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Abstract Internet of Things (IoT) connects billions of

devices in an Internet-like structure. Each device encap-

sulated as a real-world service which provides functionality

and exchanges information with other devices. This large-

scale information exchange results in new interactions

between things and people. Unlike traditional web services,

internet of services is highly dynamic and continuously

changing due to constant degrade, vanish and possibly

reappear of the devices, this opens a new challenge in the

process of resource discovery and selection. In response to

increasing numbers of services in the discovery and

selection process, there is a corresponding increase in

number of service consumers and consequent diversity of

quality of service (QoS) available. Increase in both sides’

leads to the diversity in the demand and supply of services,

which would result in the partial match of the requirements

and offers. This paper proposed an IoT service ranking and

selection algorithm by considering multiple QoS require-

ments and allowing partially matched services to be

counted as a candidate for the selection process. One of the

applications of IoT sensory data that attracts many

researchers is transportation especially emergency and

accident services which is used as a case study in this

paper. Experimental results from real-world services

showed that the proposed method achieved significant

improvement in the accuracy and performance in the

selection process.

Keywords Emergency service selection � Quality of

Service (QoS) � Internet of Things (IoS) � Emergency

service ranking � Partial matching

1 Introduction

1.1 Overview

With the increasing popularity of Internet of Things (IoT)

hardware becoming smaller, cheaper, and more powerful,

however, majority of them have computation and com-

munication capabilities which they use to connect, interact

and exchange information with surrounding environments

[1]. The proliferation of wireless systems such as Blue-

tooth, Radio Frequency Identification (RFID), Wi-Fi,

telephone data services, embedded sensors and actuator

nodes has allowed the IoT to develop from infancy, and it

is on the verge to transform current static internet to a fully

integrated Future Internet [2]. The interaction between all

these devices will lead to a large amount of data which

needs storing, processing, analysing, and presenting in an

efficient, convenient and useable format. In the IoT envi-

ronment, dynamic network query, discovery, selection, and

on-demand provisioning of services are of crucial

importance.

One application area of IoT is the emergency and

accident management services. The number of emergency

cases increases with increasing population and increasing

hazard potential from, e.g. the number of cars on the roads.

According to Health and Social Care Information Centre

(HSCIC) [3], the number of accident and emergency
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attendances in England for 2012–2013 is more than 18.3

million. To provide the most suitable service for emer-

gency cases and achieve better performance, Emergency

Management Services can provide a unified platform to

connect all local and private sector emergency command

centres. Concurrently, wireless sensor networks can be

used for surveillance and precise automated data collection

regarding the emergency case and required services.

There are varieties of attributes which determine the

type of emergency service available for a given case. The

data are generally dynamic in nature such as crew

members, and therefore capabilities, in particular vehicles

on a particular shift. While the majority of the data is

dynamic, the change rate is not synchronized. For

example, some of the data are slowly changing, e.g.

vehicles owned by a county service; some are moderately

changing, e.g. qualifications and capabilities of crew

members and some is rapidly changing e.g. current

location and status/availability. To search for the most

suitable service, consideration needs to be given to the

different service types: fire, police, ambulance, coast

guard, anti-terrorist unit, etc. and then the attributes which

would include vehicle type (cycle, motorcycle, car, transit

vehicle, aircraft), vehicle capability (four wheel drive,

number of seats, number of beds), vehicle equipment

(defibrillator, oxygen, breathing apparatus, underwater

search equipment, access equipment), personnel capability

(fully qualified/part qualified/undertaking training in e.g.

resuscitation, working at altitude, crash investigation),

current service location, current service availability,

owner of service provision (county, borough, private,

etc.).

Different consumers have different QoS requirements.

The diversity in many cases leads to partial matching in

which we cannot find enough services which perfect match

all the criteria. An example could be for a motorway

vehicle accident involving chemical transportation (in-

juries, vehicle instability, hazardous materials, volatile air

supply, chemical clean up, distance to services etc.). In this

example a service was not specified, only a partial attribute

list. The search would need to be automated based on a

reported incident and call handler recording.

