
Integrating Real-Time Fluid Simulation with a Voxel
Engine

Johanne Zadick1 • Benjamin Kenwright1 •

Kenny Mitchell1

Received: 22 September 2015 / Accepted: 29 June 2016 / Published online: 29 July 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a method of adding sophisticated physical simulations to

voxel-based games such as the hugely popular Minecraft (2012. http://minecraft.

gamepedia.com/Liquid), thus providing a dynamic and realistic fluid simulation in a

voxel environment. An assessment of existing simulators and voxel engines is

investigated, and an efficient real-time method to integrate optimized fluid simu-

lations with voxel-based rasterisation on graphics hardware is demonstrated. We

compare graphics processing unit (GPU) computer processing for a well-known

incompressible fluid advection method with recent results on geometry shader-

based voxel rendering. The rendering of visibility-culled voxels from fluid simu-

lation results stored intermediately in CPU memory is compared with a novel,

entirely GPU-resident algorithm.

Keywords Voxels � Fluid � Geometry shader � Real-time � Video games � Volume �
Graphical processing unit (GPU)

1 Introduction

Voxel-based games such as Minecraft (2012) have become increasingly popular.

However, the fluid in such games is usually simulated and rendered in simplistic

fashion, and is seldom characterised by realistic dynamics. Fluids such as water are

programmed in several different ways in voxel engines. The most commonly used

method in voxel-based engines is cellular automaton, which consists of prescribed

operations on a regular grid of cells. Each cell can adopt a finite number of states,

and rules define the behavior of the fluid. The characteristics of these rules provide

& Kenny Mitchell

k.mitchell2@napier.ac.uk

1 Edinburgh Napier University, Room C48, Merchiston Campus, 10 Colinton Road,

Edinburgh EH10 5DT, UK

123

Comput Game J (2016) 5:55–64

DOI 10.1007/s40869-016-0020-5

http://minecraft.gamepedia.com/Liquid
http://minecraft.gamepedia.com/Liquid
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-016-0020-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-016-0020-5&domain=pdf

the major differences between such game simulations, but these are often very

simple and not based on mathematical models, and consequently, the fluid does not

appear to react realistically in many cases. For example, in Minecraft, water can be

observed to spread in a single direction without any obstacles (Fig. 1).

By contrast, a dynamic fluid simulation fully rendered with voxels can provide an

interesting source of engagement in video games and movies. The Lego Movie

(�Warner Bros.) (Fig. 2) is a good example, with many compelling voxel-based

ocean scenes.

However, dynamic fluid simulations are expensive, as a large amount of

volumetric information must be updated for every frame, ideally in real-time.

Furthermore, voxel engines are rather resource-intensive, due to the number of

voxels that need to be displayed for an entire scene. Thus, the concepts of dynamic

fluid and voxel engine are hard to merge. This challenge is somewhat alleviated by

recent results in both GPU-accelerated fluid simulation (Crane et al. 2007 and

Harris 2004) and voxel-based rendering, but to our knowledge, no work has been

reported on the particular hurdles of integrating these efficiently.

We therefore propose an efficient integration of GPU voxel-based rendering

(Miller et al. 2014) with a well-known fluid simulation advection, based on the

Navier–Stokes differential equations (Stam 2003).

2 Related Work

2.1 Voxel-Based Rasterisation

There exist several online tutorials regarding the development of voxel engines, and

the main challenges that arise when attempting efficient rendering. A major

consideration is the platform technology upon which these are built, which is

conducive to GPU fluid simulation. For example, an open source OpenGL fluid

Fig. 1 Unrealistic behavior of water in Minecraft

56 Comput Game J (2016) 5:55–64

123

simulation is not compatible with a Direct3D voxel-based rendering engine, and

cannot be employed without considerable reworking of the code.

Barrett’s (2015) Obbg engine was developed to illustrate the use of a highly

efficient voxel render library, and it illustrates large Minecraft-styled voxel

landscapes that are implemented with OpenGL. With an OpenGL voxel engine,

CUDA, OpenCL, and OpenGL fluid simulations are valid candidates for integration.

