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Abstract
This paper presents the first empirical investigation that compares Euler and linear
diagrams when they are used to represent set cardinality. A common approach is to
use area-proportional Euler diagrams but linear diagrams can exploit
length-proportional straight-lines for the same purpose. Another common approach is
to use numerical annotations. We first conducted two empirical studies, one on Euler
diagrams and the other on linear diagrams. These suggest that area-proportional
Euler diagrams with numerical annotations and length-proportional linear diagrams
without numerical annotations support significantly better task performance. We then
conducted a third study to investigate which of these two notations should be used in
practice. This suggests that area-proportional Euler diagrams with numerical
annotations most effectively supports task performance and so should be used to
visualize set cardinalities. However, these studies focused on data that can be
visualized reasonably accurately using circles and the results should be taken as valid
within that context. Future work needs to determine whether the results generalize
both to when circles cannot be used and for other ways of encoding cardinality
information.

Introduction 1

This paper sets out to shed light on how to represent sets and their cardinalities in a 2

manner most effective for users. This is of particular significance because there are 3

enormous amounts of set-based data available in a wide variety of application areas [2]. 4

Set visualization techniques often exploit closed curves (or variations 5

thereof) [9, 11,25,32,36] or lines [1, 8, 15,34]. This paper therefore focuses on such 6

methods by evaluating extensions of Euler diagrams (closed curves) [39,41] and linear 7

diagrams (lines) [34] that represent cardinality information. In addition, we consider 8

two common ways of representing cardinality: proportions (of areas or lengths) and 9

numerical annotations. 10

An example of set cardinality can be seen with news providers that typically allow 11

users to subscribe and receive dedicated feeds for multiple interest areas, such as 12
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“Politics”, “Sport” and “Business”. Each area of interest defines a set over those who 13

subscribe to it. The cardinality of each set is defined by the number of subscribers. 14

More detail of the size of the set intersections may be useful for analysis. For instance, 15

one such intersection is those subscribers to both “Politics” and “Sport” but not any 16

other area, the intersection cardinality being the number of such subscribers. 17

Set-based data has long been the focus of the information visualization community, 18

not least because of its extensive occurrence in numerous settings. One such setting is 19

the biomedical domain, where Euler diagrams have gained particular prominence as a 20

visualization technique, along with social network visualization and many other areas; 21

see [33] for a survey of Euler diagrams. Example visualization tools include 22

BioVenn [19], Euler3 [35], eulerAPE [27], VennMaster [20] and venneuler [41]. 23

BioVenn and eulerAPE create area-proportional Venn diagrams (which are a special 24

case of Euler diagrams) but both are limited to three sets, as is Euler3. VennMaster 25

and venneuler are more sophisticated, utilizing area-proportional Euler diagrams to 26

visualize an arbitrary number of sets, although the diagrams become increasingly 27

cluttered as the number of sets increase. Ten sets has been suggested as a limit on 28

effective Euler diagrams [2], but this is subjective and depends on the complexity of 29

the relationships between the sets. 30

These techniques have quite different layout and graphical features. As well as 31

using colour in different ways to each other, BioVenn and venneuler use circles, 32

eulerAPE uses ellipses, VennMaster uses regular polygons, and Euler3 uses both 33

circles and polygons. The circles, ellipses and polygons, as well as the regions they 34

form, are intended to be proportional to the cardinalities of the represented sets and 35

their intersections. In addition, circles have been shown to effectively support 36

cognition when using Euler diagrams [5]. 37

However, no area-proportional Euler diagram technique can achieve completely 38

accurate proportions when using convex shapes: it is possible that non-empty set 39

intersections are omitted or that they have may have incorrect areas. The venneuler 40

technique has been theoretically shown to achieve superior visualizations – in the sense 41

of better approximating the region areas – than VennMaster [41]. Thus, in terms of its 42

generality (not being restricted to three sets), superior area accuracy, and use of 43

(cognitively effective) circles we regard venneuler as the best practical layout method 44

for area-proportional Euler diagrams. 45

Given the approximate nature of the layouts currently available using automated 46

tools, it is unsurprising that Euler diagrams are sometimes augmented with numbers 47

placed in the regions to represent cardinality, as shown in Fig 1; for examples of 48

numerical annotations in area-proportional Euler diagrams see [19,27] and for 49

non-area-proportional Euler diagrams with numerical annotations see [3, 17]. The key 50

message here is that there are three common methods employed when visualizing sets 51

and their cardinalities: area-proportions, numerical annotations, or their combination. 52

With high interest in these three methods and their growing exploitation for visualizing 53

sets and their cardinalities, it is important to understand their relative cognitive 54

benefits. However, at present there is no empirical insight into which of these methods 55

is cognitively superior when performing set-theoretic tasks that rely on cardinality 56

information – we provide such insight in the section entitled Euler Diagrams: Results. 57

Linear diagrams, on the other hand, are a relative newcomer to the scene of 58

automated set visualization. They represent each set by a (possibly broken) line 59

drawn horizontally. The set intersections are represented by columns, called overlaps. 60

A set-line appears in an overlap if and only if the elements in the corresponding set 61

intersection are in the set. For example, the first overlap of the linear diagrams in 62

Fig 1 shows that there are elements in Bands only (i.e. 63

Bands ∩ Food ∩Games ∩ iPhone ∩ Programming). We note that, whilst techniques to 64
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minimize line breaks have been developed, some set lines are neccessarily broken to 65

correctly display many data sets. Originally developed by Leibniz [12], linear diagrams 66

have recently begun to gain prominence, with empirical studies providing insight into 67

the cognitive effects of graphical and topological choices made when laying them 68

out [34]. Even before we knew how to produce effective layouts, it was already shown 69

that people find it easier to construct linear diagrams compared to Euler diagrams [15]. 70

They also bring significant cognitive benefits over Euler diagrams when people 71

complete set-theoretic tasks that require diagram interpretation [6]. However, these 72

prior works did not consider the representation of cardinality information and it’s 73

extraction by people performing tasks. 74

As well as having cognitive advantages over Euler diagrams, linear diagrams readily 75

lend themselves to visualizing cardinality information: linear diagrams can always 76

accurately visualize sets and their cardinalities by exploiting length-proportions, 77

making them superior to Euler diagrams from this perspective. Theoretically, 78

area-proportional Euler diagrams do exist for any finite collection of sets [38] yet an 79

implemented method does not exist. Drawing them by hand is extremely difficult, if 80

not impossible. 81

The theoretical and cognitive benefits of linear diagrams suggests that the time is 82

right for them to be more widely investigated. In particular, it is natural to ask 83

whether, when set cardinalities are considered, linear diagrams remain superior 84

visualizations – we provide such insight in this paper (see RQ3 below), after evaluating 85

the use of length proportions, numerical annotations and their combination (see RQs 1 86

and 2). 87

Apart from the aforementioned prior studies on Euler diagrams and linear 88

diagrams, there have been studies relating to set size in the context of Bayesian 89

reasoning [29], [26]. Although concerned with set size, these studies deal with less 90

general diagrams, as both have a fixed number of sets and no flexibility in set overlap. 91

Fig 1 shows different ways of depicting set cardinalities. The leftmost diagrams use 92

proportions: the set iPhone has the largest cardinality because the iPhone circle has 93

the largest circle-area and the iPhone line has the longest line-length. The middle 94

diagrams use numerical annotations: the largest set intersection is Food and iPhone 95

because the region inside both the Food and iPhone circles and, in the linear diagram, 96

the Food and iPhone overlap are both annotated with 16 which is the largest number. 97

The rightmost diagrams use both proportions and numerical annotations. 98

Bands

Food

Games

iPhone

Programming

Bands

Food

Games

iPhone

Programming

4 2 5 8 3 16 1 4 2

Bands

Food

Games

iPhone

Programming

4 2 5 8 3 16 1 4 2

Fig 1. Representing cardinalities using proportions (left), numerical annotations
(middle), and both (right); top: Euler, bottom: linear.