For the emergency support service existing technolo-

gies in service-oriented systems may be leveraged to

provide partial solutions. Within service-oriented archi-

tecture (SOA) services are considered as self-contained,

self-describing, modular applications that can be pub-

lished, found, and invoked across the web [4]. SOA

stores all the services in repositories, those services can

be selected and invoked automatically. Therefore, it can

be suggested that it needs more effort to build a more

accurate and efficient service selection method to over-

come the challenges facing by the process of emergency

support service.

In this paper we propose an efficient and dynamic

algorithm for selection of disaster services based on partial

matching of service QoS attributes. Furthermore, an

accurate ranking algorithm is provided by considering the

deviation of QoS values from disaster nominal

requirements.

From the mentioned points, we can identify three crucial

issues as challenges in disaster service selection process:

• Partial matching—where the available emergency ser-

vices do not fully match every QoS requirements. The

degree of partial matching is dependent on the number

of recommended services the user needs. In extreme

circumstances, this allows our algorithm to recommend

the most suitable services instead of returning an empty

list. The selection algorithm should avoid excluding

those partially matched disaster services.

• Scalability—the algorithm should consider scalability

techniques in order to manage large number of

emergency services and diversity in the kind of

requirements.

• QoS requirements—it is an important part of the

selection process, it should be taken into account

precisely; the selection process should reflect those

requirements for different kinds of emergency services.

1.2 Contributions

Based on the listed challenges of partially matching, scal-

ability, and consumer preferences contributions in this

paper can be concluded as;

• A service selection algorithm has been proposed that

provides emergency cases a suitable service which

matches their requirements.

• The algorithm can achieve a high accuracy since it

considers all the available services in the selection

process. In the case of not finding an exact match, the

algorithm considers partial matching of services.

• The system is able to support a large number of

services, and by providing distance correlation weight-

ing mechanism it can support different QoS

requirements.

• Utilizing real-world services, the experimental results

show that the proposed algorithm improves the quality

and performance of the selection process.
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The rest of the paper is structured as follows: Sect. 2

shows and analyses some related work in the field of ser-

vice selection. Section 3 illustrates system architecture and

provides detail of ranking algorithm and recommendation

of services to the consumer. Section 4 provides experi-

mental results of the work. Finally, Sect. 5 presents the

conclusion and draws directions to our future work.

2 Related work

Currently we are witnessing an increase in the number of

available services in the IoT environment; this increase

requires an automatic and scalable approach for discovery

and selection process. There are number of approaches for

discovery and selection of services in IoT environment [1,

5–7]. However, discovery and selection is a challenging

process especially when there is a list of available services

with similar functionality but different QoS parameters

such as execution time, security, and cost in line with the

increasing number of available services. Many approaches

concentrated on discovery or functional matchmaking, for

example the studies [8–11] Concentrated on semantic

description of services in the form of Input/output and

neglected QoS parameters of services; this resulted in a

good performance, while accuracy of the selection process

is inadequate.

A number of approaches for selection and ranking

techniques have been proposed, which take QoS parame-

ters into consideration during discovery and selection as in

the papers of Chao et al. [12], Huang et al. [13], Ngan et al.

[14] and Kiritikos et al. [15]. With the diversity of QoS

parameters, each service consumer wants to select a service

based on QoS preferences. Different consumers have dif-

ferent QoS preferences. For example a consumer for flight

service may be more interested in price and safety, while a

consumer for printing services would be more interested in

colour matching and speed of printing.

In a similar approach [16], average ranking was used

which treats consumer QoS preferences equally. This

negates the priority of different consumers in defining QoS

properties. In a paper by Estrella et al. [17], WSARCH was

used. WSARCH is based on service-oriented architecture

that provides services with verifiable QoS attributes. The

approach monitors service providers and analyses data in

order to provide suitable services to the consumer’s QoS

request. In Kritikos and Plexousakis [18], two non-func-

tional matchmaking techniques were proposed. The first

one relies on exploiting similarity relationships between

offers in order to organize them, while the second one

relies on organizing service offers based on non-functional

metrics.

