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Abstract: 16 

The performance of ground-source heat pumps (GSHP), often expressed as Power drawn and/or 17 

the COP, depends on several operating parameters. Manufacturers usually publish such data in 18 

tables for certain discrete values of the operating fluid temperatures and flow rates conditions. In 19 

actual applications, such as in dynamic simulations of heat pump system integrated to buildings, 20 

there is a need to determine equipment performance under operating conditions other than those 21 

listed. This paper describes a simplified methodology for predicting the performance of GSHPs 22 

using multiple regression (MR) models as applicable to manufacturer data. We find that fitting 23 

second-order MR models with eight statistically significant x-variables from 36 observations 24 

appropriately selected in the manufacturer catalogue can predict the system global behavior with 25 

good accuracy. For the three studied GSHPs, the external prediction error of the MR models 26 

identified following the methodology are 0.2%, 0.9% and 1% for heating capacity (HC) 27 

predictions and 2.6%, 4.9% and 3.2% for COP predictions. No correlation is found between 28 

residuals and the response, thus validating the models. The operational approach appears to be a 29 

reliable tool to be integrated in dynamic simulation codes, as the method is applicable to any 30 

GSHP catalogue data. 31 

 32 
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Nomenclature 4 

Acronyms 5 

COP  coefficient of performance 6 

CV   coefficient of variation 7 

GSHP  ground-source heat pump 8 

HC   heating capacity 9 

HE   heat extracted 10 

MR  multiple regression 11 

P   compressor power input 12 

RMSE  root mean square of error 13 
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Symbols 15 

E   regression coefficient 16 

H   residual 17 

P   mean 18 

t    temperature (ºC) 19 

v    flow rate (L/s) 20 

x    independent variable 21 

y    dependent variable 22 

 23 

Subscripts 24 

i    inlet condition 25 

j    number of response 26 

l   load 27 

n    number of predictor variables 28 

o   outlet condition 29 

s   source 30 

 31 
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1. Introduction 1 

In order to reduce the fossil fuel consumption, ground-source heat pumps (GSHP) are becoming 2 

a widely employed technology for heating and cooling buildings and for domestic hot water 3 

production [1, 2, 3, 4, 5]. GSHP attract worldwide interest due to their environmental protection, 4 

energy efficiency and from being a renewable energy form [6, 7, 8, 9]. 5 

In dynamic simulation applications, such as in the modeling of heat pump systems integrated to 6 

buildings, it is required to evaluate the heat pump performance under particular operating 7 

conditions. However, it becomes difficult to estimate the correct performance value at operating 8 

conditions which do not exactly correspond to those listed in the manufacturer’s data tables [10, 9 

11].  10 

In the present study we introduce a methodology based on multiple regression (MR) modeling 11 

which can be used to predict GSHP performance with good accuracy at particular design 12 

conditions. The parameters in the models are the operating secondary fluids (source and load) inlet 13 

temperatures and flow rates, the heat pump heating capacity (HC) and the coefficient of 14 

performance (COP). The analysis presented is based on three manufacturer performance tables of 15 

three commercially available GSHPs in heating mode. 16 

The operational method for the identification of MR models can be integrated in dynamic 17 

simulation tools such as EnergyPlus and TRNSYS in order to predict the performance of GSHP at 18 

particular operating conditions. The same approach can be employed for the development of MR 19 

models for the performance simulation of any GSHP system in heating or cooling mode using the 20 

corresponding capacity table from the manufacturer catalogue. Our hypothesis is that the proposed 21 

method can help in the selection of the most appropriate GSHP evaluating with precision its 22 

performance, and thus increase the potential of GSHP implementation in buildings. 23 

The paper is organized as follows. Next section introduces the methodology employed in the 24 

study based on step forward multiple regression modeling. The regression analysis, including a 25 

description of the manufacturer specification tables, a general overview of regression models, the 26 

statistical evaluation of the identified MR models, and the proposed approach validation is 27 

presented in section 3. Section 4 presents a discussion about the findings and section 5 is some 28 

concluding remarks. 29 

 30 
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2. Methodology 1 

The purpose of the study is to introduce a general methodology based on MR modeling able to 2 

determine the heat capacity and the coefficient of performance of GSHPs in heating mode from 3 

different working fluid temperatures and flow rates. Essentially, an optimal set of operating 4 

parameters from the manufacturer data tables would be to find relationships between the response 5 

variables (HC and COP) versus four operating parameters: the source flow rate (vs), the load flow 6 

rate (vl), inlet load temperature at the heat pump condenser (til) and inlet source temperature at the 7 

heat pump evaporator (tis). The compressor power input (P) and heat extracted (HE) can then be 8 

deduced from HC and COP values. In the study, t is temperature, v is flow rate, subscripts i, l and 9 

s are short for the heat pump inlet conditions, load and source, respectively. Figure 1 shows the 10 

schematic diagram of the GSHP system for space heating. 11 

Figure 1 about here 12 

 13 

The method consists in selecting a sample of observations from the specification table, which 14 

can be used for the development of MR models. The performance data of the remaining 15 

observations in the manufacturer table are then compared to the predictions calculated from the 16 

identified models. The statistical analysis further evaluates the models’ robustness and prediction 17 

accuracy, determining the models’ goodness-of-fit and the coefficients of variation (CV) of the 18 

prediction residual errors. 19 

An important aspect of the selection of the observation sample is that it needs to provide a fair 20 

representation of the entire input space. In this concern, the observation sample is selected in a 21 

way that there are an equal number of low-range, mid-range and high-range values for each of the 22 

variables, and the combination selection is appropriately spread out so that the whole input space 23 

is represented. Each combination of particular operating conditions corresponds to an observed 24 

value of HC and COP from the manufacturer catalogue. Since there are four independent variables 25 

