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Abstract—In order to address the difficult issue of parameter
setting within a diversity-based Multi-objective Evolutionary
Algorithm (MOEA), we recently proposed a hybrid control scheme
based on both Fuzzy Logic Controllers (FLCs) and Hyper-
heuristics (HHs). The method simultaneously adapts both sym-
bolic and numeric parameters and was shown to be effective
when controlling a diversity-based MOEA applied to a range of
benchmark problems. Here, we show that the hybrid control
scheme generalises to other meta-heuristics by using it to adapt
several parameters of a diversity-based multi-objective Memetic
Algorithm (MA) applied to a Frequency Assignment Problem
(FAP). Using real-world instances of the FAP, we demonstrate that
our proposed parameter control method outperforms parameter
tuning of the MA. The results provide new evidence that the
method can be successfully applied to significantly more complex
problems than the benchmarks previously tested.

I. INTRODUCTION

Despite the success of Evolutionary Algorithms (EAs) in
solving a wide variety of problems, the need to avoid ap-
proaches converging to local optima still remains a challenging
task. Although many methods have been proposed for main-
taining diversity, an approach that has recently gathered popu-
larity is to consider the use of a multi-objective algorithm when
solving a single-objective problem [1]. Additional objectives
measuring diversity are introduced besides the original objec-
tive of the problem at hand. Any Multi-objective Evolutionary
Algorithm (MOEA) can then be applied to solve that problem.

However, as is common with most EAs, multi-objective
approaches have configurable components (e.g. choice of
mutation or crossover operator) and parameters that must
be appropriately set. Judicious choice of both components
and parameters can have significant impact of the eventual
performance of the algorithm. As a consequence, considerable
research effort is focused on parameter setting [2], with ap-
proaches tending to focus on tuning of parameters or control
of parameters. In the former, the goal is to pre-select the
best settings, which are held at these values throughout the
execution of the algorithm on a given instance. In the latter
approach, an online procedure alters parameters during the
course of a run, based on some guiding strategy.

In [3], Fuzzy Logic Controllers (FLCs) and Hyper-heuristics
(HHs) were compared as control methods for adapting two nu-
meric parameters of a diversity-based multi-objective Memetic
Algorithm (MA) applied to a Frequency Assignment Problem
(FAP). The main drawback was that both parameters were
optimised independently, i.e. one parameter was adapted while
the other one remained fixed for the whole run, having
performed two separate studies. Afterwards, in [4], a novel
hybrid control scheme that utilised both FLCs and HHs was
proposed, which is able to adapt several symbolic and numeric
parameters simultaneously. In that work, the hybrid scheme
simultaneously controlled different parameters of a diversity-
based MOEA applied to benchmark problems. Here, we extend
the previous work in two directions. Firstly, we show that the
hybrid control approach can be generalised in that it can simul-
taneously adapt multiple parameters of another meta-heuristic.
Specifically, we apply it to the diversity-based multi-objective
MA used for solving the FAP [4]. Secondly, we demonstrate
that the hybrid control scheme is not only suitable for solving
benchmark problems successfully, but is also applicable to
real-world applications. The main contributions of the current
research work are the following:

• The first application of a hybrid parameter adaptation
scheme based on FLCs and HHs to a diversity-based
multi-objective MA.

• New evidence relating to the benefits of control vs.
tuning, based on an extensive comparison of the
hybrid method to experiments using a diversity-based
MOEA with fixed parameters (considering variable
configurations).

II. BACKGROUND IN PARAMETER CONTROL IN

EVOLUTIONARY ALGORITHMS

As previously mentioned, selecting appropriate param-
eters remains a challenging task within EA design [5].
Parameter-setting approaches typically consider two parameter
classes [6]: numeric parameters such as mutation rates or
population size (also known as quantitative or behavioural
parameters), and symbolic parameters that specify operator



selection, e.g. for crossover or selection (sometimes described
as qualitative, categoric or structure parameters).

The main difference between the parameter types lies in the
definition of their domains. Symbolic parameters are associated
with a discrete domain in which order cannot be established,
and for which a distance metric cannot be easily defined.
In contrast, numeric parameters are specified by an infinite
domain in which it is straightforward to both define a distance
metric and to establish order.

Parameter control strategies aim to select the most ap-
propriate parameter values for a given state of the search
procedure. The notion of parameter control was first introduced
in very early research on EAs [7], [8], and has rapidly expanded
in recent years [2]. In addition, the range of methods to
which parameter control has been successfully applied has
also increased, for example including MAs [9] and Differential
Evolution (DE) [10]. Several taxonomies have been proposed to
categorise these approaches. One of the most popular [2] dis-
tinguishes between deterministic, adaptive, and self-adaptive
control. Deterministic methods modify the parameters applying
deterministic rules, without using any feedback from the search
process. On the contrary, adaptive schemes use some feedback
from the optimisation procedure to update the parameters.
Finally, in self-adaptive approaches, parameters are encoded
into the chromosome and changed during the variation stage.