The mentioned approaches consider QoS parameters to

be precise and be provided by the consumer. But in general

QoS parameters from consumers are imprecise and

expressed in different forms. In addition little or no detail is

given on how to calculate the dependencies between QoS

parameters, which will have influence on the service

ranking and selection. Fuzzy logic has been used to deal

with ambiguous QoS parameters [19–21]. Used fuzzy logic

to deal with QoS parameters, however, the approaches

provide solution to ambiguous and imprecise QoS param-

eters and did not address any dependencies between QoS

parameters.

In [22] a middleware service selection approach was

proposed titled SSM_EC which utilizes outranking

ELECTRE algorithm. QoS from the consumers and pro-

viders are collected, based on that information the con-

cordance index, the discordance index and the credibility

degrees are calculated. With the concordance index relia-

bility of the outranking relation between two candidates

can be presented for a given criterion. For the discordance

index, it is used to determine the correctness of the

outranking relation based on the performance difference

between the two alternatives by using the criterion. But the

credibility degree combines both the concordance and

discordance index to provide the outranking relation for the

whole set of criteria. Finally, ordering of the services

ascending and descending is performed and the rank of the

services is calculated.

Other approaches [23, 24] used simple additive weight

(SAW)-based methods to rank alternatives for cloud ser-

vice adoption. Based on decision-making theories in [23],

the authors analysed problems which might be encoun-

tered by consumers criteria during service selection pro-

cess and identified solution which can be used in the

process. For the proposed service selection framework—

MADMAC (i.e. Multiple Attribute Decision Methodology

for Adoption of Clouds), the author introduced an attri-

bute hierarchy which consisted of six attributes to define

criteria for the decision-making process. With the pro-

posed method, experts’ opinions were also taken into

consideration and used to determine the value of the

criteria. Finally, a SAW-based method was used to cal-

culate the rank of the services.

Zhao et al. [25] proposed SPSE (Service Provider

Search Engine), for service selection and scheduling. The

approach focuses on service selection in SOA and cloud

computing environments with the consideration of users’

personalization and multiple objectives. The proposed
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method includes four basic operations: search, filter, rank,

and update. In the first step, by using indexing technol-

ogy, services with required service attributes and avail-

able service providers are searched. The found services

are then filtered via a pareto optimal-based selection

method to improve scheduling efficiency. In the third

step, services are ranked and each parameter of the ser-

vice is first ranked in light of the values provided by the

service provider. The ranked values multiplied with con-

sumer preferences are then added to arrive at the final

ranking of the service. The update operation automatically

calculates and updates the consumer preferences accord-

ing to the first requirements of consumers and their sub-

sequent choices of services.

Unfortunately many of the existing approaches use a

precise value comparison for QoS parameters. Any

missing QoS parameters of a service lead to exclusion of

that service in the process of ranking and selection. The

suggested ranking techniques should be tolerant with

partial matching of parameters. This tolerance, however,

should be exercised with care, as it might lead to failure

of selection process and consequently fail to satisfy the

needs of the service consumer. In contrast to SPSE- [25]

and SAW-based [23] approaches, we develop an auto-

matic method to autonomously determine the weight

value of QoS attributes by calculating correlation depen-

dencies between different QoS attributes and a new ser-

vice ranking algorithm is introduced by considering

partial matching of services, which will be introduced in

the following section.

3 System model

3.1 QoS parameters

As the number of services increases, it becomes

inevitable that there will be multiple services with similar

functionality performing the same task but with different

quality. For clarification, the ‘task’ describes the process of

providing information and the ‘quality’ describes how the

task is satisfied. Quality, when used in this context, refers

only to the task and not the actual data returned. QoS in

internet of services is usually used to represent non-func-

tional characteristics of services. Different non-functional

QoS attributes of services can be divided into two parts,

one part as the user-independent properties which have

identical values for different users (e.g., price, popularity,

etc.), and the second part as the user-dependent properties

which have the different values for different service users

(e.g., response time, throughput, etc). The QoS values are

affected not only by the service providers, but also by the

environmental factors in services computing (e.g., server

workload, network condition, etc.).

