a 

central specific node aggregates the decisions from the remaining network nodes. This 

so-called data fusion node can determine the abnormal status of other nodes by comparing 

data from a set of nodes [5]. The fusion node can achieve the lost data of some sensors 

by performing some derivations from other available data that has been sent by other 

sensors, i.e. substituting one piece of information for another, allowing a temporary flow 

of information.  This could be considered a temporary solution, until the node’s link return 

to its good status. This technique is very efficient, especially for data centric applications 

that require detection precision. Proposed data fusion mechanisms that harness the 

correlation in physiological data require statistical and data analysis techniques that test 

correlations in the data sets that carry the physiological information.   

7.2.2 Suggested potential research areas  

Another promising applications area where the proposed protocols can be used besides 

WBAN applications, is the industrial automation. In this realm, an evolving definition 

has emerged recently, that is the Factories of the Future (FoF). FoF is the European 

Union's main program for research and innovation in advanced manufacturing for 

realising the next (the fourth) industrial revolution [71]. FoF marks the beginning of a 

new era of manufacturing characterised by overall automation and complete use of 

technology in and outside manufacturing. In other words, FOF resembles the convergence 

of the mechanical age emerged by the industrial revolution and the digital age, in which 

huge amounts of data can be stored and retrieved in the blink of an eye [71, 72].   
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The main aim of FoF is to propose technologies that could fulfil two major requirements: 

the ultra-high reliability in terms of guaranteed message delivery for industrial 

automation with very low latency bounds down to 1 ms [73]. The literature states that the 

physical and MAC layers are the major contributors to the end to end delay in wireless 

industrial automation [74].  Therefore, it is important to design lower layers’ protocols 

with the lowest possible level of latency, while achieving the highest possible reliability 

to fulfill FoF requirements.  
The current commonly used industrial wireless communication solutions depend on the 

customised radio stacks of the IEEE lower layers technologies [74]. One example is the 

IEEE 802.15.4e standard, which is proposed as an amendment to the MAC layer of the 

IEEE 802.15.4 and published in 2012 to support industrial automation [75, 76]. IEEE 

802.15.4e is basically proposed to solve two problems: 1) the high level of fading and 

interference due to the shared communication medium confined within one wireless 

channel, 2) energy dissipation by routers, which are always on regardless of their traffic 

[75, 76]. To solve those problems, the IEEE 802.15.4e adopts two schemes: The first 

scheme is called the Time Slotted Channel Hopping (TSCH) through which the IEEE 

802.15.4e adopts both time synchronisation scheduling and channel hopping [75, 76, 77].   

The main aim of TSCH is to achieve the highest possible level of reliability by facilitating 

multi-hopping mechanism as a way to avoid the effects of deep fading and compact 

interference in the medium of the short range industrial communication. The second aim 

is to achieve the lowest possible level of energy consumption by adopting excessive duty 

cycling mechanisms through the proposed synchronisation schedule [75, 76, 77]. Those 

two aims are the driving force for proposing DSBS and DSBB protocols in this thesis. 

Both DSBS and DSBB succeed in achieving a reliable and energy efficient WBAN 

considering only one channel to operate within, without the need to deploy the complexity 

of channel switching, channel allocation mechanisms, and channel overlapping and 

coexistence  considerations.   

In its second scheme, the IEEE 802.15.4e supports factory automation by proposing a 

highly efficient TDMA based MAC solution, which adopts a superframe structure of a 

fixed length time slots. In order to achieve a latency of less than 10 ms, the proposed 

superframe involves deterministic time slots, wherein each time slot is dedicated to one 

node [75, 76]. Hence, there will be no need for nodes addressing, which reduces the MAC 

header, and consequently reduces the packets delay. Experimental results achieved in 
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Section 6.4.1 reveal that with careful parametrisation of the TDMA schedule in terms of 

a slot length and schedule length, this goal is indeed attainable by adopting the proposed 

DSBS and DSBB protocols. This implies that the proposed protocols have potential in 

fulfilling the industrial automation requirements, as they can improve latency as well as 

reliability and energy efficiency.  