(vs, vl, til and tis), a complete factorial design as used in statistical experiments would require 81 26 

observations. For the purpose of the study, we propose three incomplete factorial designs using 27 

Latin squares, i.e. three samples containing 12, 24 and 36 observations respectively, in order to 28 

evaluate the influence of the sample size on model accuracy.  29 

The approach involves using multiple linear regression of the first and second order to estimate 30 

the heat pump HC and COP values in heating mode under specified conditions of the four 31 

operating parameters (tis, til, vs and vl,). As seen in Figure 2 to 5 below, although some of the 32 

relationships are close to linear, others are distinctly non-linear, and thus the higher order terms are 33 

introduced to allow linear regression on non-linear relationships. 34 
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3. Regressions analysis of manufacturer’s performance data 1 

3.1. Description of manufacturer’s data tables 2 

The principle of GSHP technology is to make use of the low-grade geothermal energy of the 3 

earth at a relatively lower depth through ground heat exchangers. A GSHP system will 4 

extract/discharge thermal energy for all of its applications [12, 13, 14, 15]. In order to make it 5 

easier for engineers when it comes to GSHP selection and sizing for a particular building, GSHP 6 

manufacturers offer performance data tables from their catalogue. In heating mode, such 7 

specification tables give data  of compressor power input (P), heat extracted (HE), heat capacity 8 

(HC) and COP as a function of the inlet and outlet load temperatures (til and tol) of the distribution 9 

circuit fluid entering and leaving the heat pump condenser, the inlet and outlet source temperatures 10 

(tis and tls) of the earth connection fluid entering and leaving the heat pump evaporator, and the 11 

load and source flow rates (vl and vs), in the distribution and ground loops respectively. The 12 

specification tables of the cooling mode are arranged identically, giving observations of cooling 13 

capacity (CC), heat rejected (HR) and cooling energy efficiency (EER) as a function of 14 

temperature and flow rate parameters. Unlike the capacity tables in heating mode, the distribution 15 

and the ground circuits are respectively the source and the load side in cooling mode. Table 1 16 

provides the technical features of the three commercially available GSHPs considered in the study 17 

(called HP1, HP2 and HP3). 18 

The working operations in heating mode of the studied GSHPs range between the interval limits 19 

shown in Table 2. However there are some conditions for which operation is not recommended by 20 

the manufacturer. These extreme conditions for the three studied equipments are as following: 21 

• HP1: When tis varies between -1.1 and 10ºC, vs cannot vary between 0.95 and 1.45L/s; 22 

When tis varies between 21.1 and 32.2ºC, til cannot vary between 26.7 and 48.9ºC.  23 

• HP2: When tis varies between 21.1 and 32.2ºC, til cannot vary between 48.9 and 60.0ºC.  24 

• HP3: When tis varies between -3.9 and -1.1ºC, vs cannot vary between 0.25 and 0.44L/s; 25 

When tis varies between 21.1 and 32.2ºC, til cannot vary between 26.7 and 48.9ºC.  26 

Therefore, the total number of observations in the data tables in heating mode is 114 for HP1, 171 27 

for HP2 and 138 observations for HP3. 28 

 29 

Table 1 and Table 2 about here 30 

 31 

Manufacturer performance data are produced on the basis of the ISO Standard 13256-2 [16] for 32 

the testing of water-to-water GSHP units. The prescribed conditions to produce the ISO data 33 
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include testing at steady flow conditions for a set temperature of source and sink and the measured 1 

inputs consist of compressor energy and the circulation pump requirements to overcome the 2 

frictional resistance of the evaporator and condenser. Therefore, manufacturer’s COP/EER values 3 

are generally higher than those obtained in real installations, when taking into account the full 4 

energy input for circulation pumps and system fans plus all associated controls. Kim et al [17] 5 

compared the manufacturer’s data based on the ISO standard to the actual GSHP performance, and 6 

propose a verification method allowing the identification and correction of eventual gaps.  7 