Researchers have proposed numerous different approa-

ches regarding the use of QoS criteria in services, sum-

maries of many of the methods including benefits and

limitations have also been published [26]. It is common in

many of the methods to rely only on QoS attribute values

published by the service providers. Attributes such as

response time and availability may change over time

independently of the published values and the values might

only be accurate when the service is used within the

original network context. All attribute values given by

providers are considered subject to validity and integrity.

In the consumer requirements, each QoS parameter can

be either mandatory or optional. Optional values are also

given a weight factor to determine priority. The tendency

of the parameter as shown in Table 1 indicates whether

high or low values are regarded as more desirable in an

ideal scenario. For example, high availability and

throughput values imply a better service, whereas low

response time and latency values would also generally

indicate better service.

3.2 Architecture

The aim of our proposed system is to provide an efficient

service selection tool in which service consumer is able to

choose the best available service based on consumer

requirements and service QoS attributes. Figure 1 shows

the model within more detail.

3.2.1 Consumer request module

The process begins with the consumer supplied require-

ments, which are different for each consumer and purpose.

These requirements initially define the task and desired

QoS. As examples, for a given output, a project may pri-

oritize service cost above update rate, whereas another

Table 1 Consumer quality of service requirements

Number QoS requirement Preferred value

1 Distance 7–32 km

2 Availability 80–90 %

3 Reliability 70–85 %
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project might consider higher cost to be justified to obtain a

higher update rate.

3.2.2 Request manager module

This module gets the QoS requirements from consumer

requirement module and communicates with service

repository manager to return the list of available offers

which perform consumer required functionality, and

extract QoS parameters of the offered services.

3.2.3 QoS analyser module

This module analyses the offers and collects the QoS

parameters belong to offers. The parameters will be used in

constructing accuracy matrix and calculation of offers

ranks.

3.2.4 Accuracy matrix module

From the list of services and their QoS parameters, a matrix

will be formed. The matrix will be normalized based on

consumer requirements. Within this module, services will

be filtered and candidate for the ranking and selection

process.

3.2.5 Ranker module

Based on the accuracy matrix, each candidate service will

be evaluated and ranked. The detail of the ranking process

is discussed in the Ranking Algorithm.

3.2.6 Implementation module

The list of ranked services will be returned to the con-

sumers, and consumers will select the most desired service

based on their requirements. In case of failure the imple-

mentation, the module will be responsible to find alterna-

tive services for the consumer.

3.3 Ranking and recommendation algorithm

This section explains how our algorithm and accuracy

matrix are applied to services with only partially available

data in order to generate a more complete, preference

ranked service listing. For each selection process, there is a

list of services which have similar functionalities and may

be able to satisfy the task requirement.

Each service can be represented as

Service ¼ s id; s name; p id; s type; I;O;QoSf g

where, s_id is identifier for the service, s_name is any

given name to the service, p_id is the identifier for the

provider of the service, I is a set of service input, O is a set

of service output, and QoS is a list of QoS parameters of

the service.

Consumer request is used to define QoS requirements,

Request ¼ request id; consumer id; i data; s type; reqf g

where request_id is an identifier for the consumer request,

consumer_id is an identifier of the consumer, i_data is a set

of data submitted to the provider, s_type defines the type of

the service the consumer requires, and req defines list of

QoS requirements from the consumer.

Let

• QR be a set of consumer QoS requirements, QR = {r1,

r2, r3 … rn} where n 2 N.

• S be a set of potential services with similar function-

ality, S = {s1, s2, s3… sm}, m 2 N.

• Each S candidate services has QS property matrices

QS = {QS1, QS2, QS3 … QSi}, where QSi = {qi1, qi2, qi3
… qij}, i,j 2 N. QSi represents quality matrices for

service i.

During the process of service selection, its unlikely

consumer QoS requirements QR has same number of

matrices as services QoS parameters QSi. QR is taken as the

baseline and quality matrices are arranged as follows,

1. Any consumer QR which is lacking in service QSi will

be assigned with 0.