Although the target area of this thesis is the WBAN medical field, the proposed protocols 

are generic and can be adopted by other areas that requires strict reliable and energy 

efficient short-range communications, such as the industrial arena. Therefore, one of the 

future research directions of the solutions proposed in this thesis is to evaluate the 

performance of DSBS and DSBB in industrial automation scenarios. Besides, hybrid 

ideas can be emerged by merging concepts from the IEEE 802.15.4e mechanisms and the 

concepts of the proposed protocols in this thesis. Merged concepts would help in 

achieving ultra-reliability and low latency for the aim of fulfilling the requirements of 

FoF.         
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Appendix: A Typical WBAN Sensor and 

Wearable Devices 

Minimising the size of electronic circuits has been a key role in the development of 

wearable devices. Recent advances in the field of micro-electro-mechanical systems have 

allowed researchers to develop small size circuits for health monitoring purposes. Such 

circuits include microcontroller, transceiver or radio transmission, sensing capability, and 

amplification. Figure A-1 is an example of such sensing device, which  has the capability 

of capturing physiological  information and transmit the data through wireless medium to 

a central unit using a low-power radio transceiver. Further size reduction into System-on-

Chip implementations has been achieved by using batch fabrication techniques, which 

also decreased the cost of sensors. Continouis developments in the field of electronics are 

anticipated to lead to manufacturing of smaller, lighter and more comfortable wearable 

systems [78]. 

 

 
Figure A-1: A typical WBAN sensor devise [78]. 

 

The electrocardiogram (ECG) is one of the most important biosignals that provide 

information about the cardiovascular system. Figure A-2 depicts an example of  a first-
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generation wireless ECG patch developed by Holst Centre/Imec in 2008. Holst Centre is 

an independent center that develops technologies and electronics for healthcare and 

Internet of Things [79]. Figure A-2 shows a wireless low-power ECG monitoring patch, 

which also integrates a low-power microcontroller, low-power radio, battery and antenna. 

The wireless ECG patch is implemented in ambulatory settings [79]. 

 

 
Figure A-2: Wireless ECG patch, developed at Holst Centre/Imec [79]. 

 

Figure A-3 depicts a new 12-lead ECG sensor devise developed by the Electronics and 

Medical Signal Processing (EMSP) research group in Technische Universitaet in Berlin. 

The group is specialised in developing electronics for energy and automation, especially 

in the field of wearable healthcare technologies [80]. The devise is designed for laboratory 

and ambulatory implementations, with special considerations to ensure a good signal 

quality. The devise sampling rates is up to 1 kHz. The devise integrates battery (life for 

more than 48 hours), wireless synchronisation capabilities with other sensor nodes, 

wireless data streaming to external devices, such as laptops and smartphones, active 

electrodes combining active pre-processing and filtering circuits, 3-axis acceleration 

sensor on each electrode [80].  

http://www.holstcentre.com/
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Figure A-3: ECG sensor developed by Technische Universitaet Berlin [80]. 

 

 

Figure A-4 shows another example of wireless biosignal sensor devise, which is a pulse 

oximeter.  This device is a low power and wearable devise developed in 2004 by a medical 

research project at Harvard University, namely CodeBlue. This project tackles pre-

hospital and in-hospital emergency care, disaster response and stroke patient 

rehabilitation. The device transmits periodic packets which carries heart rate, SpO2 

(blood oxygen saturation), and plethysmogram waveform data [81].  

 

 
Figure A-4: Wireless pulse oximeter developed by CodeBlue [81]. 
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Figure A-5 depicts low weight, low power consumed and comfortable to wear pulse 

oximeter developed by Deepak et al. in 2015. The devise is designed to be used by patients 

in their daily life. The device integrates a microcontroller for controlling the processes in 

the sensor module. ZigBee technology is adopted for wireless communications. The data 

such as heart rate, SpO2, battery information and wireless signal strength are stored in 

microcontroller and sent to base nodes [82].  

 

 
Figure A-5: Sensor node of pulse oximeter worn on wrist and finger print [82]. 

 

 

Figure A-6 depicts a Photoplethysmogram (PPG) devise, which is dual pulse oximeter 

devise developed by EMSP group. PPG provides information concerning pulse rate and 

wavevelocity, SpO2 and respiratory activity. It can extract general information regarding 

arterial elasticity and aging. More information about the description of the devise can be 

found in [80]. 
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Figure A-6: Dual pulse oximeter developed by Technische Universitaet Berlin [80]. 

 

 

Figure A-7 depicts a new electrodermal activity (EDA) developed recently by EMSP 

group. EDA is assessed by measuring the electrical conductance of the skin. Skin 

conductance can be used as an indication of psychological or physiological arousal. The 

devise has a sampling rate up to 8 kHz. The devise integrates battery (life for more than 

48 hours), 12 Bit ADC, wireless time synchronisation within WBAN, wireless data 

streaming to external devices, low power microcontroller, signal pre-processing 

capabilities. More information about the components of the devise can be found in [80]. 

 

 

 

Figure A-7: EDA developed by Technische Universitaet Berlin [80]. 
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