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Abstract 

The back-end database provides accessible and structured storage for each web 

application’s big data internet web traffic exchanges stemming from cloud-hosted web 

applications to the Internet of Things (IoT) smart devices in emerging computing. 

Structured Query Language Injection Attack (SQLIA) remains an intruder’s exploit of 

choice to steal confidential information from the database of vulnerable front-end web 

applications with potentially damaging security ramifications.  

Existing solutions to SQLIA still follows the on-premise web applications server hosting 

concept which were primarily developed before the recent challenges of the big data 

mining and as such lack the functionality and ability to cope with new attack signatures 

concealed in a large volume of web requests. Also, most organisations’ databases and 

services infrastructure no longer reside on-premise as internet cloud-hosted applications 

and services are increasingly used which limit existing Structured Query Language 

Injection (SQLI) detection and prevention approaches that rely on source code scanning. 

A bio-inspired approach such as Machine Learning (ML) predictive analytics provides 

functional and scalable mining for big data in the detection and prevention of SQLI in 

intercepting large volumes of web requests. Unfortunately, lack of availability of robust 

ready-made data set with patterns and historical data items to train a classifier are issues 

well known in SQLIA research applying ML in the field of Artificial Intelligence (AI). 

The purpose-built competition-driven test case data sets are antiquated and not pattern-

driven to train a classifier for real-world application. Also, the web application types are 

so diverse to have an all-purpose generic data set for ML SQLIA mitigation. 

This thesis addresses the lack of pattern-driven data set by deriving one to predict SQLIA 

of any size and proposing a technique to obtain a data set on the fly and break the circle 

of relying on few outdated competitions-driven data sets which exist are not meant to 

benchmark real-world SQLIA mitigation. The thesis in its contributions derived pattern-

driven data set of related member strings that are used in training a supervised learning 

model with validation through Receiver Operating Characteristic (ROC) curve and 

Confusion Matrix (CM) with results of low false positives and negatives. We further the 

evaluations with cross-validation to have obtained a low variance in accuracy that 

indicates of a successful trained model using the derived pattern-driven data set capable 

of generalisation of unknown data in the real-world with reduced biases. Also, we 

demonstrated a proof of concept with a test application by implementing an ML 

Predictive Analytics to SQLIA detection and prevention using this pattern-driven data set 

in a test web application. We observed in the experiments carried out in the course of this 

thesis, a data set of related member strings can be generated from a web expected input 

data and SQL tokens, including known SQLI signatures. The data set extraction ontology 

proposed in this thesis for applied ML in SQLIA mitigation in the context of emerging 

computing of big data internet, and cloud-hosted services set our proposal apart from 

existing approaches that were mostly on-premise source code scanning and queries 

structure comparisons of some sort.
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1  Introduction 

Figure 1-1 presents the thesis organisation layout with the sections in this chapter. 

 

Figure 1-1 Thesis organisation chart: The figure displays the chapter visual representation of the 

different sections to visualise the layout of the entire thesis.  

1.1 Introduction 

SQLIA is an intruder exploit of choice for vulnerable web applications to pilfer 

confidential data from the database with potentially damaging consequences. There are 

challenges in securing web applications with continuous innovations in internet 

applications that have seen an astronomical growth of big data emanating from web 

requests to cloud-hosted web applications and the Internet of Things (IoT). This large 

volume of web requests in internet traffic needs analyses to intercept spurious web 

requests destined to a vulnerable web application and associated back-end database. 

Applying AI techniques provide a solution to detect and prevent SQLIA in big data 

context, but there are issues of non-availability of pre-existing pattern-driven data set 

required to train a supervised learning model. 

Introduction
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An AI approach can provide scalable data mining for SQLIA detection and 

prevention. The application of an AI approaches to analysing large volumes of web 

requests could effectively predict attack signatures by classifying web requests based on 

the labelled data set. The labelled data set is used to train the classification algorithms to 

predict SQLIA thereby dropping suspicious web requests before reaching the back-end 

database to pilfer protected data. However, AI techniques have met with the issue of 

lacking an existing data set [1], [2]. Throughout this thesis, we refer to corpus as a data 

set following the University of California, Irvine (UCI) ML repository naming convention 

[3]. The existing solutions [4], [5], [14], [6]–[13] to mitigate SQLIA were all before 

emerging computing of cloud-hosted services and the upward trend in big data internet 

traffic and as such lack the functionality and ability to cope with new attack signatures 

concealed in web requests. 

An intruder is described as an individual or a group that breaches the security of a 

protected computer system by employing an array of techniques to disrupt and pilfer 

confidential data. A typical method used to steal sensitive data is by SQLIA and which 

often results in new signatures stealthily bypassing the protection of Web Application 

Firewalls (WAF). Back-end database security exploits have thus evolved with the 

availability of the off-the-shelf tools used by an intruder to automate SQLIA. These tools 

are often combined by an intruder to provide both penetration testing and exploits in 

SQLIA with a few notable examples: Burb Suite [15], SQLMap [16], BSQL Hacker [17], 

SQLninja [18], BSQL Hacker [17] and Metasploit [19].  

Automated SQL Injection Vulnerabilities (SQLIV) penetration testing and SQLIA 

exploit tools like Burb Suite, SQLMap and SQLninja as a few examples, offer the intruder 

a new method in creating many more derivations of new attack signatures over the 

existing SQLIA string lookup approach mitigation proposed by researchers over the years 

[4], [5], [14], [20], [6]–[12]. These existing approaches to mitigate SQLIA existed in an 

era when web application servers were hosted in an organisation’s own intranet and 

extranet. These existing solutions to address SQLIA are no longer applicable in emerging 

computing with a cloud-hosted services’ edge Software-Defined Network (SDN) 

application endpoints which have broad web request hits across the internet. 

SQL Injection (SQLI) is not only a vulnerability arising from developers’ lack of 

security awareness in web application development to require the input sanitisation but 

an exploit of the free text processing capability of the SQL engine. This SQL engine 
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design flexibility in free-text processing has ramifications in both legacies, and new web 

applications which lack sanitisation and so can become SQLI vulnerable. 

 SQLIV have thus not gone away and continue to feature in the Open Web 

Application Security Project (OWASP) top list of vulnerabilities [20]. A Google search 

of ‘SQLi hall of shame’ [21] throws light on how topical SQLIA issues are, even within 

reputable organisations, with a few examples listed in Table 1-1 and further described 

below.  

 SQLIA is still used in many data vulnerabilities and pilfering security attacks, 

including the Florida County election website which when hacked resulted in usernames 

and passwords being stolen [22]. The TalkTalk Mobile UK hacks involved a teenager 

pilfering more than four million customer details that include sensitive information like 

passwords and credit card numbers [23], [24]. Also, the VTech hacking resulted in the 

leak of 4.8 million customer transaction details [25]. SQLIV were also found in New 

Joomla [26] and McAfee ePolicy Orchestrator (ePO) [27]. Equifax, which provides credit 

report services around the world, was hacked with 145 million Americans personal data 

compromised [28]. Once hacked, the confidential data pilfered by an intruder is then often 

traded on the dark web for ransom, blackmailing and financial gains.  

Table 1-1 SQLIA and SQLIV examples  

Company Type Description Year 

TalkTalk Mobile 

UK  

SQLIA 4 million customer details including personal details, 

passwords and credit card numbers pilfered [23], [24] 

2015 

VTech  SQLIA 4.8 million customer transaction details pilfered [25] 2015 

Symantec  SQLIV Console vulnerability [29] 2016 

Facebook  SQLIV Employee details vulnerability [30] 2016 

McAfee ePolicy 

Orchestrator)  

SQLIV McAfee ePolicy Orchestrator (ePO) [27] 2017 

Joomla CMS web  SQLIV SQLIV were found in New Joomla [26] 2017 

Equifax  SQLIA 145 million Americans personal data compromised [28] 2017 

Wordpress  SQLIV Vulnerability in WordPress plugins that needed to be patched 

[31] 

2017 

GoDaddy SQLIV Vulnerability detected by researchers [32] 2017 

Joomla SQLIV Vulnerabilities identified and fixed by Joomla developers [33] 2018 

BSNL SQLIA Bharat Sanchar Nigam Limited (BSNL) hacks of potentially 

47000 plus employees record compromised [34] 

2018 

Indian Railway SQLIV Vulnerabilities of non-sensitive data exposed [35] 2018 

The proposed model delivers a self-contained SQLIA detection and prevention 

solution which is the subject of the empirical evaluation by statistical measures, ROC 

curve and cross-validations including a comparison with existing SQLIA research over 
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the years. A prototype of the proposed model in Figure 1-2 illustrates the proposed model 

with the details of the numbered stages provided below: 

Web requests

Yes SQLIA

Malicious 
intruder. 

Safe

Return unrevealing 
error.

Good
 guy

No

Trained Two-Class SVM 
exposed as a web service 
in ongoing binary 
classification of SQLIA.

Predictive analytics integrated 
into web form to validate 
input for on-going SQLIA 
detection and prevention.

Cloud SDN:
Proxy API intercepts 
request, decrypt & 
predictive analytics.

1

2

3
4

Predictive 
analytics  

predicting 
SQLIA.

Protected 
Database.

Return results to 
valid requests.

Public/Private Cloud

 

Figure 1-2 A prototype of the proposed model: The figure is illustrating the prototype of the 

proposed model illustrating the design overview including consuming a trained ML model at the web 

proxy API and client forms in an ongoing SQLIA detection and prevention. 

1. The result of a highly trained ML model is deployed as a web service which 

provides predictive analytics to validate the data input web form at the front-end. 

When a protected web form receives an input, it verifies the data to predict SQLI. 

A legitimate expected data pass the first test to proceed to the server for further 

validation while the spurious request is dropped as it has failed a simple web form 

input validation. 

2. The second stage is to intercept the query string of the web request by Fiddler 

Proxy API integrated with a trained ML model web service at the cloud SDN 

endpoint. These captured web requests are analysed to predict SQLIA as most 

SQLI by an intruder bypass the front-end web form input to inject the query in 
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transition to the back-end web application servers with SQLIA type to circumvent 

the security protection of the application. This stage is followed by the system 

decision phase using the results of the SQLIA prediction analysis to allow the web 

request to proceed or not. 

3. The third stage inferred from the outcome of the intercepted web request for 

predictive analytics to fulfil the web request or referred it to the fraud team for a 

second opinion. Analysed web request results deemed true negative to SQLIA are 

performed while true positive ones are passed to the human expert for further 

scrutiny before a cleverly crafted response to avoid an intruder using the error 

messages to further a more SQLIA.  

4. The final stage involves legitimate or expected web requests that are truly negative 

to SQLIA being fulfilled. Also, this mitigation proposed does not rely on query 

comparison as seen in existing work as the proposal tracks the input data from the 

web request form driven by a web service to when it is intercepted in-transition to 

the back-end database at the proxy API for predictive analytics. 

In the scheme presented in this thesis, we explored generating sizeable historical 

learning data that are pattern-driven as input learning data to train a supervised learning 

model. We implemented Regular Expression (RegEx) [36], [37] to create patterns and 

String Package [38] to generate all possible derivations of strings that share the same 

pattern (members strings) to obtain the learning data. These derived member strings are 

encoded to numerical vector values required to train AI models. The transformation of 

derived member strings to numeric vectors sets a precedence for the suitability of 

applying the feature hashing to the data set generated from member strings to get input 

matrix discussed in Chapters 5 and 6 in SQLIA mitigation in the context of big data.  

This thesis applies predictive analytics to demonstrate a proof of concept as it uses 

the pattern-driven data set containing vector extraction from expected web requests, 

known attack patterns including SQL tokens present at the injection points. SQL query 

comprises of lexical or syntactic units named tokens. The SQL tokens are the query 

keywords, constants and delimiter identifiers [39]. The data set is preprocessed and 

labelled for supervised learning. The trained classifier is deployed as a web service that 

is consumed in a custom .NET application implementing a web proxy API [40] to 

intercept and accurately predict SQLIA in web requests, thereby preventing malicious 

web requests from reaching the protected back-end database. The models are empirically 
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evaluated in a MAML studio to validate the performance metrics of the approach 

presented in this thesis. 

Recent years have seen the maturing of applied research in AI applications with the 

availability of commercial platforms like MAML studio [41], [93]. The Microsoft Azure 

ML AI platform provides cloud-hosted services and infrastructures to support big data 

analytics in virtually all application domains. Also, it offers empirical statistical measures 

validation in the form of the ROC curve, CM and k-fold cross-validation. Thus, the 

experimental results presented in this thesis are implemented and empirically validated 

on MAML studio. 

The proposed model in this thesis is built on MAML studio [42], and the 

methodology includes extraction of data set attributes items and labelling, classification 

of SQLIA features, and validation of the supervised learning model. The model is then 

exposed as a web service for real-time SQLIA detection and prevention. 

MAML studio, which is a cloud-hosted ML Platform as a Service (PaaS) allows data 

scientist to expand the horizons of AI models from the confines of statistical measures 

and evaluations to building a predictive analytic model that is highly trained and evaluated 

that is ready to use in real-life applications. It has the programming models of R and 

Python scripting which allows data scientist to leverage an existing body of knowledge 

on AI algorithms in these programming languages.  

MAML has been seen as a game-changer by data scientist, practitioners applying to 

business applications in its features offering, including supporting the traditional 

languages such as R and Python scripting [43]. Also, the simplicity and the quick 

turnaround from start to finish of building a ready to deploy trained model has made it 

the top AI platform among the fifteen widely used AI commercial platforms [44].  

The MAML studio comes equipped with inbuilt ML standard validation modules of 

statistical measures [45]–[47], including the ROC curve, CM and cross-validation widely 

accepted and used in data science to measure the performance of a trained ML model 

[48]–[51]. The cross-validation module provides a statistical measure of which a low 

standard deviation or variance in accuracy indicates of a trained model with reduced 

biases capable of generalisation of unknown data to the classifier in a real-world 

application [47]. The MAML studio follows the favoured k-fold cross-validation k =10 

[48], [49], [52]. 
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The MAML studio provides an established validation model of statistical measures, 

including the ROC curve and CM. The ROC curve is a graph plot of recall or True 

Positive Rate (TPR) against False Positive Rate (FPR). It demonstrates the trade-off 

between sensitivity (TPR) and specificity (FPR) shifts at various thresholds as an increase 

in one will result in the decrease of the other in the x and y-axis of the graph. A curve 

towards hugging the top of the y-axis indicates a good performance while towards the x-

axis indicates a poor performance [53]. A CM is a favourite in multiclass classification 

that presents a table containing the classifier performance metrics results of the testing 

data observations at various thresholds [54]. The ROC curve and CM are widely used in 

clinical studies for validating medical diagnostic results and have recently found their 

way into data sciences in the empirical evaluation of classifiers or trained AI models [46], 

[51], [55]. The MAML studio provides a one-stop solution to these AI principles from 

procuring data set for training and validating of a trained model including cross-

validation.  

1.2 Research Goals 

In applying ML to SQLIA problems, there is a need for a data set. This thesis proposes 

the following research questions: 

• Can patterns in both web expected requests and SQL tokens including existing SQLIA 

signatures extraction be used to create a large volume of data set of encoded numeric 

vector variables required to train a supervised learning model? 

• Can the pattern-driven data set be validated? 

• Can a web application type be protected produce the artefact for the extraction of a 

pattern-driven data set? 

These research questions are answered in the following contributions:  

• The ability to derive a pattern-driven data set to predict SQLIA of any size. 

• The training of a supervised learning model using the pattern-driven data set with 

validation through a ROC curve, CM and cross-validation. 

• Providing applied ML predictive analytics to SQLIA detection and prevention using 

a pattern-driven data set from a web application type domain’s data context. 
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The results of experiments conducted in this research demonstrate patterns exist in 

web input data in both legacy and new web applications that can be leveraged to generate 

as many derivations of member strings (strings that share the same pattern). In applying 

ML techniques that require data sets with sufficient learning data arising from these 

patterns, we thus explore Finite State Automaton (FSA) states walk [56]–[58] to generate 

learning data from these patterns that exist in the input data to any web application type 

context. 

The success of the pattern-driven numeric encoding of features to obtain extensive 

learning data that contain vector matrices opens-up further work in string features 

vectorisation. Vectorisation or hashing [59], [60] is a technique of converting strings to 

input vector matrices to train a supervised learning model in predictive analytics 

techniques to predict SQLIA at runtime.  

1.3 Contributions 

The listed contributions below in a broader scope has significance in resolving the issues 

researchers currently faced in the field of Intrusion Detection System (IDS) which include 

SQLI in procuring data set to apply AI techniques in the ever-growing big data. In this 

research work, we present the following novel contributions:  

• We presented an ontology in Chapter 4 and related publications [61], [62] for crafting 

a pattern-driven data set using R string API from the web application type with a 

technique to encode the data set into vectors required to train a supervised learning 

model in MAML studio. We trained a supervised learning classification algorithm 

with this pattern-driven data set and validated the trained model under various 

classification algorithms with high performance metrics statistical measures including 

cross-validation as presented. The success of this conceptual approach in Chapter 4 

has led to further work in Chapters 5 and 6 by employing string hashing vectorisation 

in-place of manual encoding on implementing a proof of concept of how the proposal 

will be applied in a real-world web application. 

• We further in Chapter 5 and related publication [63] the numeric encoding of features 

presented in Chapter 4 with hashing vectorisation to obtain vector matrices to train 

the classification algorithms. In answering the research question if the intended web 

application type can produce the artefact for a pattern-driven data set, we implemented 

a web application that expects dictionary words as a valid input while elements of 
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SQL tokens and SQLIA type signatures substitution at the SQLI hotspots is predicted 

as SQLIA positive. The pattern-driven data set is used to train a supervised learning 

model employing a TC LR and TC SVM classification algorithms with the better-

evaluated and cross-validated classifier selected to predict SQLIA. The selected 

trained TC SVM model is exposed as a web service which is then deployed to the 

web form and the cloud SDN proxy for intercepting web requests in-transition to a 

back-end database for analysis. 

• We demonstrated in Chapter 6 and related publication [64] a more robust method of 

pattern-driven data set procurement based on the web application type; we derived a 

pattern-driven data set using Finite State Automata (FSA) and Symbolic Finite 

Automata (SFA) techniques as against R string API technique presented in Chapter 5 

to derive related member strings. The referred web application expects dictionary 

words as a valid input while elements of SQL tokens and SQLIA type substitution 

predicted at the SQLI hotspots are predicted as SQLIA positive. The pattern-driven 

data set is used to train a supervised learning model employing a TC LR and TC SVM 

classification algorithms with the better-evaluated and cross-validated classifier 

selected to predict SQLIA. The trained TC SVM model is exposed as a web service 

which is then consumed in a web form for input validation and a proxy API at the 

cloud SDN for intercepting web request for analysis. We observed using the SFA 

technique to derive related member strings that we could generate a pattern-driven 

data set with features of related member strings of any size to train a classifier for 

SQLIA mitigation for real-world application. 

On account of the few existing data sets related to this domain of study were either 

generated for competition as in ECML/PKDD 2007 [65] and HTTP dataset CSIC 2010 

[66]. The HTTP dataset CSIC 2010 was motivated for a need for a replacement to out of 

date DARPA KDD Cup 1999 [67]. These data sets are repeatedly found in research work 

as test data for textbook evaluations and have come under scrutiny over the years of being 

antiquated and irrelevant to building the real-world application as it contains some 

inconsistencies [67], [68]. Also, though these data sets have provided textbook 

evaluations of various proposals over the years, it does not offer the features to build real-

life ML-based SQLIA mitigation. We propose in this thesis for the artefact to construct a 

pattern-driven data set for an ML model to be extracted from the web application type 

being protected in ongoing SQLIA mitigation. 
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Web-driven applications including business, government, private and purpose-built 

internet-driven applications are implemented for various needs as to have a standardised 

data set. Thus, this diversity in web application types is too broad to have one standard 

all-purpose (universal) generic data set to train a supervised learning model to mitigate 

SQLIA. The few purpose-built data sets [65], [66] would typically contain unprocessed 

repeating query strings of features that exist in SQLIA types. Applying data set of 

repeating strings devoid of patterns in ML supervised learning model results in poor 

performance metrics [70]. 

The existing approaches applying AI typically obtained a data set either by having a 

phase in the implementation where tools are used to simulate attack signatures or with the 

query string logged into a file as a data set to be used in the training of a classifier to 

predict SQLIA [71]–[74]. Another method is to extract query strings or URL from the 

web as a data set used in applying ML technique to predict SQLIA [75]. Alternatively, 

do a textbook evaluation using purpose-built data set of HTTP dataset CSIC 2010 as 

implemented by Nguyen et al. [76]. These procurement techniques described above 

results in repeating strings devoid of pattern. The drawback of these methods is the 

limitation of only predicting SQLIA based on the scope of the saved logged file used as 

a data set to train a classifier. Also, there are results of poor performance metrics of the 

hashed matrix vectors required to train a classifier extracted from these query string 

transformations that would often contain spaces and comments of SQLIA signatures 

which are often exploited by an intruder. Thus, when such query strings are hashed for 

the matrix vectors to train a classifier, a shift of spaces between strings would result in 

high prediction errors of a false negative.  

The existing research work [72], [77]–[79] applying the AI approach were used for 

evaluations using ROC curve and CM, but not how you would deploy the trained model 

in the implementation of these proposals. We propose that string pattern exists in every 

input data in both legacy and new web applications and that these can be leveraged to 

generate as many derivations of related member strings when combined with existing 

known attack signatures to create a labelled pattern-driven data set fit for training a 

classifier to build a real-world SQLIA mitigation. 

 Overall, the approach presented in this thesis obtains pattern-driven data set from 

the pattern of expected valid data and established SQLIA signatures. The proposal applies 

string replication, transpositions including using a tool named Regular expression 
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explorer (Rex) [80] to generate similar patterns of strings (related member strings) as to 

obtain massive learning data to train a classifier. The trained supervised learning model 

is then evaluated in MAML studio with a highly trained model deployed as a web service 

in the ongoing SQLIA mitigation as aforementioned and illustrated in Figure 1-2. 

1.4 Thesis Chapters Outline 

1.4.1 Overview 

This thesis outline summarises the chapters starting with the introduction, followed by a 

background, literature review chapter that form the building blocks to the contributions 

detailed in Chapters 4, 5 and 6 and ends with a conclusion in Chapter 7. The thesis is laid 

out in seven chapters including the Chapter one which provides the thesis synopsis. The 

Chapter one covers the introduction, research goals, contributions and thesis outline 

which gives a high-level overview of each of the subsequent chapters described below: 

1.4.2 Chapter 2: Background 

Chapter two has the background and theories around SQLIA and the approach presented 

in this thesis. In this chapter, we discuss attack intent, injection mechanism; SQLIA types, 

web proxies [40]; FSA [56], [58], [81], and ML principles that are used throughout the 

thesis. The background theory on SQLIA which include attack intent; injection 

mechanism and SQLIA types [82] forms the fundamental principles on which SQLIA 

mitigation proposed by researchers over the years are based that is discussed here. 

Packet interception for analyses to detect intrusion exploiting SQLIA have been 

explored in Ariu & Giacinto [83]. An application-level proxy applied in this thesis 

performs better in intercepting and decrypting obfuscated web requests than low-level 

network packet interception tools which suffer from message fragmentation in large 

volumes of gigabits per seconds of packets on the wire. The proxy interception of web 

requests for analysis to mitigate SQLIA has been successfully explored in previous 

research work by various researchers over the years [84]–[88]. 

SQLIA mitigation exploring FSA provides a functional approach to pattern analysis 

for various SQLIA signatures. Analysing web requests for patterns of SQLIA signatures 

by implementing RegEx can be found in research work by academics proposed over the 

years [5], [88]. ML techniques have been explored over the years by academics as a bio-

inspired technique to mitigate SQLIA [72], [73], [89]–[92]. However, solely relying on 
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pattern analysis with a regular expression in emerging computing with big data emanating 

from various web requests to analyse for SQLIA is computationally intensive. In this 

thesis, we apply a regular expression to generate pattern-driven data set used to train a 

classifier in ML techniques to mine the large web requests in SQLIA mitigation [61]–

[64]. This background knowledge of SQLIA and FSA fundamentals forms the basis to 

mitigate SQLIA in the techniques proposed in this thesis. 

1.4.3 Chapter 3: Literature Review 

Chapter three examines the literature review on SQLIA to establish research up to date 

and identify gaps in the existing proposals by various researchers. We broadly classify 

these proposals over the years into three categories. Namely, SQLIV testing and 

detection; defensive coding in web application code sanitisation for SQLI prevention; and 

dynamic runtime analysis, including taint-based and approaches applying Artificial 

Intelligence (AI) employed in this thesis. Figure 1-3 presents the three categories of 

proposals over the years. 

 

Figure 1-3 SQLI review category chart 

SQLIV testing and detection approach is a vulnerabilities penetration testings that include 

static testing [8], [82], [94]–[100] and dynamic runtime testing [101]–[109]. Penetration 

testing approaches are mostly applied in SQLIV detection, and there is a requirement for 

source code access and with only a handful that extended the proposal to include 

prevention [110]. 

Defensive coding is a developer-centric web application code sanitisation for SQLI 

prevention [111]–[118]. The defensive coding is an approach usually prescribed by 

OWASP and needs the developer’s security awareness before web application 

development. Also, the functioning of this approach strongly relies on string lookup and 

regular expressions which are computationally intensive in a large volume of web 

requests to and fro cloud-hosted applications as seen recently in emerging computing.  

SQLI Review

SQLIV testing and 
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Defensive coding 
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Dynamic runtime analysis [4], [5], [124], [125], [10], [84], [119]–[123], including 

taint-based [7],[126], [127] and approaches applying AI involves dynamic runtime 

comparison of queries with static generated queries to detect SQLIA signatures. The taint-

based technique involves labelling of data which is then tracked to the database entry to 

assert if it is from trusted or untrusted sources. In AI [71], [72], [134]–[141], [74], [100], 

[128]–[133] the static generated queries exist as a labelled data set which is then used to 

train a classifier to predict SQLIA in web requests. 

In this thesis, we reviewed SQLIA mitigations proposals over the years and observed 

the following:  

• Proposals over the years were aimed at web applications hosted within 

organisations’ intranet or extranet. 

• The proposals were string lookup that required source code access. 

• The proposals would not scale in emerging computing of big data emanating 

from the enormous volume of distributed web requests to cloud-hosted 

applications. 

• The non-availability of pattern-driven data set to apply AI, but with the few 

data set relating to SQLIA being out of date in relevance to real-world 

application. 

 On account of the literature review, we propose in this thesis a pattern-driven data 

set to train a supervised learning model in SQLIA mitigation to have answered the 

research questions. 

1.4.4 Chapter 4: Numerical Encoding to Tame SQLIA 

Chapter four titled Numerical Encoding to Tame SQLIA is the subject of an IEEE 

conference paper titled Numerical Encoding to Tame SQLIA (NETSQLIA) [62] and a 

European Conference on Cyber Warfare and Security Conference (ECCWS) paper titled 

Applied web traffic analysis for numerical encoding of SQL Injection Attack Detection 

and Prevention [61]. In these papers, we discussed our first approach to generate a pattern-

driven data set where none exists, including using ML supervised learning algorithms to 

train this derived pattern-driven data set in towards SQLIA mitigation with evaluation 

through ROC curve and CM. We inferred in these papers experimental results of accurate 

prediction of True Positives (TP) and True Negatives (TN), but with an improvement in 

prediction errors of low False Positives (FP) and False Negatives (FN) with cross-
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validation of low standard deviation (variance) of accuracy demonstrating a trained model 

of reduced biases to unknown data. 

The web application types are so diverse and dynamic to rely on out of date 

competition-driven data sets [65], [66] that were only good for the detecting of anomalies 

in the competition and project for which they were generated. These academic 

competitions-driven data sets do not benchmark performance metrics for an AI trained 

model in the real-world diverse web application types. On account of the lack of all-

purpose data set of the various web applications that exist; there is a need for a paradigm 

shift from relying on out of date competition-driven data sets to a pattern-driven data set. 

The pattern-driven data set which varies in web application types is generated from the 

pattern that exists in the expected legitimate web request input, including illegitimate web 

requests containing SQL tokens and injection attack signatures to a web application which 

is one of the novel contributions of this thesis. 

This chapter examines the viability of obtaining pattern-driven learning data to train 

a supervised learning model towards applying ML techniques in SQLIA detection and 

prevention. It discusses the following research question of: Can the patterns that exist in 

both expected web requests and SQL tokens including existing SQLIA signature 

extraction be used to create a pattern-driven data set with vectors required to train a 

supervised learning model and evaluated?  

We derived a data set from the patterns that exist in an expected input data to web 

applications including SQL tokens and SQLIA signatures. These SQLIA mitigation 

artefact are further encoded to numerical values to obtain vectors required to train ML 

supervised learning models. We identified in the experiments conducted; there is a need 

for the proposed model implementation to be able to process actual string input as against 

numeric values, this sets precedence for further work in subsequent chapters. We further 

the numerical encoding to a feature hashing in following Chapters 5 and 6 and related 

conference papers. Feature hashing transform strings into a set of features represented by 

vector matrices [60], [142] require to train an ML model. 

1.4.5 Chapter 5: Applied predictive analytics to mitigate SQLIA 

Chapter five titled Applied predictive analytics to mitigate SQLIA forms the subject of 

an IEEE conference workshop paper publication titled Applied Machine Learning 

Predictive Analytics to SQL Injection Attack Detection and Prevention [63]. In this paper, 
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we presented the hashing of features to obtain vector matrices needed to train a supervised 

learning model to adopt the proposal in a proof of concept implementation in an 

application that processes strings input on intercepted web requests to predict SQLIA. 

This chapter examines the research question: if a web application type being 

protected has the artefact for the extraction of a pattern-driven data set? The chapter 

discusses employing the string patterns of R string package to derive massive learning 

data of expected web request input. The data set is transformed to vector matrices 

obtained by hashing to train a supervised learning model. The chapter demonstrates a 

proof of concept of a web application where a pattern-driven data set containing English 

dictionary words labelled as SQLIA negative and SQL tokens including SQLIA 

signatures labelled as SQLIA positive to train a classifier to predict SQLIA. An encounter 

of SQL tokens including known SQLIA signatures in an intercepted web request for 

analysis is predicted as SQLIA positive while dictionary words excluding SQL keywords 

are predicted as SQLIA negative. The trained model is evaluated using statistical 

measures, and a ROC curve with prediction results of high TP and TN, but low FP and 

FN of SQLIA with cross-validation of low variance in accuracy demonstrating a trained 

model of reduced biases to unknown data. 

1.4.6 Chapter 6: Pattern-driven data set to mitigate SQLIA 

Chapter six titled Pattern-driven data set to mitigate SQLIA is the subject of an IEEE 

conference paper publication titled An Applied Pattern-Driven Data set to Predictive 

Analytics in Mitigating SQL Injection Attack [64]. 

The chapter further the research question answered in Chapter 5 with a different 

method to generate pattern-driven data set. This chapter employs FSA and SFA principles 

to produce all possible related member strings to derive a pattern-driven data set from a 

web application type expecting dictionary word as a valid input. The data set from the 

web application type is used to train an ML model to demonstrate a web application type 

could produce a relevant artefact for  SQLIA mitigation. The approach presented uses 

hashed pattern-driven data set from a web application type context as against relying on 

access to the web application’s source code or queries comparison, which has been 

employed in existing static and dynamic signature research approaches over the years. 

We obtained high performance metrics results validated through the statistical measures 

and the ROC curve, including cross-validation of low variance in accuracy, 
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demonstrating the trained model of reduced biases to unknown data in a real-world web 

application. 

1.4.7 Chapter 7: Conclusion 

Chapter seven has the conclusion. Based on the experimental results of the pattern-driven 

data set, we inferred patterns exist in every input data in both legacies (age-old web 

applications) and new web applications. These patterns can be leveraged to generate as 

many derivations of related member strings as to obtain massive learning data to train a 

supervised learning model that is validated with statistical measures including ROC 

curve, CM and cross-validation. We conclude that pattern-driven learning data extracted 

from any web application using the approach presented in this thesis can be used to train 

a supervised learning model that is deployed as a web service in ongoing SQLIA detection 

and prevention.  
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2  Background 

Figure 2-1 presents the organisation chart layout of this chapter with the sections. 

 

Figure 2-1 Background theory chapter organisation chart: The chapter organisation chart 

shows the arrangement of the chapter’s sections. 

2.1 Introduction 

SQLIA is any manipulation of web requests from a front-end web application by an 

intruder with intent to compromise the confidentiality, integrity and authorisation of the 

back-end database. Over the years, researchers have proposed various approaches to 

detect and prevent SQLIA [4], [5], [14], [20], [110], [143]–[145], [6]–[12]. The approach 

presented in this thesis intercept web requests by proxy from any SQL injection 

mechanism and analysed for SQL injection intent and types in providing a solution to 

mitigate against SQLIA. To better address the issues of SQLIA, researchers have 

discussed this background theory under the following headings of SQLIA mechanism, 

intent and types [82]. The rest of the chapter is organised as follows as illustrated in Figure 

2-1. In Section 2.2 we discuss various conduits for SQLIA under SQL injection 

mechanisms. In Section 2.3 we discuss the intruder intention to carry out SQLIA under 

SQLIA intent while in Section 2.4 we discuss various SQLIA types employed by an 

intruder for an effective SQLIA as to provide a broad understanding of the SQLIA in 

delivering a solution. Also, we discuss in Section 2.5 the fundamental of the applied 

techniques in mitigating SQLIA presented in this thesis.  
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2.2 SQL Injection Mechanisms 

Figure 2-2 presents this section organisation chart with the associated subsections. 

 

Figure 2-2 The section organisation chart: The section organisation chart with the related 

subsections. 

 

The SQL injection mechanism is the access technique explored by an intruder to 

compromise the security of a protected database. It is the commonly used conduit to 

introduce SQLIA to a back-end database-driven web application. 

2.2.1 SQL Injection through Web Form Input  

The web browser displays web forms that provide interactive access to web applications 

driven by HTTP GET or POST operations [146]. The input form of a loaded web page 

can be one of the conduits for SQLIA. An intruder can compromise a well-intention 

validation web form requiring a login name and password as shown in Figure 2-3 to an 

injected example presented in Figure 2-4 below.  

 

Figure 2-3 Web form input: A figure of a web form illustrating input data or web request data that 

is exploited as one of the conduits for SQLIA. 
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Figure 2-4 An Injected web form: A figure of a web form illustrating an SQLIA with just login 

name receiving an input bob appended with a tautology SQLIA type signature of OR 1=1 and -- to omit 

the password field. 

In the tautological SQLIA example presented in Figure 2-4, the requirement for the 

password is bypassed with the login name field receiving an input of bob but with the 

injection signature of ‘ OR (SQL symbol and keyword), 1=1 (a tautology which is always 

true to return all records) and -- (comment to ignore everything after the login name field 

e.g. the password field in this case). 

2.2.2 SQLIA through query strings  

During HTTP POST or GET operations of regular web form interactions, the Universal 

Resource Locator (URL) and associated input parameters termed query string can be 

injected by an intruder to circumvent any validation being provided to a secure web 

application. A valid web request that would appear in the query string as 

http://bsid/bsid/Data Page.aspx?Login Name=bob &Password=@bob can be injected by 

an intruder by recrafting the query string to http://localhost/bsid/DataPage.aspx? 

LoginName='OR%201=1--&Password= thereby omitting the requirement for a valid 

login name and password to access the application. 

2.2.3 SQLIA through HTTP header fields 

Web request messages contain HTTP header, which the following header parameters of 

X-Forwarded-For, user-agent and referrer are susceptible to SQLIA. The HTTP header 

parameters are typically overlooked and as such 75 % of the web application penetration 

scanners could not detect HTTP header SQLIA vulnerabilities [147]. The header 

parameters of X-Forwarded-For, User-agent and Referer fields can be injected with 

strings ‘OR 1=1. 
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2.2.4 SQLIA through cookies 

Cookies have stored state information which can be exploited in SQLIA to gain 

unauthorised access to the back-end database. Cookies contain stored state information 

of the actual interaction with the web application which can then be intercepted by an 

intruder to circumvent validation requirements thereby having full unauthorised access to 

the database. 

2.2.5 SQLIA through the second-order attack 

The second-order is an SQLI through a web application that allows an update without a 

proper input validation. An intruder will cleverly craft a trojan horse into the input 

supplied during registration, for example, a login name of “Alice” is registered as “Alice` 

--``. The symbols “ `--“ provide a ticking time bomb to be exploited at a later day by the 

intruder to update any ``Alice`` login with a new password to hijack the account. 

2.3 SQLIA intent 

Figure 2-5 presents this section organisation chart with the associated subsections. 

 

Figure 2-5 The section organisation chart: The figure shows this section organisation chart 

with the related subsections. 

 

An intruder will carry out SQLIA for a purpose or an intention which is aimed to 

circumvent confidentiality, integrity and availability of the fidelity of a Relational 

Database Management System (RDMS). In this section, we discuss both the preliminary 

steps an intruder will employ to establish an SQLIA and the intent for such attack. 