However, many of the optimizations applied in this framework are applied for large

static open world rendering, and have proved unsuitable for our dynamic voxel

rendering requirements, in which each voxel may change from frame to frame.

The Poxels rendering framework (Miller et al. 2014), implemented in Direct3D,

focuses on rendering sparse 3D voxel environments with data amplification using

Geometry Shaders on GPU. This approach reduces the CPU-to-GPU bandwidth

costs of updating the volumetric grid data, and makes it more suitable for dynamic

voxel-based environment rendering (Fig. 3). Miller et al. (2014) further justify the

Fig. 2 Sample image of a voxel-based ocean in The Lego Movie �Warner Bros

Fig. 3 Examples of the Poxels (Miller et al. 2014) sparse voxel-based rendering engine, which employs
GPU data amplification suitable for efficient dynamic voxel environments

Comput Game J (2016) 5:55–64 57

123

GPU rasterisation approach (also used inMinecraft 2012), as opposed to ray-casting

oriented approaches.

2.2 Real-Time Fluid Simulation

The Liquid Voxels project (Cabello 2015) developed using Unity 3D allows more

realistic fluid behaviors in a voxel-based engine. It uses C# CPU-resident 3D arrays

to store fluid information, and a cellular automaton method to define the behavior.

However, in our method, since we are working on GPU, we apply 3D textures to

store the fluid data.

Stam’s (2003) description of fast fluid simulation for games covers the simulation

principles and details highly efficient GPU computation methods with which to

apply them in 2D. Karoly’s (2012) work details an open source real time fluid

implementation and control method which is derived from Stam’s work and which

performs well in OpenGL; however, this was incompatible with our choice of the

Direct3D voxel rendering method. Vlietinck (2009) uses a similar system, which

has been expanded to support 3-dimensional fluid simulations. This work is

demonstrated with a fire and smoke simulation (Fig. 4), but equally, we can show

the method being applied to water. Since Vlietinck made use of DirectCompute for

GPU compute advection, pressure acceleration and correction processing, this very

much suits compatibility with our choice of a Direct3D voxel rendering engine.

In order to provide a brief background and the context of our Navier–Stokes

processing framework, we define a number of processing stages:

• the advection of the velocity field of the fluid;

• the acceleration caused by the pressure in the fluid;

• the diffusion of the momentum resulting from the resistance of the fluid; and,

• external forces of static or dynamic bodies interacting with the fluid.

To apply the Navier–Stokes equations, it is necessary to perform three

computations to update the velocity at each time step: advection, diffusion, and

force application. We can then compute the pressure and subtract the pressure

gradient. We want our simulation to realize those calculations on the GPU.

Fig. 4 Vlietinck’s simulation (Vlietinck 2009)

58 Comput Game J (2016) 5:55–64

123

3 Method and Implementation

In the GPU compute fluid simulation process, several textures are associated with

the compute shaders that can be either be the input or the output. Textures are

defined for the speed, pressure and divergence. In detail, there are three velocity

textures and two pressure textures, which deal with the temporary values that must

be stored during each stage of the process. Those textures are composed of single

precision float 4 types. The final result of the five GPU compute stages is output in a

3D speed grid texture filled with single precision floats. This texture provides the 3D

source fluid field for transfer into the voxel-based rendering engine.

In the Poxels voxel engine (Miller et al. 2014), it is on the CPU that we must

define which voxels of the grid are active (to be displayed). Therefore, to retrieve

the result in the initial approach, we read the speed grid texture back on the CPU.

Since a texture passed to the polygonal voxel-generating Geometry Shader cannot

be read directly from the CPU, we create a staging texture in which we transmit the

data from the resulting speed grid texture into the GPU memory. This is performed

by mapping the staging texture in CPU memory, and copying the result from our 3D

float array. It is important that the size used for the fluid simulation is the same as

the size of the 3D voxel staging texture, and that the CPU memory buffer has an

appropriate memory address alignment. Once the values in the float array are on the

CPU, we can process them in the voxel engine. We include a color argument to the

voxel that highlights the spread of the fluid concentration through the simulation.

