

A Pattern-Driven Corpus to

Predictive Analytics in Mitigating

SQL Injection Attack

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS OF EDINBURGH NAPIER UNIVERSITY,

FOR THE AWARD OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING, COMPUTING & CREATIVE

INDUSTRIES

Solomon Ogbomon Uwagbole

September 2018

i

Declaration

This thesis is the result of my work and includes nothing, which is the outcome of work

done in collaboration except where explicitly indicated in the text. It has not been

previously submitted, in part or whole, to any university or institution for any degree,

diploma, or other qualification.

Signed: Solomon Ogbomon Uwagbole

Date:

ii

Copyright

Copyright in the text of this thesis rests with the Author. Copies (by any process) either

in full or of extracts, may be made only by instructions given by the Author and lodged

in the Edinburgh Napier University Library. Details may be obtained from the Librarian.

This page must form part of any such copies made. Further copies (by any process) of

copies made by such instructions may not be made without the permission (in writing) of

the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Author, subject to any prior agreement to the contrary, and may not

be made available for use by third parties without the written permission of the Author,

which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Dean of the School of Computing.

iii

Acknowledgements

Balancing PhD research with work commitments is a challenging combination which I

could not have done without the support of my families, supervisors and Napier

University. My motto to any undertaking is small incremental ideas are building blocks

to a big idea; this remains my inner driving force throughout this PhD journey.

I thank my mother and father, Mrs Agnes Etusi Ogbomon and late Mr Paul Ogbomon

Uwagbole who have worked hard to implant the value of education in me and my siblings.

The entire family of Paul Ogbomon Uwagbole, grandparents late Mrs Fatima Imongirie

and Pa Agene Akhuemonkhan. Beloved Uncles late Friday Usiholo Imongirie and

Clement Agene Akhuemonkhan, RIP. My profound thanks to Ambassador Amerib-Okun

Okoedion and family, including Dr. Frederick Okoedion and family for their role model

and assistance.

My daily motivation to continue the PhD journey is drawn from the extended family

members, including those who are no longer with us. I remembered here my immediate

late brother and his son Ojie-amien Innocent Ogbomon Uwagbole and Israel Ogbomon

Uwagbole, RIP. My thanks to Mr & Mrs J Ikhine, Josephine, Alenbesunu, Ekihalo,

Omontese and Obehi Ogbomon Uwagbole. My profound thanks to Suraya Bte Abdul

Hameed for her immeasurable assistance, including those I forgot to mention here.

I am most grateful to my wife Mrs Sarah Uwagbole and our son Isaac Ogbomon

Uwagbole who is born during the research journey and have started school for their

support. I also use this opportunity to thank Martin & Sue Muncer, not the least for

helping with Isaac’s school runs.

My gratitude to the School of Computing, Napier University for the opportunity to

allow me to go through this PhD journey. The PhD has been very challenging for me as

it was undertaken at my midlife with juggling between existing commitments at work,

family and academics.

 I could not have come to this day without the support of my supervisors and panel

chair. My profound thanks to Professor William Bill Buchanan OBE for his patience

including Professor Jessie Kennedy and Dr Lu Fan.

iv

Contents
1 Introduction .. 1

1.1 Introduction ... 1

1.2 Research Goals .. 7

1.3 Contributions ... 8

1.4 Thesis Chapters Outline .. 11

1.4.1 Overview ... 11

1.4.2 Chapter 2: Background ... 11

1.4.3 Chapter 3: Literature Review .. 12

1.4.4 Chapter 4: Numerical Encoding to Tame SQLIA ... 13

1.4.5 Chapter 5: Applied predictive analytics to mitigate SQLIA 14

1.4.6 Chapter 6: Pattern-driven data set to mitigate SQLIA 15

1.4.7 Chapter 7: Conclusion ... 16

2 Background ... 17

2.1 Introduction ... 17

2.2 SQL Injection Mechanisms ... 18

2.2.1 SQL Injection through Web Form Input ... 18

2.2.2 SQLIA through query strings .. 19

2.2.3 SQLIA through HTTP header fields ... 19

2.2.4 SQLIA through cookies .. 20

2.2.5 SQLIA through the second-order attack ... 20

2.3 SQLIA intent ... 20

2.3.1 Identifying injectable websites .. 21

2.3.2 Determining database schema ... 21

2.3.3 Evading detection .. 21

2.3.4 Circumvent confidentiality, integrity and availability 21

2.4 SQLIA types .. 22

2.4.1 Tautology .. 22

2.4.2 Invalid/logical incorrect query .. 23

2.4.3 Union ... 24

2.4.4 Piggyback queries ... 24

2.4.5 Stored procedure ... 24

2.4.6 Time-based query .. 24

2.4.7 Alternate encoding obfuscation ... 24

v

2.5 Principles of Applied Techniques ... 25

2.5.1 FSA fundamentals ... 25

2.5.2 Fiddler Web Proxy Application Programming Interface (API) 26

2.5.3 Machine Learning (Thesis perspective) .. 27

2.5.3.1 ML fundamentals .. 27

2.5.3.2 Traditional programming vs Machine learning... 27

2.5.3.3 Data set ... 29

2.5.3.4 Learning algorithms .. 31

2.5.3.5 MAML Platform ... 32

2.6 Conclusion ... 33

3 Literature Review ... 34

3.1 Introduction ... 34

3.2 SQLIV testing and detection ... 34

3.2.1 Static testing .. 35

3.2.2 Dynamic runtime testing ... 36

3.2.3 Discussion ... 38

3.3 Web application code sanitisation for SQLIV prevention 39

3.3.1 Defensive coding/sanitisation approaches .. 40

3.3.1.1 Prepared statements .. 40

3.3.1.2 Whitelist of inputs including data type validation .. 40

3.3.1.3 Input escaping ... 40

3.3.2 Discussion ... 41

3.4 Dynamic runtime analysis for detection and prevention of SQLIA 42

3.4.1 Runtime analysis ... 42

3.4.2 Taint-based .. 45

3.4.3 Machine Learning and Neural Network runtime analysis............................. 45

3.5 Conclusion ... 47

4 Numerical Encoding to Tame SQLIA .. 50

4.1 Introduction ... 50

4.1.1 Problem statement ... 52

4.1.2 Motivation ... 52

4.1.3 Approach overview ... 53

4.2 Injection points and SQLIA features ... 54

4.2.1 Injection point ... 55

4.2.2 SQLIA features ... 55

4.3 Numerical features encoding ... 58

vi

4.3.1 String features derivation and vectors encoding ... 59

4.3.2 Sitype attribute (p)... 63

4.3.3 Sidetermination attribute (v) ... 64

4.3.4 Rndrisk attribute (r) ... 65

4.3.5 Siriskfactor attribute (l) ... 65

4.3.6 Siclass attribute ... 66

4.4 The implementation steps on MAML studio... 67

4.4.1 Data set input data items ... 70

4.4.2 Pre-processing or data engineering ... 71

4.4.3 Normalisation .. 71

4.4.4 Split of the vector matrices between training and testing set 73

4.4.5 Training a supervised model ... 73

4.5 Evaluation and Result .. 74

4.5.1 Statistical measures and ROC curve ... 75

4.5.1.1 Score probabilities .. 75

4.5.1.2 Threshold .. 75

4.5.1.3 Statistical measures ... 76

4.5.1.4 ROC curve and AUC .. 77

4.5.2 Binary classification algorithms .. 78

4.5.2.1 Metrics: Normalisation and Split ratios of binary classification 79

4.5.2.2 Metrics: Statistical measures and ROC curve ... 80

4.5.3 Multiclass classification algorithms .. 86

4.5.3.1 Multiclass algorithms: Normalisation and split data ratio 87

4.5.4 Cross-validation .. 95

4.5.4.1 Binary Cross-Validation ... 97

4.5.4.2 Multiclass Cross-Validation.. 100

4.6 Discussion.. 100

4.7 Conclusion ... 102

5 Applied Predictive Analytics to Mitigate SQLIA 104

5.1 Introduction ... 104

5.1.1 Problem statement ... 105

5.1.2 Motivation ... 105

5.1.3 Approach overview ... 106

5.2 Building a data set member string ... 108

5.2.1 Deriving the data set.. 108

5.2.2 SQLIA Data set and Labelling .. 108

5.3 Training Analytics experiment and deployment 110

vii

5.3.1 Learning data input ... 111

5.3.2 Text pre-processing ... 111

5.3.3 Feature hashing ... 111

5.3.4 Filter-based feature selection for top relevant vectors 112

5.3.5 Split of vector matrices between training and testing data 112

5.3.6 Training the prediction model ... 112

5.4 Evaluation and performance metrics of Binary TC SVM 112

5.4.1 Accuracy ... 113

5.4.2 Precision .. 114

5.4.3 Recall .. 115

5.4.4 F1 Score .. 115

5.4.5 Cross-validation .. 118

5.5 Publishing and consuming the prediction analytics web service 120

5.5.1 Predictive experiment.. 120

5.5.2 Web Service: web interface test of the prediction model 121

5.6 Discussion.. 123

5.7 Conclusion ... 125

6 Pattern-Driven Corpus to Mitigate SQLIA 128

6.1 Introduction ... 128

6.1.1 Problem statement ... 129

6.1.2 Motivation ... 129

6.1.3 Approach overview ... 129

6.2 SQL hotspot and modelling data set attributes 130

6.2.1 SQL hotspot .. 130

6.2.2 Modelling data set attributes ... 131

6.3 Obtaining the learning data (data set) .. 132

6.3.1 Generating the regular expression constraints .. 134

6.3.2 RegEx pattern from strings and size of dictionary word list 135

6.3.3 RegEx pattern from a given string structure and size 136

6.3.4 Member strings transposition .. 136

6.3.5 SQLIA labelling .. 138

6.4 Predictive analytics experiment and deployment 140

6.4.1 A high-level overview of the experimental steps: 140

6.4.1.1 Data set extraction .. 140

6.4.1.2 Text pre-processing... 140

6.4.1.3 Features hashing to the matrix .. 141

viii

6.4.1.4 Split of vector matrices between training and testing data................................ 141

6.4.1.5 Training the prediction model ... 141

6.4.1.6 Publishing and consuming the prediction web service 142

6.5 Evaluation and performance metrics ... 142

6.5.1 Binary classification .. 142

6.5.2 Cross-validation .. 145

6.6 Discussion.. 147

6.7 Conclusion ... 148

7 Conclusion ... 150

7.1 Introduction ... 150

7.2 Chapter 2: Background & Theory ... 153

7.3 Chapter 3: Literature Review .. 153

7.4 Chapter 4: Numerical Encoding to Tame SQLIA 155

7.5 Chapter 5: Applied Predictive Analytics to SQLIA 156

7.6 Chapter 6: Pattern-Driven Corpus to Mitigate SQLIA.......................... 157

7.7 Research summary... 158

7.8 Discussion and future work ... 160

7.8.1 Discussion ... 160

7.8.2 Future work ... 161

References .. 163

ix

Tables

Table 1-1 SQLIA and SQLIV examples ... 3

Table 2-1 SQLIA types and attack signatures ... 23

Table 4-1 SQL Symbols .. 56

Table 4-2 SQL Keywords .. 57

Table 4-3 Labels/classes to predict .. 62

Table 4-4 Derived member strings .. 62

Table 4-5 Sitype attribute vector assignments ... 63

Table 4-6 Sidetermination attribute vector assignments ... 64

Table 4-7 Rndrisk attribute vector assignments .. 65

Table 4-8 Siriskfactor attribute vector assignments .. 66

Table 4-9 Siclass attribute binary labelling ... 67

Table 4-10 Formula table .. 76

Table 4-11 AUC grading ... 78

Table 4-12 Normalisation observations between training and testing data 79

Table 4-13 TC SVM of observations at various thresholds-80:20 data ratio 81

Table 4-14 TC LR observations at various thresholds-80:20 data ratio 82

Table 4-15 TC LR observations at various thresholds-70:30 data ratio 83

Table 4-16 TC SVM observations at various thresholds-70:30 data ratio 84

Table 4-17 Labels/classes to predict .. 86

Table 4-18 MNN at 70 to 30 and 80 to 20 split data ratios 88

Table 4-19 Extrapolated MNN performance metrics .. 88

Table 4-20 Performance Metrics for MLR at 70:30 and 80:20 91

Table 4-21 MLR at various split data ratios .. 92

Table 4-22 Performance metrics of MNN vs MLR using logistic normalisation ... 94

Table 4-23 A table of binary evaluation results by folds .. 99

x

Table 4-24 A table of multiclass evaluation results by folds 100

Table 4-25 Related work applying ML comparison .. 102

Table 5-1 Positive and negative events at 0.5 thresholds 114

Table 5-2 Evaluations scores of TP, TN, FP and FN .. 116

Table 5-3 Formula for calculating the performance metrics 116

Table 5-4 The metrics values across the different thresholds 117

Table 5-5 A table of evaluation results by folds .. 119

Table 5-6 Related work applying ML comparison .. 125

Table 6-1 Transitions function (∂) and states walk interpretation 133

Table 6-2 A RegEx for a simple string constraint ... 135

Table 6-3 An example of member strings from the defined pattern 135

Table 6-4 A snippet of prediction observations at default threshold 143

Table 6-5 TC LR algorithm observations at various cut-off points 144

Table 6-6 TC SVM algorithm observations at various cut-off 144

Table 6-7 A table of evaluation results by folds .. 146

Table 6-8 Related work applying AI comparison ... 148

xi

Figures

Figure 1-1 Thesis organisation chart: .. 1

Figure 1-2 A prototype of the proposed model ... 4

Figure 1-3 SQLI review category chart ... 12

Figure 2-1 Background theory chapter organisation chart 17

Figure 2-2 The section organisation chart ... 18

Figure 2-3 Web form input .. 18

Figure 2-4 An Injected web form .. 19

Figure 2-5 The section organisation chart ... 20

Figure 2-6 The section organisation chart ... 22

Figure 2-7 The section organisation chart ... 25

Figure 2-8 FSA illustrating transition state walks ... 26

Figure 2-9 Traditional programming vs Machine learning 28

Figure 2-10 Supervised learning logic: ... 32

Figure 3-1 The chapter organisation chart ... 34

Figure 3-2 The section organisation chart ... 34

Figure 3-3 The section organisation chart ... 39

Figure 3-4 Dynamic runtime analysis techniques category chart............................ 42

Figure 4-1 The chapter organisation chart ... 50

Figure 4-2 The section organisation chart ... 50

Figure 4-3 The section organisation chart ... 55

Figure 4-4 The injection point of SQL query structure ... 55

Figure 4-5 The section organisation chart ... 58

Figure 4-6 A flowchart of the numerical encoding of features 61

Figure 4-7 The section organisation chart ... 67

Figure 4-8 The MAML studio predictive experiment ... 68

xii

Figure 4-9 A snippet of numeric encoded vectors ... 70

Figure 4-10 Grouping of multiclass to a binary class .. 71

Figure 4-11 A MAML studio normalisation module to rescale attribute 72

Figure 4-12 The section organisation chart ... 74

Figure 4-13 The section organisation chart ... 75

Figure 4-14 The section organisation chart ... 76

Figure 4-15 The section organisation chart ... 78

Figure 4-16 A Bar Chart of Evaluation of ZScore and Logistic normalisation 80

Figure 4-17 An AUC plot for TC SVM - 80:20 data ratio 81

Figure 4-18 An AUC plot for TC LR - 80:20 data ratio ... 82

Figure 4-19 An AUC plot for TC LR - 70:30 data ratio ... 83

Figure 4-20 An AUC plot for TC SVM - 70:30 data ratio 84

Figure 4-21 AUC comparisons across the algorithms and ratios 85

Figure 4-22 The section organisation chart ... 86

Figure 4-23 Bar Chart: MNN using Logistic Normalisation 89

Figure 4-24 MNN using split data ratios of 70:30 vs 80:20 90

Figure 4-25 MLR Confusion Matrix at various split data ratios 92

Figure 4-26 Bar Chart: MLR using Logistic normalisation 93

Figure 4-27 MLR vs MNN using split data ratios of 80:20 94

Figure 4-28 Bar Chart: MNN vs MLR using logistic normalisation 95

Figure 4-29 The section organisation chart ... 95

Figure 4-30 A cross-validation experiment screen capture 97

Figure 4-31 A representation of binary k-fold cross-validation 98

Figure 5-1 The chapter organisation chart ... 104

Figure 5-2 The section organisation chart ... 104

Figure 5-3 A prototype of the proposed model ... 107

xiii

Figure 5-4 The section organisation chart ... 108

Figure 5-5 Data set features labelling procedure ... 109

Figure 5-6 The section organisation chart ... 110

Figure 5-7 The experimental steps applying text analytics to SQLIA 110

Figure 5-8 The section organisation chart ... 112

Figure 5-9 ROC curve of a trained model ... 117

Figure 5-10 A cross-validation experiment ... 118

Figure 5-11 The section organisation chart ... 120

Figure 5-12 Predictive experiment steps ... 121

Figure 5-13 A web test of valid input data .. 122

Figure 5-14 A test using single quote SQL symbol .. 122

Figure 5-15 A malicious input data ... 123

Figure 6-1 The chapter organisation chart ... 128

Figure 6-2 The section organisation chart ... 128

Figure 6-3 The section organisation chart ... 130

Figure 6-4 Attributes scoping .. 131

Figure 6-5 The section organisation chart ... 132

Figure 6-6 FSA states walk to generate member strings 133

Figure 6-7 UML of generated constraint from Table 6-2 135

Figure 6-8 Running Rex command utility against a constraint 135

Figure 6-9 A UML of states walk from RegEx pattern ... 136

Figure 6-10 String distance measures of member strings 137

Figure 6-11 Filtered values of original string transposition 137

Figure 6-12 Data set feature values labelling flowchart .. 139

Figure 6-13 The section organisation chart ... 140

Figure 6-14 A ROC curve of AUC of TC LR vs TC SVM 145

xiv

Figure 7-1 The chapter organisation chart ... 150

xv

Equations

Equation 4-1 .. 66

Equation 4-2 .. 66

Equation 4-3 .. 72

Equation 4-4 .. 73

Equation 4-5 .. 77

Equation 4-6 .. 77

Equation 4-7 .. 77

Equation 4-8 .. 77

Equation 4-9 .. 87

Equation 4-10 .. 99

Equation 4-11 .. 99

Equation 5-1 .. 114

Equation 5-2 .. 114

Equation 5-3 .. 115

Equation 5-4 .. 115

Equation 5-5 .. 119

Equation 5-6 .. 119

Equation 6-1 .. 142

Equation 6-2 .. 146

Equation 6-3 .. 146

xvi

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

AUC Area Under Curve

AWS Amazon Machine Learning Web Services

CIA Confidentiality, Integrity and Availability

CLI Call-Level Interface

CSIC Council of Scientific Investigations (Spanish Research Council)

CM Confusion Matrix

CMA Computer Misuse Act

CPU Central Processing Unit

DFA Deterministic Finite Automata

ECCWS European Conference on Cyber Warfare and Security

FN False Negative

FP False Positive

FPR False Positive Rate

FSA Finite State Automaton

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IoT Internet of Things

LR Logistic Regression

MAML Microsoft Azure Machine Learning

ML Machine Learning

MLR Multiclass Logistic Regression

MNN Multiclass Neural Network

NLP Natural Language Processing

NE Negative events

NETSQLIA Numerical Encoding to Tame SQLIA

NFA Nondeterministic Finite Automata

NN Neural Network

NO Negative Observations

xvii

OWASP Open Web Application Security Project

PE Positive events

PO Positive observations

RDMS Relational Database Management System

RegEx Regular Expression

RFID Radio-frequency identification

ROC Receiver Operating Characteristic

SDLC Software Development Life Cycle

SDN Software-Defined Network

SFA Symbolic Finite Automaton

SMOTE Synthetic Minority Over-Sampling Technique

SMT Satisfiability Modulo Theories

SQL Structured Query Language

SQLI Structured Query Language Injection

SQLIA Structured Query Language Injection Attack

SQLIV SQLI Vulnerabilities

SVM Support Vector Machine

TCLR Two Class Logistic Regression

TC SVM Two Class Support Vector Machine

TMH Tune Model Hyperparameters

TN True Negative

TP True Positive

TPR True Positive Rate

UCI University of California, Irvine

UML Unified Modelling Language

URL Universal Resource Locator

WAF Web Application Firewalls

WS Web Service

XSS Cross Scripting

xviii

Abstract

The back-end database provides accessible and structured storage for each web

application’s big data internet web traffic exchanges stemming from cloud-hosted web

applications to the Internet of Things (IoT) smart devices in emerging computing.

Structured Query Language Injection Attack (SQLIA) remains an intruder’s exploit of

choice to steal confidential information from the database of vulnerable front-end web

applications with potentially damaging security ramifications.

Existing solutions to SQLIA still follows the on-premise web applications server hosting

concept which were primarily developed before the recent challenges of the big data

mining and as such lack the functionality and ability to cope with new attack signatures

concealed in a large volume of web requests. Also, most organisations’ databases and

services infrastructure no longer reside on-premise as internet cloud-hosted applications

and services are increasingly used which limit existing Structured Query Language

Injection (SQLI) detection and prevention approaches that rely on source code scanning.

A bio-inspired approach such as Machine Learning (ML) predictive analytics provides

functional and scalable mining for big data in the detection and prevention of SQLI in

intercepting large volumes of web requests. Unfortunately, lack of availability of robust

ready-made data set with patterns and historical data items to train a classifier are issues

well known in SQLIA research applying ML in the field of Artificial Intelligence (AI).

The purpose-built competition-driven test case data sets are antiquated and not pattern-

driven to train a classifier for real-world application. Also, the web application types are

so diverse to have an all-purpose generic data set for ML SQLIA mitigation.

This thesis addresses the lack of pattern-driven data set by deriving one to predict SQLIA

of any size and proposing a technique to obtain a data set on the fly and break the circle

of relying on few outdated competitions-driven data sets which exist are not meant to

benchmark real-world SQLIA mitigation. The thesis in its contributions derived pattern-

driven data set of related member strings that are used in training a supervised learning

model with validation through Receiver Operating Characteristic (ROC) curve and

Confusion Matrix (CM) with results of low false positives and negatives. We further the

evaluations with cross-validation to have obtained a low variance in accuracy that

indicates of a successful trained model using the derived pattern-driven data set capable

of generalisation of unknown data in the real-world with reduced biases. Also, we

demonstrated a proof of concept with a test application by implementing an ML

Predictive Analytics to SQLIA detection and prevention using this pattern-driven data set

in a test web application. We observed in the experiments carried out in the course of this

thesis, a data set of related member strings can be generated from a web expected input

data and SQL tokens, including known SQLI signatures. The data set extraction ontology

proposed in this thesis for applied ML in SQLIA mitigation in the context of emerging

computing of big data internet, and cloud-hosted services set our proposal apart from

existing approaches that were mostly on-premise source code scanning and queries

structure comparisons of some sort.

1

1 Introduction

Figure 1-1 presents the thesis organisation layout with the sections in this chapter.

Figure 1-1 Thesis organisation chart: The figure displays the chapter visual representation of the

different sections to visualise the layout of the entire thesis.

1.1 Introduction

SQLIA is an intruder exploit of choice for vulnerable web applications to pilfer

confidential data from the database with potentially damaging consequences. There are

challenges in securing web applications with continuous innovations in internet

applications that have seen an astronomical growth of big data emanating from web

requests to cloud-hosted web applications and the Internet of Things (IoT). This large

volume of web requests in internet traffic needs analyses to intercept spurious web

requests destined to a vulnerable web application and associated back-end database.

Applying AI techniques provide a solution to detect and prevent SQLIA in big data

context, but there are issues of non-availability of pre-existing pattern-driven data set

required to train a supervised learning model.

Introduction

1.1
Introduction

1.2
Research

Goals

1.3
Contributions

1.4
Thesis

Chapters
Outline

1. Introduction

2. Background

3. Literature review

4. Numeric
encoding

5. Applied
predictive analytics

6. Pattern-driven
corpus to mitigate

SQLIA

7. Conclusion

2

An AI approach can provide scalable data mining for SQLIA detection and

prevention. The application of an AI approaches to analysing large volumes of web

requests could effectively predict attack signatures by classifying web requests based on

the labelled data set. The labelled data set is used to train the classification algorithms to

predict SQLIA thereby dropping suspicious web requests before reaching the back-end

database to pilfer protected data. However, AI techniques have met with the issue of

lacking an existing data set [1], [2]. Throughout this thesis, we refer to corpus as a data

set following the University of California, Irvine (UCI) ML repository naming convention

[3]. The existing solutions [4], [5], [14], [6]–[13] to mitigate SQLIA were all before

emerging computing of cloud-hosted services and the upward trend in big data internet

traffic and as such lack the functionality and ability to cope with new attack signatures

concealed in web requests.

An intruder is described as an individual or a group that breaches the security of a

protected computer system by employing an array of techniques to disrupt and pilfer

confidential data. A typical method used to steal sensitive data is by SQLIA and which

often results in new signatures stealthily bypassing the protection of Web Application

Firewalls (WAF). Back-end database security exploits have thus evolved with the

availability of the off-the-shelf tools used by an intruder to automate SQLIA. These tools

are often combined by an intruder to provide both penetration testing and exploits in

SQLIA with a few notable examples: Burb Suite [15], SQLMap [16], BSQL Hacker [17],

SQLninja [18], BSQL Hacker [17] and Metasploit [19].

Automated SQL Injection Vulnerabilities (SQLIV) penetration testing and SQLIA

exploit tools like Burb Suite, SQLMap and SQLninja as a few examples, offer the intruder

a new method in creating many more derivations of new attack signatures over the

existing SQLIA string lookup approach mitigation proposed by researchers over the years

[4], [5], [14], [20], [6]–[12]. These existing approaches to mitigate SQLIA existed in an

era when web application servers were hosted in an organisation’s own intranet and

extranet. These existing solutions to address SQLIA are no longer applicable in emerging

computing with a cloud-hosted services’ edge Software-Defined Network (SDN)

application endpoints which have broad web request hits across the internet.

SQL Injection (SQLI) is not only a vulnerability arising from developers’ lack of

security awareness in web application development to require the input sanitisation but

an exploit of the free text processing capability of the SQL engine. This SQL engine

3

design flexibility in free-text processing has ramifications in both legacies, and new web

applications which lack sanitisation and so can become SQLI vulnerable.

 SQLIV have thus not gone away and continue to feature in the Open Web

Application Security Project (OWASP) top list of vulnerabilities [20]. A Google search

of ‘SQLi hall of shame’ [21] throws light on how topical SQLIA issues are, even within

reputable organisations, with a few examples listed in Table 1-1 and further described

below.

 SQLIA is still used in many data vulnerabilities and pilfering security attacks,

including the Florida County election website which when hacked resulted in usernames

and passwords being stolen [22]. The TalkTalk Mobile UK hacks involved a teenager

pilfering more than four million customer details that include sensitive information like

passwords and credit card numbers [23], [24]. Also, the VTech hacking resulted in the

leak of 4.8 million customer transaction details [25]. SQLIV were also found in New

Joomla [26] and McAfee ePolicy Orchestrator (ePO) [27]. Equifax, which provides credit

report services around the world, was hacked with 145 million Americans personal data

compromised [28]. Once hacked, the confidential data pilfered by an intruder is then often

traded on the dark web for ransom, blackmailing and financial gains.

Table 1-1 SQLIA and SQLIV examples

Company Type Description Year

TalkTalk Mobile

UK

SQLIA 4 million customer details including personal details,

passwords and credit card numbers pilfered [23], [24]

2015

VTech SQLIA 4.8 million customer transaction details pilfered [25] 2015

Symantec SQLIV Console vulnerability [29] 2016

Facebook SQLIV Employee details vulnerability [30] 2016

McAfee ePolicy

Orchestrator)

SQLIV McAfee ePolicy Orchestrator (ePO) [27] 2017

Joomla CMS web SQLIV SQLIV were found in New Joomla [26] 2017

Equifax SQLIA 145 million Americans personal data compromised [28] 2017

Wordpress SQLIV Vulnerability in WordPress plugins that needed to be patched

[31]

2017

GoDaddy SQLIV Vulnerability detected by researchers [32] 2017

Joomla SQLIV Vulnerabilities identified and fixed by Joomla developers [33] 2018

BSNL SQLIA Bharat Sanchar Nigam Limited (BSNL) hacks of potentially

47000 plus employees record compromised [34]

2018

Indian Railway SQLIV Vulnerabilities of non-sensitive data exposed [35] 2018

The proposed model delivers a self-contained SQLIA detection and prevention

solution which is the subject of the empirical evaluation by statistical measures, ROC

curve and cross-validations including a comparison with existing SQLIA research over

4

the years. A prototype of the proposed model in Figure 1-2 illustrates the proposed model

with the details of the numbered stages provided below:

Web requests

Yes SQLIA

Malicious
intruder.

Safe

Return unrevealing
error.

Good
 guy

No

Trained Two-Class SVM
exposed as a web service
in ongoing binary
classification of SQLIA.

Predictive analytics integrated
into web form to validate
input for on-going SQLIA
detection and prevention.

Cloud SDN:
Proxy API intercepts
request, decrypt &
predictive analytics.

1

2

3
4

Predictive
analytics

predicting
SQLIA.

Protected
Database.

Return results to
valid requests.

Public/Private Cloud

Figure 1-2 A prototype of the proposed model: The figure is illustrating the prototype of the

proposed model illustrating the design overview including consuming a trained ML model at the web

proxy API and client forms in an ongoing SQLIA detection and prevention.

1. The result of a highly trained ML model is deployed as a web service which

provides predictive analytics to validate the data input web form at the front-end.

When a protected web form receives an input, it verifies the data to predict SQLI.

A legitimate expected data pass the first test to proceed to the server for further

validation while the spurious request is dropped as it has failed a simple web form

input validation.

2. The second stage is to intercept the query string of the web request by Fiddler

Proxy API integrated with a trained ML model web service at the cloud SDN

endpoint. These captured web requests are analysed to predict SQLIA as most

SQLI by an intruder bypass the front-end web form input to inject the query in

5

transition to the back-end web application servers with SQLIA type to circumvent

the security protection of the application. This stage is followed by the system

decision phase using the results of the SQLIA prediction analysis to allow the web

request to proceed or not.

3. The third stage inferred from the outcome of the intercepted web request for

predictive analytics to fulfil the web request or referred it to the fraud team for a

second opinion. Analysed web request results deemed true negative to SQLIA are

performed while true positive ones are passed to the human expert for further

scrutiny before a cleverly crafted response to avoid an intruder using the error

messages to further a more SQLIA.

4. The final stage involves legitimate or expected web requests that are truly negative

to SQLIA being fulfilled. Also, this mitigation proposed does not rely on query

comparison as seen in existing work as the proposal tracks the input data from the

web request form driven by a web service to when it is intercepted in-transition to

the back-end database at the proxy API for predictive analytics.

In the scheme presented in this thesis, we explored generating sizeable historical

learning data that are pattern-driven as input learning data to train a supervised learning

model. We implemented Regular Expression (RegEx) [36], [37] to create patterns and

String Package [38] to generate all possible derivations of strings that share the same

pattern (members strings) to obtain the learning data. These derived member strings are

encoded to numerical vector values required to train AI models. The transformation of

derived member strings to numeric vectors sets a precedence for the suitability of

applying the feature hashing to the data set generated from member strings to get input

matrix discussed in Chapters 5 and 6 in SQLIA mitigation in the context of big data.

This thesis applies predictive analytics to demonstrate a proof of concept as it uses

the pattern-driven data set containing vector extraction from expected web requests,

known attack patterns including SQL tokens present at the injection points. SQL query

comprises of lexical or syntactic units named tokens. The SQL tokens are the query

keywords, constants and delimiter identifiers [39]. The data set is preprocessed and

labelled for supervised learning. The trained classifier is deployed as a web service that

is consumed in a custom .NET application implementing a web proxy API [40] to

intercept and accurately predict SQLIA in web requests, thereby preventing malicious

web requests from reaching the protected back-end database. The models are empirically

6

evaluated in a MAML studio to validate the performance metrics of the approach

presented in this thesis.

Recent years have seen the maturing of applied research in AI applications with the

availability of commercial platforms like MAML studio [41], [93]. The Microsoft Azure

ML AI platform provides cloud-hosted services and infrastructures to support big data

analytics in virtually all application domains. Also, it offers empirical statistical measures

validation in the form of the ROC curve, CM and k-fold cross-validation. Thus, the

experimental results presented in this thesis are implemented and empirically validated

on MAML studio.

The proposed model in this thesis is built on MAML studio [42], and the

methodology includes extraction of data set attributes items and labelling, classification

of SQLIA features, and validation of the supervised learning model. The model is then

exposed as a web service for real-time SQLIA detection and prevention.

MAML studio, which is a cloud-hosted ML Platform as a Service (PaaS) allows data

scientist to expand the horizons of AI models from the confines of statistical measures

and evaluations to building a predictive analytic model that is highly trained and evaluated

that is ready to use in real-life applications. It has the programming models of R and

Python scripting which allows data scientist to leverage an existing body of knowledge

on AI algorithms in these programming languages.

MAML has been seen as a game-changer by data scientist, practitioners applying to

business applications in its features offering, including supporting the traditional

languages such as R and Python scripting [43]. Also, the simplicity and the quick

turnaround from start to finish of building a ready to deploy trained model has made it

the top AI platform among the fifteen widely used AI commercial platforms [44].

The MAML studio comes equipped with inbuilt ML standard validation modules of

statistical measures [45]–[47], including the ROC curve, CM and cross-validation widely

accepted and used in data science to measure the performance of a trained ML model

[48]–[51]. The cross-validation module provides a statistical measure of which a low

standard deviation or variance in accuracy indicates of a trained model with reduced

biases capable of generalisation of unknown data to the classifier in a real-world

application [47]. The MAML studio follows the favoured k-fold cross-validation k =10

[48], [49], [52].

7

The MAML studio provides an established validation model of statistical measures,

including the ROC curve and CM. The ROC curve is a graph plot of recall or True

Positive Rate (TPR) against False Positive Rate (FPR). It demonstrates the trade-off

between sensitivity (TPR) and specificity (FPR) shifts at various thresholds as an increase

in one will result in the decrease of the other in the x and y-axis of the graph. A curve

towards hugging the top of the y-axis indicates a good performance while towards the x-

axis indicates a poor performance [53]. A CM is a favourite in multiclass classification

that presents a table containing the classifier performance metrics results of the testing

data observations at various thresholds [54]. The ROC curve and CM are widely used in

clinical studies for validating medical diagnostic results and have recently found their

way into data sciences in the empirical evaluation of classifiers or trained AI models [46],

[51], [55]. The MAML studio provides a one-stop solution to these AI principles from

procuring data set for training and validating of a trained model including cross-

validation.

1.2 Research Goals

In applying ML to SQLIA problems, there is a need for a data set. This thesis proposes

the following research questions:

• Can patterns in both web expected requests and SQL tokens including existing SQLIA

signatures extraction be used to create a large volume of data set of encoded numeric

vector variables required to train a supervised learning model?

• Can the pattern-driven data set be validated?

• Can a web application type be protected produce the artefact for the extraction of a

pattern-driven data set?

These research questions are answered in the following contributions:

• The ability to derive a pattern-driven data set to predict SQLIA of any size.

• The training of a supervised learning model using the pattern-driven data set with

validation through a ROC curve, CM and cross-validation.

• Providing applied ML predictive analytics to SQLIA detection and prevention using

a pattern-driven data set from a web application type domain’s data context.

8

The results of experiments conducted in this research demonstrate patterns exist in

web input data in both legacy and new web applications that can be leveraged to generate

as many derivations of member strings (strings that share the same pattern). In applying

ML techniques that require data sets with sufficient learning data arising from these

patterns, we thus explore Finite State Automaton (FSA) states walk [56]–[58] to generate

learning data from these patterns that exist in the input data to any web application type

context.

The success of the pattern-driven numeric encoding of features to obtain extensive

learning data that contain vector matrices opens-up further work in string features

vectorisation. Vectorisation or hashing [59], [60] is a technique of converting strings to

input vector matrices to train a supervised learning model in predictive analytics

techniques to predict SQLIA at runtime.

1.3 Contributions

The listed contributions below in a broader scope has significance in resolving the issues

researchers currently faced in the field of Intrusion Detection System (IDS) which include

SQLI in procuring data set to apply AI techniques in the ever-growing big data. In this

research work, we present the following novel contributions:

• We presented an ontology in Chapter 4 and related publications [61], [62] for crafting

a pattern-driven data set using R string API from the web application type with a

technique to encode the data set into vectors required to train a supervised learning

model in MAML studio. We trained a supervised learning classification algorithm

with this pattern-driven data set and validated the trained model under various

classification algorithms with high performance metrics statistical measures including

cross-validation as presented. The success of this conceptual approach in Chapter 4

has led to further work in Chapters 5 and 6 by employing string hashing vectorisation

in-place of manual encoding on implementing a proof of concept of how the proposal

will be applied in a real-world web application.

• We further in Chapter 5 and related publication [63] the numeric encoding of features

presented in Chapter 4 with hashing vectorisation to obtain vector matrices to train

the classification algorithms. In answering the research question if the intended web

application type can produce the artefact for a pattern-driven data set, we implemented

a web application that expects dictionary words as a valid input while elements of

9

SQL tokens and SQLIA type signatures substitution at the SQLI hotspots is predicted

as SQLIA positive. The pattern-driven data set is used to train a supervised learning

model employing a TC LR and TC SVM classification algorithms with the better-

evaluated and cross-validated classifier selected to predict SQLIA. The selected

trained TC SVM model is exposed as a web service which is then deployed to the

web form and the cloud SDN proxy for intercepting web requests in-transition to a

back-end database for analysis.

• We demonstrated in Chapter 6 and related publication [64] a more robust method of

pattern-driven data set procurement based on the web application type; we derived a

pattern-driven data set using Finite State Automata (FSA) and Symbolic Finite

Automata (SFA) techniques as against R string API technique presented in Chapter 5

to derive related member strings. The referred web application expects dictionary

words as a valid input while elements of SQL tokens and SQLIA type substitution

predicted at the SQLI hotspots are predicted as SQLIA positive. The pattern-driven

data set is used to train a supervised learning model employing a TC LR and TC SVM

classification algorithms with the better-evaluated and cross-validated classifier

selected to predict SQLIA. The trained TC SVM model is exposed as a web service

which is then consumed in a web form for input validation and a proxy API at the

cloud SDN for intercepting web request for analysis. We observed using the SFA

technique to derive related member strings that we could generate a pattern-driven

data set with features of related member strings of any size to train a classifier for

SQLIA mitigation for real-world application.

On account of the few existing data sets related to this domain of study were either

generated for competition as in ECML/PKDD 2007 [65] and HTTP dataset CSIC 2010

[66]. The HTTP dataset CSIC 2010 was motivated for a need for a replacement to out of

date DARPA KDD Cup 1999 [67]. These data sets are repeatedly found in research work

as test data for textbook evaluations and have come under scrutiny over the years of being

antiquated and irrelevant to building the real-world application as it contains some

inconsistencies [67], [68]. Also, though these data sets have provided textbook

evaluations of various proposals over the years, it does not offer the features to build real-

life ML-based SQLIA mitigation. We propose in this thesis for the artefact to construct a

pattern-driven data set for an ML model to be extracted from the web application type

being protected in ongoing SQLIA mitigation.

10

Web-driven applications including business, government, private and purpose-built

internet-driven applications are implemented for various needs as to have a standardised

data set. Thus, this diversity in web application types is too broad to have one standard

all-purpose (universal) generic data set to train a supervised learning model to mitigate

SQLIA. The few purpose-built data sets [65], [66] would typically contain unprocessed

repeating query strings of features that exist in SQLIA types. Applying data set of

repeating strings devoid of patterns in ML supervised learning model results in poor

performance metrics [70].

The existing approaches applying AI typically obtained a data set either by having a

phase in the implementation where tools are used to simulate attack signatures or with the

query string logged into a file as a data set to be used in the training of a classifier to

predict SQLIA [71]–[74]. Another method is to extract query strings or URL from the

web as a data set used in applying ML technique to predict SQLIA [75]. Alternatively,

do a textbook evaluation using purpose-built data set of HTTP dataset CSIC 2010 as

implemented by Nguyen et al. [76]. These procurement techniques described above

results in repeating strings devoid of pattern. The drawback of these methods is the

limitation of only predicting SQLIA based on the scope of the saved logged file used as

a data set to train a classifier. Also, there are results of poor performance metrics of the

hashed matrix vectors required to train a classifier extracted from these query string

transformations that would often contain spaces and comments of SQLIA signatures

which are often exploited by an intruder. Thus, when such query strings are hashed for

the matrix vectors to train a classifier, a shift of spaces between strings would result in

high prediction errors of a false negative.

The existing research work [72], [77]–[79] applying the AI approach were used for

evaluations using ROC curve and CM, but not how you would deploy the trained model

in the implementation of these proposals. We propose that string pattern exists in every

input data in both legacy and new web applications and that these can be leveraged to

generate as many derivations of related member strings when combined with existing

known attack signatures to create a labelled pattern-driven data set fit for training a

classifier to build a real-world SQLIA mitigation.

 Overall, the approach presented in this thesis obtains pattern-driven data set from

the pattern of expected valid data and established SQLIA signatures. The proposal applies

string replication, transpositions including using a tool named Regular expression

11

explorer (Rex) [80] to generate similar patterns of strings (related member strings) as to

obtain massive learning data to train a classifier. The trained supervised learning model

is then evaluated in MAML studio with a highly trained model deployed as a web service

in the ongoing SQLIA mitigation as aforementioned and illustrated in Figure 1-2.

1.4 Thesis Chapters Outline

1.4.1 Overview

This thesis outline summarises the chapters starting with the introduction, followed by a

background, literature review chapter that form the building blocks to the contributions

detailed in Chapters 4, 5 and 6 and ends with a conclusion in Chapter 7. The thesis is laid

out in seven chapters including the Chapter one which provides the thesis synopsis. The

Chapter one covers the introduction, research goals, contributions and thesis outline

which gives a high-level overview of each of the subsequent chapters described below:

1.4.2 Chapter 2: Background

Chapter two has the background and theories around SQLIA and the approach presented

in this thesis. In this chapter, we discuss attack intent, injection mechanism; SQLIA types,

web proxies [40]; FSA [56], [58], [81], and ML principles that are used throughout the

thesis. The background theory on SQLIA which include attack intent; injection

mechanism and SQLIA types [82] forms the fundamental principles on which SQLIA

mitigation proposed by researchers over the years are based that is discussed here.

Packet interception for analyses to detect intrusion exploiting SQLIA have been

explored in Ariu & Giacinto [83]. An application-level proxy applied in this thesis

performs better in intercepting and decrypting obfuscated web requests than low-level

network packet interception tools which suffer from message fragmentation in large

volumes of gigabits per seconds of packets on the wire. The proxy interception of web

requests for analysis to mitigate SQLIA has been successfully explored in previous

research work by various researchers over the years [84]–[88].

SQLIA mitigation exploring FSA provides a functional approach to pattern analysis

for various SQLIA signatures. Analysing web requests for patterns of SQLIA signatures

by implementing RegEx can be found in research work by academics proposed over the

years [5], [88]. ML techniques have been explored over the years by academics as a bio-

inspired technique to mitigate SQLIA [72], [73], [89]–[92]. However, solely relying on

12

pattern analysis with a regular expression in emerging computing with big data emanating

from various web requests to analyse for SQLIA is computationally intensive. In this

thesis, we apply a regular expression to generate pattern-driven data set used to train a

classifier in ML techniques to mine the large web requests in SQLIA mitigation [61]–

[64]. This background knowledge of SQLIA and FSA fundamentals forms the basis to

mitigate SQLIA in the techniques proposed in this thesis.

1.4.3 Chapter 3: Literature Review

Chapter three examines the literature review on SQLIA to establish research up to date

and identify gaps in the existing proposals by various researchers. We broadly classify

these proposals over the years into three categories. Namely, SQLIV testing and

detection; defensive coding in web application code sanitisation for SQLI prevention; and

dynamic runtime analysis, including taint-based and approaches applying Artificial

Intelligence (AI) employed in this thesis. Figure 1-3 presents the three categories of

proposals over the years.

Figure 1-3 SQLI review category chart

SQLIV testing and detection approach is a vulnerabilities penetration testings that include

static testing [8], [82], [94]–[100] and dynamic runtime testing [101]–[109]. Penetration

testing approaches are mostly applied in SQLIV detection, and there is a requirement for

source code access and with only a handful that extended the proposal to include

prevention [110].

Defensive coding is a developer-centric web application code sanitisation for SQLI

prevention [111]–[118]. The defensive coding is an approach usually prescribed by

OWASP and needs the developer’s security awareness before web application

development. Also, the functioning of this approach strongly relies on string lookup and

regular expressions which are computationally intensive in a large volume of web

requests to and fro cloud-hosted applications as seen recently in emerging computing.