In practice, the performance of a GSHP system also is affected by installation conditions and 8 

depends on the continual changes in the surroundings environment, i.e. variable source and sink 9 

temperature and load. Indeed, heat source and sink temperatures have a direct impact on the 10 

pressure (and thus the temperature) at which the evaporation and condensation occur in the 11 

refrigeration cycle. Any change in evaporating or condensing temperature affects the density of the 12 

refrigerant, which alters the compression ratio between the low-pressure and high-pressure sides, 13 

and thus the performance of the compressor.  14 

The type of refrigerant fluid flowing in the cycle also influences the performance of a heat 15 

pump. Fluid density, viscosity, thermal conductivity and specific heat are all factors affecting the 16 

compression efficiency and heat transfer capacities through the evaporator and condenser. Heat 17 

pump manufacturers usually make the decision for the choice of refrigerant based on system cost 18 

and application range requirements, considering fluid boiling and condensing temperatures. 19 

In Figure 2 and 3 the heating capacity data of HP1 are reported into charts, as a function of the 20 

inlet source and load temperatures for the three different source and load flow rates. In Figure 4 21 

and 5, the corresponding COP data given by the manufacturer for HP1 is shown2.  At higher inlet 22 

source temperature and/or source flow rate, Figure 2 shows that higher thermal output can be 23 

reached, because higher thermal energy is extracted. Higher inlet source temperature and/or source 24 

flow rate raises the evaporating pressure and temperature, and as the compression ratio remains the 25 

same, the condensing pressure and temperature also increases, resulting in higher thermal energy 26 

output. As the heating capacity is linear with inlet load temperature, Figure 3 shows the 27 

degradation of compressor efficiency at higher temperatures, because it is getting near the heat 28 

pump operational limits (condensing temperature about 55 to 60ºC). Figure 4 shows that the heat 29 

pump COP increases when the inlet temperature and/or the source flow rate increases. The 30 

interpretation of Figure 4 is similar to the one of Figure 2. However, the slopes of the curves in 31 

Figure 4 seem to decrease at higher temperature, showing the degradation of the compressor 32 

efficiency at higher refrigerant temperatures (higher compressor inputs required at higher 33 

                                                           
2 Charts for the two other studied GSHPs (not reported here) indicate similar trends. 
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temperature in order to reach the same compression ratio). The COP value always increases when 1 

the temperature difference between the heat source and the heat sink decreases. This is also shown 2 

in Figure 5 where the heat pump efficiency lowers when the inlet load temperature increases 3 

and/or the inlet source temperature decreases. 4 

 5 

Figure 2, Figure 3, Figure 4 and Figure 5 about here 6 

 7 

3.2. Model identification 8 

A linear MR model may be represented by the following Equation 1. Details of such method 9 

are given in standard textbooks on regressions such as in Draper et al. [18], Neter et al. [19], James 10 

et al. [20] or Johnson et al. [21]. 11 

yj = β0 + β1 xj1 + β2 xj2 + βn xjn + ε j                (1) 12 

Where yj is the j response to be predicted using the (predictor) variables, xj1 to xjn given as input. n 13 

is the number of predictor variables and β the regression coefficients. ε is the j residual or error 14 

between the predicted response and the observation. 15 

Regression models assume that a straight-line relationship exists between each independent 16 

variable (xj1, xj2, ... and xjn), and the dependent variable (y). The βn values are coefficients 17 

corresponding to each x-value, and β0 is a constant value. The least squares principle was used to 18 

determine the regression coefficients. The method determines the coefficients that produce the 19 

minimum sum of squared residual values, i.e. the best fitted regression line to the manufacturer’s 20 

data.  21 

The output shows the results of fitting a linear MR model to describe the relationship between a 22 

dependent variable HC or COP and 14 independent variables, which are as follows: tis, vs, til,  vl, 23 

tis
2, vs

2, til
2,  vl

2, tis∙vs, tis∙til,  tis∙vl, vs∙til, vs∙vl, and til∙vl. The models have been run with a stepwise 24 

forward multiple regression and so only the statistically significant model terms have been 25 

retained, i.e. those which indicate a significance level superior than 95% (p-value inferior to 0.05). 26 

This method allows a more robust model to be identified than including all variables as is done in 27 

standard regressions. 28 

 29 

3.3. Statistical evaluation for HP1 30 

The observations used for model fitting are data which can include some error, due to 31 

measurement inaccuracies, instrument calibration failure, test conditions such as observations 32 
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taken before the operation has reached steady-state, etc. Although the intent of regression 1 

modeling is to capture only the structural behavior of the system, depending on the veracity and 2 

quantity of observations, a certain amount of these errors may be captured in the model. This is 3 

called model over-fitting.  4 

The coefficient of variation (CV) or relative variability aims to evaluate the relative sizes of the 5 

model squared residuals and outcome values from the regression model. The lower is the CV; the 6 

smaller are the residuals relative to the predicted value. For the purpose of the study, we introduce 7 

two types of CV value in the statistical analysis, first the CV found during model fitting (also 8 

called internal prediction error or internal CV), applying to the observations used for model 9 

identification, and secondly the CV when applying the identified model to the remaining of the 10 

observations of the manufacturer table (called external prediction error or external CV). The 11 

comparison between internal and external CVs allows detecting the cases of model over-fitting. 12 