For the purpose of a locally contained fluid simulation within the limits of in-core

GPU memory constraints, we define the concept of a volumetric in the class,

‘Chunk’. In this CPU approach, we implement a method in the Chunk class, which

links between the speed map array that we have retrieved from the fluid simulation,

and the input voxel array to be displayed. This approach activates a voxel if the

corresponding value in the dense 3D array is not zero. To deal with the

Fig. 5 Flow of memory data between the GPU and the CPU

Comput Game J (2016) 5:55–64 59

123

concentration, we produce a color ramp by applying a function that takes a float

between 0 and 1 and returns a RGB color that is then passed to the geometry shader

of the Poxel simulation. In a game environment, either textures or an adapted

colours range would give a more realistic result. The Poxel-rendering approach

(Miller et al. 2014) follows 2 main steps: (1) dispatch to geometry shader stream

amplification with stream-out to the cached vertex buffer; followed by (2) regular

triangle geometry rasterisation with the generated vertex buffer.

The flow of memory data between the GPU and the CPU for each frame is

illustrated in Fig. 5.

4 Results

4.1 System Specifications

To generate the results shown in this paper, we ran the simulation on an Asus

N751JX-T4180H. It has a GeForce GTX 950M video card with 2.0 GB of dedicated

video RAM. The CPU is an Intel(R) Core(TM) i7-4720HQ with 2.6 GHz Dual-Core

64-bit. The OS is Microsoft Windows 10 Famille, 64-bit, with 8 GB of RAM.

4.2 Performances

In our CPU approach, the time used to copy the data back to the CPU is more

significant than the time needed for the all other steps, and so this issue had to be

addressed (Fig. 6; Tables 1, 2).

For the previous screenshots (Fig. 7) we inject fluid every 400 frames at the top

left corner of the chunk and then apply a downward force. A full loop, from the

Fig. 6 Graph of frame time (ms) of combined voxel fluid simulation and rendering showing linear
scaling and the number of voxels

60 Comput Game J (2016) 5:55–64

123

appearance of the source to the disappearance of the last voxel last 180 frames. This

duration will change based on the chunk size, the source position and the force

applied.

Table 1 FPS and frame time on

NVIDIA GeForce GTX950M

with different simulation chunk

sizes

Chunk size Blocks FPS Frame time (ms)

32 9 32 9 32 32,768 401 2.494

64 9 64 9 64 262,144 100 10.000

96 9 96 9 96 884,736 20 50.000

128 9 128 9 128 2,097,152 14 71.429

Table 2 Major steps—

execution times on

64 9 64 9 64 chunk

Step Execution time (ns)

Advect 5986

Backward advect and pre correct 1710

Second order correction 34,637

Draw source 855

Calculate speed divergence 1282

Jaccobi 14,539

Project 855

Copy in staging texture 2993

Copy from staging texture to CPU 23,088,969

Activate voxels and render 976,276

Fig. 7 Results of simulation running on 64 9 64 9 64 chunk every 20 frames

Comput Game J (2016) 5:55–64 61

123

4.3 GPU Optimization

In order to improve performance, we needed to avoid copying back the data to the

CPU. To prevent this from happening, is was necessary to move some of the Poxel

voxel engine CPU’s functionality to the geometry shader. As a result, the voxels are

no longer activated by the CPU, since it is in the geometry shader that we use to

determine which voxels should be rendered. Instead, in the fluid simulation compute

shader, we add another texture (wherein only values that do not equal zero are

placed), and we send that texture to the geometry shader. We then continuously

output vertex data from the geometry-shader stage using stream-out, which

guarantees the deterministic ordering of rendered primitives. The color ramp is then

applied directly in the geometry shader (Fig. 8).