The aim of this paper is to establish which of the three methods – proportions, 99

numerical annotations or both – is most effective for visualizing set cardinalities when 100
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using Euler and linear diagrams. An overarching goal is to ensure practical impact of 101

the research, so we evaluated selected state-of-the-art visualization methods that exist 102

for data of this kind: venneuler [41], iCircles [37], and the linear diagram generator 103

in [34]. Restricting ourselves to data that can be visualized with the selected methods, 104

we answer the following research questions by conducting three empirical studies that 105

measured participants’ performance: 106

RQ1: Are area- and length-proportional diagrams enhanced by the inclusion of 107

numerical annotations reflecting actual set cardinality? 108

RQ2: Is a numerical annotation alone, without proportions, more effective? 109

RQ3: Which technique is the most effective overall and, thus, should be used in 110

practice? 111

The methods used for our empirical studies are in the section entitled Methods. 112

Study 1, which focused on the three Euler diagram variants, is covered in the section 113

entitled Euler Diagrams: Results and study 2, on the three linear diagram variants, is 114

covered in the section entitled Linear Diagrams: Results. These studies suggested that 115

area-proportional Euler diagrams with numerical annotations and length-proportional 116

linear diagrams were most effective. These two techniques were subsequently evaluated 117

against each other, the results of which are in the section entitled Comparing Euler 118

and Linear Diagrams. This third study revealed that area-proportional Euler diagrams 119

with numerical annotations were most effective overall. Threats to validity are covered 120

in the penultimate section, after which we conclude. All the diagrams and questions 121

used in our study, the data collected, and statistical output are included in the 122

submitted supplementary material. The experimental software can be accessed 123

via the study web page: http://www.eulerdiagrams.org/cardinality/. 124

Methods 125

To address RQs 1-3, three between-group empirical studies were conducted that 126

measured task performance in terms of accuracy and time. This section describes the 127

studies’ design. Ethical approval was obtained from the University of Kent (approval 128

number 0811516). 129

Data for Visualization 130

We obtained real-world data from the SNAP data set collection [21]. SNAP contains 131

ego networks1 of 1000 Twitter users and sets comprise users that subscribe to 132

particular lists. We chose SNAP data sets that included a sufficient number of sets to 133

ensure the diagrams generated from them were non-trivial (i.e. would require cognitive 134

effort to interpret). Based on previous experience, five sets were deemed sufficient to 135

require cognitive effort and seven sets were not expected to hinder task performance. 136

As such, data sets with either five or seven sets were selected to give controlled variety 137

in diagram complexity. Previous evaluations of techniques for visualizing sets have 138

used similar or smaller numbers of sets. Kelpfusion was evaluated using four or five 139

sets, with the latter being described as “hard” in terms of difficulty level for 140

participants [25]. An evaluation of LineSets used three, four, or five sets which were 141

described as “easy”, “medium” and “hard” in terms of level of difficulty [1]. In both 142

cases, these data sets were used to generate diagrams for task-based empirical 143

evaluations like that in this paper. Therefore, in terms of number of sets, our 144

1Ego networks have a so-called focal node, the ‘ego’ which in the case of Twitter is a user, along with
the nodes to whom the ego node is directly connected and any incident edges. In turn, these connected
nodes can be viewed as ‘ego’ nodes and may themselves be connected to other nodes, thus forming a
social network.
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Table 1. Complexity of Five-Sets Data
Data Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1-set intersections 4 5 5 5 4 4 5 5 5 5 5 4 4 4 5 5
2-set intersections 3 3 4 4 3 5 5 5 5 5 5 5 6 5 6 4
3-set intersections 2 1 1 1 3 1 1 1 2 2 2 2 3 4
4-set intersections 1 1
Total intersections 9 9 10 10 10 10 10 11 11 12 12 12 12 13 15 9
Card. range sets 2–16 4–34 5–21 3-15 3–54 7–28 11-32 10-30 4-44 11-40 13–119 9–79 11-90 23–43 14–84 1–20
Card. range int. 1–6 1–16 1–14 2–6 2–18 1–10 3-22 2–17 1–10 2–20 2–81 1–42 2–40 2–16 2–16 2–10
Total items 28 45 54 32 64 44 87 59 54 84 155 103 111 74 116 45
Task Type S> S< I> I< S> S< I> I< S> S< I> I< S> S< I> I<

Table 2. Complexity of Seven-Sets Data
Data Set 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1-set intersections 7 5 4 7 7 7 5 6 7 7 7 7 7 4 7 7
2-set intersections 2 1 1 2 4 10 2 2 1 3 6 4 2 4 2
3-set intersections 2 1 1 2 1 4 2
4-set intersections 2
≥ 5-set intersections 1× 5, 1× 6

Total intersections 7 8 5 8 11 11 16 8 10 8 12 13 12 14 11 11
Card. range sets 1–4 1–17 1–20 1–13 5–55 3–25 4–47 4–28 1–39 2–53 10–39 1–105 8–57 11-149 7–33 3–55
Card. range int. 1–4 1–15 1–20 1–11 1–33 1–21 1–14 4–16 1–24 2–53 1–33 1–61 2–57 1–98 2–25 1–33
Total items 12 32 19 35 88 60 62 64 70 93 120 138 167 176 81 86
Task Type S> S< I> I< S> S< I> I< S> S< I> I< S> S< I> I<

evaluation can be seen as increasing the difficultly level of the visualization used in the 145

study as compared to prior work. 146

We used the venneuler technique to generate area-proportional Euler diagrams as 147

we regard it to be the best available method. Venneuler produces exact areas for 148

circles but, therefore, necessarily approximate areas for regions representing set 149

intersections and sometimes omits regions that should have non-zero area. This 150

problem impacts our choice of data sets; it does not arise with linear diagrams. We 151

chose 18 five-set data sets and 18 seven- or eight-set data sets with the largest number 152

of intersections that could be visualized with venneuler; a single set was removed from 153

the eight-set data sets. For each number of sets, two data set were used for training 154

participants, the rest were used for the main study. 155

Table 1 provides insight into the five-set data sets. Rows 2 to 6 provide information 156

on the set intersections present, rows 7 to 9 provide information on the number of data 157

items, and row 10 indicates the allocated task category (explained in the section 158

entitled Tasks and Training). So, for data set 1, row 1 tells us that there are four 1-set 159

intersections; these 1-set intersections arise when there are data elements that appear 160

in exactly one of the five sets. Likewise 2-set intersections arise when data elements 161

appear in exactly two sets, and so forth. Rows 7 and 8 indicate, respectively, that the 162

cardinalities of the five sets range from 2 to 16 and the set intersections range from 1 163

to 6. Table 2 is for the seven-set data sets. 164

As participants may not be familiar with ego networks, the questions they were 165

asked (details in the section entitled Tasks and Training) made no reference to Twitter. 166

In addition, to avoid any possibility of previous knowledge affecting the results, all set 167

names were changed. We still used a real-world scenario – the interests of people – to 168

make the tasks accessible. The sets’ names were chosen so that no two sets in any one 169

diagram started with the same letter; this was to reduce the potential for misreading 170

set names. Scaled versions of the Euler and, respectively, linear diagrams generated 171

from data sets 1 and 32 can be seen in Figs 2 and 3. The abbreviations in that figure 172

(and throughout) are: -P (size proportional, with no numerical annotations); -N (not 173

size proportional, with numerical annotations); and -P&N (size proportional, with 174

numerical annotations). 175
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Fig 2. Euler diagrams, data set 1. (from left: ED-P, ED-N, ED-P&N)

Fig 3. Linear diagrams, data set 32. (from left: LD-P, LD-N, LD-P&N)

Creating Diagrams for the Studies 176

The 32 data sets chosen for the study were used to create Euler and linear diagrams 177

reflecting the three treatments to be applied. We used selected state-of-the-art layout 178

tools to create the diagrams, ensuring that the results had practical utility, namely: 179

venneuler [41], iCircles [37] and the linear diagram generation tool described in [34]. 180