2. Removing any QSi which is not presented in QR.

If n consumer QoS requirements QR has been identified,

and m potential services can satisfy consumer functional

requirements, the m-by-n requirements matrix is con-

structed, R, as shown in Fig. 2. Each column in the matrix

represents consumer QoS requirements QR, and each row

represents a potential service for the selection process.

Request Manager

QoS Analyser

Accuracy Matrix

Ranker
Service 
Provider

Consumer 
Request

Repository 
Manager

Device 
embedded 
Services

Fig. 1 Service selection model
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With the consideration of the original consumer QoS

requirements, all services that cannot satisfy mandatory

requirements are removed from selection process as shown

in Algorithm 1. The remaining candidate services will be

considered in the matchmaking process.

The calculation of the accuracy matrix, A, is dependent

on the tendency of QoS parameters. Tendency explains

how the numeric value of a service changes for the service

to be perceived as better. The tendency for the majority of

values in our example is expected to be high, only response

time and latency are expected to be low.

Using the consumer specified QoS range and the service

derived QoS offered, each element of the accuracy matrix,

A, is calculated using the case-dependant formulae (1)–(6).

For values with high tendency:

Rij

Rl

when Rij\Rl ð1Þ

Rij � Rl

Rh � Rl

þ a ð2Þ

Rij

Rmax

þ b when Rij [Rh ð3Þ

For values with low tendency:

Rh

Rij

when Rij [Rh ð4Þ

Rh � Rij

Rh � Rl

þ a when Rl �Rij �Rh ð5Þ

Rmin

Rij

þ b when Rij\Rl ð6Þ

where Rij is the value of ith QoS property of jth service, Rl

is the lower limit of consumer requirement for an attribute.

Rh is the higher limit of consumer requirement for an

attribute. Rmax is the maximum value of a QoS property

offered by the services under consideration. Rmin is the

minimum value of a QoS property offered by the services

under consideration. a and b 2 {1, 2, 3 …} where a\ b.

Algorithm: Partial Service Ranking and Recommendation based on QoS 

properties

Input: CR (Consumer Requirements), SL (Service List)

For all service s ∈ {1, 2, 3 … m} in SL do

If (s satis�ies mandatory consumer requirements)

Add s to CL (Candidate List)

// Candidate List CL is a list of all relevant services

end if

end for

For all service s in CL

For all QoS parameter q

Find Minimum and Maximum value of q from SL

//Min and Max will be used in formation of accuracy matrix.

end for

end for

For all service s in CL

Calculate normalised value of QoS property

// normalized values will be calculated using equation 1-6 

end for

For all service s in in CL

Calculate total score for each service s

1
*

n

s is s
j

R A W
=

= ∑

end for

Based on the total score Rank all services order services in CL

Return CL

Figure 3 shows three different ranges of interest: pre-

ferred, tight and loose. Figure 3a shows increasing of

values for high tendency QoS properties, while Fig. 3b

shows decreasing of values for low tendency QoS

properties.

11 12 1

21 22 2

31 32 3

1 2

n

n

n

m m mn

r r r
r r r
r r r

r r r

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

K

L

L

M M M

L

S1

S2

S3

. 

Sm

QR1 QR2 …   QRnFig. 2 Requirements matrix, R

loose                                  preferable range                       tight

Rmin Rl R

(a)

(b)

h Rmax

tight                                  preferable range                                                    loose

Rmin Rl Rh Rmax

Fig. 3 QoS property measurement a high tendency, b low tendency
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The Eqs. (1)–(6) generate results which are normalized in

the range 0–1. The constants a and b are introduced in order to

discriminate between the three ranges. For results in the loose

range, the value remains between 0 and 1. For results in the

preferable range, a is added to the equation and the results are

in the range a to (a ? 1). For results in the tight range, b is

added and the results are in the range b to (b ? 1).

For consistency, we have normalized values of QoS

properties to be in a small range using Eqs. (1)–(6), in which

all the values in the accuracy matrix lies in the range of (0,

b ? 1). In the selection process, there are thousands of

services, the main purpose of the algorithm is to arrange all

the QoS values for services based on minimum and maxi-

mum values, and arrange the values between (0, b ? 1).