SQLI Review

SQLIV testing and
detection

Defensive coding
techniques

Dynamic runtime
analysis

13

Dynamic runtime analysis [4], [5], [124], [125], [10], [84], [119]–[123], including

taint-based [7],[126], [127] and approaches applying AI involves dynamic runtime

comparison of queries with static generated queries to detect SQLIA signatures. The taint-

based technique involves labelling of data which is then tracked to the database entry to

assert if it is from trusted or untrusted sources. In AI [71], [72], [134]–[141], [74], [100],

[128]–[133] the static generated queries exist as a labelled data set which is then used to

train a classifier to predict SQLIA in web requests.

In this thesis, we reviewed SQLIA mitigations proposals over the years and observed

the following:

• Proposals over the years were aimed at web applications hosted within

organisations’ intranet or extranet.

• The proposals were string lookup that required source code access.

• The proposals would not scale in emerging computing of big data emanating

from the enormous volume of distributed web requests to cloud-hosted

applications.

• The non-availability of pattern-driven data set to apply AI, but with the few

data set relating to SQLIA being out of date in relevance to real-world

application.

 On account of the literature review, we propose in this thesis a pattern-driven data

set to train a supervised learning model in SQLIA mitigation to have answered the

research questions.

1.4.4 Chapter 4: Numerical Encoding to Tame SQLIA

Chapter four titled Numerical Encoding to Tame SQLIA is the subject of an IEEE

conference paper titled Numerical Encoding to Tame SQLIA (NETSQLIA) [62] and a

European Conference on Cyber Warfare and Security Conference (ECCWS) paper titled

Applied web traffic analysis for numerical encoding of SQL Injection Attack Detection

and Prevention [61]. In these papers, we discussed our first approach to generate a pattern-

driven data set where none exists, including using ML supervised learning algorithms to

train this derived pattern-driven data set in towards SQLIA mitigation with evaluation

through ROC curve and CM. We inferred in these papers experimental results of accurate

prediction of True Positives (TP) and True Negatives (TN), but with an improvement in

prediction errors of low False Positives (FP) and False Negatives (FN) with cross-

14

validation of low standard deviation (variance) of accuracy demonstrating a trained model

of reduced biases to unknown data.

The web application types are so diverse and dynamic to rely on out of date

competition-driven data sets [65], [66] that were only good for the detecting of anomalies

in the competition and project for which they were generated. These academic

competitions-driven data sets do not benchmark performance metrics for an AI trained

model in the real-world diverse web application types. On account of the lack of all-

purpose data set of the various web applications that exist; there is a need for a paradigm

shift from relying on out of date competition-driven data sets to a pattern-driven data set.

The pattern-driven data set which varies in web application types is generated from the

pattern that exists in the expected legitimate web request input, including illegitimate web

requests containing SQL tokens and injection attack signatures to a web application which

is one of the novel contributions of this thesis.

This chapter examines the viability of obtaining pattern-driven learning data to train

a supervised learning model towards applying ML techniques in SQLIA detection and

prevention. It discusses the following research question of: Can the patterns that exist in

both expected web requests and SQL tokens including existing SQLIA signature

extraction be used to create a pattern-driven data set with vectors required to train a

supervised learning model and evaluated?

We derived a data set from the patterns that exist in an expected input data to web

applications including SQL tokens and SQLIA signatures. These SQLIA mitigation

artefact are further encoded to numerical values to obtain vectors required to train ML

supervised learning models. We identified in the experiments conducted; there is a need

for the proposed model implementation to be able to process actual string input as against

numeric values, this sets precedence for further work in subsequent chapters. We further

the numerical encoding to a feature hashing in following Chapters 5 and 6 and related

conference papers. Feature hashing transform strings into a set of features represented by

vector matrices [60], [142] require to train an ML model.

1.4.5 Chapter 5: Applied predictive analytics to mitigate SQLIA

Chapter five titled Applied predictive analytics to mitigate SQLIA forms the subject of

an IEEE conference workshop paper publication titled Applied Machine Learning

Predictive Analytics to SQL Injection Attack Detection and Prevention [63]. In this paper,

15

we presented the hashing of features to obtain vector matrices needed to train a supervised

learning model to adopt the proposal in a proof of concept implementation in an

application that processes strings input on intercepted web requests to predict SQLIA.

This chapter examines the research question: if a web application type being

protected has the artefact for the extraction of a pattern-driven data set? The chapter

discusses employing the string patterns of R string package to derive massive learning

data of expected web request input. The data set is transformed to vector matrices

obtained by hashing to train a supervised learning model. The chapter demonstrates a

proof of concept of a web application where a pattern-driven data set containing English

dictionary words labelled as SQLIA negative and SQL tokens including SQLIA

signatures labelled as SQLIA positive to train a classifier to predict SQLIA. An encounter

of SQL tokens including known SQLIA signatures in an intercepted web request for

analysis is predicted as SQLIA positive while dictionary words excluding SQL keywords

are predicted as SQLIA negative. The trained model is evaluated using statistical

measures, and a ROC curve with prediction results of high TP and TN, but low FP and

FN of SQLIA with cross-validation of low variance in accuracy demonstrating a trained

model of reduced biases to unknown data.

1.4.6 Chapter 6: Pattern-driven data set to mitigate SQLIA

Chapter six titled Pattern-driven data set to mitigate SQLIA is the subject of an IEEE

conference paper publication titled An Applied Pattern-Driven Data set to Predictive

Analytics in Mitigating SQL Injection Attack [64].

The chapter further the research question answered in Chapter 5 with a different

method to generate pattern-driven data set. This chapter employs FSA and SFA principles

to produce all possible related member strings to derive a pattern-driven data set from a

web application type expecting dictionary word as a valid input. The data set from the

web application type is used to train an ML model to demonstrate a web application type

could produce a relevant artefact for SQLIA mitigation. The approach presented uses

hashed pattern-driven data set from a web application type context as against relying on

access to the web application’s source code or queries comparison, which has been

employed in existing static and dynamic signature research approaches over the years.

We obtained high performance metrics results validated through the statistical measures

and the ROC curve, including cross-validation of low variance in accuracy,

16

demonstrating the trained model of reduced biases to unknown data in a real-world web

application.

1.4.7 Chapter 7: Conclusion

Chapter seven has the conclusion. Based on the experimental results of the pattern-driven

data set, we inferred patterns exist in every input data in both legacies (age-old web

applications) and new web applications. These patterns can be leveraged to generate as

many derivations of related member strings as to obtain massive learning data to train a

supervised learning model that is validated with statistical measures including ROC

curve, CM and cross-validation. We conclude that pattern-driven learning data extracted

from any web application using the approach presented in this thesis can be used to train

a supervised learning model that is deployed as a web service in ongoing SQLIA detection

and prevention.

17

2 Background

Figure 2-1 presents the organisation chart layout of this chapter with the sections.

Figure 2-1 Background theory chapter organisation chart: The chapter organisation chart

shows the arrangement of the chapter’s sections.

2.1 Introduction

SQLIA is any manipulation of web requests from a front-end web application by an

intruder with intent to compromise the confidentiality, integrity and authorisation of the

back-end database. Over the years, researchers have proposed various approaches to

detect and prevent SQLIA [4], [5], [14], [20], [110], [143]–[145], [6]–[12]. The approach

presented in this thesis intercept web requests by proxy from any SQL injection

mechanism and analysed for SQL injection intent and types in providing a solution to

mitigate against SQLIA. To better address the issues of SQLIA, researchers have

discussed this background theory under the following headings of SQLIA mechanism,

intent and types [82]. The rest of the chapter is organised as follows as illustrated in Figure

2-1. In Section 2.2 we discuss various conduits for SQLIA under SQL injection

mechanisms. In Section 2.3 we discuss the intruder intention to carry out SQLIA under

SQLIA intent while in Section 2.4 we discuss various SQLIA types employed by an

intruder for an effective SQLIA as to provide a broad understanding of the SQLIA in

delivering a solution. Also, we discuss in Section 2.5 the fundamental of the applied

techniques in mitigating SQLIA presented in this thesis.

Background
Theory

2.1
Introduction

2.2
SQL Injection
Mechanisms

2.3
SQLIA Intent

2.4
SQLIA
Types

2.5
Applied

Techniques

2.6
Conclusion

18

2.2 SQL Injection Mechanisms

Figure 2-2 presents this section organisation chart with the associated subsections.

Figure 2-2 The section organisation chart: The section organisation chart with the related

subsections.

The SQL injection mechanism is the access technique explored by an intruder to

compromise the security of a protected database. It is the commonly used conduit to

introduce SQLIA to a back-end database-driven web application.

2.2.1 SQL Injection through Web Form Input

The web browser displays web forms that provide interactive access to web applications

driven by HTTP GET or POST operations [146]. The input form of a loaded web page

can be one of the conduits for SQLIA. An intruder can compromise a well-intention

validation web form requiring a login name and password as shown in Figure 2-3 to an

injected example presented in Figure 2-4 below.

Figure 2-3 Web form input: A figure of a web form illustrating input data or web request data that

is exploited as one of the conduits for SQLIA.

SQL Injection
Mechanisms

Web Form
Input

Query
Strings

HTTP
Header
Field

Cookies
Server

Variables
Second-

order Attack

19

Figure 2-4 An Injected web form: A figure of a web form illustrating an SQLIA with just login

name receiving an input bob appended with a tautology SQLIA type signature of OR 1=1 and -- to omit

the password field.

In the tautological SQLIA example presented in Figure 2-4, the requirement for the

password is bypassed with the login name field receiving an input of bob but with the

injection signature of ‘ OR (SQL symbol and keyword), 1=1 (a tautology which is always

true to return all records) and -- (comment to ignore everything after the login name field

e.g. the password field in this case).

2.2.2 SQLIA through query strings

During HTTP POST or GET operations of regular web form interactions, the Universal

Resource Locator (URL) and associated input parameters termed query string can be

injected by an intruder to circumvent any validation being provided to a secure web

application. A valid web request that would appear in the query string as

http://bsid/bsid/Data Page.aspx?Login Name=bob &Password=@bob can be injected by

an intruder by recrafting the query string to http://localhost/bsid/DataPage.aspx?

LoginName='OR%201=1--&Password= thereby omitting the requirement for a valid

login name and password to access the application.

2.2.3 SQLIA through HTTP header fields

Web request messages contain HTTP header, which the following header parameters of

X-Forwarded-For, user-agent and referrer are susceptible to SQLIA. The HTTP header

parameters are typically overlooked and as such 75 % of the web application penetration

scanners could not detect HTTP header SQLIA vulnerabilities [147]. The header

parameters of X-Forwarded-For, User-agent and Referer fields can be injected with

strings ‘OR 1=1.

20

2.2.4 SQLIA through cookies

Cookies have stored state information which can be exploited in SQLIA to gain

unauthorised access to the back-end database. Cookies contain stored state information

of the actual interaction with the web application which can then be intercepted by an

intruder to circumvent validation requirements thereby having full unauthorised access to

the database.

2.2.5 SQLIA through the second-order attack

The second-order is an SQLI through a web application that allows an update without a

proper input validation. An intruder will cleverly craft a trojan horse into the input

supplied during registration, for example, a login name of “Alice” is registered as “Alice`

--``. The symbols “ `--“ provide a ticking time bomb to be exploited at a later day by the

intruder to update any ``Alice`` login with a new password to hijack the account.

2.3 SQLIA intent

Figure 2-5 presents this section organisation chart with the associated subsections.

Figure 2-5 The section organisation chart: The figure shows this section organisation chart

with the related subsections.

An intruder will carry out SQLIA for a purpose or an intention which is aimed to

circumvent confidentiality, integrity and availability of the fidelity of a Relational

Database Management System (RDMS). In this section, we discuss both the preliminary

steps an intruder will employ to establish an SQLIA and the intent for such attack.

 Though recent years have seen some tools being made available that automate these

probing of application’s web pages for vulnerabilities as discussed in 1.1 above, the

manual process is still being used by a determined intruder to carry out these probes in

advance of SQLIA.

SQLIA intent

Identify Injectable
Websites

Determining
Database Schema

Evading Detection

Circumvent
Confidentiality,

Integrity and
Availability

21

2.3.1 Identifying injectable websites

A web form page can be tested for SQLIA vulnerabilities by looking at the telltale signs

of parameter passing indicated by a question mark (?), e.g. http://bsid/Data Page.aspx?

Login Name=bob in the query string [148]. Alternatively, in a scenario where a web form

exists without the parameter passing in the query string, e.g. http://bsid/DataPage.aspx, a

resulting error by a single quote (‘) input on the web form can expose vulnerabilities to

SQLIA. Further to this manual process, automated vulnerability scanners referred to in

1.1 above can also be used.

2.3.2 Determining database schema

The schema holds the metadata of a database which contains detailed information about

the names of tables, columns, functions and data types which are invaluable information

to an intruder to launch SQLIA. A simple single quote (‘) input to a web form can spill

out this sensitive information as an error. A more sophisticated approach can be employed

by using penetration testing SQLIV scanners like Burb Suite [15], SQLMap [16] and

BSQL Hacker [17].

2.3.3 Evading detection

An intruder would want to remain undetected so as not to set off an alarm in an audit log

or any protection mechanisms to the web application as to be able to carry out its planned

attack from start to completion. Apart from an intruder achieving a successful attack by

employing tools that stealthily evade detection, there are also severe legal consequences

in various jurisdictions that result from the hacker being caught. For example, the

perpetrator of hacking can be dealt with under the Computer Misuse Act (CMA) 1990 in

the United Kingdom [149].

2.3.4 Circumvent confidentiality, integrity and availability

Preserving the principle of information security of a protected asset is to maintain the

attributes of Confidentiality, Integrity and Availability (CIA). SQLIA intent is to

circumvent any of these attributes in the following ways: bypassing confidentiality by

unauthorised access to confidential or encrypted data stored in the database;

compromising database integrity by intercepting and modification of protected data; and

carrying out malicious operations to drop tables and database resulting in non-availability

of the database. These operations are performed by any individual or combination of the

http://bsid/DataPage.aspx

22

following methods: determined drawn-out manual processes (which include executing

remote commands) and automated SQLIA exploit tools.

2.4 SQLIA types

Figure 2-6 presents this section organisation chart with the associated subsections.

Figure 2-6 The section organisation chart: The figure shows this section organisation chart

with the related subsections.

SQLIA types are the techniques employed by an intruder to carry out SQLIA. The

intruder would typically apply various SQLIA types in combination to open a vulnerable

web application to be more susceptible as to ease the intended SQLIA from a start to a

successful finish.

Throughout this section, simple query examples (not exhaustive) are presented in

Table 2-1 below to illustrate the different SQLIA types known signatures that are labelled

SQLIA positive in the encoding of features into vectors. The section below provides a

high-level overview of the SQLIA types which form the basis for the feature extraction

of SQLIA payload that is encoded into numerical data (vectors). The layout of the tables

below has SQLIA type (attack type), web request query strings, parsed Transact-

Structured Query Language (TSQL), attack intent, and SQLIA signatures pattern.

2.4.1 Tautology

Tautology based SQLIA type is carried out by injecting vulnerable sites with query strings

that are altered in transit to retrieve data from the database. The classic example is by

assigning modified strings to the WHERE clause which the query is incorrectly

terminated with a single quote (‘) or with a tautological statement like OR 1=1 as shown

in Table 2-1. The outcome is always parsed by the SQL parser to be true, meaning that

the security validation of login credentials will be bypassed to retrieve all the records

from the affected back-end database table.

SQLIA
Types

Tautology

Invalid/Log
ical

Incorect
Query

Union
Piggyback

Query
Stored

Procedure
Time-based

Query

Alternate
encoding

obfuscation

23

Table 2-1 SQLIA types and attack signatures: A table of SQLIA types illustrating attack

signatures.

SQL

Types

Query string Parsed TSQL Attack Intent Pattern

Tautology http://localhost/bsid/DataPa

ge.aspx?LoginName=bob'O

R%201=1--&Password=

SELECT loginName,

password FROM

tblUser WHERE

loginName= 'bob' OR

1=1--

Injectable

hotspots,

circumventing

authentication,

pilfering data

`--,1=1,

‘a’=’a’ etc.

Logical

incorrect

queries

http://localhost/bsid/DataPa

ge.aspx?LoginName=';IF((S

ELECT%20user)%20=%20'

sa'%20OR%20(SELECT%

20user)%20=%20'dbo')%20

SELECT%201%20ELSE%

20SELECT%201/0;--

2%80%99&Password=

SELECT loginName,

password FROM

tblUser WHERE

loginName=’; IF

((SELECT user) = 'sa'

OR (SELECT user) =

'dbo') SELECT 1

ELSE SELECT 1/0; --

Detecting

vulnerabilities,

pilfering data, and

database

fingerprinting

SQL Keywords e.g.

SELECT

IF, ELSE

sa, dbo,1/0

Union

queries

http://localhost/bsid/DataPa

ge.aspx?LoginName=&Pass

word=UNION%20SELECT

%20CreditNo,%20CustAdd

ress%20from%20tblCrediti

nfo

SELECT loginName,

password FROM

tblUser WHERE

loginName=' '

UNION SELECT

CreditNo,

CustAddress from

tblCreditinfo

Bypassing

authentication and

pilfering data.

‘

UNION SELECT

Piggyback

queries

http://localhost/bsid/DataPa

ge.aspx?LoginName=;%20

SELECT%20*%20from%2

0tblCreditInfo%20--

SELECT loginName,

password FROM

tblUser WHERE

LoginName='';

SELECT * from

CreditCardInfo --

Extracting data

beyond the scope

of the web

application and

executing

commands

‘

;

Store

procedure

queries

http//bsid/bsid/login.aspx?

LoginName=’ ’;exec

xp_cmdshell 'attrib

"c:\test\spuriousfile.vbs" +r'

SELECT * FROM

tblUser where

loginname ='‘; exec

xp_cmdshell 'attrib

"c:\test\

spuriousfile.vbs " +r'

Privilege

escalation, remote

command,

performing denial

of service

;,Exec, xp_cmdshell

Attrib c:\test\

spuriousfile.vbs " +r

Time-based

queries

http://localhost/bsid/DataPa

ge.aspx?LoginName=';%20

waitfor%20delay%20'00:00

:10'--&Password=

SELECT loginName,

password FROM

tblUser WHERE

loginName=' '; waitfor

delay '00:00:10'--

Probing of

injectable hotspots

and database

schema

‘

waitfor delay

'00:00:10'--

Alternate

encoding

obfuscation

http%3A%2F%2Flocalhost

%2Fbsid%2FDataPage.aspx

%3F%0ALoginName%3Db

ob%27OR%25201%3D1--

26Password%3D%0A

SELECT loginName,

password FROM

tblUser WHERE

loginName=' '; waitfor

delay '00:00:10'--

Obfuscating data

to evade detection

%

Hex values &

Numeric values

--

2.4.2 Invalid/logical incorrect query

The incorrect query is often used to probe the vulnerabilities of the target before the actual

SQLIA. The information gained during this initial phase is used by the intruder to

determine what form of further attack to carry out on the target web application. The

example query string in Table 2-1 will return a divide by zero error if the login account

is not sa or using dbo schema.

24

2.4.3 Union

This attack exploits the union command ability to query multiple database tables to

retrieve confidential data far beyond the tables used in the web application as shown in

Table 2-1. There are intermediate steps of using ORDER BY to get column names [150].

2.4.4 Piggyback queries

The intruder exploits the semicolon (;) which is the end of an expression of a valid SQL

query. In this example, the intruder appends a semicolon to a valid SQL statement to carry

out SQLIA. An intruder would typically combine other SQLIA type [150] to obtain

database table names. In Table 2-1, the SQL query is piggyback to run SELECT * from

tblCreditinfo to gain unauthorised credit card information.

2.4.5 Stored procedure

The intruder elicits database information by exploiting xp_cmdshell if enabled, to trigger

a trojan horse file for a malicious attack at a later day. Also, stored procedures are

vulnerable to privilege escalation, buffer overflows and even manipulated to gain elevated

permission access to perform operating system-wide operations [82]. In the example

query presented in Table 2-1, an attacker runs xp-cmdshell against spurious text files

loaded in the target to circumvent the security of the database.

2.4.6 Time-based query

The time-based attack is a time-delayed type of SQLIA where an intruder probes a site to

elicit a response after a period of time. The intruder starts off by issuing a SQL query and

waits for results. The query shown in Table 2-1 will display a response after ten seconds,

which provides an intruder with the information required to further additional attacks.

2.4.7 Alternate encoding obfuscation

Alternate encoding obfuscated exploits a combination of escape and Unicode characters

which the computer systems interpret as valid characters without distinction from

deliberate obfuscation. An intruder can circumvent solutions being provided in pattern

matching of SQLIA as it becomes unreadable as shown in Table 2-1.

Not limited to the above injection mechanisms and SQLIA types which are the

subject of the pattern-driven data set labelling of SQLIA positive in this thesis; there are

other forms of pattern evading techniques like the use of comments, whitespace, character

casing and encryption that are exploited by an intruder in SQLIA.

25

2.5 Principles of Applied Techniques

Figure 2-7 presents this section organisation chart with the associated subsections.

Figure 2-7 The section organisation chart: The figure presents this section organisation chart

with the associated subsections.

We propose in this thesis the interception of web requests at the proxy API to predict

SQLIA. The scheme presented here demonstrates deriving data set using the FSA

technique to create pattern-driven learning data needed to train a supervised learning

model. A Web Proxy API is required to intercept web requests to application endpoints

while the MAML platform provides a cloud-hosted environment to build and deploy an

ML model through a web service.

2.5.1 FSA fundamentals

FSA is an abstract state transition machine in response to inputs as to change from one

state to the other [56], [58], [151]. In the scheme presented in this thesis, we explore the

FSA state transition walk for the derivations of related member strings to obtain massive

volumes of learning data. ML techniques require a large data set that is meaningful to

train a classifier without which a trained model becomes worthless [70]. The approach

explores traditional Nondeterministic Finite Automata (NFA) implemented in .NET

RegEx to define patterns and constraints that exist in the expected input, including known

SQLIA signatures and SQL tokens to be predicted at the SQLIA hotspot.

To apply our approach in generating learning data; there is a need to produce patterns

of expected input data. Figure 2-8 below illustrates the FSA states transition walks that

forms the fundamental building blocks of our learning data extraction technique from the

patterns that exist in the expected input data including SQLIA signature and SQL tokens.

In Figure 2-8, let the transitions alphabets which are the substrate for member strings

generation to be represented by a set of {a, b}. The states transition walks can be

Principles of the
Thesis Applied

Techniques

FSA fundamentals
Fiddler Web Proxy

API
Machine Learning

26

condensed into a regular expression of a(ab)*|bb(ab)* which can accept these possible

inputs sets of member strings {a,aab….bn, bb,bba,bbab…bn}.

The state walks from the initial state to the accepting state via transition states shown

in Figure 2-8 can be interpreted as follows:

• Between initial state (1) and accepting state (2), we have {a}.

• Between initial state (1) and state (3) via accepting state (2), we have {aa}.

• Between initial state (1) and state (3) via accepting state (2) and back to

accepting state (2), we have {aab}.

• Between initial state (1) and state (3), we have {b}.

• Between initial state (1) and accepting state (2) via state (3), we have {bb}.

• Between initial state (1) and accepting state (2) via state (3), and back again to

state (3), we have {bba}.

The states walk can go on with {bbab}, {bbabb…..bn} and so on [152]. This forms

a classical NFA transition states with nondeterministic states walk.

1 2

3

Transition

Initial
 state

Accepting
 state

Transition

Transition

1 2

3

Transition

Initial
 state

Accepting
 state

Transition

Transition
 state

Figure 2-8 FSA illustrating transition state walks

These above manual collations of transition states walk to generate all possible

member strings’ regular expression is automated by employing the research work by

Veanes et al. [153], [154] on Symbolic Finite Automaton (SFA). The SFA technique is

used to generate the member strings computationally from the tool they developed named

Regular expression explorer (Rex) [80]. We use Rex to generate massive volumes of

learning data.

2.5.2 Fiddler Web Proxy Application Programming Interface (API)

A Fiddler proxy provides the functionality to intercept HTTP/ HTTPS web request for

debugging, session manipulation, security testing and extending the API through .NET

language [40], [155]. We intercept the web requests and predict SQLIA at the hotspot

27

(predicate and expression of the SQL query structure). We extract the query string or the

supplied input in a custom .NET application that implements a Fiddler proxy [40] API

calling a web service of a trained supervised learning model to predict SQLIA.

A web proxy is the most suitable to intercept web requests including those

originating from any injection mechanisms to SDN cloud applications’ end-points. An

application-level proxy performs better in intercepting and decrypting obfuscated web

requests rather than low-level network packet interception tools which suffer from

message fragmentation in large volumes of gigabits per seconds of packets in the wire.

Also, the injection mechanisms to a vulnerable application can originate from web page

forms, second-order injection, exploiting web-enabled server variables, query strings, and

through cookies which proxy can intercept.

2.5.3 Machine Learning (Thesis perspective)

In the applied research presented here aimed at towards providing SQLIA mitigation for

web application in emerging computing of big data, we identify the upward trend in web

requests traffic to cloud SDN because of web application increasingly hosted in the

internet cloud. We recognised the universal solution to mine big data which ML provides,

and the issue of historical learning data relevant to a real-world web application type in

applying ML. We then ask a research question of can patterns in both web application

type valid input and SQL tokens including existing SQLIA signature extraction be used

to create a large volume of learning data with vectors required to train a supervised

learning model to the maximum? This research goal and related questions are answered

in Chapters 4, 5 and 6 in employing the ML approach to SQLIA mitigation.

2.5.3.1 ML fundamentals

ML is a technique of data science that assist computers in learning from historical data to

predict future trends and outcomes or events. Thus, in applying ML to SQLIA mitigation,

there is a need for relevant pattern-driven data set with enough artefact to predict SQLIA

which is lacking in the existing proposals as the data set procurement was query extraction

that is geared towards query comparison at runtime.

2.5.3.2 Traditional programming vs Machine learning

In traditional programming, it is driven on the paradigm of computational program

requirement to process data for an output such as traditional string lookup or query

28

matching approach in existing proposals [4], [5], [96]–[98], [101]–[107], [7], [111],

[114], [116]–[123], [8], [124], [126], [127], [10], [82], [84], [94], [95]. Traditional

programming lack cognitive automation (applying artificial intelligence to intensive

information processing) as any reasoning or operation to be carried out on data need to

be programmatically coded by the developer as needed, so the output cannot evolve on

its own or from experience.

Conversely, in ML the historical learning data are used to predict an output which

then provides cognitive automation in a computational program that continually innovates

and improves with experience such as the research goal of this thesis of using a pattern-

driven data set to predict SQLIA in the big data context. Figure 2-9 is a figure illustrating

the distinction between traditional programming and machine learning [156]. In a terse

statement, ML is a process of transforming historical data into a predictive analytics

software. Predictive analytics is a process of employing mathematical formulas termed

algorithms or classifiers to analyse current data to identify patterns or trends to predict

future events.

The ML learning approach is more suited for a computational task that mimics the

human learning curve to carry out complex tasks with speed effectively. Employing ML

technique offers cognitive automation to the research goals of this thesis as it provides a

method to train a classification algorithm to the maximum with the pattern-driven data

set to predict SQLIA in the context of emerging computing effectively. This cognitive

automation requirement cannot be said of a traditional SQLIA mitigation lookup

approach which a programming construct only produce an output or detect an SQLIA

signature type which does not account for associated polymorphic signatures derivation

by an intruder to bypass protection, e.g. SQLIA type of tautological attack signature of

1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [157].

Traditional Programming

Computer

Data

Program

Output

Machine Learning

Computer
Data

Output

Program

Figure 2-9 Traditional programming vs Machine learning: A figure illustrating the

distinction between traditional programming and machine learning.

29

2.5.3.3 Data set

Availability of sizeable historical learning data or data set relevant to real-world

application type has advanced many fields to apply ML to mine these data set with

examples in better speech recognition, image recognition, meteorological weather

forecasting, and breast cancer diagnosis as a few examples. The University of California,

Irvine (UCI) ML repository currently maintains about 438 data sets [3], [158] that are

widely used by the ML community. The UCI available data sets are continually increasing

as more data sets are added. The procurement of such historical learning data set vectors

is straightforward in the natural sciences where observations and measurements over a

period are recorded to produce a large volume of data set with feature vectors available

to predict future events.

Unfortunately, the issues of ageing data set and lack of standardised ones are known

issues in Intrusion Detection System (IDS) research [1], [2], [67], [159], [160] with the

antiquated KDD Cup 1999 [161]. Also, the same plight is faced in SQLIA detection and

prevention research when applying ML which requires data set input of vectors, but with

few old data sets which were provisioned for a challenge competition or a purpose-built

as in ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66]. These obsolete data sets had

served the purposes in the respective challenge competitions and as such not a test case

for validation benchmark or training a classifier for real-world application. Also, it must

be pointed out; these data sets do not hold the same weight as the natural science data sets

made available by the UCI that are based on actual recordings of measurements and

observations over a period. The UCI data sets have features that are relevant in solving

real-world classification tasks in better speech recognition, image recognition,

meteorological weather forecasting, and breast cancer diagnosis as a few examples.

The obsolete nature of the few existing data sets [65], [66] that relate to the SQLI

domain of study can be seen as none of the data sets to have been used in existing work

applying ML [71], [72], [134]–[141], [74], [100], [128]–[133]. These existing works

employing ML techniques resort to generating their test case data sets. These data sets

revolve around URL query string extraction by web crawling or a log file of activities of

automated SQL server database interaction which is one of the reasons in most existing

work to have gravitated towards query comparison or strings matching of some sort. Also,

in most of these data sets that include few competitions-driven data set available in the

public domain [65], [66], and privately generated data set for a test case in existing work

30

(not available in the public domain) quickly becomes obsolete. These existing data set

short lifespan is primarily due to web application types are so diverse to have a universal

generic data set for all ML-based SQLIA mitigation as such cannot serve as an empirical

benchmark for the validation of the classification algorithms used.

Thus, that begs the question if the pattern that exists in web requests that are deemed

valid, and historical studies of different SQLIA types including SQL tokens can provide

artefact to be used to generate a data set to train an ML algorithm to predict SQLIA. We

presented in this thesis that based on the web application type; a pattern-driven data set

relevant for that web application type to be protected can be inferred. The ML platforms

have validation and cross-validation to benchmark results as to ensure only classification

algorithms trained to the maximum are deployed as a web service in an ongoing SQLIA

mitigation. The pattern-driven data set is a paradigm shift from existing work over the

years. The existing test case data set procurements foster on query matching, and

comparison of some sort in both traditional signatures lookup and existing AI approaches;

this excludes defensive coding which is input validation and sanitisation.

A pattern-driven data set has a set of subsequence and substructure of items that

frequently occur together [162]. The pattern-driven data set proposal in this thesis is a

data engineered or text pre-processed learning data for ML which does not have a parallel

with web crawling for URL query strings or static log files of queries as seen in the

procurement of existing test case data sets. The pattern-driven data set paradigm

empowers the web developer or system expert to derive a data set based on the web

application type they aimed to protect. Below is a list of some of the benefits of towards

a pattern-driven data set over the existing data set that is not patterned-driven.

• It is a pattern engineered data set devoid of repeating strings or queries.

• A pattern-driven data set is applied as it has relevance to the classification

problem.

• It is derived in the scope of the web application type that the ML-based SQLIA

mitigation is being provided.

• It can be scaled to any magnitude as to have a large data set to train a classifier to

the maximum as to effectively predict an outcome.

31

• A pattern-driven data set empowers the web developer or system expert to derive

a data set based on the web application type.

• Most importantly, it does not age fast as it is tailored to a web application type.

Conversely, non-pattern driven data set as seen in some existing work and the few

competitions-driven data set are logs of repeating strings which gravitate the proposals to

query comparison of some sort in SQLIA mitigation employing Natural Language

Processing (NLP) of using n-grams (processing of the full length of strings or n > 1) [72].

A log of repeating strings of literally the same strings lacks the intrinsic and essential

properties for uncovering patterns in massive data set as in emerging computing big data.

We presented techniques in this thesis proposal and related published papers [61]–

[64] to derive a pattern-driven data set on the fly in a real-world application with empirical

evaluation and cross-validation in towards breaking the cycle of reliance on a static data

set. Any static data set will be out of date and irrelevant in no time, but a technique to

create one based on application type will empower system expert to derive a relevant data

set of intended application to be protected.

2.5.3.4 Learning algorithms

Supervised learning or classification algorithms use crafted data set by a human with

labelled class in the learning data on what to predict while unsupervised learning models

are not labelled instead employ clustering of data using distance and weight functions to

group related data [163], [164]. Semi-supervised learning uses a labelled data to identify

specific groups which further use unlabelled data to discover new groups.

In applying ML to SQLIA mitigation, we have embarked on procuring a human-

mediated known pattern-driven data set that has a known labelled output to predict an

outcome of SQLIA. This thesis proposal has the trappings of a classic case for a

supervised learning predictive analytics from a known input data with known outcomes

[156].

Figure 2-10 presents an illustration of the supervised learning logic from human-

crafted known input data combined with known outcomes to produce a new predictive

model program (supervised learning). Because of the pattern-driven data set approach to

an ML classification and regression algorithms, we deemed supervised learning as the

functional approach to address the thesis proposal of applied pattern-driven data set for

32

predictive analytics in SQLIA mitigation. Employing the alternatives of semi-supervised

classification algorithm and unsupervised clustering algorithm will be the subject of

future work in fully automated pattern-driven data set procurement.

Computer
Known Input Data

Known Outcomes

New Prediction

Model program

Figure 2-10 Supervised learning logic: A figure illustrating the supervised learning logic from

human crafted known input data combined with known outcomes.

2.5.3.5 MAML Platform

The MAML studio or platform provides an out-of-the-box platform for building and

deploying a prediction model as web services. It provides a cloud-hosted all-in-one

platform to build and deploy a big data analytics solution, supervised, semi-supervised

and unsupervised learning models [42].

The MAML studio provides versatile, extensible and ubiquitous cloud-based AI

platform. Predictive analytics employ mathematical formulas termed algorithms or

classifiers to analyse current data to identify patterns or trends to predict future events.

Below lists the justification for using MAML studio in implementing the proposal

presented in this research are as follows:

• MAML offers a wide range of well-known algorithms in ML and neural networks

that are easily extendable within the MAML studio.

• In bringing this applied research of mitigating SQLIA with AI approach to the

mainstream business application, MAML studio provides in addition to the code

API of R and Python languages an easy drag and drop components. The drag and

drop components have configurable properties to build, test, fine-tune, validate

and generate advanced analytics to the pattern-driven data set presented in this

thesis.

• The overall research goal is to examine a SQLIA problem in the context of the

lack of a pattern-driven data set and provide mitigation that applies AI using this

research generated pattern-driven data set. MAML studio met the research goal in

33

its functionality to provide all in one spot platform for API to extract data set, train

a model, validate, cross-validate and deploy the trained model as a web service to

be consumed by any application.

• The issue that stands out in some existing approaches on SQLIA mitigation [74],

[125], [129], [133], [193] is being computational expensive. The availability of

MAML cloud-based software and platform as services resolves the issue by

harnessing these large-scale supercomputers employing AI techniques to deliver

ready to use solutions that would have been limited relying on a single or few

servers in the intranet or extranet.

2.6 Conclusion

We examined in this chapter SQLIA mechanism, intent and types to better address

SQLIA. We also reviewed the fundamentals of the tools applied in this research to

mitigate SQLIA that are discussed in the subsequent chapters. SQLIA research over the

years [6], [8], [167]–[171], [10], [11], [20], [92], [100], [111], [165], [166] have reviewed

the SQLIA mechanism, intent and types that are discussed above to have proposed

various on-premise mitigations to SQLIA. These various proposals were functional in

web servers hosted within the organisation’s intranet and extranet but now restricted with

emerging computing.

The emerging computing of IoT and cloud-hosted services have increased the

volume of web requests that need analysing for SQLI. These are web requests to back-

end database emanating from diverse client web applications and emerging computing

smart devices. The enormity of data requires a technique more scalable than string lookup

which ML provides that is proposed in this thesis.

34

3 Literature Review

Figure 3-1 presents the organisation chart layout of this chapter with the sections.

Figure 3-1 The chapter organisation chart: The chapter organisation chart presents the layout

of the chapter’s sections.

3.1 Introduction

This chapter reviews the existing research literature on SQLI detection and prevention

techniques that enhance the security of web applications. The research area of SQLI

detection and prevention has seen diverse methodologies proposed over the years by

various researchers and this chapter broadly classify these approaches into three sections.

The rest of this chapter is organised as follows. Section 3.2 discusses SQLIV testing and

detection. 3.3 discusses defensive coding in web application code sanitisation for SQLI

prevention. 3.4 discusses dynamic runtime analysis, including taint-based and approaches

applying AI (a similar approach to that implemented in this thesis) in the detection and

prevention of SQLIA. The chapter ends with a conclusion in section 3.5. Each section is

followed by a discussion on existing literature review to establish the gap in the context

of emerging computing, and the contribution this thesis makes to fill in the gap.

3.2 SQLIV testing and detection

Figure 3-2 presents this section organisation chart with the associated subsections.

Figure 3-2 The section organisation chart: The figure shows this section organisation chart with

the related subsections.

SQLI Review

3.1
Introduction

3.2
SQLIV testing
and detection

3.3
Web application
code sanitisation

3.4
Dynamic runtime

analysis

3.5
Conclusion

SQLIV testing and
detection

Static testing
Dynamic runtime

testing

35

Researchers have applied penetration testing techniques to SQLI detection. Penetration

testing techniques are aimed to detect application vulnerabilities during investigative

auditing of web application and thus are not a traditional SQLIA prevention approach.

3.2.1 Static testing

Static code analysis applies penetration testing to examine the internal structure of the

code used in web applications to detect errors and correctness at compile time. Static

analysis or white-box testing is applied in detecting SQLIV to check the static syntactic

structure of the code as to detect SQLIV during compile time. The approach is mostly

developer-centric to create a secure web application during the Software Development

Life Cycle (SDLC) and source code auditing for vulnerabilities.

Though static penetration testing approaches looked plausible in the past to detect

vulnerabilities in web applications; its drawback is its reliance on the source code for

SQLIV detection. The emergence of cloud computing has changed the accessibility of

application source code for SQLIV detection. Also, the application domain boundary has

shifted from the organisation's servers being hosted within their intranet to external cloud

hosting on the internet. Hosting services, applications and infrastructure on the web such

as the cloud have restricted access to source code due to the vulnerability risk of

unrestricted source code.

Gould et al. [94], [95] proposed a static analysis tool named JDBC Checker to check

the correctness of dynamically generated query strings. The approach explored a finite

state automaton to flag the presence or absence of errors in the query strings. The JDBC

checker is a Java code-centric tool aimed at only detecting SQLIV as against prevention

[82].

Wassermann and Su [96] extended static code analysis to detect tautology SQLIA

type by employing regular expressions for automatic dynamic code generation as to detect

only tautological SQLIA type. Although effective, Wassermann and Su's approach did

not go far enough in detecting other SQLIA types as a tautology is only one form of attack

technique, as discussed in 2.4 above.

Fu et al. [97] designed a static analysis tool named SAFELI for detecting SQLIV at

compile time by inspecting the bytecode (intermediate language) of a web application

using symbolic execution to detect SQLIV at the injection hotspot. Web applications, in

recent years, have become restrictive regarding access to source code which the SAFELI

tool relies on to function; this hinders its ability to retrofit to vulnerable web applications.

36

Al-Khashab et al. [98] explore a static approach in substituting SQLI hotspots with

an optimised query to detect SQLIA. In doing so, they hope that an intruder would not be

able to deduce the optimised version of the SQL query in the parse tree structure to

circumvent the protection provided. Unfortunately, the approach is labour intensive for

developers requiring that they unwind code and start generating the optimised versions

and replacing the SQLI hotspots with these optimised query versions. Also, the outcome

of the optimised query does not solely rely on the query processor engine but is also

dependent on other hardware resource factors such as the Central Processing Unit (CPU)

on the server that is not considered in their approach.

Shar and Tan [99] build a PhpMiner II static analysis tool to predict web application

vulnerabilities from static attributes during input validation and sanitisation. The tool

provides an inexpensive detector of vulnerabilities, but suffers from relying on source

code which is not always available for cloud-hosted legacy web applications.

Medeiros et al. [100] implemented a static analysis tool to search for vulnerabilities

with further use of Machine Learning (ML) classifier for detection and classification of

vulnerabilities in a web application. Their approach is lacking in real-life web application

testing as the implementation relies on synthetic data which does not evolve with new

signatures.

3.2.2 Dynamic runtime testing

Dynamic runtime testing is a penetration testing technique used to detect error and

correctness at runtime without peering through the code, contrary to the white-box testing,

which statically peered through the internal workings of the code to detect vulnerabilities.

Black-box testing is applied in the SQLIV detection at runtime by dynamic analysis of a

simulated mimicry of an actual web application interaction from the user to detect

vulnerabilities. These approaches [101],[102] employ an automated unit test and web

crawling tools that are fed with attack features at runtime to simulate or mimic an actual

injection of input from an intruder to detect SQLIV.

Huang et al. [101] in their black-box testing approach developed a tool named Web

Application Vulnerability and Error Scanner (WAVES) which applies web crawling to

identify a data entry point (web form), and then uses an SQLI log to detect SQLIV. The

method lacks completeness as it only detects cross-scripting and SQLIV in a web

application but does not prevent them. Also, the approach will struggle to detect SQLIV

37

in real-time big data scenarios due to their complex validation procedure to establish

SQLIV.

Shin et al. [103] developed an SQLIV detection tool named SQLUnitGen that

combines static analysis of the source code and runtime automated testing for

vulnerability detection. The functioning of the SQLUnitGen consists of three processes.

The first process employed symbolic execution techniques that include compiling a

program to intermediate language code (bytecode) for an evaluation to recognise input

that reaches the SQL query statement hotspot. The second process follows these input

transformations with actual attack features. Finally, the third process compiles the

program to finish as to generate a test result in a summary graph showing either a test

case input success (no SQLIV) or failure (presence of SQLIV).

Approaches employing symbolic execution suffer from computational complexities

to scale in large programs due to multiple loop iterations used in the evaluations as to

increase multiple possible paths in the program exponentially [104]. Also, the symbolic

evaluation dependency on loop iterations in evaluations is a limiting factor in emerging

computing such as big data mining.

Lin et al. [105] employ a black-box testing and validation function with a secure

gateway to SQLIV, but its drawback lay in need to tweak the approach for the detection

of new vulnerabilities constantly.

Shahriar et al. [106] developed a tool called Mutation-based SQL Injection

Vulnerability Checking (MUSIC) which is a mutation-based SQLIV testing tool. The

approach employs a mutation algorithm to create nine mutation operators that introduce

SQLIV into an application’s source code to generate mutants. These mutants can only be

killed off by a test data containing SQLIV. The tool employs this successful elimination

of mutants to establish the presence of SQLIV while the survival of mutants indicates the

absence of SQLIV. Although successful, the approach is only effective against a simple

WHERE clause condition in a SQL query and does not address a store-procedures SQLIA

type.

Ciampa et al. [107] developed a penetration testing tool named VIp3R (“viper”)

which is based on pattern matching error messages and output results produced by the

application to infer SQLIV. The notion of detecting SQLIV with error messages is flawed

as a successful intent to pilfer data can be carried out without SQL Server emitting any

error messages as not all SQLIA techniques would return errors, e.g. the Blind SQLIA

type does not include output error messages.

38

Appelt et al. [108] proposed a penetration testing approach for detecting SQLIV that

employs mutation operators of SQLI patterns to manipulate legitimate input to trigger the

detection of vulnerabilities. In further work, Appelt [110] extended the black-box testing

approach using ML to train the Web Application Firewall (WAF) to detect vulnerabilities

continuously. Appelt's penetration testing approach aimed to generate diverse and

mutated attack string patterns for WAF to identify and prevent the likes of SQLIA. Appelt

et al. approach look plausible, but an intruder is always one step ahead of human-

automation to circumvent any mitigation against SQLIV using predefined synthetic

mutated features, and their technique does not adapt to future novel attack.

Ceccato et al. [109] developed a tool named SOFIA for Oracle database web-driven

applications. Although this is a useful black-box vulnerability testing tool, it does not

offer a prevention method.

Liu et al. [102] developed a prototype tool named SQLEXP based on a black-box

penetration testing approach that explores a generic static SQL penetration testing. This

tool is used to generate a matrix that is assigned a test case pattern and further compared

to the dynamic matrix generated at runtime to detect SQLIV. As with other penetration

tests, the tool offers application vulnerability testing but does not prevent SQLIA.

3.2.3 Discussion

White-box and black-box penetration testing approaches are mostly applied in SQLIV

detection with only a handful that extends the approach to include prevention [110].

Approaches that rely on both static and dynamic testing to detect SQLIV at runtime

require full access to source code for detection. However, as increasing numbers of

applications and services are being hosted in the cloud, access to source code has become

increasingly restricted. Most modern web applications are loosely coupled (tiered

application API for reusability) as against on-premise, where the domain application

boundary is demarcated between the intranet and the internet. Existing approaches to

SQLIV detection were based mainly on an old paradigm of the on-premise database that

needed to be protected from SQLIV on the web application server within the intranet

receiving web requests from the internet. This old paradigm of the on-premise hosted web

application is not the case with cloud-hosted applications.