Fig. 8 Flow of memory data between the fluid simulation and the Poxel engine

Fig. 9 Graph of FPS with GPU-only method (red) and original method (blue)

62 Comput Game J (2016) 5:55–64

123

Using that optimization, we have observed a huge improvement in performance,

going from 30 fps for a 64 9 64 9 64 chunk, up to 1100 fps (Figs. 8, 9, 10;

Table 3).

5 Conclusion

This method can be used to generate realistic fluid behaviors in voxel engines. It

could be used for water, other fluids, fire, and smoke. This would result in more

dynamic voxel works. However, several further optimizations would have to be

made to improve performance and efficiency. The fluid simulation that we have

described in this paper does is not programmed to detect or respond to obstacles. An

extension of this work would be to add obstacles. In that way, the currently active

voxels of the chunk would define the position of the obstacles. An interesting point

would also be to deal with the way in which different fluids would interact with each

other, e.g. water and lava. Likewise, the reaction between fluid-based voxels and a

different kind of voxel would need to be tested further. For example, fire or lava can

ignite wood. Moreover, the simulation is only based on a single chunk, and it needs

to be extended to several chunks. A solution would be to associate each chunk with

a fluid texture, and to add the source, based on the position and concentration of

fluid at the borders of the other chunks.

Fig. 10 Graph of frame time with GPU-only method (green) and original method (red)

Table 3 FPS and frame time on

NVIDIA GeForce GT540M with

different simulation chunk sizes

(GPU approach)

Chunk size Blocks FPS Frame time (ms)

32 9 32 9 32 32,768 652 1.534

64 9 64 9 64 262,144 180 5.556

96 9 96 9 96 884,736 58 17.241

128 9 128 9 128 2,097,152 25 40.000

Comput Game J (2016) 5:55–64 63

123

Acknowledgments The authors would like to thank the reviewers, David Sinclair for his help, and Babis

Koniaris for his coding expertise and the valuable assistance he has given us on the GPU-part of the

project. This work was supported by the Erasmus programme.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

Barett, S. (2015). Obbg—Open block building game. https://github.com/nothings/obbg

Cabello, R. (2015). Liquid voxels. http://forum.unity3d.com/threads/liquid-voxels.242821/

Crane, K., Llamas, I., & Tariq, S. (2007). Real-time simulation and rendering of 3D fluids. In H. Nguyen

(Ed.), Gpu Gems (chap. 30) (Vol. 3, pp. 633–676). Addison-Wesley.

Harris, M. J. (2004) Fast fluid dynamics simulation on the GPU. In R. Fernando (Ed.), GPU Gems:

Programming techniques, tips and tricks for real-time graphics (chap. 38) (Vol. 1, pp. 637–665).

Addison-Wesley.

Karoly, Z. (2012). Real time fluid simulation and control using the Navier–Stokes equations. A thesis

submitted in partial fulfilment of the Requirements of Budapest University of Technology and

Economics for the M.Sc. in Computer Engineering.

Miller, M., Cumming, A., Chalmers, K., Kenwright, B. & Mitchell, K. (2014). Poxels: Polygonal voxel

environment rendering. In: Proceedings of the 20th ACM symposium on virtual reality software and

technology. Edinburgh, Scotland, 2014.

Minecraft Wiki. (2012). Liquid. Available from http://minecraft.gamepedia.com/Liquid

Stam, J. (2003). Real-time fluid dynamics for games. In: The game developer conference. San Jose CA,

2002.

Vlietinck, J. (2009). Fluid simulation (DX11/DirectCompute). http://users.skynet.be/fquake/

64 Comput Game J (2016) 5:55–64

123

http://creativecommons.org/licenses/by/4.0/
https://github.com/nothings/obbg
http://forum.unity3d.com/threads/liquid-voxels.242821/
http://minecraft.gamepedia.com/Liquid
http://users.skynet.be/fquake/

	Integrating Real-Time Fluid Simulation with a Voxel Engine
	Abstract
	Introduction
	Related Work
	Voxel-Based Rasterisation
	Real-Time Fluid Simulation

	Method and Implementation
	Results
	System Specifications
	Performances
	GPU Optimization

	Conclusion
	Acknowledgments
	References