The internal CV is a measure of model goodness-of-fit over the observation sample, while the 13 

external CV is a measure of how well the model is likely to predict future system behavior. The 14 

internal CV is expected to be smaller than the external CV, because the set of data points used for 15 

model identification is an incomplete sample of the full dataset, and so they are likely to contain 16 

fewer errors than in the remaining of observations in the table.  17 

As suggested in statistics books [18, 21], in order to reduce the probability of model over-18 

fitting, the number of data points used to fit a MR model has to be at least three times the number 19 

of independent x-variables in the model, otherwise one variable starts fitting noise. Therefore, the 20 

maximum number of x-parameters which are used to fit a model from a set of 12, 24 and 36 21 

observations is respectively four, eight and twelve.  22 

The test results on the statistical evaluation of MR models for the studied HP1 are listed in 23 

Table 3 for HC1 and COP1 predictions. Subscript 1 is the notation referring to HP1. These results 24 

reveal the R-square values adjusted for degrees of freedom of the identified models, the internal 25 

CV, the external CV, as well as an indication about the pattern formed by external residuals when 26 

plotted against the predicted responses for the remaining of the data set, where C, SE and N stand 27 

for clear, some kind of evidence and no residual specific pattern respectively. The simple R-square 28 

statistic is not reported because its value is generally biased. The magnitude of the bias in simple 29 

R-square values depends on how many observations are available to fit the model and how many 30 

variables are relative to the sample size. It is more appropriate to use the adjusted R-square value 31 

(coefficient of determination) to compare models with different numbers of independent x-32 

variables, as it takes into account the size of the data set and the number of predictor variables [20, 33 

21]. For the models with the highest number of x-variables, the value of adjusted R-square is seen 34 

to approach unity. Results suggest that models with a lower number of x-variables are less robust, 35 
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although they still indicate excellent goodness-of-fit within the observation sample. For instance, 1 

the evaluation of the models for HC1 and COP1 predictions as fitted from the 24 observations with 2 

8 significant x-variables shows that the adjusted R-Squared statistic explains 99.998% and 99.88% 3 

of the variability in HC1 and in COP1 respectively, while the evaluation of the models identified 4 

with only three variables indicates 97.85% and 97.18% respectively. 5 

The input parameters for the modeled results were varied accordingly within the different 6 

independent x-variable combinations for the observations used for fitting the models, as well as for 7 

the remaining observations in the manufacturer table, and for each case the predicted values of HC 8 

and COP were found. The coefficient of variation (CV) of the residual errors was calculated using 9 

the following Equation (2): 10 

       
 

                       (2) 11 

Where RMSE is the root mean square of error, also called the standard error of the estimate and P 12 

is the mean value of the observed data.  13 

 14 

Table 3 about here 15 

 16 

The internal CV values (Table 3) suggest of a good model fit for most of the HC1 models, the 17 

COP1 models describing a poorer fit in terms of relative closeness of the predictions to the actual 18 

values from the observation sample. Cases of model over-fitting are detected for second-order 19 

COP1 models with three and four x-variables identified from the 12 observation sample, where the 20 

external CV is much larger than the internal CV. First-order COP1 models, first-order HC1 model 21 

with one x-variable identified from the 12 observation set, as well as some second-order HC1 and 22 

COP1 models identified with a low number of x-variables, are all models for which the internal 23 

CV is found larger than the external CV, thus indicating of model over-fitting. For all the 24 

remaining models developed for HP1, the internal CV values are slightly smaller than external 25 

CVs, demonstrating that the observation sample used for model identification is a fair 26 

representation of the entire data table. In these cases, the identified models have successfully 27 

captured the structural behavior of the HP1 system. 28 

In order to validate our approach, we assume that the external CV value should be inferior to a 29 

5% threshold limit, which is an acceptable level in statistical analysis. For the COP1 prediction, 30 

this level of prediction accuracy is only achieved when there are a minimum of five independent 31 

variables in the model. 32 

Another condition required to validate the method is that no specific pattern should be formed 33 

by external residuals when plotted against the predicted responses. Indeed, no specific pattern in 34 
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such a plot indicates that residual errors have constant variance and that they are independent, i.e. 1 

there is no correlation with regression coefficients or the response. Although the majority of the 2 

MR models identified are found robust and relatively accurate in predicting the remaining data 3 

listed in the manufacturer’s catalogue, the only tests where model residuals are found to have 4 

constant variance is for second-order models with eight significant x-variables identified from the 5 

36 observation sample. A clear pattern formed by residuals was found in most of the other model 6 

tests, particularly for models with fewer parameters and identified from a lower number of 7 

observations, i.e. when the degree of freedom is low.  8 

 9 

3.4. Modeling approach validation 10 

The statistical analysis shows that a validated approach is to develop second-order MR models 11 

containing eight statistically significant x-variables from 36 observations. Using this operational 12 

approach, the fitted models fulfilled the two above mentioned conditions, i.e. CV inferior to 5% 13 

and no specific pattern formed by residuals, for both HC1 and COP1 predictions. Following this 14 

particular approach, Table 4 and 5 assemble the coefficients for each of the model independent 15 

variables along with their standard errors and their p-values for HC1 and COP1 models 16 

respectively. The MR models (shown in Table 4 and 5) yield predictions within the range of the 17 