In emerging computing, there is a need for a shift in paradigm as the application

domain boundary now includes the internet cloud services which require the use of the

proxy API to intercept web requests at the application endpoints to detect SQLIV as to

39

prevent SQLIA. Also, the astronomical growth of data requires machine learning to mine

big data for SQLIV as against traditional data string lookup employed in most signature

string searches [172]. The section below discusses the defensive coding approach to code

sanitisation during SDLC.

3.3 Web application code sanitisation for SQLIV prevention

Figure 3-3 presents this section organisation chart with the associated subsections.

Figure 3-3 The section organisation chart: The figure shows this section organisation chart with

the related subsections.

Defensive coding is an approach aimed at the developers’ awareness of security

vulnerabilities at design time of web applications to address SQLIV. It is an approach that

has handed down guidelines by OWASP for securing web applications. Defensive coding

involves prepared statement and validation of the source code for escape characters. The

developers need to be trained to identify the SQLIV during SDLC as to integrate the

security principles into web application development.

Defensive coding is functional during the development of new web applications,

including testing and debugging. It is a manual approach that is inherent in mainstream

web development programming languages like PHP, JavaScript and ASP.NET which is

seen as one of the plausible defences against SQLIV. However, relying on the developer

for manual defensive coding is a daunting and labour-intensive process to maintain. Also,

not all developers have the knowledge and time to follow the OWASP and other software

vendor’s security guidelines against SQLIV in a race against time to turnaround web

applications.

Web application code
sanitisation

Defensive coding
/sanitisation

Prepared statements

Whitelist/ data type
validation

Input escaping

40

3.3.1 Defensive coding/sanitisation approaches

OWASP [112] has provided white papers and guidance for building a secure web

application to address SQLIV. The recent OWASP proactive controls white paper [113]

gave ten recommendations to be included in every software development. The manual

defensive coding usually referred to as code sanitisation involves parameterised queries

or prepared statements, a whitelist of inputs, including data type validation and escaping

of user input.

3.3.1.1 Prepared statements

Prepared statements include the use of parameterised queries in the variable binding to

ensure the intruder does not change the intention of the intended query [112]. A .NET

[114] implementation of a prepared statement or parameterised queries uses command

parameters for all SQL queries call in the source code to accept the parameters in both

queries and stored procedures.

3.3.1.2 Whitelist of inputs including data type validation

Whitelist input validation provides a mechanism to reject unexpected data input that could

be malicious. The approach requires defined patterns of both malicious and valid web

requests to be established as to be able to accept or reject legitimate web requests

respectively. The OWASP white paper [115] provides prescriptive guidance on the

whitelist of data input.

3.3.1.3 Input escaping

OWASP prescribed input escaping of all user-supplied input [112] to ensure that SQL

characters in queries do not itself introduce SQLIV. To give an example, in tautological

SQLIA type an intruder would exploit a single quote (‘) as used in a name O'Brien.

Accepting a single quote by escaping of user input has different implementations

depending on the database. On SQL server-based application will escape a single quote

by adding a second single quote, e.g., O'Brien is escaped in a query (SELECT * FROM

tblUser WHERE LoginName = ‘O’’Brien’). In a web application, the same is escaped

with double quotes as in WHERE LoginName = “O'Brien”. In the paragraphs below, are

some notable existing approaches on input sanitisations.

McClure and Kruger [111] developed a tool named SQLDOM based on the Call-

Level Interface (CLI) [173] which provides automated input escaping and data type

validation in addressing SQLIV. The solution consists of two parts with the first being an

abstract object model that offers developers functionality to generate their schema, and

41

the second being the generation of dynamic SQL statements at compile time against the

generated database schema. The SQLDOM tool detects SQLIV if there is a mismatch

between the dynamic SQL statements against the generated schema.

Thomas et al. [116] extended SQLDOM to automate prepared statements. Both

above tools can be applied to new web application development, but the drawback is that

they are lacking in retrofitting to legacy applications. Natarajan and Subramani [117]

proposed SQL-IF which is a dynamic runtime tool checking web form input, but limited

to special characters, keywords and Boolean characters.

Karakoidas et al. [118] applied a static analysis to generate prepared statements to

mitigate SQLIV dynamically. The limitation that Karakoidas et al. have in detection is

that prepared statements mitigation is only one of many methods in defence coding

techniques to protect against SQLIA and does not offer a total solution in its entirety.

3.3.2 Discussion

There is a need to harness emerging computing in areas of ML and big data mining

regarding security vulnerabilities lookups to address the limitations of traditional string

lookups. Although defensive coding is plausible mitigation against SQLIV, the weakness

is the technique employs traditional string lookups in input data validation to meet the

ever-growing demands of internet applications big data. Also, the approach suffers a

drawback of lacking retrofitting to legacy applications as a developer at design time needs

access to the source code for implementing prepared statement and validation of escape

characters.

Modern mission-critical business cloud-hosted applications and services do not

allow the free flow of source code. However, this does not imply that traditional web

applications protected within the organisation’s intranet (and now being deployed as

cloud-hosted services) are free from SQLIV. In fact, most of these applications being

ported to the cloud-hosted environment would contain a mixture of new web applications

with code sanitisation and legacy applications that may still harbour SQLIV. Though

defensive coding accounts for web input sanitisation, it cannot adequately deal with an

interception of the web request for replay (malicious modification of the intercepted web

request) by an intruder who employs SQL injection mechanism (conduit) other than web

form input injection.

There is a need for organisations that host applications and services in the cloud to

have a proxy layer to intercept web requests for SQLIV analysis. We propose in this thesis

42

an approach that does not rely on the source code to detect and prevent SQLIA in input

validation. We explore AI to predict SQLIA at the injection points by using a proxy to

intercept web requests.

The section below discusses dynamic runtime approaches that involve generating

static valid SQL queries which are dynamically matched at runtime against web requests

to detect SQLIA. Also explored in dynamic runtime are profiles [121] and query sizes

[122].

3.4 Dynamic runtime analysis for detection and prevention of SQLIA

Figure 3-4 presents this section organisation chart with the associated subsections.

Figure 3-4 Dynamic runtime analysis techniques category chart: The figure shows this

section organisation chart with the related subsections.

There are several existing techniques proposed by researchers under dynamic runtime

analysis, which are to be discussed below. The dynamic runtime analysis is usually

preceded in most approaches by statically generating all possible valid queries to a web

application and matching the web requests at runtime against these valid queries to detect

an anomaly or SQLIA. Also, included is the tainting techniques which involve the

labelling of data which is then tracked to the sink (database entry). In the context of

emerging computing and big data mining for SQLIA, we also discuss existing ML

techniques including the technique proposed in this thesis to predict and prevent SQLIA.

3.4.1 Runtime analysis

Boyd & Keromytis [84] proposed SQLrand that employs proxy and parser whereby a

query is randomised and de-randomised at the proxy on the assumption that an attacker

will create invalid queries to cause runtime errors which will identify the SQLIA. The

solutions were designed to fit into both new systems and can also be retrofitted into an

existing web application for deployment. The authors claimed the methodology to have

a negligible impact on performance; but, it is unlikely that it would be scalable in today’s

Dynamic runtime
analysis

Runtime analysis Taint-based AI techniques

43

large data-driven web applications. Also, the process of randomisation was simplistic as

the string appended to the SQL keywords could easily be replicated by an attacker.

Valeur et al. [121] proposed anomaly based system approach that learns and score

profiles of the standard database access performed by web-based applications. The web

requests or dynamic queries are intercepted where input vectors are inserted into tokens

marked as a constant and compared by using statistical scoring methods. The learning

phases are sectioned into two halves. The scores of the second half are then calculated

with values exceeding the threshold set in the first half deemed anomalous. The authors

evaluated the approach to have a high degree of success in the detection of SQLIA.

However, the limitation is that it requires extensive training for excellent detection

capabilities [82].

Buehrer et al. [4] proposed a SQL parsing tree which uses a combination of proxy

and SQL parse tree for a genetic algorithm SQL syntax sequence alignment for detection

of SQLIV. Though this approach applies gene sequencing alignment techniques, it has a

similarity with valid queries matching techniques to establish SQLIA detection.

Halfond & Orso [5] proposed AMNESIA, a hybrid of static and dynamic approach

that employed pattern matching between valid requests against dynamic web requests at

runtime to detect and prevent SQLIA. Although the approach scaled well in traditional

string matching at the time, it is unlikely that the method could meet the demand of

emerging computing in big data scenarios that would require predictive analytics

techniques for big data mining.

Wei et al. [123] proposed matching a static valid web application’s SQL query

against a dynamic analysis of queries at runtime to detect and prevent stored procedures

SQLIA type. The drawback to this approach is that it is limited to only stored procedure

detection SQLIA type and does not cover the other SQLIA types as discussed in Chapter

2. To address this limitation, Karuparthi & Zhou [91] presented an enhanced version of a

dynamic query matching method [121], [122] to detect other SQLIA types. However, the

enhanced model is a traditional string lookup technique which will not be functional in

internet big data analysis.

Bisht et al. [11] proposed an approach named CANdidate evaluation for Discovery

Intent Dynamically (CANDID). The approach was centred on the Java-based web

application code analysis by mining programmer intended query structure of any input

and comparing it against the structure of the actual query as to detect and prevent SQLIA.

The benefit claimed by the authors of the approach is that it can be retrofitted, but the

44

bytecode transformation could be computationally expensive to scale well in big internet

data-driven traffic. Also, there are restrictions to source code access in the cloud-hosted

applications to generate bytecode.

Fu and Li [125] proposed a string constant solver algorithm named SUSHI

employing an automata-based approach to solve a simple linear string equation for attack

signatures and error traces thereby exposing SQLIA and Cross Scripting (XSS)

vulnerabilities. The approach reduces false positives in string analysis techniques, but it

is computationally expensive to scale well in current big data-driven web applications.

Fernando and Abawajy [119] applied both static and dynamic approaches for

detecting and preventing SQLIA in Radio-frequency identification (RFID). The

drawback to this method is that it is not web-agnostic, which most modern RFIDs support.

Shahriar and Zulkernine [14] proposed an information theory based detection

framework for SQLIV prediction. The approach applies static and dynamic script analysis

of the query to calculate the entropy to detect malicious queries. The approach is not

robust to dynamically detect all SQL types like stored procedure attack.

Jang & Choi [122] presented an approach for detecting SQL injection attacks using

query result size. The approach employs a technique that dynamically analyses the

developer intended query result size of the given input and then detects attacks by

comparing this against the product of the actual query. The implementation includes

running input against two layers: substitution variable verification and Query Cost

Estimator (QCE). The replacement variable verification checks the attack patterns and

vulnerabilities in the SQL queries. The QCE computes the predicates in SQL queries and

estimates the table and column cardinalities in addition to estimating and comparing

query result sizes. The drawback of this approach is a limitation in complex relationship

queries that use an inner join which compares the result size, meaning that it will yield

high false positive rates.

Kar et al. [120] proposed SQLiDDS; an approach that consists of offline and runtime.

During the offline, the tail-end (after WHERE clause) of suspected queries are extracted

and transformed to compute MD5 hash value stored in a reference hash table which uses

hierarchical agglomerative clustering employing the averaging link method to aggregate

related queries into a single document of highly related clusters. The transformation

scheme where the comparison between static and dynamic query is computed by counting

words could yield a false result as there are possibilities to arrive at the same number of

words in the computation schemes.

45

3.4.2 Taint-based

Wassermann and SU [126] proposed a static algorithm for string analysis to find SQLIV.

The algorithm statically generates a set of possible database queries that a web application

may generate by employing context-free grammars which are then tracked by information

flow from untrusted sources to these queries to detect vulnerabilities. It is a taint technique

of tracking data flow from untrusted sources, but its drawback is the high false positive

rates [82].

Halfond et al. developed a tool named Web application SQL Injection Preventer

(WASP) [7] that is an attack runtime prevention method employing positive tainting of

tracking trusted data as against traditionally negative tainting of tracking untrusted data.

Though taint approaches with trusted data are fraught with the risk of increased false

positive, the author deemed the proposal more plausible than related approaches which

saw high false negative rates of tracking a taint data with untrusted data source employed

in these cited papers [165], [174]. The WASP improvement in syntax-aware evaluation

used a database parser to interpret the query before it is executed and provided a flexible

mechanism that allows different trust policies to be associated with various input sources.

Kie et al. [127] developed a tool named ARDILLA for SQLI and XSS vulnerabilities

detection through a technique of input generation, dynamic taint propagation and input

mutation to detect vulnerabilities. ARDILLA automates the creation of test inputs to

reveal SQLI and XSS by employing tainting techniques; the test input is symbolically

tracked as it executes to mutate the inputs to produce vulnerabilities. The tool had few

false positive rates, and addressed second-order vulnerability as claimed by the authors,

but a taint technique that employs tracking of data from untrusted sources to detect

vulnerabilities are known for high false positive rates. A further drawback to the use of

this approach in modern web applications is that the flow of data to applications is so

diverse that there can be no guarantee of receiving data from only trusted sources.

The section below discusses ML approaches to SQLIA detection and prevention,

which is also the subject of the thesis presented in this thesis. After a careful study of the

literature reviewed in the sections above, we deemed ML is a plausible approach to

mitigate SQLIA in emerging computing.

3.4.3 Machine Learning and Neural Network runtime analysis

This method applies artificial intelligence which requires a robust data set with different

patterns in data items to train a classifier. Applying ML requires robust data set items

46

with patterns to train a classifier implementing AI algorithms to predict SQLI accurately.

Unfortunately, as there is no single standardised data set that can be used in training an

AI model for all scenarios of web application vulnerabilities, researchers have presented

various approaches for extracting data sets with most proposals suffering from limited

data engineering (data set with patterns to enhanced ML prediction). The HTTP dataset

CSIC 2010 [66] does not present a robust, versatile pattern-driven data set as it was a

purpose-built data set following a classic data set extraction using automated tools to log

web requests with repeating query strings and occasional variation in query strings. These

data sets are repeatedly found in research work as test data for evaluations and have come

under scrutiny over the years of being dated and irrelevant to building a real business

application.

There have been various ML algorithm proposals by researchers over the years to

mitigate web applications SQLIA vulnerabilities. We reviewed literature on the popular

ML algorithms to detect and prevent SQLIA which are: [71], [72], [74], [128]–[133],

[100], [134]–[136],[137]–[141] to observe drawbacks in the data set devoid of patterns

as they share a commonality in reliance on URL query strings, SQL internal query

structure and static generated data set which is often repeated strings. We selected for

further discussion some of these approaches employing SVM, LR and NN algorithms in

subsequent paragraphs.

 Bockermann et al. [75] proposed the tree kernels for analysing SQL statement in

addition to exploring feature vectorisation of data input to an SVM classifier, but found

there to be drawbacks in the tree-kernels computational overhead. Also, their data set

extraction was dependent on URL strings which are repeating strings that are lacking in

patterns.

Choi et al. [72] train an SVM classifier using feature vectorisation by N-Grams

employing bigrams, trigrams and 4-grams for queries comparison. Their approach would

need various patterns to improve the accuracy of the approach as the data set used has

few distributions in the training data set of 608 attribute values (normal and malicious)

and 306 attribute values of test data. Also, the approach requires access to full source

code.

Kar et al. [137] proposed using a SQL query of normalised query elements to tokens

to build a graph of tokens and centrality of nodes to train an SVM classifier, though an

ML approach it mirrors a classical queries comparison between a normalised tokenised

and runtime query to detect SQLI at database firewall. The approach looks promising in

47

an intranet and extranet but not applicable to cloud-hosted web applications SDN

endpoints. As the SQLIA mitigation is at the database level, the injected queries if not

intercepted by other SQLIA protection during the transition are left to bypass firewall

before be enumerated for tokens used in the ML query comparison approach. Also, this

enumeration or tokenisation of schema changes takes 30 minutes, which will not scale in

big data web traffic analysis.

Wang and Li [73] proposed an SQL query program tracing in which related queries

are grouped based on the runtime program trace. However, the approach’s drawback is

the reliance on the source code for the SQL tracing grouping that is hashed to the vector

matrices for a classifier implementing the SVM algorithm.

Pinzón et al. [74] present a multi-agent approach that uses various classifiers

including SVM and neural networks to predict SQLIA from SQL queries behaviour that

is stored as cases. Though an ML approach, it mirrors a classical queries comparison. The

architecture named CBR cycle is computationally expensive and needs access to source

code.

Kim and Lee [138] proposed an approach that uses the SVM classifier for binary

classification of internal query representation known as query trees. The training data

comprised of feature vectors from transformed query trees of the internal query structure.

Its drawback is that it requires access to the source code and is computationally complex

because of the size of the query trees.

We reviewed existing literature on SQLI to establish the research gap and defined a

research goal to present in this thesis a supervised learning model that uses a data set input

from patterns of both expected data and SQLIA types including SQL tokens to train

classifiers. We started with an investigation of numerically encoding of both valid data

input and patterns of SQLIA types including SQL tokens to test the performance metrics

of vector matrices of data set input derived from patterns [61], [62]. We further our

approach by applying ML predictive analytics to SQLIA prediction and prevention [63],

[64]. The approach presented in this thesis relies on the web requests or data input at

runtime to detect SQLIA as against raw queries comparison as proposed in most runtime

analysis.

3.5 Conclusion

In the preceding sections, we reviewed existing research work proposed by various

authors over the years on the topic of SQLIA mitigation. The existing literature is

48

categorised as SQLIV testing and detection; defensive coding in web application code

sanitisation for SQLI prevention; and dynamic runtime analysis. We can summarise our

critique of these existing works as follows:

• They were SQLIA mitigation approaches that existed before the emerging computing

of cloud-hosted web services where the traditional web server no longer resides on

the organisation’s intranet or extranet.

• The existing approaches displayed a need for pattern-driven data set to train the

classifier in AI approaches as against repeating strings of SQL queries and URL query

string.

• The available antiquated data sets of ECML/PKDD 2007 [65] and HTTP CSIC 2010

[66] on SQLI were purpose-built not idea to build mitigation against SQLIA in real-

life scenario business application.

• The reliance on source code access which is now restricted in cloud-hosted services.

• The dependence on static code access scanning for SQLIA mitigation in most existing

work as against the need for web requests to cloud-hosted services to be intercepted

for analysis where access to source code scanning is restricted.

• The use of the traditional string lookup approach which is not known to be scalable

to SQLIA mitigation when compared with using AI platforms in emerging computing

big data.

On account of the literature review of the existing work, we identified the dynamic

runtime analysis that applies AI techniques provided a functional and scalable approach

to SQLIA mitigation in emerging computing. The few existing works [72]–[75], [136]

that do employ SVM are lacking in data engineering (text pre-processing). Also, to date,

none has discussed applied ML in predicting SQLIA in a context of big data, focusing on

patterns and text pre-processing including empirical evaluation on MAML platform.

Also, an old competition-driven data sets were only good for the detecting the

anomalies in the competition in which they were generated. These academic

competitions-driven data sets do not benchmark performance metrics for an AI trained

model in the real-world diverse web applications. On account of the lack of all-purpose

data set of the diverse web applications that exist; there is a need for a paradigm shift

from relying on old competition-driven data sets to a pattern-driven data set. The pattern-

driven data set which varies in web application types is generated from the pattern that

exists in the expected legitimate web request input, including illegitimate web requests of

49

SQL attack signatures and tokens to a web application which is one of the novel

contributions of this thesis.

We focused on existing work by Choi et al. [72] that shares a similarity in

vectorisation. While Choi et al. hashed URL query strings using more than one N-Grams

(number of words in a string) to obtain vector matrices as to train an SVM classifier, the

experiment presented in this thesis employs vectorisation to hashed the pattern-driven

data set using unigram (a unit of word in a string) to obtain vector matrices. These vector

matrices are used to train various classifiers (SVM, LR and ANN). The N-grams of more

than one word was applied by Choi et al. in vectorisation could introduce prediction errors

as an intruder may try to circumvent the SQLIA mitigation with SQL token comments

and white spaces. We examined hashing more than one word in a group of strings and

observed unigram of hashing word by word offers a minimal prediction error.

We suggest patterns exist in any data input to a web application to generate pattern-

driven data set and by applying text pre-processing to such learning data improves the

prediction accuracy of the resultant trained model. To further our approach, we applied

ML predictive analytics to SQLIA for prediction and prevention of malicious web

requests being fulfilled and this is the subject of discussion in the successive chapters.

50

4 Numerical Encoding to Tame
SQLIA

Figure 4-1 presents the organisation chart layout of this chapter with the sections.

Figure 4-1 The chapter organisation chart: The chapter organisation chart presents the layout

of the chapter’s sections.

4.1 Introduction

Figure 4-2 presents this section organisation chart with the associated subsections.

Figure 4-2 The section organisation chart: A figure of the section organisation chart that

provides the layout of this section with the associated subsections.

This chapter answers the research question of can a pattern-driven data set be derived

and validated from the expected legitimate web requests including illegitimate SQL

tokens and injection signatures? The ML technique requires data set with numerical

attributes as input to train a supervised learning model. The procurement of such historical

learning data set vectors is straightforward in the natural sciences where observations and

measurements over time are recorded to produce a large volume of data set with labelled

feature vectors. Such historical data sets containing collated labelled observations of

feature vectors have been made available by the University of California, Irvine (UCI)

ML repository which currently maintains about 438 data set that is widely used by the

ML community [3], [158] with the number of available data sets continually changing.

Numerical
Encoding To
Tame SQLIA

4.1
Introduction

4.2
Injection

points and
SQLIA
features

4.3
Numerical

features
encoding

4.4
Implement
ation steps

4.5
Evaluation
and results

4.6
related
work

4.7
Conclusion

Introduction

Problem
Statement

Motivation
Approach
Overview

51

Unfortunately, the SQLI related data set that exist are purpose-built for competition

[65], and the HTTP CSIC 2010 data set [66] is motivated by the outdated KDD CUP 1999

[69], [161]. Because of the lack of all-purpose data set suitable to train an AI model to

mitigate SQLIA in the diverse web application types that exist; there is a need for a

paradigm shift from relying on antiquated competition-driven data sets to a pattern-driven

data set inferred from the desired web application type context that the SQLIA mitigation

is being provided. To derive a pattern-driven data set, the human system expert providing

SQLIA ML mitigation need to know the web application type domain and the expected

input type as to produce relevant data set accordingly.

 In this thesis chapter, we investigated the issue of availability of historical learning

data set to train an AI model. We observed limitations exist in a purpose-built

competition-driven HTTP CSIC 2010 data set [66] sponsored by the Spanish Research

National Council motivated by the outdated DARPA KDD CUP 1999 [69], [161] which

was used to test a department web application vulnerability. These data sets are out of

date, especially in the context of emerging computing of big data and cloud-hosted

services predictive analytics to address SQLIA issue. Also, HTTP CSIC 2010 data set is

in the Spanish language which also implies doing some language translation pre-

processing, if it is to be meaningful to a non-Spanish speaker to make sense of the data

set. In our first approach to obtain a data set where none exist to train a classifier, we

explore R language string replication, distance and RegEx patterns to derive a data set

containing patterns of expected legitimate web requests, SQL tokens and known SQLIA

type signatures.

ML falls into the broad area of AI. ML is a technique employed in data science to

provide input of historical learning data to computer algorithms to predict outcomes. In

applying ML, there is a need for the availability of historical learning data. The historical

learning data are often referred to as a data set. The data set would contain columns and

rows of data, termed as attributes or independent x-variables.

Figure 4-1 above provides the layout organisation chart of this chapter. This chapter

starts with the introduction in section 4.1 and ends with a conclusion in section 4.7.

Sections 4.2 discusses SQLIA injection points and features while section 4.3 presents the

numerical encoding techniques of features. Section 4.4 discusses the implementation

steps in MAML studio. Section 4.5 discusses the evaluation and the results while section

4.6 discusses the proposal in contrast and comparison to existing work.

52

4.1.1 Problem statement

In our research question, we ask if a pattern-driven data set can be derived from a web

application type to be protected using the features artefact of the expected legitimate web

requests, including illegitimate SQL tokens and injection signatures, and if the derived

pattern-driven data set can be validated?

OWASP developer-centric SQLIA mitigation techniques require access to source

code during the SDLC which include sanitisation of input in every tier (web client and

server) [113]. These input validations and string lookup are techniques that were scalable

within the organisation’s intranet application domain boundary where there is no source

code access restriction. Access to the source code for validation is an issue in emerging

computing with a shift in the organisation’s application domain boundary because of

cloud-hosted services and cloud SDN where there is a restriction to source code access.

The magnitude of data will only increase, and an intruder may exploit SQLIA types

with many signature variations to evade pattern matching techniques, e.g. SQLIA type

tautological attack of 1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [157] to achieve the

same attack. These variations in new SQLIA attack signatures could create significant

issues for signature-based detection and prevention methods in recognising new

signatures that intruders continuously evolve. In this thesis chapter, we account for these

variations in SQLIA types with the assignment of random decimal attribute values named

rndrisk in the generation of large data items of any size.

There is a strong argument for a bio-inspired approach that is functional in big data

mining as against the existing traditional strings look-up in signature methods which are

not known to be scalable. Applying AI approach is faced with the lack of existing data

set to train a supervised learning model which is addressed in this chapter.

4.1.2 Motivation

The recent advancement in AI with readily available web platforms like MAML [41],

[175], Amazon Web Services (AWS) [176] and IBM Watson Analytics [177] has

refocused AI platforms as an enabling tool to build smart prediction models. These trained

models are consumed by real-world applications in real-time to solve classification

problems. This recent advancement in emerging computing has changed the perception

of ML domain from the traditional confines of scientific research laboratories to an

enabling ready to deploy tool for data mining. The better understanding of AI techniques

53

in recent years has rejuvenated data science in the ability to train a classifier from a

featured engineered pattern-driven data set to a ready to deploy the web application to be

consumed as a Web Service (WS) available in MAML studio. ML models require data

set of vector matrices as learning data which unfortunately is not readily available in

securing web applications.

Applying ML approaches can adequately protect against new SQLIA signatures by

classifying new attack signatures not trained for as unknown and thereby dropping or

referring such requests at the interim. Exploring this method has met with the issue of

lacking an existing robust data set to train a supervised learning model which is addressed

here as one of the contributions of this thesis.

In a big data scenario, where string lookup approaches are not known to be a scalable

option, and there is no pre-existing data set to apply AI methods; there is a need for a

technique to generate significant data set of any size for SQLIA prediction of any

magnitude. Also, the need for an empirical evaluation of the learning data to validate its

suitability for SQLIA detection and prevention is also presented in this chapter.

4.1.3 Approach overview

In addressing non-availability of the data set in SQLIA detection and prevention domain,

we draw our inspiration from the approaches at the UCI. The UCI maintains a repository

of data sets which are a collection of observations and scalar measurements (labelling and

numerical encoding of features) over a period to build a historical learning data. These

available data sets from UCI are contributed to the scientific ML community and are used

in training classifiers to address the real-world issue that needs cognitive automation.

The Wisconsin breast cancer data set (commonly used by researchers in ML binary

classification) is one of such clinical observation examples. The data set contains 699

patterns defined by nine attributes with an integer value range from 1-10 which

determined the labelling of being benign (458 patterns) or malignant (241 patterns) [158],

[178]. Unfortunately, up till now, no comparable data set exists for SQLIA features. The

SQLI related data sets that exist are purpose-built for competition [65]. Also, the HTTP

CSIC 2010 data set [66] (motivated by the out of date KDD CUP 1999 data set) was

purpose-built and tested on a department web application vulnerability.

Thus, that begs the question if the pattern that exists in web requests that are deemed

valid, and historical studies of different SQLIA types including SQL tokens can provide

54

artefact to be used to generate a data set to train a supervised learning model and be

validated? In this chapter, we provide the detail of a pattern-driven technique for data set

extraction. The extracted data set is used to train a supervised learning model which is

empirically evaluated with statistical measures to gauge the performance metrics of the

trained classifier. The successful outcome of the evaluation led to further development of

this encoding by employing hashing or vectorisation of features to obtain the vector

matrices needed to train a supervised learning model detailed in Chapters 5 and 6 of this

thesis in obtaining massive learning data to mitigate SQLIA.

 In creating the pattern-driven data set, we provide scalar observations to both

patterns of legitimate input data (expected input data in web requests), SQL tokens and

SQLIA types to derive a pattern-driven data set. These features are numerically encoded

based on patterns of expected valid web requests, and SQLIA types including SQL tokens

to obtain vectors require to train a classifier algorithm.

The scheme presented in this thesis uses, a web proxy to intercept web requests of

any intent and applies supervised learning algorithms of a trained model to predict SQLIA

at the SQL injection points. A web proxy is the most suitable to intercept web requests,

including those originating from any injection mechanisms to SDN cloud applications’

endpoints. An application-level proxy performs better in intercepting and decrypting of

obfuscated web requests than low-level network packet interception tools which suffer

from message fragmentation in a large volume of gigabits per seconds of packets in the

wire. Injection mechanisms to a vulnerable application can originate from web page

forms, second-order injection, exploiting web-enabled server variables, query strings, and

through cookies.

An intruder would employ the following techniques to carry out SQLIA at the

injection points in any combination. These SQLIA exploit techniques are Tautology;

Union; Piggyback; Invalid/Logical queries; Time-based; Obfuscation encoding and

Stored procedure. These SQLIA types discussed in 2.4 above are also a source of SQLIA

positive labelled feature values in the scheme presented in this thesis.

4.2 Injection points and SQLIA features

Figure 4-3 presents this section organisation chart with the associated subsections.

55

Figure 4-3 The section organisation chart: A figure of the section organisation chart that

provides the layout of this section with the associated subsections.

4.2.1 Injection point

The WHERE clause controls the level of access to the back-end database from the front-

end web applications. The scope of access could be any of validating a login account;

filtering or setting criteria for the results from a database query; inserting a new record;

deleting a record and updating an existing record. This injection point location after the

WHERE clause has been explored to detect and prevent SQLIA [5], [9], [125]. In this

research work, we analyse the intercepted web request substitution at the predicate and

expression part of the SQL query structure for SQLIA. Figure 4-4 contains query strings

which are intercepted for the field’s input to be validated and extracted for analysis to

predict SQLIA at the SQL query structure expression hotspot as shown in the figure with

a red font.

SELECT loginName, password FROM tblUser

 WHERE loginName= 'bob' OR 1=1--
 WHERE
 clause

SQL
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

Figure 4-4 The injection point of SQL query structure: A figure of the SQL query structure

expression hotspot which is the location for the SQL injection.

4.2.2 SQLIA features

A new web application does not have pre-existing robust data set of SQLIA features

available to train a supervised learning model. We determined in this thesis that web

Injection points and
SQLIA features

Injection points SQLIA features

56

application type, the research literature on SQLIA types and intent (as discussed in

Chapter 2) combined with the presence of SQL tokens at the vulnerable hotspot provide

a baseline for generating a pattern-driven data set of any size.

We explore these signatures usually injected into predicate’s expression highlighted

in Figure 4-4 above. These attack features that substitute the expected valid input at the

expressions can be special characters, SQL reserved keywords and known SQLIA

signatures. Table 4-1 below are examples of symbols that are present in SQLIA signatures

with much more that can be found in SQL reserved keywords [179] which are the subject

of SQLIA positive attributes labelling in the numerical encoding of feature values. Table

4-2 illustrates some examples of SQL keywords that are being labelled positive when

substituted into the SQL query expression.

Table 4-1 SQL Symbols: The table illustrates some examples of SQL symbols that are present in

SQLIA signatures.

Symbol Name Symbol Name

‘ Single Quote | Pipe

, Comma || Logical OR

. Period % Percentage

; Semi-colon ? Question Mark

: Colon & Ampersand

“ Double Quote && Logical AND

= Equals [Opening Square Bracket

! Exclamation] Closing Square Bracket

< Less Than { Opening Curly Bracket

> Greater than } Closing Curly Bracket

<= Less Than Equal \ Back Slash

>= Greater than Equal / Forward Slash

!= Not Equals - Dash/Minus

<> Not Equals -- Double Dash/Comment

+ Addition) Closing Parenthesis

- Subtraction \ Back Slash

* Multiplication (Opening Parenthesis

\ Back Slash /* Comment Start

/ Forward Slash */ Comment End

- Dash/Minus /**/ Comment

-- Double Dash/Comment

57

Table 4-2 SQL Keywords: The table illustrates some examples of SQL keywords that are being

labelled positive when substituted into the SQL query expression.

SQL KEYWORD SQL KEYWORD SQL KEYWORD SQL KEYWORD SQL KEYWORD

ADD EXTERNAL PROCEDURE CONTINUE KILL

ALL FETCH PUBLIC CONVERT LEFT

ALTER FILE RAISERROR CREATE LIKE

AND FILLFACTOR READ CROSS LINENO

ANY FOR READTEXT CURRENT LOAD

AS FOREIGN RECONFIGURE CURRENT_DATE MERGE

ASC FREETEXT REFERENCES CURRENT_TIME NATIONAL

AUTHORIZATION FREETEXTTABLE REPLICATION CURRENT_TIMEST
AMP

NOCHECK

BACKUP FROM RESTORE CURRENT_USER NONCLUSTERED

BEGIN FULL RESTRICT CURSOR NOT

BETWEEN FUNCTION RETURN DATABASE NULL

BREAK GOTO REVERT DBCC NULLIF

BROWSE GRANT REVOKE DEALLOCATE OF

BULK GROUP RIGHT DECLARE OFF

BY HAVING ROLLBACK DEFAULT OFFSETS

CASCADE HOLDLOCK ROWCOUNT SOME TSEQUAL

CASE IDENTITY ROWGUIDCOL STATISTICS WHERE

CHECK IDENTITY_INSERT RULE SYSTEM_USER WHILE

CHECKPOINT IDENTITYCOL SAVE TABLE WITH

CLOSE IF SCHEMA TABLESAMPLE WITHIN GROUP

CLUSTERED IN SECURITYAUDIT TEXTSIZE WRITETEXT

COALESCE INDEX SELECT THEN PIVOT

COLLATE INNER SEMANTICKEYP

HRASETABLE

TO PLAN

COLUMN INSERT OUTER TOP PRECISION

COMMIT INTERSECT SEMANTICSIMIL
ARITYTABLE

TRAN PRIMARY

COMPUTE INTO SESSION_USER TRANSACTION PRINT

CONSTRAINT IS SET TRIGGER PROC

CONTAINS JOIN SETUSER TRUNCATE END

CONTAINSTABLE KEY SHUTDOWN TRY_CONVERT ERRLVL

DELETE ON UNION ESCAPE PIVOT

DENY OPEN UNIQUE EXCEPT PLAN

DESC OPENDATASOURCE UNPIVOT EXEC PRECISION

DISK OPENQUERY UPDATE EXECUTE PRIMARY

DISTINCT OPENROWSET UPDATETEXT EXISTS PRINT

DISTRIBUTED OPENXML USE EXIT PROC

DOUBLE OPTION USER PERCENT OVER

DROP OR VALUES WHEN WAITFOR

DUMP ORDER VARYING ELSE VIEW

58

4.3 Numerical features encoding

Figure 4-5 presents this section organisation chart with the associated subsections.

Figure 4-5 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

A typical data set structure would contain columns and rows. The columns are often

referred to as attributes while the rows are the attribute values. Also, there is a column

that contains what to predict termed as the y-attribute with the content of the rows being

the labelled y-attribute values. The labelled y-attribute values are the expected outcome

to be predicted in a supervised learning model.

In ML approaches, scoping of the x attributes provides a method to capture the

required artefact to predict the output y accurately which is the reason for the attributes

scoping presented in the sections below. The ML algorithms required input type of

numeric vectors which is the content of x-attribute values (data set rows to train a

classifier).

The conventional approaches for extrapolating these numeric attribute values to train

a classifier in biological sciences are through scalar observations and measurements. Take

an example of the Iris data set (Anderson’s Iris data set) which Edgar Anderson collected

the measurements of the sepals and petals of three Iris flowers to quantify the

morphological variations of the related species [180]. This Iris data set has become a

classic test case data set in ML statistical classification based on Fishers’ linear

discriminant model [181]. The Iris data set has the name of the iris flower types as the

labelled category and the associated attribute values (rows) containing the lengths of the

sepals and petals measurements. The Iris data set procurement technique described above

forms the idea behind the string features encoding presented in the sections below.

Numerical
features
encoding

String features
derivation and

vectors encoding

Sitype
attribute (p)

Sidetermination
attribute (v)

Rndrisk
attribute (r)

Siriskfactor
attribute (l)

Siclass
attribute

59

4.3.1 String features derivation and vectors encoding

In our first attempt to obtain a data set relevant to an intended web application as to

provide an applied ML technique in SQLIA mitigation, we derived strings and the

corresponding numeric scalar observations (vectors) as the attribute values in the data set

used in this section. We further the approach in subsequent Chapters (5 and 6) to use

string vectorisation as against manual vector assignments. Hashing or string vectorisation

is a technique where string features are transformed into a numeric matrix required as

input to a classifier to be discussed in Chapters 5 and 6. Also, we observed during the

process of data set procurement that we could generate as much data set to assert SQLIA

of any size.

The approach presented here uses ML techniques integrated with a proxy API to

intercept web request as to predict SQLIA at SQL injection point (hotspot) which is a

paradigm shift from SQL queries structure comparisons to some extent in most existing

approaches. In inferring a data set ahead for SQLIA ML mitigation to a web application

type, there is a need to have all possible permutations of features as to derive a pattern-

driven data set capable of training a classifier.

To obtain a massive data set (learning data) with patterns, we explore string package

of the R programming language replication method and a package named stringi [38] to

derive as many related member strings as required. We obtained significant learning data

by methods of replicating and shuffling (string transposition) of the strings to generate all

possible member strings including the anagrams of the original string given.

Take an example of an expected valid input of bob, which can be shuffled to have a

derivation of bbo, obb, etc. However, as the transposition of strings presents more patterns

of the original strings; this becomes an invaluable step to detect shuffled strings by an

intruder to bypass mitigation being provided in the web request to circumvent the SQLIA

mitigation at hotspots. For example, an intruder may intend to carry out SQLIA with a

shuffled select SQL keyword, e.g., select, seeclt, lesetc, lseect, cetlse, eetcls, etc in place

of expected valid input of bob at the SQL predicate’s expression value.

There is a need to procure data set with the relevant artefact in thinking ahead of ML

SQLIA mitigation for a real-world web application where there is no precedence of the

data set. The web application types are so diverse and dynamic to rely on out of date

competition-driven data sets [65], [66] that were only good for the detecting of anomalies

60

in the competition and project for which they were generated. Having to start from scratch

implies a requirement to have a learning data to train an intended classifier relevant to the

web application type to be protected to require the following artefact.

• Patterns of expected valid input data.

• Patterns of established SQLIA signatures which the background knowledge of

SQLIA types provides.

• Patterns of SQL tokens (the query keywords, constants, symbols and delimiter

identifiers), like an intercepted query strings with SQL tokens, can only mean a

likelihood to substitute valid input data at SQL injection hotspot to effect SQLIA.

An example of a web application logic expecting from a web form; a login name,

but the query strings analysis presents SQL tokens as a substitution indicates an issue.

We need to be able to predict such anomalies in a large volume of a web request in cloud

SDN by generating massive learning data to train a classifier to the maximum with cross-

validation.

Figure 4-6 below shows the semantics of how the numeric attribute values are

extrapolated. In replicating the approach, depending on the web application type, the

scope of the attribute depends on the desired artefact required to predict SQLIA

accurately. The approach presented here provides a paradigm shift towards procurement

of the data set based on the web application type at the point of need as against having a

static data set that is likely to be antiquated over time. Below are the steps.

• The data set extraction starts depending on the web application type, a set of

strings is generated. In the example provided in this chapter, a list of expected

input strings to a web application are conceptually labelled SQLIA negative while

SQL tokens including SQLIA type signatures are labelled positive. Alternatively,

string pattern can be generated with RegEx.

• These original string features are duplicated by methods of replication and

transposition to generate related member strings by using the R language replicate

method and random transposition of R stringi library (stringi::stri_rand_shuffle).

The features are labelled with SQL tokens and SQLIA type signatures assigned a

numeric value of between 1-8 in labelling while valid input string is labelled 9.

61

• We assign an attribute named rndrisk which is a random value of 0.0o ≤ x ≤ 0.0n

to account for the variation in signatures that occurs in SQLIA types. It is observed

with this rndrisk that we can even simulate SQLIA of any size without the string

features.

• We further measure the string distance to establish related member strings

anagram using R package stringdist [182]. If the qgram method value is 0, it

confirms the string is an anagram or transposed version of the original string.

• For SQLIA positive, the sum values are less than 9 which is assigned a value 1

while 9 and above is SQLIA negative which is assigned a value 0. Table 4-3

provides a snippet of how the class labelling is assigned to craft the labelled data

set vectors.

Figure 4-6 A flowchart of the numerical encoding of features: A Flowchart illustrating

numeric encoding of features to obtain scalar numeric values required to train a supervised learning

model.

62

Table 4-3 Labels/classes to predict: A table illustrating the labelling of the SQLIA types

including expected valid request.

SQLIA Types Class/Labels Snippet of signature

Tautology 1 `--,1=1,1<1, ‘a’=’a’ etc.

Piggyback 2 ;

Union 3 UNION SELECT

Invalid/Logical Incorrect Query 4 SELECT, IF, ELSE, dbo,1/0

Alternate encoding obfuscation 5), %, Hex values

Time-based 6 Wait for delay '00:00:10'

Store Procedure 7 ; EXEC, XP_CMDSHELL, ATTRIB

Second order 8 ‘x’=x’--"

 Valid web request

Expected collated input/non-SQLIA 9 Bob, bbo, obb etc

To simplify the sections explanation, throughout this chapter a few strings and SQL

token features will be presented in the table examples. A set notation for many features

attribute values (rows) or vectors will be represented with {xo…xn} for the list of items of

vectors. We used the set notation in the table in the subsequent sections to represent the

big picture of the attributes (columns) and associated attribute values (rows).

Table 4-4 presents set of attributes scoping with original strings that are replicated

and transposed to obtain a derived member string which is then filtered to ensure the data

set string features derived are patterns of related member strings (anagram). The

subsequent sections would see a gradual build up of more attributes in the associated

tables presented.

Table 4-4 Derived member strings: A table illustrating derivation of related member strings with

the anagram value of 0 in the data set attributes scoping.

Original

strings

attribute

Derived member string

attribute values (String

Features)

Related member strings

(anagram)

bob bob 0

bbo 0

obb 0

select select 0

seeclt 0

lesetc 0

lseect 0

cetlse 0

eetcls 0

` `
0

{xo…xn} {xo…xn} {xo…xn}

63

4.3.2 Sitype attribute (p)

The sitype attribute p = {x0…xn} represent encoded numeric SQLIA types, SQL tokens

including a valid expected pattern of input data. Signature of SQLIA types with a

combination of SQL tokens is assigned a number between one to eight (1-8) while a valid

web request is assigned the value nine (9) and above. This encoding is aimed to provide

a data set for supervised learning classifier with class attribute values that support both

binary predictions of 1 / 0 and the multiclass classification of the SQLIA types.

The flowchart presented in the Figure 4-6 above illustrates the procedure for

attributes extraction. If the static defined pattern (p) finds a match in the derived member

strings and known signatures, then a number is assigned from a range of 1 to 9. The value

of nine (9) and above is a legitimate web request value assigned arbitrarily, while a value

range of 1 to 8 is any of the SQLIA types including second-order injection mechanisms

as highlighted and shown in Table 4-5. Refer to Table 4-3 above which provides a snippet

of the translation of SQLIA types and SQL tokens including valid input in the labelling.

The threat threshold is the cut-off value for labelling SQLIA risk or not. In this

implementation presented in this thesis, it implies a threshold of collated value equal to

or greater than nine will be labelled SQLIA negative feature value. Conversely, feature

values assigned 1-8 and collated to be less than nine are labelled SQLIA positive.

Table 4-5 Sitype attribute vector assignments: A table illustrating the Sitype attributes vector

assignments in labelling.

 String

Features

Related

member

strings

Sitype

(p)

bob 0 9

bbo 0 9

obb 0 9

select 0 4

seeclt 0 4

lesetc 0 4

lseect 0 4

cetlse 0 4

eetcls 0 4

` 0 1

{xo…xn} {xo…xn} {xo…xn}

64

4.3.3 Sidetermination attribute (v)

The sidetermination attribute v = {x0…xn} involves establishing if the patterns being

matched are present in known SQLIA signatures; are patterns partly present in matched

features; e.g. implementing NFA backtracking [183] for the tautological attack will be a

litmus test for escape character (‘), OR, patterns of 1=1 and its derivations.