 Though recent years have seen some tools being made available that automate these 

probing of application’s web pages for vulnerabilities as discussed in 1.1 above, the 

manual process is still being used by a determined intruder to carry out these probes in 

advance of SQLIA. 

SQLIA intent

Identify Injectable 
Websites

Determining 
Database Schema

Evading Detection

Circumvent 
Confidentiality, 

Integrity and 
Availability 



21 

 

2.3.1 Identifying injectable websites  

A web form page can be tested for SQLIA vulnerabilities by looking at the telltale signs 

of parameter passing indicated by a question mark (?), e.g. http://bsid/Data Page.aspx? 

Login Name=bob in the query string [148]. Alternatively, in a scenario where a web form 

exists without the parameter passing in the query string, e.g. http://bsid/DataPage.aspx, a 

resulting error by a single quote (‘) input on the web form can expose vulnerabilities to 

SQLIA. Further to this manual process, automated vulnerability scanners referred to in 

1.1 above can also be used. 

2.3.2 Determining database schema 

The schema holds the metadata of a database which contains detailed information about 

the names of tables, columns, functions and data types which are invaluable information 

to an intruder to launch SQLIA. A simple single quote (‘) input to a web form can spill 

out this sensitive information as an error. A more sophisticated approach can be employed 

by using penetration testing SQLIV scanners like Burb Suite [15], SQLMap [16] and 

BSQL Hacker [17]. 

2.3.3 Evading detection 

An intruder would want to remain undetected so as not to set off an alarm in an audit log 

or any protection mechanisms to the web application as to be able to carry out its planned 

attack from start to completion. Apart from an intruder achieving a successful attack by 

employing tools that stealthily evade detection, there are also severe legal consequences 

in various jurisdictions that result from the hacker being caught. For example, the 

perpetrator of hacking can be dealt with under the Computer Misuse Act (CMA) 1990 in 

the United Kingdom [149].  

2.3.4 Circumvent confidentiality, integrity and availability 

Preserving the principle of information security of a protected asset is to maintain the 

attributes of Confidentiality, Integrity and Availability (CIA). SQLIA intent is to 

circumvent any of these attributes in the following ways: bypassing confidentiality by 

unauthorised access to confidential or encrypted data stored in the database; 

compromising database integrity by intercepting and modification of protected data; and 

carrying out malicious operations to drop tables and database resulting in non-availability 

of the database. These operations are performed by any individual or combination of the 

http://bsid/DataPage.aspx
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following methods: determined drawn-out manual processes (which include executing 

remote commands) and automated SQLIA exploit tools.  

2.4 SQLIA types 

Figure 2-6 presents this section organisation chart with the associated subsections. 

 

Figure 2-6 The section organisation chart: The figure shows this section organisation chart 

with the related subsections. 

SQLIA types are the techniques employed by an intruder to carry out SQLIA. The 

intruder would typically apply various SQLIA types in combination to open a vulnerable 

web application to be more susceptible as to ease the intended SQLIA from a start to a 

successful finish.  

Throughout this section, simple query examples (not exhaustive) are presented in 

Table 2-1 below to illustrate the different SQLIA types known signatures that are labelled 

SQLIA positive in the encoding of features into vectors. The section below provides a 

high-level overview of the SQLIA types which form the basis for the feature extraction 

of SQLIA payload that is encoded into numerical data (vectors). The layout of the tables 

below has SQLIA type (attack type), web request query strings, parsed Transact-

Structured Query Language (TSQL), attack intent, and SQLIA signatures pattern. 

2.4.1 Tautology 

Tautology based SQLIA type is carried out by injecting vulnerable sites with query strings 

that are altered in transit to retrieve data from the database. The classic example is by 

assigning modified strings to the WHERE clause which the query is incorrectly 

terminated with a single quote (‘) or with a tautological statement like OR 1=1 as shown 

in Table 2-1. The outcome is always parsed by the SQL parser to be true, meaning that 

the security validation of login credentials will be bypassed to retrieve all the records 

from the affected back-end database table. 
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Table 2-1 SQLIA types and attack signatures: A table of SQLIA types illustrating attack 

signatures. 

SQL 

Types 

Query string Parsed TSQL Attack Intent Pattern 

Tautology http://localhost/bsid/DataPa

ge.aspx?LoginName=bob'O

R%201=1--&Password= 

SELECT loginName, 

password FROM 

tblUser WHERE 

loginName= 'bob' OR 

1=1-- 

Injectable 

hotspots, 

circumventing 

authentication, 

pilfering data 

`--,1=1, 

‘a’=’a’ etc. 

Logical 

incorrect 

queries 

http://localhost/bsid/DataPa

ge.aspx?LoginName=';IF((S

ELECT%20user)%20=%20'

sa'%20OR%20(SELECT%

20user)%20=%20'dbo')%20

SELECT%201%20ELSE%

20SELECT%201/0;--

2%80%99&Password= 

SELECT loginName, 

password FROM 

tblUser WHERE 

loginName=’; IF 

((SELECT user) = 'sa' 

OR (SELECT user) = 

'dbo') SELECT 1 

ELSE SELECT 1/0; -- 

Detecting 

vulnerabilities, 

pilfering data, and 

database 

fingerprinting 

SQL Keywords e.g. 

SELECT  

IF, ELSE 

sa, dbo,1/0 

Union 

queries 

http://localhost/bsid/DataPa

ge.aspx?LoginName=&Pass

word=UNION%20SELECT

%20CreditNo,%20CustAdd

ress%20from%20tblCrediti

nfo 

SELECT loginName, 

password FROM 

tblUser WHERE 

loginName=' ' 

UNION SELECT 

CreditNo, 

CustAddress from 

tblCreditinfo 

Bypassing 

authentication and 

pilfering data. 

‘  

UNION SELECT 

Piggyback 

queries 

http://localhost/bsid/DataPa

ge.aspx?LoginName=;%20

SELECT%20*%20from%2

0tblCreditInfo%20-- 

SELECT loginName, 

password FROM 

tblUser WHERE 

LoginName=''; 

SELECT * from 

CreditCardInfo -- 

Extracting data 

beyond the scope 

of the web 

application and 

executing 

commands 

‘  

; 

Store 

procedure 

queries 

http//bsid/bsid/login.aspx? 

LoginName=’ ’;exec 

xp_cmdshell 'attrib 

"c:\test\spuriousfile.vbs" +r' 

SELECT * FROM 

tblUser where 

loginname ='‘; exec 

xp_cmdshell 'attrib 

"c:\test\ 

spuriousfile.vbs " +r' 

Privilege 

escalation, remote 

command, 

performing denial 

of service 

;,Exec, xp_cmdshell 

Attrib c:\test\ 

spuriousfile.vbs " +r 

Time-based 

queries 

http://localhost/bsid/DataPa

ge.aspx?LoginName=';%20

waitfor%20delay%20'00:00

:10'--&Password= 

SELECT loginName, 

password FROM 

tblUser WHERE 

loginName=' '; waitfor 

delay '00:00:10'-- 

Probing of 

injectable hotspots 

and database 

schema 

‘ 

waitfor delay 

'00:00:10'-- 

Alternate 

encoding 

obfuscation 

http%3A%2F%2Flocalhost

%2Fbsid%2FDataPage.aspx

%3F%0ALoginName%3Db

ob%27OR%25201%3D1--

26Password%3D%0A 

SELECT loginName, 

password FROM 

tblUser WHERE 

loginName=' '; waitfor 

delay '00:00:10'-- 

Obfuscating data 

to evade detection 

% 

Hex values & 

Numeric values 

-- 

2.4.2 Invalid/logical incorrect query 

The incorrect query is often used to probe the vulnerabilities of the target before the actual 

SQLIA. The information gained during this initial phase is used by the intruder to 

determine what form of further attack to carry out on the target web application. The 

example query string in Table 2-1 will return a divide by zero error if the login account 

is not sa or using dbo schema.  
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2.4.3 Union 

This attack exploits the union command ability to query multiple database tables to 

retrieve confidential data far beyond the tables used in the web application as shown in 

Table 2-1. There are intermediate steps of using ORDER BY to get column names [150].  

2.4.4 Piggyback queries 

The intruder exploits the semicolon (;) which is the end of an expression of a valid SQL 

query. In this example, the intruder appends a semicolon to a valid SQL statement to carry 

out SQLIA. An intruder would typically combine other SQLIA type [150] to obtain 

database table names. In Table 2-1, the SQL query is piggyback to run SELECT * from 

tblCreditinfo to gain unauthorised credit card information. 

2.4.5 Stored procedure 

The intruder elicits database information by exploiting xp_cmdshell if enabled, to trigger 

a trojan horse file for a malicious attack at a later day. Also, stored procedures are 

vulnerable to privilege escalation, buffer overflows and even manipulated to gain elevated 

permission access to perform operating system-wide operations [82]. In the example 

query presented in Table 2-1, an attacker runs xp-cmdshell against spurious text files 

loaded in the target to circumvent the security of the database. 

2.4.6 Time-based query 

The time-based attack is a time-delayed type of SQLIA where an intruder probes a site to 

elicit a response after a period of time. The intruder starts off by issuing a SQL query and 

waits for results. The query shown in Table 2-1 will display a response after ten seconds, 

which provides an intruder with the information required to further additional attacks. 

2.4.7 Alternate encoding obfuscation 

Alternate encoding obfuscated exploits a combination of escape and Unicode characters 

which the computer systems interpret as valid characters without distinction from 

deliberate obfuscation. An intruder can circumvent solutions being provided in pattern 

matching of SQLIA as it becomes unreadable as shown in Table 2-1. 

Not limited to the above injection mechanisms and SQLIA types which are the 

subject of the pattern-driven data set labelling of SQLIA positive in this thesis; there are 

other forms of pattern evading techniques like the use of comments, whitespace, character 

casing and encryption that are exploited by an intruder in SQLIA. 
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2.5 Principles of Applied Techniques 

Figure 2-7 presents this section organisation chart with the associated subsections. 

 

Figure 2-7 The section organisation chart: The figure presents this section organisation chart 

with the associated subsections. 

 

We propose in this thesis the interception of web requests at the proxy API to predict 

SQLIA. The scheme presented here demonstrates deriving data set using the FSA 

technique to create pattern-driven learning data needed to train a supervised learning 

model. A Web Proxy API is required to intercept web requests to application endpoints 

while the MAML platform provides a cloud-hosted environment to build and deploy an 

ML model through a web service. 

2.5.1 FSA fundamentals 

FSA is an abstract state transition machine in response to inputs as to change from one 

state to the other [56], [58], [151]. In the scheme presented in this thesis, we explore the 

FSA state transition walk for the derivations of related member strings to obtain massive 

volumes of learning data. ML techniques require a large data set that is meaningful to 

train a classifier without which a trained model becomes worthless [70]. The approach 

explores traditional Nondeterministic Finite Automata (NFA) implemented in .NET 

RegEx to define patterns and constraints that exist in the expected input, including known 

SQLIA signatures and SQL tokens to be predicted at the SQLIA hotspot. 

To apply our approach in generating learning data; there is a need to produce patterns 

of expected input data. Figure 2-8 below illustrates the FSA states transition walks that 

forms the fundamental building blocks of our learning data extraction technique from the 

patterns that exist in the expected input data including SQLIA signature and SQL tokens.  

In Figure 2-8, let the transitions alphabets which are the substrate for member strings 

generation to be represented by a set of {a, b}. The states transition walks can be 
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condensed into a regular expression of a(ab)*|bb(ab)* which can accept these possible 

inputs sets of member strings {a,aab….bn, bb,bba,bbab…bn}. 

The state walks from the initial state to the accepting state via transition states shown 

in Figure 2-8 can be interpreted as follows: 

• Between initial state (1) and accepting state (2), we have {a}. 

• Between initial state (1) and state (3) via accepting state (2), we have {aa}. 

• Between initial state (1) and state (3) via accepting state (2) and back to 

accepting state (2), we have {aab}. 

• Between initial state (1) and state (3), we have {b}. 

• Between initial state (1) and accepting state (2) via state (3), we have {bb}. 

• Between initial state (1) and accepting state (2) via state (3), and back again to 

state (3), we have {bba}.  

The states walk can go on with {bbab}, {bbabb…..bn} and so on [152]. This forms 

a classical NFA transition states with nondeterministic states walk. 

1 2

3

Transition

Initial
 state

Accepting
 state

Transition

Transition

1 2

3

Transition

Initial
 state

Accepting
 state

Transition

Transition
 state

 

Figure 2-8 FSA illustrating transition state walks 

 

These above manual collations of transition states walk to generate all possible 

member strings’ regular expression is automated by employing the research work by 

Veanes et al. [153], [154] on Symbolic Finite Automaton (SFA). The SFA technique is 

used to generate the member strings computationally from the tool they developed named 

Regular expression explorer (Rex) [80]. We use Rex to generate massive volumes of 

learning data. 

2.5.2 Fiddler Web Proxy Application Programming Interface (API) 

A Fiddler proxy provides the functionality to intercept HTTP/ HTTPS web request for 

debugging, session manipulation, security testing and extending the API through .NET 

language [40], [155]. We intercept the web requests and predict SQLIA at the hotspot 
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(predicate and expression of the SQL query structure). We extract the query string or the 

supplied input in a custom .NET application that implements a Fiddler proxy [40] API 

calling a web service of a trained supervised learning model to predict SQLIA. 

A web proxy is the most suitable to intercept web requests including those 

originating from any injection mechanisms to SDN cloud applications’ end-points. An 

application-level proxy performs better in intercepting and decrypting obfuscated web 

requests rather than low-level network packet interception tools which suffer from 

message fragmentation in large volumes of gigabits per seconds of packets in the wire. 

Also, the injection mechanisms to a vulnerable application can originate from web page 

forms, second-order injection, exploiting web-enabled server variables, query strings, and 

through cookies which proxy can intercept. 

2.5.3 Machine Learning (Thesis perspective) 

In the applied research presented here aimed at towards providing SQLIA mitigation for 

web application in emerging computing of big data, we identify the upward trend in web 

requests traffic to cloud SDN because of web application increasingly hosted in the 

internet cloud. We recognised the universal solution to mine big data which ML provides, 

and the issue of historical learning data relevant to a real-world web application type in 

applying ML. We then ask a research question of can patterns in both web application 

type valid input and SQL tokens including existing SQLIA signature extraction be used 

to create a large volume of learning data with vectors required to train a supervised 

learning model to the maximum? This research goal and related questions are answered 

in Chapters 4, 5 and 6 in employing the ML approach to SQLIA mitigation. 

2.5.3.1 ML fundamentals 

ML is a technique of data science that assist computers in learning from historical data to 

predict future trends and outcomes or events. Thus, in applying ML to SQLIA mitigation, 

there is a need for relevant pattern-driven data set with enough artefact to predict SQLIA 

which is lacking in the existing proposals as the data set procurement was query extraction 

that is geared towards query comparison at runtime. 

2.5.3.2 Traditional programming vs Machine learning 

In traditional programming, it is driven on the paradigm of computational program 

requirement to process data for an output such as traditional string lookup or query 
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matching approach in existing proposals [4], [5], [96]–[98], [101]–[107], [7], [111], 

[114], [116]–[123], [8], [124], [126], [127], [10], [82], [84], [94], [95]. Traditional 

programming lack cognitive automation (applying artificial intelligence to intensive 

information processing) as any reasoning or operation to be carried out on data need to 

be programmatically coded by the developer as needed, so the output cannot evolve on 

its own or from experience. 

Conversely, in ML the historical learning data are used to predict an output which 

then provides cognitive automation in a computational program that continually innovates 

and improves with experience such as the research goal of this thesis of using a pattern-

driven data set to predict SQLIA in the big data context. Figure 2-9 is a figure illustrating 

the distinction between traditional programming and machine learning [156]. In a terse 

statement, ML is a process of transforming historical data into a predictive analytics 

software. Predictive analytics is a process of employing mathematical formulas termed 

algorithms or classifiers to analyse current data to identify patterns or trends to predict 

future events.  

The ML learning approach is more suited for a computational task that mimics the 

human learning curve to carry out complex tasks with speed effectively. Employing ML 

technique offers cognitive automation to the research goals of this thesis as it provides a 

method to train a classification algorithm to the maximum with the pattern-driven data 

set to predict SQLIA in the context of emerging computing effectively. This cognitive 

automation requirement cannot be said of a traditional SQLIA mitigation lookup 

approach which a programming construct only produce an output or detect an SQLIA 

signature type which does not account for associated polymorphic signatures derivation 

by an intruder to bypass protection, e.g. SQLIA type of tautological attack signature of 

1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [157]. 
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Figure 2-9 Traditional programming vs Machine learning: A figure illustrating the 

distinction between traditional programming and machine learning. 
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2.5.3.3 Data set  

Availability of sizeable historical learning data or data set relevant to real-world 

application type has advanced many fields to apply ML to mine these data set with 

examples in better speech recognition, image recognition, meteorological weather 

forecasting, and breast cancer diagnosis as a few examples. The University of California, 

Irvine (UCI) ML repository currently maintains about 438 data sets [3], [158] that are 

widely used by the ML community. The UCI available data sets are continually increasing 

as more data sets are added. The procurement of such historical learning data set vectors 

is straightforward in the natural sciences where observations and measurements over a 

period are recorded to produce a large volume of data set with feature vectors available 

to predict future events.  

Unfortunately, the issues of ageing data set and lack of standardised ones are known 

issues in Intrusion Detection System (IDS) research [1], [2], [67], [159], [160] with the 

antiquated KDD Cup 1999 [161]. Also, the same plight is faced in SQLIA detection and 

prevention research when applying ML which requires data set input of vectors, but with 

few old data sets which were provisioned for a challenge competition or a purpose-built 

as in ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66]. These obsolete data sets had 

served the purposes in the respective challenge competitions and as such not a test case 

for validation benchmark or training a classifier for real-world application. Also, it must 

be pointed out; these data sets do not hold the same weight as the natural science data sets 

made available by the UCI that are based on actual recordings of measurements and 

observations over a period. The UCI data sets have features that are relevant in solving 

real-world classification tasks in better speech recognition, image recognition, 

meteorological weather forecasting, and breast cancer diagnosis as a few examples. 

The obsolete nature of the few existing data sets [65], [66] that relate to the SQLI 

domain of study can be seen as none of the data sets to have been used in existing work 

applying ML [71], [72], [134]–[141], [74], [100], [128]–[133]. These existing works 

employing ML techniques resort to generating their test case data sets. These data sets 

revolve around URL query string extraction by web crawling or a log file of activities of 

automated SQL server database interaction which is one of the reasons in most existing 

work to have gravitated towards query comparison or strings matching of some sort. Also, 

in most of these data sets that include few competitions-driven data set available in the 

public domain [65], [66], and privately generated data set for a test case in existing work 
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(not available in the public domain) quickly becomes obsolete. These existing data set 

short lifespan is primarily due to web application types are so diverse to have a universal 

generic data set for all ML-based SQLIA mitigation as such cannot serve as an empirical 

benchmark for the validation of the classification algorithms used. 

Thus, that begs the question if the pattern that exists in web requests that are deemed 

valid, and historical studies of different SQLIA types including SQL tokens can provide 

artefact to be used to generate a data set to train an ML algorithm to predict SQLIA. We 

presented in this thesis that based on the web application type; a pattern-driven data set 

relevant for that web application type to be protected can be inferred. The ML platforms 

have validation and cross-validation to benchmark results as to ensure only classification 

algorithms trained to the maximum are deployed as a web service in an ongoing SQLIA 

mitigation. The pattern-driven data set is a paradigm shift from existing work over the 

years. The existing test case data set procurements foster on query matching, and 

comparison of some sort in both traditional signatures lookup and existing AI approaches; 

this excludes defensive coding which is input validation and sanitisation.  

A pattern-driven data set has a set of subsequence and substructure of items that 

frequently occur together [162]. The pattern-driven data set proposal in this thesis is a 

data engineered or text pre-processed learning data for ML which does not have a parallel 

with web crawling for URL query strings or static log files of queries as seen in the 

procurement of existing test case data sets. The pattern-driven data set paradigm 

empowers the web developer or system expert to derive a data set based on the web 

application type they aimed to protect. Below is a list of some of the benefits of towards 

a pattern-driven data set over the existing data set that is not patterned-driven. 

• It is a pattern engineered data set devoid of repeating strings or queries. 

• A pattern-driven data set is applied as it has relevance to the classification 

problem. 

• It is derived in the scope of the web application type that the ML-based SQLIA 

mitigation is being provided. 

• It can be scaled to any magnitude as to have a large data set to train a classifier to 

the maximum as to effectively predict an outcome. 
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• A pattern-driven data set empowers the web developer or system expert to derive 

a data set based on the web application type. 

• Most importantly, it does not age fast as it is tailored to a web application type. 

Conversely, non-pattern driven data set as seen in some existing work and the few 

competitions-driven data set are logs of repeating strings which gravitate the proposals to 

query comparison of some sort in SQLIA mitigation employing Natural Language 

Processing (NLP) of using n-grams (processing of the full length of strings or n > 1) [72]. 

A log of repeating strings of literally the same strings lacks the intrinsic and essential 

properties for uncovering patterns in massive data set as in emerging computing big data.  

We presented techniques in this thesis proposal and related published papers [61]–

[64] to derive a pattern-driven data set on the fly in a real-world application with empirical 

evaluation and cross-validation in towards breaking the cycle of reliance on a static data 

set. Any static data set will be out of date and irrelevant in no time, but a technique to 

create one based on application type will empower system expert to derive a relevant data 

set of intended application to be protected. 

2.5.3.4 Learning algorithms 

Supervised learning or classification algorithms use crafted data set by a human with 

labelled class in the learning data on what to predict while unsupervised learning models 

are not labelled instead employ clustering of data using distance and weight functions to 

group related data [163], [164]. Semi-supervised learning uses a labelled data to identify 

specific groups which further use unlabelled data to discover new groups. 

In applying ML to SQLIA mitigation, we have embarked on procuring a human-

mediated known pattern-driven data set that has a known labelled output to predict an 

outcome of SQLIA. This thesis proposal has the trappings of a classic case for a 

supervised learning predictive analytics from a known input data with known outcomes 

[156].  

Figure 2-10 presents an illustration of the supervised learning logic from human-

crafted known input data combined with known outcomes to produce a new predictive 

model program (supervised learning). Because of the pattern-driven data set approach to 

an ML classification and regression algorithms, we deemed supervised learning as the 

functional approach to address the thesis proposal of applied pattern-driven data set for 
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predictive analytics in SQLIA mitigation. Employing the alternatives of semi-supervised 

classification algorithm and unsupervised clustering algorithm will be the subject of 

future work in fully automated pattern-driven data set procurement. 

 

Computer
Known Input Data

Known Outcomes

New Prediction 

Model program

 

Figure 2-10 Supervised learning logic: A figure illustrating the supervised learning logic from 

human crafted known input data combined with known outcomes. 

 

2.5.3.5 MAML Platform 

The MAML studio or platform provides an out-of-the-box platform for building and 

deploying a prediction model as web services. It provides a cloud-hosted all-in-one 

platform to build and deploy a big data analytics solution, supervised, semi-supervised 

and unsupervised learning models [42]. 

The MAML studio provides versatile, extensible and ubiquitous cloud-based AI 

platform. Predictive analytics employ mathematical formulas termed algorithms or 

classifiers to analyse current data to identify patterns or trends to predict future events. 

Below lists the justification for using MAML studio in implementing the proposal 

presented in this research are as follows: 

• MAML offers a wide range of well-known algorithms in ML and neural networks 

that are easily extendable within the MAML studio. 

• In bringing this applied research of mitigating SQLIA with AI approach to the 

mainstream business application, MAML studio provides in addition to the code 

API of R and Python languages an easy drag and drop components. The drag and 

drop components have configurable properties to build, test, fine-tune, validate 

and generate advanced analytics to the pattern-driven data set presented in this 

thesis. 

• The overall research goal is to examine a SQLIA problem in the context of the 

lack of a pattern-driven data set and provide mitigation that applies AI using this 

research generated pattern-driven data set. MAML studio met the research goal in 
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its functionality to provide all in one spot platform for API to extract data set, train 

a model, validate, cross-validate and deploy the trained model as a web service to 

be consumed by any application. 

• The issue that stands out in some existing approaches on SQLIA mitigation [74], 

[125], [129], [133], [193] is being computational expensive. The availability of 

MAML cloud-based software and platform as services resolves the issue by 

harnessing these large-scale supercomputers employing AI techniques to deliver 

ready to use solutions that would have been limited relying on a single or few 

servers in the intranet or extranet. 

2.6 Conclusion 

We examined in this chapter SQLIA mechanism, intent and types to better address 

SQLIA. We also reviewed the fundamentals of the tools applied in this research to 

mitigate SQLIA that are discussed in the subsequent chapters. SQLIA research over the 

years [6], [8], [167]–[171], [10], [11], [20], [92], [100], [111], [165], [166] have reviewed 

the SQLIA mechanism, intent and types that are discussed above to have proposed 

various on-premise mitigations to SQLIA. These various proposals were functional in 

web servers hosted within the organisation’s intranet and extranet but now restricted with 

emerging computing.  

The emerging computing of IoT and cloud-hosted services have increased the 

volume of web requests that need analysing for SQLI. These are web requests to back-

end database emanating from diverse client web applications and emerging computing 

smart devices. The enormity of data requires a technique more scalable than string lookup 

which ML provides that is proposed in this thesis. 
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3  Literature Review 

Figure 3-1 presents the organisation chart layout of this chapter with the sections. 

 

 

Figure 3-1 The chapter organisation chart: The chapter organisation chart presents the layout 

of the chapter’s sections.  

3.1 Introduction 

This chapter reviews the existing research literature on SQLI detection and prevention 

techniques that enhance the security of web applications. The research area of SQLI 

detection and prevention has seen diverse methodologies proposed over the years by 

various researchers and this chapter broadly classify these approaches into three sections. 

The rest of this chapter is organised as follows. Section 3.2 discusses SQLIV testing and 

detection. 3.3 discusses defensive coding in web application code sanitisation for SQLI 

prevention. 3.4 discusses dynamic runtime analysis, including taint-based and approaches 

applying AI (a similar approach to that implemented in this thesis) in the detection and 

prevention of SQLIA. The chapter ends with a conclusion in section 3.5. Each section is 

followed by a discussion on existing literature review to establish the gap in the context 

of emerging computing, and the contribution this thesis makes to fill in the gap. 

3.2 SQLIV testing and detection 

Figure 3-2 presents this section organisation chart with the associated subsections. 

 

Figure 3-2 The section organisation chart: The figure shows this section organisation chart with 

the related subsections. 
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Researchers have applied penetration testing techniques to SQLI detection. Penetration 

testing techniques are aimed to detect application vulnerabilities during investigative 

auditing of web application and thus are not a traditional SQLIA prevention approach. 

3.2.1 Static testing 

Static code analysis applies penetration testing to examine the internal structure of the 

code used in web applications to detect errors and correctness at compile time. Static 

analysis or white-box testing is applied in detecting SQLIV to check the static syntactic 

structure of the code as to detect SQLIV during compile time. The approach is mostly 

developer-centric to create a secure web application during the Software Development 

Life Cycle (SDLC) and source code auditing for vulnerabilities.  

Though static penetration testing approaches looked plausible in the past to detect 

vulnerabilities in web applications; its drawback is its reliance on the source code for 

SQLIV detection. The emergence of cloud computing has changed the accessibility of 

application source code for SQLIV detection. Also, the application domain boundary has 

shifted from the organisation's servers being hosted within their intranet to external cloud 

hosting on the internet. Hosting services, applications and infrastructure on the web such 

as the cloud have restricted access to source code due to the vulnerability risk of 

unrestricted source code. 

Gould et al. [94], [95] proposed a static analysis tool named JDBC Checker to check 

the correctness of dynamically generated query strings. The approach explored a finite 

state automaton to flag the presence or absence of errors in the query strings. The JDBC 

checker is a Java code-centric tool aimed at only detecting SQLIV as against prevention 

[82].  

Wassermann and Su [96] extended static code analysis to detect tautology SQLIA 

type by employing regular expressions for automatic dynamic code generation as to detect 

only tautological SQLIA type. Although effective, Wassermann and Su's approach did 

not go far enough in detecting other SQLIA types as a tautology is only one form of attack 

technique, as discussed in 2.4 above. 

Fu et al. [97] designed a static analysis tool named SAFELI for detecting SQLIV at 

compile time by inspecting the bytecode (intermediate language) of a web application 

using symbolic execution to detect SQLIV at the injection hotspot. Web applications, in 

recent years, have become restrictive regarding access to source code which the SAFELI 

tool relies on to function; this hinders its ability to retrofit to vulnerable web applications.  
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Al-Khashab et al. [98] explore a static approach in substituting SQLI hotspots with 

an optimised query to detect SQLIA. In doing so, they hope that an intruder would not be 

able to deduce the optimised version of the SQL query in the parse tree structure to 

circumvent the protection provided. Unfortunately, the approach is labour intensive for 

developers requiring that they unwind code and start generating the optimised versions 

and replacing the SQLI hotspots with these optimised query versions. Also, the outcome 

of the optimised query does not solely rely on the query processor engine but is also 

dependent on other hardware resource factors such as the Central Processing Unit (CPU) 

on the server that is not considered in their approach.  

Shar and Tan [99] build a PhpMiner II static analysis tool to predict web application 

vulnerabilities from static attributes during input validation and sanitisation. The tool 

provides an inexpensive detector of vulnerabilities, but suffers from relying on source 

code which is not always available for cloud-hosted legacy web applications. 

Medeiros et al. [100] implemented a static analysis tool to search for vulnerabilities 

with further use of Machine Learning (ML) classifier for detection and classification of 

vulnerabilities in a web application. Their approach is lacking in real-life web application 

testing as the implementation relies on synthetic data which does not evolve with new 

signatures. 

3.2.2 Dynamic runtime testing 

Dynamic runtime testing is a penetration testing technique used to detect error and 

correctness at runtime without peering through the code, contrary to the white-box testing, 

which statically peered through the internal workings of the code to detect vulnerabilities. 

Black-box testing is applied in the SQLIV detection at runtime by dynamic analysis of a 

simulated mimicry of an actual web application interaction from the user to detect 

vulnerabilities. These approaches [101],[102] employ an automated unit test and web 

crawling tools that are fed with attack features at runtime to simulate or mimic an actual 

injection of input from an intruder to detect SQLIV.  

Huang et al. [101] in their black-box testing approach developed a tool named Web 

Application Vulnerability and Error Scanner (WAVES) which applies web crawling to 

identify a data entry point (web form), and then uses an SQLI log to detect SQLIV. The 

method lacks completeness as it only detects cross-scripting and SQLIV in a web 

application but does not prevent them. Also, the approach will struggle to detect SQLIV 
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in real-time big data scenarios due to their complex validation procedure to establish 

SQLIV.  

Shin et al. [103] developed an SQLIV detection tool named SQLUnitGen that 

combines static analysis of the source code and runtime automated testing for 

vulnerability detection. The functioning of the SQLUnitGen consists of three processes. 

The first process employed symbolic execution techniques that include compiling a 

program to intermediate language code (bytecode) for an evaluation to recognise input 

that reaches the SQL query statement hotspot. The second process follows these input 

transformations with actual attack features. Finally, the third process compiles the 

program to finish as to generate a test result in a summary graph showing either a test 

case input success (no SQLIV) or failure (presence of SQLIV).  

Approaches employing symbolic execution suffer from computational complexities 

to scale in large programs due to multiple loop iterations used in the evaluations as to 

increase multiple possible paths in the program exponentially [104]. Also, the symbolic 

evaluation dependency on loop iterations in evaluations is a limiting factor in emerging 

computing such as big data mining. 

Lin et al. [105] employ a black-box testing and validation function with a secure 

gateway to SQLIV, but its drawback lay in need to tweak the approach for the detection 

of new vulnerabilities constantly.  

Shahriar et al. [106] developed a tool called Mutation-based SQL Injection 

Vulnerability Checking (MUSIC) which is a mutation-based SQLIV testing tool. The 

approach employs a mutation algorithm to create nine mutation operators that introduce 

SQLIV into an application’s source code to generate mutants. These mutants can only be 

killed off by a test data containing SQLIV. The tool employs this successful elimination 

of mutants to establish the presence of SQLIV while the survival of mutants indicates the 

absence of SQLIV. Although successful, the approach is only effective against a simple 

WHERE clause condition in a SQL query and does not address a store-procedures SQLIA 

type. 

Ciampa et al. [107] developed a penetration testing tool named VIp3R (“viper”) 

which is based on pattern matching error messages and output results produced by the 

application to infer SQLIV. The notion of detecting SQLIV with error messages is flawed 

as a successful intent to pilfer data can be carried out without SQL Server emitting any 

error messages as not all SQLIA techniques would return errors, e.g. the Blind SQLIA 

type does not include output error messages. 
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Appelt et al. [108] proposed a penetration testing approach for detecting SQLIV that 

employs mutation operators of SQLI patterns to manipulate legitimate input to trigger the 

detection of vulnerabilities. In further work, Appelt [110] extended the black-box testing 

approach using ML to train the Web Application Firewall (WAF) to detect vulnerabilities 

continuously. Appelt's penetration testing approach aimed to generate diverse and 

mutated attack string patterns for WAF to identify and prevent the likes of SQLIA. Appelt 

et al. approach look plausible, but an intruder is always one step ahead of human-

automation to circumvent any mitigation against SQLIV using predefined synthetic 

mutated features, and their technique does not adapt to future novel attack.  

Ceccato et al. [109] developed a tool named SOFIA for Oracle database web-driven 

applications. Although this is a useful black-box vulnerability testing tool, it does not 

offer a prevention method. 

Liu et al. [102] developed a prototype tool named SQLEXP based on a black-box 

penetration testing approach that explores a generic static SQL penetration testing. This 

tool is used to generate a matrix that is assigned a test case pattern and further compared 

to the dynamic matrix generated at runtime to detect SQLIV. As with other penetration 

tests, the tool offers application vulnerability testing but does not prevent SQLIA. 

3.2.3 Discussion 

White-box and black-box penetration testing approaches are mostly applied in SQLIV 

detection with only a handful that extends the approach to include prevention [110]. 

Approaches that rely on both static and dynamic testing to detect SQLIV at runtime 

require full access to source code for detection. However, as increasing numbers of 

applications and services are being hosted in the cloud, access to source code has become 

increasingly restricted. Most modern web applications are loosely coupled (tiered 

application API for reusability) as against on-premise, where the domain application 

boundary is demarcated between the intranet and the internet. Existing approaches to 

SQLIV detection were based mainly on an old paradigm of the on-premise database that 

needed to be protected from SQLIV on the web application server within the intranet 

receiving web requests from the internet. This old paradigm of the on-premise hosted web 

application is not the case with cloud-hosted applications. 

In emerging computing, there is a need for a shift in paradigm as the application 

domain boundary now includes the internet cloud services which require the use of the 

proxy API to intercept web requests at the application endpoints to detect SQLIV as to 
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prevent SQLIA. Also, the astronomical growth of data requires machine learning to mine 

big data for SQLIV as against traditional data string lookup employed in most signature 

string searches [172]. The section below discusses the defensive coding approach to code 

sanitisation during SDLC. 

3.3 Web application code sanitisation for SQLIV prevention 

Figure 3-3 presents this section organisation chart with the associated subsections. 

 

 

Figure 3-3 The section organisation chart: The figure shows this section organisation chart with 

the related subsections.  

 

Defensive coding is an approach aimed at the developers’ awareness of security 

vulnerabilities at design time of web applications to address SQLIV. It is an approach that 

has handed down guidelines by OWASP for securing web applications. Defensive coding 

involves prepared statement and validation of the source code for escape characters. The 

developers need to be trained to identify the SQLIV during SDLC as to integrate the 

security principles into web application development.  

Defensive coding is functional during the development of new web applications, 

including testing and debugging. It is a manual approach that is inherent in mainstream 

web development programming languages like PHP, JavaScript and ASP.NET which is 

seen as one of the plausible defences against SQLIV. However, relying on the developer 

for manual defensive coding is a daunting and labour-intensive process to maintain. Also, 

not all developers have the knowledge and time to follow the OWASP and other software 

vendor’s security guidelines against SQLIV in a race against time to turnaround web 

applications.  
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3.3.1 Defensive coding/sanitisation approaches 

OWASP [112] has provided white papers and guidance for building a secure web 

application to address SQLIV. The recent OWASP proactive controls white paper [113] 

gave ten recommendations to be included in every software development. The manual 

defensive coding usually referred to as code sanitisation involves parameterised queries 

or prepared statements, a whitelist of inputs, including data type validation and escaping 

of user input. 

3.3.1.1 Prepared statements 

Prepared statements include the use of parameterised queries in the variable binding to 

ensure the intruder does not change the intention of the intended query [112]. A .NET 

[114] implementation of a prepared statement or parameterised queries uses command 

parameters for all SQL queries call in the source code to accept the parameters in both 

queries and stored procedures.  