As identified in the background section, venneuler is currently the most effective 181

tool for generating area-proportional Euler diagrams: it can visualize arbitrarily many 182

sets and does so in a demonstrably more accurate manner than VennMaster. 183

Therefore, we used venneuler to generate the 32 area-proportional Euler diagrams. 184

These diagrams were then manually augmented with numbers to indicate the 185

cardinality of set intersections, creating diagrams for the second treatment group. See 186

the left and right diagrams in Figs 1 and 2 for examples. 187

We also needed a method to generate non-area-proportional Euler diagrams. 188

Whilst non-area-proportionality necessarily means that there will be layout variations 189

across treatments, we opted to chose a technique that produced layouts with similar 190

graphical features to venneuler to reduce such variations. In particular, this meant 191

selecting a technique that could visualize arbitrarily many sets using circles. There is 192

only one circle-based Euler diagram drawing technique has this property: 193

iCircles [37,39]. Unlike venneuler, iCircles never omits regions that should have 194

non-zero area. This is because the technique uses, where necessary, multiple circles to 195

represent some sets; see Fig 2, where the set Travel is represented by two circles. 196

Again, we manually placed numbers in the regions to indicate the cardinality of set 197

intersections. See the middle diagrams in Figs 1 and 2 for examples. 198

When adding numerical annotations to the venneuler and iCircles diagrams, the 199

numbers were placed approximately in the centre of the regions. Where regions were 200

present that represented empty sets (and so should have zero area) no number was 201

included, in part to avoid placing 0 in what could be very small regions and to reduce 202

clutter. The labels indicating the sets represented by the curves were also manually 203

positioned – for all three treatments – to ensure they were close to the associated 204
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curve and did not obstruct other parts of the diagram. When this was not possible, 205

labels were placed further from their curve with a line used to indicate the association; 206

see the middle diagram in Fig 1, where the rightmost Food label is linked by a line to 207

its circle. 208

By default, venneuler uses colour fill for its circles which is the same colour as the 209

circle itself. In addition, iCircles uses a fixed colour palette for circle borders, with no 210

interior fill. Since these techniques were devised, it has been found that using a unique 211

colour for each set with no interior fill best supports task performance [4]. 212

Following [4], we used colorbrewer [16] to select a set of perceptually distinguishable 213

colours to assign to the circles and did not use an interior fill. An exception to this 214

occurred when circles ran concurrently. In this case, black was assigned to the 215

concurrent circles; see Fig 4. Each label was treated with the same colour as its 216

associated circle. However, when the circle was black, the relevant colours were used 217

for its labels. 218

Fig 4. Concurrent curves are depicted in black.

When adding numerical annotations to linear diagrams, the numbers were placed at 219

the top of the associated overlap. When there was insufficient space for the numerical 220

annotation, which only occurred in the length-proportional case, the number was 221

slightly offset and ‘connected’ using a line; see the bottom diagram in Fig 3. Unlike 222

the Euler diagram cases, there were never overlaps present that represented empty sets. 223

In particular, linear diagrams – length proportional or otherwise – always have the 224

correct overlaps present (i.e. exactly one overlap for each non-empty set intersection 225

and no extra overlaps). The colour palette used was the same as for Euler diagrams. 226

Tasks and Training 227

It was important to get users to perform tasks that focused on set cardinalities. As 228

proportions alone cannot convey exact cardinality information, unlike numerical 229

annotations, the tasks required the relative sizes of set cardinalities to be compared. 230

The identified tasks fell into two categories, which we call ‘set cardinalities’ (S) and 231

‘intersection cardinalities’ (I), each with two subcategories: 232

S>: identify the sets whose cardinality is more than that of some specified set. 233

S<: identify the sets whose cardinality is less than that of some specified set. 234

I>: identify the set intersections whose cardinality is more than that of some 235

specified set intersection. 236

I<: identify the set intersections whose cardinality is less than that of some specified 237

set intersection. 238

Each task was presented with a set of five options, from which the participants had to 239

select the right answers; there was always at least one right answer. To make the tasks 240

accessible, the questions were presented in the context of information about the 241

interests of people, using the data sets described in the section entitled Data for 242

Visualization; the task type assigned to each data set is shown in the bottom rows of 243

tables 1 and 2. 244
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We give example S> and I< tasks, the others are similar. Appealing to Fig 2, 245

participants were asked to “Tick the checkboxes where there the total number of 246

people interested in that topic is more than than the total number of people 247

interested in Relaxation”, with options: (1) Android, (2) Bands, (3) College, (4) 248

Travel, (5) None of the above. The correct answer is to select all four sets: Android, 249

Bands, College and Travel. The top diagram, which uses proportions, visually 250

indicates this by the size of the Relaxation circle being smaller than the other four 251

circles. From the middle diagram, which uses numbers, it can be seen that two people 252

are interested in Relaxation but 16 people are interested in Android. The numbers 253

inside each remaining circle sum to more than two and, so, have more people 254

interested in them than Relaxation. The bottom diagram shows that more people are 255

interested in Relaxation using both area proportions and numbers. 256

For Fig 3, participants were asked to “Tick the checkboxes where fewer people 257

have exactly that combination of interests than all of Games, Internet and 258

Technology only”, with the following options: (1) Games only, (2) Games, Music 259

and Technology only, (3) Bands only, (4) Hifi only, (5) None of the above. In each of 260

the three linear diagrams, the second overlap corresponds to “all of Games, Internet 261

and Technology only” since it includes three line segments, one for each of the named 262

sets. The right-most overlap corresponds to Games only (this overlap includes just a 263

line segment for Games and nothing else). In the top diagram, the Games only overlap 264

is longer than that for Games, Internet and Technology only, so more people are 265

interested in Games only, not fewer. The middle diagram shows that three people are 266

interested in Games, Internet and Technology only whereas eight people are interested 267

in Games only. The bottom diagram uses both length proportions and numbers to 268

show fewer people are interested in Games only. Similarly, the other three relevant 269

overlaps indicate more people, not fewer, are interested in the respective sets. Thus, 270

the correct answer is ‘None of the above’. 271

Participants were given training in how to read the diagrams and how to answer 272

each of the four questions. An example of the first training question for a participant 273

exposed to linear diagrams with proportions and numbers can be seen in figure 5. The 274

explanation page, revealed after the participant has submitted their answer is shown 275

in figure 6. Further details on the training material can be found in the submitted 276

supplementary material and on the web site: www.eulerdiagrams.com/cardinality/. 277

Fig 5. The first training page.
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Fig 6. The first explanation page.

Data Collection Method 278

Amazon Mechanical Turk was used to crowdsource participants from the general 279

population [7, 18,30]. In MTurk, the tasks are called HITS - Human Intelligence Tasks 280

- which are completed by anonymous participants. They are paid if they successfully 281

complete the HIT. Crowdsourcing is a robust and upcoming method used by the 282

research community for studies of the kind reported on in this paper [18,30]. The 283

tasks were implemented by adapting the template provided by [26]. In both the 284

training phase and the main study phase, each question was displayed on a separate 285

page of the HIT. Participants could not return to pages and subsequent pages were not 286

revealed until the previous answer was submitted. Unlike the training questions, which 287

were presented in the same order for all participants, in the main study the questions 288

were randomly ordered. Participants were instructed to “maintain concentration on 289

the HIT and answer questions without delay, unless a question explicitly allows you to 290

take a break, in which case you can have a rest before continuing”. 291

It is recognised that some MTurk participants do not give questions their full 292

attention, or have difficulties with the language used, and this is hard to control [7]. 293

We call such participants inattentive. 294

To reduce the impact of language issues, a system qualification was used, allowing 295

only participation from people based in the USA with a HIT approval rate of 95%. 296

Another technique to identify inattentive participants is to include questions that 297

require careful reading yet are trivial to answer [28]. In our study, we included two 298

such questions. They asked participants to select all five options, including the none of 299

the above checkbox, as their answer and were told if they failed to do so that they 300

may not be paid for the HIT. An example of such a question is given in figure 7. 301

Participants were classified as inattentive if failed to click all checkboxes on either of 302

the two inattentive participant-identifying questions. Attentive participants were paid 303

$3.70 for taking part. 304

All data obtained from inattentive participants was removed before analysis and 305

these two questions always appeared on the 14th and 28th pages of the HIT. In total, 306

the HIT had 40 pages: a consent page, four training pages, 32 main study questions, 307

two inattentive questions, and a final page that collected demographic information. 308
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Fig 7. A question designed to identify inattentive participants.