Sidetermination attribute is an NFA backtracking (cross-checking) to test if the

signature of the assert SQLIA type exists to satisfy each assigned number of between a

range 1-9 (refer to Table 4-3 above for the snippet of the vectors assignment). In obtaining

the vectors in Table 4-6 below, we run a loop against the sitype, whenever a condition is

satisfied for either of a valid web request or SQLIA types, a two decimal place value of

0.01 ≤ x ≤ 0.0n is assigned.

This feature encoding provides the maiden attempt to investigate if the artefact to

provide SQLIA mitigation can be inferred from a web application type. In determining

the SQLIA type, we take the closest match (similarity) of the feature being encoded. For

example, the tautological attack will be a litmus test for escape character (‘), OR, patterns

of 1=1, etc. The result of the experiment being presented here led to a further work to

replace this manual encoding to strings vectorisation (hashing) that is presented in

Chapters 5 and 6. We recognised the limitation in emerging computing of cloud-hosted

web applications with restriction to the source code in constructing the full lexical or

syntactic structure of a SQL query to detect SQLIA. We went with the approach of a

string by string analysis using ML techniques focusing on big data web traffic at the cloud

SDN endpoints for pattern analysis of the permutations of SQLIA signature in transitions.

Table 4-6 Sidetermination attribute vector assignments: A table illustrating attribute

vector assignments for Sidetermination.

String

Features

Related

member

strings

Sitype

(p)

Si

determination

(v)

bob 0 9 0.09

bbo 0 9 0.09

obb 0 9 0.09

select 0 4 0.04

seeclt 0 4 0.04

lesetc 0 4 0.04

lseect 0 4 0.04

cetlse 0 4 0.04

eetcls 0 4 0.04

` 0 1 0.01

{xo…xn} {xo…xn} {xo…xn} {xo…xn}

65

4.3.4 Rndrisk attribute (r)

The rndrisk attribute (r) accounts for the variation that exists in both valid web requests

and SQLIA types matching, e.g. an SQLI tautological attack of 1=1 can also be written

as 1 > 1, ‘xyz’=’xyz’ and so on, to achieve the same attack. Also, a valid data input

expecting a pattern of ‘bob’ can also accept a pattern of ‘bbo’. The rndrisk attribute is

assigned a random value of 0.01 ≤ x ≤ 0.0n. These rndrisk random values account for the

variations in SQLIA types when generating large data items. It is imperative the random

number stay within the random values of 0.01 ≤ x ≤ 0.0n as a large value will shift the

threshold cut-off point. Table 4-7 presents the current progress of the attributes scoping

with the rndrisk attribute values.

Table 4-7 Rndrisk attribute vector assignments: A table illustrating Rndrisk attribute vector

assignments.

String

Features

Related

member

strings

Sitype

(p)

Sidetermination

(v)

Rndrisk

(r)

bob 0 9 0.09 0.08125

bbo 0 9 0.09 0.03384

obb 0 9 0.09 0.02436

select 0 4 0.04 0.08771

seeclt 0 4 0.04 0.03712

lesetc 0 4 0.04 0.06701

lseect 0 4 0.04 0.05996

cetlse 0 4 0.04 0.07636

eetcls 0 4 0.04 0.06436

` 0 1 0.01 0.05511

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn}

4.3.5 Siriskfactor attribute (l)

The sirikfactor l is collated to obtain the likeliness of features being a risk factor that can

either be -1 likeliness or 1 for remote likeliness. The y-variables or what to predict

(commonly known as a class) can be a possible 1 (1 0) or 0 (0 1) for SQLIA and valid

web request respectively. It is the sum of x-attributes of the sitype (p), sidermination(v),

rndrisk (r), for example (p + v + r) to determine if a data item is to be labelled an SQLIA

positive or negative. Following this encoding scheme presented, more or other attributes

deemed required depending on the web application type can be inferred as various web

application types would vary in patterns that exist in them. However, we further our

approach to replace these features encoding to features vectorisation or hashing in a

66

further work presented in Chapters 5 and 6. Table 4-8 illustrates the current progress in

the feature encoding with the highlighted Siriskfactor attribute values.

In Equation 4-1, let i and n be the size of attribute values; a sum of the total attribute

x= (p + v + r) values less than 9 is a likeliness of SQLIA risk factor assigned 1. Table

4-3 provides a snippet of how the class labelling is assigned to conceptualised the labelled

data set vectors. Refer to row attribute values sum highlighted in red in Table 4-8.

 l= ∑ x = (p+v+r) < 9

n

i=1

 Equation 4-1

 In Equation 4-2, let i and n be the size of attribute values; a sum of the total attribute

x= (p + v + r) value of 9 and above is a remote likeliness for SQLIA risk factor assigned

-1. Refer to row attribute values sum highlighted in green in Table 4-8.

l= ∑ x = (p+v+r) ≥ 9

n

i=1

 Equation 4-2

Table 4-8 Siriskfactor attribute vector assignments: A table illustrating Siriskfactor

attribute vector assignments.

String

Features

Related

member

strings

Sitype

(p)

Sidetermination

(v)

Rndrisk (r) Siriskfactor

(l)

bob 0 9 0.09 0.08125 -1

bbo 0 9 0.09 0.03384 -1

obb 0 9 0.09 0.02436 -1

select 0 4 0.04 0.08771 1

seeclt 0 4 0.04 0.03712 1

lesetc 0 4 0.04 0.06701 1

lseect 0 4 0.04 0.05996 1

cetlse 0 4 0.04 0.07636 1

eetcls 0 4 0.04 0.06436 1

` 0 1 0.01 0.05511 1

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn} {xo…xn}

4.3.6 Siclass attribute

The class attribute y-variable or what to predict can be a possible 1 (1 0) for SQLIA

positive or 0 (0 1) for SQLIA negative. These attribute values are collated from the sum

67

of independent predictor variables (x-attributes) of p, v, r as illustrated in Equation 4-1

and Equation 4-2. The dependent y-variable or what to predict (commonly known as a

labelled class) is represented as a possible 1 for SQLIA or 0 for non-threat. Table 4-9

presents a complete conceptual labelled data set with attribute values that are required to

be fed into MAML studio as a data set to train a supervised learning model presented in

the subsequent sections.

We introduced this section with a motivation of the Iris data set that forms the idea

behind the string features encoding presented. Note this conceptual maiden technique in

to obtain a data set is replaced in Chapters 5 and 6 by string hashing vectorisation.

Table 4-9 Siclass attribute binary labelling: A table illustrating the encoding of strings and

SQL tokens to numerical attribute values required to train a supervised learning model.

String

Features

Related

member

strings

Sitype

(p)

Sidetermination

(v)

Rndrisk (r) Siriskfactor

(l)

Siclass

bob 0 9 0.09 0.08125 -1 0

bbo 0 9 0.09 0.03384 -1 0

obb 0 9 0.09 0.02436 -1 0

select 0 4 0.04 0.08771 1 1

seeclt 0 4 0.04 0.03712 1 1

lesetc 0 4 0.04 0.06701 1 1

lseect 0 4 0.04 0.05996 1 1

cetlse 0 4 0.04 0.07636 1 1

eetcls 0 4 0.04 0.06436 1 1

` 0 1 0.01 0.05511 1 1

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn} {xo…xn} {xo…xn}

4.4 The implementation steps on MAML studio

Figure 4-7 presents this section organisation chart with the associated subsections.

Figure 4-7 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

Figure 4-8 below is the MAML experiment screen capture that is carried out for the

model proposed. The steps include: pre-processing of the data set attribute values;

Implementation
steps

Data set input Pre-processing Normalisation Split of matrix Training

68

classification of SQLIA features; validation of the supervised learning model which is

then exposed as web services in ongoing detection and prevention. Below is the high-

level overview of the key steps and with further detail presented in this section.

Figure 4-8 The MAML studio predictive experiment: The figure is a screen capture of

MAML studio to illustrates experimental steps for the proposed model.

1. The pre-processing of pattern-driven data set is done using R scripting language

and RegEx patterns matching as detailed in 4.3.1. This step is followed by

69

scrubbing of the missing data and column casting of the input data set. Missing

attribute values are aligned to the presence or absence of SQLIA risk in labelling

to achieve better performance metrics that can accurately predict SQLIA. Data

set scrubbing helps remove over-fitting from both binary and multiclass

classification in the work presented in this thesis.

2. The next step is employing normalisation which is the rescaling of the numeric

data as to constrain the vectors [184] for a proper fitting in the statistically

trained model. In the scheme presented here, we rescaled the vectors of the

presented pattern-driven data set from [-1,9] to a range of [-1,1] using z-score

normalisation and [0,1] while using logistic normalisation to present a detailed

comparison result in section 4.5.2 below.

3. The normalisation is followed by splitting of data between training and testing

data. Through repeated training of the statistical model with different split data

ratios, it is observed in the scheme presented in this thesis, employing 70% (0.7)

training data to 30 % (0.3) testing data gave the highest prediction rates in the

binary classification while 80% (0.8) training data to 20% (0.2) testing data

gave the highest prediction rates in multiclass classification.

4. The supervised learning model was trained using the following classification

algorithms:

• Two Class Logistic Regression (TC LR).

• Two Class Support Vector Machine (TC SVM).

• Multiclass Neural Network (MNN).

• Multiclass Logistic Regression (MLR).

The MAML studio provides an easy technique to test drive classifiers by drag

and drop with the promising algorithm validated and cross-validated for reduced

biases to unknown independent data in the real-world. The cheat sheet [185]

(How to choose a Microsoft ML algorithm) is an additional resource that gives

prescriptive guidance in selecting a classifier to use. Both TC LR and TC SVM

were used to determine which classification algorithm performs better in a binary

classification of the pattern-driven data set. The trained models were validated

and cross-validated with detail provided later in the chapter. We further the

70

classification to use MNN and MLR to determine which classification algorithm

performs better in SQL types multiclass classification.

5. These algorithms above were scored and empirically evaluated to establish how

well the prediction of the supervised learning classification models is

performing. The model with the best performance metrics in statistical

measures (accuracy, precision, recall and F1score) including ROC curve, AUC,

CM and k-fold cross validation is deployed as the predictive model.

6. Finally, a predictive web service was generated from the trained; supervised

learning model built using MAML studio to obtain an API code to integrate into

the Fiddler proxy API and web forms.

4.4.1 Data set input data items

The Figure 4-9 below displays a snippet of the attributes extrapolated as detailed in 4.3.1

above with data set containing 59702 data set row items (attribute values).

Figure 4-9 A snippet of numeric encoded vectors: A table showing a snippet of numeric

encoded data set attribute values inferred from scalar observations of known valid web requests, SQLIA

signatures and SQL tokens.

These extrapolated attributes serve as input vectors to a supervised learning model

experiment carried out in the MAML studio to evaluate the performance metrics of

applying the pattern-driven data set presented in this thesis. ML techniques require data

set of historical attributes that have patterns to predict a predetermined labelled output,

which in this case is whether a web request data input is SQLIA negative or positive.

String

features
Sitype RndRisk SiDeterminationRiskFactor Hamming qgram ………...n Class

bob 9 0.08125 0.09 1 0 0 ………...n 9

bbo 9 0.03384 0.09 1 2 0 ………...n 9

Select 3 0.08771 0.03 -1 0 0 ………...n 3

seeclt 3 0.03712 0.03 -1 3 0 ………...n 3

lesetc 3 0.07888 0.03 -1 4 0 ………...n 3

lseect 3 0.06701 0.03 -1 3 0 ………...n 3

cetlse 3 0.05996 0.03 -1 5 0 ………...n 3

eetcls 3 0.07636 0.03 -1 5 0 ………...n 3

tlsece 3 0.05996 0.03 -1 4 0 ………...n 3

‘ 1 0.05511 0.03 -1 ………...n 1

(5 0.05996 0.05 -1 ………...n 5

= 1 0.06187 0.01 -1 ………...n 1

/ 4 0.05996 0.04 -1 ………...n 4

n n n n n n n n n

x attributes / features
y attribute /

output

Attribute / feature values for predicting output y y output values to
predict

71

4.4.2 Pre-processing or data engineering

In gathering raw data, there can be irregularities in the form of missing values, outliers

and discrepancies [186]. Apart from cleansing irregularities in data set items, other data

engineering steps can be carried out during pre-processing to improve prediction

performance. These data engineering improvements could include: using RegEx

constraints by implementing R-Script modules; grouping of the class y-attribute values

to reduce dimensionality, e.g. multiclass to a binary classification; and, sampling for even

distribution of attribute values.

We evaluated the suitability of numeric encoded vectors input data set in both binary

class and multiclass classification in the ROC curve and CM respectively. We reduce the

original multiclass labelled data set of encoded assigned values of 1-9 in y-attribute values

to a binary class of 1-8 grouped as SQLIA positive with an assigned value of 1, while 9

onward is assigned 0 as illustrated in Figure 4-10. Using the data set to train binary and

multiclass classifier algorithms provided an empirical evaluation of the suitability of the

learning data obtained from the scheme presented in this thesis to train the SQLIA

prediction model.

Figure 4-10 Grouping of multiclass to a binary class: A figure of screen captures of

reducing multiclass labelled data set to a binary data set.

4.4.3 Normalisation

Normalisation scheme involves attribute values rescaling scheme in ML to standardised

x-attributes value to a range of closely confined values. Normalisation provides

standardising data or z-score which is a method to rescale or reduce numeric data items

72

to a standard range [184]. In this experiment, we rescaled x-attribute values from [-1,9]

to a range of [-1,1] using z-score normalisation and [0,1] while using logistic

normalisation. Figure 4-11 illustrates normalisation using a logistic transformation

method.

Figure 4-11 A MAML studio normalisation module to rescale attribute: A figure of

the MAML studio normalisation module to rescale attribute values to a standardised range of value

through logistic normalisation.

 We rescaled the attribute values employing z-score and logistic normalisation

modules that are implemented in Equation 4-3 and Equation 4-4 respectively.

Let z be the z-score or logistic normalisation (standardisation of data items)

• x is the attribute values or each data point observation

• μ is the mean (average) of x

• 𝜎 standard devaiation of x

• e is the exponential constant value of 2.71

z =
(𝑥 − 𝜇)

𝜎
 Equation 4-3

The MAML studio offers various normalisation configurable properties. Equation

4-3 is the formula used in the z-score normalisation scheme which MAML studio offers.

Let z be the normalised value, the normalisation module of the MAML studio takes the

data point x minus the mean represented by (𝑥 − 𝜇) divide by the standard deviation of

x denoted by 𝜎 [184]. This calculation rescaled the attribute values (vectors) of range [-

1,9] to vector values range of [-1,1].

73

z =
1

1 + 𝑒−𝑥
 Equation 4-4

Equation 4-4 is a logistic normalisation formula which is a configurable module in the

MAML studio. Where z is the normalised vectors, using the mathematical integration

equation, the original attribute values are rescaled from [-1,9] to [0,1].

We evaluated the impact of z-score and logistic normalisation on prediction errors

(FN and FP) to have observed the logistic normalisation improves the prediction rate as

further presented in section 4.5.2.

4.4.4 Split of the vector matrices between training and testing set

We divided the data set matrices into different split ratios to determine the impact of the

split ratio of the training to testing set has on the classifier performance. The first run was

70% of the data set vector matrices were used for the training of the classifier, and the

remaining 30% were used as testing data. In the second run, we used a ratio of 80% of

the data set vector matrices for the training of the classifier, and the remaining 20% were

used as testing data. This testing data is the subject of the empirical evaluation presented

in section 4.5 below. Also, we provided cross-validation, which provides a better gauge

of the performance metrics with ten folds possible permutations of training to testing data

partitions.

4.4.5 Training a supervised model

In this experiment, we trained binary classifiers named TC LR and TC SVM. We also

trained multiclass classifiers (MNN and MLR) to provide evaluation results presented in

4.5. The binary classifiers predict one of possible outcomes of between SQLIA negative

or positive, while the multiclass classifier is extended to predict the various SQLIA types

including valid web requests.

Both TC LR and TC SVM algorithms employ linear kernel which offers a binary

prediction at the proxy. The default kernel used in the experiment offers a linear

separation between SQLIA positive and negative in web requests. This linearity of the

classes which can be demarcated in a straight line makes algorithms (classifiers) using

linear kernel a preferred choice in binary classification.

74

The two classifiers were observed with good accuracy and fast training times in

performance metrics in using the linear kernel. Also, MLR and MNN classifiers offer us

a method to predict different SQLIA types. TC SVM, TC LR, MLR and MNN algorithms

are trained with the training data and evaluated with the testing data of the partitioned

matrix values. The trained classifiers are evaluated in the ROC curve and CM with the

better performing trained, supervised learning model under cross-validation deployed as

a web service for the ongoing SQLIA detection at the web proxy.

4.5 Evaluation and Result

Figure 4-12 presents this section organisation chart with the associated subsections.

Figure 4-12 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

The statistical measures (accuracy, precision, recall and F1 score), ROC curve and

CM are widely used by data scientists to measure the performance metrics in ML

analytics. It provides a valid empirical statistical measure for the evaluation of results.

ROC curve, which has its origin in World War II to predict radar images for threats, has

been widely accepted in interpreting medical test results [50], [51] and recently in

computing data science.

The attribute values or x-variables (sitype, sidetermination, rndrisk, siriskfactor, etc.)

including the labelled output attribute or y-variable (siclass) forms the input data set to a

supervised learning model. ML approaches need an extensive data set of numeric encoded

(vectors) from the behaviour or patterns of normal and SQLIA features for accurate

prediction of SQLIA in a web request. The numerical attributes encoding ontology

detailed in 4.3 above provides the technique to derive as many desired data set attribute

values for the supervised learning model presented in this thesis.

The observations are inferred by scoring the model to generate score probabilities

for the testing data (the split data unseen by the classifiers) against the training data used

Evaluation and
Result

Statistical measures
and ROC curve

Binary classification
algorithms

Multiclass
classification

algorithms
Cross-validation

75

to train the classifiers. This section provides the evaluation and performance metrics of

the model under various normalisation, training to testing split data ratios and statistical

measures. Also presented in this section is the binary and multiclass classifier

performance metrics in the ROC curve and CM respectively.

4.5.1 Statistical measures and ROC curve

Figure 4-13 presents this section organisation chart with the associated subsections.

Figure 4-13 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

4.5.1.1 Score probabilities

 The testing data input variables are scored to generate score probabilities of a range 0 ≤

x ≤ 1 where x is the input vector values to predict output y. The score probabilities provide

a measure of observations that are correctly predicted as TP and TN including the two

prediction errors of FP and FN within the range {0,1}. These prediction observations of

TP, TN, FP and FN are presented in the tables below, are calculated to determine how

many of these observations score probability values fall within each score bins set of

between 0 and 1 (expressed in the set as {0,1}).

Therefore, the expected output is y = 0 or SQLIA negative if the function of the

predictor variables x is closer to 0 expressed as f(x) ≈ 0. Conversely, the prediction output

is y = 1 or SQLIA positive when the function of predictor variables x is closer to 1 denoted

as f(x) ≈ 1. Also, taken into consideration are the prediction errors rate of FP and FN. The

prediction errors are observations of predicted output that have been wrongly classified

which is used to gauge the performance of a classifier.

4.5.1.2 Threshold

The MAML studio sets by default the cut-off threshold for the prediction of TP and TN

including the errors of FP and FN to be 0.5. This cut-off of 0.5 is a predetermined

threshold employed by classification algorithms; it is a cost function of x to predict y.

Statistical measures
and ROC curve

Score probabilities Threshold

76

Therefore f(x) < 0.5 score probability value is predicted as SQLIA negative (0) while f(x)

≥ 0.5 is predicted as SQLIA positive (1). The score probabilities are partitioned into ten

score bins of 0.1 increments of the set {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

The collation of the prediction variables of TP, TN, FP and FN falls on these cut-

offs between the set {0.0,1.0}. These prediction observations are used to calculate the

accuracy, precision, recall and F1 score statistical measures. Table 4-10 is a formula table

that includes the abbreviation used in statistical measures throughout this thesis.

Table 4-10 Formula table: A table detailing how the performance metrics are calculated.

Terminology Formula

True Positive (TP) -

True Negative (TN) -

False Positive (FP) -

False Negative (FN) -

Positive events (PE) TP+FN

Negative events (NE) FP+TN

Positive observations (PO) TP+FP

Negative Observations (NO) FN+TN

Total events (TE) PO+ NO

4.5.1.3 Statistical measures

Figure 4-14 presents this section organisation chart with the associated subsections.

Figure 4-14 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

The statistical measurements of a trained model are provided by accuracy, precision,

recall and F1 score. These statistical measures are calculated by collating the score

probability values of TP, TN, FP and FN under various cut-off of 0.1 increments between

0.0 ≤ x≤ 1.0.

4.5.1.3.1 Accuracy

Accuracy is the proportion of the actual accurate results from the total cases. It has

relevance in interpreting the performance of a model trained as it costs the same in a data

Statistical measures

Accuracy Precision Recall F1 Score

77

set with an even distribution of features [46]. The accuracy is calculated by the formula

elements in Table 4-10 above with the Equation 4-5 below.

Accuracy (A) = (TP + TN) / TE Equation 4-5

4.5.1.3.2 Precision

Precision is the proportion of true overall positive results returned by a trained model. In

an even and uneven distribution of features, it will cost more in FP for a wrong prediction

of a feature. In this scenario, it is the administrative overhead of wrongly predicting

SQLIA positive. The precision is calculated by the formula elements in Table 4-10 above

with the Equation 4-6 below.

Precision (P) = TP / PO Equation 4-6

4.5.1.3.3 Recall

The recall is the TP rate, which is the fraction of total correct results returned by the

model. In an even and uneven distribution of features, it will cost more for prediction

error of FN. In this scenario, it is the security loophole of wrongly predicting actual

SQLIA as negative, which implies the system is unprotected against data pilfering with

damaging ramifications. The recall is calculated by the formula elements in Table 4-10

above as the prediction rate of a trained classifier with the Equation 4-7 below.

Recall (R)= TP / PE Equation 4-7

4.5.1.3.4 F1 Score

The F1 score is a measure of accuracy that balances precision and recall. It has relevance

in interpreting the performance of a trained model as it costs the same in a dataset with

an even or uneven distribution of features [46]. The F1 score is calculated by the formula

elements in Table 4-10 with the Equation 4-8.

F1 Score (F) =2 x (R x P) / (R+P) Equation 4-8

4.5.1.4 ROC curve and AUC

ROC curve is a graphical plot using variation in threshold discrimination to illustrate the

performance of the binary classifier with a curve towards the upper left corner indicating

78

a better performing model. AUC or area below the curve in the graph plot is a measure

of TP Rate (TPR) or recall on the y-axis against FP Rate (FPR) on the x-axis. An excellent

prediction model achieved through this thesis is interpreted from the AUC value of 0.9 ≤

x ≤ 1. The ROC curve AUC provides a measure of the performance of a classifier which

is graded as presented in Table 4-11.

Table 4-11 AUC grading: A table showing the grading of AUC that set the benchmark for the

measure of performance metrics of a trained model [51].

AUC Values Grade

0.9 ≥ x ≤ 1.0 Excellent

0.8 ≥ x < 0.9 Good

0.7 ≥ x < 0.8 Fair

0.6 ≥ x < 0.7 Poor

x< 0.6 Random prediction/worthless

4.5.2 Binary classification algorithms

Figure 4-15 presents this section organisation chart with the associated subsections.

Figure 4-15 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

In this implementation of applying ML to mitigate SQLIA, the ratio of SQLIA

negative to positive is 1 to 8 in the data set used. We used feature values (59702-row

items) that are split at various ratios between training to testing data. These partition data

sets are used to train the classifiers named above. We split the data set matrices to ratios

of 70% (41791 rows of training data) to 30% (17911 rows of testing data) for an

experiment.

We also carried out a split ratio of 80% (47762 rows of training data) to 20% (11940

rows of testing data). In this experiment, there were majority SQLIA positives over

negatives in binary classification, but a balanced data set in multiclass across the nine

classes of the features; as the same data set was used in the multiclass classification of

SQLIA types. However, the imbalanced data set (majority SQLIA positives over

negatives) were corrected in future binary classification using Synthetic Minority Over-

Binary
classification
algorithms

Metrics:
Normalisation and

Split ratios

Metrics: Statistical
measures and ROC

curve

79

Sampling Technique (SMOTE) [187] in 5.3.2. These results obtained from the

experiments using various split data ratio are presented below. The original data set

created as input to the multiclass classifier was reduced by a grouping of the multiclass

labelling to binary class labelling as also to become an input to the binary classifier as

described in section 4.4.2 above.

4.5.2.1 Metrics: Normalisation and Split ratios of binary classification

The normalisation principle is presented in 4.4.3 above. Table 4-12 presents repeated

training of the supervised learning classifier using different normalisation and split ratios

to infer the results of the prediction errors. It was observed using logistic normalisation

of 70:30 (training: testing data) split ratio gave the lowest prediction errors as compared

to other split data ratios and normalisation. Figure 4-16 below, presents an optimum

classification that was achieved at normalisation using logistic data transformation

methods. The data set split ratio of 70 to 30 between the training to testing data at this

normalisation achieved an excellent result of FN =43 and FP=50 in the performance

metrics using the TC SVM classification algorithm.

The prediction errors of FN and FP provides an insight into the performance of a

trained model. A wrong prediction of SQLIA to be FN would imply the intruder

compromises our protected web application. Also, a high FN of SQLIA threats would

mean a failed protection which implies there is a need to keep FN from low to nil to

improve the SQLIA mitigation. Conversely, a wrong prediction of SQLIA negatives to

be FP is not as detrimental, but an administrative overhead of further reviewing of the

referring web requests. FP does offer the opportunity for a second review of any suspect

web requests, thereby enhancing the security of the protected web application using the

approach presented in this thesis. It is observed as shown in Figure 4-16 below using the

logistic normalisation and training to testing data ratio of 70 to 30%, offers an enhanced

classification with low FP and FN.

Table 4-12 Normalisation observations between training and testing data:

Observations of prediction errors (FN and FP) in using various normalisation schemes and data set

partition between training and testing data at various split ratios in binary classification.

Normalisation types/ratios False Negative (FN) False Positive (FP)

Logistic - 70:30 43 50

Z-Score - 70:30 92 254

Z-Score - 80:20 224 276

Logistic - 80:20 170 604

80

Figure 4-16 A Bar Chart of Evaluation of ZScore and Logistic normalisation: A Bar

Chart of evaluation of ZScore and Logistic normalisation at different split ratios in binary classification.

4.5.2.2 Metrics: Statistical measures and ROC curve

The section below presents the performance metrics of the suitability of a pattern-driven

data set in towards predicting SQLIA. The tables presented below has the formula for

calculating the statistical measures along with the collated observations similarly

presented in Table 4-10 of section 4.5.1.2 above.

Table 4-13 below contains the collated prediction variables of TP, TN and the

prediction errors of FP and FN including prediction observations at different thresholds

(score bins) using TC SVM algorithms with the calculated statistical measures of using

80 to 20 split data ratios. Figure 4-17 below presents a ROC curve of the evaluation with

the AUC plot. The AUC graph is plotted with values from Table 4-13 with FPR on the x-

axis and TPR/Recall on the y-axis.

We achieved an overall performance of AUC value of 0.944 using the TC SVM

classifier as presented in ROC curve shown in Figure 4-17 below. The performance

metrics of normalisation, split ratio, statistical measures and AUC overall performance is

compared in the section below to select a better performing classifier to be deployed as a

web service in ongoing SQLIA mitigation.

43
92

224
170

50

254 276

604

Logistic -70:30 Z-Score-70:30 Z-Score-80:20 Logistic -80:20

EVALUATING NORMALISATION SCHEMES

False Negative (FN) False Positive (FP)

81

Table 4-13 TC SVM of observations at various thresholds-80:20 data ratio: A table of

observations at various thresholds/score bins using TC SVM algorithms, including the statistical measures

for 80% training to 20% testing data ratio.

Figure 4-17 An AUC plot for TC SVM - 80:20 data ratio: A figure of TC SVM performance

metrics trained with 80% training to 20% testing data ratio.

The MAML studio sets by default the optimised cut-off threshold for the prediction

of TP and TN including the errors of FP and FN to be 0.5. This cut-off value of 0.5 is a

predetermined threshold employed by classification algorithms in MAML studio.

Therefore f(x) < 0.5 score probability value is predicted as SQLIA negative (0) while f(x)

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 10616 0 1324 10616 1324 0 11940 0 0 0.110887772 0 0

0.9 9854 762 19 1302 10616 1321 9873 2064 0.01438304 0.92822155 0.934338358 0.998076 0.961881985

0.8 10090 526 75 1249 10616 1324 10165 1775 0.05664653 0.95045215 0.949664992 0.992622 0.971079351

0.7 10220 396 127 1197 10616 1324 10347 1593 0.09592145 0.96269781 0.956197655 0.987726 0.975051281

0.6 10302 314 202 1122 10616 1324 10504 1436 0.15256798 0.970422 0.95678392 0.980769 0.975568182

0.5 10392 224 276 1048 10616 1324 10668 1272 0.20845921 0.97889977 0.958123953 0.974128 0.976508175

0.4 10451 165 357 967 10616 1324 10808 1132 0.26963746 0.98445742 0.956281407 0.966969 0.975634802

0.3 10508 108 435 889 10616 1324 10943 997 0.32854985 0.98982668 0.954522613 0.960249 0.974813303

0.2 10557 59 566 758 10616 1324 11123 817 0.42749245 0.99444235 0.947654941 0.949114 0.971249827

0.1 10606 10 742 582 10616 1324 11348 592 0.56042296 0.99905803 0.937018425 0.934614 0.965762156

0 10616 0 1324 0 10616 1324 11940 0 1 1 0.889112228 0.889112 0.941301649
Abbrevations

&

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total events

(TE)

TE = 11940

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

82

≥ 0.5 is predicted as SQLIA positive (1). The AUC Figure 4-17 above shows a curve at

the default optimised threshold of 0.5 which is calculated using the formula in Table 4-13.

In Table 4-14 below, we present the performance metrics using the same

normalisation and split data as used above, but with the TC LR classifier algorithm as

against TC SVM. There is a slight improvement on FN prediction errors with values of

170, but with a higher FP observation of 604 at the default threshold values. Also, there

is an overall improvement of AUC with a value of 0.988 shown in Figure 4-18 below.

Table 4-14 TC LR observations at various thresholds-80:20 data ratio: A table of

observations at various thresholds using a TC LR algorithm, including the statistical measure calculations.

Figure 4-18 An AUC plot for TC LR - 80:20 data ratio: A figure of an AUC plot for TC

LR performance metrics for 80% training to 20% testing data ratio at the default threshold of 0.5.

The performance metrics shown in Table 4-15 are observations at various thresholds-

using 70:30 split data ratios employing the TC LR classification algorithm. The results

present an improvement on prediction errors of FP and FN with values of 92 and 254

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 10616 0 1324 10616 1324 0 11940 0 0 0.110887772 0 0

0.9 8996 1620 187 1137 10616 1324 9183 2757 0.14123867 0.84740015 0.848659966 0.979636 0.908732764

0.8 9731 885 302 1022 10616 1324 10033 1907 0.22809668 0.91663527 0.900586265 0.969899 0.942515376

0.7 10113 503 398 926 10616 1324 10511 1429 0.30060423 0.95261869 0.924539363 0.962135 0.95735315

0.6 10310 306 506 818 10616 1324 10816 1124 0.38217523 0.97117558 0.9319933 0.953217 0.962112729

0.5 10446 170 604 720 10616 1324 11050 890 0.45619335 0.98398644 0.935175879 0.945339 0.964275824

0.4 10517 99 691 633 10616 1324 11208 732 0.52190332 0.99067445 0.933835846 0.938348 0.96380132

0.3 10562 54 785 539 10616 1324 11347 593 0.5929003 0.99491334 0.929731993 0.930819 0.96179939

0.2 10600 16 890 434 10616 1324 11490 450 0.67220544 0.99849284 0.924120603 0.922541 0.959015652

0.1 10616 0 1054 270 10616 1324 11670 270 0.79607251 1 0.911725293 0.909683 0.952705735

0 10616 0 1324 0 10616 1324 11940 0 1 1 0.889112228 0.889112 0.941301649
Abbrevations

&

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total events

(TE)

TE = 11940

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

83

respectively at the default threshold. Also, there is an overall improvement on AUC with

a value of 0.997 shown in the ROC curve presented in Figure 4-19.

Table 4-15 TC LR observations at various thresholds-70:30 data ratio: A table of

observations at various thresholds using a TC LR algorithm, including the statistical measures calculations

for 70% training to 30% testing data ratio.

Figure 4-19 An AUC plot for TC LR - 70:30 data ratio: A figure of an AUC plot for TC

LR for 70% training to 30% testing split data ratio with the capture of the performance metrics at the

default threshold of 0.5.

The performance metrics shown in Table 4-16 below uses TC SVM classifier with

the training to testing split data ratio of 70 to 30. This evaluation presents an improvement

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 15902 0 2009 15902 2009 0 17911 0 0 0.168257956 0 0

0.9 15253 649 53 1956 15902 2009 15306 2605 0.02638128 0.95918752 1.441289782 0.996537 0.977505768

0.8 15643 259 111 1898 15902 2009 15754 2157 0.05525137 0.98371274 1.469095477 0.992954 0.988311852

0.7 15723 179 138 1871 15902 2009 15861 2050 0.06869089 0.98874355 1.473534338 0.991299 0.990019834

0.6 15775 127 196 1813 15902 2009 15971 1940 0.09756098 0.99201358 1.473031826 0.987728 0.989866031

0.5 15810 92 254 1755 15902 2009 16064 1847 0.12643106 0.99421456 1.471105528 0.984188 0.989175999

0.4 15832 70 302 1707 15902 2009 16134 1777 0.15032354 0.99559804 1.468927973 0.981282 0.988388063

0.3 15853 49 337 1672 15902 2009 16190 1721 0.16774515 0.99691863 1.467755444 0.979185 0.98797208

0.2 15882 20 362 1647 15902 2009 16244 1667 0.18018915 0.9987423 1.468090452 0.977715 0.988116717

0.1 15902 0 423 1586 15902 2009 16325 1586 0.21055251 1 1.464656616 0.974089 0.98687436

0 15902 0 2009 0 15902 2009 17911 0 1 1 1.331825796 0.887834 0.940584982
Abbrevation

s &

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total events

(TE)

TE = 17911

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

84

on prediction errors of FN and FP with observations of low values of 43 and 50

respectively at the default threshold as against preceding evaluations. The result presents

an excellent performance with an AUC value of 1.0 shown in the ROC curve presented

in Figure 4-20.

Table 4-16 TC SVM observations at various thresholds-70:30 data ratio: A table of

observations at various thresholds using a TC SVM algorithm, including the statistical measures

calculations for 70% training to 30% testing data ratio.

Figure 4-20 An AUC plot for TC SVM - 70:30 data ratio: A figure of an AUC plot for TC

SVM performance metrics for 70% training to 30% testing data ratio with the capture of the performance

metrics at the default threshold of 0.5.

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 15902 0 2009 15902 2009 0 17911 0 0 0.112165708 0 0

0.9 15750 152 0 2009 15902 2009 15750 2161 0 0.990441454 0.991513595 1 0.995197776

0.8 15797 105 10 1999 15902 2009 15807 2104 0.004977601 0.993397057 0.993579365 0.9993674 0.996373269

0.7 15834 68 27 1982 15902 2009 15861 2050 0.013439522 0.995723808 0.994695997 0.9982977 0.997009099

0.6 15851 51 36 1973 15902 2009 15887 2024 0.017919363 0.996792856 0.99514265 0.997734 0.997263204

0.5 15859 43 50 1959 15902 2009 15909 2002 0.024888004 0.997295938 0.99480766 0.9968571 0.997076483

0.4 15869 33 62 1947 15902 2009 15931 1980 0.030861125 0.997924789 0.994695997 0.9961082 0.997015676

0.3 15885 17 91 1918 15902 2009 15976 1935 0.045296167 0.998930952 0.993970186 0.994304 0.996612084

0.2 15896 6 120 1889 15902 2009 16016 1895 0.05973121 0.999622689 0.992965217 0.9925075 0.996052384

0.1 15902 0 155 1854 15902 2009 16057 1854 0.077152812 1 0.9913461 0.9903469 0.995150036

0 15902 0 2009 0 15902 2009 17911 0 1 1 0.887834292 0.8878343 0.940584982

Abbrevations

&

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total events

(TE)

TE = 17911

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

85

We compared the overall performance metrics of the trained, supervised learning

models from the plot of FPR on the x-axis against TPR on the y-axis using the data

presented in Table 4-13 -Table 4-16 above. We observed that TC SVM using the logistic

normalisation and training to testing split data ratio of 70 to 30 resulted overall in an

excellent trained model as graded in Table 4-11 above (refer to section 4.5.1.4 for the

AUC performance grading). We achieved an AUC performance of value of 1.0 with low

prediction errors of 50 observations for FP and 43 for FN.

The comparisons of various performance metrics of normalisation, split data ratios,

and ROC curve’s AUC is shown in Figure 4-21. These comparisons coupled with the

cross-validation assisted in the selection of the best performing trained supervised

learning model to be deployed as a web service in ongoing real-time SQLIA mitigation.

Figure 4-21 AUC comparisons across the algorithms and ratios: A figure of AUC

comparisons across the classification algorithms, split data ratios and normalisation schemes to observed

a better performance metrics with TC SVM employing logistic normalisation with 70% training to 30%

testing data ratio.

86

4.5.3 Multiclass classification algorithms

Figure 4-22 presents this section organisation chart with the associated subsections.

Figure 4-22 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

In this section, we evaluated and validated the pattern-driven labelled multiclass data

set employing multiclass algorithms. The results of the multiclass classifications

employing MNN and MLR are presented in the sections below. We observed the MLR

algorithm gave a better performance over MNN in prediction evaluated in CM. The data

set contains labelled classes of the various SQLIA types detailed in Table 2-1 above. The

numeric labels presented in Table 4-17 below is a snippet of data set obtained by

numerical encoding ontology presented in section 4.3 above which provides the technique

to derive numeric artefact for SQLIA types.

Table 4-17 Labels/classes to predict: A table illustrating the labelling of the SQLIA types

including expected valid request.

SQLIA Types Class/Labels Snippet of signature

Tautology 1 `--,1=1,1<1, ‘a’=’a’ etc.

Piggyback 2 ;

Union 3 UNION SELECT

Invalid/Logical Incorrect Query 4 SELECT, IF, ELSE, dbo,1/0

Alternate encoding obfuscation 5), %, Hex values

Time-based 6 Wait for delay '00:00:10'

Store Procedure 7 ; EXEC, XP_CMDSHELL, ATTRIB

Second order 8 ‘x’=x’--"

 Valid web request

Expected collated input/non-SQLIA 9 Bob, bbo, obb etc

Multiclass classification
algorithms

Multiclass algorithms:
Normalisation and data split ratio

MNN 70:30 vs 80:20

MLR 70:30 vs 80:20

MNN vs MLR using Logistic
Normalisation

87

4.5.3.1 Multiclass algorithms: Normalisation and split data ratio

We compared various multiclass classification algorithms under various split ratios. The

Logistic normalisation scheme was observed with better results in predicting low FN and

FP in the binary classification in section 4.5.2. We used the Logistic normalisation to

compare various training to testing data set split ratios.

Also, presented below is a comparison between MNN and MLR algorithms under

these various split data schemes to select a better performing trained model to be deployed

as a web service in ongoing SQLIA detection and prevention.

The statistical measure calculations are collated from score probabilities to provide

observations of correctly predicted features of TP and TN including the prediction errors

of FP and FN in a trained model. These statistical measure variables, abbreviations and

formula are presented in Table 4-10 above.

The equation to calculate the macro and micro average metrics for comparison of the

predicted results of various split data ratios are presented in Equation 4-9. The equations

illustrate how the performance metrics results used on the bar chart in Figure 4-23 below

and the rest of the section for the multiclass performance metrics comparison are

calculated. The calculated macro and micro average metrics in Table 4-19 is extrapolated

from Table 4-18 below.

Equation 4-9

Calculating the multiclass metrics presented across the table

Binary Multiclass

Accuracy (A)

A = (TP+TN) /

(TP+FP+TN+FN)

Overall accuracy (Amicro)
𝐴𝑚𝑖𝑐𝑟𝑜 = 𝐴(∑

TP + TN

TP + FP + TN + FN
)

𝑛

𝜆=1

Average accuracy (Amacro)
𝐴𝑚𝑎𝑐𝑟𝑜 =

1

𝑛
∑ 𝐴

𝑛

𝜆=1

Precision (P)

P = TP / (TP+FP)

Micro-averaged

precision(macro) 𝑃(∑
TP

TP + FP
)

𝑛

𝜆=1

Macro-averaged precision 1

𝑛
∑ 𝑃

𝑛

𝜆=1

Recall (R)

R = TP / TP+FN

Micro-averaged recall
𝑃(∑

TP

TP + FN
)

𝑛

𝜆=1

Macro-averaged recall 1

𝑛
∑ 𝑅

𝑛

𝜆=1

 Where 𝜆 is the classes/labels L= { 𝜆 = 1 … . 𝑛) or L= 1-9

88

4.5.3.1.1 MNN 70:30 vs 80:20 training to testing split data ratio

Table 4-18 below, presents the observations of prediction across the nine classes or labels

for MNN algorithms using split data ratios of 70 to 30 and 80 to 20 of training to testing

data.

Table 4-18 MNN at 70 to 30 and 80 to 20 split data ratios: A table of performance metrics

for MNN at 70 to 30 and 80 to 20 of training to testing split data ratio.

Table 4-19 Extrapolated MNN performance metrics: A table of extrapolated MNN

performance metrics for training: testing split data ratios.

Metrics Training: Testing data ratio % Improvement
((𝑴𝑵𝑵 𝟖𝟎: 𝟐𝟎/𝑴𝑵𝑵 𝟕𝟎: 𝟑𝟎) − 𝟏) ∗ 𝟏𝟎𝟎 MNN

70:30

MNN 80:20

Overall accuracy 0.940037 0.964573 2.61

Average accuracy 0.986675 0.992127 0.55

Micro-averaged precision 0.940037 0.964573 2.61

Macro-averaged precision 0.960616 0.971168 1.10

Micro-averaged recall 0.940037 0.964573 2.61

Macro-averaged recall 0.938772 0.964042 2.69

Total overall improvement of MNN 80:20 over MNN 70:30 12.17%

The predicted classes against the actual classes were compared as presented in the

tables and figures to infer the following observations:

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 2009 0 0 0 0 0 0 0 0 2009 0 15902 0 2009 15902 2009 17911 1 1 1

2 0 1981 0 0 0 0 0 0 1981 0 15930 0 1981 15930 1981 17911 1 1 1

3 0 0 1998 0 0 0 0 0 0 1998 0 15913 0 1998 15913 1998 17911 1 1 1

4 0 0 0 1972 0 0 0 0 0 1972 0 15939 0 1972 15939 1972 17911 1 1 1

5 0 0 0 0 2018 0 0 0 0 2018 0 15893 0 2018 15893 2018 17911 1 1 1

6 0 0 0 0 0 2020 0 0 0 2020 0 15891 0 2020 15891 2020 17911 1 1 1

7 0 0 0 0 0 0 875 1074 0 875 0 15962 1074 875 17036 1949 17911 1 0.448948 0.940037

8 0 0 0 0 0 0 0 1956 0 1956 1074 14881 0 3030 14881 1956 17911 0.645545 1 0.940037

9 0 0 0 0 0 0 0 0 2008 2008 0 15903 0 2008 15903 2008 17911 1 1 1

0.960616 0.938772 0.986675

16837 1074 0 1074 0.940037 0.940037 0.940037

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 1324 0 0 0 0 0 0 0 0 1324 0 10616 0 1324 10616 1324 11940 1 1 1

2 0 1302 0 0 0 0 0 0 0 1302 0 10638 0 1302 10638 1302 11940 1 1 1

3 0 0 1354 0 0 0 0 0 0 1354 0 10586 0 1354 10586 1354 11940 1 1 1

4 0 0 0 1307 0 0 0 0 0 1307 0 10633 0 1307 10633 1307 11940 1 1 1

5 0 0 0 0 1372 0 0 0 0 1372 54 10514 0 1426 10514 1372 11940 0.962132 1 0.995477

6 0 0 0 0 54 1289 0 0 0 1289 10597 54 1289 10651 1343 11940 1 0.959792 0.995477

7 0 0 0 0 0 0 933 369 0 933 0 10638 369 933 11007 1302 11940 1 0.71659 0.969095

8 0 0 0 0 0 0 0 1296 0 1296 369 10275 0 1665 10275 1296 11940 0.778378 1 0.969095

9 0 0 0 0 0 0 0 0 1340 1340 0 10600 0 1340 10600 1340 11940 1 1 1

0.971168 0.964042 0.992127

11517 423 0 423 0.964573 0.964573 0.964573

Predicted as:Actual

Class

Macro-Average

11940 Micro-Average

Macro-Average

17911 Micro-Average

MNN using training to testing data ratio of 80:20

MNN using training to testing data ratio of 70:30

89

• All TP and TN were all correctly predicted as labelled classes 0 < x < 9 are SQLIA

types positive while x ≥ 9 is SQLIA type negative as shown in Table 4-18 above.