3.3.1.2 Whitelist of inputs including data type validation 

Whitelist input validation provides a mechanism to reject unexpected data input that could 

be malicious. The approach requires defined patterns of both malicious and valid web 

requests to be established as to be able to accept or reject legitimate web requests 

respectively. The OWASP white paper [115] provides prescriptive guidance on the 

whitelist of data input.  

3.3.1.3 Input escaping 

OWASP prescribed input escaping of all user-supplied input [112] to ensure that SQL 

characters in queries do not itself introduce SQLIV. To give an example, in tautological 

SQLIA type an intruder would exploit a single quote (‘) as used in a name O'Brien. 

Accepting a single quote by escaping of user input has different implementations 

depending on the database. On SQL server-based application will escape a single quote 

by adding a second single quote, e.g., O'Brien is escaped in a query (SELECT * FROM 

tblUser WHERE LoginName = ‘O’’Brien’). In a web application, the same is escaped 

with double quotes as in WHERE LoginName = “O'Brien”. In the paragraphs below, are 

some notable existing approaches on input sanitisations. 

McClure and Kruger [111] developed a tool named SQLDOM based on the Call-

Level Interface (CLI) [173] which provides automated input escaping and data type 

validation in addressing SQLIV. The solution consists of two parts with the first being an 

abstract object model that offers developers functionality to generate their schema, and 
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the second being the generation of dynamic SQL statements at compile time against the 

generated database schema. The SQLDOM tool detects SQLIV if there is a mismatch 

between the dynamic SQL statements against the generated schema.  

Thomas et al. [116] extended SQLDOM to automate prepared statements. Both 

above tools can be applied to new web application development, but the drawback is that 

they are lacking in retrofitting to legacy applications. Natarajan and Subramani [117] 

proposed SQL-IF which is a dynamic runtime tool checking web form input, but limited 

to special characters, keywords and Boolean characters. 

Karakoidas et al. [118] applied a static analysis to generate prepared statements to 

mitigate SQLIV dynamically. The limitation that Karakoidas et al. have in detection is 

that prepared statements mitigation is only one of many methods in defence coding 

techniques to protect against SQLIA and does not offer a total solution in its entirety. 

3.3.2 Discussion  

There is a need to harness emerging computing in areas of ML and big data mining 

regarding security vulnerabilities lookups to address the limitations of traditional string 

lookups. Although defensive coding is plausible mitigation against SQLIV, the weakness 

is the technique employs traditional string lookups in input data validation to meet the 

ever-growing demands of internet applications big data. Also, the approach suffers a 

drawback of lacking retrofitting to legacy applications as a developer at design time needs 

access to the source code for implementing prepared statement and validation of escape 

characters.  

Modern mission-critical business cloud-hosted applications and services do not 

allow the free flow of source code. However, this does not imply that traditional web 

applications protected within the organisation’s intranet (and now being deployed as 

cloud-hosted services) are free from SQLIV. In fact, most of these applications being 

ported to the cloud-hosted environment would contain a mixture of new web applications 

with code sanitisation and legacy applications that may still harbour SQLIV. Though 

defensive coding accounts for web input sanitisation, it cannot adequately deal with an 

interception of the web request for replay (malicious modification of the intercepted web 

request) by an intruder who employs SQL injection mechanism (conduit) other than web 

form input injection. 

There is a need for organisations that host applications and services in the cloud to 

have a proxy layer to intercept web requests for SQLIV analysis. We propose in this thesis 
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an approach that does not rely on the source code to detect and prevent SQLIA in input 

validation. We explore AI to predict SQLIA at the injection points by using a proxy to 

intercept web requests.  

The section below discusses dynamic runtime approaches that involve generating 

static valid SQL queries which are dynamically matched at runtime against web requests 

to detect SQLIA. Also explored in dynamic runtime are profiles [121] and query sizes 

[122]. 

3.4 Dynamic runtime analysis for detection and prevention of SQLIA 

Figure 3-4 presents this section organisation chart with the associated subsections. 

 

Figure 3-4 Dynamic runtime analysis techniques category chart: The figure shows this 

section organisation chart with the related subsections.  

 

There are several existing techniques proposed by researchers under dynamic runtime 

analysis, which are to be discussed below. The dynamic runtime analysis is usually 

preceded in most approaches by statically generating all possible valid queries to a web 

application and matching the web requests at runtime against these valid queries to detect 

an anomaly or SQLIA. Also, included is the tainting techniques which involve the 

labelling of data which is then tracked to the sink (database entry). In the context of 

emerging computing and big data mining for SQLIA, we also discuss existing ML 

techniques including the technique proposed in this thesis to predict and prevent SQLIA.  

3.4.1 Runtime analysis 

Boyd & Keromytis [84] proposed SQLrand that employs proxy and parser whereby a 

query is randomised and de-randomised at the proxy on the assumption that an attacker 

will create invalid queries to cause runtime errors which will identify the SQLIA. The 

solutions were designed to fit into both new systems and can also be retrofitted into an 

existing web application for deployment. The authors claimed the methodology to have 

a negligible impact on performance; but, it is unlikely that it would be scalable in today’s 
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large data-driven web applications. Also, the process of randomisation was simplistic as 

the string appended to the SQL keywords could easily be replicated by an attacker. 

Valeur et al. [121] proposed anomaly based system approach that learns and score 

profiles of the standard database access performed by web-based applications. The web 

requests or dynamic queries are intercepted where input vectors are inserted into tokens 

marked as a constant and compared by using statistical scoring methods. The learning 

phases are sectioned into two halves. The scores of the second half are then calculated 

with values exceeding the threshold set in the first half deemed anomalous. The authors 

evaluated the approach to have a high degree of success in the detection of SQLIA. 

However, the limitation is that it requires extensive training for excellent detection 

capabilities [82].  

Buehrer et al. [4] proposed a SQL parsing tree which uses a combination of proxy 

and SQL parse tree for a genetic algorithm SQL syntax sequence alignment for detection 

of SQLIV. Though this approach applies gene sequencing alignment techniques, it has a 

similarity with valid queries matching techniques to establish SQLIA detection. 

Halfond & Orso [5] proposed AMNESIA, a hybrid of static and dynamic approach 

that employed pattern matching between valid requests against dynamic web requests at 

runtime to detect and prevent SQLIA. Although the approach scaled well in traditional 

string matching at the time, it is unlikely that the method could meet the demand of 

emerging computing in big data scenarios that would require predictive analytics 

techniques for big data mining.  

Wei et al. [123] proposed matching a static valid web application’s SQL query 

against a dynamic analysis of queries at runtime to detect and prevent stored procedures 

SQLIA type. The drawback to this approach is that it is limited to only stored procedure 

detection SQLIA type and does not cover the other SQLIA types as discussed in Chapter 

2. To address this limitation, Karuparthi & Zhou [91] presented an enhanced version of a 

dynamic query matching method [121], [122] to detect other SQLIA types. However, the 

enhanced model is a traditional string lookup technique which will not be functional in 

internet big data analysis. 

Bisht et al. [11] proposed an approach named CANdidate evaluation for Discovery 

Intent Dynamically (CANDID). The approach was centred on the Java-based web 

application code analysis by mining programmer intended query structure of any input 

and comparing it against the structure of the actual query as to detect and prevent SQLIA. 

The benefit claimed by the authors of the approach is that it can be retrofitted, but the 
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bytecode transformation could be computationally expensive to scale well in big internet 

data-driven traffic. Also, there are restrictions to source code access in the cloud-hosted 

applications to generate bytecode.  

Fu and Li [125] proposed a string constant solver algorithm named SUSHI 

employing an automata-based approach to solve a simple linear string equation for attack 

signatures and error traces thereby exposing SQLIA and Cross Scripting (XSS) 

vulnerabilities. The approach reduces false positives in string analysis techniques, but it 

is computationally expensive to scale well in current big data-driven web applications. 

Fernando and Abawajy [119] applied both static and dynamic approaches for 

detecting and preventing SQLIA in Radio-frequency identification (RFID). The 

drawback to this method is that it is not web-agnostic, which most modern RFIDs support. 

Shahriar and Zulkernine [14] proposed an information theory based detection 

framework for SQLIV prediction. The approach applies static and dynamic script analysis 

of the query to calculate the entropy to detect malicious queries. The approach is not 

robust to dynamically detect all SQL types like stored procedure attack.  

Jang & Choi [122] presented an approach for detecting SQL injection attacks using 

query result size. The approach employs a technique that dynamically analyses the 

developer intended query result size of the given input and then detects attacks by 

comparing this against the product of the actual query. The implementation includes 

running input against two layers: substitution variable verification and Query Cost 

Estimator (QCE). The replacement variable verification checks the attack patterns and 

vulnerabilities in the SQL queries. The QCE computes the predicates in SQL queries and 

estimates the table and column cardinalities in addition to estimating and comparing 

query result sizes. The drawback of this approach is a limitation in complex relationship 

queries that use an inner join which compares the result size, meaning that it will yield 

high false positive rates. 

Kar et al. [120] proposed SQLiDDS; an approach that consists of offline and runtime. 

During the offline, the tail-end (after WHERE clause) of suspected queries are extracted 

and transformed to compute MD5 hash value stored in a reference hash table which uses 

hierarchical agglomerative clustering employing the averaging link method to aggregate 

related queries into a single document of highly related clusters. The transformation 

scheme where the comparison between static and dynamic query is computed by counting 

words could yield a false result as there are possibilities to arrive at the same number of 

words in the computation schemes. 
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3.4.2 Taint-based  

Wassermann and SU [126] proposed a static algorithm for string analysis to find SQLIV. 

The algorithm statically generates a set of possible database queries that a web application 

may generate by employing context-free grammars which are then tracked by information 

flow from untrusted sources to these queries to detect vulnerabilities. It is a taint technique 

of tracking data flow from untrusted sources, but its drawback is the high false positive 

rates [82]. 

Halfond et al. developed a tool named Web application SQL Injection Preventer 

(WASP) [7] that is an attack runtime prevention method employing positive tainting of 

tracking trusted data as against traditionally negative tainting of tracking untrusted data. 

Though taint approaches with trusted data are fraught with the risk of increased false 

positive, the author deemed the proposal more plausible than related approaches which 

saw high false negative rates of tracking a taint data with untrusted data source employed 

in these cited papers [165], [174]. The WASP improvement in syntax-aware evaluation 

used a database parser to interpret the query before it is executed and provided a flexible 

mechanism that allows different trust policies to be associated with various input sources. 

Kie et al. [127] developed a tool named ARDILLA for SQLI and XSS vulnerabilities 

detection through a technique of input generation, dynamic taint propagation and input 

mutation to detect vulnerabilities. ARDILLA automates the creation of test inputs to 

reveal SQLI and XSS by employing tainting techniques; the test input is symbolically 

tracked as it executes to mutate the inputs to produce vulnerabilities. The tool had few 

false positive rates, and addressed second-order vulnerability as claimed by the authors, 

but a taint technique that employs tracking of data from untrusted sources to detect 

vulnerabilities are known for high false positive rates. A further drawback to the use of 

this approach in modern web applications is that the flow of data to applications is so 

diverse that there can be no guarantee of receiving data from only trusted sources. 

The section below discusses ML approaches to SQLIA detection and prevention, 

which is also the subject of the thesis presented in this thesis. After a careful study of the 

literature reviewed in the sections above, we deemed ML is a plausible approach to 

mitigate SQLIA in emerging computing. 

3.4.3 Machine Learning and Neural Network runtime analysis 

This method applies artificial intelligence which requires a robust data set with different 

patterns in data items to train a classifier. Applying ML requires robust data set items 
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with patterns to train a classifier implementing AI algorithms to predict SQLI accurately. 

Unfortunately, as there is no single standardised data set that can be used in training an 

AI model for all scenarios of web application vulnerabilities, researchers have presented 

various approaches for extracting data sets with most proposals suffering from limited 

data engineering (data set with patterns to enhanced ML prediction). The HTTP dataset 

CSIC 2010 [66] does not present a robust, versatile pattern-driven data set as it was a 

purpose-built data set following a classic data set extraction using automated tools to log 

web requests with repeating query strings and occasional variation in query strings. These 

data sets are repeatedly found in research work as test data for evaluations and have come 

under scrutiny over the years of being dated and irrelevant to building a real business 

application.  

There have been various ML algorithm proposals by researchers over the years to 

mitigate web applications SQLIA vulnerabilities. We reviewed literature on the popular 

ML algorithms to detect and prevent SQLIA which are: [71], [72], [74], [128]–[133], 

[100], [134]–[136],[137]–[141] to observe drawbacks in the data set devoid of patterns 

as they share a commonality in reliance on URL query strings, SQL internal query 

structure and static generated data set which is often repeated strings. We selected for 

further discussion some of these approaches employing SVM, LR and NN algorithms in 

subsequent paragraphs. 

 Bockermann et al. [75] proposed the tree kernels for analysing SQL statement in 

addition to exploring feature vectorisation of data input to an SVM classifier, but found 

there to be drawbacks in the tree-kernels computational overhead. Also, their data set 

extraction was dependent on URL strings which are repeating strings that are lacking in 

patterns. 

Choi et al. [72] train an SVM classifier using feature vectorisation by N-Grams 

employing bigrams, trigrams and 4-grams for queries comparison. Their approach would 

need various patterns to improve the accuracy of the approach as the data set used has 

few distributions in the training data set of 608 attribute values (normal and malicious) 

and 306 attribute values of test data. Also, the approach requires access to full source 

code.  

Kar et al. [137] proposed using a SQL query of normalised query elements to tokens 

to build a graph of tokens and centrality of nodes to train an SVM classifier, though an 

ML approach it mirrors a classical queries comparison between a normalised tokenised 

and runtime query to detect SQLI at database firewall. The approach looks promising in 
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an intranet and extranet but not applicable to cloud-hosted web applications SDN 

endpoints. As the SQLIA mitigation is at the database level, the injected queries if not 

intercepted by other SQLIA protection during the transition are left to bypass firewall 

before be enumerated for tokens used in the ML query comparison approach. Also, this 

enumeration or tokenisation of schema changes takes 30 minutes, which will not scale in 

big data web traffic analysis.  

Wang and Li [73] proposed an SQL query program tracing in which related queries 

are grouped based on the runtime program trace. However, the approach’s drawback is 

the reliance on the source code for the SQL tracing grouping that is hashed to the vector 

matrices for a classifier implementing the SVM algorithm. 

Pinzón et al. [74] present a multi-agent approach that uses various classifiers 

including SVM and neural networks to predict SQLIA from SQL queries behaviour that 

is stored as cases. Though an ML approach, it mirrors a classical queries comparison. The 

architecture named CBR cycle is computationally expensive and needs access to source 

code. 

Kim and Lee [138] proposed an approach that uses the SVM classifier for binary 

classification of internal query representation known as query trees. The training data 

comprised of feature vectors from transformed query trees of the internal query structure. 

Its drawback is that it requires access to the source code and is computationally complex 

because of the size of the query trees. 

We reviewed existing literature on SQLI to establish the research gap and defined a 

research goal to present in this thesis a supervised learning model that uses a data set input 

from patterns of both expected data and SQLIA types including SQL tokens to train 

classifiers. We started with an investigation of numerically encoding of both valid data 

input and patterns of SQLIA types including SQL tokens to test the performance metrics 

of vector matrices of data set input derived from patterns [61], [62]. We further our 

approach by applying ML predictive analytics to SQLIA prediction and prevention [63], 

[64]. The approach presented in this thesis relies on the web requests or data input at 

runtime to detect SQLIA as against raw queries comparison as proposed in most runtime 

analysis. 

3.5 Conclusion 

In the preceding sections, we reviewed existing research work proposed by various 

authors over the years on the topic of SQLIA mitigation. The existing literature is 
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categorised as SQLIV testing and detection; defensive coding in web application code 

sanitisation for SQLI prevention; and dynamic runtime analysis. We can summarise our 

critique of these existing works as follows:  

• They were SQLIA mitigation approaches that existed before the emerging computing 

of cloud-hosted web services where the traditional web server no longer resides on 

the organisation’s intranet or extranet. 

• The existing approaches displayed a need for pattern-driven data set to train the 

classifier in AI approaches as against repeating strings of SQL queries and URL query 

string. 

• The available antiquated data sets of ECML/PKDD 2007 [65] and HTTP CSIC 2010 

[66] on SQLI were purpose-built not idea to build mitigation against SQLIA in real-

life scenario business application.  

• The reliance on source code access which is now restricted in cloud-hosted services.  

• The dependence on static code access scanning for SQLIA mitigation in most existing 

work as against the need for web requests to cloud-hosted services to be intercepted 

for analysis where access to source code scanning is restricted. 

• The use of the traditional string lookup approach which is not known to be scalable 

to SQLIA mitigation when compared with using AI platforms in emerging computing 

big data.  

On account of the literature review of the existing work, we identified the dynamic 

runtime analysis that applies AI techniques provided a functional and scalable approach 

to SQLIA mitigation in emerging computing. The few existing works [72]–[75], [136] 

that do employ SVM are lacking in data engineering (text pre-processing). Also, to date, 

none has discussed applied ML in predicting SQLIA in a context of big data, focusing on 

patterns and text pre-processing including empirical evaluation on MAML platform.  

Also, an old competition-driven data sets were only good for the detecting the 

anomalies in the competition in which they were generated. These academic 

competitions-driven data sets do not benchmark performance metrics for an AI trained 

model in the real-world diverse web applications. On account of the lack of all-purpose 

data set of the diverse web applications that exist; there is a need for a paradigm shift 

from relying on old competition-driven data sets to a pattern-driven data set. The pattern-

driven data set which varies in web application types is generated from the pattern that 

exists in the expected legitimate web request input, including illegitimate web requests of 
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SQL attack signatures and tokens to a web application which is one of the novel 

contributions of this thesis. 

We focused on existing work by Choi et al. [72] that shares a similarity in 

vectorisation. While Choi et al. hashed URL query strings using more than one N-Grams 

(number of words in a string) to obtain vector matrices as to train an SVM classifier, the 

experiment presented in this thesis employs vectorisation to hashed the pattern-driven 

data set using unigram (a unit of word in a string) to obtain vector matrices. These vector 

matrices are used to train various classifiers (SVM, LR and ANN). The N-grams of more 

than one word was applied by Choi et al. in vectorisation could introduce prediction errors 

as an intruder may try to circumvent the SQLIA mitigation with SQL token comments 

and white spaces. We examined hashing more than one word in a group of strings and 

observed unigram of hashing word by word offers a minimal prediction error. 

We suggest patterns exist in any data input to a web application to generate pattern-

driven data set and by applying text pre-processing to such learning data improves the 

prediction accuracy of the resultant trained model. To further our approach, we applied 

ML predictive analytics to SQLIA for prediction and prevention of malicious web 

requests being fulfilled and this is the subject of discussion in the successive chapters.  
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4  Numerical Encoding to Tame 
SQLIA 

Figure 4-1 presents the organisation chart layout of this chapter with the sections. 

 

Figure 4-1 The chapter organisation chart: The chapter organisation chart presents the layout 

of the chapter’s sections. 

4.1 Introduction 

Figure 4-2 presents this section organisation chart with the associated subsections. 

 

Figure 4-2 The section organisation chart: A figure of the section organisation chart that 

provides the layout of this section with the associated subsections. 

This chapter answers the research question of can a pattern-driven data set be derived 

and validated from the expected legitimate web requests including illegitimate SQL 

tokens and injection signatures? The ML technique requires data set with numerical 

attributes as input to train a supervised learning model. The procurement of such historical 

learning data set vectors is straightforward in the natural sciences where observations and 

measurements over time are recorded to produce a large volume of data set with labelled 

feature vectors. Such historical data sets containing collated labelled observations of 

feature vectors have been made available by the University of California, Irvine (UCI) 

ML repository which currently maintains about 438 data set that is widely used by the 

ML community [3], [158] with the number of available data sets continually changing.  
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Unfortunately, the SQLI related data set that exist are purpose-built for competition 

[65], and the HTTP CSIC 2010 data set [66] is motivated by the outdated KDD CUP 1999 

[69], [161]. Because of the lack of all-purpose data set suitable to train an AI model to 

mitigate SQLIA in the diverse web application types that exist; there is a need for a 

paradigm shift from relying on antiquated competition-driven data sets to a pattern-driven 

data set inferred from the desired web application type context that the SQLIA mitigation 

is being provided. To derive a pattern-driven data set, the human system expert providing 

SQLIA ML mitigation need to know the web application type domain and the expected 

input type as to produce relevant data set accordingly. 

 In this thesis chapter, we investigated the issue of availability of historical learning 

data set to train an AI model. We observed limitations exist in a purpose-built 

competition-driven HTTP CSIC 2010 data set [66] sponsored by the Spanish Research 

National Council motivated by the outdated DARPA KDD CUP 1999 [69], [161] which 

was used to test a department web application vulnerability. These data sets are out of 

date, especially in the context of emerging computing of big data and cloud-hosted 

services predictive analytics to address SQLIA issue. Also, HTTP CSIC 2010 data set is 

in the Spanish language which also implies doing some language translation pre-

processing, if it is to be meaningful to a non-Spanish speaker to make sense of the data 

set. In our first approach to obtain a data set where none exist to train a classifier, we 

explore R language string replication, distance and RegEx patterns to derive a data set 

containing patterns of expected legitimate web requests, SQL tokens and known SQLIA 

type signatures.  

ML falls into the broad area of AI. ML is a technique employed in data science to 

provide input of historical learning data to computer algorithms to predict outcomes. In 

applying ML, there is a need for the availability of historical learning data. The historical 

learning data are often referred to as a data set. The data set would contain columns and 

rows of data, termed as attributes or independent x-variables.  

Figure 4-1 above provides the layout organisation chart of this chapter. This chapter 

starts with the introduction in section 4.1 and ends with a conclusion in section 4.7. 

Sections 4.2 discusses SQLIA injection points and features while section 4.3 presents the 

numerical encoding techniques of features. Section 4.4 discusses the implementation 

steps in MAML studio. Section 4.5 discusses the evaluation and the results while section 

4.6 discusses the proposal in contrast and comparison to existing work.  
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4.1.1 Problem statement 

In our research question, we ask if a pattern-driven data set can be derived from a web 

application type to be protected using the features artefact of the expected legitimate web 

requests, including illegitimate SQL tokens and injection signatures, and if the derived 

pattern-driven data set can be validated? 

OWASP developer-centric SQLIA mitigation techniques require access to source 

code during the SDLC which include sanitisation of input in every tier (web client and 

server) [113]. These input validations and string lookup are techniques that were scalable 

within the organisation’s intranet application domain boundary where there is no source 

code access restriction. Access to the source code for validation is an issue in emerging 

computing with a shift in the organisation’s application domain boundary because of 

cloud-hosted services and cloud SDN where there is a restriction to source code access.  

The magnitude of data will only increase, and an intruder may exploit SQLIA types 

with many signature variations to evade pattern matching techniques, e.g. SQLIA type 

tautological attack of 1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [157] to achieve the 

same attack. These variations in new SQLIA attack signatures could create significant 

issues for signature-based detection and prevention methods in recognising new 

signatures that intruders continuously evolve. In this thesis chapter, we account for these 

variations in SQLIA types with the assignment of random decimal attribute values named 

rndrisk in the generation of large data items of any size.  

There is a strong argument for a bio-inspired approach that is functional in big data 

mining as against the existing traditional strings look-up in signature methods which are 

not known to be scalable. Applying AI approach is faced with the lack of existing data 

set to train a supervised learning model which is addressed in this chapter. 

4.1.2 Motivation 

The recent advancement in AI with readily available web platforms like MAML [41], 

[175], Amazon Web Services (AWS) [176] and IBM Watson Analytics [177] has 

refocused AI platforms as an enabling tool to build smart prediction models. These trained 

models are consumed by real-world applications in real-time to solve classification 

problems. This recent advancement in emerging computing has changed the perception 

of ML domain from the traditional confines of scientific research laboratories to an 

enabling ready to deploy tool for data mining. The better understanding of AI techniques 
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in recent years has rejuvenated data science in the ability to train a classifier from a 

featured engineered pattern-driven data set to a ready to deploy the web application to be 

consumed as a Web Service (WS) available in MAML studio. ML models require data 

set of vector matrices as learning data which unfortunately is not readily available in 

securing web applications. 

Applying ML approaches can adequately protect against new SQLIA signatures by 

classifying new attack signatures not trained for as unknown and thereby dropping or 

referring such requests at the interim. Exploring this method has met with the issue of 

lacking an existing robust data set to train a supervised learning model which is addressed 

here as one of the contributions of this thesis.  

In a big data scenario, where string lookup approaches are not known to be a scalable 

option, and there is no pre-existing data set to apply AI methods; there is a need for a 

technique to generate significant data set of any size for SQLIA prediction of any 

magnitude. Also, the need for an empirical evaluation of the learning data to validate its 

suitability for SQLIA detection and prevention is also presented in this chapter. 

4.1.3 Approach overview 

In addressing non-availability of the data set in SQLIA detection and prevention domain, 

we draw our inspiration from the approaches at the UCI. The UCI maintains a repository 

of data sets which are a collection of observations and scalar measurements (labelling and 

numerical encoding of features) over a period to build a historical learning data. These 

available data sets from UCI are contributed to the scientific ML community and are used 

in training classifiers to address the real-world issue that needs cognitive automation.  

The Wisconsin breast cancer data set (commonly used by researchers in ML binary 

classification) is one of such clinical observation examples. The data set contains 699 

patterns defined by nine attributes with an integer value range from 1-10 which 

determined the labelling of being benign (458 patterns) or malignant (241 patterns) [158], 

[178]. Unfortunately, up till now, no comparable data set exists for SQLIA features. The 

SQLI related data sets that exist are purpose-built for competition [65]. Also, the HTTP 

CSIC 2010 data set [66] (motivated by the out of date KDD CUP 1999 data set) was 

purpose-built and tested on a department web application vulnerability.  

Thus, that begs the question if the pattern that exists in web requests that are deemed 

valid, and historical studies of different SQLIA types including SQL tokens can provide 



54 

 

artefact to be used to generate a data set to train a supervised learning model and be 

validated? In this chapter, we provide the detail of a pattern-driven technique for data set 

extraction. The extracted data set is used to train a supervised learning model which is 

empirically evaluated with statistical measures to gauge the performance metrics of the 

trained classifier. The successful outcome of the evaluation led to further development of 

this encoding by employing hashing or vectorisation of features to obtain the vector 

matrices needed to train a supervised learning model detailed in Chapters 5 and 6 of this 

thesis in obtaining massive learning data to mitigate SQLIA.  

 In creating the pattern-driven data set, we provide scalar observations to both 

patterns of legitimate input data (expected input data in web requests), SQL tokens and 

SQLIA types to derive a pattern-driven data set. These features are numerically encoded 

based on patterns of expected valid web requests, and SQLIA types including SQL tokens 

to obtain vectors require to train a classifier algorithm.  

The scheme presented in this thesis uses, a web proxy to intercept web requests of 

any intent and applies supervised learning algorithms of a trained model to predict SQLIA 

at the SQL injection points. A web proxy is the most suitable to intercept web requests, 

including those originating from any injection mechanisms to SDN cloud applications’ 

endpoints. An application-level proxy performs better in intercepting and decrypting of 

obfuscated web requests than low-level network packet interception tools which suffer 

from message fragmentation in a large volume of gigabits per seconds of packets in the 

wire. Injection mechanisms to a vulnerable application can originate from web page 

forms, second-order injection, exploiting web-enabled server variables, query strings, and 

through cookies.  

An intruder would employ the following techniques to carry out SQLIA at the 

injection points in any combination. These SQLIA exploit techniques are Tautology; 

Union; Piggyback; Invalid/Logical queries; Time-based; Obfuscation encoding and 

Stored procedure. These SQLIA types discussed in 2.4 above are also a source of SQLIA 

positive labelled feature values in the scheme presented in this thesis. 

4.2 Injection points and SQLIA features 

Figure 4-3 presents this section organisation chart with the associated subsections. 
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Figure 4-3 The section organisation chart: A figure of the section organisation chart that 

provides the layout of this section with the associated subsections. 

4.2.1 Injection point  

The WHERE clause controls the level of access to the back-end database from the front-

end web applications. The scope of access could be any of validating a login account; 

filtering or setting criteria for the results from a database query; inserting a new record; 

deleting a record and updating an existing record. This injection point location after the 

WHERE clause has been explored to detect and prevent SQLIA [5], [9], [125]. In this 

research work, we analyse the intercepted web request substitution at the predicate and 

expression part of the SQL query structure for SQLIA. Figure 4-4 contains query strings 

which are intercepted for the field’s input to be validated and extracted for analysis to 

predict SQLIA at the SQL query structure expression hotspot as shown in the figure with 

a red font. 

SELECT loginName, password FROM tblUser

 WHERE loginName= 'bob' OR 1=1--
           WHERE
            clause

SQL 
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

 

Figure 4-4 The injection point of SQL query structure: A figure of the SQL query structure 

expression hotspot which is the location for the SQL injection. 

4.2.2 SQLIA features 

A new web application does not have pre-existing robust data set of SQLIA features 

available to train a supervised learning model. We determined in this thesis that web 

Injection points and 
SQLIA features

Injection points SQLIA features
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application type, the research literature on SQLIA types and intent (as discussed in 

Chapter 2) combined with the presence of SQL tokens at the vulnerable hotspot provide 

a baseline for generating a pattern-driven data set of any size.  

We explore these signatures usually injected into predicate’s expression highlighted 

in Figure 4-4 above. These attack features that substitute the expected valid input at the 

expressions can be special characters, SQL reserved keywords and known SQLIA 

signatures. Table 4-1 below are examples of symbols that are present in SQLIA signatures 

with much more that can be found in SQL reserved keywords [179] which are the subject 

of SQLIA positive attributes labelling in the numerical encoding of feature values. Table 

4-2 illustrates some examples of SQL keywords that are being labelled positive when 

substituted into the SQL query expression.  

Table 4-1 SQL Symbols: The table illustrates some examples of SQL symbols that are present in 

SQLIA signatures. 

 

 

 

  

Symbol Name Symbol Name 

‘ Single Quote | Pipe 

, Comma || Logical OR 

. Period % Percentage 

; Semi-colon ?  Question Mark 

: Colon & Ampersand 

“ Double Quote && Logical AND 

= Equals [ Opening Square Bracket 

! Exclamation ] Closing Square Bracket 

< Less Than { Opening Curly Bracket 

> Greater than } Closing Curly Bracket 

<= Less Than Equal \ Back Slash 

>= Greater than Equal / Forward Slash 

!= Not Equals - Dash/Minus 

<> Not Equals -- Double Dash/Comment 

+ Addition ) Closing Parenthesis 

- Subtraction \ Back Slash 

* Multiplication ( Opening Parenthesis 

\ Back Slash /* Comment Start 

/ Forward Slash */ Comment End 

- Dash/Minus /**/ Comment 

-- Double Dash/Comment   
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Table 4-2 SQL Keywords: The table illustrates some examples of SQL keywords that are being 

labelled positive when substituted into the SQL query expression. 

SQL KEYWORD SQL KEYWORD SQL KEYWORD SQL KEYWORD SQL KEYWORD 

ADD EXTERNAL PROCEDURE CONTINUE KILL 

ALL FETCH PUBLIC CONVERT LEFT 

ALTER FILE RAISERROR CREATE LIKE 

AND FILLFACTOR READ CROSS LINENO 

ANY FOR READTEXT CURRENT LOAD 

AS FOREIGN RECONFIGURE CURRENT_DATE MERGE 

ASC FREETEXT REFERENCES CURRENT_TIME NATIONAL 

AUTHORIZATION FREETEXTTABLE REPLICATION CURRENT_TIMEST
AMP 

NOCHECK 

BACKUP FROM RESTORE CURRENT_USER NONCLUSTERED 

BEGIN FULL RESTRICT CURSOR NOT 

BETWEEN FUNCTION RETURN DATABASE NULL 

BREAK GOTO REVERT DBCC NULLIF 

BROWSE GRANT REVOKE DEALLOCATE OF 

BULK GROUP RIGHT DECLARE OFF 

BY HAVING ROLLBACK DEFAULT OFFSETS 

CASCADE HOLDLOCK ROWCOUNT SOME TSEQUAL 

CASE IDENTITY ROWGUIDCOL STATISTICS WHERE 

CHECK IDENTITY_INSERT RULE SYSTEM_USER WHILE 

CHECKPOINT IDENTITYCOL SAVE TABLE WITH 

CLOSE IF SCHEMA TABLESAMPLE WITHIN GROUP 

CLUSTERED IN SECURITYAUDIT TEXTSIZE WRITETEXT 

COALESCE INDEX SELECT THEN PIVOT 

COLLATE INNER SEMANTICKEYP

HRASETABLE 

TO PLAN 

COLUMN INSERT OUTER TOP PRECISION 

COMMIT INTERSECT SEMANTICSIMIL
ARITYTABLE 

TRAN PRIMARY 

COMPUTE INTO SESSION_USER TRANSACTION PRINT 

CONSTRAINT IS SET TRIGGER PROC 

CONTAINS JOIN SETUSER TRUNCATE END 

CONTAINSTABLE KEY SHUTDOWN TRY_CONVERT ERRLVL 

DELETE ON UNION ESCAPE PIVOT 

DENY OPEN UNIQUE EXCEPT PLAN 

DESC OPENDATASOURCE UNPIVOT EXEC PRECISION 

DISK OPENQUERY UPDATE EXECUTE PRIMARY 

DISTINCT OPENROWSET UPDATETEXT EXISTS PRINT 

DISTRIBUTED OPENXML USE EXIT PROC 

DOUBLE OPTION USER PERCENT OVER 

DROP OR VALUES WHEN WAITFOR 

DUMP ORDER VARYING ELSE VIEW 
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4.3 Numerical features encoding  

Figure 4-5 presents this section organisation chart with the associated subsections. 

 

Figure 4-5 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

A typical data set structure would contain columns and rows. The columns are often 

referred to as attributes while the rows are the attribute values. Also, there is a column 

that contains what to predict termed as the y-attribute with the content of the rows being 

the labelled y-attribute values. The labelled y-attribute values are the expected outcome 

to be predicted in a supervised learning model.  

In ML approaches, scoping of the x attributes provides a method to capture the 

required artefact to predict the output y accurately which is the reason for the attributes 

scoping presented in the sections below. The ML algorithms required input type of 

numeric vectors which is the content of x-attribute values (data set rows to train a 

classifier).  

The conventional approaches for extrapolating these numeric attribute values to train 

a classifier in biological sciences are through scalar observations and measurements. Take 

an example of the Iris data set (Anderson’s Iris data set) which Edgar Anderson collected 

the measurements of the sepals and petals of three Iris flowers to quantify the 

morphological variations of the related species [180]. This Iris data set has become a 

classic test case data set in ML statistical classification based on Fishers’ linear 

discriminant model [181]. The Iris data set has the name of the iris flower types as the 

labelled category and the associated attribute values (rows) containing the lengths of the 

sepals and petals measurements. The Iris data set procurement technique described above 

forms the idea behind the string features encoding presented in the sections below. 
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4.3.1 String features derivation and vectors encoding 

In our first attempt to obtain a data set relevant to an intended web application as to 

provide an applied ML technique in SQLIA mitigation, we derived strings and the 

corresponding numeric scalar observations (vectors) as the attribute values in the data set 

used in this section. We further the approach in subsequent Chapters (5 and 6) to use 

string vectorisation as against manual vector assignments. Hashing or string vectorisation 

is a technique where string features are transformed into a numeric matrix required as 

input to a classifier to be discussed in Chapters 5 and 6. Also, we observed during the 

process of data set procurement that we could generate as much data set to assert SQLIA 

of any size.  

The approach presented here uses ML techniques integrated with a proxy API to 

intercept web request as to predict SQLIA at SQL injection point (hotspot) which is a 

paradigm shift from SQL queries structure comparisons to some extent in most existing 

approaches. In inferring a data set ahead for SQLIA ML mitigation to a web application 

type, there is a need to have all possible permutations of features as to derive a pattern-

driven data set capable of training a classifier. 

To obtain a massive data set (learning data) with patterns, we explore string package 

of the R programming language replication method and a package named stringi [38] to 

derive as many related member strings as required. We obtained significant learning data 

by methods of replicating and shuffling (string transposition) of the strings to generate all 

possible member strings including the anagrams of the original string given.  

Take an example of an expected valid input of bob, which can be shuffled to have a 

derivation of bbo, obb, etc. However, as the transposition of strings presents more patterns 

of the original strings; this becomes an invaluable step to detect shuffled strings by an 

intruder to bypass mitigation being provided in the web request to circumvent the SQLIA 

mitigation at hotspots. For example, an intruder may intend to carry out SQLIA with a 

shuffled select SQL keyword, e.g., select, seeclt, lesetc, lseect, cetlse, eetcls, etc in place 

of expected valid input of bob at the SQL predicate’s expression value.  

There is a need to procure data set with the relevant artefact in thinking ahead of ML 

SQLIA mitigation for a real-world web application where there is no precedence of the 

data set. The web application types are so diverse and dynamic to rely on out of date 

competition-driven data sets [65], [66] that were only good for the detecting of anomalies 
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in the competition and project for which they were generated. Having to start from scratch 

implies a requirement to have a learning data to train an intended classifier relevant to the 

web application type to be protected to require the following artefact. 