Statistical Methods 309

One technique is judged to be more effective than another if users can perform tasks 310

significantly more accurately with it or, if no significant accuracy difference exists, 311

significantly faster. Whilst we view accuracy as the most important indicator of 312

performance differences, all analysis that was performed is reported in the paper. 313

Throughout, results are declared significant if p < 0.05. 314

To analyse the data, we avoided using popular statistical tests for group 315

comparisons, such as ANOVA and Kruskal-Wallis. For example, the accuracy and 316

time data provided by each individual are expected to be correlated, and thus 317

violating the independence assumption of the ANOVA and Kruskal-Wallis tests. 318

Instead, we employ the generalized estimating equations models [22,40] to analyse the 319

accuracy and time data sets because they can account for the presence of unknown 320

correlation between individual-specific responses. 321

Here we present in detail the statistical models used for the first two studies, each 322

of which included three treatment groups. The models used for the last study were 323

simpler, as there were only two treatments. 324

For each of the three empirical studies, we employed two local odds ratios 325

generalized estimating equations models [40] to analyse the accuracy data. The first 326

model, for the first two studies, was employed to answer RQ1, RQ2 and RQ3, 327

compared the visualization types overall irrespective of task category: 328

log

[
Pr(Yik ≤ j)

1− Pr(Yik ≤ j)

]
= β0j + β1xik1 + β2xik2

where 329

• Pr(Yik ≤ j) is the probability for subject i to provide at most j − 1 correct 330

answers to question k and where j = 1, ..., 52. 331

• xik1 is the indicator that the diagram given to subject i for answering question k 332

was proportional, and 333

• xik2 is the indicator that the diagram given to subject i for answering question k 334

was both proportional and numerical 335

for i = 1, . . . , n, given n participants, and k = 1, . . . , 32. With this model, we could 336

determine whether the odds of providing j or fewer correct answers for one of the 337

visualization types (proportional, numerical, or both) was significantly different from 338

others while taking into account the expected correlation among the responses 339

2j takes values from 1 to 5 since, for each question, there are 5 checkboxes which need to be correctly
checked or not.
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provided by each individual participant. For example, we can compare the odds of the 340

proportional and of the numerical visualization type by calculating exp(beta1). This 341

quantity is equal to the ratio of the odds of providing j or fewer correct answers for 342

the proportional visualization type to the odds of providing j or fewer correct answers 343

for the numerical visualization type. If exp(beta1) = 1 than the proportional and the 344

numerical visualization types are equally accurate. If exp(beta1) is less (greater) than 345

one, then this implies that the proportional visualization method is more (less) 346

accurate than the numerical method. The unknown parameters beta’s are estimated 347

by the data. Once this is achieved, we can declare statistical significance based on 348

p-values of the test that the odds ratio under study is equal to one or not. To quantify 349

the variability of the data, we also provide a confidence interval of the odds ratio 350

under study. 351

The second model, for the first two studies, was employed to see whether the 352

answers to RQ1, RQ2 and RQ3 still held when we take into account task category (set 353

or intersection): 354

log

[
Pr(Yik ≤ j)

1− Pr(Yik ≤ j)

]
= β0j + β1xik1 + β2xik2 + β3xik3 +

β4(xik1 × xit3) + β5(xik2 × xik3)

where the variables are as above and, in addition, xik3 is the indicator that the 355

diagram given to subject i for answering question k was of type I. This model allowed 356

us to estimate the odds of providing j or fewer correct answers with one combination 357

of visualization type and task category compared to other combinations and determine 358

whether significant differences existed. 359

For the time data, we used two generalized estimation models [22] that allowed us 360

to estimate whether the time taken to provide answers was significantly different. 361

Again we present details of the two models used for the first two studies. Following a 362

similar approach for the accuracy data, the first of the two models directly addressed 363

RQ1, RQ2 and RQ3 and the more complex model delved deeper into the data to see 364

whether task category was important. The more complex model is given here, which 365

accounts for the different combinations of visualization type (proportional, numerical, 366

or both) and task category (set or intersection): 367

log (tik) = δ0 + δ1xik1 + δ2xik2 + δ3xik3 +

δ4(xik1 × xik3) + δ5(xik2 × xik3)

where 368

• tik is the time needed for subject i to answer question k, and 369

• xik1, xik2 and xit3 are defined in the previous model 370

for i = 1, . . . , n, given n participants, and k = 1, . . . , 32. This model allowed us to 371

estimate the ratio of times of answering a question, given a pair of combinations of 372

visualization type and task category; the simpler model excluded all terms involving 373

xik3. As with the accuracy data, we provide p-values to declare statistical significance 374

and confidence intervals to measure the variability of these ratios. Note that SD errors 375

of timings are not appropriate for measuring variability since the timings for each 376

individual are not independent. 377

Statistical output is included in the submitted supplementary material. We report 378

on the main findings in the following sections. 379
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Euler Diagrams: Results 380

Initially a pilot study collected data from 90 people, 30 per group. This identified a 381

missing number from one of the numerical-group diagrams and another question had 382

an erroneous answer. Five other questions were associated with minor bugs in the 383

data collection software. All problems were rectified. For the main study, 300 people 384

were recruited, 100 for each group; allocation to groups was random in this and both 385

subsequent studies. Of these 300 participants, 23 were identified as inattentive and, 386

thus, had their data removed before analysis; these inattentive participants were 387

distributed across the groups as follows: 7 in the Euler Diagrams - Proportional 388

(ED-P) group, 6 in the Euler Diagrams - Numerical (ED-N) group, and 10 in the uler 389

Diagrams - Proportional & Numerical (ED-P&N) group. This left data from 277 390

participants (142 M, 134 F, 1 undisclosed; ages 20–74, mean 36.5), with 93 391

participants (0 colourblind, 1 did not supply colourblind information) in the ED-P 392

group, 94 participants (1 colourblind) in the ED-N group, and 90 participants (1 393

colourblind, 2 did not supply colourblind information) in the ED-P&N group. 394

ED: Overall Comparison 395

The accuracy rate was 82.1% (ED-P: 80.9%, ED-N: 83.9%, ED-P&N: 84.1%). Using 396

the local odds ratio GEE-based method for the accuracy data we estimated a 95% 397

confidence interval (CI) for the odds of providing j or fewer correct answers for one 398

treatment than another, as well as p-values that allowed us to determine whether the 399

treatments gave rise to significantly different accuracy performance. The estimated 400

odds of having j or fewer correct answers with ED-P was 1.3158 times higher than 401

that of ED-N with a 95% CI of (1.0582, 1.6360) and p-value of 0.0135 (given to 4d.p.). 402

Therefore, ED-N supported significantly more accurate task performance overall than 403

ED-P. This result and the remaining two comparisons are summarised in table 3. 404

Overall, we see that ED-N and ED-P&N both supported significantly better accuracy 405

performance than ED-P. However ED-N and ED-P&N were not significantly different 406

overall. 407

Table 3. ED: overall accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
ED-P versus ED-N 1.3158 (1.0582, 1.6360) 0.0135 ✓ ED-N
ED-P&N versus ED-N 0.8867 (0.6888, 1.1414) 0.3506 N/A
ED-P versus ED-P&N 1.4839 (1.1834, 1.8606) 0.0006 ✓ ED-P&N

The mean time to answer a question was 35.5 seconds (ED-P: 31.0 seconds, ED-N: 408