More recently, the majority of work relating to parameter
control has focused on parameter adaption in the variation
stage, and on designing combined and parameter-independent
control mechanisms [2]. Here, we describe a generic approach
to parameter control that combines FLCs and HHs. The method
is integrated with a diversity-based multi-objective MA, and
applied to a FAP. The FLC part controls the adaptation of
numeric parameters (both discrete and continuous), while the
HH part controls adaptation of symbolic parameters, as well
as discrete numeric parameters.

III. DIVERSITY-BASED MULTI-OBJECTIVE MEMETIC

ALGORITHM FOR THE FREQUENCY ASSIGNMENT PROBLEM

In a typical FAP, a set of transceivers are installed in differ-
ent sectors of a given area. Each transceiver has an associate set
of valid frequencies that can be assigned to it. Interference can
occur between adjacent sectors depending on the frequencies
assigned to their corresponding transceivers. The objective is
to assign suitable frequencies to each transceiver such that the
total interference in the area is minimised.

In this section, we describe the meta-heuristic used to
optimise the FAP that we apply our hybrid control method
to. A formal definition of this meta-heuristic can be found
in [11]. This meta-heuristic was first proposed in [12] and
was selected because it yielded the best solutions considering
different instances of the FAP in previous work [3], [11], [12].

The scheme is a diversity-based multi-objective MA based
on the well-known NSGA-II [13]. The only one difference with
regard to the original NSGA-II is that after the variation stage,
a local search is applied to every newly generated individual.
In diversity-based multi-objective schemes, each individual is
associated with a number of objectives. Typically, the first
relates to the objective function of the particular problem under

consideration. In the case of the FAP, this must be minimised.
The remaining objectives consist of measures of the diversity
introduced by an individual itself. Note that here, as is common
in other work, we only consider one additional objective. We
previously tested two potential candidate metrics [3], [11]: the
Distance to the Closest Neighbour (DCN) and the Average
Distance to all Individuals (ADI), proposed in [14] and [15],
respectively. Both of them should be maximised.

The genetic operators and the local search scheme are
important components for the efficiency of the algorithm. The
local search is a Lamarckian approach [16], i.e. the individual
reflects in its genotype the result of the movements performed
by the local search. The operation of the local search is
detailed in [11], but basically it optimises the assignment of
the frequencies to the transceivers located in a given sector
without modifying the remaining network assignments.

The genetic operators were specifically designed to address
the considered variant of the FAP. As is normal, the scheme
relies on the application of variation operators, i.e. crossover
and mutation, with probabilities pc and pm, respectively. Two
different crossover operators were tested, one of them random
and one that considers problem-dependent information. Only
one of both options was applied in the variation stage, depend-
ing on the FAP instance. They operate as follows:

• Uniform Crossover (UX). For each gene, a random
value r ∈ [0, 1] is uniformly selected. When r < 0.5,
the gene of the first parent is inherited by the offspring.
Otherwise, the gene of the second parent is considered.

• Interference-based Crossover (IX). Firstly, a
transceiver t is selected at random. Then, genes
related to transceivers that interfere with t or are
interfered with by t, including the gene representing
t, are taken from the first parent. For the remaining
genes, the second parent is considered.

After applying one of the aforementioned crossover op-
erators, the Neighbourhood-based Mutation (NM) operator
is applied. Its function is as follows. First, a transceiver t
is randomly selected. Afterwards, a list called interference,
which consists of the transceivers that interfere with t, or are
interfered with by t, is created. Every transceiver in that list is
then mutated with probability pm. The above step is repeated
R times, but in the next iterations the transceiver is selected
at random from among those that were included in the initial
interference list. This results in mutation being directed to a
specific region of the network.

One of the main drawbacks of the application of this
operator is that two different numeric parameters must be set.
One of these parameters (pm) is continuous and the other one
(R) is discrete. These parameters were independently adapted
by the use of FLCs and HHs as control methods, and as a result,
two separate studies were carried out [3]. In both studies, FLCs
and HHs demonstrated high performance when controlling the
parameters of the NM operator in terms of the quality of
frequency plans were obtained. In this work, we go beyond
this in combining FLCs and HHs in a single control approach
in order to adjust pm and R simultaneously.

Two other components must be specified. Arrays of n
integer values (p1, p2, . . . , pn) are used to encode individuals,



in which n is the total number of transceivers installed in the
area, and pi the frequency assigned to the transceiver ti. Binary
Tournament [5] is used as the parent selection mechanism.