HP1 working operations. Temperatures are in degrees Celsius, flow rates in Liters per second, the 18 

heat capacity in kilowatt and the COP is dimensionless. 19 

Each of the coefficients indicates the influence of each predictor x-variable on the GSHP 20 

working data. For instance, the coefficient of the load inlet temperature (til) is lower for the HC1 21 

model, indicating that the benefit of increasing til will have smaller impact on the HC1 compared to 22 

COP1. On the other hand, increasing the load flow rate (vl) will have higher impact on the HC1 23 

compared to COP1. The standard errors of each of the coefficients are the margins for the model 24 

output to remain within a 95% confidence interval of the predicted values. They are all seen to be 25 

minor compared to the coefficients. 26 

Additionally, the p-values for each of the coefficients represent the probability of each of the 27 

predictor variables being insignificant for the model result. For most of the coefficients in the two 28 

models, the p-values are lower than 0.0001, i.e. it is certain that the corresponding variables are 29 

important for the predicted HC or COP. Two exceptions are the vs
2 variable in the HC1 model and 30 

the vs til variable in the COP1 model which have p-values of 0.0007 and 0.0046 respectively. 31 

However, since these p-values remain quite low, the x-variables can be considered to be significant 32 

at the 95% level. 33 
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Table 4 and Table 5 about here 1 

 2 

The mapping method for the identification of MR models was found valid for the prediction of 3 

the HP1 catalogue data. Therefore, the same operational approach is used to develop MR models 4 

for HP2 and HP3 data. Subscripts 2 and 3 are the response y-variables notations as representing 5 

the studied HP2 and HP3 respectively.  6 

The results on the statistical evaluation of MR models for HP1, HP2 and HP3 are listed in Table 7 

6. These results indicate the R-square values adjusted for degrees of freedom, the F-significance 8 

resulting from the analysis of variance table, the external CV, as well as the external the root mean 9 

square of error (RMSE) when applying the model to the remaining of the observations. The 10 

adjusted R-square value for all the models is seen to approach unity, except for the COP2 model, 11 

where the adjusted R-Squared statistic explains only 97.888% of the variability in COP2. Overall, 12 

such high values indicate that the independent x-variables used in the models can jointly predict 13 

the variation in the outcome with a high accuracy. Moreover, all six models are statistically strong 14 

judging from the F-significances. 15 

 16 

Table 6 about here 17 

 18 

The external CV values suggest of a good model fit for each of the six models (i.e. CV inferior 19 

to the 5% threshold value), the COP models describing a slightly poorer fit in terms of relative 20 

closeness of the predictions to the actual values. The RMSE shows the standard deviation of the 21 

residuals. The standard error for all the models is relatively small compared to the ranges of HC 22 

and COP. This is illustrated in Figure 6, where the predicted values for the HC1 and COP1 model 23 

are plotted against the observed. It is evident that the predicted heat capacities are very close to the 24 

observed values. The prediction is seen to be slightly poorer with the COP1 model, confirming 25 

graphically the difference of external CV values between these two models.  26 

 27 

Figure 6 about here 28 

 29 

The CV values in Table 6 reveal that the size of the residual relative to the predicted value is 30 

bigger for COP models compared to HC models. However, when considering the range value of 31 

HC compared to COP, the size of residuals is not so different in term of absolute value. For 32 

instance, the standard error is smaller for the COP2 model than it is for the HC2 model, although 33 

the range value of HC2 is higher. This remark is illustrated in Figure 7, 8 and 9, which depict the 34 

external residuals plotted against the predicted y-variables. In the six charts, no specific pattern 35 
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formed by the external residuals can be observed, thus verifying that residuals are independent and 1 

have constant variance.  2 

There are only three data points which are outliers (greater than ±2) in the model for HC1, and 3 

two outliers in the model for COP1. For these data points, the model prediction output is poorer. 4 

There are seven and five outliers respectively in the models for HC2 and COP2, while there are one 5 

and three outliers in the model for HC3 and COP3. However, the fit is overall excellent for each of 6 

the six models. The maximum difference of obtained predicted values as compared with the 7 

observed manufacturer data are less than 1% and 7% for COP1 and HC1 predictions, 3% and 16% 8 

for HC2 and COP2, and 3% and 12% for HC3 and COP3 respectively. These errors concern only a 9 

few individual points, particularly these in the lower range values.  10 

 11 

Figure 7, Figure 8 and Figure 9 about here 12 

 13 

4. Discussion 14 

The statistical evaluation of the models identified for HP1 has demonstrated the influence of the 15 

number of significant x-variables and their order level on prediction accuracy. The meaning of the 16 

observation sample size on model robustness and prediction error was also investigated. It was 17 

found that the global GSHP behavior cannot be predicted accurately when fitting MR models from 18 

the 12 observations sample. When the degree of freedom is low, the models tend to capture the 19 

errors present in the observation data, thus leading to model over-fitting. The 24 observations are 20 

sufficient to achieve acceptable levels of accuracy for HC, even with a low number of x-variables, 21 

as well as for the COP with second-order models including at least five significant x-parameters.  22 