39.7 seconds, ED-P&N: 35.8 seconds). Using the GEE-based method for the time data 409

we estimated a 95% CI for the ratio of times of answering a question for pairs of 410

treatments, again with a p-value to determine whether significantly different time 411

performance exists. The estimated ratio of times of answering a question with ED-P 412

compared to ED-N was 0.7809 with a 95% CI of (0.7082, 0.8612) and p-value of 413

< 0.0001 (to 4d.p.). Therefore, ED-P supported significantly faster task performance 414

overall than ED-N. This result and the remaining two comparisons are summarised in 415

table 4. Overall, we found that ED-P supported significantly faster time performance 416

than the other two treatments. However ED-N and ED-P&N were not significantly 417

different overall in terms of time. 418

In summary, ED-N and ED-P&N supported the most accurate task performance 419

overall yet were both slower than ED-P. Given accuracy is taken to be more important 420

than time, Euler diagrams with numerical annotations and area-proportional Euler 421
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Table 4. ED: overall time analysis
Treatments Ratio CI p-value Sig. Fastest
ED-P versus ED-N 0.7809 (0.7082, 0.8612) 0.0000 ✓ ED-P
ED-P&N versus ED-N 0.9126 (0.8189, 1.0170) 0.0980 N/A
ED-P versus ED-P&N 0.8557 (0.7742, 0.9459) 0.0023 ✓ ED-P

Table 5. ED: set cardinality accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
ED-P versus ED-N 0.8070 (0.6083, 1.0704) 0.1367 N/A
ED-P&N versus ED-N 0.5059 (0.3544, 0.7221) 0.0002 ✓ ED-P&N
ED-P versus ED-P&N 1.5950 (1.0942, 2.3251) 0.0152 ✓ ED-P&N

Table 6. ED: set cardinality time analysis
Treatments Ratio CI p-value Sig. Fastest
ED-P versus ED-N 0.6839 (0.6224, 0.7516) < 0.0001 ✓ ED-P
ED-P&N versus ED-N 0.8751 (0.7879, 0.9719) 0.0127 ✓ ED-P&N
ED-P versus ED-P&N 0.7816 (0.7073, 0.8636) < 0.0001 ✓ ED-P

diagrams with numerical annotations are deemed the most effective visualizations 422

overall. 423

ED: Set Cardinalities 424

The accuracy rate was 90.5% (ED-P: 90.0%, ED-N: 89.1%, ED-P&N: 92.5%). The 425

mean time to answer a question was 30.6 seconds (ED-P: 24.4 seconds, ED-N: 36.4 426

seconds,ED-P&N: 31.1 seconds). The statistical results are in tables 5 and 6. In 427

summary, viewing accuracy as the most important performance indicator, 428

area-proportional Euler diagrams with numerical annotations best support set 429

cardinality tasks, followed by area-proportional Euler diagrams. Euler diagrams with 430

numerical annotations were least effective for set cardinality tasks. 431

ED: Intersection Cardinalities 432

The accuracy rate was 75.3% (ED-P: 71.8%, ED-N: 78.5%, ED-P&N: 75.6%). The 433

mean time to answer a question was 40.4 seconds (ED-P: 37.6 seconds, ED-N: 43.0 434

seconds, ED-P&N: 40.5 seconds). The statistical results are in tables 7 and 8. In 435

summary, for intersection cardinality tasks, either area-proportional Euler diagrams 436

with numerical annotations or Euler diagrams with numerical annotations can be used 437

to support the most effective task performance: they both lead to significantly more 438

accurate task performance than area-proportional Euler diagrams, yet are 439

indistinguishable from each other taking into account both accuracy and time. 440

ED: Summary of Results 441

The analysis revealed that, whilst ED-P&N and ED-N were indistinguishable overall 442

and for intersection cardinality tasks, ED-P&N better supported set-cardinality tasks, 443

giving this treatment the edge. The ED-P group performed particularly poorly: it was 444

significantly less accurate than both ED-N and ED-P&N overall and for intersection 445

cardinality tasks, and significantly less accurate than ED-P&N for set cardinality 446

tasks. However, ED-P supported significantly better time performance overall and in 447

all but one other case (for intersection cardinality tasks, compared to ED-P&N). Fast 448

January 25, 2019 13/25



Table 7. ED: intersection cardinality accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
ED-P versus ED-N 1.8624 (1.4451, 2.4002) < 0.0001 ✓ ED-N
ED-P&N versus ED-N 1.2664 (0.9449, 1.6972) 0.1139 N/A
ED-P versus ED-P&N 1.4706 (1.1563, 1.8704) 0.00170 ✓ ED-P&N

Table 8. ED: intersection cardinality time analysis
Treatments Ratio CI p-value Sig. Fastest
ED-P versus ED-N 0.8917 (0.7972, 0.9973) 0.0448 ✓ ED-P
ED-P&N versus ED-N 0.9517 (0.8450, 1.0719) 0.4146 N/A
ED-P versus ED-P&N 0.9369 (0.8377, 1.0479) 0.2542 N/A

performance alongside a higher error rate, though, is not desirable. These results lead 449

us to suggest that, out of these three treatments and for the tasks considered in our 450

study, area-proportional Euler diagrams with numerical annotations should be used to 451

visualize information about sets and their cardinalities. Thus for RQ1 we answer yes – 452

numerical annotations enhance the use of area-proportional Euler diagrams – and for 453

RQ2 we answer no – the use of numerical annotations alone is not more effective. 454

In terms of effect sizes, the odds of providing j or fewer correct answers overall 455

with ED-P was 1.4839 times that of ED-P&N, which increased to 1.5950 for set 456

cardinality tasks and reduced to 1.4706 for intersection cardinality tasks; in all cases, 457

there is a clear accuracy improvement with ED-P&N. This is at the expense of time, 458

where we estimated that ED-P tasks were, overall, completed in 85.57% of the time of 459

ED-P&N tasks; this decreased to 78.16% of the time for set cardinality tasks and 460

increased to 93.69% of the time for intersection cardinality tasks. The odds of 461

providing j or fewer correct answers was 0.5059 using ED-N compared to ED-P&N for 462

set cardinality tasks which is substantial in practical terms. ED-N also brought a time 463

penalty for these tasks: ED-P&N participants were estimated to complete tasks in 464

87.51% of the time compared to using ED-N. 465

ED: Interpretation of Results 466

Firstly, we consider set cardinality tasks. For these tasks, participants exposed to 467

ED-P need to compare circle areas. A possible advantage of ED-P&N is that the 468

participants may choose either to compare circle areas or exploit the numerical 469

annotations. The theory of graphical perception suggests it is difficult to accurately 470

judge the relative values of two or more areas if the circles are not in close proximity 471

to each other or the values encoded are similar [10,14]. Making quantitatively 472

accurate judgements when comparing different circle areas is also cognitively 473

difficult [24]. These perceptual insights support our finding that ED-P performed 474

significantly worse than ED-P&N for set cardinality tasks: we found that the 475

numerical annotations in combination with circle area overcame the limitations 476

inherent in representing set cardinality using area alone. This helps to explain why, for 477

set cardinality tasks using Euler diagrams, RQ1 is answered affirmatively: numerical 478

annotations enhance the use of area proportions. 479

When examining the improved performance in set cardinality tasks for ED-P&N 480

over ED-N we hypothesise that the proportional areas of ED-P&N supported the 481

arithmetical calculations needed to answer the questions. In some cases, the ED-N 482

areas were contradictory to the required answer, so potentially causing confusion or 483

inaccuracy, even though the ED-N group’s training did not reference areas. 484

The question then arises as to why, for set cardinality tasks, ED-N did not 485
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outperform ED-P and, moreover, ED-P was faster than ED-N. First, we suggest that 486

the ED-N group has an increased cognitive load when mentally calculating the 487

cardinality of sets relative to the load associated with comparing circle areas using 488

ED-P. This is likely to explain the speed benefit of ED-P. Confusing situations may 489

also arise when mentally calculating the cardinality of two or more sets: the relative 490

areas of the circles may mismatch the relative sums resulting from the calculations. 491