IV. HYBRID CONTROL SCHEME

In this section, we describe our hybrid control mechanism
based on HHs and FLCs, together with their components. The
parameters of the NM operator are adapted by this hybrid
control approach.

As it can be observed in Figure 1, the control scheme
consists of several layers. A selection HH [17], which is
located at the first layer, is responsible for adapting discrete
numeric parameters, as well as symbolic ones. Said HH takes
into consideration the past performance of different low-level
configurations with the aim of selecting the most promising
one at the current stage of the search process. In this work, low-
level configurations are defined by different parameterisations
of the diversity-based MA described in Section III, each one
of them with a particular value assigned to parameter R. At
the same time, the FLC present at the second layer, adjusts the
mutation rate pm. The remaining parameters of the low-level
configurations are kept constant during the whole execution.
When the HH selects a particular low-level configuration, it
is executed until certain local stopping criterion is satisfied.
Then, another low-level configuration is selected and executed
by using the final population of the last-low level configuration
run as its initial population. We should note at this point that
the newly selected low-level configuration might potentially be
the last one executed. Finally, while a global stopping criterion
is not satisfied, the above steps are repeated.

As it was mentioned before, an FLC, which is located
at the second layer, is used to control numeric parameters,
and in the case of this work, it is responsible for adapting
the mutation rate pm. In order to carry out new decisions, it
considers historical information regarding previously inferred
parameter values. In this second layer, the selected low-level
configuration is run until the HH local stopping criterion
is reached. The FLC, however, has to periodically calculate
new values for parameter pm as well, and consequently, it
defines another local stopping criterion. An example clarifies:
if 1.5× 105 evaluations are considered as the global stopping
criterion, and the HH local stopping criterion is fixed to
3 × 103 evaluations, then the HH performs 50 decisions for
the whole run, by selecting different low-level configurations
with different values for parameter R. Every selected low-level
configuration is executed during 3×103 evaluations. Moreover,
if the FLC local stopping criterion is fixed to to 1.5 × 102

evaluations, then the FLC calculates 20 different values for
the mutation rate pm during each execution of a low-level
configuration selected by the HH.

A. Hyper-heuristic

In this work, we consider a version of the selection HH

introduced by [18] for altering parameter R of the NM operator.
We selected this HH since in previous work it has been applied
with success [3], [19]. It selects the most appropriate low-
level configuration by making use of scoring and selection
mechanisms. The selection mechanism consists of the follow-
ing steps. In first place, each low-level configuration is scored
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Figure 1. Different layers and components of the hybrid control approach

by the scoring mechanism. The goal of that approach is to
estimate the improvement that every low-level configuration
might potentially provide considering the current population.
Hence, the higher the score, the more promising the low-level
configuration. Scores are calculated taking into account the his-
torical improvements in the original objective value, i.e. in the
FAP cost function, provided by every low-level configuration.
The difference between the best obtained individual and the
best initial individual, in terms of the original objective value
is defined as the improvement γ. Therefore, score s(conf) is
calculated as a weighted average of the last k improvements
obtained by configuration conf :

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1 − i) · γ[conf ][j − i]

min(k,j)
∑

i=1

i

(1)

In (1), the improvement obtained by conf in run j − i
is represented by γ[conf ][j − i]. The value of k allows the
adaptation level of the HH to be defined. The adaptation level is
the quantity of historical information taken into consideration
by the HH to carry out its decisions. Finally, it can be observed
that a greater importance is assigned to the most recent runs.

The HH makes use of a parameter called β, which defines
the minimum selection probability of every low-level configu-
ration. Thus, β ·nh percentage of the decisions, with nh being
the number of low-level configurations used, are randomly
performed considering a uniform distribution. Therefore, every
low-level configuration conf is selected with a probability
calculated as shown in (2).

prob(conf) = β + (1 − β · nh) ·















s(conf)
nh
∑

i=1

s(i)















(2)



In this work, we consider two different approaches based
on the above HH, an elitist one (HH-ELI) and a probabilistic one
(HH-PROB). The former always selects the configuration with
the maximum score s(conf), in addition to the minimum num-
ber of decisions randomly performed for every configuration.
In the case of the latter, the selection probability is calculated
as shown in (2).

B. Fuzzy logic controller

The FLC proposed to control parameter pm of the NM

operator is described in this section. It makes use of several
fuzzy rule bases, and at the current stage of the search,
a different rule base, which is responsible for guiding the
adaptation of the mutation rate pm, is enabled by considering
historical data. Algorithm 1 shows the pseudocode of our FLC.