• Patterns of expected valid input data. 

• Patterns of established SQLIA signatures which the background knowledge of 

SQLIA types provides. 

• Patterns of SQL tokens (the query keywords, constants, symbols and delimiter 

identifiers), like an intercepted query strings with SQL tokens, can only mean a 

likelihood to substitute valid input data at SQL injection hotspot to effect SQLIA. 

An example of a web application logic expecting from a web form; a login name, 

but the query strings analysis presents SQL tokens as a substitution indicates an issue. 

We need to be able to predict such anomalies in a large volume of a web request in cloud 

SDN by generating massive learning data to train a classifier to the maximum with cross-

validation.  

Figure 4-6 below shows the semantics of how the numeric attribute values are 

extrapolated. In replicating the approach, depending on the web application type, the 

scope of the attribute depends on the desired artefact required to predict SQLIA 

accurately. The approach presented here provides a paradigm shift towards procurement 

of the data set based on the web application type at the point of need as against having a 

static data set that is likely to be antiquated over time. Below are the steps. 

• The data set extraction starts depending on the web application type, a set of 

strings is generated. In the example provided in this chapter, a list of expected 

input strings to a web application are conceptually labelled SQLIA negative while 

SQL tokens including SQLIA type signatures are labelled positive. Alternatively, 

string pattern can be generated with RegEx. 

• These original string features are duplicated by methods of replication and 

transposition to generate related member strings by using the R language replicate 

method and random transposition of R stringi library (stringi::stri_rand_shuffle). 

The features are labelled with SQL tokens and SQLIA type signatures assigned a 

numeric value of between 1-8 in labelling while valid input string is labelled 9.  
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• We assign an attribute named rndrisk which is a random value of 0.0o ≤ x ≤ 0.0n 

to account for the variation in signatures that occurs in SQLIA types. It is observed 

with this rndrisk that we can even simulate SQLIA of any size without the string 

features.  

• We further measure the string distance to establish related member strings 

anagram using R package stringdist [182]. If the qgram method value is 0, it 

confirms the string is an anagram or transposed version of the original string. 

• For SQLIA positive, the sum values are less than 9 which is assigned a value 1 

while 9 and above is SQLIA negative which is assigned a value 0. Table 4-3 

provides a snippet of how the class labelling is assigned to craft the labelled data 

set vectors. 

 

Figure 4-6 A flowchart of the numerical encoding of features: A Flowchart illustrating 

numeric encoding of features to obtain scalar numeric values required to train a supervised learning 

model. 
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Table 4-3 Labels/classes to predict: A table illustrating the labelling of the SQLIA types 

including expected valid request. 

SQLIA Types Class/Labels Snippet of signature 

Tautology 1 `--,1=1,1<1, ‘a’=’a’ etc. 

Piggyback 2 ; 

Union 3 UNION SELECT 

Invalid/Logical Incorrect Query 4 SELECT, IF, ELSE, dbo,1/0 

Alternate encoding obfuscation 5 ), %, Hex values 

Time-based 6 Wait for delay '00:00:10' 

Store Procedure 7 ; EXEC, XP_CMDSHELL, ATTRIB 

Second order 8 ‘x’=x’--"  

 Valid web request 

Expected collated input/non-SQLIA 9 Bob, bbo, obb etc 

 

To simplify the sections explanation, throughout this chapter a few strings and SQL 

token features will be presented in the table examples. A set notation for many features 

attribute values (rows) or vectors will be represented with {xo…xn} for the list of items of 

vectors. We used the set notation in the table in the subsequent sections to represent the 

big picture of the attributes (columns) and associated attribute values (rows).  

Table 4-4 presents set of attributes scoping with original strings that are replicated 

and transposed to obtain a derived member string which is then filtered to ensure the data 

set string features derived are patterns of related member strings (anagram). The 

subsequent sections would see a gradual build up of more attributes in the associated 

tables presented. 

Table 4-4 Derived member strings: A table illustrating derivation of related member strings with 

the anagram value of 0 in the data set attributes scoping. 

Original 

strings 

attribute 

Derived member string 

attribute values (String 

Features) 

Related member strings 

(anagram) 

bob  bob 0 

bbo 0 

obb 0 

select  select 0 

seeclt 0 

lesetc 0 

lseect 0 

cetlse 0 

eetcls 0 

` ` 
0 

{xo…xn} {xo…xn} {xo…xn} 
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4.3.2 Sitype attribute (p) 

The sitype attribute p = {x0…xn} represent encoded numeric SQLIA types, SQL tokens 

including a valid expected pattern of input data. Signature of SQLIA types with a 

combination of SQL tokens is assigned a number between one to eight (1-8) while a valid 

web request is assigned the value nine (9) and above. This encoding is aimed to provide 

a data set for supervised learning classifier with class attribute values that support both 

binary predictions of 1 / 0 and the multiclass classification of the SQLIA types.  

The flowchart presented in the Figure 4-6 above illustrates the procedure for 

attributes extraction. If the static defined pattern (p) finds a match in the derived member 

strings and known signatures, then a number is assigned from a range of 1 to 9. The value 

of nine (9) and above is a legitimate web request value assigned arbitrarily, while a value 

range of 1 to 8 is any of the SQLIA types including second-order injection mechanisms 

as highlighted and shown in Table 4-5. Refer to Table 4-3 above which provides a snippet 

of the translation of SQLIA types and SQL tokens including valid input in the labelling. 

The threat threshold is the cut-off value for labelling SQLIA risk or not. In this 

implementation presented in this thesis, it implies a threshold of collated value equal to 

or greater than nine will be labelled SQLIA negative feature value. Conversely, feature 

values assigned 1-8 and collated to be less than nine are labelled SQLIA positive. 

Table 4-5 Sitype attribute vector assignments: A table illustrating the Sitype attributes vector 

assignments in labelling. 

 String 

Features 

Related 

member 

strings 

Sitype 

(p) 

bob 0 9 

bbo 0 9 

obb 0 9 

select 0 4 

seeclt 0 4 

lesetc 0 4 

lseect 0 4 

cetlse 0 4 

eetcls 0 4 

` 0 1 

{xo…xn} {xo…xn} {xo…xn} 
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4.3.3 Sidetermination attribute (v) 

The sidetermination attribute v = {x0…xn} involves establishing if the patterns being 

matched are present in known SQLIA signatures; are patterns partly present in matched 

features; e.g. implementing NFA backtracking [183] for the tautological attack will be a 

litmus test for escape character (‘), OR, patterns of 1=1 and its derivations. 

Sidetermination attribute is an NFA backtracking (cross-checking) to test if the 

signature of the assert SQLIA type exists to satisfy each assigned number of between a 

range 1-9 (refer to Table 4-3 above for the snippet of the vectors assignment). In obtaining 

the vectors in Table 4-6 below, we run a loop against the sitype, whenever a condition is 

satisfied for either of a valid web request or SQLIA types, a two decimal place value of 

0.01 ≤ x ≤ 0.0n is assigned.  

This feature encoding provides the maiden attempt to investigate if the artefact to 

provide SQLIA mitigation can be inferred from a web application type. In determining 

the SQLIA type, we take the closest match (similarity) of the feature being encoded. For 

example, the tautological attack will be a litmus test for escape character (‘), OR, patterns 

of 1=1, etc. The result of the experiment being presented here led to a further work to 

replace this manual encoding to strings vectorisation (hashing) that is presented in 

Chapters 5 and 6. We recognised the limitation in emerging computing of cloud-hosted 

web applications with restriction to the source code in constructing the full lexical or 

syntactic structure of a SQL query to detect SQLIA. We went with the approach of a 

string by string analysis using ML techniques focusing on big data web traffic at the cloud 

SDN endpoints for pattern analysis of the permutations of SQLIA signature in transitions. 

Table 4-6 Sidetermination attribute vector assignments: A table illustrating attribute 

vector assignments for Sidetermination. 

String 

Features 

Related 

member 

strings 

Sitype 

(p) 

Si 

determination 

(v) 

bob 0 9 0.09 

bbo 0 9 0.09 

obb 0 9 0.09 

select 0 4 0.04 

seeclt 0 4 0.04 

lesetc 0 4 0.04 

lseect 0 4 0.04 

cetlse 0 4 0.04 

eetcls 0 4 0.04 

` 0 1 0.01 

{xo…xn} {xo…xn} {xo…xn} {xo…xn} 
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4.3.4 Rndrisk attribute (r) 

The rndrisk attribute (r) accounts for the variation that exists in both valid web requests 

and SQLIA types matching, e.g. an SQLI tautological attack of 1=1 can also be written 

as 1 > 1, ‘xyz’=’xyz’ and so on, to achieve the same attack. Also, a valid data input 

expecting a pattern of ‘bob’ can also accept a pattern of ‘bbo’. The rndrisk attribute is 

assigned a random value of 0.01 ≤ x ≤ 0.0n. These rndrisk random values account for the 

variations in SQLIA types when generating large data items. It is imperative the random 

number stay within the random values of 0.01 ≤ x ≤ 0.0n as a large value will shift the 

threshold cut-off point. Table 4-7 presents the current progress of the attributes scoping 

with the rndrisk attribute values. 

Table 4-7 Rndrisk attribute vector assignments: A table illustrating Rndrisk attribute vector 

assignments. 

String 

Features 

Related 

member 

strings 

Sitype 

(p) 

Sidetermination 

(v) 

Rndrisk 

(r) 

bob 0 9 0.09 0.08125 

bbo 0 9 0.09 0.03384 

obb 0 9 0.09 0.02436 

select 0 4 0.04 0.08771 

seeclt 0 4 0.04 0.03712 

lesetc 0 4 0.04 0.06701 

lseect 0 4 0.04 0.05996 

cetlse 0 4 0.04 0.07636 

eetcls 0 4 0.04 0.06436 

` 0 1 0.01 0.05511 

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn} 

4.3.5 Siriskfactor attribute (l) 

The sirikfactor l is collated to obtain the likeliness of features being a risk factor that can 

either be -1 likeliness or 1 for remote likeliness. The y-variables or what to predict 

(commonly known as a class) can be a possible 1 (1 0) or 0 (0 1) for SQLIA and valid 

web request respectively. It is the sum of x-attributes of the sitype (p), sidermination(v), 

rndrisk (r), for example (p + v + r) to determine if a data item is to be labelled an SQLIA 

positive or negative. Following this encoding scheme presented, more or other attributes 

deemed required depending on the web application type can be inferred as various web 

application types would vary in patterns that exist in them. However, we further our 

approach to replace these features encoding to features vectorisation or hashing in a 
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further work presented in Chapters 5 and 6. Table 4-8 illustrates the current progress in 

the feature encoding with the highlighted Siriskfactor attribute values. 

In Equation 4-1, let i and n be the size of attribute values; a sum of the total attribute 

x= (p + v + r) values less than 9 is a likeliness of SQLIA risk factor assigned 1. Table 

4-3 provides a snippet of how the class labelling is assigned to conceptualised the labelled 

data set vectors. Refer to row attribute values sum highlighted in red in Table 4-8. 

 

 l= ∑ x = (p+v+r) < 9

n

i=1

 
 Equation 4-1 

 

 In Equation 4-2, let i and n be the size of attribute values; a sum of the total attribute 

x= (p + v + r) value of 9 and above is a remote likeliness for SQLIA risk factor assigned 

-1. Refer to row attribute values sum highlighted in green in Table 4-8. 

l= ∑ x = (p+v+r) ≥ 9

n

i=1

 
 Equation 4-2 

Table 4-8 Siriskfactor attribute vector assignments: A table illustrating Siriskfactor 

attribute vector assignments. 

String 

Features 

Related 

member 

strings 

Sitype 

(p) 

Sidetermination 

(v) 

Rndrisk (r) Siriskfactor 

(l) 

bob 0 9 0.09 0.08125 -1 

bbo 0 9 0.09 0.03384 -1 

obb 0 9 0.09 0.02436 -1 

select 0 4 0.04 0.08771 1 

seeclt 0 4 0.04 0.03712 1 

lesetc 0 4 0.04 0.06701 1 

lseect 0 4 0.04 0.05996 1 

cetlse 0 4 0.04 0.07636 1 

eetcls 0 4 0.04 0.06436 1 

` 0 1 0.01 0.05511 1 

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn} {xo…xn} 

 

4.3.6 Siclass attribute 

The class attribute y-variable or what to predict can be a possible 1 (1 0) for SQLIA 

positive or 0 (0 1) for SQLIA negative. These attribute values are collated from the sum 
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of independent predictor variables (x-attributes) of p, v, r as illustrated in Equation 4-1 

and Equation 4-2. The dependent y-variable or what to predict (commonly known as a 

labelled class) is represented as a possible 1 for SQLIA or 0 for non-threat. Table 4-9 

presents a complete conceptual labelled data set with attribute values that are required to 

be fed into MAML studio as a data set to train a supervised learning model presented in 

the subsequent sections.  

We introduced this section with a motivation of the Iris data set that forms the idea 

behind the string features encoding presented. Note this conceptual maiden technique in 

to obtain a data set is replaced in Chapters 5 and 6 by string hashing vectorisation. 

Table 4-9 Siclass attribute binary labelling: A table illustrating the encoding of strings and 

SQL tokens to numerical attribute values required to train a supervised learning model. 

String 

Features 

Related 

member 

strings 

Sitype 

(p) 

Sidetermination 

(v) 

Rndrisk (r) Siriskfactor 

(l) 

Siclass 

bob 0 9 0.09 0.08125 -1 0 

bbo 0 9 0.09 0.03384 -1 0 

obb 0 9 0.09 0.02436 -1 0 

select 0 4 0.04 0.08771 1 1 

seeclt 0 4 0.04 0.03712 1 1 

lesetc 0 4 0.04 0.06701 1 1 

lseect 0 4 0.04 0.05996 1 1 

cetlse 0 4 0.04 0.07636 1 1 

eetcls 0 4 0.04 0.06436 1 1 

` 0 1 0.01 0.05511 1 1 

{xo…xn} {xo…xn} {xo…xn {xo…xn} {xo…xn} {xo…xn} {xo…xn} 

 

4.4 The implementation steps on MAML studio  

Figure 4-7 presents this section organisation chart with the associated subsections. 

 

Figure 4-7 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

Figure 4-8 below is the MAML experiment screen capture that is carried out for the 

model proposed. The steps include: pre-processing of the data set attribute values; 

Implementation 
steps

Data set input Pre-processing Normalisation Split of matrix Training 
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classification of SQLIA features; validation of the supervised learning model which is 

then exposed as web services in ongoing detection and prevention. Below is the high-

level overview of the key steps and with further detail presented in this section. 

 

Figure 4-8 The MAML studio predictive experiment: The figure is a screen capture of 

MAML studio to illustrates experimental steps for the proposed model. 

1. The pre-processing of pattern-driven data set is done using R scripting language 

and RegEx patterns matching as detailed in 4.3.1. This step is followed by 
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scrubbing of the missing data and column casting of the input data set. Missing 

attribute values are aligned to the presence or absence of SQLIA risk in labelling 

to achieve better performance metrics that can accurately predict SQLIA. Data 

set scrubbing helps remove over-fitting from both binary and multiclass 

classification in the work presented in this thesis. 

2. The next step is employing normalisation which is the rescaling of the numeric 

data as to constrain the vectors [184] for a proper fitting in the statistically 

trained model. In the scheme presented here, we rescaled the vectors of the 

presented pattern-driven data set from [-1,9] to a range of [-1,1] using z-score 

normalisation and [0,1] while using logistic normalisation to present a detailed 

comparison result in section 4.5.2 below. 

3. The normalisation is followed by splitting of data between training and testing 

data. Through repeated training of the statistical model with different split data 

ratios, it is observed in the scheme presented in this thesis, employing 70% (0.7) 

training data to 30 % (0.3) testing data gave the highest prediction rates in the 

binary classification while 80% (0.8) training data to 20% (0.2) testing data 

gave the highest prediction rates in multiclass classification. 

4. The supervised learning model was trained using the following classification 

algorithms: 

• Two Class Logistic Regression (TC LR). 

• Two Class Support Vector Machine (TC SVM). 

• Multiclass Neural Network (MNN). 

• Multiclass Logistic Regression (MLR). 

The MAML studio provides an easy technique to test drive classifiers by drag 

and drop with the promising algorithm validated and cross-validated for reduced 

biases to unknown independent data in the real-world. The cheat sheet [185] 

(How to choose a Microsoft ML algorithm) is an additional resource that gives 

prescriptive guidance in selecting a classifier to use. Both TC LR and TC SVM 

were used to determine which classification algorithm performs better in a binary 

classification of the pattern-driven data set. The trained models were validated 

and cross-validated with detail provided later in the chapter. We further the 
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classification to use MNN and MLR to determine which classification algorithm 

performs better in SQL types multiclass classification. 

5. These algorithms above were scored and empirically evaluated to establish how 

well the prediction of the supervised learning classification models is 

performing. The model with the best performance metrics in statistical 

measures (accuracy, precision, recall and F1score) including ROC curve, AUC, 

CM and k-fold cross validation is deployed as the predictive model. 

6. Finally, a predictive web service was generated from the trained; supervised 

learning model built using MAML studio to obtain an API code to integrate into 

the Fiddler proxy API and web forms. 

4.4.1 Data set input data items 

The Figure 4-9 below displays a snippet of the attributes extrapolated as detailed in 4.3.1 

above with data set containing 59702 data set row items (attribute values).  

 

Figure 4-9 A snippet of numeric encoded vectors: A table showing a snippet of numeric 

encoded data set attribute values inferred from scalar observations of known valid web requests, SQLIA 

signatures and SQL tokens. 

These extrapolated attributes serve as input vectors to a supervised learning model 

experiment carried out in the MAML studio to evaluate the performance metrics of 

applying the pattern-driven data set presented in this thesis. ML techniques require data 

set of historical attributes that have patterns to predict a predetermined labelled output, 

which in this case is whether a web request data input is SQLIA negative or positive.  

String 

features
Sitype RndRisk SiDeterminationRiskFactor Hamming qgram ………...n Class

bob 9 0.08125 0.09 1 0 0 ………...n 9

bbo 9 0.03384 0.09 1 2 0 ………...n 9

Select 3 0.08771 0.03 -1 0 0 ………...n 3

seeclt 3 0.03712 0.03 -1 3 0 ………...n 3

lesetc 3 0.07888 0.03 -1 4 0 ………...n 3

lseect 3 0.06701 0.03 -1 3 0 ………...n 3

cetlse 3 0.05996 0.03 -1 5 0 ………...n 3

eetcls 3 0.07636 0.03 -1 5 0 ………...n 3

tlsece 3 0.05996 0.03 -1 4 0 ………...n 3

‘ 1 0.05511 0.03 -1 ………...n 1

( 5 0.05996 0.05 -1 ………...n 5

= 1 0.06187 0.01 -1 ………...n 1

/ 4 0.05996 0.04 -1 ………...n 4

n n n n n n n n n

x attributes / features
y attribute / 

output

Attribute / feature values for predicting output y y output values to 
predict  
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4.4.2 Pre-processing or data engineering  

In gathering raw data, there can be irregularities in the form of missing values, outliers 

and discrepancies [186]. Apart from cleansing irregularities in data set items, other data 

engineering steps can be carried out during pre-processing to improve prediction 

performance. These data engineering improvements could include: using RegEx 

constraints by implementing R-Script modules; grouping of the class y-attribute values 

to reduce dimensionality, e.g. multiclass to a binary classification; and, sampling for even 

distribution of attribute values.  

We evaluated the suitability of numeric encoded vectors input data set in both binary 

class and multiclass classification in the ROC curve and CM respectively. We reduce the 

original multiclass labelled data set of encoded assigned values of 1-9 in y-attribute values 

to a binary class of 1-8 grouped as SQLIA positive with an assigned value of 1, while 9 

onward is assigned 0 as illustrated in Figure 4-10. Using the data set to train binary and 

multiclass classifier algorithms provided an empirical evaluation of the suitability of the 

learning data obtained from the scheme presented in this thesis to train the SQLIA 

prediction model. 

 

Figure 4-10 Grouping of multiclass to a binary class: A figure of screen captures of 

reducing multiclass labelled data set to a binary data set. 

4.4.3 Normalisation 

Normalisation scheme involves attribute values rescaling scheme in ML to standardised 

x-attributes value to a range of closely confined values. Normalisation provides 

standardising data or z-score which is a method to rescale or reduce numeric data items 
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to a standard range [184]. In this experiment, we rescaled x-attribute values from [-1,9] 

to a range of [-1,1] using z-score normalisation and [0,1] while using logistic 

normalisation. Figure 4-11 illustrates normalisation using a logistic transformation 

method. 

 

Figure 4-11 A MAML studio normalisation module to rescale attribute: A figure of 

the MAML studio normalisation module to rescale attribute values to a standardised range of value 

through logistic normalisation. 

 We rescaled the attribute values employing z-score and logistic normalisation 

modules that are implemented in Equation 4-3 and Equation 4-4 respectively.  

Let z be the z-score or logistic normalisation (standardisation of data items)  

• x is the attribute values or each data point observation 

• μ is the mean (average) of x  

• 𝜎 standard devaiation of x 

• e is the exponential constant value of 2.71 

 

z =
(𝑥 − 𝜇)

𝜎
 Equation 4-3 

The MAML studio offers various normalisation configurable properties. Equation 

4-3 is the formula used in the z-score normalisation scheme which MAML studio offers. 

Let z be the normalised value, the normalisation module of the MAML studio takes the 

data point x minus the mean represented by (𝑥 − 𝜇 ) divide by the standard deviation of 

x denoted by 𝜎 [184]. This calculation rescaled the attribute values (vectors) of range [-

1,9] to vector values range of [-1,1]. 



73 

 

 

z =  
1

1 +  𝑒−𝑥
 Equation 4-4 

 

Equation 4-4 is a logistic normalisation formula which is a configurable module in the 

MAML studio. Where z is the normalised vectors, using the mathematical integration 

equation, the original attribute values are rescaled from [-1,9] to [0,1]. 

We evaluated the impact of z-score and logistic normalisation on prediction errors 

(FN and FP) to have observed the logistic normalisation improves the prediction rate as 

further presented in section 4.5.2.  

4.4.4 Split of the vector matrices between training and testing set 

We divided the data set matrices into different split ratios to determine the impact of the 

split ratio of the training to testing set has on the classifier performance. The first run was 

70% of the data set vector matrices were used for the training of the classifier, and the 

remaining 30% were used as testing data. In the second run, we used a ratio of 80% of 

the data set vector matrices for the training of the classifier, and the remaining 20% were 

used as testing data. This testing data is the subject of the empirical evaluation presented 

in section 4.5 below. Also, we provided cross-validation, which provides a better gauge 

of the performance metrics with ten folds possible permutations of training to testing data 

partitions. 

4.4.5 Training a supervised model 

In this experiment, we trained binary classifiers named TC LR and TC SVM. We also 

trained multiclass classifiers (MNN and MLR) to provide evaluation results presented in 

4.5. The binary classifiers predict one of possible outcomes of between SQLIA negative 

or positive, while the multiclass classifier is extended to predict the various SQLIA types 

including valid web requests. 

Both TC LR and TC SVM algorithms employ linear kernel which offers a binary 

prediction at the proxy. The default kernel used in the experiment offers a linear 

separation between SQLIA positive and negative in web requests. This linearity of the 

classes which can be demarcated in a straight line makes algorithms (classifiers) using 

linear kernel a preferred choice in binary classification.  
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The two classifiers were observed with good accuracy and fast training times in 

performance metrics in using the linear kernel. Also, MLR and MNN classifiers offer us 

a method to predict different SQLIA types. TC SVM, TC LR, MLR and MNN algorithms 

are trained with the training data and evaluated with the testing data of the partitioned 

matrix values. The trained classifiers are evaluated in the ROC curve and CM with the 

better performing trained, supervised learning model under cross-validation deployed as 

a web service for the ongoing SQLIA detection at the web proxy. 

4.5 Evaluation and Result 

Figure 4-12 presents this section organisation chart with the associated subsections. 

 

Figure 4-12 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

The statistical measures (accuracy, precision, recall and F1 score), ROC curve and 

CM are widely used by data scientists to measure the performance metrics in ML 

analytics. It provides a valid empirical statistical measure for the evaluation of results. 

ROC curve, which has its origin in World War II to predict radar images for threats, has 

been widely accepted in interpreting medical test results [50], [51] and recently in 

computing data science. 

The attribute values or x-variables (sitype, sidetermination, rndrisk, siriskfactor, etc.) 

including the labelled output attribute or y-variable (siclass) forms the input data set to a 

supervised learning model. ML approaches need an extensive data set of numeric encoded 

(vectors) from the behaviour or patterns of normal and SQLIA features for accurate 

prediction of SQLIA in a web request. The numerical attributes encoding ontology 

detailed in 4.3 above provides the technique to derive as many desired data set attribute 

values for the supervised learning model presented in this thesis. 

The observations are inferred by scoring the model to generate score probabilities 

for the testing data (the split data unseen by the classifiers) against the training data used 

Evaluation and 
Result

Statistical measures 
and ROC curve

Binary classification 
algorithms

Multiclass 
classification 

algorithms
Cross-validation
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to train the classifiers. This section provides the evaluation and performance metrics of 

the model under various normalisation, training to testing split data ratios and statistical 

measures. Also presented in this section is the binary and multiclass classifier 

performance metrics in the ROC curve and CM respectively. 

4.5.1 Statistical measures and ROC curve 

Figure 4-13 presents this section organisation chart with the associated subsections. 

 

Figure 4-13 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

4.5.1.1 Score probabilities 

 The testing data input variables are scored to generate score probabilities of a range 0 ≤ 

x ≤ 1 where x is the input vector values to predict output y. The score probabilities provide 

a measure of observations that are correctly predicted as TP and TN including the two 

prediction errors of FP and FN within the range {0,1}. These prediction observations of 

TP, TN, FP and FN are presented in the tables below, are calculated to determine how 

many of these observations score probability values fall within each score bins set of 

between 0 and 1 (expressed in the set as {0,1}). 

Therefore, the expected output is y = 0 or SQLIA negative if the function of the 

predictor variables x is closer to 0 expressed as f(x) ≈ 0. Conversely, the prediction output 

is y = 1 or SQLIA positive when the function of predictor variables x is closer to 1 denoted 

as f(x) ≈ 1. Also, taken into consideration are the prediction errors rate of FP and FN. The 

prediction errors are observations of predicted output that have been wrongly classified 

which is used to gauge the performance of a classifier. 

4.5.1.2 Threshold 

The MAML studio sets by default the cut-off threshold for the prediction of TP and TN 

including the errors of FP and FN to be 0.5. This cut-off of 0.5 is a predetermined 

threshold employed by classification algorithms; it is a cost function of x to predict y. 

Statistical measures 
and ROC curve

Score probabilities Threshold
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Therefore f(x) < 0.5 score probability value is predicted as SQLIA negative (0) while f(x) 

≥ 0.5 is predicted as SQLIA positive (1). The score probabilities are partitioned into ten 

score bins of 0.1 increments of the set {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.  

The collation of the prediction variables of TP, TN, FP and FN falls on these cut-

offs between the set {0.0,1.0}. These prediction observations are used to calculate the 

accuracy, precision, recall and F1 score statistical measures. Table 4-10 is a formula table 

that includes the abbreviation used in statistical measures throughout this thesis.  

Table 4-10 Formula table: A table detailing how the performance metrics are calculated. 

Terminology Formula 

True Positive (TP) - 

True Negative (TN) - 

False Positive (FP) - 

False Negative (FN) - 

Positive events (PE) TP+FN 

Negative events (NE) FP+TN 

Positive observations (PO) TP+FP 

Negative Observations (NO) FN+TN 

Total events (TE) PO+ NO 

4.5.1.3 Statistical measures  

Figure 4-14 presents this section organisation chart with the associated subsections. 

 

Figure 4-14 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

The statistical measurements of a trained model are provided by accuracy, precision, 

recall and F1 score. These statistical measures are calculated by collating the score 

probability values of TP, TN, FP and FN under various cut-off of 0.1 increments between 

0.0 ≤ x≤ 1.0. 

4.5.1.3.1  Accuracy 

Accuracy is the proportion of the actual accurate results from the total cases. It has 

relevance in interpreting the performance of a model trained as it costs the same in a data 

Statistical measures

Accuracy Precision Recall F1 Score
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set with an even distribution of features [46]. The accuracy is calculated by the formula 

elements in Table 4-10 above with the Equation 4-5 below. 

Accuracy (A) = (TP + TN) / TE Equation 4-5 

4.5.1.3.2  Precision 

Precision is the proportion of true overall positive results returned by a trained model. In 

an even and uneven distribution of features, it will cost more in FP for a wrong prediction 

of a feature. In this scenario, it is the administrative overhead of wrongly predicting 

SQLIA positive. The precision is calculated by the formula elements in Table 4-10 above 

with the Equation 4-6 below. 

Precision (P) = TP / PO Equation 4-6 

4.5.1.3.3  Recall 

The recall is the TP rate, which is the fraction of total correct results returned by the 

model. In an even and uneven distribution of features, it will cost more for prediction 

error of FN. In this scenario, it is the security loophole of wrongly predicting actual 

SQLIA as negative, which implies the system is unprotected against data pilfering with 

damaging ramifications. The recall is calculated by the formula elements in Table 4-10 

above as the prediction rate of a trained classifier with the Equation 4-7 below. 

Recall (R)= TP / PE Equation 4-7 

4.5.1.3.4  F1 Score 

The F1 score is a measure of accuracy that balances precision and recall. It has relevance 

in interpreting the performance of a trained model as it costs the same in a dataset with 

an even or uneven distribution of features [46]. The F1 score is calculated by the formula 

elements in Table 4-10 with the Equation 4-8. 

F1 Score (F) =2 x (R x P) / (R+P) Equation 4-8 

4.5.1.4 ROC curve and AUC 

ROC curve is a graphical plot using variation in threshold discrimination to illustrate the 

performance of the binary classifier with a curve towards the upper left corner indicating 
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a better performing model. AUC or area below the curve in the graph plot is a measure 

of TP Rate (TPR) or recall on the y-axis against FP Rate (FPR) on the x-axis. An excellent 

prediction model achieved through this thesis is interpreted from the AUC value of 0.9 ≤ 

x ≤ 1. The ROC curve AUC provides a measure of the performance of a classifier which 

is graded as presented in Table 4-11. 

Table 4-11 AUC grading: A table showing the grading of AUC that set the benchmark for the 

measure of performance metrics of a trained model [51]. 

AUC Values Grade 

0.9 ≥ x ≤ 1.0 Excellent 

0.8 ≥ x < 0.9 Good 

0.7 ≥ x < 0.8 Fair 

0.6 ≥ x < 0.7 Poor 

x< 0.6 Random prediction/worthless 

4.5.2 Binary classification algorithms 

Figure 4-15 presents this section organisation chart with the associated subsections. 

 

Figure 4-15 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

In this implementation of applying ML to mitigate SQLIA, the ratio of SQLIA 

negative to positive is 1 to 8 in the data set used. We used feature values (59702-row 

items) that are split at various ratios between training to testing data. These partition data 

sets are used to train the classifiers named above. We split the data set matrices to ratios 

of 70% (41791 rows of training data) to 30% (17911 rows of testing data) for an 

experiment.  

We also carried out a split ratio of 80% (47762 rows of training data) to 20% (11940 

rows of testing data). In this experiment, there were majority SQLIA positives over 

negatives in binary classification, but a balanced data set in multiclass across the nine 

classes of the features; as the same data set was used in the multiclass classification of 

SQLIA types. However, the imbalanced data set (majority SQLIA positives over 

negatives) were corrected in future binary classification using Synthetic Minority Over-

Binary 
classification 
algorithms

Metrics: 
Normalisation and 

Split ratios

Metrics: Statistical 
measures and ROC 

curve
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Sampling Technique (SMOTE) [187] in 5.3.2. These results obtained from the 

experiments using various split data ratio are presented below. The original data set 

created as input to the multiclass classifier was reduced by a grouping of the multiclass 

labelling to binary class labelling as also to become an input to the binary classifier as 

described in section 4.4.2 above. 

4.5.2.1 Metrics: Normalisation and Split ratios of binary classification 

The normalisation principle is presented in 4.4.3 above. Table 4-12 presents repeated 

training of the supervised learning classifier using different normalisation and split ratios 

to infer the results of the prediction errors. It was observed using logistic normalisation 

of 70:30 (training: testing data) split ratio gave the lowest prediction errors as compared 

to other split data ratios and normalisation. Figure 4-16 below, presents an optimum 

classification that was achieved at normalisation using logistic data transformation 

methods. The data set split ratio of 70 to 30 between the training to testing data at this 

normalisation achieved an excellent result of FN =43 and FP=50 in the performance 

metrics using the TC SVM classification algorithm. 

The prediction errors of FN and FP provides an insight into the performance of a 

trained model. A wrong prediction of SQLIA to be FN would imply the intruder 

compromises our protected web application. Also, a high FN of SQLIA threats would 

mean a failed protection which implies there is a need to keep FN from low to nil to 

improve the SQLIA mitigation. Conversely, a wrong prediction of SQLIA negatives to 

be FP is not as detrimental, but an administrative overhead of further reviewing of the 

referring web requests. FP does offer the opportunity for a second review of any suspect 

web requests, thereby enhancing the security of the protected web application using the 

approach presented in this thesis. It is observed as shown in Figure 4-16 below using the 

logistic normalisation and training to testing data ratio of 70 to 30%, offers an enhanced 

classification with low FP and FN. 

Table 4-12 Normalisation observations between training and testing data: 

Observations of prediction errors (FN and FP) in using various normalisation schemes and data set 

partition between training and testing data at various split ratios in binary classification. 

Normalisation types/ratios False Negative (FN) False Positive (FP) 

Logistic - 70:30 43 50 

Z-Score - 70:30 92 254 

Z-Score - 80:20 224 276 

Logistic - 80:20 170 604 
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Figure 4-16 A Bar Chart of Evaluation of ZScore and Logistic normalisation: A Bar 

Chart of evaluation of ZScore and Logistic normalisation at different split ratios in binary classification. 

4.5.2.2 Metrics: Statistical measures and ROC curve 

The section below presents the performance metrics of the suitability of a pattern-driven 

data set in towards predicting SQLIA. The tables presented below has the formula for 

calculating the statistical measures along with the collated observations similarly 

presented in Table 4-10 of section 4.5.1.2 above.  

Table 4-13 below contains the collated prediction variables of TP, TN and the 

prediction errors of FP and FN including prediction observations at different thresholds 

(score bins) using TC SVM algorithms with the calculated statistical measures of using 

80 to 20 split data ratios. Figure 4-17 below presents a ROC curve of the evaluation with 

the AUC plot. The AUC graph is plotted with values from Table 4-13 with FPR on the x-

axis and TPR/Recall on the y-axis.  

We achieved an overall performance of AUC value of 0.944 using the TC SVM 

classifier as presented in ROC curve shown in Figure 4-17 below. The performance 

metrics of normalisation, split ratio, statistical measures and AUC overall performance is 

compared in the section below to select a better performing classifier to be deployed as a 

web service in ongoing SQLIA mitigation. 

  

43
92

224
170

50

254 276

604

Logistic -70:30 Z-Score-70:30 Z-Score-80:20 Logistic -80:20

EVALUATING NORMALISATION SCHEMES
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Table 4-13 TC SVM of observations at various thresholds-80:20 data ratio: A table of 

observations at various thresholds/score bins using TC SVM algorithms, including the statistical measures 

for 80% training to 20% testing data ratio. 

 

 

Figure 4-17 An AUC plot for TC SVM - 80:20 data ratio: A figure of TC SVM performance 

metrics trained with 80% training to 20% testing data ratio. 

The MAML studio sets by default the optimised cut-off threshold for the prediction 

of TP and TN including the errors of FP and FN to be 0.5. This cut-off value of 0.5 is a 

predetermined threshold employed by classification algorithms in MAML studio. 

Therefore f(x) < 0.5 score probability value is predicted as SQLIA negative (0) while f(x) 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 10616 0 1324 10616 1324 0 11940 0 0 0.110887772 0 0

0.9 9854 762 19 1302 10616 1321 9873 2064 0.01438304 0.92822155 0.934338358 0.998076 0.961881985

0.8 10090 526 75 1249 10616 1324 10165 1775 0.05664653 0.95045215 0.949664992 0.992622 0.971079351

0.7 10220 396 127 1197 10616 1324 10347 1593 0.09592145 0.96269781 0.956197655 0.987726 0.975051281

0.6 10302 314 202 1122 10616 1324 10504 1436 0.15256798 0.970422 0.95678392 0.980769 0.975568182

0.5 10392 224 276 1048 10616 1324 10668 1272 0.20845921 0.97889977 0.958123953 0.974128 0.976508175

0.4 10451 165 357 967 10616 1324 10808 1132 0.26963746 0.98445742 0.956281407 0.966969 0.975634802

0.3 10508 108 435 889 10616 1324 10943 997 0.32854985 0.98982668 0.954522613 0.960249 0.974813303

0.2 10557 59 566 758 10616 1324 11123 817 0.42749245 0.99444235 0.947654941 0.949114 0.971249827

0.1 10606 10 742 582 10616 1324 11348 592 0.56042296 0.99905803 0.937018425 0.934614 0.965762156

0 10616 0 1324 0 10616 1324 11940 0 1 1 0.889112228 0.889112 0.941301649
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≥ 0.5 is predicted as SQLIA positive (1). The AUC Figure 4-17 above shows a curve at 

the default optimised threshold of 0.5 which is calculated using the formula in Table 4-13. 