This could cause doubt over the correctness of the mental arithmetic again causing a 492

time penalty. These insights help to explain why, for set cardinality tasks using Euler 493

diagrams, RQ2 is answered negatively: numerical annotation alone is not more 494

effective. 495

Focusing on intersection cardinality tasks, ED-P performed particularly poorly: it 496

was significantly less accurate than both other treatments. In general, when 497

visualizing quantitative values, area cannot be accurately perceived [23]. This suggests 498

that region area is likely to be a poor graphical property to manipulate when 499

visualizing set-intersection cardinalities. This explains why ED-P is less accurate as it 500

relies on area comparisons: the difficultly of perceiving differences in areas is 501

particularly challenging for this task since the regions are non-uniform shapes. 502

Moreover, for ED-N and ED-P&N, no mental arithmetic is required for this task: the 503

numerical annotations present in the diagrams can be directly compared. EP-N and 504

ED-P&N were not significantly different, suggesting that numerical annotations are 505

the most important indicator of set-intersection cardinality, further reinforcing our 506

positive answer to RQ1 and negative answer to RQ2 when using Euler diagrams. 507

Drawing on all the discussion, this study supports the principle that area is a poor 508

graphical property to manipulate when visualizing quantitative data. However, we 509

found that the limitations of area are not only overcome by the inclusion of numerical 510

annotations but the combination of them is superior to annotation alone. 511

Linear Diagrams: Results 512

A pilot study collected data from 90 people, 30 per group. No problems were identified 513

so we proceeded with the main study. We recruited 300 people, 100 for each group. Of 514

these, 28 were identified as inattentive and, thus, had their data removed before 515

analysis; these inattentive participants were distributed across the groups as follows: 516

12 in the Linear Diagrams - Proportional (LD-P) group, 7 in the Linear Diagrams - 517

Numerical (LD-N) group, and 9 in the Linear Diagrams - Proportional & Numerical 518

(LD-P&N) group. This left data from 272 participants (131 M, 141 F; ages 18–71, 519

mean 36.1), with 88 participants (0 colourblind, 2 did not supply colourblind 520

information) in the LD-P group, 93 participants (1 colourblind) in the LD-N group, 521

and 91 participants (3 colourblind) in the LD-P&N group. 522

LD: Overall Comparison 523

The accuracy rate was 82.1% (LD-P and LD-N: both 81.7%, LD-P&N: 82.8%). The 524

mean time to answer a question was 36.4 seconds (LD-P: 32.3 seconds, LD-N: 37.6 525

seconds, LD-P&N: 39.2 seconds). The statistical results are in tables 9 and 10. In 526

summary, whilst no significant differences existed in accuracy performance, the LD-P 527

group performed significantly faster overall. Therefore, length-proportional linear 528

diagrams are taken to be the most effective overall visualization method, out of the 529

three linear diagram variants. 530
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Table 9. LD: overall accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
LD-P versus ED-N 1.1348 (0.9400, 1.3702) 0.1882 N/A
LD-P&N versus LD-N 1.1018 (0.8897, 1.3644) 0.3741 N/A
LD-P versus LD-P&N 1.0300 (0.8457, 1.2570) 0.7690 N/A

Table 10. LD: set cardinality time analysis
Treatments Ratio CI p-value Sig. Fastest
LD-P versus LD-N 0.8134 (0.7436, 0.8898) < 0.0001 ✓ LD-P
LD-P&N versus LD-N 0.9798 (0.8980, 1.0689) 0.6457 N/A
LD-P versus LD-P&N 0.8302 (0.7636, 0.9026) < 0.0001 ✓ LD-P

Table 11. LD: set cardinality accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
LD-P versus LD-N 1.0264 (0.7906, 1.3332) 0.8454 N/A
LD-P&N versus LD-N 1.2253 (0.9403, 1.5967) 0.1324 N/A
LD-P versus LD-P&N 0.8367 (0.6366, 1.1021) 0.2057 N/A

Table 12. LD: set cardinality time analysis
Treatments Ratio CI p-value Sig. Fastest
LD-P versus LD-N 0.7846 (0.7208, 0.8541) < 0.0001 ✓ LD-P
LD-P&N versus LD-N 0.9971 (0.9151, 1.0864) 0.9462 N/A
LD-P versus LD-P&N 0.7870 (0.7258, 0.8533) < 0.0001 ✓ LD-P

LD: Set Cardinalities 531

The accuracy rate was 91.7% (LD-P: 92.3%, LD-N: 90.5%, LD-P&N: 92.4%). The 532

mean time to answer questions was 29.5 seconds (LD-P: 24.5 seconds, LD-N: 31.1 533

seconds, LD-P&N:32.6 seconds). The statistical results are in tables 11 and 12. In 534

summary, for set cardinality tasks, our results suggest that length-proportional linear 535

diagrams are the most effective visualization method out of the three compared linear 536

diagram variants. 537

LD: Intersection Cardinalities 538

The accuracy rate was 72.5% (LD-P: 71.1%, LD-N: 72.9%, LD-P&N: 73.3%). The 539

mean time to answer questions was 43.4 seconds (LD-P: 40.0 seconds, LD-N: 44.1 540

seconds, LD-P&N: 45.8 seconds). The statistical results are in tables 13 and 14. In 541

summary, our study suggests that length-proportional linear diagrams support the 542

most effective task performance, when considering intersection cardinality tasks. The 543

addition of numerical annotations hindered task performance and numerical 544

annotations alone were not as effective for intersection cardinality tasks. 545

LD: Summary of Results 546

The empirical study revealed that, in terms of accuracy, all three treatments are 547

equally as effective: no significant performance differences were revealed. However, in 548

all cases, length-proportional linear diagrams supported significantly faster task 549

performance than both length-proportional linear diagrams with numerical 550

annotations and linear diagrams with numerical annotations. In conclusion, out of 551

these three treatments and for the tasks considered in our study, we suggest that 552
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Table 13. LD: intersection cardinality accuracy analysis
Treatments Odds CI p-value Sig. Most Accurate
LD-P versus LD-N 1.2039 (0.9450, 1.5339) 0.1332 N/A
LD-P&N versus LD-N 1.0342 (0.7835, 1.3650) 0.8125 N/A
LD-P versus LD-P&N 1.1641 (0.9025, 1.5015) 0.2419 N/A

Table 14. LD: intersection cardinality time analysis
Treatments Ratio CI p-value Sig. Fastest
LD-P versus LD-N 0.8433 (0.7601, 0.9355) 0.0013 ✓ LD-P
LD-P&N versus LD-N 0.9628 (0.8731, 1.0618) 0.4477 N/A
LD-P versus LD-P&N 0.8758 (0.7959, 0.9638) 0.0067 ✓ LD-P

length-proportional linear diagrams should be used to visualize information about sets 553

and their cardinalities. Thus for RQ1 we answer no – numerical annotations do not 554

enhance the use of length-proportional linear diagrams – and for RQ2 we also answer 555

no – the use of numerical annotations alone is not more effective. 556

As no significant accuracy performances existed, we focus our attention on time 557

when considering effect sizes. We estimated that LD-P tasks were, overall, completed 558

in 81.34% of the time of LD-N tasks; this decreased to 78.46% of the time for set 559

cardinality tasks and increased to 84.33% of the time for intersection cardinality tasks. 560

In comparison to LD-P&N, we estimated that LD-P tasks were, overall, completed in 561

83.02% of the time of LD-P&N tasks; this decreased to 78.70% of the time for set 562

cardinality tasks and increased to 87.58% of the time for intersection cardinality tasks. 563

LD: Interpretation of Results 564

When using LD-P, both the set-cardinality and intersection-cardinality tasks required 565

participants to use estimation to compare the length of line segments (i.e. the total 566

lengths of the lines for sets or the lengths of overlaps for intersections). The same 567

strategy could be used by the LD-P&N group whereas the LD-N group had to rely on 568

mental arithmetic for the set cardinality tasks or simply comparing numerical 569

annotations for the intersection cardinality tasks. 570

Our interpretation of the results begins by focusing on intersection-cardinality 571

tasks. Considering LD-P and LD-P&N, we know that length is considered an effective 572

graphical element to manipulate when visualizing quantitative values [23], making the 573

annotations redundant. This explains why there was no accuracy difference in this 574

case. We posit that the numerical annotations were either still used by participants in 575

the LD-P&N group to reinforce their responses or acted as a distracter [13], evidenced 576

by the slower response time. Regarding LD-P and LD-N, the lengths are just as 577

accurately compared as the numerical annotations, but our results imply the cognitive 578

process of identifying and comparing numbers is slower than just comparing lengths. 579