Steps 1–4, i.e. initialisation and learning stages, are exe-
cuted if and only if it is the first time that a particular low-
level configuration is selected by the HH. At the same time,
both the state of the FLC and the state of the current low-level
configuration are stored once the HH local stopping criterion
is met. Hence, the last state of a low-level configuration that
had been previously run is restored before the start of its new
execution. We should note that Mamdani’s fuzzy inference
is applied during the fuzzy inference process (lines 8–10).
Moreover, the fuzzy logic operator AND and the implication
method apply the minimum T-norm, the aggregation method
applies the maximum S-norm, and the centroid algorithm
is used as the defuzzification method. Since all of these
components are frequently used when applying Mamdani-type
FLCs, we selected them for our implementation.

We define the following input variables (line 6):

• IMP. The improvement, in terms of the original ob-
jective value of the best solution, provided by the
diversity-based MA (line 12) considering the latest
numEvals function evaluations. It is enclosed in the
range [0, 1]. Note that numEvals represents the local
stopping criterion established by the FLC.

• VAR. It measures the population diversity. The larger
its value, the higher the diversification of individuals.
This variable is calculated as shown in (3). Terms xj [i]
and xk[i] denote the decision variable i of individuals
j and k. D and N represent the number of decision
variables and the population size, respectively. VAR

∗

is enclosed in range [0, 1] to normalise VAR.

VAR
∗ =

D−1
∑

i=0





N−1
∑

j=0

[

xj [i] −
1

N
·

(

N−1
∑

k=0

xk[i]

)]2


 (3)

• PM-IN. Enclosed in the range [0, 1], it represents the
current value of the mutation rate pm.

• BEST-PM-IN. It is defined as that value of the mutation
rate pm that has been able to provide the maximum
improvement, in terms of the original objective value
of the best individual, taking into account the latest k
decisions carried out by the FLC. It is also enclosed
in the range [0, 1].

Algorithm 1 Fuzzy logic controller pseudocode

1: Initialisation: Sample values for pm are uniformly distributed in its corresponding

range. The difference between two consecutive values is given by ∆.

2: for (each sample value of the mutation rate pm) do

3: Learning: The diversity-based MA is run with that sample of pm for

numEvals function evaluations with the aim of gathering enough knowledge.

4: end for

5: while (the HH local stopping criterion is not met) do

6: Input variables calculation. Variables IMP, VAR, PM-IN and BEST-PM-IN are

calculated.

7: Rule base selection. The k most recent decisions performed by the FLC, as

well as the scoring mechanism depicted in (4), are considered to select the most

appropriate rule base.

8: Fuzzification. The fuzzification interface is applied with the aim of transforming

crisp values of the input variables to fuzzy sets.

9: Mamdani’s Fuzzy inference. The fuzzy operator AND (min), the implication

method (min), and the aggregation method (max) are applied by using the rule

base previously selected, thus obtaining the fuzzy set of variable PM-OUT.

10: Defuzzification: The defuzzification interface (centroid method) is applied for

transforming the fuzzy set of the output variable PM-OUT to a crisp value ∆pm .

11: Parameter update: pm = pm+∆pm . Parameter pm is enclosed in the range

[0, 1].
12: Execution: The diversity-based multi-objective MA is executed with the updated

value of the mutation rate pm for numEvals evaluations.

13: end while

In this work, we consider two variants of the above FLC.
The first one, which uses the input variables IMP, VAR and PM-
IN, is named FUZZY-A, while the second one, which makes
use of the input variables IMP, PM-IN and BEST-PM-IN, is
called FUZZY-B. We have defined only one output variable
for both variants. It is used to calculate the increment or
decrement to be applied to the mutation rate pm to update
its current value, and is named PM-OUT. Figure 2 shows the
membership functions of the aforementioned variables. We
selected triangular-shaped membership functions because of
their computational simplicity and efficiency.

Both versions of the FLC make use of several fuzzy rule
bases. Depending on the behaviour of the FLC in previous
runs, a different set of fuzzy rules will be applicable. For
example, consider that the best performance has been obtained
by low values of the mutation rate pm. The usage of those
low values should be then promoted by the selected rule base.
Different IF-THEN rules define a rule base. One of the rule
bases belonging to the approach FUZZY-A is described in
Table I. The remaining rule bases, including those belonging to
FUZZY-B, are not shown due to space constraints. The reader
is referred to [3] to find the complete definition of the rule
bases for both FLCs. We should note that three input variables
and one output variable are considered for each fuzzy rule, and
the antecedents of those rules only take into account the fuzzy
logic operator AND. A particular fuzzy rule has no dependency
on a particular variable when a ‘-’ is shown.