Model robustness increased and prediction error dropped for models fitted from the 36 observation 23 

set as compared to these identified from 24 observations. However, the only models which were 24 

statistically validated are second-order models identified from the 36 observations and containing 25 

eight x-variables, for which the residuals checking revealed no specific pattern formation.  26 

Following the validated model identification method, the six models introduced in the study are 27 

found excellent with these of COP being slightly poorer. Such results indicate that the 28 

manufacturer data is certainly data generated from a controlled experiment and is not data 29 

collected from the field. The high R-squares, such as those over 99.9% are also an indication of 30 

model over-fitting. In that sense, our guess is that the observation data are actually based on a 31 

regression model developed by the heat pump manufacturers, and that the model used for HC data 32 

is in fact a second-order one. The proprietary regression models used by the manufacturer to 33 
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generate the performance data tables were closely reproduced, particularly with the models for 1 

HC.  2 

The operational approach consisting in the identification of MR models containing eight 3 

significant independent variables from a set of 36 observations can be employed to predict the 4 

performance of GSHPs with quite good precision. The proposed mathematical models appear to be 5 

reliable tools to be implemented into dynamic building-plant energy simulation codes or into 6 

building energy certification tools. Indeed, the proposed method can be applied to any GSHP, to 7 

determine HC and COP in heating mode or CC and EER in cooling mode using their 8 

corresponding performance data tables.  9 

Using multiple regression calculation demonstrates that it is possible to rapidly create equation 10 

linking different variables, such a model being representative of the GSHP global behavior with 11 

acceptable accuracy and applicable over the entire solution space. However, the method consisting 12 

in developing the inverse model can be time consuming for field engineers. Moreover, there is no 13 

particular need to determine the performance under specific operating conditions, when it comes to 14 

heat-pump selection for a particular building, the equipment operating range and capacity being 15 

generally sufficient. This is why suppliers provide performance data listed in tables instead of 16 

offering MR models in their catalogue. It is more practical for engineers to utilize these tables 17 

rather than mathematical models for their professional use.  18 

 19 

5. Conclusion 20 

GSHP equipment manufacturers often provide performance data in the form of tables which are 21 

not convenient for higher level system modeling and simulation purposes. In this paper a 22 

simplified method for the performance prediction of GSHPs based on MR modeling from such 23 

data is presented. The mathematical models estimate the heat capacity and COP at particular 24 

operating secondary fluids temperature and flow rate conditions based on manufacturer data tables. 25 

The proposed operational procedure, which consists in the identification of second-order MR 26 

models containing eight statistically significant x-variables from a sample of 36 observations taken 27 

from the manufacturer table, was successfully validated in the statistical analysis. Predicted 28 

performance results are in good agreement with the remaining of observed data, the external 29 

prediction errors reaching 0.21%, 0.95% and 1.02% for HC predictions, and 2.62%, 4.91% and 30 

3.21% for COP predictions for HP1, HP2 and HP3 respectively. The external residual errors as 31 

plotted against the model responses showed no correlation with the regression coefficients or the 32 

prediction response, thus validating the models. The operational approach appears to be a reliable 33 
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tool to be incorporated in dynamic simulation codes developed by engineers, as the method is 1 

applicable to any GSHP catalogue data. 2 

The study shows that global GSHP behavior can be predicted when fitting MR models from a 3 

limited number of observation data. Nevertheless, the limitation to a smaller data set for model 4 

identification may remain questionable when the full data set is available in the manufacturer 5 

catalogue. Results indicate that manufacturers do not need to provide tables with such a large 6 

amount of data points to specify the complete performance map of GSHP. On the other hand, the 7 

experimental design evaluations provide insights into how experiments in actual operating GSHP 8 

systems should be conducted. 9 

Results from the proposed parsimonious MR models point out that manufacturer data may be 10 

generated from proprietary regression models. Since no goodness-of-fit of the latter is provided, 11 

some caution must be exercised in the use of such data and corresponding models identified. 12 

 13 

Acknowledgements 14 

This work was supported in Chile by the projects CONICYT/FONDAP/15110019 (SERC-15 

CHILE) and by the UAI Earth Research Center. 16 

 17 

References 18 

[1]  Kwon O, Bae K, Park C, “Cooling characteristics of ground source heat pump with heat exchange 

methods,” Renewable Energy, vol. 71, pp. 651-657, 2014.  

[2]  Girard A, Gago EJ, Muneer T, Caceres G, “Higher ground source heat pump COP in a residential 

building through the use of solar thermal collectors,” Renewable Energy, vol. 80, pp. 26-39, 2015.  

[3]  Gupta R, Irving R, “Development and application of a domestic heat pump model for estimating CO2 

emissions reductions from domestic space heating, hot water and potential cooling demand in the 

future,” Energy and Buildings, vol. 60, pp. 60-67, 2013.  