For set-cardinality tasks, the reasons for LD-P’s superior performance are more 580

extreme: for LD-P&N and LD-N, our data suggest that for both these groups, 581

participants exploited mental arithmetic when performing the tasks. This is because 582

there were no significant time differences between these two groups but they were both 583

significantly slower than LD-P. It is clear that the act of addition resulted in a slower 584

performance than the act of comparing the total length of several line segments by 585

estimation as is required in the case of LD-P, but with no benefit in accuracy. 586

LD-P proved to be the most effective visualization technique, supporting the 587

negative answers to both RQ1 and RQ2: numerical annotations do not enhance linear 588

diagrams, with or without proportions, irrespective of the task. Drawing on all the 589
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discussion, this study supports the principle that length is an effective graphical 590

property to manipulate when visualizing quantitative data. Interestingly, we find that 591

the inclusion of numerical annotations impedes task performance in terms of speed 592

without ever impacting upon accuracy. 593

Comparing Euler and Linear Diagrams 594

The first two studies revealed two visualization methods as the most effective: 595

area-proportional Euler diagram with numerical annotations (ED-P&N) and 596

length-proportional linear diagrams without numerical annotations (LD-P). The 597

purpose of this section is to suggest which of these two competing choices most 598

effectively supports performance when focusing on cardinality-oriented tasks. 599

The pilot collected data from 60 people, 30 per group; no problems were identified. 600

For the main study, we recruited 200 people, 100 for each group. Of these, 15 were 601

identified as inattentive and, thus, had their data removed before analysis; these 602

inattentive participants were distributed across the groups as follows: 5 in the 603

ED-P&N group and 10 in the LD-P group. Therefore, the analysis is based on data 604

from 185 participants (85 M, 100 F; ages 19–67, mean 36.7), with 95 participants (3 605

colourblind, 1 did not supply colourblind information) in the ED-P&N group and 90 606

participants (4 colourblind) in the LD-P group. 607

ED-P&N vs LD-P: Overall Comparison 608

The accuracy rate was 82.6% (ED-P&N: 83.7%, LD-P: 81.3%). The local odds ratio 609

GEE-based model for the accuracy data estimated a 95% CI for the odds of providing 610

j or fewer correct answers for ED-P&N versus LD-P. The odds were 0.7815 with a CI 611

of (0.6250, 0.9772) and a p-value of 0.0306. Overall, ED-P&N supported significantly 612

more accurate task performance than LD-N. The mean time to answer questions was 613

33.8 seconds (ED-P&N: 36.2 seconds, LD-P: 31.2 seconds). The 95% CI for the odds 614

of providing answers in less time for ED-P&N than with LD-P was computed using 615

the GEE-based method. The ratio was 1.1596 with a CI of (1.0373, 1.2963) and a 616

p-value of 0.0092. Overall, the LD-P group performed significantly faster than the 617

ED-P&N group. In summary, taking accuracy as the primary performance indicator, 618

our study suggests that, overall, area-proportional Euler diagrams should be used to 619

visualize sets and their cardinalities to perform these task types. 620

ED-P&N vs LD-P: Set Cardinalities 621

The accuracy rate was 91.1% (ED-P&N: 90.8%, LD-P: 91.3%). Using the local odds 622

ratio GEE-based method for the accuracy data we again estimated 95% CI for 623

set-cardinality tasks only, and the associated p-value: the computed odds were 0.9628 624

with a CI of (0.6884, 1.3466) and a p-value of 0.8248. Therefore, there was no 625

significant accuracy performance difference between ED-P&N and LD-P for 626

set-cardinality tasks. The mean time to answer questions was 27.6 seconds (ED-P&N: 627

31.0 seconds, LD-P: 24.1 seconds). Using the GEE-based method for the time datawe 628

estimated the ratio of time taken to provide an answer using ED-P&N compared to 629

LD-P to be 1.2556. The associated 95% CI was (1.1310, 1.3910) with a p-value of 630

< 0.0001. Here, we see that LD-P supported significantly faster time performance 631

than ED-P&N. In summary, our study suggests that LD-N supports significantly 632

better performance than ED-P&N for set-cardinality tasks. 633
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ED-P&N vs LD-P: Intersection Cardinalities 634

The accuracy rate was 74.1% (ED-P&N: 76.6%, LD-P: 71.3%). Using the local odds 635

ratio GEE-based method for the accuracy data we estimated that the odds of 636

providing j or fewer correct answers using ED-P&N compared to LD-P to be 0.6572 637

with a 95% CI of (0.5113, 0.8446) and a p-value of 0.0010. Hence, ED-P&N supported 638

significantly more accurate performance than LD-P for intersection-cardinality tasks. 639

The mean time to answer an intersection-cardinality question was 39.9 seconds 640

(ED-P&N: 41.5 seconds, LD-P: 38.3 seconds). The GEE-based method for the time 641

data estimated the time ratio using ED-P&N compared to LD-P was 1.0710 with a 642

95% CI of (0.9448, 1.2139) and a p-value of 0.2836. Thus, for intersection-cardinality 643

tasks, no significant time performance exists between ED-P&N and LD-P. In 644

summary, based on the accuracy results, ED-P&N best supported task performance 645

for intersection-cardinality tasks. 646

ED-P&N vs LD-P: Summary of Results 647

The final analyses, which compared the most effective Euler and linear variants, have 648

revealed that different treatments bring different benefits. Overall and for 649

intersection-cardinality tasks, we found that ED-P&N supports the most effective task 650

performance, when viewing accuracy as the most important indicator. In terms of 651

effect sizes, the odds of providing j or fewer correct answers overall with LD-P&N was 652

0.7815 times that of ED-P&N, which reduced to 0.6572 for intersection-cardinality 653

tasks; in these two cases, there is a clear accuracy improvement with ED-P&N. This is 654

at the expense of time, where we estimated that ED-P&N tasks were, overall, 655

completed in 115.96% of the time of LD-P tasks (recall, no significant time difference 656

existed for intersection-cardinality tasks). 657

For set-cardinality tasks, we found that LD-P, whilst not significantly more 658

accurate, was significantly faster than ED-P&N. In particular, we estimated that 659

ED-P&N tasks took 125.56% of the time for set-cardinality tasks as compared to LD-P. 660

There is a mixed conclusion from this study for RQ3. If one wishes to perform 661

both set-cardinality and intersection-cardinality tasks, or just the latter, 662

area-proportional Euler diagrams with numerical annotations are the most effective of 663

the two visualization techniques. However, if one only wishes to perform 664

set-cardinality tasks, no significant accuracy differences were revealed but 665

length-proportional linear diagrams will support faster task performance. Given that 666

we view accuracy as more important than time, we tend to suggest using 667

area-proportional Euler diagrams with numerical annotations for performing tasks 668

involving the cardinalities of sets and their intersections. 669

ED-P&N vs LD-P: Interpretation of Results 670

It is known that using length to convey quantitative values is more effective than 671

areas [10,23]. Ignoring the impact of numerical annotations, this would suggest that 672

LD-P would outperform ED-P&N, regardless of task type. However, this is not 673

universally supported by our results since, with respect to accuracy, ED-P&N was 674

superior overall and for intersection-cardinality tasks. This suggests that numerical 675

annotations not only overcome the limitations of using area alone (RQ1 for the ED 676

case) but enhances the use of area so much that it outperforms using length alone, 677

with the exception of set-cardinality tasks. 678

Considering intersection tasks specifically, the LD-P group needed to compare the 679

lengths of overlaps, each of which is a single line segment or part thereof. For 680