On the other hand, every value in the algorithm is

considered precisely based on the range. Considering a

value for availability; lets assume preferable range is

(80–90 %). Any service having availability value less than

80 % will be counted as loose, those between 80 and 90 %

will be counted as preferable range and a will be added,

finally any value larger than 90 % will be counted as tight

and b will be added. Since 0\a\ b, it guarantees that the

higher range always has higher value than the other two

ranges.

The results of the calculations are used to populate the

accuracy matrix, A. The matrix shows how accurately each

advertised service matches the overall consumer require-

ment without yet considering the desired preference of

each attribute.

3.4 Weight calculation

Collecting weight values from service consumers and calcu-

lating weight values using arithmetic and geometric methods

might not be an efficient or understandable choice. They are

not the most suitable choice for complex selection process

with tens or hundreds of consumer requirements with higher

weights. Dependency between parties is always considered

important. QoS properties have different values and there are

dependencies between these parties. Values in QoS properties

might affect each other, which will directly affect perfor-

mance and accuracy of the service selection process. The

paper considers these dependencies to determine weighting

value of QoS properties using distance correlation between

QoS properties. Distance correlation can detect different types

of dependencies, the value will be one when the two QoS

properties are totally dependent on each other, and zero when

the two QoS properties are statistically independent.

The distance correlation for a sample (X,Y) = {(Xk, Yk):

k = 1 … p} from the pairwise distribution of random

vectors X and Y defined as follows:

ajk ¼ jjXj � Xkjj; bjk ¼ jjYj � Ykjj j; k ¼ 1; 2; . . .; p

It is worth to note that kp denotes the Euclidean norm,

similarly,

Aj;k :¼ aj;k � �aj: � �a:k � �a::; Bj;k :¼ bj;k � �bj: � �b:k � �b::;

where �aj: is the mean of jth row, and �a:k represents kth

column mean, and �a:: represents grand mean of the distance

matrix of the X, it is the same for the b values.

The distance covariance of the two distributions X and Y

is computed as follows:

dCov2
p X; Yð Þ :¼ 1

p2

Xp

j;k¼1

Aj;k � Bj;k ð7Þ

Finally, with the equation below, the distance correla-

tion between the two distributions X and Y is calculated as

following:

dCorðX; YÞ ¼ dCovðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCovðXÞ � dCovðYÞ

p ð8Þ

With computing pairwise distance correlations for dif-

ferent QoS attributes, it produces the following dependency

matrix, the overall dependency of QoSi with respect to

other quality attributes is determined as follows:

depðQoSiÞ ¼
1

p

Xp

j¼1

dCorij ð9Þ

The weight of each quality attributes is then derived

from the dependency value as follows:

WðQoSiÞ ¼
depðQoSiÞPm
i¼1 depðQoSiÞ

ð10Þ

After the A matrix is fully populated, the rank of each

service is calculated by summation of the QoS attribute and

weight product for that service using (11).

Ri ¼
Xn

j¼1

Aij �Wj ð11Þ

where Ri represents rank of service i, Aij represents the

accuracy value of jth QoS property of service i, and Wj

represents weight of jth QoS property.

Example We are taking a real-world example and going

through it step by step to clearly demonstrate the service

ranking algorithm.

The plan is to use emergency support service. For the

sake of simplicity, we assume there are three QoS

requirements as in Table 1.

Assume the list of available emergency support services

available are as below in Table 2,

By using Eqs. (1)–(6) we can calculate QoS property

values for each service as shown in Table 3. According to

the emergency case preferred values, S1 does not comply
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with all QoS requirements, S1 value for availability is 42 %

which is lower than the preferred range, and this is true for

both S2 and S5. Since none of the QoS requirements is

mandatory, they can be considered in the selection process.

Based on the results from Table 3, scores of each ser-

vice can be calculated by using Eq. (11). It is considered

the corresponding weight value is given for the request, and

the weight value for the three QoS requirements are

assumed to be {5, 3, 2}, respectively.