As in the case of the HH, a scoring mechanism is used to
select the most appropriate rule base at the current stage of
the search. Two different types of information are considered
by that scoring function: information about the membership
degree of the current value of pm to each linguistic term of
the variable PM-IN, and data about the improvement achieved
in the original objective value. The FLC takes into account his-
torical knowledge regarding the most recent k decisions carried
out. Parameter k allows the amount of historical data consid-
ered to be tuned. Each linguistic term i ∈ [0, numTerms− 1]
is assigned a score calculated by (4), with numTerms being
the number of linguistic terms of the variable PM-IN, and d the
quantity of inferences carried out by the FLC. The term γ[d−j]
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Figure 2. Definition of membership functions for the fuzzy logic controller variables

represents the improvement achieved by the diversity-based
multi-objective MA in execution d−j (line 12 of Algorithm 1).
Moreover, δ[i][d − j] denotes the degree of membership of
pm to the term i in execution d − j. A higher score will be
thus assigned to the linguistic term i if values inferred for the
mutation rate pm provide larger improvements in the original
objective, and at the same time, if they have higher degrees
of membership to that term. Finally, it can be observed that a
higher importance is assigned to the last decisions performed.

score[i] =

min(k,d)
∑

j=1

γ[d− j] · δ[i][d − j] · (min(k, d) − j + 1)

min(k,d)
∑

j=1

δ[i][d− j] · (min(k, d) − j + 1)

(4)

It is important to remark that the above scoring function
will work if and only if numTerm rule bases are defined,
thus meaning that variable PM-IN consists of numTerms
linguistic terms. As it is shown in Figure 2, variable PM-
IN consists of seven terms, and therefore, we implemented
seven different rule bases. Several numbers of rule bases were
tested. The higher that number, the smoother the variations
of pm inferred by the FLC, and thus the steadier the FLC.
Nevertheless, when considering a higher quantity of rule bases,
as well as with a lower amount of them, the performance of
the whole optimisation scheme decreased. Three terms were
defined for the rest of input variables with the aim of keeping
rule bases as simple as possible.

The linguistic term i that maximises the scoring function
is selected, and consequently, rule base i is enabled. Hence,
parameter values of pm with high degrees of membership to
the term i should achieve better solutions than those provided
by other values, and rule base i is responsible for adapting the
mutation rate pm so that it approaches the values represented
by linguistic term i. For example, consider that the current
value of pm is 0.9 and that we are using the approach FUZZY-
A. Once scores are calculated, assume that the selected rule
base is that associated to the term LOW (L) of the variable
PM-IN. Bearing the above in mind, low values of pm have
historically achieved significant improvements in terms of the
original objective. Table I shows the selected rule base for this
particular case. If a fuzzy set for the variable IMP, which has
a large degree of membership to the term LOW (L), since PM-
IN (with value 0.9) is represented by a fuzzy set with a large
degree of membership to the term HIGH (H), then the output
fuzzy set, i.e the one corresponding to PM-OUT, will have a
large degree of membership to the linguistic term NEG-GIANT

Table I. EXAMPLE OF A RULE BASE BELONGING TO FUZZY-A

Rules Input variables Output variables

ID PM-IN IMP VAR PM-OUT

1 L L L PL

2 L L M PL

3 L L H NL

4 L M - Z

5 L H - Z

6 LMB L - NM

7 LMB M - NL

8 LMB H - Z

9 LMA L - NH

10 LMA M - NL

11 LMA H - Z

12 M L - NU

13 M M - NL

14 M H - Z

15 MHA L - NG

16 MHA M - NL

17 MHA H - Z

18 MHB L - NG

19 MHB M - NL

20 MHB H - Z

21 H L - NG

22 H M - NL

23 H H - Z

(NG). The value of the mutation rate pm will be thus decreased
in a significant way so that it will approach lower values.

V. EXPERIMENTAL EVALUATION

This section is devoted to describe experiments conducted
with the original MA (Experiment 1), and with the MA com-
bined with the proposed control method (Experiment 2).

a) Experimental Method: The aforementioned ap-
proaches were implemented using the Meta-heuristic-based
Extensible Tool for Cooperative Optimisation (METCO) [20].
Experiments were run on Teide High Performance Computing
facilities composed of 1100 Fujitsu R© computer servers, with
a total of 17800 computing cores and 36 TB of memory.
Each computing node has two Intel R© XeonTM E5-2670 pro-
cessors with 8 cores, and 32 GB RAM DDR-3. The FLCs
were implemented using the library fuzzylite 5.0 [21], while
GCC 4.8.2 was the compiler version considered. Since we
applied stochastic algorithms, every execution was run 32
times. Statistical comparisons were carried out by performing
a statistical procedure, which is explained below. First, a
Shapiro-Wilk test was performed to check whether the values
of the results followed a normal (Gaussian) distribution or
not. If so, the Levene test checked for the homogeneity of
the variances. If the samples had equal variance, an ANOVA

test was done. Otherwise, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis



Table II. CONFIGURATION OF THE DIVERSITY-BASED MULTI-OBJECTIVE MEMETIC ALGORITHM

Parameter Value Parameter Value

Stopping criterion 1.5 × 105 evals. Crossover rate (pc) 1

Population size (N ) 10 individuals Mutation rates (pm) 0, 0.2, 0.4, 0.6, 0.8, 1

Crossover operators UX (Seattle), IX (Denver) NM operator steps (R) 1, 2, 3, . . . , 14, 15