ED-P&N, participants could either compare areas, which we know is cognitively 681
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inferior to comparing line lengths, or compare the numerical annotations (without any 682

mental arithmetic required for this task type). Taken with our results, this leads us to 683

posit that participants using ED-P&N relied on comparing the annotations rather 684

than the irregular areas of the regions to yield the significantly better accuracy 685

performance. Interestingly, this did not come at any time penalty compared to LD-P, 686

presumably because no mental arithmetic was required. 687

The set-cardinality tasks paint a different picture: LD-P was significantly faster 688

than ED-P&N whereas there were no significant accuracy differences. Regarding 689

accuracy, our results suggest that, given the difficulty in comparing circle areas [24], 690

the summation of the numerical annotations – where relied on by participants – can 691

be performed just as accurately as comparing line lengths. Unsurprisingly, the reduced 692

cognitive effort of comparing line lengths as opposed to comparing circle areas 693

supported by the summation of numerical annotations, led to faster performance. 694

Tying these insights together, taken with the mean accuracy rates for the tasks, 695

the fact that ED-P&N was more accurate overall appears to follow from the fact that 696

it was significantly more accurate for intersection-cardinality tasks. By contrast, LD-P 697

was significantly faster overall, which appears to follows from the fact that it was 698

faster for the set-cardinality tasks, potentially reinforced by participants’ performance 699

on the intersection cardinality tasks (here, LD-P had a higher accuracy rate, but not 700

significantly so). In conclusion, for RQ3, we found that ED-P&N was most effective 701

overall, since we view accuracy as a more important indicator of performance than 702

time. 703

Threats to Validity 704

Threats to validity are categorized as internal, construct and external [31]. With 705

regard to internal validity, which examines whether confounding factors impact the 706

results, a major consideration in the design of all three studies related to carry-over 707

effect. This threat occurs when the measures arising from a treatment are affected by 708

another treatment. To eliminate this, we used between group designs and participants 709

could only take part once. 710

Construct validity focuses on whether the dependent variables (error rate, false 711

negatives, and time) and independent variables (questions and treatments) are 712

accurate measures to test the hypotheses. Participants could give incorrect responses 713

if the diagrams were drawn in such a way that cognition was hindered (this could also 714

increase time taken). However, one of our goals was to evaluate the output of 715

implemented diagram generation software, so we had little control over certain layout 716

variations, such as the centre points of the circles in the Euler diagram case. We 717

manually positioned the labels and selected an effective colour palette to assign to the 718

sets, thus overriding any software defaults (these graphical properties are readily 719

altered, post-layout). Moreover, the manual choice and assignment of colours reduced 720

variation between treatments. In addition, the set names were chosen so that no two 721

sets in a single diagram started with the same letter, to reduce the potential for 722

misreading. To ensure the rigour of time measurements, so far as is reasonably 723

practicable in crowd-sourced studies, and to reduce the impact of fatigue, the two 724

‘inattentive’ questions encouraged participants to take a break before proceeding to 725

the next question. 726

Lastly, we focus on external validity, examining the extent to which the results 727

generalise. Firstly, only two types of task were considered: those which focused on sets 728

and those which focused on exhaustive set intersections. Other tasks could have been 729

considered, such as those which focus on non-exhaustive set intersections. For 730

instance, referring to Fig 1, are more people interested in Bands than iPhone and 731
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Programming? The set bands contains 4 + 2 = 6 elements whereas there are 8 + 3 = 11 732

elements in iPhone and Programming, so the answer is no. It is important to gain 733

further insight, so see whether performance differences exist for other task types. 734

There is also a limitation with venneuler that impacted on the study design: not 735

all data sets can be appropriately visualized. Sometimes there are regions missing that 736

should be present and other times there are regions present that should be missing. 737

The former case is particularly problematic and arises due to the restriction on using 738

circles; some of the SNAP data sets gave rise to such diagrams and were, thus, 739

discounted from use in our studies – this limitation is of practical relevance. As the 740

number of sets grows, it is more likely that non-empty set intersections are missing 741

from the generated diagrams, causing erroneous deductions to be made. By contrast, 742

this problem does not arise with linear diagrams: it is always possible to accurately 743

visualize relative set cardinalities using length proportions. 744

Conclusion 745

The extensive occurrence of set-based data, and the many attempts to automatically 746

visualize it, are primary drivers for understanding the cognitive impact of different 747

visualization methods on user performance. Mindful of the importance of 748

understanding such choices in real-world settings – that is, by using real-world data 749

and actual implemented visualization systems – this paper addressed three research 750

questions: 751

RQ1: are area- and length-proportional diagrams enhanced by numerical 752

annotations reflecting actual set cardinality? For area-proportional Euler diagrams, 753

our results support the addition of such annotations: accuracy performance was 754

improved, but at a time penalty. This was true for tasks that required set cardinalities 755

to be compared and, without a time penalty, for tasks that required set intersection 756

cardinalities to be compared. For linear diagrams, the results were different: numerical 757

annotations brought no accuracy improvement and also yielded a time penalty, for 758

both task types. We speculate that this difference is due to the cognitive difficulty of 759

comparing areas contrasted with the relative ease of comparing line lengths. Thus a 760

key take away message for designers of visual systems for displaying set cardinality is 761

that the use of proportions to convey size needs to be carefully considered before being 762

adopted. At least for Euler diagrams, proportions alone are not ideal. Numerical 763

annotations appear beneficial when other means of communicating size are relatively 764

ineffective but bring no significant benefit otherwise. The implication is that designers 765

of graphical notations need to be conscious of the fact that adding annotations need 766

not yield performance benefits but can sometimes do so. 767

RQ2: is numerical annotation alone, without proportions, more effective? For both 768

Euler and linear diagrams our studies suggest that the answer is no: overall, numerical 769

annotations alone did not lead to superior task performance. For set-cardinality tasks, 770

numerical annotations alone required participants to perform mental arithmetic. This 771

did not impact on accuracy but brought with it a time penalty in both cases. For 772

intersection tasks, the results are not so clear cut: for Euler diagrams, numerical 773

annotation alone brought improved accuracy. This could be due to the approximate 774

nature of the region areas (they need not be accurate) which is overcome by 775

annotations, or the cognitive difficulty associated with comparing the areas of irregular 776

shapes. A key takeaway message here is that graphical properties whose size can be 777

manipulated to convey cardinality information appear to be generally useful as 778

compared to numerical annotations. 779

RQ3: which technique is most effective overall and, thus, should be used in 780

practice? Our results suggest that Euler diagrams with numerical annotations were 781
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most effective overall and, specifically, for intersection cardinality tasks. For 782

set-cardinality tasks, length proportional diagrams gave rise to faster, but not less 783

accurate performance. As we take accuracy to be more important than time, our 784

studies lead us to suggest that the venneuler method, with numerical annotations, 785

subject to the use of an effective colour palette and careful label placement, should be 786

used in practice for these types of task as long as the data can be represented 787

relatively accurately. 788

Despite our recommendation to use venneuler in practice, users must be aware of 789

the practical limitations of the this method: for data sets of increasing complexity, the 790

method produces diagrams with a variety of inaccurate layout features: regions with 791

inaccurate areas that could lead to erroneous deductions being made (mitigated 792

somewhat by the numerical annotations), non-empty set intersections that are not 793

represented by regions in the diagram, and unwanted regions in the diagram that 794

represent empty set intersections. Linear diagrams do not suffer the same drawbacks 795

as they always accurately visualize the data. Therefore, it is important that future 796

work ascertains the extent to which venneuler is limited in the context of real-world 797

data and whether linear diagrams are still inferior for more complex data sets, where 798

these erroneous features are more likely to arise. 799

Our results for RQ3 also lead us to hypothesize that the venneuler method could 800

be further enhanced by the inclusion of annotations for the set cardinalities alongside 801

their associated label (e.g. if the set Bands has 6 elements, label the associated circle 802

Band (6), or similar). This would reduce the reliance on mental arithmetic to perform 803

set-cardinality tasks and could give further performance benefits over 804

length-proportional linear diagrams. 805
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