[4]  Benli H, “Energetic performance analysis of a ground-source heat pump system with latent heat 

storage for a greenhouse heating,” Energy Conversion and Management , vol. 52, pp. 581-589, 2011.  

[5]  Feng Y, Chen X, Xu XF, “Current status and potentials of enhanced geothermal system in China: a 

review,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 214-223, 2014.  

[6]  Florides G, Soteris K, “Ground heat exchangers – a review of systems, models and applications,” 

Renewable Energy, vol. 32, no. 15, pp. 2461-2478, 2007.  

[7]  Zhai XQ, Qu M, Yu X, Yang Y, Wang RZ, “A review for the applications and integrated approaches 



15 

 

of GCHP systems,” Renewable and Sustainable Energy Review, vol. 15, pp. 3133-3140, 2011.  

[8]  Spitler JD, “Ground-source heat pump system research – past, present and future.,” HVAC&R 

Research, vol. 11, pp. 165-167, 2005.  

[9]  Karytsas S, Theodoropoulou H, “Public awareness and willingness to adopt ground source heat pumps 

for domestic heating and cooling,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 49-57, 

2014.  

[10]  Zhu N, Hu P, Xu L, Jiang L, Lei F, “Recent research and applications of ground source heat pump 

integrated with thermal energy storage systems: a review,” Applied Thermal Engineering, vol. 71, no. 

1, pp. 142-151, 2014.  

[11]  Zhang X, Huang G, Jiang Y, Zhang T, “Ground heat exchanger design subject to uncertainties arising 

from thermal response test parameter estimation,” Energy and Buildings, vol. 102, pp. 442-452, 2015.  

[12]  Safa A, Fung A, Kumar R, “Comparative thermal performances of a ground source heat pump and a 

variable capacity air source heat pump systems for sustainable houses,” Applied Thermal Engineering , 

vol. 81, pp. 279-287, 2015.  

[13]  Sliwa T, Kotyza J, “Application of existing wells as ground heat source for heat pumps in Poland,” 

Applied Energy, vol. 74, pp. 3-8, 2003.  

[14]  Wang X, Zheng M, Zhang W, Zhang S, Yang T, “Experimental study of a solar assisted ground-

coupled heat pump system with solar seasonal thermal storage in severe cold areas,” Energy and 

Builduings, vol. 42, pp. 2104-2110, 2010.  

[15]  Omer AM, “Ground-source heat pumps systems and applications,” Renewable and Sustainable Energy 

Reviews, vol. 12, pp. 344-371, 2008.  

[16]  ANSI/ARI/ASHRAE/ISO 13256-2, “Water-source heat pumps — Testing and Rating for Performance 

— Part 2: Water-to-Water and Brine-to-Water Heat Pumps,” ANSI/AHRI/ASHRAE/ISO, 1998. 

[17]  Kim J, Jang JC, Kang EC, Chang KC, Lee EJ, Kim Y, “Verification study of a GSHP system 

Manufacturer data based modeling,” Renewable Energy, vol. 54, pp. 55-62, 2013.  

[18]  Draper NR, Smith H, Applied Regression Analysis, Third Edition, New York: Wiley-Interscience, 

1998.  

[19]  Neter J, Kutner MH, Nachtsheim CJ, Wasserman W, Applied Linear Statistical Models, Fourth 

Edition, Chicago: Mc Graw-Hill/Irwin, 1996.  

[20]  James G, Witten D, Hastie T, Tibshirani R, An Introduction to Statistical Learning with Applications 

in R, New York: Springer, 2013.  

[21]  Johnson RA, Wichern DW, Applied multivariate statistical analysis, Upper Saddle River, New Jersey: 

Pearson; ISBN 9780135143506, 2007.  

 1 

      2 



1 

 

Table 1: Technical features of the considered GSHP 

 HP1 HP2 HP3 
Compressor (number; type) 2; scroll 1; scroll 
Evaporator Plate heat exchanger Coaxial tube-in-tube 
Condenser Plate heat exchanger Coaxial tube-in-tube 
Refrigerant fluid R410a R134a R410a 
Ground loop fluid 15% propylene glycol antifreeze solution 
Distribution loop fluid 15% propylene glycol antifreeze solution 
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Table 2: Parameter variation in data tables in heating mode and operating limits  

 HP1 HP2 HP3 
tis (ºC) -1.1, 10, 21.1, 32.2 -1.1, 10, 21.1, 32.2 -3.9, -1.1, 10, 21.1, 32.2 
til (ºC) 15.6, 26.7, 37.8, 48.9 15.6, 26.7, 37.8, 48.9, 60.0 15.6, 26.7, 37.8, 48.9 

vs (L/s) 0.95, 1.45, 1.89 0.95, 1.26, 1.58 0.25, 0.35, 0.44 

vl (L/s) 0.95, 1.45, 1.89 0.95, 1.26, 1.58 0.25, 0.35, 0.44 
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Table 3:  Test results of MR models for HP1 

Observation 
sample 

Model 
order 

Number 
of x-

variables 

HC1 COP1 

Adj. R2 Int. 
CV 

Ext. 
CV 

Res.  
pattern Adj. R2 Int. 