In Table 4-14 below, we present the performance metrics using the same 

normalisation and split data as used above, but with the TC LR classifier algorithm as 

against TC SVM. There is a slight improvement on FN prediction errors with values of 

170, but with a higher FP observation of 604 at the default threshold values. Also, there 

is an overall improvement of AUC with a value of 0.988 shown in Figure 4-18 below. 

Table 4-14 TC LR observations at various thresholds-80:20 data ratio: A table of 

observations at various thresholds using a TC LR algorithm, including the statistical measure calculations. 

 

 

Figure 4-18 An AUC plot for TC LR - 80:20 data ratio: A figure of an AUC plot for TC 

LR performance metrics for 80% training to 20% testing data ratio at the default threshold of 0.5. 

The performance metrics shown in Table 4-15 are observations at various thresholds-

using 70:30 split data ratios employing the TC LR classification algorithm. The results 

present an improvement on prediction errors of FP and FN with values of 92 and 254 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 10616 0 1324 10616 1324 0 11940 0 0 0.110887772 0 0

0.9 8996 1620 187 1137 10616 1324 9183 2757 0.14123867 0.84740015 0.848659966 0.979636 0.908732764

0.8 9731 885 302 1022 10616 1324 10033 1907 0.22809668 0.91663527 0.900586265 0.969899 0.942515376

0.7 10113 503 398 926 10616 1324 10511 1429 0.30060423 0.95261869 0.924539363 0.962135 0.95735315

0.6 10310 306 506 818 10616 1324 10816 1124 0.38217523 0.97117558 0.9319933 0.953217 0.962112729

0.5 10446 170 604 720 10616 1324 11050 890 0.45619335 0.98398644 0.935175879 0.945339 0.964275824

0.4 10517 99 691 633 10616 1324 11208 732 0.52190332 0.99067445 0.933835846 0.938348 0.96380132

0.3 10562 54 785 539 10616 1324 11347 593 0.5929003 0.99491334 0.929731993 0.930819 0.96179939

0.2 10600 16 890 434 10616 1324 11490 450 0.67220544 0.99849284 0.924120603 0.922541 0.959015652

0.1 10616 0 1054 270 10616 1324 11670 270 0.79607251 1 0.911725293 0.909683 0.952705735

0 10616 0 1324 0 10616 1324 11940 0 1 1 0.889112228 0.889112 0.941301649
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respectively at the default threshold. Also, there is an overall improvement on AUC with 

a value of 0.997 shown in the ROC curve presented in Figure 4-19.  

Table 4-15 TC LR observations at various thresholds-70:30 data ratio: A table of 

observations at various thresholds using a TC LR algorithm, including the statistical measures calculations 

for 70% training to 30% testing data ratio. 

 

 

 

Figure 4-19 An AUC plot for TC LR - 70:30 data ratio: A figure of an AUC plot for TC 

LR for 70% training to 30% testing split data ratio with the capture of the performance metrics at the 

default threshold of 0.5. 

The performance metrics shown in Table 4-16 below uses TC SVM classifier with 

the training to testing split data ratio of 70 to 30. This evaluation presents an improvement 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 15902 0 2009 15902 2009 0 17911 0 0 0.168257956 0 0

0.9 15253 649 53 1956 15902 2009 15306 2605 0.02638128 0.95918752 1.441289782 0.996537 0.977505768

0.8 15643 259 111 1898 15902 2009 15754 2157 0.05525137 0.98371274 1.469095477 0.992954 0.988311852

0.7 15723 179 138 1871 15902 2009 15861 2050 0.06869089 0.98874355 1.473534338 0.991299 0.990019834

0.6 15775 127 196 1813 15902 2009 15971 1940 0.09756098 0.99201358 1.473031826 0.987728 0.989866031

0.5 15810 92 254 1755 15902 2009 16064 1847 0.12643106 0.99421456 1.471105528 0.984188 0.989175999

0.4 15832 70 302 1707 15902 2009 16134 1777 0.15032354 0.99559804 1.468927973 0.981282 0.988388063

0.3 15853 49 337 1672 15902 2009 16190 1721 0.16774515 0.99691863 1.467755444 0.979185 0.98797208

0.2 15882 20 362 1647 15902 2009 16244 1667 0.18018915 0.9987423 1.468090452 0.977715 0.988116717

0.1 15902 0 423 1586 15902 2009 16325 1586 0.21055251 1 1.464656616 0.974089 0.98687436

0 15902 0 2009 0 15902 2009 17911 0 1 1 1.331825796 0.887834 0.940584982
Abbrevation

s &

Formula

True 

Positive

(TP)

Faslse

Negative 

(FN)

False 

Positive

(FP)

True 

Negative

(TN)

Positive

 Event 

(PE)

 =TP+FN

Negative

 Event 

(NE)

=FP+TN

Positive                                                                                                                                                                                                                                                          

Observ                                                                                                                                                                                                                                                              

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False 

Positive 

Rate  (FPR)

=FP / (FP+TN)

True

Positive 

Rate (TPR)

=TP / PE

(TP+TN)

/  Total events 

(TE)

TE = 17911

Precision 

(P)

=TP / PO

FI Score 

=2*(TPR*P) /

(TPR+P)



84 

 

on prediction errors of FN and FP with observations of low values of 43 and 50 

respectively at the default threshold as against preceding evaluations. The result presents 

an excellent performance with an AUC value of 1.0 shown in the ROC curve presented 

in Figure 4-20. 

Table 4-16 TC SVM observations at various thresholds-70:30 data ratio: A table of 

observations at various thresholds using a TC SVM algorithm, including the statistical measures 

calculations for 70% training to 30% testing data ratio. 

 

 

Figure 4-20 An AUC plot for TC SVM - 70:30 data ratio: A figure of an AUC plot for TC 

SVM performance metrics for 70% training to 30% testing data ratio with the capture of the performance 

metrics at the default threshold of 0.5. 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 15902 0 2009 15902 2009 0 17911 0 0 0.112165708 0 0

0.9 15750 152 0 2009 15902 2009 15750 2161 0 0.990441454 0.991513595 1 0.995197776

0.8 15797 105 10 1999 15902 2009 15807 2104 0.004977601 0.993397057 0.993579365 0.9993674 0.996373269

0.7 15834 68 27 1982 15902 2009 15861 2050 0.013439522 0.995723808 0.994695997 0.9982977 0.997009099

0.6 15851 51 36 1973 15902 2009 15887 2024 0.017919363 0.996792856 0.99514265 0.997734 0.997263204

0.5 15859 43 50 1959 15902 2009 15909 2002 0.024888004 0.997295938 0.99480766 0.9968571 0.997076483

0.4 15869 33 62 1947 15902 2009 15931 1980 0.030861125 0.997924789 0.994695997 0.9961082 0.997015676

0.3 15885 17 91 1918 15902 2009 15976 1935 0.045296167 0.998930952 0.993970186 0.994304 0.996612084

0.2 15896 6 120 1889 15902 2009 16016 1895 0.05973121 0.999622689 0.992965217 0.9925075 0.996052384

0.1 15902 0 155 1854 15902 2009 16057 1854 0.077152812 1 0.9913461 0.9903469 0.995150036

0 15902 0 2009 0 15902 2009 17911 0 1 1 0.887834292 0.8878343 0.940584982
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We compared the overall performance metrics of the trained, supervised learning 

models from the plot of FPR on the x-axis against TPR on the y-axis using the data 

presented in Table 4-13 -Table 4-16 above. We observed that TC SVM using the logistic 

normalisation and training to testing split data ratio of 70 to 30 resulted overall in an 

excellent trained model as graded in Table 4-11 above (refer to section 4.5.1.4 for the 

AUC performance grading). We achieved an AUC performance of value of 1.0 with low 

prediction errors of 50 observations for FP and 43 for FN. 

The comparisons of various performance metrics of normalisation, split data ratios, 

and ROC curve’s AUC is shown in Figure 4-21. These comparisons coupled with the 

cross-validation assisted in the selection of the best performing trained supervised 

learning model to be deployed as a web service in ongoing real-time SQLIA mitigation. 

 

 

Figure 4-21 AUC comparisons across the algorithms and ratios: A figure of AUC 

comparisons across the classification algorithms, split data ratios and normalisation schemes to observed 

a better performance metrics with TC SVM employing logistic normalisation with 70% training to 30% 

testing data ratio. 
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4.5.3 Multiclass classification algorithms 

Figure 4-22 presents this section organisation chart with the associated subsections. 

 

Figure 4-22 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

 

In this section, we evaluated and validated the pattern-driven labelled multiclass data 

set employing multiclass algorithms. The results of the multiclass classifications 

employing MNN and MLR are presented in the sections below. We observed the MLR 

algorithm gave a better performance over MNN in prediction evaluated in CM. The data 

set contains labelled classes of the various SQLIA types detailed in Table 2-1 above. The 

numeric labels presented in Table 4-17 below is a snippet of data set obtained by 

numerical encoding ontology presented in section 4.3 above which provides the technique 

to derive numeric artefact for SQLIA types. 

Table 4-17 Labels/classes to predict: A table illustrating the labelling of the SQLIA types 

including expected valid request. 

SQLIA Types Class/Labels Snippet of signature 

Tautology 1 `--,1=1,1<1, ‘a’=’a’ etc. 

Piggyback 2 ; 

Union 3 UNION SELECT 

Invalid/Logical Incorrect Query 4 SELECT, IF, ELSE, dbo,1/0 

Alternate encoding obfuscation 5 ), %, Hex values 

Time-based 6 Wait for delay '00:00:10' 

Store Procedure 7 ; EXEC, XP_CMDSHELL, ATTRIB 

Second order 8 ‘x’=x’--"  

 Valid web request 

Expected collated input/non-SQLIA 9 Bob, bbo, obb etc 

Multiclass classification 
algorithms

Multiclass algorithms: 
Normalisation and data split ratio

MNN 70:30 vs 80:20

MLR 70:30 vs 80:20 

MNN vs MLR using Logistic 
Normalisation 
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4.5.3.1 Multiclass algorithms: Normalisation and split data ratio 

We compared various multiclass classification algorithms under various split ratios. The 

Logistic normalisation scheme was observed with better results in predicting low FN and 

FP in the binary classification in section 4.5.2. We used the Logistic normalisation to 

compare various training to testing data set split ratios.  

Also, presented below is a comparison between MNN and MLR algorithms under 

these various split data schemes to select a better performing trained model to be deployed 

as a web service in ongoing SQLIA detection and prevention. 

The statistical measure calculations are collated from score probabilities to provide 

observations of correctly predicted features of TP and TN including the prediction errors 

of FP and FN in a trained model. These statistical measure variables, abbreviations and 

formula are presented in Table 4-10 above.  

The equation to calculate the macro and micro average metrics for comparison of the 

predicted results of various split data ratios are presented in Equation 4-9. The equations 

illustrate how the performance metrics results used on the bar chart in Figure 4-23 below 

and the rest of the section for the multiclass performance metrics comparison are 

calculated. The calculated macro and micro average metrics in Table 4-19 is extrapolated 

from Table 4-18 below. 

Equation 4-9 

Calculating the multiclass metrics presented across the table  

Binary  Multiclass 

Accuracy (A)  

A = (TP+TN) / 

(TP+FP+TN+FN) 

Overall accuracy (Amicro) 
𝐴𝑚𝑖𝑐𝑟𝑜 = 𝐴(∑

TP + TN

TP + FP + TN + FN
)

𝑛

𝜆=1

 

Average accuracy (Amacro) 
𝐴𝑚𝑎𝑐𝑟𝑜 =

1

𝑛
∑ 𝐴

𝑛

𝜆=1

 

Precision (P)  

P = TP / (TP+FP) 

Micro-averaged 

precision(macro) 𝑃(∑
TP

TP + FP
)

𝑛

𝜆=1

 

Macro-averaged precision  1

𝑛
∑ 𝑃

𝑛

𝜆=1

 

Recall (R)  

R = TP / TP+FN 

Micro-averaged recall 
𝑃(∑

TP

TP + FN
)

𝑛

𝜆=1

 

Macro-averaged recall 1

𝑛
∑ 𝑅

𝑛

𝜆=1

 

  Where 𝜆 is the classes/labels L= { 𝜆 = 1 … . 𝑛) or L= 1-9  
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4.5.3.1.1  MNN 70:30 vs 80:20 training to testing split data ratio 

Table 4-18 below, presents the observations of prediction across the nine classes or labels 

for MNN algorithms using split data ratios of 70 to 30 and 80 to 20 of training to testing 

data.  

Table 4-18 MNN at 70 to 30 and 80 to 20 split data ratios: A table of performance metrics 

for MNN at 70 to 30 and 80 to 20 of training to testing split data ratio. 

 

Table 4-19 Extrapolated MNN performance metrics: A table of extrapolated MNN 

performance metrics for training: testing split data ratios. 

Metrics Training: Testing data ratio % Improvement 
((𝑴𝑵𝑵 𝟖𝟎: 𝟐𝟎/𝑴𝑵𝑵 𝟕𝟎: 𝟑𝟎) − 𝟏) ∗ 𝟏𝟎𝟎 MNN 

70:30 

MNN 80:20 

Overall accuracy 0.940037 0.964573 2.61 

Average accuracy 0.986675 0.992127 0.55 

Micro-averaged precision 0.940037 0.964573 2.61 

Macro-averaged precision 0.960616 0.971168 1.10 

Micro-averaged recall 0.940037 0.964573 2.61 

Macro-averaged recall 0.938772 0.964042 2.69 

Total overall improvement of MNN 80:20 over MNN 70:30 12.17% 

The predicted classes against the actual classes were compared as presented in the 

tables and figures to infer the following observations: 

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 2009 0 0 0 0 0 0 0 0 2009 0 15902 0 2009 15902 2009 17911 1 1 1

2 0 1981 0 0 0 0 0 0 1981 0 15930 0 1981 15930 1981 17911 1 1 1

3 0 0 1998 0 0 0 0 0 0 1998 0 15913 0 1998 15913 1998 17911 1 1 1

4 0 0 0 1972 0 0 0 0 0 1972 0 15939 0 1972 15939 1972 17911 1 1 1

5 0 0 0 0 2018 0 0 0 0 2018 0 15893 0 2018 15893 2018 17911 1 1 1

6 0 0 0 0 0 2020 0 0 0 2020 0 15891 0 2020 15891 2020 17911 1 1 1

7 0 0 0 0 0 0 875 1074 0 875 0 15962 1074 875 17036 1949 17911 1 0.448948 0.940037

8 0 0 0 0 0 0 0 1956 0 1956 1074 14881 0 3030 14881 1956 17911 0.645545 1 0.940037

9 0 0 0 0 0 0 0 0 2008 2008 0 15903 0 2008 15903 2008 17911 1 1 1

0.960616 0.938772 0.986675

16837 1074 0 1074 0.940037 0.940037 0.940037

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 1324 0 0 0 0 0 0 0 0 1324 0 10616 0 1324 10616 1324 11940 1 1 1

2 0 1302 0 0 0 0 0 0 0 1302 0 10638 0 1302 10638 1302 11940 1 1 1

3 0 0 1354 0 0 0 0 0 0 1354 0 10586 0 1354 10586 1354 11940 1 1 1

4 0 0 0 1307 0 0 0 0 0 1307 0 10633 0 1307 10633 1307 11940 1 1 1

5 0 0 0 0 1372 0 0 0 0 1372 54 10514 0 1426 10514 1372 11940 0.962132 1 0.995477

6 0 0 0 0 54 1289 0 0 0 1289 10597 54 1289 10651 1343 11940 1 0.959792 0.995477

7 0 0 0 0 0 0 933 369 0 933 0 10638 369 933 11007 1302 11940 1 0.71659 0.969095

8 0 0 0 0 0 0 0 1296 0 1296 369 10275 0 1665 10275 1296 11940 0.778378 1 0.969095

9 0 0 0 0 0 0 0 0 1340 1340 0 10600 0 1340 10600 1340 11940 1 1 1

0.971168 0.964042 0.992127

11517 423 0 423 0.964573 0.964573 0.964573

Predicted as:Actual

Class

Macro-Average

11940 Micro-Average

Macro-Average

17911 Micro-Average

MNN using training to testing data ratio of 80:20

MNN using training to testing data ratio of 70:30
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• All TP and TN were all correctly predicted as labelled classes 0 < x < 9 are SQLIA 

types positive while x ≥ 9 is SQLIA type negative as shown in Table 4-18 above.  

• There were FP and FN, which are misclassification of an SQLIA type positive 

class with cases of SQLIA type labelled 7 predicted as type 8. This is expected as 

there is a close similarity between some SQLIA type signatures and generalisation 

of such similarity during encoding. 

• In comparing the overall performance metrics between split data ratios of 70:30 

versus 80:20, it was observed the split ratio 80:20 gave better overall performance 

metrics in all statistical measures, but with low FP and FN in SQLIA positive 

misclassification as illustrated in Figure 4-23 below. 

• Figure 4-24 below shows an improvement in misclassification with 28.3% of 

SQLIA positive labelled type 7 predicted as type 8 by using split data ratio of 

80:20 (but with 4% of labelled class 6 predicted as class 5); as against 55.9% 

misclassification when using split data ratio of 70:30 training to testing data. 

• Table 4-19 presents a performance metrics improvement across the statistical 

measures using the MNN algorithm with a split data ratio of 80:20 and a total 

overall improvement of 12.17% over the MNN algorithm using 70:30. 

 

 

Figure 4-23 Bar Chart: MNN using Logistic Normalisation: A Bar Chart of performance 

metrics of MNN using Logistic Normalisation 70:30 vs 80:20 Training: Testing Split data ratio. 
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Figure 4-24 MNN using split data ratios of 70:30 vs 80:20: A figure of MNN Confusion 

Matrix for Training: Testing split data ratios of 70:30 vs 80:20. 

4.5.3.1.2 MLR 70:30 vs 80:20 training to testing split data ratio. 

Table 4-20 below present the observations of prediction across the nine classes or labels 

for MLR algorithms using 70 to 30 versus 80 to 20 of training to testing split data ratios. 

It is inferred from the CM below that using a split data ratio of 80:20 gave overall better 

performance metrics by comparing the predicted classes against the actual classes with 

the following observations below: 

• All TP and TN were all correctly predicted as labels 0 < x < 9 are SQLIA positive 

while x ≥ 9 is SQLIA negative as presented in Table 4-20 below.  

• There were FP and FN of misclassification of an SQLIA positive class or label 

from 7 to 8 which is expected due to the close similarity between SQLIA types 

signatures. 

• In comparing the overall metrics between split data ratios of 70:30 versus 80:20, 

it was observed the split ratio 80:20 gave overall better performance metrics in all 
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statistical measures, but with low FP and FN in SQLIA positive misclassification 

as illustrated in Figure 4-26 below. 

• While 87.4 % of actual labelled class 7 were predicted as label class 8 

(misclassified) using split data ratio of 70:30 training to testing data; but in using 

a split data ratio of 80:20, only 19.9% were misclassified as presented in Figure 

4-25 below. We observed in the generating the data set vectors there were labelled 

features that share close similarity between class 7 and 8. For example, the single 

quote (‘) to have resulted in a few misclassifications. 

• The overall performance metrics indicate an excellent trained model as presented 

in Figure 4-26 below capable of accurately predicting SQLIA in a web request.  

• Table 4-21 presents a performance metrics improvement across the statistical 

measures using the MLR algorithm with a split data ratio of 80:20 and a total 

overall improvement of 37.22% over the MLR algorithm using 70:30. 

Table 4-20 Performance Metrics for MLR at 70:30 and 80:20: A table of performance 

metrics for MLR at 70:30 and 80:20 of training to testing split data ratio with 80:20 split data having 

better performance. 

 

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 2009 0 0 0 0 0 0 0 0 2009 0 15902 0 2009 15902 2009 17911 1 1 1

2 0 1981 0 0 0 0 0 0 0 1981 0 15930 0 1981 15930 1981 17911 1 1 1

3 0 0 1998 0 0 0 0 0 0 1998 0 15913 0 1998 15913 1998 17911 1 1 1

4 0 0 0 1972 0 0 0 0 0 1972 0 15939 0 1972 15939 1972 17911 1 1 1

5 0 0 0 0 2018 0 0 0 0 2018 0 15893 0 2018 15893 2018 17911 1 1 1

6 0 0 0 0 0 2020 0 0 0 2020 0 15891 0 2020 15891 2020 17911 1 1 1

7 0 0 0 0 0 0 246 1703 0 246 0 15962 1703 246 17665 1949 17911 1 0.126219 0.904919

8 0 0 0 0 0 0 0 1956 0 1956 1703 14252 0 3659 14252 1956 17911 0.534572 1 0.904919

9 0 0 0 0 0 0 0 0 2008 2008 0 15903 0 2008 15903 2008 17911 1 1 1

0.948286 0.902913 0.978871

16208 1703 0 1703 0.904919 0.904919 0.904919

1 2 3 4 5 6 7 8 9 TP FP TN FN PO NO PE TE Precision Recall Accuracy

1 1324 0 0 0 0 0 0 0 0 1324 0 10616 0 1324 10616 1324 11940 1 1 1

2 0 1302 0 0 0 0 0 0 0 1302 0 10638 0 1302 10638 1302 11940 1 1 1

3 0 0 1354 0 0 0 0 0 0 1354 0 10586 0 1354 10586 1354 11940 1 1 1

4 0 0 0 1307 0 0 0 0 0 1307 0 10633 0 1307 10633 1307 11940 1 1 1

5 0 0 0 0 1372 0 0 0 0 1372 0 10568 0 1372 10568 1372 11940 1 1 1

6 0 0 0 0 0 1343 0 0 0 1343 0 10597 0 1343 10597 1343 11940 1 1 1

7 0 0 0 0 0 0 1043 259 0 1043 0 10638 259 1043 10897 1302 11940 1 0.801075 0.978308

8 0 0 0 0 0 0 0 1296 0 1296 259 10385 0 1555 10385 1296 11940 0.833441 1 0.978308

9 0 0 0 0 0 0 0 0 1340 1340 0 10600 0 1340 10600 1340 11940 1 1 1

0.981493 0.977897 0.99518

11681 259 0 259 0.978308 0.978308 0.97830811940

Macro-Average

Micro-Average

MLR using training to testing data ratio of 80:20

17911

Actual

Class

Predicted as:

MLR using training to testing data ratio of 70:30

Macro-Average

Micro-Average



92 

 

 

Figure 4-25 MLR Confusion Matrix at various split data ratios: A figure of MLR 

Confusion Matrix for Training: Testing split data ratios of 70:30 vs 80:20. 

 

Table 4-21 MLR at various split data ratios: A table of extrapolated MLR performance 

metrics for training: testing split data ratios with better MLR 80:20 performance metrics 

Metrics Training: Testing data ratio % Improvement 

((𝑴𝑳𝑹 𝟖𝟎: 𝟐𝟎/𝑴𝑳𝑹 𝟕𝟎: 𝟑𝟎) − 𝟏)
∗ 𝟏𝟎𝟎 MLR 70:30 MLR 80:20 

Overall accuracy 0.904919 0.978308 8.11 

Average accuracy 0.978871 0.99518 1.67 

Micro-averaged precision 0.904919 0.97308 7.53 

Macro-averaged precision 0.948286 0.981493 3.50 

Micro-averaged recall 0.904919 0.978308 8.11 

Macro-averaged recall 0.902913 0.977897 8.30 

Total overall improvement of MLR 80:20 over MLR 70:30 37.22% 
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Figure 4-26 Bar Chart: MLR using Logistic normalisation: A Bar Chart of performance 

metrics of MLR using Logistic normalisation 70:30 vs 80:20 training: testing split data ratio. 

4.5.3.1.3 MNN vs MLR using Logistic Normalisation at 80:20 split data ratio 

In the preceding sections (4.5.3.1.1 & 4.5.3.1.2 above), it is observed that using a split 

data ratio of 80:20 to train MNN and MLR classifiers gave better performance metrics 

than using a split data ratio of 70:30 training to testing data.  

In this section, we compare the performance metrics of both MNN and MLR 

classifiers with the input of 80:20 training to testing split data ratio. Figure 4-28 below 

presents the results for both MNN and MLR to have observed MLR classifier have better-

performing metrics as extrapolated from Table 4-22 below with a total overall 

improvement of 7.08% over the MNN algorithm.  

 Also, it was observed in the CM presented in Figure 4-27 below that a split data 

ratio of 80:20 training to testing data in MLR has overall low misclassification of the 

labelled class 7 with 19.9%. Conversely, the same split data ratio in MNN has a total of 

32.3% misclassification of two labelled classes of which 4% and 28.3% were labelled 

class 6 and 7 respectively. This misclassification is expected as there is a close similarity 

between some SQLIA type signatures and generalisation of such similarity during 

encoding. 

The performance metrics across the statistical measures show using MLR algorithms 

with a split data ratio of 80:20 training to testing data delivered a better performance 

metrics over MNN algorithm using the same split data ratio as presented in Table 4-22 

and Figure 4-28.  
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Figure 4-27 MLR vs MNN using split data ratios of 80:20: A figure of MLR vs MNN 

Confusion Matrix using training to testing split data ratios of 80:20. 

Table 4-22 Performance metrics of MNN vs MLR using logistic normalisation: A 

table of performance metrics of MNN vs MLR using logistic normalisation 80:20 training: testing split 

data ratio. 

Metrics Training: Testing Split 

Data Ratio 

% Improvement 

((𝑴𝑳𝑹 𝟖𝟎: 𝟐𝟎/𝑴𝑵𝑵 𝟖𝟎: 𝟐𝟎) − 𝟏) ∗ 𝟏𝟎𝟎 
MNN 80:20 MLR 80:20 

Overall accuracy 0.964573 0.978308 1.42 

Average accuracy 0.992127 0.99518 0.31 

Micro-averaged precision 0.964573 0.978308 1.42 

Macro-averaged precision 0.971168 0.981493 1.06 

Micro-averaged recall 0.964573 0.978308 1.42 

Macro-averaged recall 0.964042 0.977897 1.44 

Total overall improvement of MLR 80:20 over MNN 80:20 7.08% 
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Figure 4-28 Bar Chart: MNN vs MLR using logistic normalisation: A Bar Chart of a 

better performance metrics of MLR over MNN using logistic normalisation 80:20 training: testing split 

data ratio. 

4.5.4 Cross-validation  

Figure 4-29 presents this section organisation chart with the associated subsections. 

 

Figure 4-29 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

In the evaluations above, we embarked on the partitioning of the data set into training 

and testing set by split function at various ratios. The training set of the partitioned data 

is used to train the classifier while the testing set is the set unseen by the classifier which 

forms the subject of the empirical evaluations of the scoring methods presented above. 

The testing set is drawn from the underlying distribution as the training set would have 

inherent biases on the amount of the distribution that appears in a set at whatever data set 

split ratio which the cross-validation performance metrics provides insight.  

The cross-validation goes beyond this traditional single training to testing set ratio 

evaluation to provide a more extensive evaluation across multiple folds of training to 
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testing data split ratios. The cross-validation provides a better gauge of the performance 

metrics of a trained model with unseen data in a real-world scenario.  

The Azure ML (MAML studio) provides a cross-validation module which uses by 

the default k-fold cross-validation where k is an integer. The MAML studio follows the 

favoured k-fold cross-validation k =10 [48], [49], [52]. The cross-validation module 

provides a technique to reduce biases in a trained model that could occur when using a 

single data set [47]. Figure 4-31 below shows the 10-fold cross-validation process of 

MAML studio defaults with the partitioning of the data set matrices into approximately 

equal folds where possible. Each of the fold is used as a test data across the remaining 

folds while iterating the number of times of k value (10). This process of fold held out for 

test ensures every fold of the observations is used as a testing data (not exposed to the 

classifier) while a union of the rest of the remaining nine folds are used as a training data 

(exposed to the classifier). A low standard deviation of accuracy value in MAML studio 

cross-evaluated model indicates a model with reduced biases capable of generalisation of 

a new data exposed to the trained model in the real-world. 

Also provided in the cross-validation is the logarithmic loss (log loss) or cross-

entropy to demonstrate the fitness of the pattern-driven data set proposed in this thesis. 

The log loss is a popular measure of classifier performance, which is an information 

theory measure of the cross-entropy between two probability distributions which is the 

encoded known outcome and the resultant score probabilities. In the Kaggle data science 

competition, it is the favoured performance metrics measure of a trained classifier [188], 

[189]. The MAML studio cross-validation module provides a log loss measure of an 

average log loss which is a single score for measuring the penalty of the result predicted 

wrongly [190].  

The log loss and cross entropy have the same underlying mathematics to measure 

wrong prediction errors. The log loss term is used in the binary classification while cross 

entropy is used in multiclass classification. Log loss term is popularly used in 

interchangeably. The lower the average log loss, the better the prediction outcome [191]. 

The cross-validations presented below for binary and multiclass classifiers have a low 

average log loss value for each fold, which indicates a better model capable of 

generalisation of unknown data in the real-world using the pattern-driven data set to train 

a classifier proposal of this thesis. In the preceding training to testing data model 

evaluations above, we presented best-performance metrics to be binary classification 
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algorithm (TC SVM) using training to test data (70:30) split ratio, while in the multiclass 

evaluation, MLR of training to test data (80:20) split ratio which is the subject of the 

cross-validation below. 

4.5.4.1 Binary Cross-Validation 

We derived a pattern-driven data set containing 59702 vectors with the original multiclass 

labelled data set of vectors of 1-9 reduced to a binary data set of 0 and 1 as presented in 

4.4.2 above. We presented a TC SVM as the best performing trained model under logistic 

normalisation and training to testing split data ratio of 70 to 30. We achieved high 

performance metrics with low prediction errors as shown AUC comparisons in Figure 

4-21 above which is the subject of the cross-validation presented below. 

Thus, the cross-validation is used to gauge the performance metrics of the unknown 

data exposed to the trained classifier in a real-world scenario. Figure 4-30 presents the 

cross-validation integration with the MAML studio predictive experiment presented in 

Figure 4-8 above. The figure illustrates the normalised data set connected to the cross-

validation module that is trained with TC SVM. 

 

Figure 4-30 A cross-validation experiment screen capture: A screen capture of the cross-

validation to the MAML studio predictive experiment presented in Figure 4-8 above.  
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Figure 4-31 A representation of binary k-fold cross-validation: The figure shows the 10-

fold cross-validation process of MAML studio defaults with the partitioning of the data set matrices into 

approximately equal folds where possible. 

The cross-validation usually takes the input of the entire data set vectors or vector 

matrices and then partition it into folds for the rigorous training of the presented 

algorithms. Figure 4-31 illustrates with each run, a partition (fold) is held out as the testing 

data, and the union of the rest of the nine folds as the training data. It is a similar concept 

of training to testing split data at various ratios across the data set split partition, thereby 

eliminating biases of the distribution of features at any ratio of the data set partition. 

The k-fold cross-validation provides performance metrics for measuring bias-

variance trade-off. A low variance or standard deviation in accuracy indicates of a 

successful trained model capable of generalisation of unknown data in the real-world. The 

k-fold cross validation is akin to classic split training/testing data evaluation model, but 

with a more accurate estimate of out-of-sample accuracy and efficiency in ensuring every 

observation is used for both training and testing. Out-of-sample accuracy is a measure of 

the ability of a trained model to cope with unknown data to the classifier (i.e. akin to 

testing data) or real-world data generalisation when the trained model is deployed. 
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We observed a low standard deviation of accuracy across the ten folds indicating an 

excellent trained model. This result indicates a model with a reduced bias in data set 

features variation and distribution of the statistical measures that can generalise 

independent data set in a real-world scenario that verifies this thesis goal of a pattern-

driven data set can be used to train a classifier and be validated.  

Equation 4-10 presents the formula for calculating the mean μ, where μ is the mean, 

xi are the accuracy values across the ten folds (0.9772, 0.9995, 0.9844, 0.9853, 0.9625, 

0.966, 0.9854, 0.9797, 0.9739, 0.9256), n is the iteration times or folds which is n=10 

and therefore μ =9.7395/10  0.974. Equation 4-11 presents the equation for calculating 

the variance or standard deviation σ, where σ is the variance calculated to be 0.02. We 

achieved a lower variance of accuracy value of 0.02 which indicates a less biased trained 

model capable of generalisation of unknown independent data with the results of the test 

performed presented in Table 4-23. The table also contains a high performance metrics 

for Precision, Recall, F-Score and AUC, including a low average log loss values to 

indicate of a trained model with a low penalty for wrong score probabilities. 

 

𝜇 =
Σ𝑥𝑖

𝑛
 

Equation 4-10 

 

 

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛
 

Equation 4-11 

 

Table 4-23 A table of binary evaluation results by folds: A table containing evaluation results 

of the data set matrices partitioned into 10 folds with a low standard deviation of accuracy highlighted to 

indicate of a trained model capable of generalisation of unknown independent data. 

 

Fold Number

Number of

examples in 

fold Model Accuracy Precision Recall F-Score AUC

Average 

Log Loss

0 5970 SVM (Pegasos-Linear) 0.977 0.989 0.986 0.987 0.997 0.040

1 5970 SVM (Pegasos-Linear) 1.000 1.000 1.000 1.000 1.000 0.002

2 5970 SVM (Pegasos-Linear) 0.984 0.991 0.992 0.991 0.999 0.031

3 5970 SVM (Pegasos-Linear) 0.985 0.992 0.992 0.992 0.999 0.028

4 5970 SVM (Pegasos-Linear) 0.963 0.976 0.982 0.979 0.993 0.068

5 5970 SVM (Pegasos-Linear) 0.966 0.979 0.983 0.981 0.994 0.060

6 5970 SVM (Pegasos-Linear) 0.985 0.991 0.992 0.992 0.998 0.033

7 5971 SVM (Pegasos-Linear) 0.980 0.990 0.988 0.989 0.998 0.039

8 5970 SVM (Pegasos-Linear) 0.974 0.986 0.984 0.985 0.997 0.045

9 5971 SVM (Pegasos-Linear) 0.926 0.928 0.994 0.960 0.866 0.227

Mean 59702 SVM (Pegasos-Linear) 0.974 0.982 0.989 0.986 0.984 0.057

Standard 

Deviation 59702 SVM (Pegasos-Linear) 0.020 0.020 0.006 0.011 0.042 0.062
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4.5.4.2 Multiclass Cross-Validation 

In the preceding sections, we derived a pattern-driven data set containing 59702 vectors 

with multiclass labels of 1-9 that account for SQLIA types signature and valid web 

requests to train multiclass classifiers. We presented MLR as the best-performing 

classifier under 80:20 training to testing data split ratio in section 4.5.3.1.3 above. Below 

are the results of cross-validation across the ten folds using the MAML studio. The 

underlying mathematics can be found in the following references [188], [189], [191], 

[192]. 

Table 4-24 presents the multiclass cross-evaluation across the ten folds with a small 

average log loss values across the nine classes (1-9) highlighted to indicate of a trained 

model with a low penalty for wrong score probabilities capable of generalisation of 

unknown independent data. 

Table 4-24 A table of multiclass evaluation results by folds: The table presents evaluation 

results of the data set matrices partitioned into ten folds with a small average log loss values across the nine 

classes highlighted to indicate of a trained model with a low penalty for wrong score probabilities. 

 

4.6 Discussion 

A review of the previous work on SQLIA up to the time of submitting the manuscripts 

for two conferences’ papers [61], [62] related to this thesis chapter in 2015, to the best of 

our knowledge, no existing work has leveraged the ML cloud-hosted platform like Azure 

ML (MAML studio) to address SQLIA issue. One issue that stands out in some existing 

approaches on SQLIA mitigation [74], [125], [129], [133], [193] is computationally 

expensive. Availability of ML cloud-based software and platform as services resolves the 

issue by harnessing these large-scale supercomputers employing AI techniques to deliver 

ready to use solutions that would have been limited relying on a single or few servers in 

the intranet or extranet. 