• There were FP and FN, which are misclassification of an SQLIA type positive

class with cases of SQLIA type labelled 7 predicted as type 8. This is expected as

there is a close similarity between some SQLIA type signatures and generalisation

of such similarity during encoding.

• In comparing the overall performance metrics between split data ratios of 70:30

versus 80:20, it was observed the split ratio 80:20 gave better overall performance

metrics in all statistical measures, but with low FP and FN in SQLIA positive

misclassification as illustrated in Figure 4-23 below.

• Figure 4-24 below shows an improvement in misclassification with 28.3% of

SQLIA positive labelled type 7 predicted as type 8 by using split data ratio of

80:20 (but with 4% of labelled class 6 predicted as class 5); as against 55.9%

misclassification when using split data ratio of 70:30 training to testing data.

• Table 4-19 presents a performance metrics improvement across the statistical

measures using the MNN algorithm with a split data ratio of 80:20 and a total

overall improvement of 12.17% over the MNN algorithm using 70:30.

Figure 4-23 Bar Chart: MNN using Logistic Normalisation: A Bar Chart of performance

metrics of MNN using Logistic Normalisation 70:30 vs 80:20 Training: Testing Split data ratio.

0.940

0.987

0.940

0.961

0.940 0.939

0.965

0.992

0.965
0.971

0.965 0.964

Overall accuracy Average accuracy Micro-averaged
precision

Macro-averaged
precision

Micro-averaged
recall

Macro-averaged
recall

Multiclass Neural Network (MNN)
70:30 vs 80:20 Data Split Ratio

MNN 70:30 MNN 80:20

90

Figure 4-24 MNN using split data ratios of 70:30 vs 80:20: A figure of MNN Confusion

Matrix for Training: Testing split data ratios of 70:30 vs 80:20.

4.5.3.1.2 MLR 70:30 vs 80:20 training to testing split data ratio.

Table 4-20 below present the observations of prediction across the nine classes or labels

for MLR algorithms using 70 to 30 versus 80 to 20 of training to testing split data ratios.

It is inferred from the CM below that using a split data ratio of 80:20 gave overall better

performance metrics by comparing the predicted classes against the actual classes with

the following observations below:

• All TP and TN were all correctly predicted as labels 0 < x < 9 are SQLIA positive

while x ≥ 9 is SQLIA negative as presented in Table 4-20 below.

• There were FP and FN of misclassification of an SQLIA positive class or label

from 7 to 8 which is expected due to the close similarity between SQLIA types

signatures.

• In comparing the overall metrics between split data ratios of 70:30 versus 80:20,

it was observed the split ratio 80:20 gave overall better performance metrics in all

91

statistical measures, but with low FP and FN in SQLIA positive misclassification

as illustrated in Figure 4-26 below.

• While 87.4 % of actual labelled class 7 were predicted as label class 8

(misclassified) using split data ratio of 70:30 training to testing data; but in using

a split data ratio of 80:20, only 19.9% were misclassified as presented in Figure

4-25 below. We observed in the generating the data set vectors there were labelled

features that share close similarity between class 7 and 8. For example, the single

quote (‘) to have resulted in a few misclassifications.

• The overall performance metrics indicate an excellent trained model as presented

in Figure 4-26 below capable of accurately predicting SQLIA in a web request.

• Table 4-21 presents a performance metrics improvement across the statistical

measures using the MLR algorithm with a split data ratio of 80:20 and a total

overall improvement of 37.22% over the MLR algorithm using 70:30.

Table 4-20 Performance Metrics for MLR at 70:30 and 80:20: A table of performance

metrics for MLR at 70:30 and 80:20 of training to testing split data ratio with 80:20 split data having

better performance.

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 2009 0 0 0 0 0 0 0 0 2009 0 15902 0 2009 15902 2009 17911 1 1 1

2 0 1981 0 0 0 0 0 0 0 1981 0 15930 0 1981 15930 1981 17911 1 1 1

3 0 0 1998 0 0 0 0 0 0 1998 0 15913 0 1998 15913 1998 17911 1 1 1

4 0 0 0 1972 0 0 0 0 0 1972 0 15939 0 1972 15939 1972 17911 1 1 1

5 0 0 0 0 2018 0 0 0 0 2018 0 15893 0 2018 15893 2018 17911 1 1 1

6 0 0 0 0 0 2020 0 0 0 2020 0 15891 0 2020 15891 2020 17911 1 1 1

7 0 0 0 0 0 0 246 1703 0 246 0 15962 1703 246 17665 1949 17911 1 0.126219 0.904919

8 0 0 0 0 0 0 0 1956 0 1956 1703 14252 0 3659 14252 1956 17911 0.534572 1 0.904919

9 0 0 0 0 0 0 0 0 2008 2008 0 15903 0 2008 15903 2008 17911 1 1 1

0.948286 0.902913 0.978871

16208 1703 0 1703 0.904919 0.904919 0.904919

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 1324 0 0 0 0 0 0 0 0 1324 0 10616 0 1324 10616 1324 11940 1 1 1

2 0 1302 0 0 0 0 0 0 0 1302 0 10638 0 1302 10638 1302 11940 1 1 1

3 0 0 1354 0 0 0 0 0 0 1354 0 10586 0 1354 10586 1354 11940 1 1 1

4 0 0 0 1307 0 0 0 0 0 1307 0 10633 0 1307 10633 1307 11940 1 1 1

5 0 0 0 0 1372 0 0 0 0 1372 0 10568 0 1372 10568 1372 11940 1 1 1

6 0 0 0 0 0 1343 0 0 0 1343 0 10597 0 1343 10597 1343 11940 1 1 1

7 0 0 0 0 0 0 1043 259 0 1043 0 10638 259 1043 10897 1302 11940 1 0.801075 0.978308

8 0 0 0 0 0 0 0 1296 0 1296 259 10385 0 1555 10385 1296 11940 0.833441 1 0.978308

9 0 0 0 0 0 0 0 0 1340 1340 0 10600 0 1340 10600 1340 11940 1 1 1

0.981493 0.977897 0.99518

11681 259 0 259 0.978308 0.978308 0.97830811940

Macro-Average

Micro-Average

MLR using training to testing data ratio of 80:20

17911

Actual

Class

Predicted as:

MLR using training to testing data ratio of 70:30

Macro-Average

Micro-Average

92

Figure 4-25 MLR Confusion Matrix at various split data ratios: A figure of MLR

Confusion Matrix for Training: Testing split data ratios of 70:30 vs 80:20.

Table 4-21 MLR at various split data ratios: A table of extrapolated MLR performance

metrics for training: testing split data ratios with better MLR 80:20 performance metrics

Metrics Training: Testing data ratio % Improvement

((𝑴𝑳𝑹 𝟖𝟎: 𝟐𝟎/𝑴𝑳𝑹 𝟕𝟎: 𝟑𝟎) − 𝟏)
∗ 𝟏𝟎𝟎 MLR 70:30 MLR 80:20

Overall accuracy 0.904919 0.978308 8.11

Average accuracy 0.978871 0.99518 1.67

Micro-averaged precision 0.904919 0.97308 7.53

Macro-averaged precision 0.948286 0.981493 3.50

Micro-averaged recall 0.904919 0.978308 8.11

Macro-averaged recall 0.902913 0.977897 8.30

Total overall improvement of MLR 80:20 over MLR 70:30 37.22%

93

Figure 4-26 Bar Chart: MLR using Logistic normalisation: A Bar Chart of performance

metrics of MLR using Logistic normalisation 70:30 vs 80:20 training: testing split data ratio.

4.5.3.1.3 MNN vs MLR using Logistic Normalisation at 80:20 split data ratio

In the preceding sections (4.5.3.1.1 & 4.5.3.1.2 above), it is observed that using a split

data ratio of 80:20 to train MNN and MLR classifiers gave better performance metrics

than using a split data ratio of 70:30 training to testing data.

In this section, we compare the performance metrics of both MNN and MLR

classifiers with the input of 80:20 training to testing split data ratio. Figure 4-28 below

presents the results for both MNN and MLR to have observed MLR classifier have better-

performing metrics as extrapolated from Table 4-22 below with a total overall

improvement of 7.08% over the MNN algorithm.

 Also, it was observed in the CM presented in Figure 4-27 below that a split data

ratio of 80:20 training to testing data in MLR has overall low misclassification of the

labelled class 7 with 19.9%. Conversely, the same split data ratio in MNN has a total of

32.3% misclassification of two labelled classes of which 4% and 28.3% were labelled

class 6 and 7 respectively. This misclassification is expected as there is a close similarity

between some SQLIA type signatures and generalisation of such similarity during

encoding.

The performance metrics across the statistical measures show using MLR algorithms

with a split data ratio of 80:20 training to testing data delivered a better performance

metrics over MNN algorithm using the same split data ratio as presented in Table 4-22

and Figure 4-28.

0.905

0.979

0.905

0.948

0.905 0.903

0.978
0.995

0.978 0.981 0.978 0.978

Overall accuracy Average
accuracy

Micro-averaged
precision

Macro-averaged
precision

Micro-averaged
recall

Macro-averaged
recall

Multiclass Logistic Regression (MLR)

70:30 vs 80:20 Data Split Ratio

MLR 70:30 MLR 80:20

94

Figure 4-27 MLR vs MNN using split data ratios of 80:20: A figure of MLR vs MNN

Confusion Matrix using training to testing split data ratios of 80:20.

Table 4-22 Performance metrics of MNN vs MLR using logistic normalisation: A

table of performance metrics of MNN vs MLR using logistic normalisation 80:20 training: testing split

data ratio.

Metrics Training: Testing Split

Data Ratio

% Improvement

((𝑴𝑳𝑹 𝟖𝟎: 𝟐𝟎/𝑴𝑵𝑵 𝟖𝟎: 𝟐𝟎) − 𝟏) ∗ 𝟏𝟎𝟎
MNN 80:20 MLR 80:20

Overall accuracy 0.964573 0.978308 1.42

Average accuracy 0.992127 0.99518 0.31

Micro-averaged precision 0.964573 0.978308 1.42

Macro-averaged precision 0.971168 0.981493 1.06

Micro-averaged recall 0.964573 0.978308 1.42

Macro-averaged recall 0.964042 0.977897 1.44

Total overall improvement of MLR 80:20 over MNN 80:20 7.08%

95

Figure 4-28 Bar Chart: MNN vs MLR using logistic normalisation: A Bar Chart of a

better performance metrics of MLR over MNN using logistic normalisation 80:20 training: testing split

data ratio.

4.5.4 Cross-validation

Figure 4-29 presents this section organisation chart with the associated subsections.

Figure 4-29 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

In the evaluations above, we embarked on the partitioning of the data set into training

and testing set by split function at various ratios. The training set of the partitioned data

is used to train the classifier while the testing set is the set unseen by the classifier which

forms the subject of the empirical evaluations of the scoring methods presented above.

The testing set is drawn from the underlying distribution as the training set would have

inherent biases on the amount of the distribution that appears in a set at whatever data set

split ratio which the cross-validation performance metrics provides insight.

The cross-validation goes beyond this traditional single training to testing set ratio

evaluation to provide a more extensive evaluation across multiple folds of training to

0.978

0.995

0.978
0.981

0.978 0.978

0.965

0.992

0.965

0.971

0.965 0.964

Overall accuracy Average accuracy Micro-averaged
precision

Macro-averaged
precision

Micro-averaged
recall

Macro-averaged
recall

MNN vs MLR 80:20 Training:Testing Data
Split Ratio

MLR 80:20 MNN 80:20

Cross-Validation

Binary Cross-Validation
Multiclass Cross-

Validation

96

testing data split ratios. The cross-validation provides a better gauge of the performance

metrics of a trained model with unseen data in a real-world scenario.

The Azure ML (MAML studio) provides a cross-validation module which uses by

the default k-fold cross-validation where k is an integer. The MAML studio follows the

favoured k-fold cross-validation k =10 [48], [49], [52]. The cross-validation module

provides a technique to reduce biases in a trained model that could occur when using a

single data set [47]. Figure 4-31 below shows the 10-fold cross-validation process of

MAML studio defaults with the partitioning of the data set matrices into approximately

equal folds where possible. Each of the fold is used as a test data across the remaining

folds while iterating the number of times of k value (10). This process of fold held out for

test ensures every fold of the observations is used as a testing data (not exposed to the

classifier) while a union of the rest of the remaining nine folds are used as a training data

(exposed to the classifier). A low standard deviation of accuracy value in MAML studio

cross-evaluated model indicates a model with reduced biases capable of generalisation of

a new data exposed to the trained model in the real-world.

Also provided in the cross-validation is the logarithmic loss (log loss) or cross-

entropy to demonstrate the fitness of the pattern-driven data set proposed in this thesis.

The log loss is a popular measure of classifier performance, which is an information

theory measure of the cross-entropy between two probability distributions which is the

encoded known outcome and the resultant score probabilities. In the Kaggle data science

competition, it is the favoured performance metrics measure of a trained classifier [188],

[189]. The MAML studio cross-validation module provides a log loss measure of an

average log loss which is a single score for measuring the penalty of the result predicted

wrongly [190].

The log loss and cross entropy have the same underlying mathematics to measure

wrong prediction errors. The log loss term is used in the binary classification while cross

entropy is used in multiclass classification. Log loss term is popularly used in

interchangeably. The lower the average log loss, the better the prediction outcome [191].

The cross-validations presented below for binary and multiclass classifiers have a low

average log loss value for each fold, which indicates a better model capable of

generalisation of unknown data in the real-world using the pattern-driven data set to train

a classifier proposal of this thesis. In the preceding training to testing data model

evaluations above, we presented best-performance metrics to be binary classification

97

algorithm (TC SVM) using training to test data (70:30) split ratio, while in the multiclass

evaluation, MLR of training to test data (80:20) split ratio which is the subject of the

cross-validation below.

4.5.4.1 Binary Cross-Validation

We derived a pattern-driven data set containing 59702 vectors with the original multiclass

labelled data set of vectors of 1-9 reduced to a binary data set of 0 and 1 as presented in

4.4.2 above. We presented a TC SVM as the best performing trained model under logistic

normalisation and training to testing split data ratio of 70 to 30. We achieved high

performance metrics with low prediction errors as shown AUC comparisons in Figure

4-21 above which is the subject of the cross-validation presented below.

Thus, the cross-validation is used to gauge the performance metrics of the unknown

data exposed to the trained classifier in a real-world scenario. Figure 4-30 presents the

cross-validation integration with the MAML studio predictive experiment presented in

Figure 4-8 above. The figure illustrates the normalised data set connected to the cross-

validation module that is trained with TC SVM.

Figure 4-30 A cross-validation experiment screen capture: A screen capture of the cross-

validation to the MAML studio predictive experiment presented in Figure 4-8 above.

98

Figure 4-31 A representation of binary k-fold cross-validation: The figure shows the 10-

fold cross-validation process of MAML studio defaults with the partitioning of the data set matrices into

approximately equal folds where possible.

The cross-validation usually takes the input of the entire data set vectors or vector

matrices and then partition it into folds for the rigorous training of the presented

algorithms. Figure 4-31 illustrates with each run, a partition (fold) is held out as the testing

data, and the union of the rest of the nine folds as the training data. It is a similar concept

of training to testing split data at various ratios across the data set split partition, thereby

eliminating biases of the distribution of features at any ratio of the data set partition.

The k-fold cross-validation provides performance metrics for measuring bias-

variance trade-off. A low variance or standard deviation in accuracy indicates of a

successful trained model capable of generalisation of unknown data in the real-world. The

k-fold cross validation is akin to classic split training/testing data evaluation model, but

with a more accurate estimate of out-of-sample accuracy and efficiency in ensuring every

observation is used for both training and testing. Out-of-sample accuracy is a measure of

the ability of a trained model to cope with unknown data to the classifier (i.e. akin to

testing data) or real-world data generalisation when the trained model is deployed.

99

We observed a low standard deviation of accuracy across the ten folds indicating an

excellent trained model. This result indicates a model with a reduced bias in data set

features variation and distribution of the statistical measures that can generalise

independent data set in a real-world scenario that verifies this thesis goal of a pattern-

driven data set can be used to train a classifier and be validated.

Equation 4-10 presents the formula for calculating the mean μ, where μ is the mean,

xi are the accuracy values across the ten folds (0.9772, 0.9995, 0.9844, 0.9853, 0.9625,

0.966, 0.9854, 0.9797, 0.9739, 0.9256), n is the iteration times or folds which is n=10

and therefore μ =9.7395/10 0.974. Equation 4-11 presents the equation for calculating

the variance or standard deviation σ, where σ is the variance calculated to be 0.02. We

achieved a lower variance of accuracy value of 0.02 which indicates a less biased trained

model capable of generalisation of unknown independent data with the results of the test

performed presented in Table 4-23. The table also contains a high performance metrics

for Precision, Recall, F-Score and AUC, including a low average log loss values to

indicate of a trained model with a low penalty for wrong score probabilities.

𝜇 =
Σ𝑥𝑖

𝑛

Equation 4-10

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛

Equation 4-11

Table 4-23 A table of binary evaluation results by folds: A table containing evaluation results

of the data set matrices partitioned into 10 folds with a low standard deviation of accuracy highlighted to

indicate of a trained model capable of generalisation of unknown independent data.

Fold Number

Number of

examples in

fold Model Accuracy Precision Recall F-Score AUC

Average

Log Loss

0 5970 SVM (Pegasos-Linear) 0.977 0.989 0.986 0.987 0.997 0.040

1 5970 SVM (Pegasos-Linear) 1.000 1.000 1.000 1.000 1.000 0.002

2 5970 SVM (Pegasos-Linear) 0.984 0.991 0.992 0.991 0.999 0.031

3 5970 SVM (Pegasos-Linear) 0.985 0.992 0.992 0.992 0.999 0.028

4 5970 SVM (Pegasos-Linear) 0.963 0.976 0.982 0.979 0.993 0.068

5 5970 SVM (Pegasos-Linear) 0.966 0.979 0.983 0.981 0.994 0.060

6 5970 SVM (Pegasos-Linear) 0.985 0.991 0.992 0.992 0.998 0.033

7 5971 SVM (Pegasos-Linear) 0.980 0.990 0.988 0.989 0.998 0.039

8 5970 SVM (Pegasos-Linear) 0.974 0.986 0.984 0.985 0.997 0.045

9 5971 SVM (Pegasos-Linear) 0.926 0.928 0.994 0.960 0.866 0.227

Mean 59702 SVM (Pegasos-Linear) 0.974 0.982 0.989 0.986 0.984 0.057

Standard

Deviation 59702 SVM (Pegasos-Linear) 0.020 0.020 0.006 0.011 0.042 0.062

100

4.5.4.2 Multiclass Cross-Validation

In the preceding sections, we derived a pattern-driven data set containing 59702 vectors

with multiclass labels of 1-9 that account for SQLIA types signature and valid web

requests to train multiclass classifiers. We presented MLR as the best-performing

classifier under 80:20 training to testing data split ratio in section 4.5.3.1.3 above. Below

are the results of cross-validation across the ten folds using the MAML studio. The

underlying mathematics can be found in the following references [188], [189], [191],

[192].

Table 4-24 presents the multiclass cross-evaluation across the ten folds with a small

average log loss values across the nine classes (1-9) highlighted to indicate of a trained

model with a low penalty for wrong score probabilities capable of generalisation of

unknown independent data.

Table 4-24 A table of multiclass evaluation results by folds: The table presents evaluation

results of the data set matrices partitioned into ten folds with a small average log loss values across the nine

classes highlighted to indicate of a trained model with a low penalty for wrong score probabilities.

4.6 Discussion

A review of the previous work on SQLIA up to the time of submitting the manuscripts

for two conferences’ papers [61], [62] related to this thesis chapter in 2015, to the best of

our knowledge, no existing work has leveraged the ML cloud-hosted platform like Azure

ML (MAML studio) to address SQLIA issue. One issue that stands out in some existing

approaches on SQLIA mitigation [74], [125], [129], [133], [193] is computationally

expensive. Availability of ML cloud-based software and platform as services resolves the

issue by harnessing these large-scale supercomputers employing AI techniques to deliver

ready to use solutions that would have been limited relying on a single or few servers in

the intranet or extranet.

Class "1"Class "2"Class "3" Class "4" Class "5"Class "6"Class "7"Class "8" Class "9"

0 5970 Multi-class Logistic Regression 0.003976 0.010477 0.014524 0.017514 0.017036 0.014646 0.010312 0.003802 0.000008

1 5970 Multi-class Logistic Regression 0.003957 0.010386 0.014382 0.017184 0.016858 0.014816 0.010647 0.003852 0.000102

2 5970 Multi-class Logistic Regression 0.003932 0.010322 0.014533 0.017515 0.016973 0.014771 0.010585 0.003899 0.000008

3 5970 Multi-class Logistic Regression 0.003918 0.010255 0.014310 0.017236 0.016862 0.014517 0.010484 0.003887 0.000010

4 5970 Multi-class Logistic Regression 0.003830 0.010319 0.014323 0.017460 0.017116 0.014647 0.010523 0.003747 0.000436

5 5970 Multi-class Logistic Regression 0.003858 0.010220 0.014252 0.016968 0.016903 0.014510 0.010411 0.003801 0.000121

6 5970 Multi-class Logistic Regression 0.003960 0.010306 0.014284 0.017223 0.017024 0.014804 0.010883 0.003966 0.000011

7 5971 Multi-class Logistic Regression 0.003931 0.010362 0.014357 0.017174 0.016835 0.014638 0.010397 0.003824 0.000015

8 5970 Multi-class Logistic Regression 0.003883 0.010431 0.014365 0.017166 0.016762 0.014650 0.010653 0.003853 0.000089

9 5971 Multi-class Logistic Regression 0.003875 0.010435 0.014760 0.017691 0.016992 0.014909 0.010694 0.003854 0.000315

Mean 59702 Multi-class Logistic Regression 0.003912 0.010351 0.014409 0.017313 0.016936 0.014691 0.010559 0.003848 0.000111

Standard Deviation 59702 Multi-class Logistic Regression 0.000048 0.000082 0.000154 0.000220 0.000109 0.000131 0.000169 0.000061 0.000149

Average Log Loss for

Fold Number Number of examples in fold Model

101

The other issue that currently stands out is the lack of the availability of up to date

data set which there wouldn’t be as web application types are so diverse to have all-

purpose data set to apply AI. However, just as the KDD Cup 1999 [161] has become

antiquated in the IDS domain [1], [2], [67], [160], so also has ECML/PKDD 2007 [65]

and HTTP CSIC 2010 [66] has become obsolete. These test case data sets served the

competition-driven purpose and textbook evaluations at the time, not a benchmark data

set to build and evaluate SQLIA mitigation being provided to the real-world application.

Also, these competitions-driven data sets are not relevant to benchmarking of any sort in

this thesis as it is recognised that web application types are diverse and this thesis provides

a pattern-driven approach for deriving a data set on the fly based on the web application

type being protected.

Thus, this begs the question if the pattern that exists in web requests that are deemed

valid, and historical studies of different SQLIA types including SQL tokens can provide

artefact to be used to derive a pattern-driven data set to train a supervised learning model?

The ontology to extract encoded features that form a data set earmarked to train an ML

model with evaluation for a web application type in towards SQLIA mitigation is a

contribution of this chapter.

Web applications and services are now increasingly hosted in the cloud with

restricted access to source codes for static and dynamic analysis. Therefore, whilst

existing approaches [4], [5], [95]–[104], [6], [105]–[109], [119]–[123], [7], [124]–[127],

[174], [194], [195], [8], [10], [82], [84], [94] seemed plausible in the past, they are not

scalable in emerging computing with big data. These existing approaches have existed in

an era of manageable data size. Also, the shifting of web application domain boundary

from the intranet or extranet to the cloud SDN for cloud-hosted services makes

approaches that rely on static and dynamic source code scanning not applicable over time.

Also, a review of solely SQLI mitigation over the years is lacking in the big data

context. The few that have data mining in the title were database level mitigation applying

ML of a sort of query comparison not amenable to cloud SDN with sizeable incoming

web requests hit for predictive analytics. These existing approaches [129], [130] gravitate

to SQLIA mitigation proposals of query comparison of some sort, mostly driven by the

method of the data set procurement through using web crawler of URLs and other

automated unit testing tools. These test case data sets that are logged valid SQL queries

102

for comparison between valid and malicious queries during runtime does not have

patterns for predictive analytics as presented in this thesis.

In comparing the proposal presented in this chapter with existing approaches; this

chapter focused on web application type to provide a pattern-driven data set as against a

data set generated with repeating strings as seen in most existing work [71]–[75], [130],

[133], [193]. The pattern-driven data set is used to train supervised learning classification

algorithms with extensive validation through statistical measures in the context of

emerging computing of big data cloud-hosted services as against existing approaches on

ML which does not share similarities.

Table 4-25 highlights the pattern-driven data set, code access and emerging

computing cloud SDN focused, in towards SQLIA mitigation presented in this chapter

with the related academic papers [61], [62] sets apart this chapter proposal from existing

approaches that apply AI over the years.

Table 4-25 Related work applying ML comparison: A table comparing the existing ML

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable and pattern-

driven data set with related publications to this chapter highlighted.

Authors Algorithms Need

access

to source

code

Intranet /

intranet

domain

boundary

Emerging

computing

applicable: cloud

SDN applicable

Pattern-

driven

data

Bockermann et al. [75] SVM Yes Yes No No

Komiya [71] SVM Yes Yes No No

Choi et al. [72] SVM Yes Yes No No

Wang and Li [73] SVM Yes Yes No

Pinzón et al. [74],

[141], [193]

SVM and

NN

Yes Yes No No

Kim and Lee [138] SVM Yes Yes No No

Uwagbole et al. [62] LR and NN No Yes Yes Yes

Uwagbole et al. [61] SVM No Yes Yes Yes

4.7 Conclusion

In conclusion, the work presented in this chapter demonstrates the fitness of a pattern-

driven data set to train a supervised learning model employing both statistical binary and

multiclass algorithms implemented in MAML studio. We presented statistical measures,

ROC curve, CM and cross-validation results of the empirical evaluation of the proposed

scheme. The proposal presented in this chapter is towards scalable and functional

prediction of SQLIA, demonstrated in further work presented in Chapters 5 and 6.

103

This approach presented in this thesis is geared towards leveraging recent

advancement in the field of AI to build a scalable application that can predict SQLIA in

web requests with a high degree of accuracy in TP and TN but with low prediction errors

of FP and FN as presented above.

The work presented in this chapter presents the procurement of a pattern-driven data

set to extrapolate vectors of any size in towards predicting SQLIA. We leverage the

MAML AI cloud-hosted platform employing ML and ANN algorithms to train the

pattern-driven data set with empirical statistical measures of high performance metrics

presented in the ROC curve, CM and cross-validation. These contributions distinguish

the work presented here from previous research proposals by other authors.

 On account of the preceding discussion, this chapter answers the research question

can pattern in both expected web requests and SQL tokens including existing SQLIA

signature extraction be used to create a large volume of learning data of encoded numeric

vector variables required to train a supervised learning model and be validated? This

research question is answered in the following contributions of this chapter.

• The ontology for crafting a pattern-driven data set from the web application type with

a technique to encode the data set into vectors required to train a supervised learning

model using emerging cloud-hosted ML platforms of Azure ML (MAML studio).

• We trained a supervised learning classification algorithms with this pattern-driven

data and validated the trained model under various classification algorithms with high

performance metrics in the ROC curve and CM respectively, including cross-

validation as presented in this chapter. The success of this conceptual approach of the

web application type as the source of a pattern-driven data set to train a classifier has

led to further work in the Chapters 5 and 6.

The further work in the Chapters 5 and 6 involves employing string hashing

vectorisation in-place of the numeric encoding presented in this chapter, and a proof of

concept of how the proposal will be applied in a real-world application scenario.

104

5 Applied Predictive Analytics
to Mitigate SQLIA

Figure 5-1 presents the organisation chart layout of this chapter with the sections.

Figure 5-1 The chapter organisation chart: The chapter organisation chart presents the layout

of the chapter’s sections.

5.1 Introduction

Figure 5-2 presents this section organisation chart with the associated subsections.

Figure 5-2 The section organisation chart: A figure of the section organisation chart that

provides the layout of this section with the associated subsections.

This chapter answers the research question if the pattern-driven data set can be

extracted from a web application type context to detect and prevent SQLIA? We present

in this chapter a method of applying predictive analytics to predict and prevent SQLIA in

both legacy and new web applications in the big data context using a pattern-driven data

set. The technique applies AI to a web application domain context that does not rely on

access to the web application source code and queries in SQLIA mitigation as proposed

by most existing research work on SQLIA.

This chapter starts with the introduction in sections 5.1 and ends with a conclusion

in 5.7. Sections 5.2 and 5.3 discuss building the data set member strings and predictive

analytics experimental steps while section 5.4 presents evaluations and performance

metrics. Section 5.5 discusses the publishing and consuming of the trained, supervised

Applied predictive
analytics

5.1
Introduction

5.2
Building
data set
member
string

5.3
Training

predictive
analytics

and
deployment

5.4
Evaluation

and
performanc
e metrics

5.5
Publishing

5.6
Discussion

5.7
Conclusion

Introduction

Problem
Statement

Motivation
Approach
Overview

105

learning model in an application for ongoing SQLIA mitigation while 5.6 discuss the

issues with the existing work to highlight the contribution of this chapter.

5.1.1 Problem statement

In this research question, we ask if a pattern-driven data set can be extracted from a web

application type being provided with SQLIA mitigation?

SQLIA vulnerability is a sequel to a design fallout of the well-intentioned free text

processing of the SQL engine itself, and as a consequence both legacy and cloud

deployments lacking sanitisation become vulnerable. A search of “SQLI hall of shame”

[21] which reports the recent trends in data pilfering by SQLIA shows the prevalence of

this form of attack and so the ability to secure back-end database from SQLIA in an era

of big data remains a topical issue.

The SQL language syntax closely resembles plain English [196], and the SQL

keywords are also in plain text. Therefore, the SQLIA problem in a big data context is a

plausible candidate for predictive analytics of a supervised learning model trained via

both known historical attack signatures and safe web request patterns. We propose that

string pattern exists in every input data in both legacy and new web applications and that

these can be leveraged to generate as many derivations of related member strings.

Applying ML techniques requires data set with sufficient learning data arising from

patterns that exist in input data provided in any web application domain.

5.1.2 Motivation

The existing solutions of mostly heuristic signature approaches were all before the new

emerging computing in big data mining and as such lack the functionality and ability to

cope with new signatures concealed in web requests in the context of big data. Also, these

existing approaches were aimed at on-premise web application domain boundary, not

roaming cloud-hosted applications and services across the internet including SDN.

 ML predictive analytics provides functional and scalable mining for big data in the

detection and prevention of SQLIA. Unfortunately, lack of availability of a ready-made

existing robust data set with patterns and historical attributes to train a classifier are issues

well known in SQLIA research in applying AI techniques. The few test case data sets

[65], [66] available are obsolete and have served the competition-driven evaluations.

106

5.1.3 Approach overview

A literature review of existing SQLIA detection and prevention approaches discussed in

Chapter 3 reveals three perspectives: static SQLIV detection by peering through the code;

code sanitisation prescribed by OWASP during SDLP in SQLIA prevention; and a

combined static, and runtime analysis by queries comparison between static and dynamic

in the detection and prevention of SQLIA [94], [95], [101],[102], [108]. It is much harder,

if not impossible in cloud-hosted services to access free-flowing web application source

code which negatively affects some existing solutions in mitigating SQLIA. Also, there

is such big data web traffic to these cloud-hosted web applications and services for these

existing approaches to be functional. The big data trend will only head one direction

which is the upward growth, and as such will require scalable techniques to mine big data

for security vulnerabilities.

In this chapter, we further the technique discussed in section 4.3 above in the

generation of the data set containing string extraction from patterns in web application

type context and known attack patterns including SQL tokens.

Also, as a test case, we build a web application that expects an English dictionary

word as vector variables to demonstrate massive quantities of learning data. We derived

an equal distributed data set of 725206 data items that is split equally between

attack/respondent (362603 positives) and non-attack/non-respondent (362603 negatives)

from the labelled preprocessed features that are hashed as the input to the classifier. The

trained classifier to be deployed as a web service that is consumed in a web form for input

validation, and at a custom .NET application implementing a web proxy API to intercept

and accurately predict SQLIA in web requests thereby preventing malicious web requests

from reaching the protected back-end database. This full proof of concept implementation

of an ML predictive analytics and deployment of resultant web service that accurately

predicts and prevents SQLIA is the subject of the empirical statistical measures

evaluations presented in AUC, ROC curve and cross-validation including comparison

with existing work in this chapter.

There is a need to build a prediction model trained on data set of the web application

type context expected data to predict SQLIA. The attack signatures presence at injection

points will contain patterns of SQL tokens as SQLIA positive while valid web requests

would take the form of generating all possible string members by string replication and

107

transposition as discussed in section 4.3.1 and below. We trained a supervised learning

model in applying predictive analytics to a test web application with large quantities of

learning data derived from related member strings. The learning data are labelled features

of both patterns of dictionary word list (SQLIA negative) and SQL tokens (SQLIA

positive).

On account of the drawback of most existing solutions, we presented in this thesis

an applied predictive analytic approach that does not rely on any source code or query

structure to detect and prevent SQLIA in web requests. The work presented here analysed

the data input patterns of the web application domain to be monitored and protected as to

generate labelled features. The generated labelled data set are preprocessed and vectorised

by applying a hashing technique to obtain numeric vector matrix input required to train

an SVM classifier.

The published web service is consumed in a proxy API on the server side that

intercepts web requests to predict SQLIA thereby preventing malicious web requests

from reaching the back-end database. Also, the trained prediction web service is exposed

to the client web form validation which will strengthen any existing validation in place in

the internet application as shown in Figure 5-3.

Web requests

Yes SQLIA

Malicious
intruder.

Safe

Return unrevealing
error.

Good
 guy

No

Trained Two-Class SVM
exposed as a web service
in ongoing binary
classification of SQLIA.

Predictive analytics integrated
into web form to validate
input for on-going SQLIA
detection and prevention.

Cloud SDN:
Proxy API intercepts
request, decrypt &
predictive analytics.

1

2

3
4

Predictive
analytics

predicting
SQLIA.

Protected
Database.

Return results to
valid requests.

Public/Private Cloud

Figure 5-3 A prototype of the proposed model: The figure displays the prototype of the

proposed model illustrating the design overview, including consuming a trained ML model in client forms

and at the web proxy API in an ongoing SQLIA detection and prevention.

108

Figure 5-3 is a schematic diagram of the model proposed in this thesis chapter

detailing how a trained model exposed as a web service will be consumed in client forms

for input validation and at the proxy which intercepts the web requests for SQLIA

analytics.

5.2 Building a data set member string

Figure 5-4 presents this section organisation chart with the associated subsections.

Figure 5-4 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

 When new web applications that accept input from web forms are deployed, the

initial state of the database is empty until the input data starts being received. Until then,

we are left with a blank or empty data set without precedence to train a supervised learning

prediction model.

On account of the lack of data set, and the security loophole of directly using a

sample input data without patterns (with the potential ramifications of barring

confidential data in learning data), we explore string replication and transposition in

generating all possible derivations from expected input data including SQLIA signatures

and SQL token features to derive a data set.

5.2.1 Deriving the data set

In Chapter 4, we obtained the vectors to train a supervised learning model by numerical

attributes encoding ontology of the string attribute values (both legitimate web requests

and SQLIA types, including SQL tokens) as to extract a scalable numerical data set. In

this chapter, we directly explore hashing or vectorisation instead of scalar observations to

derive the vectors required to train an ML model as detailed in section 5.3.3 below.

5.2.2 SQLIA Data set and Labelling

The data set is comprised of an English dictionary word list (labelled SQLIA negative)

and SQL tokens (labelled SQLIA positive if present at injection points). The labelling

Building data set
member string

Deriving data set SQLIA data set labellng

109

procedure is described in Figure 5-5. When this approach is applied to any web

application domain context, a data set can be generated based on the pattern of data input

expected. Also, the existing studies on SQLIA types provide additional patterns to

labelled SQLIA positive.

The aim is to infer and derive a pattern-driven data set from the intended web

application being protected. This pattern-driven data set is then used to train the ML

classification algorithm to predict SQLIA in intercepting web requests. The Fiddler proxy

API [197] provides the functionality of intercepting and decrypting web requests.

 Researchers attempting AI techniques have explored various techniques to extract

sample data set with most researchers resorting to network tools to produce test cases of

web requests. These test cases learning data extraction techniques often result in mere

duplication of the same strings, but lack patterns for improving the performance of the

ML models. Most existing SVM implementation lacks completeness in not moving

beyond the CM or ROC evaluation to apply the technique in real life scenarios [71], [72],

[134]–[141], [74], [100], [128]–[133].

Figure 5-5 Data set features labelling procedure: A figure illustrating data set features

labelling procedure to obtain the labelled data set used in ML.

110

5.3 Training Analytics experiment and deployment

Figure 5-6 presents this section organisation chart with the associated subsections.

Figure 5-6 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

Predictive analytics provide a scalable and functional approach to big data mining. We

apply predictive analytics in mitigating SQLIA vulnerabilities. The approach is built on

MAML studio which is a cloud-based machine learning platform. The knowledge required

to implement our approach is a programming knowledge of C#, R script and RegEx. The

experimental steps are listed and shown in Figure 5-7 and are further described below.

Figure 5-7 The experimental steps applying text analytics to SQLIA: A figure of a

screen capture of the experimental steps applying text analytics to SQLIA.

Training Analytics
experiment and

deployment

Learning data
input

Text pre-
processing

Feature hashing Filter-based
feature selection

Split of vector
matrices

Training the
prediction

model

111

5.3.1 Learning data input

This research uses a pattern-driven data set which contains 479,000 English dictionary

words (that are transformed and transposed into related member strings) in addition to 862

unique SQL tokens extracted from Microsoft SQL reserved keywords website [179]. The

data set items are labelled based on the exhibition of SQLIA type characteristics which, to

give examples, are: the presence of SQL tokens in injection point; disjointed text; single

quotes; semicolons; comments; and hex values. The data set items labelling is represented

in binary values of 0 (SQL negative) or 1 (SQL positive) shown in Figure 5-5 above.

5.3.2 Text pre-processing

This stage involves R Scripting incorporating all the defined regular expression pattern

constraints to generate the learning data to train a model for ongoing detection and

prevention of SQLIA. In a real-world application context, the data set items are expanded

as deemed required with patterns of both valid and malicious requests.

There were 362603 row items after text pre-processing of parsing data set for: patterns,

duplicates, normalised to lower cases and the removal of the missing words. The data set

is sampled as to provide an even distribution of row items (records). The imbalanced data

set (majority negatives over positives) were corrected with SMOTE [187] to have 725206

data items that are split equally between attack/respondent (positives) and non-attack/non-

respondent (negatives). These actions improve both the trained model recall and precision.

5.3.3 Feature hashing

ML takes in numerical input as vectors. We reviewed the work by Choi et al. [72] using

N-grams to hash query strings which could be circumvented by inserting more empty

spaces into a group of strings. In this scheme, we set the hashing bits to 15 and N-grams

to 1 (unigram) to analyse every single word item present at the injection point as the trained

model is aimed to be deployed in the web form for input validation and at the proxy which

intercepts web requests for predicting SQLIA.

The feature hashing provides the technique to translate the data set text items into binary

vector matrices of 215 (32,768) columns suitable for training a model in ML. The hashing

procedure creates a dimensional input vector matrix that does a lookup of feature weights

faster by augmenting the string comparison with the hash value comparison. Applying

features hashing to text features improves performance and scalability in big data

112

predictive analytics lacking in existing SQLIA signature-based detections that use a string

lookup approach by creating several loops in programming logic to detect SQLIA

signatures.

5.3.4 Filter-based feature selection for top relevant vectors

Creating a dimension to accommodate the size of data by selecting next hashing bits that

fit the data set can sometimes generate too much dimension and sparse data which are

reduced by a filter-based feature selection. In this experiment, we used filter-based

selection to have reduced computational complexity without affecting the prediction

accuracy in classification. The Chi-squared [198] scored function is used to rank the top

5000 hashing features in descending order to return the most appropriate labels to improve

SQLIA prediction accuracy.

5.3.5 Split of vector matrices between training and testing data

We divide the vector matrices from the hashed features into 80:20 training to testing data

ratio for the evaluations after experimenting with various split ratios which were observed

to provide excellent performance metrics. Also provided in this chapter is the cross-

validation, which addressed the distribution biases of the training to testing data split ratio.

5.3.6 Training the prediction model

The TC SVM classifier is used to predict the labelled binary outcomes, whether SQLIA is

negative or positive in a web request. The SVM algorithm is provided with data set items

input of the labelled class of what is being predicted to train the model to an excellent

performance to accurately predict SQLIA in web form validation and at proxy intercepted

web requests.

5.4 Evaluation and performance metrics of Binary TC SVM

Figure 5-8 section organisation chart presents the layout of this section with the associated

subsections.

Figure 5-8 The section organisation chart: The section organisation chart provides this section

layout with the associated subsections.

Evaluation and
performance metrics

Accuracy Precision Recall F1 Score

113

The ROC curve and the related AUC provide a way to statistically measure how well

a binary learning model is performing [46]. According to Tape “ROC curve was

developed during World War 11 to predict images if a blip on the screen was a threat

target, a friendly ship or a harmless noise. Signal detection theory measures the ability

of radar receiver operators to make these important distinctions. Their ability to do so

was called the Receiver Operating Characteristics. It was not until the 1970's that signal

detection theory was recognised as useful for interpreting medical test results” [50], [51].

The AUC and ROC curve provides a plausible quantitative evaluation of a binary

prediction model. In this scenario, whether a web request is malicious SQLIA positive or

not SQLIA negative.

An AUC summary value provides a concrete measure for assessing a classifier

performance as it presents a unified measure of the separability between the distributions

of score probabilities for SQLIA positive and negative. We achieved an AUC of the value

of 0.986 in the trained, supervised learning model presented in the chapter experimental

results. The ROC curve presents a measure of FPR on the x-axis against TPR on the y-

axis with values across different score bins or thresholds.

We use the ROC curve and AUC to measure the performance metrics of our trained,

supervised learning model and observed an excellent model with an AUC value of 0.986

with cross-validation of low variance indicating of a model capable of generalisation in a

real-world application. This trained model was then deployed as a web service that is

consumed in real-time detection and prevention in web applications. The evaluation

performance metrics also include the following statistical measures: accuracy, precision,

recall and F1 Score.

5.4.1 Accuracy

The accuracy is the statistical measure in a binary classification of the ratio of correctly

predicted observations [199] which can be relied on when labelled data items are

symmetrical (equal ratio of positively labelled class data items to negative) as in the case

presented in this thesis in section 5.3.2. We have 20% (145042) of the entire data items

as testing data items unseen by the classifier which is the subject of this empirical

evaluation. The remaining data set used to train the classifier has equal labelled classes

distribution of both SQLIA positive or negative while the remaining 80% (580164) was

used as the training data.

114

At the best performing threshold value of 0.5, we achieved an accuracy value of 0.986

which is calculated by Equation 5-1 below with values from Table 5-1. The result of the

experiment as detailed below demonstrates a high accuracy of TP and TN with few errors

of an FN.

The FP observations are the referral web requests for further verification by the system

administrator before fulfilling the request, which in SQLIA detection and prevention is a

good thing. These errors of FP and FN can be eliminated if we restrict the application to

only detect SQLIA within a defined scope of the RegEx pattern constraint presented in

the data pre-processing.

Table 5-1 Positive and negative events at 0.5 thresholds: A table of observations of positive

and negative events at the 0.5 thresholds.

Predictions Values

True Positives (TP) 72359

False Negatives (FN) 162

False Positives (FP) 1923

True Negatives (TN) 70598

Accuracy=
TP (72359)+ TN (70579)

TP (72359)+FP (1923)+FN (162)+ TN (70598)
=0.986

 Equation 5-1

5.4.2 Precision

The precision is the statistical measure of the ratio of the correctly predicted positive

observations that is calculated using the relevant values in Table 5-1 above as presented

in Equation 5-2 with a precision value of 0.974. We achieved 72539 events correctly

predicted true positives on the backdrop of 1923 false positives. In our experiment with

equal distribution labelled data items, the precision value of 0.974 achieved gives the

actual precision performance of the trained, supervised learning model to be deployed as

a web service.

Precision=
TP (72359)

TP (72359)+FP (1923)
=0.974

Equation 5-2

115

5.4.3 Recall

The recall (also referred as TPR) is a statistical measure of the ratio of true positive against

all positive events, and so measures the proportion of correctly predicted positive events.

The recall is calculated with true positive over positive events which include TP, and FN

(also interpreted as positive events).

In this experiment, we had total positive events of 72521 comprising of TP and FN of

which 72359 were correctly predicted as TP. We achieved a recall value of 0.997 which

is calculated by Equation 5-3 below.