From the Table 4, it can be understood that services

returned to the consumer are ranked as S3[ S1[ S5[
S4[ S2. Service S3 is having a distance of 10.3 km with

availability of 86 % and reliability of 90 %. While S1 has

value of 4.93 km for distance which is better than distance

value of S3, but S1 availability value is 42 % and reliability

is 73 %. Based on our approach by considering the overall

criteria, S3 is the best suited to the consumer request.

4 Experimental results and evaluations

4.1 Experiment setup

In this section, experimental results are shown for the

algorithm. For the experiment, a large-scale dataset,

WS_DREAM, has been used. The WS-DREAM dataset

three [27] is a large-scale dataset which has more than 4500

real-world services. Each service was invoked by 142

service consumers in 64 different time intervals. Each

service has different QoS properties like response time and

throughput. Based on the QoS properties, service ratings

are calculated by using multi-attribute utility function [28].

The experiments were carried out on a HP ProBook

laptop Core i5 2.50 GHz, with 4 GB of RAM on Windows

7 Enterprise. In the evaluation, a set of experiments were

conducted. Experiments are to evaluate the algorithm

based on accuracy and performance.

4.2 Performance measurement

In the proposed algorithm, the rank of services was calcu-

lated based on QoS properties. To measure the performance,

the algorithm was compared to the algorithm in [24] which

used the probabilistic flooding-based method, by combining

simple additive weighting (SAW) technique and Skyline

filtering. In addition, it was compared to SPSE algorithm,

which uses the pareto optimal-based solution method [25].

In the experiment, a real-world services were used.

The discounted cumulative gain (DCG) method was

used, which is a common method for information retrieval

and quality ranking [29]. The method calculates the quality

of services depending on their rank in the list; the gain is

accumulated at the upper ranks and discounted in the lower

ranks. Services with better quality should be shown earlier

in the ranking method.

The equation is as follows,

DCGp ¼
Xp

i¼1

2Qi � 1

logð1 þ RiÞ
ð12Þ

where Qi is the QoS for the ith service, and Ri is the rank of

ith service. The higher the DCGP value, the higher the QoS

Table 2 List of available

services
No. Service name Distance (km) Availability (%) Reliability (%)

S1 Emergency support 4.93 42 73

S2 Plural emergency 64.5 86 85

S3 Fast emergency 10.3 85 90

S4 Global emergency 28.5 90 70

S5 County emergency 50 97 73

Table 3 Values of QoS for

each candidate service
No. Service name Distance (km) Availability (%) Reliability (%)

S1 Emergency support 3 0.525 1.2

S2 Plural emergency 0.496 1.6 2

S3 Fast emergency 1.868 1.5 3

S4 Global emergency 1.14 2 1

S5 County emergency 0.64 3 1.2

Table 4 Rank of each service

Services Final score

S1 18.975

S2 11.28

S3 19.84

S4 13.7

S5 14.6
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parameters of the Top-P service. The experiment compared

the ranking value of the top 50 services and is summarized

in increments of 10.

Table 5 shows the results of DCG for top-50 services

returned for the selection process. From the results, we can

see the quality matrices of accuracy matrix top-P services

are higher and in many cases, nearly double to SPSE and

SAW results. For example in the analysis category, the top

5 service for accuracy matrix algorithm is 7.569, while for

SPSE is 4.646, and for SAW is 3.073. It is clear that the top

5 services are the most important services to the consumer,

since most of the times consumer selects services from the

top 5 candidates. By examining the returned results, it can

be understood that the proposed algorithm returns higher

quality services to the consumers and provides more sat-

isfactory results to their requirements and this is due to the

high accuracy of our approach in which each QoS property

plays important role in the ranking and recommendation

process.

4.3 Precision and recall

The precision and recall are standard measurements that

have been used in information retrieval for measuring the

accuracy of a discovery or recommendation method or a

discovery engine. The precision is defined as the ratio of

the number of returned correct services to the total number

of all returned services [30]. By contrast, recall is defined

as the ratio of the number of returned correct serviced to

the number of all correct services as shown in Eq. (12).

Prec ¼ Rtrel

Rel
; Rcal ¼ Rtrel

Rt
ð13Þ

where Prec represents precision, Rtrel represents a list of

returned relevant services, Rel represents relevant services,

and Rt represents returned services.