Class "1"Class "2"Class "3" Class "4" Class "5"Class "6"Class "7"Class "8" Class "9"

0 5970 Multi-class Logistic Regression 0.003976 0.010477 0.014524 0.017514 0.017036 0.014646 0.010312 0.003802 0.000008

1 5970 Multi-class Logistic Regression 0.003957 0.010386 0.014382 0.017184 0.016858 0.014816 0.010647 0.003852 0.000102

2 5970 Multi-class Logistic Regression 0.003932 0.010322 0.014533 0.017515 0.016973 0.014771 0.010585 0.003899 0.000008

3 5970 Multi-class Logistic Regression 0.003918 0.010255 0.014310 0.017236 0.016862 0.014517 0.010484 0.003887 0.000010

4 5970 Multi-class Logistic Regression 0.003830 0.010319 0.014323 0.017460 0.017116 0.014647 0.010523 0.003747 0.000436

5 5970 Multi-class Logistic Regression 0.003858 0.010220 0.014252 0.016968 0.016903 0.014510 0.010411 0.003801 0.000121

6 5970 Multi-class Logistic Regression 0.003960 0.010306 0.014284 0.017223 0.017024 0.014804 0.010883 0.003966 0.000011

7 5971 Multi-class Logistic Regression 0.003931 0.010362 0.014357 0.017174 0.016835 0.014638 0.010397 0.003824 0.000015

8 5970 Multi-class Logistic Regression 0.003883 0.010431 0.014365 0.017166 0.016762 0.014650 0.010653 0.003853 0.000089

9 5971 Multi-class Logistic Regression 0.003875 0.010435 0.014760 0.017691 0.016992 0.014909 0.010694 0.003854 0.000315

Mean 59702 Multi-class Logistic Regression 0.003912 0.010351 0.014409 0.017313 0.016936 0.014691 0.010559 0.003848 0.000111

Standard Deviation 59702 Multi-class Logistic Regression 0.000048 0.000082 0.000154 0.000220 0.000109 0.000131 0.000169 0.000061 0.000149

Average Log Loss for 

Fold Number Number of examples in fold Model
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The other issue that currently stands out is the lack of the availability of up to date 

data set which there wouldn’t be as web application types are so diverse to have all-

purpose data set to apply AI. However, just as the KDD Cup 1999 [161] has become 

antiquated in the IDS domain [1], [2], [67], [160], so also has ECML/PKDD 2007 [65] 

and HTTP CSIC 2010 [66] has become obsolete. These test case data sets served the 

competition-driven purpose and textbook evaluations at the time, not a benchmark data 

set to build and evaluate SQLIA mitigation being provided to the real-world application. 

Also, these competitions-driven data sets are not relevant to benchmarking of any sort in 

this thesis as it is recognised that web application types are diverse and this thesis provides 

a pattern-driven approach for deriving a data set on the fly based on the web application 

type being protected. 

Thus, this begs the question if the pattern that exists in web requests that are deemed 

valid, and historical studies of different SQLIA types including SQL tokens can provide 

artefact to be used to derive a pattern-driven data set to train a supervised learning model? 

The ontology to extract encoded features that form a data set earmarked to train an ML 

model with evaluation for a web application type in towards SQLIA mitigation is a 

contribution of this chapter. 

Web applications and services are now increasingly hosted in the cloud with 

restricted access to source codes for static and dynamic analysis. Therefore, whilst 

existing approaches [4], [5], [95]–[104], [6], [105]–[109], [119]–[123], [7], [124]–[127], 

[174], [194], [195], [8], [10], [82], [84], [94] seemed plausible in the past, they are not 

scalable in emerging computing with big data. These existing approaches have existed in 

an era of manageable data size. Also, the shifting of web application domain boundary 

from the intranet or extranet to the cloud SDN for cloud-hosted services makes 

approaches that rely on static and dynamic source code scanning not applicable over time. 

Also, a review of solely SQLI mitigation over the years is lacking in the big data 

context. The few that have data mining in the title were database level mitigation applying 

ML of a sort of query comparison not amenable to cloud SDN with sizeable incoming 

web requests hit for predictive analytics. These existing approaches [129], [130] gravitate 

to SQLIA mitigation proposals of query comparison of some sort, mostly driven by the 

method of the data set procurement through using web crawler of URLs and other 

automated unit testing tools. These test case data sets that are logged valid SQL queries 
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for comparison between valid and malicious queries during runtime does not have 

patterns for predictive analytics as presented in this thesis. 

In comparing the proposal presented in this chapter with existing approaches; this 

chapter focused on web application type to provide a pattern-driven data set as against a 

data set generated with repeating strings as seen in most existing work [71]–[75], [130], 

[133], [193]. The pattern-driven data set is used to train supervised learning classification 

algorithms with extensive validation through statistical measures in the context of 

emerging computing of big data cloud-hosted services as against existing approaches on 

ML which does not share similarities.  

Table 4-25 highlights the pattern-driven data set, code access and emerging 

computing cloud SDN focused, in towards SQLIA mitigation presented in this chapter 

with the related academic papers [61], [62] sets apart this chapter proposal from existing 

approaches that apply AI over the years.  

Table 4-25 Related work applying ML comparison: A table comparing the existing ML 

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable and pattern-

driven data set with related publications to this chapter highlighted. 

Authors Algorithms Need 

access  

to source 

code 

Intranet / 

intranet 

domain 

boundary 

Emerging 

computing 

applicable: cloud 

SDN applicable 

Pattern-

driven 

data 

Bockermann et al. [75] SVM Yes Yes No No 

Komiya [71] SVM Yes Yes No No 

Choi et al. [72] SVM Yes  Yes No No 

Wang and Li [73] SVM  Yes Yes  No 

Pinzón et al. [74], 

[141], [193] 

SVM and 

NN 

Yes Yes No No 

Kim and Lee [138] SVM Yes Yes No No 

Uwagbole et al. [62] LR and NN No Yes Yes Yes 

Uwagbole et al. [61] SVM No Yes Yes Yes 

 

4.7 Conclusion 

In conclusion, the work presented in this chapter demonstrates the fitness of a pattern-

driven data set to train a supervised learning model employing both statistical binary and 

multiclass algorithms implemented in MAML studio. We presented statistical measures, 

ROC curve, CM and cross-validation results of the empirical evaluation of the proposed 

scheme. The proposal presented in this chapter is towards scalable and functional 

prediction of SQLIA, demonstrated in further work presented in Chapters 5 and 6. 
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This approach presented in this thesis is geared towards leveraging recent 

advancement in the field of AI to build a scalable application that can predict SQLIA in 

web requests with a high degree of accuracy in TP and TN but with low prediction errors 

of FP and FN as presented above. 

The work presented in this chapter presents the procurement of a pattern-driven data 

set to extrapolate vectors of any size in towards predicting SQLIA. We leverage the 

MAML AI cloud-hosted platform employing ML and ANN algorithms to train the 

pattern-driven data set with empirical statistical measures of high performance metrics 

presented in the ROC curve, CM and cross-validation. These contributions distinguish 

the work presented here from previous research proposals by other authors. 

 On account of the preceding discussion, this chapter answers the research question 

can pattern in both expected web requests and SQL tokens including existing SQLIA 

signature extraction be used to create a large volume of learning data of encoded numeric 

vector variables required to train a supervised learning model and be validated? This 

research question is answered in the following contributions of this chapter. 

• The ontology for crafting a pattern-driven data set from the web application type with 

a technique to encode the data set into vectors required to train a supervised learning 

model using emerging cloud-hosted ML platforms of Azure ML (MAML studio). 

• We trained a supervised learning classification algorithms with this pattern-driven 

data and validated the trained model under various classification algorithms with high 

performance metrics in the ROC curve and CM respectively, including cross-

validation as presented in this chapter. The success of this conceptual approach of the 

web application type as the source of a pattern-driven data set to train a classifier has 

led to further work in the Chapters 5 and 6.  

The further work in the Chapters 5 and 6 involves employing string hashing 

vectorisation in-place of the numeric encoding presented in this chapter, and a proof of 

concept of how the proposal will be applied in a real-world application scenario. 
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5  Applied Predictive Analytics 
to Mitigate SQLIA 

Figure 5-1 presents the organisation chart layout of this chapter with the sections. 

 

Figure 5-1 The chapter organisation chart: The chapter organisation chart presents the layout 

of the chapter’s sections. 

5.1 Introduction 

Figure 5-2 presents this section organisation chart with the associated subsections. 

 

Figure 5-2 The section organisation chart: A figure of the section organisation chart that 

provides the layout of this section with the associated subsections. 

This chapter answers the research question if the pattern-driven data set can be 

extracted from a web application type context to detect and prevent SQLIA? We present 

in this chapter a method of applying predictive analytics to predict and prevent SQLIA in 

both legacy and new web applications in the big data context using a pattern-driven data 

set. The technique applies AI to a web application domain context that does not rely on 

access to the web application source code and queries in SQLIA mitigation as proposed 

by most existing research work on SQLIA.  

This chapter starts with the introduction in sections 5.1 and ends with a conclusion 

in 5.7. Sections 5.2 and 5.3 discuss building the data set member strings and predictive 

analytics experimental steps while section 5.4 presents evaluations and performance 

metrics. Section 5.5 discusses the publishing and consuming of the trained, supervised 
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learning model in an application for ongoing SQLIA mitigation while 5.6 discuss the 

issues with the existing work to highlight the contribution of this chapter.  

5.1.1 Problem statement 

In this research question, we ask if a pattern-driven data set can be extracted from a web 

application type being provided with SQLIA mitigation? 

SQLIA vulnerability is a sequel to a design fallout of the well-intentioned free text 

processing of the SQL engine itself, and as a consequence both legacy and cloud 

deployments lacking sanitisation become vulnerable. A search of “SQLI hall of shame” 

[21] which reports the recent trends in data pilfering by SQLIA shows the prevalence of 

this form of attack and so the ability to secure back-end database from SQLIA in an era 

of big data remains a topical issue. 

The SQL language syntax closely resembles plain English [196], and the SQL 

keywords are also in plain text. Therefore, the SQLIA problem in a big data context is a 

plausible candidate for predictive analytics of a supervised learning model trained via 

both known historical attack signatures and safe web request patterns. We propose that 

string pattern exists in every input data in both legacy and new web applications and that 

these can be leveraged to generate as many derivations of related member strings. 

Applying ML techniques requires data set with sufficient learning data arising from 

patterns that exist in input data provided in any web application domain. 

5.1.2 Motivation 

The existing solutions of mostly heuristic signature approaches were all before the new 

emerging computing in big data mining and as such lack the functionality and ability to 

cope with new signatures concealed in web requests in the context of big data. Also, these 

existing approaches were aimed at on-premise web application domain boundary, not 

roaming cloud-hosted applications and services across the internet including SDN. 

 ML predictive analytics provides functional and scalable mining for big data in the 

detection and prevention of SQLIA. Unfortunately, lack of availability of a ready-made 

existing robust data set with patterns and historical attributes to train a classifier are issues 

well known in SQLIA research in applying AI techniques. The few test case data sets 

[65], [66] available are obsolete and have served the competition-driven evaluations. 
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5.1.3 Approach overview 

A literature review of existing SQLIA detection and prevention approaches discussed in 

Chapter 3 reveals three perspectives: static SQLIV detection by peering through the code; 

code sanitisation prescribed by OWASP during SDLP in SQLIA prevention; and a 

combined static, and runtime analysis by queries comparison between static and dynamic 

in the detection and prevention of SQLIA [94], [95], [101],[102], [108]. It is much harder, 

if not impossible in cloud-hosted services to access free-flowing web application source 

code which negatively affects some existing solutions in mitigating SQLIA. Also, there 

is such big data web traffic to these cloud-hosted web applications and services for these 

existing approaches to be functional. The big data trend will only head one direction 

which is the upward growth, and as such will require scalable techniques to mine big data 

for security vulnerabilities.  

In this chapter, we further the technique discussed in section 4.3 above in the 

generation of the data set containing string extraction from patterns in web application 

type context and known attack patterns including SQL tokens.  

Also, as a test case, we build a web application that expects an English dictionary 

word as vector variables to demonstrate massive quantities of learning data. We derived 

an equal distributed data set of 725206 data items that is split equally between 

attack/respondent (362603 positives) and non-attack/non-respondent (362603 negatives) 

from the labelled preprocessed features that are hashed as the input to the classifier. The 

trained classifier to be deployed as a web service that is consumed in a web form for input 

validation, and at a custom .NET application implementing a web proxy API to intercept 

and accurately predict SQLIA in web requests thereby preventing malicious web requests 

from reaching the protected back-end database. This full proof of concept implementation 

of an ML predictive analytics and deployment of resultant web service that accurately 

predicts and prevents SQLIA is the subject of the empirical statistical measures 

evaluations presented in AUC, ROC curve and cross-validation including comparison 

with existing work in this chapter. 

There is a need to build a prediction model trained on data set of the web application 

type context expected data to predict SQLIA. The attack signatures presence at injection 

points will contain patterns of SQL tokens as SQLIA positive while valid web requests 

would take the form of generating all possible string members by string replication and 
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transposition as discussed in section 4.3.1 and below. We trained a supervised learning 

model in applying predictive analytics to a test web application with large quantities of 

learning data derived from related member strings. The learning data are labelled features 

of both patterns of dictionary word list (SQLIA negative) and SQL tokens (SQLIA 

positive). 

On account of the drawback of most existing solutions, we presented in this thesis 

an applied predictive analytic approach that does not rely on any source code or query 

structure to detect and prevent SQLIA in web requests. The work presented here analysed 

the data input patterns of the web application domain to be monitored and protected as to 

generate labelled features. The generated labelled data set are preprocessed and vectorised 

by applying a hashing technique to obtain numeric vector matrix input required to train 

an SVM classifier. 

The published web service is consumed in a proxy API on the server side that 

intercepts web requests to predict SQLIA thereby preventing malicious web requests 

from reaching the back-end database. Also, the trained prediction web service is exposed 

to the client web form validation which will strengthen any existing validation in place in 

the internet application as shown in Figure 5-3.  

Web requests

Yes SQLIA

Malicious 
intruder. 

Safe

Return unrevealing 
error.

Good
 guy

No

Trained Two-Class SVM 
exposed as a web service 
in ongoing binary 
classification of SQLIA.

Predictive analytics integrated 
into web form to validate 
input for on-going SQLIA 
detection and prevention.

Cloud SDN:
Proxy API intercepts 
request, decrypt & 
predictive analytics.

1

2

3
4

Predictive 
analytics  

predicting 
SQLIA.

Protected 
Database.

Return results to 
valid requests.

Public/Private Cloud

 

Figure 5-3 A prototype of the proposed model: The figure displays the prototype of the 

proposed model illustrating the design overview, including consuming a trained ML model in client forms 

and at the web proxy API in an ongoing SQLIA detection and prevention. 
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Figure 5-3 is a schematic diagram of the model proposed in this thesis chapter 

detailing how a trained model exposed as a web service will be consumed in client forms 

for input validation and at the proxy which intercepts the web requests for SQLIA 

analytics.  

5.2 Building a data set member string 

Figure 5-4 presents this section organisation chart with the associated subsections. 

 

Figure 5-4 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

 When new web applications that accept input from web forms are deployed, the 

initial state of the database is empty until the input data starts being received. Until then, 

we are left with a blank or empty data set without precedence to train a supervised learning 

prediction model. 

On account of the lack of data set, and the security loophole of directly using a 

sample input data without patterns (with the potential ramifications of barring 

confidential data in learning data), we explore string replication and transposition in 

generating all possible derivations from expected input data including SQLIA signatures 

and SQL token features to derive a data set.  

5.2.1 Deriving the data set 

In Chapter 4, we obtained the vectors to train a supervised learning model by numerical 

attributes encoding ontology of the string attribute values (both legitimate web requests 

and SQLIA types, including SQL tokens) as to extract a scalable numerical data set. In 

this chapter, we directly explore hashing or vectorisation instead of scalar observations to 

derive the vectors required to train an ML model as detailed in section 5.3.3 below.  

5.2.2 SQLIA Data set and Labelling 

The data set is comprised of an English dictionary word list (labelled SQLIA negative) 

and SQL tokens (labelled SQLIA positive if present at injection points). The labelling 
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procedure is described in Figure 5-5. When this approach is applied to any web 

application domain context, a data set can be generated based on the pattern of data input 

expected. Also, the existing studies on SQLIA types provide additional patterns to 

labelled SQLIA positive. 

The aim is to infer and derive a pattern-driven data set from the intended web 

application being protected. This pattern-driven data set is then used to train the ML 

classification algorithm to predict SQLIA in intercepting web requests. The Fiddler proxy 

API [197] provides the functionality of intercepting and decrypting web requests. 

 Researchers attempting AI techniques have explored various techniques to extract 

sample data set with most researchers resorting to network tools to produce test cases of 

web requests. These test cases learning data extraction techniques often result in mere 

duplication of the same strings, but lack patterns for improving the performance of the 

ML models. Most existing SVM implementation lacks completeness in not moving 

beyond the CM or ROC evaluation to apply the technique in real life scenarios [71], [72], 

[134]–[141], [74], [100], [128]–[133]. 

 

Figure 5-5 Data set features labelling procedure: A figure illustrating data set features 

labelling procedure to obtain the labelled data set used in ML. 
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5.3 Training Analytics experiment and deployment 

Figure 5-6 presents this section organisation chart with the associated subsections. 

 

Figure 5-6 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

Predictive analytics provide a scalable and functional approach to big data mining. We 

apply predictive analytics in mitigating SQLIA vulnerabilities. The approach is built on 

MAML studio which is a cloud-based machine learning platform. The knowledge required 

to implement our approach is a programming knowledge of C#, R script and RegEx. The 

experimental steps are listed and shown in Figure 5-7 and are further described below.

 

Figure 5-7 The experimental steps applying text analytics to SQLIA: A figure of a 

screen capture of the experimental steps applying text analytics to SQLIA. 
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5.3.1 Learning data input 

This research uses a pattern-driven data set which contains 479,000 English dictionary 

words (that are transformed and transposed into related member strings) in addition to 862 

unique SQL tokens extracted from Microsoft SQL reserved keywords website [179]. The 

data set items are labelled based on the exhibition of SQLIA type characteristics which, to 

give examples, are: the presence of SQL tokens in injection point; disjointed text; single 

quotes; semicolons; comments; and hex values. The data set items labelling is represented 

in binary values of 0 (SQL negative) or 1 (SQL positive) shown in Figure 5-5 above. 

5.3.2 Text pre-processing 

This stage involves R Scripting incorporating all the defined regular expression pattern 

constraints to generate the learning data to train a model for ongoing detection and 

prevention of SQLIA. In a real-world application context, the data set items are expanded 

as deemed required with patterns of both valid and malicious requests.  

There were 362603 row items after text pre-processing of parsing data set for: patterns, 

duplicates, normalised to lower cases and the removal of the missing words. The data set 

is sampled as to provide an even distribution of row items (records). The imbalanced data 

set (majority negatives over positives) were corrected with SMOTE [187] to have 725206 

data items that are split equally between attack/respondent (positives) and non-attack/non-

respondent (negatives). These actions improve both the trained model recall and precision. 

5.3.3 Feature hashing 

ML takes in numerical input as vectors. We reviewed the work by Choi et al. [72] using 

N-grams to hash query strings which could be circumvented by inserting more empty 

spaces into a group of strings. In this scheme, we set the hashing bits to 15 and N-grams 

to 1 (unigram) to analyse every single word item present at the injection point as the trained 

model is aimed to be deployed in the web form for input validation and at the proxy which 

intercepts web requests for predicting SQLIA.  

The feature hashing provides the technique to translate the data set text items into binary 

vector matrices of 215 (32,768) columns suitable for training a model in ML. The hashing 

procedure creates a dimensional input vector matrix that does a lookup of feature weights 

faster by augmenting the string comparison with the hash value comparison. Applying 

features hashing to text features improves performance and scalability in big data 
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predictive analytics lacking in existing SQLIA signature-based detections that use a string 

lookup approach by creating several loops in programming logic to detect SQLIA 

signatures. 

5.3.4 Filter-based feature selection for top relevant vectors 

Creating a dimension to accommodate the size of data by selecting next hashing bits that 

fit the data set can sometimes generate too much dimension and sparse data which are 

reduced by a filter-based feature selection. In this experiment, we used filter-based 

selection to have reduced computational complexity without affecting the prediction 

accuracy in classification. The Chi-squared [198] scored function is used to rank the top 

5000 hashing features in descending order to return the most appropriate labels to improve 

SQLIA prediction accuracy. 

5.3.5 Split of vector matrices between training and testing data 

We divide the vector matrices from the hashed features into 80:20 training to testing data 

ratio for the evaluations after experimenting with various split ratios which were observed 

to provide excellent performance metrics. Also provided in this chapter is the cross-

validation, which addressed the distribution biases of the training to testing data split ratio. 

5.3.6 Training the prediction model  

The TC SVM classifier is used to predict the labelled binary outcomes, whether SQLIA is 

negative or positive in a web request. The SVM algorithm is provided with data set items 

input of the labelled class of what is being predicted to train the model to an excellent 

performance to accurately predict SQLIA in web form validation and at proxy intercepted 

web requests.  

5.4 Evaluation and performance metrics of Binary TC SVM 

Figure 5-8 section organisation chart presents the layout of this section with the associated 

subsections. 

 

Figure 5-8 The section organisation chart: The section organisation chart provides this section 

layout with the associated subsections. 

Evaluation and 
performance metrics

Accuracy Precision Recall F1 Score



113 

 

The ROC curve and the related AUC provide a way to statistically measure how well 

a binary learning model is performing [46]. According to Tape “ROC curve was 

developed during World War 11 to predict images if a blip on the screen was a threat 

target, a friendly ship or a harmless noise. Signal detection theory measures the ability 

of radar receiver operators to make these important distinctions. Their ability to do so 

was called the Receiver Operating Characteristics. It was not until the 1970's that signal 

detection theory was recognised as useful for interpreting medical test results” [50], [51].  

The AUC and ROC curve provides a plausible quantitative evaluation of a binary 

prediction model. In this scenario, whether a web request is malicious SQLIA positive or 

not SQLIA negative.  

An AUC summary value provides a concrete measure for assessing a classifier 

performance as it presents a unified measure of the separability between the distributions 

of score probabilities for SQLIA positive and negative. We achieved an AUC of the value 

of 0.986 in the trained, supervised learning model presented in the chapter experimental 

results. The ROC curve presents a measure of FPR on the x-axis against TPR on the y-

axis with values across different score bins or thresholds. 

We use the ROC curve and AUC to measure the performance metrics of our trained, 

supervised learning model and observed an excellent model with an AUC value of 0.986 

with cross-validation of low variance indicating of a model capable of generalisation in a 

real-world application. This trained model was then deployed as a web service that is 

consumed in real-time detection and prevention in web applications. The evaluation 

performance metrics also include the following statistical measures: accuracy, precision, 

recall and F1 Score. 

5.4.1 Accuracy 

The accuracy is the statistical measure in a binary classification of the ratio of correctly 

predicted observations [199] which can be relied on when labelled data items are 

symmetrical (equal ratio of positively labelled class data items to negative) as in the case 

presented in this thesis in section 5.3.2. We have 20% (145042) of the entire data items 

as testing data items unseen by the classifier which is the subject of this empirical 

evaluation. The remaining data set used to train the classifier has equal labelled classes 

distribution of both SQLIA positive or negative while the remaining 80% (580164) was 

used as the training data.  
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At the best performing threshold value of 0.5, we achieved an accuracy value of 0.986 

which is calculated by Equation 5-1 below with values from Table 5-1. The result of the 

experiment as detailed below demonstrates a high accuracy of TP and TN with few errors 

of an FN.  

The FP observations are the referral web requests for further verification by the system 

administrator before fulfilling the request, which in SQLIA detection and prevention is a 

good thing. These errors of FP and FN can be eliminated if we restrict the application to 

only detect SQLIA within a defined scope of the RegEx pattern constraint presented in 

the data pre-processing. 

Table 5-1 Positive and negative events at 0.5 thresholds: A table of observations of positive 

and negative events at the 0.5 thresholds. 

Predictions Values 

True Positives (TP) 72359 

False Negatives (FN) 162 

False Positives (FP) 1923 

True Negatives (TN) 70598 

 

 

Accuracy=
TP (72359)+ TN (70579)

TP (72359)+FP (1923)+FN (162)+ TN (70598) 
=0.986 

 Equation 5-1 

 

5.4.2 Precision  

The precision is the statistical measure of the ratio of the correctly predicted positive 

observations that is calculated using the relevant values in Table 5-1 above as presented 

in Equation 5-2 with a precision value of 0.974. We achieved 72539 events correctly 

predicted true positives on the backdrop of 1923 false positives. In our experiment with 

equal distribution labelled data items, the precision value of 0.974 achieved gives the 

actual precision performance of the trained, supervised learning model to be deployed as 

a web service. 

 

Precision=
TP (72359)

TP (72359)+FP (1923) 
=0.974 

Equation 5-2 
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5.4.3 Recall 

The recall (also referred as TPR) is a statistical measure of the ratio of true positive against 

all positive events, and so measures the proportion of correctly predicted positive events. 

The recall is calculated with true positive over positive events which include TP, and FN 

(also interpreted as positive events). 

In this experiment, we had total positive events of 72521 comprising of TP and FN of 

which 72359 were correctly predicted as TP. We achieved a recall value of 0.997 which 

is calculated by Equation 5-3 below. 

 

Recall=
TP (72359)

TP (72359)+FN (162) 
=0.997 

Equation 5-3 

 

5.4.4 F1 Score 

The F1 Score provides a statistical measure of the accuracy to binary classification. It is 

a measure of both recall and precision which is calculated as shown in Equation 5-4 below 

with the F1 Score value of 0.985. We have an equal distribution of class in the experiment 

presented in this thesis which is a statistical measure of the F1 Score that helps us 

determine how well the trained, supervised learning model is performing. 

 

F1 Score=2 x 
Recall (0.997) x Precision(0.974)

 Recall (0.997)+Precision(0.974)
=0.985 Equation 5-4 

 

The SVM binary classifier evaluation scores are the observations of the 145042 score 

probabilities of the testing set. These observations are used to calculate the performance 

metrics between 0.1 and 1.0 score bins as shown in Table 5-2. It uses the threshold value 

to align the binary classifier to predict values less than 0.5 as less likely to be SQLIA 

negative (0) and a threshold value greater than 0.5 as most likely to be predicted as SQLIA 

positive (1). 
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Table 5-2 Evaluations scores of TP, TN, FP and FN: A table containing binary SVM 

classifier score probabilities of evaluation scores of TP, TN, FP and FN at the various thresholds, 

including FPR and TPR used in plotting the ROC curve. 

Threshold TP FN FP TN PO NE TE FPR TPR 

1 0 72521 0 72521 72521 72521 145042 0 0 

0.9 56446 16075 1505 71016 72521 72521 145042 0.02075261 0.778340067 

0.8 63346 9175 1692 70829 72521 72521 145042 0.023331173 0.873484922 

0.7 67886 4635 1806 70715 72521 72521 145042 0.024903132 0.936087478 

0.6 71088 1433 1887 70634 72521 72521 145042 0.026020049 0.980240206 

0.5 72359 162 1923 70598 72521 72521 145042 0.026516457 0.997766164 

0.4 72324 197 1921 70600 72521 72521 145042 0.026488879 0.997283545 

0.3 72340 181 2179 70342 72521 72521 145042 0.030046469 0.997504171 

0.2 72355 166 6175 66346 72521 72521 145042 0.08514775 0.997711008 

0.1 72376 145 13108 59413 72521 72521 145042 0.180747646 0.998000579 

0 72521 0 72521 0 72521 72521 145042 1 1 

The Table 5-3 below details the formula of how the recall, accuracy, precision and F1 

Score are calculated at each score bin between 0.1 and 1.0. This performance metric is to 

evaluate how well the classifier is performing with the provided testing data (20%) that is 

unseen by the SVM binary classifier against the training data (80%) used to train the 

classifier. 

Table 5-3 Formula for calculating the performance metrics: The formula for calculating 

performance metrics across the different score bins. 

Terminology Formula Values Performance metrics 

True Positive (TP) - 72359 Accuracy(A) = (TP+TN)/TE 

 

 

 

Precision (P)=TP/(PO) 

 

 

Recall (R)= TP/PE 

 

F1Score= 2 x (R x P)/(R+P) 

0.986 

False Negative (FN) - 162 

False Positive (FP) - 1923 

True Negative (TN) - 70598 0.974 

Positive events (PE) TP+FN 72521 

Negative events (NE) FP+TN 72521  

0.997 
+ observations (PO) TP+FP 74282 

- observations (NO) FN+TN 70760  
0.985 

Total events (TE) PO+ NO 145042 

 

The Table 5-4 displays a snippet at 0.5 threshold with excellent performance metrics 

(accuracy: 0.986, precision: 0.974, recall: 0.997 and F1 Score: 0.985). Table 5-3 above 

provides the formula for calculating the performance metrics that are repeated across the 

score bins or thresholds between 0.0 and 1.0. The ROC curve is plotted with a ratio of FPR 

on the x-axis (specificity) against recall or TPR on the y-axis (sensitivity).  

 The ROC curve provides a graph performance measure of a trained model. A higher 

value on the x-axis, implies bad performance, while on the y-axis a higher value indicates 
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an excellent performance. Figure 5-9 illustrates a graph of ROC curve that presents an 

AUC statistical measure, in which a shift of the curve towards the upper value of y-axis 

greater than 0.9 indicates an excellent model [50], [51]. We observed in the experiment 

presented in this thesis an AUC value of 0.986 achieved at a threshold value of 0.5 which 

indicates excellent performance in SQLIA prediction. We further the evaluation in the next 

session with cross-validation to gauge the trained model biases in the real-world unknown 

data generalisation. 

Table 5-4 The metrics values across the different thresholds: A table containing binary 

classifier score probabilities of collated evaluation scores of performance metrics calculation across the 

various thresholds that are used to plot the ROC curve in Figure 5-9. 

Thresholds/ 

Score bins 

Recall Accuracy Precision FI Score 

1 0 0.5 0 0 

0.9 0.778340067 0.878793729 0.9740298 0.865258446 

0.8 0.873484922 0.925076874 0.9739844 0.92100117 

0.7 0.936087478 0.955592173 0.974086 0.954708782 

0.6 0.980240206 0.977110078 0.9741418 0.977181503 

0.5 0.997766164 0.985624853 0.9741122 0.985797293 

0.4 0.997283545 0.985397333 0.9741262 0.985568865 

0.3 0.997504171 0.983728851 0.9707591 0.983949946 

0.2 0.997711008 0.956281629 0.9213676 0.958020801 

0.1 0.998000579 0.908626467 0.8466614 0.916122908 

0 1 0.5 0.5 0.666666667 

 TPR=TP/PE A=(TP+TN)/TE P=TP/PO F1=2x(RxP)/(R+P) 

 

 

Figure 5-9 ROC curve of a trained model: A figure of a ROC curve of a trained model 

indicating an excellent model with an AUC value of 0.986.  
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5.4.5 Cross-validation 

In discussing the cross-validation presented in this chapter, we directly picked the best-

trained model for the cross-validation. For discussion on introduction to cross-validation 

refers to section 4.5.4. In the preceding sections, we derived a pattern-driven data set 

containing 725206 vectors to train a binary classifier with a labelled class of value 1 for 

SQLIA positive while 0 for SQLIA negative as presented in 5.3.1 above. The hashed data 

set vector matrices of 725206 observations is used in the cross-validation as illustrated in 

Figure 5-10. 

 

Figure 5-10 A cross-validation experiment: A screen capture of the cross-validation to the 

MAML studio predictive experiment presented in Figure 5-7 above.  

We presented a TC SVM trained model using training to testing split data ratio of 

80% to 20% resulted overall in an excellent trained model as graded in Table 4-11 above 

(showing AUC grading). We achieved an AUC performance of value of 0.986 with low 

prediction errors which are the subject of the cross-validation presented below to gauge 

the performance metrics of the unknown data (akin to testing data in a real-world 

scenario) to the classifier with reduced biases. 
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Table 5-5 presents the cross-validation results of the data set matrices partitioned 

into ten folds with a low standard deviation of accuracy highlighted to indicate a trained 

model capable of generalisation of unknown independent data. The table also contains a 

high-performance metrics for Precision, Recall, F-Score and AUC, including a low 

average log loss values to indicate of a trained model with a low penalty for wrong score 

probabilities. In the cross-validation results, we observed a low standard deviation in 

accuracy across the ten folds to have observed an excellent trained model. This result 

indicates a model with a reduced bias in data set features variation and distribution that 

can generalise independent data set in a real-world scenario.  

Equation 5-5 presents the equation for calculating the mean μ, where μ is the mean, 

xi are the accuracy values across the ten folds (0.9849, 0.9855, 0.9842, 0.9851, 0.9849, 

0.9846, 0.9851, 0.9850, 0.9855, 0.9847), n=10 and therefore μ =9.850/10  0.985. 

Equation 5-6 presents the equation for calculating the variance or standard deviation σ, 

where σ is the variance calculated to be 0.0004. We achieved a low variance of accuracy 

value of 0.0004 which indicates a less biased trained model capable of generalisation of 

unknown independent data in the real-world application. 

𝜇 =
Σ𝑥𝑖

𝑛
 

 

Equation 5-5 

 

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛
 

Equation 5-6 

 

 

Table 5-5 A table of evaluation results by folds: A table containing evaluation results of the 

data set matrices partitioned into 10 folds with a low standard deviation of accuracy highlighted to indicate 

of a trained model capable of generalisation of unknown independent data. 

 

Fold Number Number of examples in fold Model Accuracy Precision Recall F-Score AUC Average Log Loss

0 72520 SVM (Pegasos-Linear) 0.9849 0.9736 0.9969 0.9851 0.985 0.0729

1 72521 SVM (Pegasos-Linear) 0.9855 0.9747 0.9969 0.9857 0.9856 0.0699

2 72521 SVM (Pegasos-Linear) 0.9842 0.973 0.9962 0.9845 0.9847 0.0768

3 72521 SVM (Pegasos-Linear) 0.9851 0.9743 0.9966 0.9853 0.9854 0.0722

4 72520 SVM (Pegasos-Linear) 0.9849 0.9738 0.9966 0.9851 0.9851 0.073

5 72520 SVM (Pegasos-Linear) 0.9846 0.9732 0.9965 0.9847 0.9847 0.0743

6 72521 SVM (Pegasos-Linear) 0.9851 0.9742 0.9967 0.9853 0.9853 0.0714

7 72521 SVM (Pegasos-Linear) 0.985 0.9745 0.9961 0.9852 0.9853 0.0721

8 72520 SVM (Pegasos-Linear) 0.9855 0.9751 0.9965 0.9856 0.9856 0.0694

9 72521 SVM (Pegasos-Linear) 0.9847 0.9735 0.9962 0.9847 0.985 0.0726

Mean 725206 SVM (Pegasos-Linear) 0.985 0.974 0.9965 0.9851 0.9852 0.0724

Standard Deviation 725206 SVM (Pegasos-Linear) 0.0004 0.0007 0.0003 0.0004 0.0003 0.0021
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5.5 Publishing and consuming the prediction analytics web service 

Figure 5-11 section organisation chart presents the layout of this section with the 

associated subsections. 

 

Figure 5-11 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

MAML is a cloud-based platform for testing and deploying ML trained models as a web 

service that can be consumed in the broad range of front-end web applications. The system 

requirements regarding RAM and the hard disk are minimal as the one-off workload of 

training the classifier including retraining is handled in the cloud-based MAML platform. 

5.5.1 Predictive experiment 

Based on the statistical measure of the performance metrics with AUC value of 0.986, the 

trained SQLIA prediction model presented is deemed a model excellently trained from the 

evaluations to have generated a predictive experiment that is exposed as a web service. 

The MAML environment equally provides a platform that enables easy deployment of a 

trained ML model as a web service in ongoing SQLIA prediction [200]. 

The predictive experiment is a generated copy of the trained classifier detailed in 

Section 5.3 above. It has a web services input and output that allows an optional module 

to specify input and output columns attributes. Every intercepted web request at the proxy 

API are stripped of input data and analysed with the deployed web service used to predict 

SQLIA. The input data in web requests are the subject of analyses at the predicate’s 

expression detailed in Figure 4-4 above.  

To deploy a web service of the trained model, a predictive experiment that is shown 

in Figure 5-12 below needs to be generated by the utility available within the MAML 

Publishing and consuming the prediction analytics 
web service

Predictive experiment
Web Service: web interface test of the prediction 

model
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studio. The solution is scalable, and it is meant to detect and prevent SQLIA in web 

requests as illustrated in Figure 5-3 above details the architecture of the proposed model. 

 

Figure 5-12 Predictive experiment steps: A figure illustrating predictive experimental steps in 

creating a web service from the trained, supervised learning model. 

5.5.2 Web Service: web interface test of the prediction model 

The trained model is exposed as a web service that is called in a custom-built .NET 

application named NETSQLIA used for ongoing SQLIA detection and prevention. Critical 

to the deployment in every new web application type, the administrator or system expert 

needs to feed the data engineering or text pre-processing module with a new rule that 

matches the patterns present in the new data set to trigger the retraining of the classifier to 

adapt to the new environment. 

This thesis proposal aims to intercept web requests and predict whether it is malicious 

with the presence of SQLIA or a valid web request. A web application front-end would 
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have a pre-defined expected input pattern, e.g. bob or bbo string as a username would be 

valid input data within the SQLIA hotspot of the predicate’ expression after the WHERE 

clause. Figure 5-13 below is an illustration of a valid web input, which is correctly 

predicted to be SQLIA true negative with scored label 0 and score probabilities of 

0.002725 which indicates the feature input data is SQLIA negative. 