Recall=
TP (72359)

TP (72359)+FN (162)
=0.997

Equation 5-3

5.4.4 F1 Score

The F1 Score provides a statistical measure of the accuracy to binary classification. It is

a measure of both recall and precision which is calculated as shown in Equation 5-4 below

with the F1 Score value of 0.985. We have an equal distribution of class in the experiment

presented in this thesis which is a statistical measure of the F1 Score that helps us

determine how well the trained, supervised learning model is performing.

F1 Score=2 x
Recall (0.997) x Precision(0.974)

 Recall (0.997)+Precision(0.974)
=0.985 Equation 5-4

The SVM binary classifier evaluation scores are the observations of the 145042 score

probabilities of the testing set. These observations are used to calculate the performance

metrics between 0.1 and 1.0 score bins as shown in Table 5-2. It uses the threshold value

to align the binary classifier to predict values less than 0.5 as less likely to be SQLIA

negative (0) and a threshold value greater than 0.5 as most likely to be predicted as SQLIA

positive (1).

116

Table 5-2 Evaluations scores of TP, TN, FP and FN: A table containing binary SVM

classifier score probabilities of evaluation scores of TP, TN, FP and FN at the various thresholds,

including FPR and TPR used in plotting the ROC curve.

Threshold TP FN FP TN PO NE TE FPR TPR

1 0 72521 0 72521 72521 72521 145042 0 0

0.9 56446 16075 1505 71016 72521 72521 145042 0.02075261 0.778340067

0.8 63346 9175 1692 70829 72521 72521 145042 0.023331173 0.873484922

0.7 67886 4635 1806 70715 72521 72521 145042 0.024903132 0.936087478

0.6 71088 1433 1887 70634 72521 72521 145042 0.026020049 0.980240206

0.5 72359 162 1923 70598 72521 72521 145042 0.026516457 0.997766164

0.4 72324 197 1921 70600 72521 72521 145042 0.026488879 0.997283545

0.3 72340 181 2179 70342 72521 72521 145042 0.030046469 0.997504171

0.2 72355 166 6175 66346 72521 72521 145042 0.08514775 0.997711008

0.1 72376 145 13108 59413 72521 72521 145042 0.180747646 0.998000579

0 72521 0 72521 0 72521 72521 145042 1 1

The Table 5-3 below details the formula of how the recall, accuracy, precision and F1

Score are calculated at each score bin between 0.1 and 1.0. This performance metric is to

evaluate how well the classifier is performing with the provided testing data (20%) that is

unseen by the SVM binary classifier against the training data (80%) used to train the

classifier.

Table 5-3 Formula for calculating the performance metrics: The formula for calculating

performance metrics across the different score bins.

Terminology Formula Values Performance metrics

True Positive (TP) - 72359 Accuracy(A) = (TP+TN)/TE

Precision (P)=TP/(PO)

Recall (R)= TP/PE

F1Score= 2 x (R x P)/(R+P)

0.986

False Negative (FN) - 162

False Positive (FP) - 1923

True Negative (TN) - 70598 0.974

Positive events (PE) TP+FN 72521

Negative events (NE) FP+TN 72521

0.997
+ observations (PO) TP+FP 74282

- observations (NO) FN+TN 70760
0.985

Total events (TE) PO+ NO 145042

The Table 5-4 displays a snippet at 0.5 threshold with excellent performance metrics

(accuracy: 0.986, precision: 0.974, recall: 0.997 and F1 Score: 0.985). Table 5-3 above

provides the formula for calculating the performance metrics that are repeated across the

score bins or thresholds between 0.0 and 1.0. The ROC curve is plotted with a ratio of FPR

on the x-axis (specificity) against recall or TPR on the y-axis (sensitivity).

 The ROC curve provides a graph performance measure of a trained model. A higher

value on the x-axis, implies bad performance, while on the y-axis a higher value indicates

117

an excellent performance. Figure 5-9 illustrates a graph of ROC curve that presents an

AUC statistical measure, in which a shift of the curve towards the upper value of y-axis

greater than 0.9 indicates an excellent model [50], [51]. We observed in the experiment

presented in this thesis an AUC value of 0.986 achieved at a threshold value of 0.5 which

indicates excellent performance in SQLIA prediction. We further the evaluation in the next

session with cross-validation to gauge the trained model biases in the real-world unknown

data generalisation.

Table 5-4 The metrics values across the different thresholds: A table containing binary

classifier score probabilities of collated evaluation scores of performance metrics calculation across the

various thresholds that are used to plot the ROC curve in Figure 5-9.

Thresholds/

Score bins

Recall Accuracy Precision FI Score

1 0 0.5 0 0

0.9 0.778340067 0.878793729 0.9740298 0.865258446

0.8 0.873484922 0.925076874 0.9739844 0.92100117

0.7 0.936087478 0.955592173 0.974086 0.954708782

0.6 0.980240206 0.977110078 0.9741418 0.977181503

0.5 0.997766164 0.985624853 0.9741122 0.985797293

0.4 0.997283545 0.985397333 0.9741262 0.985568865

0.3 0.997504171 0.983728851 0.9707591 0.983949946

0.2 0.997711008 0.956281629 0.9213676 0.958020801

0.1 0.998000579 0.908626467 0.8466614 0.916122908

0 1 0.5 0.5 0.666666667

 TPR=TP/PE A=(TP+TN)/TE P=TP/PO F1=2x(RxP)/(R+P)

Figure 5-9 ROC curve of a trained model: A figure of a ROC curve of a trained model

indicating an excellent model with an AUC value of 0.986.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rate

ROC

118

5.4.5 Cross-validation

In discussing the cross-validation presented in this chapter, we directly picked the best-

trained model for the cross-validation. For discussion on introduction to cross-validation

refers to section 4.5.4. In the preceding sections, we derived a pattern-driven data set

containing 725206 vectors to train a binary classifier with a labelled class of value 1 for

SQLIA positive while 0 for SQLIA negative as presented in 5.3.1 above. The hashed data

set vector matrices of 725206 observations is used in the cross-validation as illustrated in

Figure 5-10.

Figure 5-10 A cross-validation experiment: A screen capture of the cross-validation to the

MAML studio predictive experiment presented in Figure 5-7 above.

We presented a TC SVM trained model using training to testing split data ratio of

80% to 20% resulted overall in an excellent trained model as graded in Table 4-11 above

(showing AUC grading). We achieved an AUC performance of value of 0.986 with low

prediction errors which are the subject of the cross-validation presented below to gauge

the performance metrics of the unknown data (akin to testing data in a real-world

scenario) to the classifier with reduced biases.

119

Table 5-5 presents the cross-validation results of the data set matrices partitioned

into ten folds with a low standard deviation of accuracy highlighted to indicate a trained

model capable of generalisation of unknown independent data. The table also contains a

high-performance metrics for Precision, Recall, F-Score and AUC, including a low

average log loss values to indicate of a trained model with a low penalty for wrong score

probabilities. In the cross-validation results, we observed a low standard deviation in

accuracy across the ten folds to have observed an excellent trained model. This result

indicates a model with a reduced bias in data set features variation and distribution that

can generalise independent data set in a real-world scenario.

Equation 5-5 presents the equation for calculating the mean μ, where μ is the mean,

xi are the accuracy values across the ten folds (0.9849, 0.9855, 0.9842, 0.9851, 0.9849,

0.9846, 0.9851, 0.9850, 0.9855, 0.9847), n=10 and therefore μ =9.850/10 0.985.

Equation 5-6 presents the equation for calculating the variance or standard deviation σ,

where σ is the variance calculated to be 0.0004. We achieved a low variance of accuracy

value of 0.0004 which indicates a less biased trained model capable of generalisation of

unknown independent data in the real-world application.

𝜇 =
Σ𝑥𝑖

𝑛

Equation 5-5

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛

Equation 5-6

Table 5-5 A table of evaluation results by folds: A table containing evaluation results of the

data set matrices partitioned into 10 folds with a low standard deviation of accuracy highlighted to indicate

of a trained model capable of generalisation of unknown independent data.

Fold Number Number of examples in fold Model Accuracy Precision Recall F-Score AUC Average Log Loss

0 72520 SVM (Pegasos-Linear) 0.9849 0.9736 0.9969 0.9851 0.985 0.0729

1 72521 SVM (Pegasos-Linear) 0.9855 0.9747 0.9969 0.9857 0.9856 0.0699

2 72521 SVM (Pegasos-Linear) 0.9842 0.973 0.9962 0.9845 0.9847 0.0768

3 72521 SVM (Pegasos-Linear) 0.9851 0.9743 0.9966 0.9853 0.9854 0.0722

4 72520 SVM (Pegasos-Linear) 0.9849 0.9738 0.9966 0.9851 0.9851 0.073

5 72520 SVM (Pegasos-Linear) 0.9846 0.9732 0.9965 0.9847 0.9847 0.0743

6 72521 SVM (Pegasos-Linear) 0.9851 0.9742 0.9967 0.9853 0.9853 0.0714

7 72521 SVM (Pegasos-Linear) 0.985 0.9745 0.9961 0.9852 0.9853 0.0721

8 72520 SVM (Pegasos-Linear) 0.9855 0.9751 0.9965 0.9856 0.9856 0.0694

9 72521 SVM (Pegasos-Linear) 0.9847 0.9735 0.9962 0.9847 0.985 0.0726

Mean 725206 SVM (Pegasos-Linear) 0.985 0.974 0.9965 0.9851 0.9852 0.0724

Standard Deviation 725206 SVM (Pegasos-Linear) 0.0004 0.0007 0.0003 0.0004 0.0003 0.0021

120

5.5 Publishing and consuming the prediction analytics web service

Figure 5-11 section organisation chart presents the layout of this section with the

associated subsections.

Figure 5-11 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

MAML is a cloud-based platform for testing and deploying ML trained models as a web

service that can be consumed in the broad range of front-end web applications. The system

requirements regarding RAM and the hard disk are minimal as the one-off workload of

training the classifier including retraining is handled in the cloud-based MAML platform.

5.5.1 Predictive experiment

Based on the statistical measure of the performance metrics with AUC value of 0.986, the

trained SQLIA prediction model presented is deemed a model excellently trained from the

evaluations to have generated a predictive experiment that is exposed as a web service.

The MAML environment equally provides a platform that enables easy deployment of a

trained ML model as a web service in ongoing SQLIA prediction [200].

The predictive experiment is a generated copy of the trained classifier detailed in

Section 5.3 above. It has a web services input and output that allows an optional module

to specify input and output columns attributes. Every intercepted web request at the proxy

API are stripped of input data and analysed with the deployed web service used to predict

SQLIA. The input data in web requests are the subject of analyses at the predicate’s

expression detailed in Figure 4-4 above.

To deploy a web service of the trained model, a predictive experiment that is shown

in Figure 5-12 below needs to be generated by the utility available within the MAML

Publishing and consuming the prediction analytics
web service

Predictive experiment
Web Service: web interface test of the prediction

model

121

studio. The solution is scalable, and it is meant to detect and prevent SQLIA in web

requests as illustrated in Figure 5-3 above details the architecture of the proposed model.

Figure 5-12 Predictive experiment steps: A figure illustrating predictive experimental steps in

creating a web service from the trained, supervised learning model.

5.5.2 Web Service: web interface test of the prediction model

The trained model is exposed as a web service that is called in a custom-built .NET

application named NETSQLIA used for ongoing SQLIA detection and prevention. Critical

to the deployment in every new web application type, the administrator or system expert

needs to feed the data engineering or text pre-processing module with a new rule that

matches the patterns present in the new data set to trigger the retraining of the classifier to

adapt to the new environment.

This thesis proposal aims to intercept web requests and predict whether it is malicious

with the presence of SQLIA or a valid web request. A web application front-end would

122

have a pre-defined expected input pattern, e.g. bob or bbo string as a username would be

valid input data within the SQLIA hotspot of the predicate’ expression after the WHERE

clause. Figure 5-13 below is an illustration of a valid web input, which is correctly

predicted to be SQLIA true negative with scored label 0 and score probabilities of

0.002725 which indicates the feature input data is SQLIA negative.

Figure 5-13 A web test of valid input data: A figure of a web test of a valid input data using a

string example of bob.

In the approach presented in this thesis, we intercept and analyse web requests’ input

data for SQL keywords and token presence at the hotspot predicate’s expression to detect

and prevent SQLIA. Figure 5-14 is a true positive test of a single quote (‘) when present

at the predicate’s expression location, it demonstrates SQLIA was correctly predicted. We

also tested SQL keyword (select) presence at this predicate’s expression of SQL language

element as shown in Figure 5-15 below confirming a correct prediction of a true positive.

Figure 5-14 A test using single quote SQL symbol: A figure of a tautological SQLIA type

testing using a single quote SQL symbol that mostly precedes SQLIA.

123

Figure 5-15 A malicious input data: A figure of malicious input data, e.g. SQL keywords like

SELECT when present at the hotspot in an intercepted web request can infer SQLIA.

5.6 Discussion

Through literature review, we identified a gap in the existing literature as to present in

this chapter a proposal of multi-layers approach to SQLIA mitigation that applies ML

using a pattern-driven data set in predicting SQLIA in an intercepted web request with a

proxy API deployed at cloud SDN. The web service generated from the ML trained model

is consumed in the Proxy API. Also, the web client form interface also receives the web

service for input validation. The proposal presented in this thesis chapter is a multi-

layered approach to intercepting and analysing web request to predict SQLIA in providing

SQLIA mitigation. This chapter discussion is the subject of an IEEE paper titled Applied

Machine Learning Predictive Analytics to SQL Injection Attack Detection and Prevention

[63]. This paper is used in the comparison table between this proposal presented and

existing approaches. The below paragraphs has selected papers on ML related to this

discussion, but a much more scope has been examined in Chapter 3.

There are existing proposals to detect and prevent SQLIA; a few mitigate SQLIA by

applying SVM machine learning. The few that do employ SVM [71], [72], [74], [128]–

[132], [201] are lacking in data engineering (text pre-processing) as their approach is

geared towards source code scanning for vulnerabilities in web application source code

which is restricted in cloud-hosted applications. There is an element of query string or

SQL queries comparison of some sort in these existing approaches. Also, to date, none

has discussed using ML to predicting SQLIA in a context of big data, focusing on patterns

and text pre-processing on MAML studio. ML cloud-based software and AI platform as

services provide large-scale supercomputer employing AI techniques to deliver ready to

124

use solutions lacking in a single server deployment in the intranet or extranet as seen in

existing work.

 Applying ML requires a data set vector matrix to train a classifier implementing an

SVM algorithm [202], [203] to predict SQLIA accurately. There are issues of

standardised data set, and the few data set [65], [66] that exist are obsolete, researchers

have presented various approaches for extracting data sets with most proposals suffering

from limited data engineering. Bockermann et al. [75] proposed tree kernels for analysing

SQL statement combined with feature vectorisation of data input to an SVM classifier,

but drawbacks in the tree-kernels computational overhead. Choi et al. [72] train an SVM

classifier that explores feature vectorisation using N-Grams for query comparison that

drawback in accuracy as small data set with few features was used. Kar et al. [137]

proposes using a SQL query graph of tokens and centrality of nodes to train an SVM

classifier but suffers from complexities. Some of these approaches also fall short in the

implementations beyond the CM and ROC curve evaluations and validations.

In focusing on the contributions of this chapter to SQLIA mitigation, we list the

following that was recognised in the course of this thesis in the context of emerging

computing and big data.

• A pattern-driven data set inferred from a web application type being protected will

break the status quo lexical or syntactic query comparison for SQLIA mitigation

as seen in existing approaches as data set can now be inferred on the fly.

• Cloud is increasingly used to host web applications and thus there is an

astronomical increase in web requests to cloud SDN as to result in big data.

• The recent years have seen an astronomical growth of web requests that drives

internet traffic to present the challenge of big data; this is beyond traditional

lookup using programming loop constructs to search for strings or SQLI

signatures.

• There is restriction to web application source code for vulnerabilities scanning

and legacy application sanitisation as web servers are now hosted in the internet

cloud that are accessed through cloud SDN endpoints, which also limits existing

approaches [71], [72], [74], [128]–[133] that applies SVM learning algorithm

[202], [203] in query comparison of some sort.

125

• There is a need for SQLIA mitigation towards real-world application beyond

classical approaches that stop at ROC curve and CM, especially with the recent

advancement of cloud-hosted ML platforms.

In comparing the proposal presented in this chapter with existing approaches; this

chapter focused on web application type to provide a pattern-driven data set that is hashed

to provide vector matrices. The vector matrices are used to train a supervised learning

SVM classification algorithm as against existing approaches [71]–[75], [130], [133],

[193] employing query comparison of some sort using a data set containing repeating

strings of queries. The trained, supervised learning SVM algorithm model was evaluated

through statistical measures, ROC curve and cross-validation. The result of the validation

and cross-validation presents a model with low variance capable of classifying unknown

data in the real-world. Table 5-6 highlights query comparisons, pattern-driven data set,

code access and emerging computing cloud SDN as the focus of the SQLIA mitigation

which is the subject of this chapter related academic paper [63] that set apart this chapter

proposal from existing approaches that apply ML over the years.

Table 5-6 Related work applying ML comparison: A table comparing the existing ML

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable, pattern-

driven data set and query comparison with related publication to this chapter highlighted.

Authors Algorithms Need

access

to source

code

Intranet /

intranet

domain

boundary

Emerging

computing

applicable:

cloud SDN

applicable

Pattern-

driven

data

Query

comparison

Bockermann et

al. [75]

SVM Yes Yes No No Yes

Komiya [71] SVM Yes Yes No No Yes

Choi et al. [72] SVM Yes Yes No No Yes

Wang and Li

[73]

SVM Yes Yes No Yes

Pinzón et al.

[74], [141],

[193]

SVM and

NN

Yes Yes No No Yes

Kim and Lee

[138]

SVM Yes Yes No No Yes

Uwagbole et al.

[63]

SVM No Yes Yes Yes No

5.7 Conclusion

The contributions discussed in this chapter provide a representative pattern-driven data

set that undergo feature hashing to obtain vector matrices to train a supervised learning

126

model implementing SVM algorithm that accurately predicts SQLIA thereby preventing

malicious web requests from reaching the target back-end database. It offers a context of

SQLIA detection and prevention on big data internet.

Also, this chapter presents a proof of concept of a working prototype using ML

algorithms of TC SVM implemented in MAML [204] to predict SQLIA. The

methodology presented in the chapter then forms the subject of the empirical statistical

measures, ROC curve and cross-validation with a conclusion of a trained model with low

biases (capable of classifying unknown data in the real-world).

The scheme presented in this thesis chapter can be used to generate a data set attribute

values of any size. We trained a classifier with a data set of 725206 attribute values. The

approach presented is driven by the cloud-based MAML studio platform which is capable

of even a much larger analytics of data size input of 10 GB with the size of the vector of

rows and columns depending on the .NET maximum integer value of 2,147,483,647

limitations.

We suggest in the chapter related publication [63] that patterns exist in any data input

to the web application to enable the generation of massive learning data. Further, by

applying text pre-processing to such learning data, we can improve the prediction

accuracy of the resultant trained, supervised learning model. Based on this web

application type, we derived a pattern-driven data set using R string API successfully.

The pattern-driven data set is used to train a supervised learning model employing an

SVM classification algorithm to predict SQLIA. The evaluated, trained SVM model is

exposed as a web service which is then consumed in a web form for input validation, and

at the proxy API at the cloud SDN for intercepting web request for analysis. The

intercepted request is analysed to predict SQLIA as to accept the benign and reject

malicious web request in ongoing SQLIA mitigation.

On account of the discussion in the preceding paragraphs, this chapter answers the

research question if a web application type to be protected can produce the artefact for

the extraction of a pattern-driven data set? This research question is answered in the

following contributions of this chapter.

• We further numeric encoding of pattern-driven data set features presented in Chapter

4 with feature hashing of the pattern-driven data set to obtain vector matrices used to

train the classifier with statistical measures evaluations and cross-validation to

127

achieve a result of a trained model capable of classifying unknown data in the real-

world.

• We implemented in a successful proof of concept as demonstrated in the chapter of a

web application that expects dictionary words as valid input (SQLIA negative) while

elements of SQL tokens and SQLIA type substitution at the SQLI hotspots are

predicted as SQLIA positive.

We demonstrated in this thesis chapter an applied predictive analytics to SQLIA

detection and prevention in a big data context with an excellent result that is empirically

evaluated by presenting statistical measure performance metrics and cross-validation. In

benchmarking this thesis against existing work, the methodology proposed here is

functional in a big data context which is lacking in existing work before now on SQLIA

to our knowledge.

128

6 Pattern-Driven Corpus to
Mitigate SQLIA

Figure 6-1 presents the organisation chart layout of this chapter with the sections.

Figure 6-1 The chapter organisation chart: The chapter organisation chart presents the layout

of the chapter’s sections.

6.1 Introduction

Figure 6-2 presents this section organisation chart with the associated subsections.

Figure 6-2 The section organisation chart: A figure of the section organisation chart that

provides the layout of this section with the associated subsections.

This chapter provides a further work on a pattern-driven data extraction technique

using SFA in answering the research question if the pattern-driven data set can be

extracted from a web application type to be protected? Emerging computing relies heavily

on secure back-end storage for the massive size of big data originating from the Internet

of Things (IoT) smart devices to the cloud-hosted web applications. SQLIA remains an

intruder’s exploit of choice to steal confidential data from the back-end database with

damaging data security ramifications. The existing approaches of string lookup

techniques were aimed at on-premise web application domain boundary and so are not

applicable to roaming cloud-hosted services’ edge SDN to application endpoints with

massive web request hits.

Pattern-Driven
Corpus

6.1
Introduction

6.2
SQL query

and
attributes

6.3
Obtaining
learning
data set

6.4
Predictive
analytics

6.5
Evaluations

6.6
Discussion

6.7
Conclusion

Introduction

Problem
Statement

Motivation
Approach
Overview

129

This chapter presents a further work in a web application type context as the source

of the pattern-driven data set to train a supervised learning model. The model is trained

with ML algorithms of TC LR and TC SVM that are implemented on MAML studio to

mitigate SQLIA. This scheme presented in this thesis then forms the subject of the

empirical evaluations.

This chapter starts with the introduction in sections 6.1 and ends with a conclusion

in 6.7. Sections 6.3 discusses obtaining learning data and 6.4 details the predictive

analytics experiment steps while 6.5 presents evaluations and performance metrics

results. Section 6.6 discusses the issues with the existing work to highlight the

contributions of this chapter.

6.1.1 Problem statement

In our research question, we ask if a pattern-driven data set can be extracted from a web

application type being protected by ML-based SQLIA mitigation? This chapter provides

a further work on a pattern-driven data set extraction technique using SFA in answering

the research question if the pattern-driven data set can be extracted from a web application

type to be protected.

6.1.2 Motivation

There is a continuous upward trend in big internet data with more individuals,

governments and businesses adopting and hosting files and applications in the emerging

computing cloud hosting environments and associated services.

Availability of historical learning data is a known issue in SQLIA research. The web

application type context is so diverse to have a unified data set to train various AI models

for SQLIA mitigation that cover every web application domain context.

We leverage the patterns that exist in every input data in both legacy and new web

applications to generate related member strings that then forms the historical learning data

or data set used to train a supervised learning model in the work presented in this thesis.

6.1.3 Approach overview

There is a need to build a prediction model trained from data set of the desired web

application type context to predict SQLIA. We apply NFA implemented in RegEx to

define the constraint patterns, and employing SFA with a constraint solver named

130

Satisfiability Modulo Theories (SMT-Z3) [153], [154], [205] to generate related member

strings from the defined RegEx patterns.

 In our labelling of the data set, the presence of known attack signature at injection

points will contain patterns of SQL tokens which are deemed SQLIA positive.

Conversely, the valid web requests (SQLIA negative) would take the form of generating

all possible related member strings.

We trained a supervised learning model with this pattern-driven learning data in

demonstrating a proof of concept by applying predictive analytics to a test web

application expecting a dictionary word list as input data. The pattern-driven learning data

are obtained by automata states walk to derive as many member strings in a given pattern

of related strings.

An intruder would exploit SQLIA types to carry out the attack at the injection points

in any combination. These SQLIA types exploit techniques are: Tautology; Union;

Piggyback; Invalid/Logical queries; Time-based; Obfuscation encoding and Stored

procedure. These SQLIA types are the source of SQLIA positive labelled feature values

in the scheme presented in this thesis.

6.2 SQL hotspot and modelling data set attributes

Figure 6-3 presents this section organisation chart with the associated subsections.

Figure 6-3 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

6.2.1 SQL hotspot

SQL element comprises of tokens which are labelled SQLIA positive in the data set

discussed in this thesis. SQL tokens comprise of keywords that include identifiers,

operators, literals and punctuation symbols. The SQL syntax language element has the

following: SQL Clause (WHERE, SET, UPDATE, etc.); predicate (as in LoginName =

‘bob’); and, expression (as in ‘bob’ OR 2=2).

SQL hotspot and modelling
data set attributes

Generating the regular
expression constraints

SQL hotspot Modelling data set
attributes

131

SQLIA is predicted when a web request is analysed to contain a SQL token and

known SQLIA signature at the SQL query injection point. In a SQL query, the WHERE

clause predicate and the expression used to control query results are the SQL injection

spots. A malicious query string can be passed to a SQL expression in tautological SQLIA

type (e.g., ‘x’=’x’ OR 2=2) to return results from a table far beyond the developer’s

intention. This SQLIA injection point location as illustrated in Figure 4-4 above has been

explored in SQLIA detection and prevention research including SQLProb by Liu et al.

[10].

6.2.2 Modelling data set attributes

The versatility of data set actively relies on the scope of the attributes whether it

encompasses all elements or features that will be required to predict a labelled output

accurately. We inferred various attributes from patterns in an expected web request,

SQLIA types and SQL tokens in building a pattern-driven data set to predict whether a

web request is a dictionary word list or SQLIA in the test application presented in this

thesis. Also, to replicate the approach in any web application domain context would

require the same attributes scoping. Figure 6-4 below illustrates attributes scoping

deemed needed to accurately predict whether a string extracted from a web request is

SQLIA or a valid safe request.

ML requires numeric values translated into vector matrices to train supervised

learning algorithms or classifiers. We observed the related member string features and

assigned scalar numeric values in building robust attribute x values to predict an outcome

or output y as illustrated in Figure 6 2.

Figure 6-4 Attributes scoping: A figure of attributes scoping of x to accurately predict labelled

output y.

132

6.3 Obtaining the learning data (data set)

Figure 6-5 presents this section organisation chart with the associated subsections.

Figure 6-5 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

We explore automata states walk to generate a data set of patterns of expected input

data where none exists to train a supervised learning model. Also, a pattern-driven

approach prevents the security implications of making the learning data input to ML being

a repository that lays bare the expected input data.

To simplify the derivation techniques of generating the related member strings, we

use a string “bob” throughout this section. The process can be replicated as many feature

values as desired in the intended data set. It also must be pointed out that the context of

this thesis is big data scenario with a large volume of feature values of alphanumeric

strings in nature meaning that heuristic string signatures lookup will not be scalable. The

string “bob” is a minute representation for the simplification of the big picture in the

significant learning data generation.

Figure 6-6 below illustrates the fundamentals of FSA [56], [151] states walk that

forms the building block to our learning data extraction techniques. Automata is a self-

propelled abstract computing device in workflow orchestration that automatically follows

a predetermined sequence of operations. An automaton is typically represented by a set

of five tuples (Q, ∑, qo, F, ∂) as depicted in Figure 6-6 where the tuples are detailed below:

• Q is finite set of states {1,2,3}

• ∑ is finite symbol {b, o} termed alphabet

• qo is the initial state {1}

• F is a set of final state {3}

• ∂ is the transition function as collated in Table 6-1 below

Obtaining the
learning data

Regular
expression
constraints

RegEx pattern
from strings

RegEx pattern
from structure

Member strings
transposition

SQLIA labelling

133

Figure 6-6 FSA states walk to generate member strings: A figure illustrating FSA states

walk from the expected input string to generate member strings in creating massive learning data.

Table 6-1 Transitions function (∂) and states walk interpretation: A table illustrating

transitions function (∂) and states walks interpretation to derive related member strings.

Alphabet

∑= {b, o}

Transitions Accepted member strings

0,1 1,2 2,3

b o b bob

b o o boo

o o b oob

o o o ooo

o b o obo

b b b bbb

b b o bbo

o b b obb

We explore automata states walk collation to generate all possible accepted member

strings shown in Table 6-1. The manual collation of automata states walks is automated

by employing Rex [80] utility by Veanes et al. [153], [205]. Rex is an implementation of

SFA which uses Z3 [153] constraint solver [154] to generate as many related member

strings as possible from a defined RegEx constraint patterns. In Rex, the RegEx

implements an NFA with an epsilon move and a further conversion of NFA to

Deterministic Finite Automata (DFA) for optimisation in determining states as against

probing possible states paths as in NFA. Below describes the input file passed to the Rex

command to generate related member strings.

The RegEx pattern input file to Rex command line is written as Rex /r: InputFile.csv

/k: 8 where r and k are the source input file and the size (number of iterations) command

options to generate member strings respectively. The input file would contain patterns

around the original strings and size where these attributes exist, e.g. ^ [bob]{3}$ which is

interpreted as to derive related member strings of length 3. Alternatively, where there are

no precursor strings, RegEx patterns are inferred from the structure and scope of the

expected input data, e.g. (^[b](?:[a-z]{2})$) which denote to derive a related member

strings of length 3, starting with letter b followed with two more letters from a to z. The

data set procurement technique employing automata states walks to generate related

member strings is described in the subsequent sections below.

134

6.3.1 Generating the regular expression constraints

We apply RegEx [206], [207] to produce constraints of patterns that exist in expected

input data. These RegEx constraints of the patterns are for two purposes: use in related

member string generation detailed below; and also, as a part of the feature pre-processing

or data engineering.

Take an example of a web application presented in this thesis that expects a unigram

(single word or string) of an English dictionary word list; we use RegEx to define pattern

constraints and employing Rex utility tool to derive as many related member strings from

the RegEx pattern constraints. We use a unigram (analysing strings word by word) of

English dictionary word list as expected input data in a test web application to

demonstrate a pattern-driven data set can be utilised in any web application domain

context to train a supervised learning model to predict SQLIA accurately.

This thesis proposal provides the ability to generate a pattern-driven data set based

on web application types. This proposal of ability to generate a pattern-driven data set on

the fly, which removes the reliance on antiquated data set for the training of ML classifier.

These obsolete purpose-built data sets [65], [66] do not account for the various data sets

that are relevant to train ML model for the diverse web applications requiring SQLIA

mitigation.

To illustrate in simplicity the internal workings of the pattern-driven data set

generation, we take a simple RegEx pattern for a string to show how massive quantities

of learning data can be generated as shown in Table 6-2. For example, we provided an

input of RegEx pattern to a Rex utility tool as presented in Table 6-2. The Regex pattern

constraint defines a string that starts with b followed by a combination of letters from a

group of a to z but restricted to two letters which result in the derivation of member strings

of b…bn as shown in Table 6-3.

Figure 6-7 below illustrates the Rex SFA generated UML state machine, an

indication of the internal workings of how the possible member's strings are generated.

Rex command tool (rx.exe) provides an option to accept as many RegEx constraints as

possible to generate as many member strings to form extensive learning data. Figure 6-8

shows the Rex utility command line with the RegEx pattern (^[b](?:[a-z]{2})$) and the

following options: /e for character encoding and /k for the number of related member

string to generate.

135

Table 6-2 A RegEx for a simple string constraint: A table containing an example of RegEx

constraints that is passed to an SFA to derive related member strings.

Table 6-3 An example of member strings from the defined pattern: A table containing

possible string members from a defined RegEx pattern [b](?:[a-z]{2}) for ten instances using Rex utility.

Derived Member strings

"bhz"

"bwc"

"bdy"

"bsw"

"bsj"

"bwp"

"blm"

"bzc"

"bam"

"bby"

Figure 6-7 UML of generated constraint from Table 6-2: A figure of UML generated

constraint from Table 6-2 using Rex tool.

Figure 6-8 Running Rex command utility against a constraint: A figure demonstrating

running Rex command against a defined RegEx constraint to generate the possible related member strings

as shown in Table 6-3.

6.3.2 RegEx pattern from strings and size of dictionary word list

A string S is a finite combination of symbols {b, o} that are extracted from the alphabet

denoted by Σ. Then S = “bob” is expressed as alphabet Σ = {b, o} where b and o are the

RegEx Constraint

^[b](?:[a-z]{2})$

136

symbols. Therefore, S is accepted by an NFA or a DFA (Q, Σ, qo, F, ∂) when S = ∂* (qo,

S) ∈ F.

The Language L is a set of strings with a defined length denoted by |S|. In this

example, the string “bob” has length three represented as |S| = 3. Applying Kleene

Closure or Plus [208] denoted by Σ + then, Σ + = Σ * - ɛ = Σ 1 ∪ Σ 2 ∪ Σ 3∪…. n, where Σ*

- ɛ is the Kleene Star (Σ*) minus epsilon or empty strings (ɛ), Σ1…n are finite sets of

possible related member strings with length that can be generated. If alphabet Σ = {b,o},

|S| = 3, then L is accepted by NFA or DFA when { S | S ∈ Σ + and ∂* (qo, S) ∈ F },

Therefore the related member strings derived is expressed as Σ + = {bob, boo, oob, ooo,

obo, bbb, bbo, obb} as shown in Figure 6-6 above collated in Table 6-1 above.

6.3.3 RegEx pattern from a given string structure and size

We apply RegEx to produce constraints of patterns that exist in expected input data passed

to Rex utility to derive related member strings. The RegEx pattern (^[b](?:[a-z]{2})$)

accepts strings that start with a symbol b with any combinations of symbols [a - z] where

string length |S| = 2, then the total string length is |S| = 3. Therefore, Σ + = {bhz, bwc, bdy,

bsj, blm, bzc, bam, bby} are accepted member strings as shown in Figure 6-9 below

illustrating automata states walk.

Figure 6-9 A UML of states walk from RegEx pattern: A UML of states walks from a

given RegEx pattern to generate possible member related strings from a given string.

6.3.4 Member strings transposition

We further measure the string distance to compare the pattern of the original string with

related derived member strings by string transposition as to filter the anagram patterns of

the generated related member strings. We explore R stringdist (string matching package

in R) [182] in the member string transposition to improve the performance of the data set

in a binary classifier including an intruder attempt to circumvent the classifier by

transposition (shuffled strings). Figure 6-10 below is a snippet of original string “bob”

with the derived related member strings distance values. Figure 6-11 below illustrates

137

string distance patterns measures by comparing Hamming H and qgrams Q to obtain the

transposed (anagram) member strings.

Figure 6-10 String distance measures of member strings: A figure illustrating string

distance measures between original and derived member strings.

Figure 6-11 Filtered values of original string transposition: A figure illustrating filtered

feature values containing transposition of original string when Q = 0 and H != 0.

We explore FSA to derive as many features required in the data set, and explore R

language string distance analysis to create a dimension of related member strings. The

filtering of derived strings is to obtain a pattern-driven data set that contains only related

member strings that include shuffled, transposed and original strings. For example, the

string bob has similarity to bbo, obb, etc. The filtering is based on string distance

measurement as illustrated in Figure 6-11 to ensure strings that have the nuance of related

member strings are not wrongly labelled in the procedure illustrated in Figure 6-12. This

string distance measure approach to remove noise or unrelated member strings is achieved

through the use of R stringdist library [182]. We used the hamming distance method of R

stringdist to determine the string positions shift or transposition for strings of equal length.

The qgram method of R stringdist is used to determine if the derived member strings are

shuffled or anagram outcome of the original string. The preceding string distance

measures are to measure to establish a related member string in the derived pattern-driven

data set used here to train TC LR and TC SVM classifiers.

This thesis proposal provides the ability to generate a pattern-driven data set used to

train an ML classifier based on web application types. It is a paradigm shift from SQL

138

queries syntax structure comparisons seen in existing work [71], [72], [134]–[141], [74],

[100], [128]–[133] that require source code access to the scheme presented here of an

approach of intercepting web request input destined to be substituted into SQL query

element predicate’s expression (SQLIA hotspot) as to predict SQLIA.

Choi et al. [72] train an SVM classifier using tokenisation by N-Grams of bigrams,

trigrams and 4-grams to compare SQLIA query syntax structure between normal and

malicious queries. The text classification approach as employed by these authors above

by using more than one n-grams to compare the query structure has a limitation as it only

detects queries with the exact count of the grams used in tokenisation. Padding of SQL

query with more strings or words impact such queries classification outcomes. Whilst

historical approaches of static and dynamic queries comparison seemed plausible in the

past, the shifting of web applications on-premise domain boundary to the cloud SDN

makes approaches that rely on static and dynamic source code scanning of the web

application not applicable in emerging computing where access to source code is

restricted. The scheme presented here is a paradigm shift from existing proposals to a

scheme that infers a pattern-driven data set relevant to the intended web application type

being provided ML SQLIA mitigation. We used unigram of N-grams in our tokenisation

as we analyse intercepted input data word by word destined to be substituted in SQLIA

hotspot. The proxy API used helps intercepts and decrypts the content of web request and

as such does not require access to web application source code.

6.3.5 SQLIA labelling

The derived related member string as detailed above is labelled SQLIA negative (0) while

the presence of SQL tokens and existing known SQLIA signatures during member strings

pre-processing is labelled SQLIA positive (1). The binary class of 0 or 1 is to be predicted

at SQL query injection points. The learning data labelling routine in R language is

illustrated in Figure 6-12 Flowchart below.

 Figure 6-12 starts with employing FSA to derive as many strings, patterns of

expected input in web requests. The derived strings are filtered to obtain related member

strings that are labelled in the data set as SQLIA positive or negative. The derived pattern-

driven data set is imported into MAML studio where it undergoes a further text pre-

processing. For example, depending on the web application type, certain words are

relabelled; if expected input will contain the European Union, the European Union is

139

relabelled SQLIA negative while Union SQL keyword remains labelled SQLIA positive.

Making the European Union as stop words (excluded words) or relabelled to SQLIA

negative inform the classifier during the training that a combination of the words

European Union is SQLIA negative while a single SQL keyword Union without context

is SQLIA positive in the classification.

Figure 6-12 Data set feature values labelling flowchart: A flowchart illustrating data set

feature values labelling used to train a supervised learning model.

 Y N

Start

x= Input file containing

RegEx Patterns

WHILE <> EOF Run rex.exe on each

line of x to generate member strings.

Measure string distance of member

strings & compute anagram y.

IF exist SQL tokens,

symbols, attack

signatures in y?

Labelled SQLIA

positive (1)

Labelled SQLIA

negative (0)

End End

140

6.4 Predictive analytics experiment and deployment

Figure 6-13 presents this section organisation chart with the associated subsections.

Figure 6-13 The section organisation chart: The section organisation chart provides the layout

of this section with the associated subsections.

We apply predictive analytics in this thesis to mitigate SQLIA. The method is built on

MAML studio, which is a cloud-based ML platform. The experimental steps are detailed

below.

6.4.1 A high-level overview of the experimental steps:

6.4.1.1 Data set extraction

The learning data or feature values used here in the MAML studio to train a supervised

learning model contains pattern-driven data set described in detail in section 6.3 above.

We obtained 479,000 member strings with additional 862 unique SQL tokens extracted

from Microsoft SQL reserved keywords [179].

6.4.1.2 Text pre-processing

This stage involves R Scripting that incorporates all the defined RegEx constraints

detailed in 6.3 above to parsed learning data. The feature values are parsed for patterns,

duplicates, normalised to lower cases and the removal of the missing attribute values

which results in the pruning of the feature values to 362,603. Also, depending on the web

Predictive analytics and deployment

Experimental
steps

Data set extraction

Text pre-processing

Features hashing

Split

Training prediction model

Publishing

141

application type, certain words are relabelled, e.g. if expected input will contain the

European Union, the European Union is relabelled to SQLIA negative while Union SQL

keyword remains labelled SQLIA positive. The data set is sampled to provide an even

distribution of the feature values. The imbalanced feature values of majority labelled

SQLIA negatives over positives were corrected with SMOTE [187]. The entire feature

values of 725206 are split equally. The SMOTE improves the accuracy and F1 score

statistical measures in evenly distributed feature values.

6.4.1.3 Features hashing to the matrix

The hashing is to transform the data set feature values into binary vector matrices of 215

(32,768) columns required for training a classifier in ML by setting the hashing bit size

to 1 (unigrams of N-grams) where N = 1. The hashing procedure creates a dimensional

input of the matrix with a faster lookup of feature weights by substituting the string

comparison with the hash value comparison. We use a unigram hashing of strings into

the binary matrix as the intention is to analyse the intercepted strings as a unit at the proxy.

We observed analysing a string as a unigram offers a better prediction of TP and TN than

examining a phrase of a group of strings together (N-Grams > 1).

6.4.1.4 Split of vector matrices between training and testing data

We divide the matrix values of the hashed features into a ratio of 80:20 (training to testing

data respectively) of which 80% forms the training data input to the classifier while 20%

as test data for evaluations. We further optimised the classifier in the MAML studio with

Tune Model Hyperparameters (TMH) module [209] to improve TP and TN predictions,

but with low FN results of 162 achieved in TC SVM as shown in Table 6-4 below.

6.4.1.5 Training the prediction model

Both TC LR and TC SVM algorithms employ linear kernel which offers a binary

prediction at the proxy of a linear separation between SQLIA positive and negative

presence in a web request. This linearity of the classes which can be demarcated in a

straight line makes algorithms (classifiers) using linear kernel a preferred choice in binary

classification.

Also, the two classifiers show good accuracy and fast training times in performance

metrics. TC SVM has the advantage of being scalable with significant features set, such

as vectorisation (hashing), as used in this experiment to generate higher dimensionality

142

of hashed columns. TC LR and TC SVM algorithms are trained with the training data of

the partitioned matrix values. We achieved in the trained model AUC values of 0.984 and

0.986 for TC LR and TC SVM respectively in the ROC curve, but with TC SVM having

a fewer FP and FN.

6.4.1.6 Publishing and consuming the prediction web service

The system requirements regarding RAM and the hard disk is minimal as the one-off

workload of training the classifier including retraining is handled in the cloud by the

MAML platform. The solution is scalable, and it is meant to detect and prevent SQLIA

in web requests as illustrated in Figure 5-3 above.

6.5 Evaluation and performance metrics

6.5.1 Binary classification

The statistical measures, ROC curve, AUC and k-fold cross-validations are widely used

by data scientists to measure the performance metrics in ML analytics. We extracted an

evenly distributed data set of 725206 attribute values or row items by the pre-processing

and equal balancing of feature values as described in 6.4.1.2 above. These feature values

to be predicted contain an equal representation of labelled strings that are deemed valid

web requests and SQLIA threat as described in data extraction labelling in 6.3 above. The

string attribute values were hashed to obtain a matrix represented by Xij that refers to the

element in rows i and columns j of the input variables matrix X. The output variable to

predict Y is a single vector representation by Yi where i is the index or row count. Thus,

the learning data l is represented by Equation 6-1 as a dimension of matrix Xij to predict

an output labelled vector Yi where n is the top row count of index i. A function of X

denoted as f(X) to predict a labelled output Y. Therefore, f(X)=Y, where x is input and y

is the predicted output.

Equation 6-1

We split the hashed string features matrix and associated predictor variables into a

ratio 80:20 % of 725206 with 580164 matrix values as a training data set while the

remaining 145042 as a testing data set. We observed a split ratio of 80:20 (training to

testing data) resulted in better performance metrics compared with other split ratios that

were tried. The training set is evaluated under various binary classification algorithms or

143

classifiers to select a better performing classifier determined by the AUC performance

value. The linear kernel-driven algorithms presented in this thesis are implemented in

MAML (Azure ML) studio using the TC LR and TC SVM classifiers.

We observed linear kernel-driven classifiers are better performing in the binary

classification of two classes in predicting the discrete value of 0/1 for SQLIA. The AUC

provides an overall performance measure between the classifier algorithms as illustrated

in Figure 6-14 for which the TC SVM with AUC value of 0.986 was observed to be better

performing than the TC LR of AUC value 0.984.

While the 80% training sample is the part fed to the classifier to train the prediction

model, the remaining 20% is the testing data vectors, values unseen by the classifier

which is the subject of this empirical evaluation presented in this thesis. The testing data

input variables of 145042 rows are scored to generate score probabilities of a range 0 ≤ x

≤ 1 where x is the input matrix to predict output y. The score probabilities provide a

measure of observations that are correctly predicted as TP and TN including the two

prediction errors of FP and FN within the range {0.0,1.0}. These prediction observations

of TP, TN, FP and FN are presented in tables below which are calculated to determine

how many of these observations score probability values fall within each score bins set

of {0,1}.