To assess the method, we categorized the services into

different categories based on the functionalities they

provide. From one category, we randomly selected a set of

60 services with different QoS properties, of which 40

services were relevant to the query. We conducted 10

different tests and each of them repeated 100 times. In the

first test no service had unmatched properties. In the second

test, at least one of the properties was partial matched to the

service query. The numbers of partial match properties

were increased through remaining tests.

In Fig. 4, it can be depicted that the precision is affected

by the number of returned services and it decreases as the

number of returned services increase. On the other side, the

recall increases by increasing number of returned services

as shown in Fig. 5. From Figs. 4 and 5, it is apparent that

the accuracy matrix algorithm improved both precision and

recall, the percentage of relevant services in the accuracy

matrix is higher than SPSE and SAW. The improvement is

due to the inclusion of partially matched services in the

Table 5 DCG ranking for accuracy matrix, SPSE, and SAW

Top P Acc. matrix SPSE SAW

5 7.569091655 4.646180572 3.0730903

10 10.38841135 6.38846729 3.9442336

15 12.71343601 8.372440175 4.9362201

20 14.89674501 10.34730971 5.9236549

25 16.85575592 12.17659888 6.8382994

30 18.62296682 14.09352166 8.1967608

35 20.40988547 15.89264909 10.496325

40 21.8047093 17.3287577 11.864379

45 23.0047093 19.6287577 13.314379

50 24.8047093 22.1287577 16.514379 0.2
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accuracy matrix algorithm. This effect is very clearly

observed when the recall for SPSE and SAW do not reach

as high as our algorithm; it is because of the limitation of

service matchmaking in both algorithms by exclusion of

partially matched services. This confirms that our approach

deals more accurately with the service query and returns

relevant service to the consumer even in the case where the

candidate services only partially match the consumer

requirements.

4.4 CPU time

In this part of the experiment, we evaluate the time con-

sumption of our experiments with increasing number of

services which will reflect the computational cost and

scalability of the evaluated methods. A real-world dataset

were used, which had up to 4500 services. The consumed

time was measured while increasing the number of

services.

From results in Fig. 6, the consumed time increases

linearly with an increasing number of services, and the

consumed time of our method is comparable with SPSE.

But our method achieved a better trade-off in term of

performance and overhead. For example, with 1000 ser-

vices, our algorithm returned 56 services in 12.2 s, while

SPSE returned 36 services in 10.6 s. The figure also shows

the direct proportionality between execution time and

services considered. The slope of this linearity strongly

implies that our approach is rather scalable with increasing

number of services.

5 Conclusion and future work

In this work, we proposed an efficient algorithm to service

selection in the IoT environment. By considering all QoS

properties, the algorithm includes consumer preference and

allows the consumer to select the best available service for

their task. The design of an accurate ranking algorithm for

services based on matching consumer requirements iden-

tifies those services which are candidates for use in the

selection process.

When an initial list of services is returned which only

partially matches with optional consumer requirements,

our algorithm includes them in the decision and recom-

mendation process. This holds true even in the case where

the optional attributes barely match. This action allows

more services to be included and accurately ranked,

providing the best choice to the consumer. Experimental

results show that in extreme circumstances, our algorithm

recommends services when other methods would return

an empty list. This feature can be used and applied to

other service applications such as service discovery and

composition.

The solution is generic and can deal with multiple QoS

properties and large numbers of services. The algorithm is

robust, scalable and efficient. Experimental results show a

significant improvement in the number of relevant services

recommended by our algorithm when compared to the

SPSE algorithm. The scalability was tested by increasing

number of services and QoS parameters. There was no

significant performance degradation when reducing large

datasets with multiple QoS attributes. Our experiments

rendered results that strongly support its use as a tool for

service selection and recommendation processing.

In future work, we will focus on some other aspects of

service selection process. For example, concentrating on

further refinery of our selection and recommendation

algorithm results by the inclusion of consumer opinion,

which will help in the prediction of the user QoS require-

ments and assigned weight value.
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