 

Figure 5-13 A web test of valid input data: A figure of a web test of a valid input data using a 

string example of bob. 

In the approach presented in this thesis, we intercept and analyse web requests’ input 

data for SQL keywords and token presence at the hotspot predicate’s expression to detect 

and prevent SQLIA. Figure 5-14 is a true positive test of a single quote (‘) when present 

at the predicate’s expression location, it demonstrates SQLIA was correctly predicted. We 

also tested SQL keyword (select) presence at this predicate’s expression of SQL language 

element as shown in Figure 5-15 below confirming a correct prediction of a true positive. 

 

Figure 5-14 A test using single quote SQL symbol: A figure of a tautological SQLIA type 

testing using a single quote SQL symbol that mostly precedes SQLIA. 
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Figure 5-15 A malicious input data: A figure of malicious input data, e.g. SQL keywords like 

SELECT when present at the hotspot in an intercepted web request can infer SQLIA. 

5.6 Discussion 

Through literature review, we identified a gap in the existing literature as to present in 

this chapter a proposal of multi-layers approach to SQLIA mitigation that applies ML 

using a pattern-driven data set in predicting SQLIA in an intercepted web request with a 

proxy API deployed at cloud SDN. The web service generated from the ML trained model 

is consumed in the Proxy API. Also, the web client form interface also receives the web 

service for input validation. The proposal presented in this thesis chapter is a multi-

layered approach to intercepting and analysing web request to predict SQLIA in providing 

SQLIA mitigation. This chapter discussion is the subject of an IEEE paper titled Applied 

Machine Learning Predictive Analytics to SQL Injection Attack Detection and Prevention 

[63]. This paper is used in the comparison table between this proposal presented and 

existing approaches. The below paragraphs has selected papers on ML related to this 

discussion, but a much more scope has been examined in Chapter 3. 

There are existing proposals to detect and prevent SQLIA; a few mitigate SQLIA by 

applying SVM machine learning. The few that do employ SVM [71], [72], [74], [128]–

[132], [201] are lacking in data engineering (text pre-processing) as their approach is 

geared towards source code scanning for vulnerabilities in web application source code 

which is restricted in cloud-hosted applications. There is an element of query string or 

SQL queries comparison of some sort in these existing approaches. Also, to date, none 

has discussed using ML to predicting SQLIA in a context of big data, focusing on patterns 

and text pre-processing on MAML studio. ML cloud-based software and AI platform as 

services provide large-scale supercomputer employing AI techniques to deliver ready to 
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use solutions lacking in a single server deployment in the intranet or extranet as seen in 

existing work. 

 Applying ML requires a data set vector matrix to train a classifier implementing an 

SVM algorithm [202], [203] to predict SQLIA accurately. There are issues of 

standardised data set, and the few data set [65], [66] that exist are obsolete, researchers 

have presented various approaches for extracting data sets with most proposals suffering 

from limited data engineering. Bockermann et al. [75] proposed tree kernels for analysing 

SQL statement combined with feature vectorisation of data input to an SVM classifier, 

but drawbacks in the tree-kernels computational overhead. Choi et al. [72] train an SVM 

classifier that explores feature vectorisation using N-Grams for query comparison that 

drawback in accuracy as small data set with few features was used. Kar et al. [137] 

proposes using a SQL query graph of tokens and centrality of nodes to train an SVM 

classifier but suffers from complexities. Some of these approaches also fall short in the 

implementations beyond the CM and ROC curve evaluations and validations. 

In focusing on the contributions of this chapter to SQLIA mitigation, we list the 

following that was recognised in the course of this thesis in the context of emerging 

computing and big data. 

• A pattern-driven data set inferred from a web application type being protected will 

break the status quo lexical or syntactic query comparison for SQLIA mitigation 

as seen in existing approaches as data set can now be inferred on the fly. 

• Cloud is increasingly used to host web applications and thus there is an 

astronomical increase in web requests to cloud SDN as to result in big data. 

• The recent years have seen an astronomical growth of web requests that drives 

internet traffic to present the challenge of big data; this is beyond traditional 

lookup using programming loop constructs to search for strings or SQLI 

signatures. 

• There is restriction to web application source code for vulnerabilities scanning 

and legacy application sanitisation as web servers are now hosted in the internet 

cloud that are accessed through cloud SDN endpoints, which also limits existing 

approaches [71], [72], [74], [128]–[133] that applies SVM learning algorithm 

[202], [203] in query comparison of some sort. 
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• There is a need for SQLIA mitigation towards real-world application beyond 

classical approaches that stop at ROC curve and CM, especially with the recent 

advancement of cloud-hosted ML platforms. 

In comparing the proposal presented in this chapter with existing approaches; this 

chapter focused on web application type to provide a pattern-driven data set that is hashed 

to provide vector matrices. The vector matrices are used to train a supervised learning 

SVM classification algorithm as against existing approaches [71]–[75], [130], [133], 

[193] employing query comparison of some sort using a data set containing repeating 

strings of queries. The trained, supervised learning SVM algorithm model was evaluated 

through statistical measures, ROC curve and cross-validation. The result of the validation 

and cross-validation presents a model with low variance capable of classifying unknown 

data in the real-world. Table 5-6 highlights query comparisons, pattern-driven data set, 

code access and emerging computing cloud SDN as the focus of the SQLIA mitigation 

which is the subject of this chapter related academic paper [63] that set apart this chapter 

proposal from existing approaches that apply ML over the years.  

Table 5-6 Related work applying ML comparison: A table comparing the existing ML 

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable, pattern-

driven data set and query comparison with related publication to this chapter highlighted. 

Authors Algorithms Need 

access  

to source 

code 

Intranet / 

intranet 

domain 

boundary 

Emerging 

computing 

applicable: 

cloud SDN 

applicable 

Pattern-

driven 

data 

Query 

comparison 

Bockermann et 

al. [75] 

SVM Yes Yes No No Yes 

Komiya [71] SVM Yes Yes No No Yes 

Choi et al. [72] SVM Yes  Yes No No Yes 

Wang and Li 

[73] 

SVM  Yes Yes  No Yes 

Pinzón et al. 

[74], [141], 

[193] 

SVM and 

NN 

Yes Yes No No Yes 

Kim and Lee 

[138] 

SVM Yes Yes No No Yes 

Uwagbole et al. 

[63] 

SVM No Yes Yes Yes No 

 

5.7 Conclusion 

The contributions discussed in this chapter provide a representative pattern-driven data 

set that undergo feature hashing to obtain vector matrices to train a supervised learning 
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model implementing SVM algorithm that accurately predicts SQLIA thereby preventing 

malicious web requests from reaching the target back-end database. It offers a context of 

SQLIA detection and prevention on big data internet. 

Also, this chapter presents a proof of concept of a working prototype using ML 

algorithms of TC SVM implemented in MAML [204] to predict SQLIA. The 

methodology presented in the chapter then forms the subject of the empirical statistical 

measures, ROC curve and cross-validation with a conclusion of a trained model with low 

biases (capable of classifying unknown data in the real-world). 

The scheme presented in this thesis chapter can be used to generate a data set attribute 

values of any size. We trained a classifier with a data set of 725206 attribute values. The 

approach presented is driven by the cloud-based MAML studio platform which is capable 

of even a much larger analytics of data size input of 10 GB with the size of the vector of 

rows and columns depending on the .NET maximum integer value of 2,147,483,647 

limitations. 

We suggest in the chapter related publication [63] that patterns exist in any data input 

to the web application to enable the generation of massive learning data. Further, by 

applying text pre-processing to such learning data, we can improve the prediction 

accuracy of the resultant trained, supervised learning model. Based on this web 

application type, we derived a pattern-driven data set using R string API successfully. 

The pattern-driven data set is used to train a supervised learning model employing an 

SVM classification algorithm to predict SQLIA. The evaluated, trained SVM model is 

exposed as a web service which is then consumed in a web form for input validation, and 

at the proxy API at the cloud SDN for intercepting web request for analysis. The 

intercepted request is analysed to predict SQLIA as to accept the benign and reject 

malicious web request in ongoing SQLIA mitigation.  

On account of the discussion in the preceding paragraphs, this chapter answers the 

research question if a web application type to be protected can produce the artefact for 

the extraction of a pattern-driven data set? This research question is answered in the 

following contributions of this chapter. 

• We further numeric encoding of pattern-driven data set features presented in Chapter 

4 with feature hashing of the pattern-driven data set to obtain vector matrices used to 

train the classifier with statistical measures evaluations and cross-validation to 
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achieve a result of a trained model capable of classifying unknown data in the real-

world. 

• We implemented in a successful proof of concept as demonstrated in the chapter of a 

web application that expects dictionary words as valid input (SQLIA negative) while 

elements of SQL tokens and SQLIA type substitution at the SQLI hotspots are 

predicted as SQLIA positive. 

We demonstrated in this thesis chapter an applied predictive analytics to SQLIA 

detection and prevention in a big data context with an excellent result that is empirically 

evaluated by presenting statistical measure performance metrics and cross-validation. In 

benchmarking this thesis against existing work, the methodology proposed here is 

functional in a big data context which is lacking in existing work before now on SQLIA 

to our knowledge.  
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6  Pattern-Driven Corpus to 
Mitigate SQLIA 

Figure 6-1 presents the organisation chart layout of this chapter with the sections. 

 

Figure 6-1 The chapter organisation chart: The chapter organisation chart presents the layout 

of the chapter’s sections. 

6.1 Introduction 

Figure 6-2 presents this section organisation chart with the associated subsections. 

 

Figure 6-2 The section organisation chart: A figure of the section organisation chart that 

provides the layout of this section with the associated subsections. 

This chapter provides a further work on a pattern-driven data extraction technique 

using SFA in answering the research question if the pattern-driven data set can be 

extracted from a web application type to be protected? Emerging computing relies heavily 

on secure back-end storage for the massive size of big data originating from the Internet 

of Things (IoT) smart devices to the cloud-hosted web applications. SQLIA remains an 

intruder’s exploit of choice to steal confidential data from the back-end database with 

damaging data security ramifications. The existing approaches of string lookup 

techniques were aimed at on-premise web application domain boundary and so are not 

applicable to roaming cloud-hosted services’ edge SDN to application endpoints with 

massive web request hits.  
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This chapter presents a further work in a web application type context as the source 

of the pattern-driven data set to train a supervised learning model. The model is trained 

with ML algorithms of TC LR and TC SVM that are implemented on MAML studio to 

mitigate SQLIA. This scheme presented in this thesis then forms the subject of the 

empirical evaluations. 

This chapter starts with the introduction in sections 6.1 and ends with a conclusion 

in 6.7. Sections 6.3 discusses obtaining learning data and 6.4 details the predictive 

analytics experiment steps while 6.5 presents evaluations and performance metrics 

results. Section 6.6 discusses the issues with the existing work to highlight the 

contributions of this chapter. 

6.1.1 Problem statement 

In our research question, we ask if a pattern-driven data set can be extracted from a web 

application type being protected by ML-based SQLIA mitigation? This chapter provides 

a further work on a pattern-driven data set extraction technique using SFA in answering 

the research question if the pattern-driven data set can be extracted from a web application 

type to be protected. 

6.1.2 Motivation 

There is a continuous upward trend in big internet data with more individuals, 

governments and businesses adopting and hosting files and applications in the emerging 

computing cloud hosting environments and associated services.  

Availability of historical learning data is a known issue in SQLIA research. The web 

application type context is so diverse to have a unified data set to train various AI models 

for SQLIA mitigation that cover every web application domain context. 

We leverage the patterns that exist in every input data in both legacy and new web 

applications to generate related member strings that then forms the historical learning data 

or data set used to train a supervised learning model in the work presented in this thesis.  

6.1.3 Approach overview 

There is a need to build a prediction model trained from data set of the desired web 

application type context to predict SQLIA. We apply NFA implemented in RegEx to 

define the constraint patterns, and employing SFA with a constraint solver named 
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Satisfiability Modulo Theories (SMT-Z3) [153], [154], [205] to generate related member 

strings from the defined RegEx patterns. 

 In our labelling of the data set, the presence of known attack signature at injection 

points will contain patterns of SQL tokens which are deemed SQLIA positive. 

Conversely, the valid web requests (SQLIA negative) would take the form of generating 

all possible related member strings.  

We trained a supervised learning model with this pattern-driven learning data in 

demonstrating a proof of concept by applying predictive analytics to a test web 

application expecting a dictionary word list as input data. The pattern-driven learning data 

are obtained by automata states walk to derive as many member strings in a given pattern 

of related strings.  

An intruder would exploit SQLIA types to carry out the attack at the injection points 

in any combination. These SQLIA types exploit techniques are: Tautology; Union; 

Piggyback; Invalid/Logical queries; Time-based; Obfuscation encoding and Stored 

procedure. These SQLIA types are the source of SQLIA positive labelled feature values 

in the scheme presented in this thesis. 

6.2 SQL hotspot and modelling data set attributes 

Figure 6-3 presents this section organisation chart with the associated subsections. 

 

Figure 6-3 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

6.2.1 SQL hotspot 

SQL element comprises of tokens which are labelled SQLIA positive in the data set 

discussed in this thesis. SQL tokens comprise of keywords that include identifiers, 

operators, literals and punctuation symbols. The SQL syntax language element has the 

following: SQL Clause (WHERE, SET, UPDATE, etc.); predicate (as in LoginName = 

‘bob’); and, expression (as in ‘bob’ OR 2=2). 

SQL hotspot and modelling
data set attributes

Generating the regular 
expression constraints

SQL hotspot Modelling data set 
attributes
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SQLIA is predicted when a web request is analysed to contain a SQL token and 

known SQLIA signature at the SQL query injection point. In a SQL query, the WHERE 

clause predicate and the expression used to control query results are the SQL injection 

spots. A malicious query string can be passed to a SQL expression in tautological SQLIA 

type (e.g., ‘x’=’x’ OR 2=2) to return results from a table far beyond the developer’s 

intention. This SQLIA injection point location as illustrated in Figure 4-4 above has been 

explored in SQLIA detection and prevention research including SQLProb by Liu et al. 

[10]. 

6.2.2 Modelling data set attributes 

The versatility of data set actively relies on the scope of the attributes whether it 

encompasses all elements or features that will be required to predict a labelled output 

accurately. We inferred various attributes from patterns in an expected web request, 

SQLIA types and SQL tokens in building a pattern-driven data set to predict whether a 

web request is a dictionary word list or SQLIA in the test application presented in this 

thesis. Also, to replicate the approach in any web application domain context would 

require the same attributes scoping. Figure 6-4 below illustrates attributes scoping 

deemed needed to accurately predict whether a string extracted from a web request is 

SQLIA or a valid safe request. 

ML requires numeric values translated into vector matrices to train supervised 

learning algorithms or classifiers. We observed the related member string features and 

assigned scalar numeric values in building robust attribute x values to predict an outcome 

or output y as illustrated in Figure 6 2. 

 

Figure 6-4 Attributes scoping: A figure of attributes scoping of x to accurately predict labelled 

output y. 
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6.3 Obtaining the learning data (data set) 

Figure 6-5 presents this section organisation chart with the associated subsections. 

 

Figure 6-5 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

We explore automata states walk to generate a data set of patterns of expected input 

data where none exists to train a supervised learning model. Also, a pattern-driven 

approach prevents the security implications of making the learning data input to ML being 

a repository that lays bare the expected input data.  

To simplify the derivation techniques of generating the related member strings, we 

use a string “bob” throughout this section. The process can be replicated as many feature 

values as desired in the intended data set. It also must be pointed out that the context of 

this thesis is big data scenario with a large volume of feature values of alphanumeric 

strings in nature meaning that heuristic string signatures lookup will not be scalable. The 

string “bob” is a minute representation for the simplification of the big picture in the 

significant learning data generation.  

Figure 6-6 below illustrates the fundamentals of FSA [56], [151] states walk that 

forms the building block to our learning data extraction techniques. Automata is a self-

propelled abstract computing device in workflow orchestration that automatically follows 

a predetermined sequence of operations. An automaton is typically represented by a set 

of five tuples (Q, ∑, qo, F, ∂) as depicted in Figure 6-6 where the tuples are detailed below: 

• Q is finite set of states {1,2,3} 

• ∑ is finite symbol {b, o} termed alphabet 

• qo is the initial state {1} 

• F is a set of final state {3} 

• ∂ is the transition function as collated in Table 6-1 below 
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Figure 6-6 FSA states walk to generate member strings: A figure illustrating FSA states 

walk from the expected input string to generate member strings in creating massive learning data. 

Table 6-1 Transitions function (∂) and states walk interpretation: A table illustrating 

transitions function (∂) and states walks interpretation to derive related member strings. 

 

 

 

 

Alphabet  

∑= {b, o} 

 

Transitions Accepted member strings 

0,1 1,2 2,3 

b o b  bob 

b o o boo 

o o b oob 

o o o ooo 

o b o obo 

b b b bbb 

b b o bbo 

o b b obb 

We explore automata states walk collation to generate all possible accepted member 

strings shown in Table 6-1. The manual collation of automata states walks is automated 

by employing Rex [80] utility by Veanes et al. [153], [205]. Rex is an implementation of 

SFA which uses Z3 [153] constraint solver [154] to generate as many related member 

strings as possible from a defined RegEx constraint patterns. In Rex, the RegEx 

implements an NFA with an epsilon move and a further conversion of NFA to 

Deterministic Finite Automata (DFA) for optimisation in determining states as against 

probing possible states paths as in NFA. Below describes the input file passed to the Rex 

command to generate related member strings. 

The RegEx pattern input file to Rex command line is written as Rex /r: InputFile.csv 

/k: 8 where r and k are the source input file and the size (number of iterations) command 

options to generate member strings respectively. The input file would contain patterns 

around the original strings and size where these attributes exist, e.g. ^ [bob]{3}$ which is 

interpreted as to derive related member strings of length 3. Alternatively, where there are 

no precursor strings, RegEx patterns are inferred from the structure and scope of the 

expected input data, e.g. (^[b](?:[a-z]{2})$) which denote to derive a related member 

strings of length 3, starting with letter b followed with two more letters from a to z. The 

data set procurement technique employing automata states walks to generate related 

member strings is described in the subsequent sections below. 
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6.3.1 Generating the regular expression constraints 

We apply RegEx [206], [207] to produce constraints of patterns that exist in expected 

input data. These RegEx constraints of the patterns are for two purposes: use in related 

member string generation detailed below; and also, as a part of the feature pre-processing 

or data engineering. 

Take an example of a web application presented in this thesis that expects a unigram 

(single word or string) of an English dictionary word list; we use RegEx to define pattern 

constraints and employing Rex utility tool to derive as many related member strings from 

the RegEx pattern constraints. We use a unigram (analysing strings word by word) of 

English dictionary word list as expected input data in a test web application to 

demonstrate a pattern-driven data set can be utilised in any web application domain 

context to train a supervised learning model to predict SQLIA accurately. 

This thesis proposal provides the ability to generate a pattern-driven data set based 

on web application types. This proposal of ability to generate a pattern-driven data set on 

the fly, which removes the reliance on antiquated data set for the training of ML classifier. 

These obsolete purpose-built data sets [65], [66] do not account for the various data sets 

that are relevant to train ML model for the diverse web applications requiring SQLIA 

mitigation.  

To illustrate in simplicity the internal workings of the pattern-driven data set 

generation, we take a simple RegEx pattern for a string to show how massive quantities 

of learning data can be generated as shown in Table 6-2. For example, we provided an 

input of  RegEx pattern to a Rex utility tool as presented in Table 6-2. The Regex pattern 

constraint defines a string that starts with b followed by a combination of letters from a 

group of a to z but restricted to two letters which result in the derivation of member strings 

of b…bn as shown in Table 6-3. 

Figure 6-7 below illustrates the Rex SFA generated UML state machine, an 

indication of the internal workings of how the possible member's strings are generated. 

Rex command tool (rx.exe) provides an option to accept as many RegEx constraints as 

possible to generate as many member strings to form extensive learning data. Figure 6-8 

shows the Rex utility command line with the RegEx pattern (^[b](?:[a-z]{2})$) and the 

following options: /e for character encoding and /k for the number of related member 

string to generate. 
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Table 6-2 A RegEx for a simple string constraint: A table containing an example of RegEx 

constraints that is passed to an SFA to derive related member strings. 

 

Table 6-3 An example of member strings from the defined pattern: A table containing 

possible string members from a defined RegEx pattern [b](?:[a-z]{2}) for ten instances using Rex utility. 

Derived Member strings 

"bhz" 

"bwc" 

"bdy" 

"bsw" 

"bsj" 

"bwp" 

"blm" 

"bzc" 

"bam" 

"bby" 

 

 

Figure 6-7 UML of generated constraint from Table 6-2: A figure of UML generated 

constraint from Table 6-2 using Rex tool. 

 

Figure 6-8 Running Rex command utility against a constraint: A figure demonstrating 

running Rex command against a defined RegEx constraint to generate the possible related member strings 

as shown in Table 6-3.  

6.3.2 RegEx pattern from strings and size of dictionary word list 

A string S is a finite combination of symbols {b, o} that are extracted from the alphabet 

denoted by Σ. Then S = “bob” is expressed as alphabet Σ = {b, o} where b and o are the 

RegEx Constraint 

^[b](?:[a-z]{2})$ 
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symbols. Therefore, S is accepted by an NFA or a DFA (Q, Σ, qo, F, ∂) when S = ∂* (qo, 

S) ∈ F. 

The Language L is a set of strings with a defined length denoted by |S|. In this 

example, the string “bob” has length three represented as |S| = 3. Applying Kleene 

Closure or Plus [208] denoted by Σ + then, Σ + = Σ * - ɛ = Σ 1 ∪ Σ 2 ∪ Σ 3∪…. n, where Σ* 

- ɛ is the Kleene Star (Σ*) minus epsilon or empty strings (ɛ), Σ1…n are finite sets of 

possible related member strings with length that can be generated. If alphabet Σ = {b,o}, 

|S| = 3, then L is accepted by NFA or DFA when { S | S ∈ Σ + and ∂* (qo, S) ∈ F }, 

Therefore the related member strings derived is expressed as Σ + = {bob, boo, oob, ooo, 

obo, bbb, bbo, obb} as shown in Figure 6-6 above collated in Table 6-1 above. 

6.3.3 RegEx pattern from a given string structure and size 

We apply RegEx to produce constraints of patterns that exist in expected input data passed 

to Rex utility to derive related member strings. The RegEx pattern (^[b](?:[a-z]{2})$) 

accepts strings that start with a symbol b with any combinations of symbols [a - z] where 

string length |S| = 2, then the total string length is |S| = 3. Therefore, Σ + = {bhz, bwc, bdy, 

bsj, blm, bzc, bam, bby} are accepted member strings as shown in Figure 6-9 below 

illustrating automata states walk. 

 

Figure 6-9 A UML of states walk from RegEx pattern: A UML of states walks from a 

given RegEx pattern to generate possible member related strings from a given string. 

6.3.4 Member strings transposition 

We further measure the string distance to compare the pattern of the original string with 

related derived member strings by string transposition as to filter the anagram patterns of 

the generated related member strings. We explore R stringdist (string matching package 

in R) [182] in the member string transposition to improve the performance of the data set 

in a binary classifier including an intruder attempt to circumvent the classifier by 

transposition (shuffled strings). Figure 6-10 below is a snippet of original string “bob” 

with the derived related member strings distance values. Figure 6-11 below illustrates 



137 

 

string distance patterns measures by comparing Hamming H and qgrams Q to obtain the 

transposed (anagram) member strings. 

 

Figure 6-10 String distance measures of member strings: A figure illustrating string 

distance measures between original and derived member strings. 

 

Figure 6-11 Filtered values of original string transposition: A figure illustrating filtered 

feature values containing transposition of original string when Q = 0 and H != 0. 

We explore FSA to derive as many features required in the data set, and explore R 

language string distance analysis to create a dimension of related member strings. The 

filtering of derived strings is to obtain a pattern-driven data set that contains only related 

member strings that include shuffled, transposed and original strings. For example, the 

string bob has similarity to bbo, obb, etc. The filtering is based on string distance 

measurement as illustrated in Figure 6-11 to ensure strings that have the nuance of related 

member strings are not wrongly labelled in the procedure illustrated in Figure 6-12. This 

string distance measure approach to remove noise or unrelated member strings is achieved 

through the use of R stringdist library [182]. We used the hamming distance method of R 

stringdist to determine the string positions shift or transposition for strings of equal length. 

The qgram method of R stringdist is used to determine if the derived member strings are 

shuffled or anagram outcome of the original string. The preceding string distance 

measures are to measure to establish a related member string in the derived pattern-driven 

data set used here to train TC LR and TC SVM classifiers. 

This thesis proposal provides the ability to generate a pattern-driven data set used to 

train an ML classifier based on web application types. It is a paradigm shift from SQL 
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queries syntax structure comparisons seen in existing work [71], [72], [134]–[141], [74], 

[100], [128]–[133] that require source code access to the scheme presented here of an 

approach of intercepting web request input destined to be substituted into SQL query 

element predicate’s expression (SQLIA hotspot) as to predict SQLIA.  

Choi et al. [72] train an SVM classifier using tokenisation by N-Grams of bigrams, 

trigrams and 4-grams to compare SQLIA query syntax structure between normal and 

malicious queries. The text classification approach as employed by these authors above 

by using more than one n-grams to compare the query structure has a limitation as it only 

detects queries with the exact count of the grams used in tokenisation. Padding of SQL 

query with more strings or words impact such queries classification outcomes. Whilst 

historical approaches of static and dynamic queries comparison seemed plausible in the 

past, the shifting of web applications on-premise domain boundary to the cloud SDN 

makes approaches that rely on static and dynamic source code scanning of the web 

application not applicable in emerging computing where access to source code is 

restricted. The scheme presented here is a paradigm shift from existing proposals to a 

scheme that infers a pattern-driven data set relevant to the intended web application type 

being provided ML SQLIA mitigation. We used unigram of N-grams in our tokenisation 

as we analyse intercepted input data word by word destined to be substituted in SQLIA 

hotspot. The proxy API used helps intercepts and decrypts the content of web request and 

as such does not require access to web application source code. 

6.3.5  SQLIA labelling  

The derived related member string as detailed above is labelled SQLIA negative (0) while 

the presence of SQL tokens and existing known SQLIA signatures during member strings 

pre-processing is labelled SQLIA positive (1). The binary class of 0 or 1 is to be predicted 

at SQL query injection points. The learning data labelling routine in R language is 

illustrated in Figure 6-12 Flowchart below.  

 Figure 6-12 starts with employing FSA to derive as many strings, patterns of 

expected input in web requests. The derived strings are filtered to obtain related member 

strings that are labelled in the data set as SQLIA positive or negative. The derived pattern-

driven data set is imported into MAML studio where it undergoes a further text pre-

processing. For example, depending on the web application type, certain words are 

relabelled; if expected input will contain the European Union, the European Union is 
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relabelled SQLIA negative while Union SQL keyword remains labelled SQLIA positive. 

Making the European Union as stop words (excluded words) or relabelled to SQLIA 

negative inform the classifier during the training that a combination of the words 

European Union is SQLIA negative while a single SQL keyword Union without context 

is SQLIA positive in the classification. 

 

Figure 6-12 Data set feature values labelling flowchart: A flowchart illustrating data set 

feature values labelling used to train a supervised learning model. 

 

 

  

   

 

   

   

    

    

                                                                       

 

 

  Y N 

                 

 

 

 

 

   

Start 

x= Input file containing 

RegEx Patterns  

WHILE <> EOF Run rex.exe on each 

line of x to generate member strings. 

Measure string distance of member 

strings & compute anagram y. 

 

IF exist SQL tokens, 

symbols, attack 

signatures in y?  

Labelled SQLIA 

positive (1)  

Labelled SQLIA 

negative (0)  

End End 



140 

 

6.4 Predictive analytics experiment and deployment 

Figure 6-13 presents this section organisation chart with the associated subsections. 

 

Figure 6-13 The section organisation chart: The section organisation chart provides the layout 

of this section with the associated subsections. 

We apply predictive analytics in this thesis to mitigate SQLIA. The method is built on 

MAML studio, which is a cloud-based ML platform. The experimental steps are detailed 

below. 

6.4.1 A high-level overview of the experimental steps: 

6.4.1.1 Data set extraction 

The learning data or feature values used here in the MAML studio to train a supervised 

learning model contains pattern-driven data set described in detail in section 6.3 above. 

We obtained 479,000 member strings with additional 862 unique SQL tokens extracted 

from Microsoft SQL reserved keywords [179].  

6.4.1.2 Text pre-processing 

This stage involves R Scripting that incorporates all the defined RegEx constraints 

detailed in 6.3 above to parsed learning data. The feature values are parsed for patterns, 

duplicates, normalised to lower cases and the removal of the missing attribute values 

which results in the pruning of the feature values to 362,603. Also, depending on the web 

Predictive analytics and deployment
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Features hashing

Split

Training prediction model

Publishing
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application type, certain words are relabelled, e.g. if expected input will contain the 

European Union, the European Union is relabelled to SQLIA negative while Union SQL 

keyword remains labelled SQLIA positive. The data set is sampled to provide an even 

distribution of the feature values. The imbalanced feature values of majority labelled 

SQLIA negatives over positives were corrected with SMOTE [187]. The entire feature 

values of 725206 are split equally. The SMOTE improves the accuracy and F1 score 

statistical measures in evenly distributed feature values. 

6.4.1.3 Features hashing to the matrix 

The hashing is to transform the data set feature values into binary vector matrices of 215 

(32,768) columns required for training a classifier in ML by setting the hashing bit size 

to 1 (unigrams of N-grams) where N = 1. The hashing procedure creates a dimensional 

input of the matrix with a faster lookup of feature weights by substituting the string 

comparison with the hash value comparison. We use a unigram hashing of strings into 

the binary matrix as the intention is to analyse the intercepted strings as a unit at the proxy. 

We observed analysing a string as a unigram offers a better prediction of TP and TN than 

examining a phrase of a group of strings together (N-Grams > 1). 

6.4.1.4 Split of vector matrices between training and testing data 

We divide the matrix values of the hashed features into a ratio of 80:20 (training to testing 

data respectively) of which 80% forms the training data input to the classifier while 20% 

as test data for evaluations. We further optimised the classifier in the MAML studio with 

Tune Model Hyperparameters (TMH) module [209] to improve TP and TN predictions, 

but with low FN results of 162 achieved in TC SVM as shown in Table 6-4 below. 

6.4.1.5 Training the prediction model 

Both TC LR and TC SVM algorithms employ linear kernel which offers a binary 

prediction at the proxy of a linear separation between SQLIA positive and negative 

presence in a web request. This linearity of the classes which can be demarcated in a 

straight line makes algorithms (classifiers) using linear kernel a preferred choice in binary 

classification.  

Also, the two classifiers show good accuracy and fast training times in performance 

metrics. TC SVM has the advantage of being scalable with significant features set, such 

as vectorisation (hashing), as used in this experiment to generate higher dimensionality 
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of hashed columns. TC LR and TC SVM algorithms are trained with the training data of 

the partitioned matrix values. We achieved in the trained model AUC values of 0.984 and 

0.986 for TC LR and TC SVM respectively in the ROC curve, but with TC SVM having 

a fewer FP and FN. 

6.4.1.6 Publishing and consuming the prediction web service 

The system requirements regarding RAM and the hard disk is minimal as the one-off 

workload of training the classifier including retraining is handled in the cloud by the 

MAML platform. The solution is scalable, and it is meant to detect and prevent SQLIA 

in web requests as illustrated in Figure 5-3 above.  

6.5 Evaluation and performance metrics 

6.5.1 Binary classification 

The statistical measures, ROC curve, AUC and k-fold cross-validations are widely used 

by data scientists to measure the performance metrics in ML analytics. We extracted an 

evenly distributed data set of 725206 attribute values or row items by the pre-processing 

and equal balancing of feature values as described in 6.4.1.2 above. These feature values 

to be predicted contain an equal representation of labelled strings that are deemed valid 

web requests and SQLIA threat as described in data extraction labelling in 6.3 above. The 

string attribute values were hashed to obtain a matrix represented by Xij that refers to the 

element in rows i and columns j of the input variables matrix X. The output variable to 

predict Y is a single vector representation by Yi where i is the index or row count. Thus, 

the learning data l is represented by Equation 6-1 as a dimension of matrix Xij to predict 

an output labelled vector Yi where n is the top row count of index i. A function of X 

denoted as f(X) to predict a labelled output Y. Therefore, f(X)=Y, where x is input and y 

is the predicted output. 

 

Equation 6-1 

 

We split the hashed string features matrix and associated predictor variables into a 

ratio 80:20 % of 725206 with 580164 matrix values as a training data set while the 

remaining 145042 as a testing data set. We observed a split ratio of 80:20 (training to 

testing data) resulted in better performance metrics compared with other split ratios that 

were tried. The training set is evaluated under various binary classification algorithms or 
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classifiers to select a better performing classifier determined by the AUC performance 

value. The linear kernel-driven algorithms presented in this thesis are implemented in 

MAML (Azure ML) studio using the TC LR and TC SVM classifiers.  

We observed linear kernel-driven classifiers are better performing in the binary 

classification of two classes in predicting the discrete value of 0/1 for SQLIA. The AUC 

provides an overall performance measure between the classifier algorithms as illustrated 

in Figure 6-14 for which the TC SVM with AUC value of 0.986 was observed to be better 

performing than the TC LR of AUC value 0.984. 

While the 80% training sample is the part fed to the classifier to train the prediction 

model, the remaining 20% is the testing data vectors, values unseen by the classifier 

which is the subject of this empirical evaluation presented in this thesis. The testing data 

input variables of 145042 rows are scored to generate score probabilities of a range 0 ≤ x 

≤ 1 where x is the input matrix to predict output y. The score probabilities provide a 

measure of observations that are correctly predicted as TP and TN including the two 

prediction errors of FP and FN within the range {0.0,1.0}. These prediction observations 

of TP, TN, FP and FN are presented in tables below which are calculated to determine 

how many of these observations score probability values fall within each score bins set 

of {0,1}.  

Therefore, the expected output is y=0 or SQLIA negative if the function of the 

predictor variables x is closer to 0 expressed as f(x) ≈ 0. Conversely, the prediction output 

is y = 1 or SQLIA positive when the function of predictor variables x is closer to 1 denoted 

as f(x) ≈ 1. Also, the prediction errors rate is used to gauge the performance of a classifier 

as illustrated in Table 6-4 with TC SVM achieving low FN (162). However, 1923 FP 

events were observed in TC SVM which indicates such web requests that are falsely 

alarmed will be referred to the system monitor for a further review. 

Table 6-4 A snippet of prediction observations at default threshold: A table containing 

a snippet of calculated prediction observations at the default threshold of 0.5 that is repeated across {0,1}. 

Events Positive  Negative  

Positive TP 

TC SVM=72359, LR = 69421 

FP 

TC SVM = 1923, LR = 2088 

Negative FN 

TC SVM= 162, LR = 3100 

TN 

TC SVM=70598, LR = 70433 

The MAML studio sets by default the cut-off threshold for the prediction of TP and 

TN including the errors of FP and FN to be 0.5. This cut-off of 0.5 is a predetermined 
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threshold employed by classification algorithms; it is a trade-off between the cost function 

of x to predict y against the performance metrics statistical measures. Therefore f(x) < 0.5 

score probability value is predicted as SQLIA negative (0) while f(x) ≥ 0.5 is predicted as 

SQLIA positive (1). The score probabilities generated from the 145042 rows of testing 

data are partitioned into score bins of 0.1 increments of the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0}. The calculated predicted observations are aggregated across these 

score bins using the score probability values as shown in Table 6-5 and Table 6-6. 

Table 6-5 TC LR algorithm observations at various cut-off points: A table of observations 

at various cut-off points between {0.0, 1.0} of the TC LR trained model. 

 

Table 6-6 TC SVM algorithm observations at various cut-off: A table of observations at 

various cut-off points between {0,1} of the TC SVM trained model. 