Therefore, the expected output is y=0 or SQLIA negative if the function of the

predictor variables x is closer to 0 expressed as f(x) ≈ 0. Conversely, the prediction output

is y = 1 or SQLIA positive when the function of predictor variables x is closer to 1 denoted

as f(x) ≈ 1. Also, the prediction errors rate is used to gauge the performance of a classifier

as illustrated in Table 6-4 with TC SVM achieving low FN (162). However, 1923 FP

events were observed in TC SVM which indicates such web requests that are falsely

alarmed will be referred to the system monitor for a further review.

Table 6-4 A snippet of prediction observations at default threshold: A table containing

a snippet of calculated prediction observations at the default threshold of 0.5 that is repeated across {0,1}.

Events Positive Negative

Positive TP

TC SVM=72359, LR = 69421

FP

TC SVM = 1923, LR = 2088

Negative FN

TC SVM= 162, LR = 3100

TN

TC SVM=70598, LR = 70433

The MAML studio sets by default the cut-off threshold for the prediction of TP and

TN including the errors of FP and FN to be 0.5. This cut-off of 0.5 is a predetermined

144

threshold employed by classification algorithms; it is a trade-off between the cost function

of x to predict y against the performance metrics statistical measures. Therefore f(x) < 0.5

score probability value is predicted as SQLIA negative (0) while f(x) ≥ 0.5 is predicted as

SQLIA positive (1). The score probabilities generated from the 145042 rows of testing

data are partitioned into score bins of 0.1 increments of the set {0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0}. The calculated predicted observations are aggregated across these

score bins using the score probability values as shown in Table 6-5 and Table 6-6.

Table 6-5 TC LR algorithm observations at various cut-off points: A table of observations

at various cut-off points between {0.0, 1.0} of the TC LR trained model.

Table 6-6 TC SVM algorithm observations at various cut-off: A table of observations at

various cut-off points between {0,1} of the TC SVM trained model.

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 0 0 0.5 0 0

0.9 52479 20042 1399 71122 72521 72521 53878 91164 0.01929096 0.72363867 0.85217385 0.974034 0.830370493

0.8 58756 13765 1568 70953 72521 72521 60324 84718 0.02162132 0.81019291 0.89428579 0.974007 0.884579773

0.7 62924 9597 1674 70847 72521 72521 64598 80444 0.02308297 0.86766592 0.92229147 0.974086 0.917801326

0.6 66303 6218 1760 70761 72521 72521 68063 76979 0.02426883 0.91425932 0.94499524 0.974142 0.94325101

0.5 69421 3100 2088 70433 72521 72521 71509 73533 0.02879166 0.95725376 0.96423105 0.970801 0.963979726

0.4 71704 817 4794 67727 72521 72521 76498 68544 0.06610499 0.9887343 0.96131465 0.937332 0.962347083

0.3 72325 196 8374 64147 72521 72521 80699 64343 0.11547 0.99729733 0.94091367 0.896232 0.944067354

0.2 72371 150 12508 60013 72521 72521 84879 60163 0.17247418 0.99793163 0.91272873 0.852637 0.919580686

0.1 72390 131 18708 53813 72521 72521 91098 53944 0.25796666 0.99819363 0.87011348 0.794639 0.88486056

0 72521 0 72521 0 72521 72521 145042 0 1 1 0.5 0.5 0.666666667
Abbrevation

s &

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total

events (TE)

TE = 145042

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

Score Bins TP FN FP TN PE NE PO NO TE FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 145042 0 0 0.5 0 0

0.9 56446 16075 1505 71016 72521 72521 53878 91164 145042 0.02075261 0.77834007 0.878794 0.97403 0.86525845

0.8 63346 9175 1692 70829 72521 72521 60324 84718 145042 0.023331173 0.87348492 0.925077 0.973984 0.92100117

0.7 67886 4635 1806 70715 72521 72521 64598 80444 145042 0.024903132 0.93608748 0.955592 0.974086 0.95470878

0.6 71088 1433 1887 70634 72521 72521 68063 76979 145042 0.026020049 0.98024021 0.97711 0.974142 0.9771815

0.5 72359 162 1923 70598 72521 72521 71509 73533 145042 0.026516457 0.99776616 0.985625 0.974112 0.98579729

0.4 72324 197 1921 70600 72521 72521 76498 68544 145042 0.026488879 0.99728355 0.985397 0.974126 0.98556886

0.3 72340 181 2179 70342 72521 72521 80699 64343 145042 0.030046469 0.99750417 0.983729 0.970759 0.98394995

0.2 72355 166 6175 66346 72521 72521 84879 60163 145042 0.08514775 0.99771101 0.956282 0.921368 0.9580208

0.1 72376 145 13108 59413 72521 72521 91098 53944 145042 0.180747646 0.99800058 0.908626 0.846661 0.91612291

0 72521 0 72521 0 72521 72521 145042 0 145042 1 1 0.5 0.5 0.66666667

145

Figure 6-14 A ROC curve of AUC of TC LR vs TC SVM: A figure showing ROC curve

comparing AUC of TC LR against TC SVM classifiers of the trained models comparing the performance

metrics in AUC.

The statistical measures provide the performance metrics of a trained model. We

calculated the statistical measures at the various thresholds {0.0, 1.0} as shown in Table

6-5 above where TC LR at default has the following: Accuracy = 0.964, Precision = 0.971,

Recall = 0.957and F1 Score = 0.964. Table 6-6 is calculated as the preceding, where TC

SVM has an improved performance metrics with Accuracy = 0.986, Precision = 0.974,

Recall = 0.998, F1 Score = 0.986 and AUC of 0.986 as shown in Figure 6-14 above.

6.5.2 Cross-validation

In discussing the cross-validation in relation to this chapter, we directly picked the

best-trained model for cross-validation. For discussion on introduction to cross-validation

refers to section 4.5.4. In the preceding sections, we derived a pattern-driven data set

containing 725206 vectors to train a binary classifier with a labelled class of value of 1

for SQLIA positive while a value of 0 for SQLIA negative as presented in 6.3 above. The

hashed data set vector matrices of 725206 observations are used for the cross-validation.

We presented a TC SVM as the excellent trained model using training to testing split data

ratio of 80% to 20% resulted overall in an excellent trained model as graded in Table 4-11

above (showing AUC grading). We achieved an AUC performance of value of 0.986 with

146

low prediction errors which are the subject of the cross-validation presented below to

gauge the performance metrics of the unknown data (akin to testing data in a real-world

scenario) to the classifier with reduced biases.

Equation 6-2 presents the equation for calculating the mean μ, where μ is the mean,

xi are the accuracy values across the ten folds (0.9851, 0.9854, 0.9844, 0.9851, 0.9852,

0.9738, 0.9853, 0.9852, 0.9858, 0.9770), n=10 and therefore μ = 9.8323/10 0.9832.

Equation 6-3 presents the equation for calculating the variance or standard deviation σ,

where σ is the variance calculated to be 0.0042. We achieved a lower variance of accuracy

value of 0.0042 which indicates a less biased trained model capable of generalisation of

unknown independent data in the real-world application. Table 6-7 presents a table

containing evaluation results that are partitioned into ten folds with a low standard

deviation (variance) of accuracy highlighted to indicate a trained model capable of

generalisation of unknown independent data. The calculation is repeated across other

performance metrics of Precision, Recall, F-Score and AUC with similar results,

including a low average log loss value across the ten folds to indicate of a trained model

with a low penalty for wrong score probabilities as presented in the table below.

𝜇 =
Σ𝑥𝑖

𝑛

Equation 6-2

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛

Equation 6-3

Table 6-7 A table of evaluation results by folds: A table containing evaluation results of the

data set matrices partitioned into ten folds with a low standard deviation of accuracy highlighted to

indicate of a trained model capable of generalisation of unknown independent data.

Fold Number Number of examples in fold Model Accuracy Precision Recall F-Score AUC Average Log Loss

0 72520 SVM (Pegasos-Linear) 0.9851 0.9735 0.9973 0.9853 0.9854 0.092

1 72521 SVM (Pegasos-Linear) 0.9854 0.9747 0.9967 0.9856 0.9863 0.124

2 72521 SVM (Pegasos-Linear) 0.9844 0.973 0.9966 0.9846 0.9849 0.079

3 72521 SVM (Pegasos-Linear) 0.9851 0.9743 0.9966 0.9853 0.9858 0.073

4 72520 SVM (Pegasos-Linear) 0.9852 0.9738 0.9972 0.9853 0.9855 0.105

5 72520 SVM (Pegasos-Linear) 0.9738 0.9732 0.9742 0.9737 0.9851 0.158

6 72521 SVM (Pegasos-Linear) 0.9853 0.9742 0.9972 0.9855 0.9863 0.085

7 72521 SVM (Pegasos-Linear) 0.9852 0.9745 0.9966 0.9854 0.9858 0.084

8 72520 SVM (Pegasos-Linear) 0.9858 0.975 0.9972 0.986 0.9861 0.091

9 72521 SVM (Pegasos-Linear) 0.977 0.9735 0.9803 0.9769 0.9853 0.152

Mean 725206 SVM (Pegasos-Linear) 0.9832 0.974 0.993 0.9834 0.9856 0.104

Standard Deviation 725206 SVM (Pegasos-Linear) 0.0042 0.0007 0.0084 0.0043 0.0005 0.03

147

6.6 Discussion

SQLIA is still an ongoing issue [21], and WAF is still stealthily bypassed by web traffic

containing SQLI [210]. We demonstrated and discussed in the preceding chapter and

related published paper [63] that pattern-driven data set can be extracted from a web

application type to be protected. We further the work presented in the Chapter 5 of using

R string package to derive related member strings with SFA [153], [154], [205] in this

chapter to derive related member strings from the defined RegEx patterns to procure a

pattern-driven data set to train an SVM classifier in ongoing SQLIA detection and

prevention. A pattern-driven data set inferred from a web application type being protected

will break the status quo of lexical or syntactic query comparison for SQLIA mitigation

as seen in existing work [72], [79], [117], [211], [212] which can be circumvented with

more spaces or padding with extra strings.

There is a need for a data set relevant to SQLIA mitigation on real-world web

application other than the purpose-built and challenge-driven data set as seen in

ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66]. These out of date data sets on SQLI

were purpose-built for competition not idea to build mitigation against SQLIA in real-life

scenario business application. A pattern-driven data set has a set of items of subsequence

and substructures that frequently occur together [162]. We identified through this research

that a web application type would have input data of a specific type, size, form, structure,

domain type vocabulary and grammar which forms a pattern.

The existing proposals displayed a need for pattern-driven data set as against

repeating strings of SQL queries and URL query string which also reflected in the

procurement of data set as a test case that was used in these proposals over the years.

Also, they were SQLIA mitigation approaches that existed before the emerging

computing of cloud-hosted web services where the traditional web server no longer

resides on the organisation’s intranet or extranet.

In focusing on the contributions of this chapter, we list the following that was

recognised in the course of this thesis in the context of emerging computing and big data

as to have achieved the proposal presented in this thesis.

• The web requests that drives internet traffic is now big data; this is beyond

traditional lookup using classic programming loop constructs to search for SQLI

148

signatures which are not known to be scalable when compared with ML platforms

in emerging computing big data.

• The dependence on static code access scanning for SQLIA mitigation in most

existing work as against the need for web requests to cloud-hosted services to be

intercepted for analysis.

Table 6-8 Related work applying AI comparison: A table comparing the existing ML

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable, pattern-

driven data set and query comparison with related publication to this chapter highlighted.

Authors Algorithms Need

access

to source

code

Intranet /

intranet

domain

boundary

Emerging

computing

applicable:

cloud SDN

applicable

Pattern-

driven

data

Query

comparison

Bockermann et

al. [75]

SVM Yes Yes No No Yes

Komiya [71] SVM Yes Yes No No Yes

Choi et al. [72] SVM Yes Yes No No Yes

Wang and Li

[73]

SVM Yes Yes No Yes

Pinzón et al.

[74], [141],

[193]

SVM and

NN

Yes Yes No No Yes

Kim and Lee

[138]

SVM Yes Yes No No Yes

Uwagbole et al.

[64]

TC LR and

TC SVM

No Yes Yes Yes No

In comparing the proposal presented in this chapter with existing research work over

the years; this chapter focused on web application type to derive a pattern-driven data set

by employing SFA technique. The derived pattern-driven data set attribute values are

hashed to provide vector matrices to train a supervised learning TC LR and TC SVM

classification algorithms for comparison with a better performing model deployed as a

web service used in ongoing SQLIA mitigation. The trained, supervised learning models

are evaluated through statistical measures in the ROC curve and cross-validated

employing k-fold data set partitioning. Table 6-8 above highlights query comparison,

pattern-driven data set and emerging computing cloud SDN focused SQLIA mitigation

which is the subject of a paper [64] that set apart the proposal in this chapter from existing

approaches that apply AI over the years.

6.7 Conclusion

We demonstrated in this chapter a pattern-driven data set generated using SFA in the

absence of a pre-existing data set to apply predictive analytics to SQLIA detection and

prevention in a big data context. We empirically evaluated our results in the ROC curve

149

with overall better performance metrics that is cross-validated. Also, we observed TC

SVM having a better performance metrics with AUC value of 0.986 when compared with

the TC LR AUC value of 0.984 to have deployed TC SVM trained model as a web service.

On account of the discussion in the preceding paragraphs, this chapter further the

thesis statement that web application type can yield the pattern of web requests that are

deemed valid combined with historical studies of different SQLIA types including SQL

tokens provide artefact to derive a pattern-driven data set to train an ML model. This

research goal is demonstrated in the following contributions of this chapter.

• We further the implementation presented in Chapter 5 with SFA to derive related

member strings in crafting the pattern-driven data set. The referred web application

expects dictionary words as a valid input while elements of SQL tokens and SQLIA

type substitution predicted at the SQLI hotspots are predicted as SQLIA positive.

• We observed using the SFA technique to derive related member strings that we could

generate a pattern-driven data set with features of related member strings of any size

to train a classifier for SQLIA mitigation to a real-world application that is cross-

validated.

• The trained models are evaluated in the ROC curve with the TC SVM has the best

performance metrics on AUC value of 0.986 deployed as a web service. The web

service is consumed in a web form for input validation, and at the Fiddler proxy API

[155] for the ongoing SQLIA prediction as to reject intercepted requests that are

SQLIA positive.

We demonstrated in this thesis applied predictive analytics to SQLIA detection and

prevention in a big data context with an excellent result that is empirically evaluated and

cross-validated as presented above. In benchmarking this thesis against existing work, the

methodology proposed here is functional in a big data context which is lacking in existing

work before now on SQLIA to our knowledge.

150

7 Conclusion

Figure 7-1 presents the organisation chart layout of this chapter with the sections.

Figure 7-1 The chapter organisation chart: The chapter organisation chart presents the layout

of the chapter’s sections.

7.1 Introduction

Web applications with SQLIV and instances of SQLIA are still topical [21], [159], [210].

We looked at the issues of non-availability of the ready-made data set to train an ML model

in providing SQLIA mitigation, with the few data sets that is in the public domain being

outdated [1], [2], [67], [160]. We demonstrated in this thesis and the related published

papers [61]–[64] that a web application type being protected can yield a pattern-driven

data set to train a supervised learning model in predicting and preventing SQLIA. The

trained model is exposed and consumed as a web service at web form and proxy API in

ongoing SQLIA prediction and prevention.

There are various SQLIA detection and prevention approaches [4], [5], [95]–[104],

[6], [105]–[109], [119]–[123], [7], [124]–[127], [174], [194], [195], [8], [10], [82], [84],

[94] proposed by researchers that at the time were a plausible direction towards mitigating

SQLIA in the on-premise hosted web servers for web applications. However, with the

recent advancement in emerging computing with web application and services hosted in

the internet cloud (which defines a new application domain boundary), there is a need for

an ML approach to mining big data internet traffic to detect and prevent SQLIA in web

requests. Also, past approaches [71], [72], [193], [74], [100], [130], [131], [133]–[135],

[141] that relied on the source code for scanning for SQLIA detection and prevention will

be hindered when adapted to web-driven cloud-hosted applications where source code

access is restricted.

Conclusion

7.1
Introduction

7.2
Chapter 2

7.3
Chapter 3

7.4
Chapter 4

7.5
Chapter 5

7.6
Chapter 6

6.7
Research
summary

7.8
Discussion
and future

work

151

The continuous upward trend in big data has rejuvenated the ML technique being

increasingly used to tackle massive data mining of vulnerabilities in web applications as

it provides predictive analytics for big data including astronomical growth in web traffic

emanating from web requests to cloud-hosted applications. In mitigating SQLIA, the

traditional approach of programming looping constructs for string lookup or matching of

valid and malicious queries are not functional in big data analytics where AI approaches

[61]–[64], [143], [159], [213] provides a dimensional input matrix that makes a lookup of

feature weights faster by augmenting the string comparison with the hash value

comparison which ML techniques provide.

AI (bio-inspired) approach has the ability to evolve as an excellently trained model

will predict SQLIA and continue to self-automate and retrain itself to continuously offer

protection which traditional programming constructs of a string lookup or queries

matching [8], [82], [102]–[109], [94]–[101] does not offer. The issue that stands out in

some existing approaches [74], [125], [129], [133], [193] is computing resource

expensive, which by having ML cloud-based robust computing infrastructure provides

much needed scalable infrastructure to deliver big data mining of large volume of web

requests in delivery ML SQLIA mitigation solution.

However, just as the KDD Cup 1999 [161] has become antiquated in the IDS domain

[1], [2], [67], [160], so also has ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66] has

become obsolete. These test case data sets served the competition-driven purpose and

textbook evaluations at the time, not a benchmark data set to build and evaluate SQLIA

mitigation being provided to the real-world application. Thus, this begs the research

question and goal of this thesis if the pattern that exists in web requests that are deemed

valid, and historical studies of different SQLIA types including SQL tokens can provide

artefact to be used to derive a pattern-driven data set to train an ML model and be

validated?

The ontology to extract encoded features that form a pattern-driven data set

earmarked to train an ML model with evaluation for a web application type in SQLIA

mitigation is a contribution of the thesis.

A pattern-driven data set has a set of items of subsequence and substructures that

frequently occur together [162]. A pattern is engineered data set devoid of repeating

strings or queries that have relevance to the classification problem. It is derived in the

152

scope of the web application type that the ML-based SQLIA mitigation is being provided

and can be scaled to any magnitude as to have a significant data set to train a classifier to

the maximum as to effectively predict an outcome. A pattern-driven data set empowers

the web developer or system expert to derive a data set based on the web application type.

Most importantly, it does not age fast as it is tailored to a web application type.

Conversely, non-pattern driven data set as seen in some existing work [72] and the few

competitions-driven data sets [65], [66] are logs of repeating strings which gravitate the

proposals to query comparison of some sort in SQLIA mitigation.

In focusing on the contributions of the thesis chapters we list the following that was

recognised in the course of this thesis in the context of emerging computing of big data

and cloud hosted services as to have achieved the proposal presented in this thesis.

• A pattern-driven data set inferred from a web application type being protected will

break the status quo of lexical or syntactic query comparison for SQLIA

mitigation as seen in existing approaches.

• The recent years have seen an astronomical growth of web requests that drives

internet traffic to present the challenge of big data in cloud-hosted services; this

is beyond the traditional programming lookup using programming looping

constructs to search for strings or SQLI signatures.

• The restriction of web application source code for vulnerabilities scanning and

legacy application sanitisation as web servers are now hosted in the internet cloud

that is accessed through cloud SDN endpoints, which also limits existing

approaches that applies SVM learning algorithm [202], [203] in query comparison

of some sort.

• A requirement for SQLIA mitigation towards real-world application beyond

classical statistical measure performance metrics that stop at ROC curve and CM.

During the research, we submitted and presented four conference papers applying

ML predictive analytics to SQLIA prediction and prevention [61]–[64]. We detail in these

papers; the novel data set generation and a further improvement of the trained model’s

prediction results on True Positives (TP) and True Negatives (TN), but with lower False

Positives (FP) and False Negatives (FN). The methodology applied here has been

empirically evaluated in the numeric encoding of both expected input and patterns of

SQLIA types [61], [62]. The good results of the encoded pattern-driven data set to a

153

supervised learning model in performance metrics motivated further works in using R

string API and SFA in the derivation of related member strings to obtain a pattern-driven

data set presented in IEEE papers [63], [64].

7.2 Chapter 2: Background & Theory

This chapter discussed the fundamentals of SQLIA in the following sections: SQLIA

intent (an intruders intention and purpose for SQLIA); SQLIA mechanisms (the conduit

for SQLIA); SQLIA types (techniques employed to carry out SQLIA); and a review of the

techniques applied in this thesis.

The scheme presented in this thesis employs a web proxy API to intercept web requests

of any intent and applies predictive analytics techniques to predict SQLIA at the SQL

injection point (predicate and expression locations of the SQL statement structure).

Injection mechanisms to a vulnerable application can originate from web page forms,

second-order injection, exploiting web-enabled server variables, query strings, and

through cookies. An intruder could exploit injection points using the following SQLIA

types in any combination: Tautology; Union; Piggyback; Invalid/Logical queries; Time-

based; Obfuscation encoding; and Stored procedure. The SQLIA types and SQL tokens

are a source of SQLIA positive labelled data items in the scheme presented in this thesis.

Also discussed in this chapter are the fundamentals of the applied techniques in this thesis

that includes the use of FSA to generate related member strings, Fiddler proxy to intercept

web requests for AI prediction of SQLIA, and MAML being the implementation platform.

7.3 Chapter 3: Literature Review

This chapter examined and reviewed the existing research literature on SQLI detection

and prevention techniques to enhance the security of web applications. The research area

of SQLI detection and prevention has seen diverse methodologies proposed over the years

by various researchers. In this chapter, we broadly discussed these approaches under three

categories: (1) SQLIV testing and detection; (2) Approaches that apply defensive coding

in web application code sanitisation for SQLI prevention; and (3) Dynamic runtime

analysis, including taint-based and methods applying AI. Each section is followed by a

discussion on existing literature as to establish the gap in the context of emerging

computing, and the contributions this thesis makes to fill the gap. We critique the existing

research work on the following:

154

• They were SQLIA mitigation that existed before the emerging computing.

• The approaches applying ML algorithms use data set that is not pattern-driven.

• The dependence on static code access scanning for SQLIA mitigation in most existing

research work hinders intercepting web requests destined to cloud SDN for analysis

as cloud-hosted services have restricted access to source code.

• The web requests that drives internet traffic is now big data, this is beyond traditional

lookup using classic programming looping constructs to search for attack strings, or

SQLI signatures which are not known to be scalable when compared with ML

approaches driven by robust cloud-hosted infrastructure in the context of emerging

computing.

• The need for a functional and scalable approach to SQLIA mitigation to use of robust

cloud-hosted AI platforms such as Azure ML in emerging computing big data mining.

• A need for the historical learning data relevant to a real-world web application type

in applying ML technique.

We presented in this thesis the multi-layers ML-based SQLIA mitigation that targets

the web client form for input validation, and proxy server at SDN intercepted web

requests prediction analytics for SQLIA. This thesis provides a runtime analysis

technique of web requests to predict at the SQLIA hotspot (SQL predicate’s expression

location). Application of ML techniques provides a functional approach to SQLIA

mitigation in emerging computing, where applications and services are hosted in the

cloud with big data emanating from the web requests to these cloud-hosted applications.

The paradigm shift in this thesis to a pattern-driven data set to train a classifier

removes the reliance on antiquated test case data sets [65], [66] and query comparison of

some sort. The pattern-driven data set approach provides a technique to derive on the fly

a data set relevant to a web application type context requiring ML mitigation to SQLIA.

The existing approaches applying ML require full access to source code to require normal

and malicious queries for comparison whether in the string lookup or SQL queries

matching approaches. In the scheme presented in this thesis, the pattern-driven data set

that contains attribute values of related member strings is the subject of prediction during

capturing and analysis of web requests by looking at the substitution values destined to

the SQL query structure predicate’s expression (SQLIA hotspot) location. Understanding

expected input data, existing SQLIA signatures, including SQL tokens allows to us

155

concentrate on input data in transition analysis and prediction as against reconstructing

the full queries needed in non-pattern driven data set approach.

7.4 Chapter 4: Numerical Encoding to Tame SQLIA

In this chapter, we looked at the issues of data set availability and proposed a pattern-

driven data set. Availability of historical data or data set has advanced the use of AI by

applying ML techniques. Unfortunately, as there is no unified pre-existing data set,

researchers over the years have resorted to various approaches in generating sample data

sets with most proposals lacking patterns to enhance learning and are fraught with

complex computational overheads.

We investigated if the patterns that exist in any web application type context can be

encoded to vector to train a supervised learning model. We conducted experiments and

inferred patterns by numeric encoding of features to derive a data set vector of any

magnitude to train a supervised learning model in testing the feasibility of mitigating

SQLIA employing AI techniques. We presented the following contributions in this thesis

chapter.

• The ontology for crafting a pattern-driven data set from the web application type with

a technique to encode the data set into vectors required to train a supervised learning

model.

• We trained a supervised learning classification algorithm with this pattern-driven data

and validated the trained model under various classification algorithms with high

performance metrics in the ROC curve, CM and cross-validation as presented in this

chapter.

• The success of this conceptual approach of the web application type as the source of

a pattern-driven data set to train a classifier has led to a further work in Chapters 5

and 6 by employing string hashing vectorisation in-place of manual numeric encoding

in providing a proof of concept of how the proposal will be applied in a real-world

application scenario.

We concluded from the experimental results with an empirical evaluation of low

prediction error that a pattern-driven data set can be used to train a supervised learning

model in towards ML SQLIA mitigation. The high performance metrics of the results of

an AUC range of between 0.944 to 1.0 set a precedent for the suitability of applying

156

feature hashing or vectorisation to the pattern-driven data set generated from related

member strings in Chapters 5 and 6.

7.5 Chapter 5: Applied Predictive Analytics to SQLIA

This chapter answers the research question: if a web application type to be protected can

produce the artefact for the extraction of a pattern-driven data set? We implemented a test

web application expecting dictionary word list labelled as SQLIA negative, while SQL

tokens and known SQLIA signatures were labelled as SQLIA positive. This labelled

pattern-driven data set is vectorised to train a classifier. The vectorisation to obtain vector

matrices removes the need for numerical encoding presented in Chapter 4. We evaluated

and cross-validated the trained model with statistical measures. We also compared our

approach to existing work proposed by other authors to identify the following

contributions presented in this thesis chapter.

• We answered the research question that a web application type being protected could

provide a pattern-driven data set to apply ML in SQLIA mitigation. We implemented

a web application that expects dictionary words as valid input (SQLIA negative) while

elements of SQL tokens and SQLIA type substitution at the SQLI hotspot is predicted

as SQLIA positive.

• Based on this web application type, we derived a pattern-driven data set using R string

API. The pattern-driven data set is vectorised to train a supervised learning model

employing an SVM classification algorithm to predict SQLIA. The evaluated, trained

SVM model is exposed as a web service which is then consumed in a web form for

input validation, and also at proxy API deployed at cloud SDN for intercepting web

requests for SQLIA analysis. The intercepted request is analysed to predict SQLIA as

to accept the benign and reject malicious web request in ongoing SQLIA mitigation.

We demonstrated in this chapter applied predictive analytics to SQLIA detection and

prevention in a big data context with an excellent result that is empirically evaluated. In

benchmarking this thesis against existing work, the methodology proposed here is

functional in a big data context which is lacking in existing work before now on SQLIA

to our knowledge.

157

7.6 Chapter 6: Pattern-Driven Corpus to Mitigate SQLIA

In this chapter, we further the research question if a web application type to be protected

can produce the artefact for the extraction of a pattern-driven data set? We derived a

pattern-driven data set by employing FSA and SFA to generate all possible string

members to obtain learning data in applying the ML technique to a test application

domain context to predict and prevent SQLIA with the following contributions.

• We further the implementation and contributions presented in Chapter 5 with SFA to

derive related member strings in crafting the pattern-driven data set. The referred web

application expects dictionary words as a valid input while elements of SQL tokens

and SQLIA type substitution predicted at the SQLI hotspots are predicted as SQLIA

positive.

• Based on the web application type, we derived a pattern-driven data set using SFA as

against R string API technique presented in Chapter 5 to derive related member

strings. The pattern-driven data set is used to train a supervised learning model

employing a TC LR and TC SVM classification algorithms with the better cross-

validated classifier selected to predict SQLIA. The trained models are evaluated in

the ROC curve with the TC SVM has a better performance metrics of an AUC value

of 0.986. The selected TC SVM trained model is exposed as a web service which is

then consumed in a web form for input validation, and proxy API at the cloud SDN

for intercepting web requests for SQLIA analysis. The intercepted request is analysed

to predict SQLIA as to accept the benign and reject malicious web requests in ongoing

SQLIA mitigation.

• We observed using the SFA technique to derive related member strings that we could

generate a pattern-driven data set with features of related member strings of any size

to train a classifier for SQLIA mitigation for real-world application.

We demonstrated in this chapter a pattern-driven data set generated using SFA in the

absence of a pre-existing data set to apply predictive analytics to SQLIA detection and

prevention in a big data context. This approach uses hashed pattern-driven data set from

a web application type context as against relying on access to the web application’s source

code or queries comparison, mostly employed in existing static and dynamic signature

comparisons of SQLIA artefact research approaches over the years.

158

7.7 Research summary

SQLIA is still an ongoing issue that affects all organisation types including private,

governments and business hosted web applications across the world as intruders exploit

vulnerable web applications to pilfer protected data from the database with damaging data

security ramifications. Pilfered or leaked data can then be used in various forms of

criminality including extortion. The emerging computing of big data and cloud-hosted

services posed a more functional issue to SQLIA mitigation that existed before now that

involves strings lookup of SQLIA signatures. ML which provides an alternative method

to SQLIA string signature lookup lacks an existing robust data set with few that exist

being obsolete to train a classifier in advancing SQLIA mitigation. In this thesis, we

examined SQLIA artefact of valid web requests, including SQL tokens and SQLIA

signatures to derive a pattern-driven data set to train a supervised learning model in

applying AI techniques to mitigate SQLIA.

In applying ML to SQLIA problems, there is a need for a data set which prompted

in our research goals the following research questions. If a pattern-driven data set can be

extracted from both expected web requests and SQL tokens including existing SQLIA

signatures be used to train a supervised learning model and be validated, including this

pattern-driven data set be extracted from any web application type context for SQLIA

mitigation? Below are the novel contributions across the thesis chapters which answer the

research goal of the thesis of using a pattern-driven data set obtained from the very web

application type to be protected in training an ML model to mitigate SQLIA.

• We reviewed the existing literature on SQLIA to establish the need for a change from

on-premise mitigation that includes source code scanning and query comparison of

some sort to a SQLIA mitigation that is amenable to emerging computing of

increasing big data and cloud-hosted services that can predict SQLIA on web requests

in-transition to the back-end database.

• We presented an ontology in Chapter 4 and related publications [61], [62] for crafting

a pattern-driven data set using R string API from the web application type with a

technique to encode the data set into vectors required to train a supervised learning

model in MAML studio. We trained a supervised learning classification algorithm

with this pattern-driven data set and validated the trained model under various

algorithms. We observed high performance metrics statistical measures, including

159

cross-validation. The success of this conceptual approach in Chapter 4 has led to

further work in Chapters 5 and 6 by employing string hashing vectorisation in-place

of manual encoding. Also, we demonstrated a proof of concept of how the proposal

will be applied in a real-world web application.

• We further in Chapter 5 and related publication [63] the numeric encoding of features

presented in Chapter 4 with hashing vectorisation to obtain vector matrices to train

the classification algorithms. In answering the research question if the intended web

application type can produce the artefact for a pattern-driven data set, we implemented

a web application that expects dictionary words as a valid input while elements of

SQL tokens and SQLIA type signatures substitution at the SQLI hotspots is predicted

as SQLIA positive. The pattern-driven data set is used to train a supervised learning

model employing a TC LR and TC SVM classification algorithms with the better-

evaluated and cross-validated classifier selected to predict SQLIA. The selected,

trained TC SVM model is exposed as a web service which is then consumed in a web

form for input validation, and proxy API at the cloud SDN for intercepting web

requests in-transition to a back-end database for SQLIA analysis.

• We demonstrated in Chapter 6 and related publication [64] a more robust method of

pattern-driven data set procurement based on the web application type; we derived a

pattern-driven data set using FSA and SFA as against R string API technique

presented in Chapter 5 to derive related member strings. The referred web application

expects dictionary words as a valid input while elements of SQL tokens and SQLIA

type substitution predicted at the SQLI hotspots are predicted as SQLIA positive. The

pattern-driven data set is used to train a supervised learning model employing a TC

LR and TC SVM classification algorithms with the better-evaluated and cross-

validated classifier selected to predict SQLIA. The trained TC SVM model is exposed

as a web service which is then consumed in a web form for input validation and a

proxy API at the cloud SDN for intercepting web request for SQLIA analysis. We

observed using the SFA technique to derive related member strings that we could

generate a pattern-driven data set with features of related member strings of any size

to train a classifier for SQLIA mitigation for real-world application.

We conclude in this thesis that a pattern-driven data set to train a classifier can be

inferred from SQLIA types, SQL tokens and expected valid web requests of a web

application type. The recent advancement in AI platforms like Azure ML provides the

160

MAML studio functionality to build, train, validate and cross-validate an ML model as

presented in the thesis which is then exposed as a web service that is consumed in multi-

layer (client form and cloud SDN proxy) in ongoing SQLIA prediction and prevention.

7.8 Discussion and future work

7.8.1 Discussion

The research area of SQLIA has seen various methodologies proposed over the years [4],

[5], [95]–[104], [6], [105]–[109], [119]–[123], [7], [124]–[127], [174], [194], [195], [8],

[10], [82], [84], [94]. These proposals are categorised in this thesis into: SQLIV testing

and detection [8], [82], [102]–[110], [94]–[101]; defensive coding [111]–[118]; and

dynamic runtime analysis [4], [5], [124], [125], [10], [84], [119]–[123] which includes

taint-based [7], [126], [127] and ML approaches [71], [72], [134]–[141], [74], [100],

[128]–[133]. Though there has been approaches that applied ML in static and dynamic

runtime query analysis to mitigate SQLIA, but apart from the defensive coding techniques

[111]–[118], the common techniques in most proposals mirror a classical query

comparisons.

The classical query comparison SQLIA mitigation approach which includes

examining the syntactic structure and taint (trusted sources) reflects the old paradigm of

organisation’s web server placement is internet facing from intranet or extranet location

and there is a need to mitigate SQLIA at a layer of web application tiers. The processing

for malicious input at tier level has seen SQLIA mitigation proposals targeted at different

layers: web client; WAF (intercepting HTTP request for outliers); web application

(defensive coding and runtime analysis); database firewall (profiling database and

encoded or tokenised queries); Multi-layers approach (intercepting and analysing web

requests in more than one layer). These existing approaches have consistently followed

this paradigm of on-premise located web server for a web application to be protected.

Also, these existing approaches gravitate to SQLIA mitigation proposals of query

comparison of some sort mostly driven by the method of data set procurement through

using web crawler of URLs and other automated unit testing tools. These test case data

sets that are logged valid SQL queries for comparison between valid and malicious

queries during runtime does not have patterns for predictive analytics as presented in this

thesis.

161

Thus, that begs the question if the pattern that exists in web requests that are deemed

valid, and historical studies of different SQLIA types including SQL tokens can provide

artefact to be used to derive a pattern-driven data set to train an ML algorithm to predict

SQLIA? This thesis demonstrated that a web application type could provide the artefact

to derive a pattern-driven data set for ML-based real-world SQLIA mitigation.

7.8.2 Future work

We focused solely on SQLIA analysis and prediction by applying ML techniques to

demonstrate that artefact for a pattern-driven data set can be extracted from attack features

and valid expected web requests. The same idea proposed in this thesis can be extended

to mitigate other similar web vulnerability types. As SQLIA is not the only web

application vulnerability that exists, we propose to extend the SQLIA mitigation

techniques presented in this thesis to other forms of web application vulnerability attacks.

As automated AI techniques may sound promising to the end-user, but the back-end

procuring of data set and training of the classifiers still needs expert knowledge in any

domain that applies ML techniques. This thesis requires expert knowledge of the R

programming language [214]–[216] and regular expression [36], [153], [206], [217],

[218] in crafting the pattern-driven data set. However, this thesis offers a new direction

in the pattern-driven data set generation where none exists. Web applications are so

diverse as they are built for different purposes, this makes it difficult to have a unified

data set to train a classifier. Inferring the expected input data from these diverse web

applications still relies on a human system expert to generate the pattern-driven data set

that is labelled to train a classifier for prediction accuracy. There is a manual process

between obtaining the data set and training a classifier that still needs human intervention,

but exploring an ML unsupervised learning (clustering of related member strings)

approach holds a solution to be explored in future work.

In training a classifier, there is the need to have a relevant data set for various web

applications as web applications are designed for different requirements. As such, there

could be no single data set to train a classifier to mitigate SQLIA in all vulnerable web

application types (private, commerce, governments, etc.). We emphasise the importance

of a pattern-driven data set relevant to the web application in the context of applying AI

to SQLIA mitigation as proposed in this thesis.

162

We hope to take forward the findings in this thesis in creating an off-the-shelf tool

to generate this pattern-driven data set in various web application types. This tool will

assist developers, including first-hand training of a classifier to predict SQLIA in the

legacy web application deployed to the cloud.

The proposals in this thesis apply and leverage the well established AI platforms of

MAML studio with the out-of-the-box kernel optimisation. Discussion on kernel types

and optimisation is intentionally omitted as that forms the AI core research as against a

proposal applying AI techniques. We leverage the out-of-the-box MAML platform,

embedded kernels or dot products in the various classification algorithms in the work

presented in this thesis.

This thesis proposes intercepting of web requests destined for back-end database for

ML predictive analytics to predict SQLIA which implies the web request must be readable

or decrypted. To have addressed the decryption of web requests, we use application level

proxy API named Fiddler [40]. Thus, all intercepted web requests must be readable for

the methods proposed in this thesis to predict SQLIA types accurately. However, the

proposal presented in this thesis has a failover to interpret a web request that cannot be

decrypted by proxy as obfuscated SQLIA type and deemed it true SQLIA positive.

Finally, we also envisage exploring core AI principles to look at various kernels

optimisations in SQLIA mitigation across the different SQLIA types including other

forms of web application vulnerabilities. Also, as encryption technology evolves, we hope

to continually explore ways to decrypt obfuscated web requests at the application level to

make it readable to the SQLIA analysis and mitigation presented in this thesis.

163

References

[1] A. I. Abubakar, H. Chiroma, S. A. Muaz, and L. B. Ila, “A review of the advances in cyber security

benchmark datasets for evaluating data-driven based intrusion detection systems,” in Procedia

Computer Science, 2015, vol. 62, no. 62, pp. 221–227.

[2] M. Małowidzki, P. Berezi, and M. Mazur, “Network Intrusion Detection : Half a Kingdom for a

Good Dataset,” ECCWS 2017 16th Eur. Conf. Cyber Warf. Secur., pp. 1–6, 2017.

[3] K. Bache and M. Lichman, “UCI Machine Learning Repository,” University of California Irvine

School of Information, vol. 2008, no. 14/8. 2013.

[4] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse Tree Validation to Prevent SQL

Injection Attacks,” in Proceedings of the 5th international workshop on Software engineering and

middleware SEM 05, 2005, no. September, p. 106.

[5] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring for NEutralizing SQL-

injection Attacks,” Proc. 20th IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 174–183, 2005.

[6] S. M. S. Sajjadi and B. Tajalli Pour, “Study of SQL Injection Attacks and Countermeasures,” Int.

J. Comput. Commun. Eng., vol. 2, no. 5, pp. 539–542, 2013.

[7] W. G. J. Halfond, A. Orso, and P. Manolios, “Using Positive Tainting and Syntax-aware Evaluation

to Counter SQL Injection Attacks,” in Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2006, pp. 175–185.

[8] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting web applications using positive

tainting and syntax-aware evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 65–81, 2008.

[9] X. Fu and K. Qian, “SAFELI: SQL Injection Scanner Using Symbolic Execution,” Proc. 2008

Work. Testing, Anal. Verif. Web Serv. Appl., pp. 34–39, 2008.

[10] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A Proxy-based Architecture towards

Preventing SQL Injection Attacks,” Conf. Proc. 2009 ACM Symp. Appl. Comput., pp. 1–8, 2009.

[11] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID: Dynamic candidate evaluations

for automatic prevention of SQL injection attacks,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 2, p.

14:1--14:39, 2010.

[12] P. Pal and S. Bisht, “Improving Web Security by Automated Extraction of Web Application Intent,”

2011.

[13] Imperva, “SQL Injection: By The Numbers | Imperva Cyber Security Blog,” Imperva, 2011.

[Online]. Available: http://blog.imperva.com/2011/09/sql-injection-by-the-numbers.html.

[Accessed: 11-May-2015].

[14] H. Shahriar and M. Zulkernine, “Information-theoretic detection of SQL injection attacks,” in

Proceedings of IEEE International Symposium on High Assurance Systems Engineering, 2012, pp.

40–47.

[15] Portswigger, “Using Burp to Exploit Blind SQL Injection Bugs | Burp Suite Support Center,”

Portswigger Web Security. [Online]. Available: https://support.portswigger.net/customer

/portal/articles/2163785-Methodology_Blind SQL Injection Exploitation.html. [Accessed: 19-Jun-

2017].

164

[16] B. Damele and M. Stampar, “sqlmap: automatic SQL injection and database takeover tool,”

SQLMap, 2016. [Online]. Available: http://sqlmap.org/. [Accessed: 19-Jun-2017].

[17] Portcullis Labs, “BSQL Hacker | Portcullis Labs.” [Online]. Available: https://labs.portcullis

.co.uk/tools/bsql-hacker/. [Accessed: 19-Jun-2017].

[18] SQLNINJA, “sqlninja - a SQL Server injection & takeover tool,” sqlninja. [Online]. Available:

http://sqlninja.sourceforge.net/. [Accessed: 19-Jun-2017].

[19] Rapid7, “Penetration Testing Software | Metasploit,” Metasploit, 2004. [Online]. Available:

https://www.metasploit.com/. [Accessed: 19-Jun-2017].

[20] OWASP, “OWASP Top 10 - 2013,” OWASP Top 10, p. 22, 2013.

[21] CodeCurmudgeon, “SQLi Hall-of-Shame,” The Code Curmudgeon, 2016. [Online]. Available:

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/. [Accessed: 12-Aug-2016].

[22] D. Pauli, “Researcher arrested after reporting pwnage hole in elections site • The Register,” The

Register,2016.[Online].Available:http://www.theregister.co.uk/2016/05/09/researcher_arrested_af

ter_reporting_pwnage_hole_in_elections_site/. [Accessed: 08-Aug-2016].

[23] S. Khandelwal, “Fourth, a 16-year-old Hacker, Arrested over TalkTalk Hack,” The Hacker News,

2015. [Online]. Available: http://thehackernews.com/2015/11/talktalk-hacker.html. [Accessed: 23-

Jan-2016].

[24] K. Fiveash, “TalkTalk claims 157,000 customers were victims of security breach • The Register,”

theregister.co.uk, 2015. [Online]. Available: http://www.theregister.co.uk/2015/11/06/talktalk_

claims_157000_customers_data_stolen/. [Accessed: 05-Jun-2016].

[25] L. Franceschi-Bicchierai, “One of the Largest Hacks Yet Exposes Data on Hundreds of Thousands

of Kids | Motherboard,” Motherboard, 2015. [Online]. Available: http://motherboard.vice.com/

read/one-of-the-largest-hacks-yet-exposes-data-on-hundreds-of-thousands-of-kids. [Accessed: 23-

Jan-2016].

[26] C. Cimpanu, “New Joomla SQL Injection Flaw Is Ridiculously Simple to Exploit,”

BLEEPINGCOMPUTER, 2017. [Online]. Available: https://www.bleepingcomputer.com/news

/security/new-joomla-sql-injection-flaw-is-ridiculously-simple-to-exploit/. [Accessed: 08-Jun-

2017].

[27] L. Tung, “Dangerous hole found in McAfee ePO antivirus central management suit - CSO | The

Resource for Data Security Executives,” CSO, 2017. [Online]. Available: https://www.cso.com.au

/article/613679/dangerous-hole-found-mcafee-epo-antivirus-central-management-suit/.

[Accessed: 08-Jun-2017].

[28] L. Franceschi-Bicchierai, “Equifax Was Warned - Motherboard,” Motherboard, 2017. [Online].

Available: https://motherboard.vice.com/en_us/article/ne3bv7/equifax-breach-social-security-num

bers-researcher-warning. [Accessed: 20-Dec-2017].

[29] D. Raywood, “Symantec Calls Vulnerability a Routine Advisory - Infosecurity Magazine,” Info

Security, 2016. [Online]. Available: https://www.infosecurity-magazine.com/news/symantec-

vulnerability-warning/. [Accessed: 18-Jan-2018].

[30] J. S. Davis, “Researcher finds backdoor that accessed Facebook employee passwords,” SC Media,

2016. [Online]. Available: https://www.scmagazine.com/researcher-finds-backdoor-that-accessed-

facebook-employee-passwords/article/528524/. [Accessed: 18-Jan-2018].