Auxiliary objective DCN (Seattle), ADI (Denver)

Table III. CONFIGURATION OF THE HYPER-HEURISTICS HH-ELI AND HH-PROB

Parameter Value Parameter Value

Local stopping criterion 1.5 × 103 , 3 × 103 evals. Minimum selection rate (β) 0.1

Number of low-level configs. (nh) 15 configs. Historical knowledge (k) 2

Table IV. CONFIGURATION OF THE FUZZY LOGIC CONTROLLERS FUZZY-A AND FUZZY-B

Parameter Value Parameter Value

Local stopping criterion (numEvals) 1.5 × 102 evals. Difference among samples (∆) 0.1

Number of linguistic terms (numTerms) 7 Historical knowledge (k) 2

Range of the parameter pm [0, 1]

test was used. All statistical tests were applied considering a
significance level equal to 5%.

b) FAP instances: The studies were conducted consid-
ering two different instances representing two real cities in
the USA: Seattle and Denver. The Seattle instance had n =
970 transceivers and 15 different frequencies to be assigned.
The Denver instance was larger, consisting of n = 2612
transceivers and 18 frequencies. The remaining parameters
belonging to both instances were set as in [3].

c) Parameters for Experiment 1: Parameter values for
the diversity-based multi-objective MA are shown in Table II.
A total number of 90 configurations of the diversity-based
multi-objective MA with fixed parameters were executed for
each instance. The values depicted in Table II for param-
eters pm and R were combined in order to obtain those
configurations. A different crossover operator, as well as a
particular auxiliary objective, were considered depending on
the instance. Moreover, it is important to remark that 10
individuals were taken into account as the population size.
We selected those parameter values because we obtained the
best solutions when applying them together with the diversity-
based multi-objective MA to the FAP [3], [12]. Finally, the
different stopping criteria were set in terms of the total amount
of evaluations carried out, since one of the most expensive
operations from the computational view is the calculation
of the evaluation function. In order to identify a particular
configuration of the diversity-based multi-objective MA, the
values for pm and R reflect the name of the scheme. For
example, Fixed 0.6 13 is a fixed configuration of the diversity-
based memetic approach executed with values 0.6 and 13 for
the parameters pm and R, respectively.

d) Parameters for Experiment 2: This experiment was
focused on executing the hybrid control scheme to simulta-
neously adjust the values of the parameters pm and R. The
configurations of the HHs and FLCs are described in Tables III
and IV, respectively. Table II shows the values used for the
remaining parameters of the MA. We should note that nh = 15
low-level configurations, each one of them with a different

value for the parameter R (Table II), defined the candidate
set of the HHs. Therefore, the only one difference among the
low-level configurations lied in the particular value given to
that parameter. Finally, it is worth pointing out that two local
stopping criteria were taking into account for the HHs, thus
giving two different configurations of the schemes HH-ELI

and HH-PROB. Bearing the above in mind, and considering the
FLCs FUZZY-A and FUZZY-B, 8 different configurations of the
hybrid control scheme were executed for each FAP instance.
In order to identify a particular configuration of the hybrid
scheme, the value of the HH local stopping criterion reflects the
name of the approach. For instance, FUZZY-A HH-ELI 3000
is a configuration of the hybrid scheme that combines the
schemes FUZZY-A and HH-ELI with a local stopping criterion
for the HH equal to 3× 103 evaluations.

The main goal of both experiments was twofold. First, to
analyse the performance and robustness of the hybrid control
mechanism. Second, to show if some advantages arise when
controlling pm and R with respect to tuning them.