CV 
Ext. 
CV 

Res.  
pattern 

12 
observations 

First 
2 0.9730 3.8% 4.9% C 0.9206 12.5% 10.9% C 

1 0.8793 8.1% 7.4% C 0.8547 17.0% 19.2% C 

Second 

4 0.9987 0.8% 1.1% C 0.9886 4.7% 16.8% C 

3 0.9931 1.9% 2.6% C 0.9657 8.2% 17.7% C 

2 0.9851 2.8% 3.4% C 0.8758 15.7% 17.3% SE 

24 
observations 

First 
4 0.9809 2.7% 2.9% C 0.9446 9.5% 8.1% C 

3 0.9755 3.1% 3.8% SE 0.9352 10.3% 9.2% C 

2 0.9570 4.1% 4.7% C 0.9228 11.3% 10.7% C 

Second 

8 0.99998 0.1% 0.2% C 0.9988 1.4% 2.7% SE 

7 0.99996 0.1% 0.2% C 0.9984 1.6% 3.0% SE 

6 0.9995 0.4% 0.7% C 0.9974 2.3% 3.8% C 

5 0.9990 0.6% 0.7% C 0.9940 3.1% 4.1% C 

4 0.9997 0.3% 0.4% C 0.9869 4.6% 6.0% C 

3 0.9785 2.9% 3.0% C 0.9718 6.8% 7.7% C 

2 0.9730 3.2% 3.2% C 0.8793 14.1% 12.7% C 

36 
observations 

First 
4 0.9798 2.8% 3.0% C 0.9426 9.6% 7.9% SE 

3 0.9759 3.0% 4.2% C 0.9263 10.9% 8.4% SE 

2 0.9583 4.0% 5.4% C 0.9047 12.4% 9.5% C 

Second 

8 0.99996 0.1% 0.2% N 0.9984 1.6% 2.6% N 

7 0.9999 0.2% 0.2% SE 0.9979 1.8% 2.8% SE 

6 0.9998 0.3% 0.3% C 0.9942 3.1% 3.6% C 

5 0.9998 0.3% 0.3% C 0.9930 3.4% 3.5% C 

4 0.9995 0.4% 0.6% C 0.9802 5.6% 5.4% C 

3 0.9844 2.4% 2.1% C 0.9705 7.5% 8.0% C 

2 0.9765 3.0% 3.6% C 0.9314 10.1% 9.1% C 

1 0.9601 3.9% 4.0% C 0.7485 20.1% 19.7% C 
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Table 4: Model coefficients and statistics (Model for HC1) 

Parameter Coefficient Std. Error P-value 
Constant 25.325 0.1701 7E-41 

vs
2 0.1176 0.0309 0.0007 

tis vs 0.232 0.002 4E-38 

tis vl 0.0457 0.002 2E-19 

vs vl 0.6882 0.0691 2E-10 

til vl -0.0212 0.0021 9E-11 

tis 0.0543 0.004 1E-13 

til -0.0313 0.0029 3E-11 

vl 1.4856 0.1722 3E-09 
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Table 5: Model coefficients and statistics (Model for COP1) 

Parameter Coefficient Std. Error P-value 
Constant 7.8871 0.2042 4E-25 

til
2 0.0025 0.0001 3E-16 

tis vs 0.0432 0.0024 2E-16 

tis til -0.0009 0.0001 2E-08 

tis vl 0.0153 0.0026 3E-06 

vs til -0.007 0.0022 0.0046 

til vl -0.018 0.0032 7E-06 

til -0.222 0.0118 5E-17 

vl 1.0687 0.1215 2E-09 
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Table 6: Summary of statistical evaluation of MR models for HP1, HP2, and HP3 

Model Adjusted R2 F-significance External RMSE External CV 

HC1 99.996% 4E-43 0.0710 0.21% 
COP1 99.843% 3E-38 0.1290 2.62% 
HC2 99.960% 3E-45 0.2817 0.95% 
COP2 97.880% 5E-22 0.2367 4.91% 
HC3 99.942% 4E-43 0.0842 1.02% 
COP3  99.868% 3E-38 0.1564 3.21% 
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Figure 1: Schematic diagram of GSHP in heating mode 
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Figure 2: Heat capacity against inlet source temperature for til = 15.6ºC and vl = 1.45L/s 
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Figure 3: Heat capacity against inlet load temperature for vs = 1.45L/s and vl = 1.45L/s 
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Figure 4: COP against inlet source temperature for til = 15.6ºC and vl = 1.45L/s 
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Figure 5: COP against inlet load temperature for vs = 1.45L/s and vl = 1.45L/s 
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Figure 6: Plot of HC1 (kW) and COP1 observed versus predicted 
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Figure 7: Plot of residuals versus predicted HC1 (kW) and COP1 
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Figure 8: Plot of residuals versus predicted HC2 (kW) and COP2 
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Figure 9: Plot of residuals versus predicted HC3 (kW) and COP3 
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