 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 0 0 0.5 0 0

0.9 52479 20042 1399 71122 72521 72521 53878 91164 0.01929096 0.72363867 0.85217385 0.974034 0.830370493

0.8 58756 13765 1568 70953 72521 72521 60324 84718 0.02162132 0.81019291 0.89428579 0.974007 0.884579773

0.7 62924 9597 1674 70847 72521 72521 64598 80444 0.02308297 0.86766592 0.92229147 0.974086 0.917801326

0.6 66303 6218 1760 70761 72521 72521 68063 76979 0.02426883 0.91425932 0.94499524 0.974142 0.94325101

0.5 69421 3100 2088 70433 72521 72521 71509 73533 0.02879166 0.95725376 0.96423105 0.970801 0.963979726

0.4 71704 817 4794 67727 72521 72521 76498 68544 0.06610499 0.9887343 0.96131465 0.937332 0.962347083

0.3 72325 196 8374 64147 72521 72521 80699 64343 0.11547 0.99729733 0.94091367 0.896232 0.944067354

0.2 72371 150 12508 60013 72521 72521 84879 60163 0.17247418 0.99793163 0.91272873 0.852637 0.919580686

0.1 72390 131 18708 53813 72521 72521 91098 53944 0.25796666 0.99819363 0.87011348 0.794639 0.88486056

0 72521 0 72521 0 72521 72521 145042 0 1 1 0.5 0.5 0.666666667
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(P)
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Score  Bins TP FN  FP TN PE NE PO NO TE FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 145042 0 0 0.5 0 0

0.9 56446 16075 1505 71016 72521 72521 53878 91164 145042 0.02075261 0.77834007 0.878794 0.97403 0.86525845

0.8 63346 9175 1692 70829 72521 72521 60324 84718 145042 0.023331173 0.87348492 0.925077 0.973984 0.92100117

0.7 67886 4635 1806 70715 72521 72521 64598 80444 145042 0.024903132 0.93608748 0.955592 0.974086 0.95470878

0.6 71088 1433 1887 70634 72521 72521 68063 76979 145042 0.026020049 0.98024021 0.97711 0.974142 0.9771815

0.5 72359 162 1923 70598 72521 72521 71509 73533 145042 0.026516457 0.99776616 0.985625 0.974112 0.98579729

0.4 72324 197 1921 70600 72521 72521 76498 68544 145042 0.026488879 0.99728355 0.985397 0.974126 0.98556886

0.3 72340 181 2179 70342 72521 72521 80699 64343 145042 0.030046469 0.99750417 0.983729 0.970759 0.98394995

0.2 72355 166 6175 66346 72521 72521 84879 60163 145042 0.08514775 0.99771101 0.956282 0.921368 0.9580208

0.1 72376 145 13108 59413 72521 72521 91098 53944 145042 0.180747646 0.99800058 0.908626 0.846661 0.91612291

0 72521 0 72521 0 72521 72521 145042 0 145042 1 1 0.5 0.5 0.66666667
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Figure 6-14 A ROC curve of AUC of TC LR vs TC SVM: A figure showing ROC curve 

comparing AUC of TC LR against TC SVM classifiers of the trained models comparing the performance 

metrics in AUC. 

The statistical measures provide the performance metrics of a trained model. We 

calculated the statistical measures at the various thresholds {0.0, 1.0} as shown in Table 

6-5 above where TC LR at default has the following: Accuracy = 0.964, Precision = 0.971, 

Recall = 0.957and F1 Score = 0.964. Table 6-6 is calculated as the preceding, where TC 

SVM has an improved performance metrics with Accuracy = 0.986, Precision = 0.974, 

Recall = 0.998, F1 Score = 0.986 and AUC of 0.986 as shown in Figure 6-14 above. 

6.5.2 Cross-validation 

In discussing the cross-validation in relation to this chapter, we directly picked the 

best-trained model for cross-validation. For discussion on introduction to cross-validation 

refers to section 4.5.4. In the preceding sections, we derived a pattern-driven data set 

containing 725206 vectors to train a binary classifier with a labelled class of value of 1 

for SQLIA positive while a value of 0 for SQLIA negative as presented in 6.3 above. The 

hashed data set vector matrices of 725206 observations are used for the cross-validation. 

We presented a TC SVM as the excellent trained model using training to testing split data 

ratio of 80% to 20% resulted overall in an excellent trained model as graded in Table 4-11 

above (showing AUC grading). We achieved an AUC performance of value of 0.986 with 
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low prediction errors which are the subject of the cross-validation presented below to 

gauge the performance metrics of the unknown data (akin to testing data in a real-world 

scenario) to the classifier with reduced biases.  

Equation 6-2 presents the equation for calculating the mean μ, where μ is the mean, 

xi are the accuracy values across the ten folds (0.9851, 0.9854, 0.9844, 0.9851, 0.9852, 

0.9738, 0.9853, 0.9852, 0.9858, 0.9770), n=10 and therefore μ = 9.8323/10  0.9832. 

Equation 6-3 presents the equation for calculating the variance or standard deviation σ, 

where σ is the variance calculated to be 0.0042. We achieved a lower variance of accuracy 

value of 0.0042 which indicates a less biased trained model capable of generalisation of 

unknown independent data in the real-world application. Table 6-7 presents a table 

containing evaluation results that are partitioned into ten folds with a low standard 

deviation (variance) of accuracy highlighted to indicate a trained model capable of 

generalisation of unknown independent data. The calculation is repeated across other 

performance metrics of Precision, Recall, F-Score and AUC with similar results, 

including a low average log loss value across the ten folds to indicate of a trained model 

with a low penalty for wrong score probabilities as presented in the table below.  

 

𝜇 =
Σ𝑥𝑖

𝑛
 

 

Equation 6-2 

 

𝜎 = √
Σ(𝑥𝑖 − 𝜇)2

𝑛
 

Equation 6-3 

 

 

Table 6-7 A table of evaluation results by folds: A table containing evaluation results of the 

data set matrices partitioned into ten folds with a low standard deviation of accuracy highlighted to 

indicate of a trained model capable of generalisation of unknown independent data. 

 

Fold Number Number of examples in fold Model Accuracy Precision Recall F-Score AUC Average Log Loss

0 72520 SVM (Pegasos-Linear) 0.9851 0.9735 0.9973 0.9853 0.9854 0.092

1 72521 SVM (Pegasos-Linear) 0.9854 0.9747 0.9967 0.9856 0.9863 0.124

2 72521 SVM (Pegasos-Linear) 0.9844 0.973 0.9966 0.9846 0.9849 0.079

3 72521 SVM (Pegasos-Linear) 0.9851 0.9743 0.9966 0.9853 0.9858 0.073

4 72520 SVM (Pegasos-Linear) 0.9852 0.9738 0.9972 0.9853 0.9855 0.105

5 72520 SVM (Pegasos-Linear) 0.9738 0.9732 0.9742 0.9737 0.9851 0.158

6 72521 SVM (Pegasos-Linear) 0.9853 0.9742 0.9972 0.9855 0.9863 0.085

7 72521 SVM (Pegasos-Linear) 0.9852 0.9745 0.9966 0.9854 0.9858 0.084

8 72520 SVM (Pegasos-Linear) 0.9858 0.975 0.9972 0.986 0.9861 0.091

9 72521 SVM (Pegasos-Linear) 0.977 0.9735 0.9803 0.9769 0.9853 0.152

Mean 725206 SVM (Pegasos-Linear) 0.9832 0.974 0.993 0.9834 0.9856 0.104

Standard Deviation 725206 SVM (Pegasos-Linear) 0.0042 0.0007 0.0084 0.0043 0.0005 0.03
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6.6 Discussion 

SQLIA is still an ongoing issue [21], and WAF is still stealthily bypassed by web traffic 

containing SQLI [210]. We demonstrated and discussed in the preceding chapter and 

related published paper [63] that pattern-driven data set can be extracted from a web 

application type to be protected. We further the work presented in the Chapter 5 of using 

R string package to derive related member strings with SFA [153], [154], [205] in this 

chapter to derive related member strings from the defined RegEx patterns to procure a 

pattern-driven data set to train an SVM classifier in ongoing SQLIA detection and 

prevention. A pattern-driven data set inferred from a web application type being protected 

will break the status quo of lexical or syntactic query comparison for SQLIA mitigation 

as seen in existing work [72], [79], [117], [211], [212] which can be circumvented with 

more spaces or padding with extra strings. 

There is a need for a data set relevant to SQLIA mitigation on real-world web 

application other than the purpose-built and challenge-driven data set as seen in 

ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66]. These out of date data sets on SQLI 

were purpose-built for competition not idea to build mitigation against SQLIA in real-life 

scenario business application. A pattern-driven data set has a set of items of subsequence 

and substructures that frequently occur together [162]. We identified through this research 

that a web application type would have input data of a specific type, size, form, structure, 

domain type vocabulary and grammar which forms a pattern.  

The existing proposals displayed a need for pattern-driven data set as against 

repeating strings of SQL queries and URL query string which also reflected in the 

procurement of data set as a test case that was used in these proposals over the years. 

Also, they were SQLIA mitigation approaches that existed before the emerging 

computing of cloud-hosted web services where the traditional web server no longer 

resides on the organisation’s intranet or extranet. 

In focusing on the contributions of this chapter, we list the following that was 

recognised in the course of this thesis in the context of emerging computing and big data 

as to have achieved the proposal presented in this thesis. 

• The web requests that drives internet traffic is now big data; this is beyond 

traditional lookup using classic programming loop constructs to search for SQLI 
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signatures which are not known to be scalable when compared with ML platforms 

in emerging computing big data. 

• The dependence on static code access scanning for SQLIA mitigation in most 

existing work as against the need for web requests to cloud-hosted services to be 

intercepted for analysis. 

Table 6-8 Related work applying AI comparison: A table comparing the existing ML 

approaches to SQLIA mitigation in the context of source code access, cloud SDN applicable, pattern-

driven data set and query comparison with related publication to this chapter highlighted. 

Authors Algorithms Need 

access  

to source 

code 

Intranet / 

intranet 

domain 

boundary 

Emerging 

computing 

applicable: 

cloud SDN 

applicable 

Pattern-

driven 

data 

Query 

comparison 

Bockermann et 

al. [75] 

SVM Yes Yes No No Yes 

Komiya [71] SVM Yes Yes No No Yes 

Choi et al. [72] SVM Yes  Yes No No Yes 

Wang and Li 

[73] 

SVM  Yes Yes  No Yes 

Pinzón et al. 

[74], [141], 

[193] 

SVM and 

NN 

Yes Yes No No Yes 

Kim and Lee 

[138] 

SVM Yes Yes No No Yes 

Uwagbole et al. 

[64] 

TC LR and 

TC SVM  

No Yes Yes Yes No 

In comparing the proposal presented in this chapter with existing research work over 

the years; this chapter focused on web application type to derive a pattern-driven data set 

by employing SFA technique. The derived pattern-driven data set attribute values are 

hashed to provide vector matrices to train a supervised learning TC LR and TC SVM 

classification algorithms for comparison with a better performing model deployed as a 

web service used in ongoing SQLIA mitigation. The trained, supervised learning models 

are evaluated through statistical measures in the ROC curve and cross-validated 

employing k-fold data set partitioning. Table 6-8 above highlights query comparison, 

pattern-driven data set and emerging computing cloud SDN focused SQLIA mitigation 

which is the subject of a paper [64] that set apart the proposal in this chapter from existing 

approaches that apply AI over the years.  

6.7 Conclusion 

We demonstrated in this chapter a pattern-driven data set generated using SFA in the 

absence of a pre-existing data set to apply predictive analytics to SQLIA detection and 

prevention in a big data context. We empirically evaluated our results in the ROC curve 
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with overall better performance metrics that is cross-validated. Also, we observed TC 

SVM having a better performance metrics with AUC value of 0.986 when compared with 

the TC LR AUC value of 0.984 to have deployed TC SVM trained model as a web service. 

On account of the discussion in the preceding paragraphs, this chapter further the 

thesis statement that web application type can yield the pattern of web requests that are 

deemed valid combined with historical studies of different SQLIA types including SQL 

tokens provide artefact to derive a pattern-driven data set to train an ML model. This 

research goal is demonstrated in the following contributions of this chapter. 

• We further the implementation presented in Chapter 5 with SFA to derive related 

member strings in crafting the pattern-driven data set. The referred web application 

expects dictionary words as a valid input while elements of SQL tokens and SQLIA 

type substitution predicted at the SQLI hotspots are predicted as SQLIA positive. 

• We observed using the SFA technique to derive related member strings that we could 

generate a pattern-driven data set with features of related member strings of any size 

to train a classifier for SQLIA mitigation to a real-world application that is cross-

validated. 

• The trained models are evaluated in the ROC curve with the TC SVM has the best 

performance metrics on AUC value of 0.986 deployed as a web service. The web 

service is consumed in a web form for input validation, and at the Fiddler proxy API 

[155] for the ongoing SQLIA prediction as to reject intercepted requests that are 

SQLIA positive. 

We demonstrated in this thesis applied predictive analytics to SQLIA detection and 

prevention in a big data context with an excellent result that is empirically evaluated and 

cross-validated as presented above. In benchmarking this thesis against existing work, the 

methodology proposed here is functional in a big data context which is lacking in existing 

work before now on SQLIA to our knowledge.  
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7  Conclusion  

Figure 7-1 presents the organisation chart layout of this chapter with the sections. 

 

Figure 7-1 The chapter organisation chart: The chapter organisation chart presents the layout 

of the chapter’s sections. 

7.1 Introduction 

Web applications with SQLIV and instances of SQLIA are still topical [21], [159], [210]. 

We looked at the issues of non-availability of the ready-made data set to train an ML model 

in providing SQLIA mitigation, with the few data sets that is in the public domain being 

outdated [1], [2], [67], [160]. We demonstrated in this thesis and the related published 

papers [61]–[64] that a web application type being protected can yield a pattern-driven 

data set to train a supervised learning model in predicting and preventing SQLIA. The 

trained model is exposed and consumed as a web service at web form and proxy API in 

ongoing SQLIA prediction and prevention. 

There are various SQLIA detection and prevention approaches [4], [5], [95]–[104], 

[6], [105]–[109], [119]–[123], [7], [124]–[127], [174], [194], [195], [8], [10], [82], [84], 

[94] proposed by researchers that at the time were a plausible direction towards mitigating 

SQLIA in the on-premise hosted web servers for web applications. However, with the 

recent advancement in emerging computing with web application and services hosted in 

the internet cloud (which defines a new application domain boundary), there is a need for 

an ML approach to mining big data internet traffic to detect and prevent SQLIA in web 

requests. Also, past approaches [71], [72], [193], [74], [100], [130], [131], [133]–[135], 

[141] that relied on the source code for scanning for SQLIA detection and prevention will 

be hindered when adapted to web-driven cloud-hosted applications where source code 

access is restricted. 
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The continuous upward trend in big data has rejuvenated the ML technique being 

increasingly used to tackle massive data mining of vulnerabilities in web applications as 

it provides predictive analytics for big data including astronomical growth in web traffic 

emanating from web requests to cloud-hosted applications. In mitigating SQLIA, the 

traditional approach of programming looping constructs for string lookup or matching of 

valid and malicious queries are not functional in big data analytics where AI approaches 

[61]–[64], [143], [159], [213] provides a dimensional input matrix that makes a lookup of 

feature weights faster by augmenting the string comparison with the hash value 

comparison which ML techniques provide.  

AI (bio-inspired) approach has the ability to evolve as an excellently trained model 

will predict SQLIA and continue to self-automate and retrain itself to continuously offer 

protection which traditional programming constructs of a string lookup or queries 

matching [8], [82], [102]–[109], [94]–[101] does not offer. The issue that stands out in 

some existing approaches [74], [125], [129], [133], [193] is computing resource 

expensive, which by having ML cloud-based robust computing infrastructure provides 

much needed scalable infrastructure to deliver big data mining of large volume of web 

requests in delivery ML SQLIA mitigation solution.  

However, just as the KDD Cup 1999 [161] has become antiquated in the IDS domain 

[1], [2], [67], [160], so also has ECML/PKDD 2007 [65] and HTTP CSIC 2010 [66] has 

become obsolete. These test case data sets served the competition-driven purpose and 

textbook evaluations at the time, not a benchmark data set to build and evaluate SQLIA 

mitigation being provided to the real-world application. Thus, this begs the research 

question and goal of this thesis if the pattern that exists in web requests that are deemed 

valid, and historical studies of different SQLIA types including SQL tokens can provide 

artefact to be used to derive a pattern-driven data set to train an ML model and be 

validated?  

The ontology to extract encoded features that form a pattern-driven data set 

earmarked to train an ML model with evaluation for a web application type in SQLIA 

mitigation is a contribution of the thesis. 

A pattern-driven data set has a set of items of subsequence and substructures that 

frequently occur together [162]. A pattern is engineered data set devoid of repeating 

strings or queries that have relevance to the classification problem. It is derived in the 
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scope of the web application type that the ML-based SQLIA mitigation is being provided 

and can be scaled to any magnitude as to have a significant data set to train a classifier to 

the maximum as to effectively predict an outcome. A pattern-driven data set empowers 

the web developer or system expert to derive a data set based on the web application type. 

Most importantly, it does not age fast as it is tailored to a web application type. 

Conversely, non-pattern driven data set as seen in some existing work [72] and the few 

competitions-driven data sets [65], [66] are logs of repeating strings which gravitate the 

proposals to query comparison of some sort in SQLIA mitigation. 

In focusing on the contributions of the thesis chapters we list the following that was 

recognised in the course of this thesis in the context of emerging computing of big data 

and cloud hosted services as to have achieved the proposal presented in this thesis. 

• A pattern-driven data set inferred from a web application type being protected will 

break the status quo of lexical or syntactic query comparison for SQLIA 

mitigation as seen in existing approaches. 

• The recent years have seen an astronomical growth of web requests that drives 

internet traffic to present the challenge of big data in cloud-hosted services; this 

is beyond the traditional programming lookup using programming looping 

constructs to search for strings or SQLI signatures. 

• The restriction of web application source code for vulnerabilities scanning and 

legacy application sanitisation as web servers are now hosted in the internet cloud 

that is accessed through cloud SDN endpoints, which also limits existing 

approaches that applies SVM learning algorithm [202], [203] in query comparison 

of some sort. 

• A requirement for SQLIA mitigation towards real-world application beyond 

classical statistical measure performance metrics that stop at ROC curve and CM. 

During the research, we submitted and presented four conference papers applying 

ML predictive analytics to SQLIA prediction and prevention [61]–[64]. We detail in these 

papers; the novel data set generation and a further improvement of the trained model’s 

prediction results on True Positives (TP) and True Negatives (TN), but with lower False 

Positives (FP) and False Negatives (FN). The methodology applied here has been 

empirically evaluated in the numeric encoding of both expected input and patterns of 

SQLIA types [61], [62]. The good results of the encoded pattern-driven data set to a 
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supervised learning model in performance metrics motivated further works in using R 

string API and SFA in the derivation of related member strings to obtain a pattern-driven 

data set presented in IEEE papers [63], [64]. 

7.2 Chapter 2: Background & Theory 

This chapter discussed the fundamentals of SQLIA in the following sections: SQLIA 

intent (an intruders intention and purpose for SQLIA); SQLIA mechanisms (the conduit 

for SQLIA); SQLIA types (techniques employed to carry out SQLIA); and a review of the 

techniques applied in this thesis.  

The scheme presented in this thesis employs a web proxy API to intercept web requests 

of any intent and applies predictive analytics techniques to predict SQLIA at the SQL 

injection point (predicate and expression locations of the SQL statement structure).  

Injection mechanisms to a vulnerable application can originate from web page forms, 

second-order injection, exploiting web-enabled server variables, query strings, and 

through cookies. An intruder could exploit injection points using the following SQLIA 

types in any combination: Tautology; Union; Piggyback; Invalid/Logical queries; Time-

based; Obfuscation encoding; and Stored procedure. The SQLIA types and SQL tokens 

are a source of SQLIA positive labelled data items in the scheme presented in this thesis. 

Also discussed in this chapter are the fundamentals of the applied techniques in this thesis 

that includes the use of FSA to generate related member strings, Fiddler proxy to intercept 

web requests for AI prediction of SQLIA, and MAML being the implementation platform. 

7.3 Chapter 3: Literature Review 

This chapter examined and reviewed the existing research literature on SQLI detection 

and prevention techniques to enhance the security of web applications. The research area 

of SQLI detection and prevention has seen diverse methodologies proposed over the years 

by various researchers. In this chapter, we broadly discussed these approaches under three 

categories: (1) SQLIV testing and detection; (2) Approaches that apply defensive coding 

in web application code sanitisation for SQLI prevention; and (3) Dynamic runtime 

analysis, including taint-based and methods applying AI. Each section is followed by a 

discussion on existing literature as to establish the gap in the context of emerging 

computing, and the contributions this thesis makes to fill the gap. We critique the existing 

research work on the following:  
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• They were SQLIA mitigation that existed before the emerging computing. 

• The approaches applying ML algorithms use data set that is not pattern-driven. 

• The dependence on static code access scanning for SQLIA mitigation in most existing 

research work hinders intercepting web requests destined to cloud SDN for analysis 

as cloud-hosted services have restricted access to source code. 

• The web requests that drives internet traffic is now big data, this is beyond traditional 

lookup using classic programming looping constructs to search for attack strings, or 

SQLI signatures which are not known to be scalable when compared with ML 

approaches driven by robust cloud-hosted infrastructure in the context of emerging 

computing. 

• The need for a functional and scalable approach to SQLIA mitigation to use of robust 

cloud-hosted AI platforms such as Azure ML in emerging computing big data mining. 

• A need for the historical learning data relevant to a real-world web application type 

in applying ML technique. 

We presented in this thesis the multi-layers ML-based SQLIA mitigation that targets 

the web client form for input validation, and proxy server at SDN intercepted web 

requests prediction analytics for SQLIA. This thesis provides a runtime analysis 

technique of web requests to predict at the SQLIA hotspot (SQL predicate’s expression 

location). Application of ML techniques provides a functional approach to SQLIA 

mitigation in emerging computing, where applications and services are hosted in the 

cloud with big data emanating from the web requests to these cloud-hosted applications. 

The paradigm shift in this thesis to a pattern-driven data set to train a classifier 

removes the reliance on antiquated test case data sets [65], [66] and query comparison of 

some sort. The pattern-driven data set approach provides a technique to derive on the fly 

a data set relevant to a web application type context requiring ML mitigation to SQLIA. 

The existing approaches applying ML require full access to source code to require normal 

and malicious queries for comparison whether in the string lookup or SQL queries 

matching approaches. In the scheme presented in this thesis, the pattern-driven data set 

that contains attribute values of related member strings is the subject of prediction during 

capturing and analysis of web requests by looking at the substitution values destined to 

the SQL query structure predicate’s expression (SQLIA hotspot) location. Understanding 

expected input data, existing SQLIA signatures, including SQL tokens allows to us 
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concentrate on input data in transition analysis and prediction as against reconstructing 

the full queries needed in non-pattern driven data set approach. 

7.4 Chapter 4: Numerical Encoding to Tame SQLIA  

In this chapter, we looked at the issues of data set availability and proposed a pattern-

driven data set. Availability of historical data or data set has advanced the use of AI by 

applying ML techniques. Unfortunately, as there is no unified pre-existing data set, 

researchers over the years have resorted to various approaches in generating sample data 

sets with most proposals lacking patterns to enhance learning and are fraught with 

complex computational overheads.  

We investigated if the patterns that exist in any web application type context can be 

encoded to vector to train a supervised learning model. We conducted experiments and 

inferred patterns by numeric encoding of features to derive a data set vector of any 

magnitude to train a supervised learning model in testing the feasibility of mitigating 

SQLIA employing AI techniques. We presented the following contributions in this thesis 

chapter. 

• The ontology for crafting a pattern-driven data set from the web application type with 

a technique to encode the data set into vectors required to train a supervised learning 

model. 

• We trained a supervised learning classification algorithm with this pattern-driven data 

and validated the trained model under various classification algorithms with high 

performance metrics in the ROC curve, CM and cross-validation as presented in this 

chapter. 

• The success of this conceptual approach of the web application type as the source of 

a pattern-driven data set to train a classifier has led to a further work in Chapters 5 

and 6 by employing string hashing vectorisation in-place of manual numeric encoding 

in providing a proof of concept of how the proposal will be applied in a real-world 

application scenario. 

We concluded from the experimental results with an empirical evaluation of low 

prediction error that a pattern-driven data set can be used to train a supervised learning 

model in towards ML SQLIA mitigation. The high performance metrics of the results of 

an AUC range of between 0.944 to 1.0 set a precedent for the suitability of applying 
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feature hashing or vectorisation to the pattern-driven data set generated from related 

member strings in Chapters 5 and 6. 

7.5 Chapter 5: Applied Predictive Analytics to SQLIA 

This chapter answers the research question: if a web application type to be protected can 

produce the artefact for the extraction of a pattern-driven data set? We implemented a test 

web application expecting dictionary word list labelled as SQLIA negative, while SQL 

tokens and known SQLIA signatures were labelled as SQLIA positive. This labelled 

pattern-driven data set is vectorised to train a classifier. The vectorisation to obtain vector 

matrices removes the need for numerical encoding presented in Chapter 4. We evaluated 

and cross-validated the trained model with statistical measures. We also compared our 

approach to existing work proposed by other authors to identify the following 

contributions presented in this thesis chapter. 

• We answered the research question that a web application type being protected could 

provide a pattern-driven data set to apply ML in SQLIA mitigation. We implemented 

a web application that expects dictionary words as valid input (SQLIA negative) while 

elements of SQL tokens and SQLIA type substitution at the SQLI hotspot is predicted 

as SQLIA positive. 

• Based on this web application type, we derived a pattern-driven data set using R string 

API. The pattern-driven data set is vectorised to train a supervised learning model 

employing an SVM classification algorithm to predict SQLIA. The evaluated, trained 

SVM model is exposed as a web service which is then consumed in a web form for 

input validation, and also at proxy API deployed at cloud SDN for intercepting web 

requests for SQLIA analysis. The intercepted request is analysed to predict SQLIA as 

to accept the benign and reject malicious web request in ongoing SQLIA mitigation.  

We demonstrated in this chapter applied predictive analytics to SQLIA detection and 

prevention in a big data context with an excellent result that is empirically evaluated. In 

benchmarking this thesis against existing work, the methodology proposed here is 

functional in a big data context which is lacking in existing work before now on SQLIA 

to our knowledge.  
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7.6 Chapter 6: Pattern-Driven Corpus to Mitigate SQLIA 

In this chapter, we further the research question if a web application type to be protected 

can produce the artefact for the extraction of a pattern-driven data set? We derived a 

pattern-driven data set by employing FSA and SFA to generate all possible string 

members to obtain learning data in applying the ML technique to a test application 

domain context to predict and prevent SQLIA with the following contributions. 

• We further the implementation and contributions presented in Chapter 5 with SFA to 

derive related member strings in crafting the pattern-driven data set. The referred web 

application expects dictionary words as a valid input while elements of SQL tokens 

and SQLIA type substitution predicted at the SQLI hotspots are predicted as SQLIA 

positive. 

• Based on the web application type, we derived a pattern-driven data set using SFA as 

against R string API technique presented in Chapter 5 to derive related member 

strings. The pattern-driven data set is used to train a supervised learning model 

employing a TC LR and TC SVM classification algorithms with the better cross-

validated classifier selected to predict SQLIA. The trained models are evaluated in 

the ROC curve with the TC SVM has a better performance metrics of an AUC value 

of 0.986. The selected TC SVM trained model is exposed as a web service which is 

then consumed in a web form for input validation, and proxy API at the cloud SDN 

for intercepting web requests for SQLIA analysis. The intercepted request is analysed 

to predict SQLIA as to accept the benign and reject malicious web requests in ongoing 

SQLIA mitigation.  

• We observed using the SFA technique to derive related member strings that we could 

generate a pattern-driven data set with features of related member strings of any size 

to train a classifier for SQLIA mitigation for real-world application. 

We demonstrated in this chapter a pattern-driven data set generated using SFA in the 

absence of a pre-existing data set to apply predictive analytics to SQLIA detection and 

prevention in a big data context. This approach uses hashed pattern-driven data set from 

a web application type context as against relying on access to the web application’s source 

code or queries comparison, mostly employed in existing static and dynamic signature 

comparisons of SQLIA artefact research approaches over the years.  
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7.7 Research summary 

SQLIA is still an ongoing issue that affects all organisation types including private, 

governments and business hosted web applications across the world as intruders exploit 

vulnerable web applications to pilfer protected data from the database with damaging data 

security ramifications. Pilfered or leaked data can then be used in various forms of 

criminality including extortion. The emerging computing of big data and cloud-hosted 

services posed a more functional issue to SQLIA mitigation that existed before now that 

involves strings lookup of SQLIA signatures. ML which provides an alternative method 

to SQLIA string signature lookup lacks an existing robust data set with few that exist 

being obsolete to train a classifier in advancing SQLIA mitigation. In this thesis, we 

examined SQLIA artefact of valid web requests, including SQL tokens and SQLIA 

signatures to derive a pattern-driven data set to train a supervised learning model in 

applying AI techniques to mitigate SQLIA. 

In applying ML to SQLIA problems, there is a need for a data set which prompted 

in our research goals the following research questions. If a pattern-driven data set can be 

extracted from both expected web requests and SQL tokens including existing SQLIA 

signatures be used to train a supervised learning model and be validated, including this 

pattern-driven data set be extracted from any web application type context for SQLIA 

mitigation? Below are the novel contributions across the thesis chapters which answer the 

research goal of the thesis of using a pattern-driven data set obtained from the very web 

application type to be protected in training an ML model to mitigate SQLIA. 

• We reviewed the existing literature on SQLIA to establish the need for a change from 

on-premise mitigation that includes source code scanning and query comparison of 

some sort to a SQLIA mitigation that is amenable to emerging computing of 

increasing big data and cloud-hosted services that can predict SQLIA on web requests 

in-transition to the back-end database. 

• We presented an ontology in Chapter 4 and related publications [61], [62] for crafting 

a pattern-driven data set using R string API from the web application type with a 

technique to encode the data set into vectors required to train a supervised learning 

model in MAML studio. We trained a supervised learning classification algorithm 

with this pattern-driven data set and validated the trained model under various 

algorithms. We observed high performance metrics statistical measures, including 
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cross-validation. The success of this conceptual approach in Chapter 4 has led to 

further work in Chapters 5 and 6 by employing string hashing vectorisation in-place 

of manual encoding. Also, we demonstrated a proof of concept of how the proposal 

will be applied in a real-world web application. 

• We further in Chapter 5 and related publication [63] the numeric encoding of features 

presented in Chapter 4 with hashing vectorisation to obtain vector matrices to train 

the classification algorithms. In answering the research question if the intended web 

application type can produce the artefact for a pattern-driven data set, we implemented 

a web application that expects dictionary words as a valid input while elements of 

SQL tokens and SQLIA type signatures substitution at the SQLI hotspots is predicted 

as SQLIA positive. The pattern-driven data set is used to train a supervised learning 

model employing a TC LR and TC SVM classification algorithms with the better-

evaluated and cross-validated classifier selected to predict SQLIA. The selected, 

trained TC SVM model is exposed as a web service which is then consumed in a web 

form for input validation, and proxy API at the cloud SDN for intercepting web 

requests in-transition to a back-end database for SQLIA analysis. 

• We demonstrated in Chapter 6 and related publication [64] a more robust method of 

pattern-driven data set procurement based on the web application type; we derived a 

pattern-driven data set using FSA and SFA as against R string API technique 

presented in Chapter 5 to derive related member strings. The referred web application 

expects dictionary words as a valid input while elements of SQL tokens and SQLIA 

type substitution predicted at the SQLI hotspots are predicted as SQLIA positive. The 

pattern-driven data set is used to train a supervised learning model employing a TC 

LR and TC SVM classification algorithms with the better-evaluated and cross-

validated classifier selected to predict SQLIA. The trained TC SVM model is exposed 

as a web service which is then consumed in a web form for input validation and a 

proxy API at the cloud SDN for intercepting web request for SQLIA analysis. We 

observed using the SFA technique to derive related member strings that we could 

generate a pattern-driven data set with features of related member strings of any size 

to train a classifier for SQLIA mitigation for real-world application. 

We conclude in this thesis that a pattern-driven data set to train a classifier can be 

inferred from SQLIA types, SQL tokens and expected valid web requests of a web 

application type. The recent advancement in AI platforms like Azure ML provides the 
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MAML studio functionality to build, train, validate and cross-validate an ML model as 

presented in the thesis which is then exposed as a web service that is consumed in multi-

layer (client form and cloud SDN proxy) in ongoing SQLIA prediction and prevention. 

7.8 Discussion and future work 

7.8.1 Discussion 

The research area of SQLIA has seen various methodologies proposed over the years [4], 

[5], [95]–[104], [6], [105]–[109], [119]–[123], [7], [124]–[127], [174], [194], [195], [8], 

[10], [82], [84], [94]. These proposals are categorised in this thesis into: SQLIV testing 

and detection [8], [82], [102]–[110], [94]–[101]; defensive coding [111]–[118]; and 

dynamic runtime analysis [4], [5], [124], [125], [10], [84], [119]–[123] which includes 

taint-based [7], [126], [127] and ML approaches [71], [72], [134]–[141], [74], [100], 

[128]–[133]. Though there has been approaches that applied ML in static and dynamic 

runtime query analysis to mitigate SQLIA, but apart from the defensive coding techniques 

[111]–[118], the common techniques in most proposals mirror a classical query 

comparisons. 

The classical query comparison SQLIA mitigation approach which includes 

examining the syntactic structure and taint (trusted sources) reflects the old paradigm of 

organisation’s web server placement is internet facing from intranet or extranet location 

and there is a need to mitigate SQLIA at a layer of web application tiers. The processing 

for malicious input at tier level has seen SQLIA mitigation proposals targeted at different 

layers: web client; WAF (intercepting HTTP request for outliers); web application 

(defensive coding and runtime analysis); database firewall (profiling database and 

encoded or tokenised queries); Multi-layers approach (intercepting and analysing web 

requests in more than one layer). These existing approaches have consistently followed 

this paradigm of on-premise located web server for a web application to be protected. 

Also, these existing approaches gravitate to SQLIA mitigation proposals of query 

comparison of some sort mostly driven by the method of data set procurement through 

using web crawler of URLs and other automated unit testing tools. These test case data 

sets that are logged valid SQL queries for comparison between valid and malicious 

queries during runtime does not have patterns for predictive analytics as presented in this 

thesis.  
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Thus, that begs the question if the pattern that exists in web requests that are deemed 

valid, and historical studies of different SQLIA types including SQL tokens can provide 

artefact to be used to derive a pattern-driven data set to train an ML algorithm to predict 

SQLIA? This thesis demonstrated that a web application type could provide the artefact 

to derive a pattern-driven data set for ML-based real-world SQLIA mitigation.  

7.8.2 Future work 

We focused solely on SQLIA analysis and prediction by applying ML techniques to 

demonstrate that artefact for a pattern-driven data set can be extracted from attack features 

and valid expected web requests. The same idea proposed in this thesis can be extended 

to mitigate other similar web vulnerability types. As SQLIA is not the only web 

application vulnerability that exists, we propose to extend the SQLIA mitigation 

techniques presented in this thesis to other forms of web application vulnerability attacks.  

As automated AI techniques may sound promising to the end-user, but the back-end 

procuring of data set and training of the classifiers still needs expert knowledge in any 

domain that applies ML techniques. This thesis requires expert knowledge of the R 

programming language [214]–[216] and regular expression [36], [153], [206], [217], 

[218] in crafting the pattern-driven data set. However, this thesis offers a new direction 

in the pattern-driven data set generation where none exists. Web applications are so 

diverse as they are built for different purposes, this makes it difficult to have a unified 

data set to train a classifier. Inferring the expected input data from these diverse web 

applications still relies on a human system expert to generate the pattern-driven data set 

that is labelled to train a classifier for prediction accuracy. There is a manual process 

between obtaining the data set and training a classifier that still needs human intervention, 

but exploring an ML unsupervised learning (clustering of related member strings) 

approach holds a solution to be explored in future work. 

In training a classifier, there is the need to have a relevant data set for various web 

applications as web applications are designed for different requirements. As such, there 

could be no single data set to train a classifier to mitigate SQLIA in all vulnerable web 

application types (private, commerce, governments, etc.). We emphasise the importance 

of a pattern-driven data set relevant to the web application in the context of applying AI 

to SQLIA mitigation as proposed in this thesis. 
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We hope to take forward the findings in this thesis in creating an off-the-shelf tool 

to generate this pattern-driven data set in various web application types. This tool will 

assist developers, including first-hand training of a classifier to predict SQLIA in the 

legacy web application deployed to the cloud. 

The proposals in this thesis apply and leverage the well established AI platforms of 

MAML studio with the out-of-the-box kernel optimisation. Discussion on kernel types 

and optimisation is intentionally omitted as that forms the AI core research as against a 

proposal applying AI techniques. We leverage the out-of-the-box MAML platform, 

embedded kernels or dot products in the various classification algorithms in the work 

presented in this thesis.  

This thesis proposes intercepting of web requests destined for back-end database for 

ML predictive analytics to predict SQLIA which implies the web request must be readable 

or decrypted. To have addressed the decryption of web requests, we use application level 

proxy API named Fiddler [40]. Thus, all intercepted web requests must be readable for 

the methods proposed in this thesis to predict SQLIA types accurately. However, the 

proposal presented in this thesis has a failover to interpret a web request that cannot be 

decrypted by proxy as obfuscated SQLIA type and deemed it true SQLIA positive. 

Finally, we also envisage exploring core AI principles to look at various kernels 

optimisations in SQLIA mitigation across the different SQLIA types including other 

forms of web application vulnerabilities. Also, as encryption technology evolves, we hope 

to continually explore ways to decrypt obfuscated web requests at the application level to 

make it readable to the SQLIA analysis and mitigation presented in this thesis. 
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