Tables V and VI show different statistics, including
dispersion measures (Standard Deviation–SD, Coefficient of
Variation–CV), for the different configurations of the hybrid
control approach, as well as for several configurations of
the diversity-based multi-objective MA executed with fixed
parameters, considering the Seattle and Denver instances,
respectively. In the case of the diversity-based multi-objective
MA executed with fixed parameters, the 90 configurations were
sorted in ascending order considering the mean of the original
objective value achieved by each one. Tables show information
for the fixed configurations located at positions 1, 20, 40, 60,
80, and 90, the latter being the configuration that achieved the
highest mean of the original objective value. Additionally, the
last three columns show the number of fixed configurations of
the diversity-based multi-objective MA that were statistically
outperformed (↑) by, that did not present statistically significant
differences (↔) with, and that were able to outperform (↓)
the approach located at the corresponding row, as determined
by the statistical procedure described at the beginning of the



Table V. CONTROL AND TUNING OF THE PARAMETERS pm AND R – SEATTLE INSTANCE

Approach Min. First Qu. Median Mean Third Qu. Max. SD CV ↑ ↔ ↓

Fuzzy-A HH-Eli 1500 526.9 613.5 643.4 671.4 736.3 825.5 81.6 12.2 45 45 0

Fuzzy-B HH-Eli 1500 558.5 619.0 662.5 670.3 723.0 866.7 69.8 10.4 46 44 0

Fuzzy-A HH-Eli 3000 499.3 637.0 676.0 679.3 717.4 876.5 75.8 11.2 42 48 0

Fuzzy-B HH-Eli 3000 516.6 611.5 675.7 672.9 722.7 859.4 87.6 13.0 43 47 0

Fuzzy-A HH-Prob 1500 520.2 619.5 679.5 667.6 718.8 827.0 78.1 11.7 48 42 0

Fuzzy-B HH-Prob 1500 545.7 621.4 680.7 673.3 727.9 855.7 72.9 10.8 44 46 0

Fuzzy-A HH-Prob 3000 502.5 582.4 640.2 649.9 688.5 888.3 90.8 13.9 69 21 0

Fuzzy-B HH-Prob 3000 505.0 593.1 649.6 650.7 680.5 835.5 77.5 11.9 71 19 0

Fixed 0.2 12 512.9 594.8 646.0 643.9 673.6 848.6 75.0 11.6 79 11 0

Fixed 0.2 8 538.4 644.3 682.5 688.6 727.0 843.5 75.9 11.0 38 51 1

Fixed 0.4 9 582.3 661.2 683.4 703.1 739.0 834.2 63.3 9.0 30 53 7

Fixed 0.6 14 638.0 677.4 734.5 741.9 788.7 868.5 66.5 8.9 14 36 40

Fixed 0.8 12 645.0 748.7 800.1 804.2 857.7 989.6 80.2 9.9 7 13 70

Fixed 1 15 903.8 1043.0 1114.0 1102.0 1167.0 1262.0 91.1 8.3 0 1 89

Table VI. CONTROL AND TUNING OF THE PARAMETERS pm AND R – DENVER INSTANCE

Approach Min. First Qu. Median Mean Third Qu. Max. SD CV ↑ ↔ ↓

Fuzzy-A HH-Eli 1500 84058.5 84719.5 85211.4 85265.2 85628.7 86964.9 751.4 0.9 63 27 0

Fuzzy-B HH-Eli 1500 83784.2 84768.3 85208.4 85202.9 85538.5 87190.0 747.0 0.9 70 20 0

Fuzzy-A HH-Eli 3000 84196.2 84946.4 85211.5 85369.6 85849.8 86917.3 703.2 0.8 51 39 0

Fuzzy-B HH-Eli 3000 84309.8 84704.2 84974.0 85372.6 85923.0 87882.3 936.4 1.1 62 28 0

Fuzzy-A HH-Prob 1500 84274.7 84799.0 85031.0 85232.3 85416.0 87771.4 782.9 0.9 79 11 0

Fuzzy-B HH-Prob 1500 84268.5 84947.0 85225.0 85362.8 85658.1 87070.6 679.9 0.8 55 35 0

Fuzzy-A HH-Prob 3000 84240.9 84601.2 85465.8 85469.6 86254.4 87023.7 856.5 1.0 37 53 0

Fuzzy-B HH-Prob 3000 83778.3 84662.7 85182.3 85219.7 85826.4 86226.3 660.9 0.8 67 23 0

Fixed 0.4 15 84187.2 84765.6 85075.2 85230.5 85641.8 87489.8 742.4 0.9 73 17 0

Fixed 0.6 4 84531.8 85022.7 85540.1 85569.5 86030.8 87626.7 749.7 0.9 34 55 1

Fixed 0.4 8 84240.4 85118.6 85966.5 85764.8 86442.2 87507.3 884.6 1.0 24 62 4

Fixed 1 1 84964.3 85470.2 85979.5 86084.4 86505.2 88195.4 830.8 0.9 20 36 34

Fixed 0 6 85713.7 86866.2 87215.9 87224.5 87578.6 89008.5 699.1 0.8 2 15 73

Fixed 0 1 86058.9 87651.0 88743.8 88237.7 88920.3 90096.9 1050.2 1.2 0 1 89

current section. Approach A statistically outperforms scheme
B if there exist statistically significant differences between
them, and if at the same time, A provides a lower mean and
median of the original objective value than B. Finally, the data
in bold show, for each method, the configuration that achieved
the lowest mean of the original objective value.