[31] I. Thomson, “If your websites use WordPress, put down that coffee and upgrade to 4.8.3. Thank us

165

later- SQL-injection security hole needs patching ASAP,” The Register, 2017. [Online]. Available:

https://www.theregister.co.uk/2017/10/31/wordpress_security_fix_4_8_3/.[Accessed:18-Jan-

2018].

[32] Z. Whittaker, “This bug let a researcher bypass GoDaddy’s site security tool,” ZDNet, 2017.

[Online]. Available: http://www.zdnet.com/article/security-bug-let-hacker-bypass-godaddy-site-

firewall-tool/. [Accessed: 18-Jan-2018].

[33] P. Paganini, “Joomla 3.8.4 release addresses three XSS and SQL Injection vulnerabilitiesSecurity

Affairs,” Security Affairs, 2018. [Online]. Available: http://securityaffairs.co/wordpress/68806

/breaking-news/joomla-3-8-4-xss-sqlinjection.html. [Accessed: 13-Mar-2018].

[34] P. Nair, “Security researcher hacks BSNL intranet; leaks details of 47,000 employees |

Computerworld India,” COMPUTERWORLD. [Online]. Available: http://www.computerworld.in

/news/security-researcher-hacks-bsnl-intranet-leaks-details-47000-employees. [Accessed: 13-Mar

-2018].

[35] INDIAN EXPRESS, “French researchers highlight security flaws in Indian Railways portals- The

New Indian Express,” INDIAN EXPRESS, 2018. [Online]. Available: http://www.newindian

express.com/cities/hyderabad/2018/may/09/french-researchers-highlight-security-flaws-in-indian-

railways-portals-1812279.html. [Accessed: 04-Jul-2018].

[36] K. Thompson, “Programming Techniques: Regular expression search algorithm,” Commun. ACM,

vol. 11, no. 6, pp. 419–422, Jun. 1968.

[37] Microsoft, “Regular Expression Language,” MSDN, 2016. [Online]. Available: https://msdn.

microsoft.com/en-us/library/az24scfc.aspx. [Accessed: 08-Apr-2017].

[38] M. Gagolewski, “Package ‘stringi’: Character String Processing Facilities,” CRAN, 2016.

[39] IBM, “IBM Knowledge Center - Tokens,” IBM. [Online]. Available: https://www.ibm.com

/support/knowledgecenter/en/SSCRJT_5.0.3/com.ibm.swg.im.bigsql.commsql.doc/doc/r0000719.

html. [Accessed: 02-Jul-2016].

[40] E. Lawrence, “Fiddler free web debugging proxy,” Telerik. [Online]. Available: http://www

.telerik.com/fiddler. [Accessed: 11-Feb-2015].

[41] Microsoft Azure, “Microsoft Azure Machine Learning Studio,” Microsoft Azure Machine

Learning. [Online]. Available: https://studio.azureml.net/. [Accessed: 25-Jan-2015].

[42] Microsoft, “Microsoft Azure Machine Learning,” studio.azureml.net, 2016. [Online]. Available:

https://studio.azureml.net/. [Accessed: 11-Aug-2016].

[43] A. Rajpurohit, “Why Azure ML is the Next Big Thing for Machine Learning?,” Kdnuggets, 2015.

[44] P. A. Today, “Top 15 Artificial Intelligence Platforms,” Predictive-Analytics-Today, 2017.

[Online]. Available: https://www.predictiveanalyticstoday.com/artificial-intelligence-platforms/.

[Accessed: 09-Jun-2018].

[45] Azure ML, “Sample 3: Cross Validation for Binary Classification: Adult Dataset | Azure AI

Gallery,” Microsoft, 2015. [Online]. Available: https://gallery.azure.ai/Experiment/d9d3c1

1b360343be9c9cbdc6a3981350. [Accessed: 10-Jul-2016].

[46] A. de Ruiter, “Using ROC plots and the AUC measure in Azure ML | Andreas De Ruiter’s BI blog,”

MSDN, 2015. [Online]. Available: https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/

using-roc-plots-and-the-auc-measure-in-azure-ml/. [Accessed: 15-Mar-2016].

166

[47] Microsoft Azure, “Cross-Validate Model,” Micorsoft Azure, 2018. [Online]. Available:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/cross-validate-

model. [Accessed: 09-Jun-2018].

[48] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model

Selection,” in Appears in the International Joint Conference on Articial Intelligence (IJCAI), 1995.

[49] T. Fushiki, “Estimation of prediction error by using K-fold cross-validation,” Stat. Comput., vol.

21, no. 2, pp. 137–146, Apr. 2011.

[50] T. G. Tape, “Using the Receiver Operating Characteristic (ROC) curve to analyze a classification

model,” Univ. Nebraska Med. Cent., pp. 1–3, 2000.

[51] T. Tape, “The Area Under an ROC Curve,” Interpreting Diagnostic Tests. [Online]. Available:

http://gim.unmc.edu/dxtests/ROC3.htm. [Accessed: 16-Apr-2017].

[52] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variancee of k-fold cross-valudation,”

J Mach Learn Res, 2004.

[53] T. G. Tape, “Interpreting Diagnostic Tests,” University of Nebraska Medical Center. [Online].

Available: http://gim.unmc.edu/dxtests/Default.htm. [Accessed: 17-Sep-2017].

[54] K. Markham, “Simple guide to confusion matrix terminology,” Data Sch., pp. 1–9, 2014.

[55] K. H. Zou, A. J. O’Malley, and L. Mauri, “Receiver-operating characteristic analysis for evaluating

diagnostic tests and predictive models,” Circulation, vol. 115, no. 5, pp. 654–657, Feb. 2007.

[56] M. O. Rabin and D. Scott, “Finite Automata and Their Decision Problems,” IBM J. Res. Dev., vol.

3, no. 2, pp. 114–125, 1959.

[57] FiniteStateMachine, “Finite-state machines,” J. Franklin Inst., vol. 275, no. 3, p. 250, 1963.

[58] Wikipedia, “Finite-state machine,” Wikipedia. .

[59] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. Smola, “Feature Hashing for Large

Scale Multitask Learning,” Int. Conf. Artif. Intell. Stat., pp. 496–503, 2009.

[60] Wikipedia, “Feature hashing,” Wikipedia. [Online]. Available: Feature hashing. [Accessed: 09-

Sep-2016].

[61] S. O. Uwagbole, W. Buchanan, and L. Fan, “Applied web traffic analysis for numerical encoding

of SQL injection attack features,” in European Conference on Information Warfare and Security,

ECCWS, 2016, vol. 2016–Janua.

[62] S. O. Uwagbole, W. J. Buchanan, and L. Fan, “Numerical encoding to Tame SQL injection

attacks,” in Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations and

Management Symposium, 2016, vol. 2016–Janua, pp. 1253–1256.

[63] S. O. Uwagbole, W. J. Buchanan, and L. Fan, “Applied Machine Learning Predictive Analytics to

SQL Injection Attack Detection and Prevention,” in 3rd IEEE/IFIP Workshop on Security for

Emerging Distributed Network Technologies (DISSECT), 2017.

[64] S. O. Uwagbole, W. J. Buchanan, and L. Fan, “An applied pattern-driven corpus to predictive

analytics in mitigating SQL injection attack,” in 2017 Seventh International Conference on

Emerging Security Technologies (EST), 2017, pp. 12–17.

167

[65] ECML/PKDD 2007, “Attack Challenge -ECML/PKDD Workshop,” ECML/PKDD 2007. [Online].

Available: http://www.lirmm.fr/pkdd2007-challenge/. [Accessed: 23-Jun-2015].

[66] G. Á. M. Carmen Torrano Giménez, Alejandro Pérez Villegas, “Http Dataset Csic 2010,”

Information Security Institute of CSIC (Spanish Research National Council), 2010. [Online].

Available: http://www.isi.csic.es/dataset/.

[67] M. V. Mahoney and P. K. Chan, “An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation

Data for Network Anomaly Detection,” Springer, Berlin, Heidelberg, 2003, pp. 220–237.

[68] E. Vasilomanolakis, C. G. Cordero, N. Milanov, and M. Mühlhäuser, “Towards the creation of

synthetic, yet realistic, intrusion detection datasets,” in Proceedings of the NOMS 2016 - 2016

IEEE/IFIP Network Operations and Management Symposium, 2016, pp. 1209–1214.

[69] 1999 KDD Cup, “http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,” The UCI KDD

Archive, 1999. .

[70] E. D. Halsey, “With AI and Data, it’s ‘Junk in, Junk Out’ – Source Institute – Medium,” Medium

Corporation, 2017. [Online]. Available: https://medium.com/source-institute/with-ai-and-data-its-

junk-in-junk-out-18b33e8f391e. [Accessed: 03-Jan-2018].

[71] R. Komiya, I. Paik, and M. Hisada, “Classification of malicious web code by machine learning,”

in Proceedings of 2011 3rd International Conference on Awareness Science and Technology,

iCAST 2011, 2011, pp. 406–411.

[72] J. Choi, C. Choi, H. Kim, and P. Kim, “Efficient malicious code detection using N-gram analysis

and SVM,” in Proceedings - 2011 International Conference on Network-Based Information

Systems, NBiS 2011, 2011, vol. 11, no. 2, pp. 618–621.

[73] Y. Wang and Z. Li, “SQL Injection Detection via Program Tracing and Machine Learning,” LNCS,

vol. 7646, pp. 264–274, 2012.

[74] C. I. Pinzón, J. F. De Paz, Á. Herrero, E. Corchado, J. Bajo, and J. M. Corchado, “IdMAS-SQL:

Intrusion Detection Based on MAS to Detect and Block SQL injection through data mining,” Inf.

Sci. (Ny)., vol. 231, pp. 15–31, May 2013.

[75] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for database intrusion detection using

context-sensitive modelling (extended abstract),” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol.

5587 LNCS, pp. 196–205.

[76] H. T. Nguyen, C. Torrano-Gimenez, G. Aalvarez, K. Franke, and S. Petrović, “Enhancing the

effectiveness of web application firewalls by generic feature selection,” Log. J. IGPL, vol. 21, no.

4, pp. 560–570, Aug. 2013.

[77] S.-H. H. Ahn, N.-U. U. Kim, and T.-M. M. Chung, “Big data analysis system concept for detecting

unknown attacks,” in International Conference on Advanced Communication Technology, ICACT,

2014, pp. 269–272.

[78] Y. Wang and Z. Li, “SQL injection detection with composite kernel in support vector machine,”

Int. J. Secur. its Appl., vol. 6, no. 2, pp. 191–196, 2012.

[79] Y. Wang, D. Wang, W. Zhao, and Y. Liu, “Detecting SQL Vulnerability Attack Based on the

Dynamic and Static Analysis Technology,” in Computer Software and Applications Conference

(COMPSAC), 2015 IEEE 39th Annual, 2015, vol. 3, pp. 604–607.

[80] M. Veanes, “Rex @ rise4fun from Microsoft,” Microsoft Research. [Online]. Available:

168

http://rise4fun.com/rex.

[81] R. B. McGhee, “Some finite state aspects of legged locomotion,” MBiosci, vol. 2, no. 1, pp. 67–84,

1968.

[82] W. G. J. Halfond, J. Viegas, and A. Orso, “A Classification of SQL Injection Attacks and

Countermeasures,” Prev. Sql Code Inject. By Comb. Static Runtime Anal., p. 53, 2008.

[83] D. Ariu and G. Giacinto, “HMMPayl: an application of HMM to the analysis of the HTTP

Payload,” Advances, vol. 11, pp. 81–87, Sep. 2010.

[84] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection attacks,” in Applied

Cryptography and Network Security, 2004, pp. 292–302.

[85] W. G. J. Halfond and A. Orso, “Combining static analysis and runtime monitoring to counter SQL-

injection attacks,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1--7, 2005.

[86] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb,” Proc. 2009 ACM Symp. Appl.

Comput. - SAC ’09, p. 2054, 2009.

[87] D. Appelt, N. Alshahwan, and L. Briand, “Assessing the Impact of Firewalls and Database Proxies

on SQL Injection Testing,” Springer, Cham, 2014, pp. 32–47.

[88] D. Appelt, A. Panichella, and L. Briand, “Automatically Repairing Web Application Firewalls

Based on Successful SQL Injection Attacks,” in 2017 IEEE 28th International Symposium on

Software Reliability Engineering (ISSRE), 2017, pp. 339–350.

[89] A. Joshi and V. Geetha, “SQL Injection detection using machine learning,” Control.

Instrumentation, Commun. Comput. Technol. (ICCICCT), 2014 Int. Conf., no. 2, pp. 1111–1115,

2014.

[90] E. H. Cheon, Z. Huang, and Y. S. Lee, “Preventing SQL Injection Attack Based on Machine

Learning,” Int. J. Adv. Comput. Technol., vol. 5, no. 9, pp. 967–974, 2013.

[91] B. Zhou, R. Karuparthi, and B. Zhou, “Enhanced Approach to Detection of SQL Injection Attack,”

2016 15th IEEE Int. Conf. Mach. Learn. Appl., pp. 1–4, Dec. 2016.

[92] D. Appelt, C. D. Nguyen, and L. Briand, “Behind an application firewall, are we safe from SQL

injection attacks?,” in 2015 IEEE 8th International Conference on Software Testing, Verification

and Validation, ICST 2015 - Proceedings, 2015.

[93] P. Hernandez, “Microsoft Preps for Azure Machine Learning Launch.,” eWeek, p. 1, 2014.

[94] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static analysis tool for SQL/JDBC

applications,” Softw. Eng. 2004. ICSE 2004. Proceedings. 26th Int. Conf., pp. 697–698, 2004.

[95] C. Gould, Z. Su, P. Devanbu, G. Wassermann, C. Gould, Z. Su, P. Devanbu, G. Wassermann, C.

Gould, Z. Su, and P. Devanbu, “Static checking of dynamically generated queries in database

applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4, pp. 645–654, Sep. 2004.

[96] G. Wassermann and Z. Su, “An analysis framework for security in Web applications,” SAVCBS

2004 Specif. Verif. Component-Based Syst., p. 70, 2004.

[97] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A static analysis framework for

detecting SQL injection vulnerabilities,” in Proceedings - International Computer Software and

Applications Conference, 2007, vol. 1, pp. 87–94.

169

[98] E. Al-Khashab, F. S. Al-Anzi, and A. A. Salman, “PSIAQOP: Preventing SQL Injection Attacks

Based on Query Optimization Process,” in Proceedings of the Second Kuwait Conference on e-

Services and e-Systems, 2011, p. 10:1----10:8.

[99] L. K. Shar and H. B. K. Tan, “Predicting common web application vulnerabilities from input

validation and sanitization code patterns,” Proc. 27th IEEE/ACM Int. Conf. Autom. Softw. Eng. -

ASE 2012, p. 310, 2012.

[100] I. Medeiros, N. Neves, and M. Correia, “Detecting and Removing Web Application Vulnerabilities

with Static Analysis and Data Mining,” IEEE Trans. Reliab., vol. 65, no. 1, pp. 54–69, Mar. 2016.

[101] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application security assessment by

fault injection and behavior monitoring,” Proc. World Wide Web Conf., p. 148, 2003.

[102] L. Liu, J. Xu, H. Yang, C. Guo, J. Kang, S. Xu, B. Zhang, and G. Si, “An Effective Penetration

Test Approach Based on Feature Matrix for Exposing SQL Injection Vulnerability,” in Proceedings

- International Computer Software and Applications Conference, 2016, vol. 1, pp. 123–132.

[103] Y. Shin, L. Williams, and T. Xie, “SQLUnitGen: Test Case Generation for SQL Injection

Detection,” 2006, pp. 2006–21.

[104] A. Sharma, “Exploiting undefined behaviors for efficient symbolic execution,” in Companion

Proceedings of the 36th International Conference on Software Engineering - ICSE Companion

2014, 2014, pp. 727–729.

[105] J.-C. Lin, J.-M. Chen, and H.-K. Wong, “An Automatic Meta-revised Mechanism for Anti-

malicious Injection,” in Network-Based Information Systems, Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 98–107.

[106] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL injection vulnerability checking,”

in Proceedings - International Conference on Quality Software, 2008, pp. 77–86.

[107] A. Ciampa, C. A. Visaggio, and M. Di Penta, “A heuristic-based approach for detecting SQL-

injection vulnerabilities in Web applications,” in Proceedings of the 2010 ICSE Workshop on

Software Engineering for Secure Systems, 2010, pp. 1–7.

[108] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated testing for SQL injection

vulnerabilities: an input mutation approach,” in Proceedings of the International Symposium on

Software Testing and Analysis, 2014, pp. 259–269.

[109] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand, “SOFIA: An automated security oracle

for black-box testing of SQL-injection vulnerabilities,” in 2016 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2016, pp. 167–177.

[110] D. Appelt, “Automated Security Testing of Web-Based Systems Against SQL Injection Attacks,”

2016.

[111] R. A. McClure and I. H. Krüger, “Sql Dom,” in Proceedings of the 27th international conference

on Software engineering - ICSE ’05, 2005, p. 88.

[112] OWASP INJECTION, “SQL Injection Prevention Cheat Sheet,” 2016, 2016. [Online]. Available:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet. [Accessed: 18-May-

2016].

[113] A. Owasp, “OWASP Top 10 Proactive Controls 2016,” 2016.

[114] J. D. Meier, A. Mackman, B. Wastell, P. Bansonde, and A. Wigley, “How To: Prevent Cross-Site

170

Scripting in ASP.NET,” Microsoft, 2005. [Online]. Available: https://msdn.microsoft.com/en-

us/library/ff648339.aspx. [Accessed: 19-Mar-2017].

[115] D. Wichers, “Input validation cheat sheet,” 2013.

[116] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement generation to remove SQL

injection vulnerabilities,” Inf. Softw. Technol., vol. 51, no. 3, pp. 589–598, 2009.

[117] K. Natarajan and S. Subramani, “Generation of Sql-injection Free Secure Algorithm to Detect and

Prevent Sql-Injection Attacks,” Procedia Technol., vol. 4, pp. 790–796, 2012.

[118] V. Karakoidas, D. Mitropoulos, P. Louridas, and D. Spinellis, “A type-safe embedding of SQL into

Java using the extensible compiler framework J%,” Comput. Lang. Syst. Struct., vol. 41, pp. 1–20,

2015.

[119] H. Fernando and J. Abawajy, “Securing RFID systems from SQLIA,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, vol. 7017 LNCS, no. PART 2, pp. 245–254.

[120] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiDDS: SQL Injection Detection Using Query

Transformation and Document Similarity,” Distrib. Comput. Internet Technol. Icdcit 2015, vol.

8956, pp. 377–390, 2015.

[121] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the detection of sql attacks,”

Intrusion Malware Detect. Vulnerability Assess., pp. 123–140, 2005.

[122] Y. S. Jang and J. Y. Choi, “Detecting SQL injection attacks using query result size,” Comput.

Secur., vol. 44, pp. 104–118, 2014.

[123] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL injection attacks in stored

procedures,” in Proceedings of the Australian Software Engineering Conference, ASWEC, 2006,

vol. 2006, pp. 191–198.

[124] D. Das, U. Sharma, and D. Bhattacharyya, “An Approach to Detection of SQL Injection Attack

Based on Dynamic Query Matching,” Int. J. Comput. …, vol. 1, no. 25, pp. 28–34, 2010.

[125] X. Fu and C.-C. Li, “A String Constraint Solver for Detecting Web Application Vulnerability,”

Proc. 22nd Int. Conf. Softw. Eng. Knowl. Eng. - SEKE’2010, pp. 535–542, 2010.

[126] G. Wassermann and Z. Su, “Sound and precise analysis of web applications for injection

vulnerabilities,” ACM SIGPLAN Not., vol. 42, no. 6, p. 32, 2007.

[127] A. Kie, P. J. Guo, and M. D. Ernst, “Automatic Creation of SQL Injection and Cross-Site Scripting

Attacks,” 2009.

[128] I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and correction of web application

vulnerabilities using data mining to predict false positives,” in Proceedings of the 23rd

international conference on World wide web - WWW ’14, 2014, pp. 63–74.

[129] B. Smith and L. Williams, “Using SQL hotspots in a prioritization heuristic for detecting all types

of web application vulnerabilities,” in Proceedings - 4th IEEE International Conference on

Software Testing, Verification, and Validation, ICST 2011, 2011, pp. 220–229.

[130] G. M. Howard, C. N. Gutierrez, F. A. Arshad, S. Bagchi, and Y. Qi, “PSigene: Webcrawling to

generalize SQL injection signatures,” in Proceedings - 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN 2014, 2014, pp. 45–56.

171

[131] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, “New deep learning method to detect code injection

attacks on hybrid applications,” J. Syst. Softw., vol. 137, pp. 67–77, Mar. 2018.

[132] Y. Yan, P. Guo, and L. Liu, “A novel hybridization of artificial neural networks and ARIMA

models for forecasting resource consumption in an IIS web server,” in Proceedings - IEEE 25th

International Symposium on Software Reliability Engineering Workshops, ISSREW 2014, 2014, pp.

437–442.

[133] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network Anomaly Detection: Methods,

Systems and Tools,” IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp. 303–336, 2014.

[134] D. Atienza, Á. Herrero, and E. Corchado, “Neural analysis of HTTP traffic for web attack

detection,” in Advances in Intelligent Systems and Computing, 2015, vol. 369, pp. 201–212.

[135] T. Threepak and A. Watcharapupong, “Web attack detection using entropy-based analysis,” in

International Conference on Information Networking, 2014, pp. 244–247.

[136] R. Awasthi and D. Mangal, “An Approach Based on SVM Classifier to Detect SQL Injection

Attack,” vol. 3, no. 3, pp. 256–260, 2016.

[137] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiGoT: Detecting SQL Injection Attacks using

Graph of Tokens and SVM,” Comput. Secur., vol. 60, pp. 206–225, 2016.

[138] M. Y. Kim and D. H. Lee, “Data-mining based SQL injection attack detection using internal query

trees,” Expert Syst. Appl., vol. 41, no. 11, pp. 5416–5430, 2014.

[139] B. D. Priyaa and M. I. Devi, “Hybrid SQL injection detection system,” in ICACCS 2016 - 3rd

International Conference on Advanced Computing and Communication Systems: Bringing to the

Table, Futuristic Technologies from Arround the Globe, 2016, pp. 1–5.

[140] A. Giordani and A. Moschitti, “Translating Questions to {SQL} Queries with Generative Parsers

Discriminatively Reranked,” Coling2012, no. December 2012, pp. 401–410, 2012.

[141] C. Pinzón, Á. Herrero, J. F. De Paz, E. Corchado, and J. Bajo, “CBRid4SQL: A CBR intrusion

detector for SQL injection attacks,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6077

LNAI, no. PART 2, pp. 510–519.

[142] Microsoft Azure, “Feature Hashing,” Machine Learning, 2018. [Online]. Available:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/feature-

hashing. [Accessed: 11-Jun-2018].

[143] N. M. Sheykhkanloo, “SQL-IDS: Evaluation of SQLi Attack Detection and Classification Based

on Machine Learning Techniques,” in Proceedings of the 8th International Conference on Security

of Information and Networks, 2015, pp. 258–266.

[144] R. M. Pandurang and D. C. Karia, “A mapping-based podel for preventing Cross site scripting and

SQL injection attacks on web application and its impact analysis,” Proc. 2015 1st Int. Conf. Next

Gener. Comput. Technol. NGCT 2015, pp. 414–418, Sep. 2016.

[145] N. Khan, J. Abdullah, and A. S. Khan, “Defending Malicious Script Attacks Using Machine

Learning Classifiers,” Wirel. Commun. Mob. Comput., vol. 2017, pp. 1–9, 2017.

[146] I. Jacobs, “URIs, Addressability, and the use of HTTP GET and POST,” Tech. Archit. Gr. Find.,

2004.

[147] Y. Aboukir, “SQL Injection through HTTP Headers - InfoSec Resources,” Infosec, 2012. [Online].

172

Available: http://resources.infosecinstitute.com/sql-injection-http-headers/.

[148] J. McCray, “Manual Web Application Testing Basics - Pastebin.com,” Pastebin, 2015. [Online].

Available: http://pastebin.com/ka5pvLp8. [Accessed: 21-Aug-2016].

[149] Crown, “Computer Misuse Act 1990,” Comput. Misuse Act 1990, p. 16, 2008.

[150] sqlinjection, “SQL Injection Using UNION,” sqlinjection, 2016. [Online]. Available: http://www.

sqlinjection.net/union/. [Accessed: 03-Feb-2016].

[151] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull.

Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[152] B. Brown, “Finite State Automata-youtube,” Youtube video, 2015. [Online]. Available:

https://www.youtube.com/watch?v=SCqXMzt4pf0. [Accessed: 19-Apr-2017].

[153] M. Veanes, P. De Halleux, N. Tillmann, P. de Halleux, N. Tillmann, P. De Halleux, and N.

Tillmann, “Rex: Symbolic regular expression explorer,” in ICST 2010 - 3rd International

Conference on Software Testing, Verification and Validation, 2010, pp. 498–507.

[154] M. Veanes, N. Bjorner, and L. de Moura, “Symbolic Automata Constraint Solving,” vol. 6397.

2010.

[155] Telerik, “Fiddler - The Free Web Debugging Proxy by Telerik,” Telerik, 2012. [Online]. Available:

http://www.telerik.com/fiddler. [Accessed: 25-Jun-2017].

[156] J. Barnes, Azure Machine Learning Microsoft Azure Essentials. 2015.

[157] OWASP, “SQL Injection - OWASP,” OWASP, 2016. [Online]. Available: https://www.owasp.

org/index.php/SQL_Injection_Bypassing_WAF. [Accessed: 19-Jul-2017].

[158] M. Zwitter and M. Soklic, “UCI Machine Learning Repository: Breast Cancer Data Set,” UCI,

2012. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Original).

[159] G. Betarte, E. Giménez, R. Martínez, and Á. Pardo, “Machine learning-assisted virtual patching of

web applications,” 2018.

[160] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion

detection system evaluations as performed by Lincoln Laboratory,” ACM Trans. Inf. Syst. Secur.,

vol. 3, no. 4, pp. 262–294, Nov. 2000.

[161] S. J. Stolfo, “KDD cup 1999 dataset,” UCI KDD Repos. http//kdd.ics.uci.edu, p. 0, 1999.

[162] M. Gupta and J. Han, “Approaches for Pattern Discovery Using Sequential Data Mining,” Pattern

Discov. Using Seq. Data …, no. c, pp. 1–20, 2012.

[163] S. B. Kotsiantis, “Supervised Machine Learning : A Review of Classification Techniques,”

Informatica, vol. 31, pp. 249–268, 2007.

[164] P. Dayan, Unsupervised learning. 2009.

[165] D. Mitropoulos and D. Spinellis, “SDriver: Location-specific signatures prevent SQL injection

attacks,” Comput. Secur., vol. 28, no. 3–4, pp. 121–129, 2009.

[166] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “Preventing input validation vulnerabilities

173

inweb applications through automated type analysis,” in Proceedings - International Computer

Software and Applications Conference, 2012, pp. 233–243.

[167] L. K. Shar and H. B. K. Tan, “Defeating SQL injection,” Computer (Long. Beach. Calif)., vol. 46,

no. 3, pp. 69–77, Mar. 2013.

[168] M. K. Gupta, M. C. Govil, and G. Singh, “Static analysis approaches to detect SQL injection and

cross site scripting vulnerabilities in web applications: A survey,” in International Conference on

Recent Advances and Innovations in Engineering, ICRAIE 2014, 2014, pp. 1–5.

[169] D. Mitropoulos, P. Louridas, M. Polychronakis, and A. D. Keromytis, “Defending Against Web

Application Attacks: Approaches, Challenges and Implications,” IEEE Trans. Dependable Secur.

Comput., pp. 1–1, 2017.

[170] T. Pietraszek and C. Vanden Berghe, “Defending against injection attacks through context-sensitive

string evaluation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 3858 LNCS, pp. 124–145.

[171] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically generated

queries in database applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4, p. 14–es, Sep.

2007.

[172] D. Li, Y. Lyu, M. Wan, and W. G. J. Halfond, “String analysis for Java and Android applications,”

Proc. 2015 10th Jt. Meet. Found. Softw. Eng. - ESEC/FSE 2015, pp. 661–672, 2015.

[173] X/Open Company., Data management : SQL Call Level Interface (CLI). X/Open Company, 1995.

[174] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Automatically hardening

web applications using precise tainting,” in IFIP Advances in Information and Communication

Technology, 2005, vol. 181, pp. 295–307.

[175] J. D. McCaffrey, “Creating Neural Networks using Azure Machine Learning Studio | James D.

McCaffrey.” [Online]. Available: https://jamesmccaffrey.wordpress.com/2014/09/24/creating-

neural-networks-using-azure-machine-learning-studio/. [Accessed: 23-Jul-2017].

[176] Amazon, “Amazon Machine Learning - Predictive Analytics with AWS,” Amazon.com, 2016.

[Online]. Available: https://aws.amazon.com/machine-learning/. [Accessed: 11-Aug-2016].

[177] IBM, “IBM Watson Analytics,” IBM Watson Analytics, 2016. .

[178] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separation for medical

diagnosis applied to breast cytology.,” Proc. Natl. Acad. Sci. U. S. A., vol. 87, no. 23, pp. 9193–

9196, Dec. 1990.

[179] Microsoft, “Reserved Keywords (Transact-SQL),” MSDN. [Online]. Available: https://msdn

.microsoft.com/en-us/library/ms189822.aspx.

[180] E. Anderson, “The Species Problem in Iris,” Ann. Missouri Bot. Gard., vol. 23, no. 3, p. 457, Sep.

1936.

[181] R. A. Fisher, “THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS,”

Ann. Eugen., vol. 7, no. 2, pp. 179–188, Sep. 1936.

[182] M. van der Loo, “{stringdist}: an {R} Package for Approximate String Matching,” R J., vol. 6, no.

1, pp. 111–122, 2014.

174

[183] MSDN, “Matching Behavior,” MSDN Library. [Online]. Available: https://msdn.microsoft

.com/en-us/library/0yzc2yb0(v=vs.100).aspx. [Accessed: 03-Feb-2016].

[184] Microsoft Azure, “Normalize Data - Azure Machine Learning Studio | Microsoft Docs.” [Online].

Available:https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/

normalize-data. [Accessed: 01-Jul-2018].

[185] Microsoft, “Cheat sheet: How to choose a MicrosoftML algorithm - Machine Learning Server |

Microsoft Docs,” Microsoft, 2017. [Online]. Available: https://docs.microsoft.com/en-us/machine-

learning-server/r/how-to-choose-microsoftml-algorithms-cheatsheet. [Accessed: 25-Feb-2018].

[186] Microsoft Azure, “Clean and prepare data for Azure Machine Learning | Microsoft Docs,”

Microsoft Azure, 2017. [Online]. Available: https://docs.microsoft.com/en-us/azure/machine-

learning/machine-learning-data-science-prepare-data. [Accessed: 14-Apr-2017].

[187] Nitesh V. Chawla et. al, “SMOTE,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.

[188] D. Becker, “What is Log Loss? | Kaggle,” Kaggle, 2018. [Online]. Available: https://www.

kaggle.com/dansbecker/what-is-log-loss. [Accessed: 26-Jul-2018].

[189] R. A. B. Collier, “Making Sense of Logarithmic Loss - datawookie,” Datawokie, 2015. [Online].

Available: https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/.

[Accessed: 26-Jul-2018].

[190] Microsoft Azure, “Evaluate Model - Azure Machine Learning Studio | Microsoft Docs,” Microsoft

Azure, 2018. [Online]. Available: https://docs.microsoft.com/en-us/azure/machine-learning/studio-

module-reference/evaluate-model. [Accessed: 27-Jul-2018].

[191] J. D. McCaffrey, “Log Loss and Cross Entropy are Almost the Same | James D. McCaffrey,” 2016

DevIntersection Conference Pre-Event Interview, 2016. [Online]. Available: https://

jamesmccaffrey.wordpress.com/2016/09/25/log-loss-and-cross-entropy-are-almost-the-same/.

[Accessed: 26-Jul-2018].

[192] Deep Learning Course Wiki, “Log Loss - Deep Learning Course Wiki,” Deep Learning Course

Wiki, 2017. [Online]. Available: http://wiki.fast.ai/index.php/Log_Loss. [Accessed: 26-Jan-2018].

[193] C. Pinzón, J. F. De Paz, J. Bajo, Á. Herrero, and E. Corchado, “AIIDA-SQL: An Adaptive

Intelligent Intrusion Detector Agent for detecting SQL injection attacks,” in 2010 10th

International Conference on Hybrid Intelligent Systems, HIS 2010, 2010, pp. 73–78.

[194] T. Pietraszek and C. Vanden Berghe, “Defending Against Injection Attacks Through Context

Sensitive String Evaluation,” Recent Adv. Intrusion Detect., pp. 124–145, 2006.

[195] A. Naderi-Afooshteh, A. Nguyen-Tuong, M. Bagheri-Marzijarani, J. D. Hiser, and J. W. Davidson,

“Joza: Hybrid Taint Inference for Defeating Web Application SQL Injection Attacks,” in

Proceedings of the International Conference on Dependable Systems and Networks, 2015, vol.

2015–Septe, pp. 172–183.

[196] Microsoft, “Access SQL: basic concepts, vocabulary, and syntax - Access,” MS Office, 2007.

[Online]. Available: https://support.office.com/en-gb/article/Access-SQL-basic-concepts-

vocabulary-and-syntax-444d0303-cde1-424e-9a74-e8dc3e460671.

[197] Progress Telerik Fiddler, “Configure Fiddler to decrypt HTTPS traffic | Progress Telerik Fiddler

Documentation,” 2018. [Online]. Available: https://docs.telerik.com/fiddler/Configure-Fiddler/

Tasks/DecryptHTTPS. [Accessed: 24-Jun-2018].

[198] MSDN, “Filter-Based Feature Selection,” Microsoft Azure. [Online]. Available: https://msdn.

175

microsoft.com/en-us/library/azure/dn905854.aspx. [Accessed: 18-Feb-2018].

[199] Andreas de Ruiter, “Setting the threshold of a binary learning model in Azure ML – Andreas De

Ruiter’s BI blog,” Microsoft. [Online]. Available: https://blogs.msdn.microsoft.com

/andreasderuiter/2015/02/10/setting-the-threshold-of-a-binary-learning-model-in-azure-ml/.

[Accessed: 21-Aug-2016].

[200] Microsoft Azure, “Deploy a Machine Learning web service | Microsoft Docs,” Microsoft Azure,

2017. [Online]. Available: https://docs.microsoft.com/en-us/azure/machine-learning/machine-

learning-publish-a-machine-learning-web-service. [Accessed: 30-Apr-2017].

[201] H. Huang, L. Qian, and Y. Wang, “A SVM-based technique to detect phishing URLs,” Inf. Technol.

J., vol. 11, no. 7, pp. 921–925, 2012.

[202] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297,

Sep. 1995.

[203] V. N. Vapnik, “The Nature of Statistical Learning Theory,” Springer. 1995.

[204] Microsoft Azure, “Two-Class Support Vector Machine,” MSDN Library, 2016. [Online].

Available: https://msdn.microsoft.com/library/azure/12d8479b-74b4-4e67-b8de-d32867380e20/?

f=255&MSPPError=-2147217396. [Accessed: 22-Jan-2016].

[205] M. Veanes, “Applications of symbolic finite automata,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2013, vol. 7982 LNCS, pp. 16–23.

[206] MSDN, “Regular Expression Language - Quick Reference,” Microsoft MSDN. [Online]. Available:

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx. [Accessed: 05-Mar-2016].

[207] MSDN, “Details of Regular Expression Behavior.” [Online]. Available: https://msdn.microsoft

.com/en-us/library/e347654k.aspx. [Accessed: 10-Jul-2015].

[208] Wikipedia, “Kleene star,” Wikipedia, 2017. [Online]. Available: https://en.wikipedia.org/wiki

/Kleene_star#Examples. [Accessed: 11-Nov-2017].

[209] G. Ericson and J. Takaki, “Tune Model Hyperparameters - Azure Machine Learning Studio |

Microsoft Docs,” Microsoft Azure ML, 2018. [Online]. Available: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/tune-model-hyperparameters. [Accessed: 18-

Feb-2018].

[210] D. Appelt, C. D. Nguyen, A. Panichella, and L. C. Briand, “A Machine Learning-Driven

Evolutionary Approach for Testing Web Application Firewalls,” IEEE Trans. Reliab., pp. 1–24,

2018.

[211] Atefeh Tajpour, Maslin Massrum, Mohammad Zaman Heydari, A. Tajpour, M. Massrum, and M.

Z. Heydari, “Comparison of SQL injection detection and prevention techniques,” 2010, pp. V5-

174-V5-179.

[212] M. Kaushik and G. Ojha, “Attack Penetration System for SQL Injection,” Int. J. Adv. Comput. Res.,

vol. 4, no. 2, pp. 724–732, 2014.

[213] N. M. Sheykhkanloo, N.M. Sheykhkanloo, N. M. Sheykhkanloo, and N.M. Sheykhkanloo,

“Employing Neural Networks for the Detection of SQL Injection Attack,” in Proceedings of the

7th International Conference on Security of Information and Networks, 2014, pp. 318–323.

[214] R. Analytics, “What is R?,” R-project.org, 2015.

176

[215] J. McCaffrey, “R programming succinctly,” 2017.

[216] J. Chambers and Bell Laboratories, “What is R?,” r-project.org, no. 1, 2000.

[217] R. Cox, “Regular Expression Matching Can Be Simple And Fast,” 2007. [Online]. Available:

http://swtch.com/~rsc/regexp/regexp1.html. [Accessed: 05-Feb-2018].

[218] L. D’Antoni and M. Veanes, “Minimization of symbolic automata,” Proc. 41st ACM SIGPLAN-

SIGACT Symp. Princ. Program. Lang. - POPL ’14, pp. 541–553, 2014.

	1 Introduction
	1.1 Introduction
	1.2 Research Goals
	1.3 Contributions
	1.4 Thesis Chapters Outline
	1.4.1 Overview
	1.4.2 Chapter 2: Background
	1.4.3 Chapter 3: Literature Review
	1.4.4 Chapter 4: Numerical Encoding to Tame SQLIA
	1.4.5 Chapter 5: Applied predictive analytics to mitigate SQLIA
	1.4.6 Chapter 6: Pattern-driven data set to mitigate SQLIA
	1.4.7 Chapter 7: Conclusion

	2 Background
	2.1 Introduction
	2.2 SQL Injection Mechanisms
	2.2.1 SQL Injection through Web Form Input
	2.2.2 SQLIA through query strings
	2.2.3 SQLIA through HTTP header fields
	2.2.4 SQLIA through cookies
	2.2.5 SQLIA through the second-order attack

	2.3 SQLIA intent
	2.3.1 Identifying injectable websites
	2.3.2 Determining database schema
	2.3.3 Evading detection
	2.3.4 Circumvent confidentiality, integrity and availability

	2.4 SQLIA types
	2.4.1 Tautology
	2.4.2 Invalid/logical incorrect query
	2.4.3 Union
	2.4.4 Piggyback queries
	2.4.5 Stored procedure
	2.4.6 Time-based query
	2.4.7 Alternate encoding obfuscation

	2.5 Principles of Applied Techniques
	2.5.1 FSA fundamentals
	2.5.2 Fiddler Web Proxy Application Programming Interface (API)
	2.5.3 Machine Learning (Thesis perspective)
	2.5.3.1 ML fundamentals
	2.5.3.2 Traditional programming vs Machine learning
	2.5.3.3 Data set
	2.5.3.4 Learning algorithms
	2.5.3.5 MAML Platform

	2.6 Conclusion

	3 Literature Review
	3.1 Introduction
	3.2 SQLIV testing and detection
	3.2.1 Static testing
	3.2.2 Dynamic runtime testing
	3.2.3 Discussion

	3.3 Web application code sanitisation for SQLIV prevention
	3.3.1 Defensive coding/sanitisation approaches
	3.3.1.1 Prepared statements
	3.3.1.2 Whitelist of inputs including data type validation
	3.3.1.3 Input escaping

	3.3.2 Discussion

	3.4 Dynamic runtime analysis for detection and prevention of SQLIA
	3.4.1 Runtime analysis
	3.4.2 Taint-based
	3.4.3 Machine Learning and Neural Network runtime analysis

	3.5 Conclusion

	4 Numerical Encoding to Tame SQLIA
	4.1 Introduction
	4.1.1 Problem statement
	4.1.2 Motivation
	4.1.3 Approach overview

	4.2 Injection points and SQLIA features
	4.2.1 Injection point
	4.2.2 SQLIA features

	4.3 Numerical features encoding
	4.3.1 String features derivation and vectors encoding
	4.3.2 Sitype attribute (p)
	4.3.3 Sidetermination attribute (v)
	4.3.4 Rndrisk attribute (r)
	4.3.5 Siriskfactor attribute (l)
	4.3.6 Siclass attribute

	4.4 The implementation steps on MAML studio
	4.4.1 Data set input data items
	4.4.2 Pre-processing or data engineering
	4.4.3 Normalisation
	4.4.4 Split of the vector matrices between training and testing set
	4.4.5 Training a supervised model

	4.5 Evaluation and Result
	4.5.1 Statistical measures and ROC curve
	4.5.1.1 Score probabilities
	4.5.1.2 Threshold
	4.5.1.3 Statistical measures
	4.5.1.3.1 Accuracy
	4.5.1.3.2 Precision
	4.5.1.3.3 Recall
	4.5.1.3.4 F1 Score

	4.5.1.4 ROC curve and AUC

	4.5.2 Binary classification algorithms
	4.5.2.1 Metrics: Normalisation and Split ratios of binary classification
	4.5.2.2 Metrics: Statistical measures and ROC curve

	4.5.3 Multiclass classification algorithms
	4.5.3.1 Multiclass algorithms: Normalisation and split data ratio
	4.5.3.1.1 MNN 70:30 vs 80:20 training to testing split data ratio
	4.5.3.1.2 MLR 70:30 vs 80:20 training to testing split data ratio.
	4.5.3.1.3 MNN vs MLR using Logistic Normalisation at 80:20 split data ratio

	4.5.4 Cross-validation
	4.5.4.1 Binary Cross-Validation
	4.5.4.2 Multiclass Cross-Validation

	4.6 Discussion
	4.7 Conclusion

	5 Applied Predictive Analytics to Mitigate SQLIA
	5.1 Introduction
	5.1.1 Problem statement
	5.1.2 Motivation
	5.1.3 Approach overview

	5.2 Building a data set member string
	5.2.1 Deriving the data set
	5.2.2 SQLIA Data set and Labelling

	5.3 Training Analytics experiment and deployment
	5.3.1 Learning data input
	5.3.2 Text pre-processing
	5.3.3 Feature hashing
	5.3.4 Filter-based feature selection for top relevant vectors
	5.3.5 Split of vector matrices between training and testing data
	5.3.6 Training the prediction model

	5.4 Evaluation and performance metrics of Binary TC SVM
	5.4.1 Accuracy
	5.4.2 Precision
	5.4.3 Recall
	5.4.4 F1 Score
	5.4.5 Cross-validation

	5.5 Publishing and consuming the prediction analytics web service
	5.5.1 Predictive experiment
	5.5.2 Web Service: web interface test of the prediction model

	5.6 Discussion
	5.7 Conclusion

	6 Pattern-Driven Corpus to Mitigate SQLIA
	6.1 Introduction
	6.1.1 Problem statement
	6.1.2 Motivation
	6.1.3 Approach overview

	6.2 SQL hotspot and modelling data set attributes
	6.2.1 SQL hotspot
	6.2.2 Modelling data set attributes

	6.3 Obtaining the learning data (data set)
	6.3.1 Generating the regular expression constraints
	6.3.2 RegEx pattern from strings and size of dictionary word list
	6.3.3 RegEx pattern from a given string structure and size
	6.3.4 Member strings transposition
	6.3.5 SQLIA labelling

	6.4 Predictive analytics experiment and deployment
	6.4.1 A high-level overview of the experimental steps:
	6.4.1.1 Data set extraction
	6.4.1.2 Text pre-processing
	6.4.1.3 Features hashing to the matrix
	6.4.1.4 Split of vector matrices between training and testing data
	6.4.1.5 Training the prediction model
	6.4.1.6 Publishing and consuming the prediction web service

	6.5 Evaluation and performance metrics
	6.5.1 Binary classification
	6.5.2 Cross-validation

	6.6 Discussion
	6.7 Conclusion

	7 Conclusion
	7.1 Introduction
	7.2 Chapter 2: Background & Theory
	7.3 Chapter 3: Literature Review
	7.4 Chapter 4: Numerical Encoding to Tame SQLIA
	7.5 Chapter 5: Applied Predictive Analytics to SQLIA
	7.6 Chapter 6: Pattern-Driven Corpus to Mitigate SQLIA
	7.7 Research summary
	7.8 Discussion and future work
	7.8.1 Discussion
	7.8.2 Future work

	References