We make the following observations. With regard to pa-
rameter tuning, the configuration of the diversity-based multi-
objective MA that provided the lowest mean of the original
objective value applied the values 0.2 and 12 for the parameters
pm and R, while in the case of Denver, the values were
equal to 0.4 and 15. In addition, these configurations exhibited
statistically significant differences when compared to others.
For example, taking into consideration the Seattle instance,
the best-behaved fixed configuration was able to statistically
outperform other 79 fixed configurations. In the case of Denver,
the best fixed configuration was statistically better than other
73 configurations of the diversity-based MA executed with
fixed parameters. As a result, the above confirms that the
most appropriate values for a set of parameters depend on
the problem and/or instance being solved.

Considering the hybrid control approach, we note that no
significant differences were observed between the 8 different
configurations, on both FAP instances. This demonstrates that
the hybrid control scheme is robust from the point of view of
its components and parameters, since if we modify them, its
performance is not going to change significantly.

The final three columns of Tables V and VI enable a

comparison of the parameter control and parameter tunning
methods. Taking into account the Seattle instance, two pa-
rameterisations of the hybrid control scheme (FUZZY-A HH-
PROB 3000 and FUZZY-B HH-PROB 3000) were able to statis-
tically outperform more than 65 configurations of the diversity-
based multi-objective MA executed with fixed parameters.
Moreover, in those cases, the hybrid control scheme did not
show statistically significant differences with the remaining
fixed configurations of the diversity-based multi-objective MA.
Finally, it is important to mention that no fixed configuration
of the diversity-based MA was able to statistically outperform
any parameterisation of the hybrid control approach. The above
is even more noticeable in the case of the Denver instance.
Hence, the benefits of using parameter control techniques
instead of using parameter tuning are significant. With only one
execution of the hybrid control scheme we are able to provide
similar or even better frequency plans for the FAP than those
obtained using the best-behaved configuration of the diversity-
based multi-objective MA. In order to find such a best-behaved
configuration, we had to execute 90 different parameterisations
for each instance, which involved a total number of 44500
computational hours, approximately. Bearing this in mind, the
advantages of control over tuning are even higher.

Finally, it is worth pointing out that if we consider the
times invested by the best performing fixed configuration
(Fixed 0.2 12) and the best-behaved parameterisation of the
hybrid control scheme (FUZZY-A HH-PROB 3000) in their 32
corresponding executions for the Seattle instance, the median
of the execution times were 28294.49 and 27323.41 seconds,



respectively. We expected that the hybrid control approach
introduced some computational overhead. However, we found
the contrary to be true. This is because the execution time
directly depends on the values assigned to the parameters pm
and R. The higher the values assigned to those parameters,
the higher the time invested by the NM operator, and therefore,
the higher the execution time. Since the hybrid control scheme
dynamically updates the values for pm and R during the execu-
tion, it was able to provide similar results than those obtained
by the best fixed configuration for the Seattle instance, but by
employing a lower amount of time. Taking into consideration
the the Denver instance, the same behaviour appeared.

VI. CONCLUSIONS AND FUTURE WORK

A control scheme which hybridises an FLC and a HH is
applied in this work to concurrently adjust several numeric
parameters of a diversity-based multi-objective MA specifically
designed for dealing with a FAP. Particularly, two parameters
(pm and R) belonging to the variation stage of the diversity-
based approach are adapted. We should note this is the
first time that several parameters of a diversity-based multi-
objective MA are simultaneously adapted by the use of a
control scheme based on FLCs and HHs.

The extensive experimental evaluation carried out over two
different instances of the FAP reveal that the hybrid control
approach provides similar or even better frequency plans than
those provided by a significant number of fixed configurations
of the diversity-based multi-objective MA. The fact that better
results are returned by the hybrid control method with respect
to the configurations of the diversity-based multi-objective MA

executed with fixed parameters also emphasise the benefits of
parameter control. Additionally, we show that the hybrid con-
trol approach is not only suitable for dealing with benchmark
problems, but also for real-world applications like the FAP.
Finally, we demonstrate the generality of our control approach,
which is able to successfully control different types of numeric
and symbolic parameters of different meta-heuristics.

Currently, our hybrid control scheme is prepared to dynam-
ically adjust only one continuos numeric parameter, thanks
to the use of the FLC. Therefore, a promising line of re-
search would be that the control mechanism was able to
adapt different continuous numeric parameters simultaneously.
Another interesting future line of work would be to analyse
the computational overhead introduced by the hybrid control
scheme when it is applied to different types of benchmarks
and real-world applications.
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