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Abstract 
 
Truss-type structures are widely used in contemporary constructions. The 

dynamic analysis is very important to ensure the safety and the functionalities of 

these structures. The aim of this research was to propose a new method tailored 

for the dynamic analysis of linear truss-type structures. The proposed method is a 

single-step method underpinned by Unconventional Hamilton-type Variational 

Principles, and employing the finite element discretisation in both spatial and 

temporal domains. 

 

To develop the proposed method, five Unconventional Hamilton-type Variational 

Principles tailor-made for truss-type structures were derived, preserving naturally 

all necessary conditions for the dynamic analysis without the introduction of any 

artificial factors. The resultant one-field and the two-filed formulations were used 

to build algorithms for the proposed method. The semi-discretisation treatment of 

the spatial and temporal domains was applied to these formulations. While the 

spatial discretisation was undertaken in the standard fashion, temporal 

discretisation was attempted with four different types of time finite elements. The 

convergence of the algorithms was examined in terms of the stability and the 

consistency properties. Numerical examples with different types of truss-type 

structures were given to verify the proposed method, and also to compare the 

performance of these algorithms against the existing analysis methods. 

 

The proposed algorithms were shown to be second- or higher-order accurate when 

various time finite elements were employed. Compared to the widely used 

Average Acceleration Method (AAM), the proposed method produces highly 

accurate results. Larger time steps can be used without compromising the 

accuracy hence the computational costs may be reduced.  Therefore, the proposed 

method can provide a fast and high-precision analysis solution for applications 

where these attributes are desired. 
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Notation 

Unless otherwise stated in the text, the symbols used in this thesis are listed below 

in the order: Roman characters, Greek characters, miscellaneous character and 

acronyms. The units used in this thesis are System International (SI), or derived, 

units where possible. 

 

Roman characters 

c   viscous damping coefficient of the rod, per unit length 

( )f x   body force in the local system, per unit length 

f   body force vector 

f   body force field in local system 

m   total number of truss rods 

( )m x   mass density of the truss rod, per unit length 

n   total number of degree of freedoms 



 
xiii 

 

nd   total number of truss nodes 

nr   total number of truss rods 

( )p ,x t   momentum field 

( )p ,0x   initial momentum 

s    shape function for spatial discretisation 

t   time coordinate 

( )u
  

displacement field 

( )u ,x t    displacement field 

( )u ,x t   prescribed displacement 

( )u ,0x   initial displacement 

( )tu   nodal displacement vector 

abu   nodal displacement vector of rod ab  in the local coordinate system 

( )v ,x t   velocity field 

x   spatial coordinate 

ux   displacement boundary of the rod 

Nx   traction boundary of the rod 

( )A x   cross-sectional area of the rod 

, rA A   amplification matrix 

( )eC   elementary damping matrix 

C   global damping matrix 

( )iD   displacement components in the global system ( ), ,i X Y Z=  

( )tD   global nodal displacement vector 

abD   nodal displacement vector of rod ab  in the global system 

( ) ( )i tD   nodal displacement vector of the ith  node 

( )τD   approximated displacement within time element 

E   elastic modulus  



 
xiv 

 

( )eF   elementary body force vector 

( )tF   global body force vector 

( )τF


  piecewise global body force vector within time element 

nF   load operator 

H   Hamiltonian of the system 

I   identity matrix 

( )eK   elementary stiffness matrix 

K   global stiffness matrix 

,L l   length of a truss rod 

( )tL   global nodal force vector 

( )τL   piecewise global nodal force vector within time element 

( )
( )ˆ, i

eeM M  elementary mass matrix 

ˆ,M M   global mass matrix 

( )N ,x t   axial force field 

( )N ,x t   prescribed axial force 

( ){ }N x  linear interpolation operator 

( )tP   global nodal momentum vector 

( ) ( )i tP   nodal momentum vector of the ith  rod 

( )i
eS   elementary shape function matrix 

S   global shape function matrix 

T   kinetic energy 

T   transformation matrix 

T1   transformation vector  

, ,U V W  state vector 

W   work of conservative and non-conservative forces 

 

Greek characters 
 



 
xv 

 

( )δ   variation operator 

( )ε ,x t   strain field 

( ) ( ),φ ϕ  time element shape function  

   Laplace transform operator 
( )λ   eigenvalue of the amplification matrix  

( )ρ   spectral radius 

τ   dimensionless time 

,Ψ Φ   time finite element approximation operator  

,Π Γ   energy functionals 

 

Miscellaneous character 
 

   Lagrange density 

 

Acronyms 
 

DOF  Degree of Freedom 

FDM  Finite Difference Method 

FEM  Finite Element Method 

GNpj Generalised Newmark method with approximation of degree p for 

equations of order j 

HLVA  Hamilton’s Law of Varying Action 

HWP  Hamilton’s Weak Principle 

MDOF  Multi-Degree-of-Freedom 

PTI  Precise Time Integration  

SDOF  Single-degree-f-Freedom 

SSpj  Single Step with approximation of degree p for equations of order j 

STFEM Space-Time Finite Element Method 

UHVP  Unconventional Hamilton-type variational principle 
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1. INTRODUCTION 
 

1.1 Background 
 

Truss-type structures are widely used in contemporary constructions. This type of 

structure is typically made of rod members connected by rigid joints, and the load 

is applied to the joint only. There is no bending moment within each rod member 

or at the interface between the rod and the joint. A truss-type structure may be in 

the form of a simple planar truss in a two-dimensional plane, or a space truss in 

the three-dimensional space. Figure 1.1.1 gives two typical examples of truss-type 

structures. 

 

 

 

 

 

 

 

Figure 1.1.1a – A planar truss 

 

 

 
Figure 1.1.1b – A space truss  
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Truss-type structures have a long history in the civilisation development and can 

be traced back to medieval times when high pitched church roofs were built 

(Schueller, 1983). With the advance in the material production and construction 

techniques, truss-type structures have been increasingly adopted in modern 

applications for a large varieties of projects, such as but not limited to, bridges, 

open-space column-free buildings, industrial equipments and space structures, etc.. 

The Forth Railway Bridge is such a typical example.  

 

 
Figure 1.1.2 – Forth Railway Bridge (Roelandts, n.d.) 
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Figure 1.1.3 – A typical truss roof of a modern facility (Anon., n.d.) 

 

 

 

 

 
Figure 1.1.4 – A telescope disc (Anon., n.d.) 
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Figure 1.1.5 – A space station (Anon., n.d.) 

 

During the service period, these structures are frequently subject to dynamic loads 

/effects, such as 

 

 Wind excitation. 

 Seismic load. 

 Machinery/ occupants induced excitations. 

 Stress wave propagation. 

 etc.  

 

As a result of these dynamic loads /effects, these structures can exhibit various 

dynamic characteristics, which need to be addressed in line with the particular 

requirements of the applications. In infrastructures and buildings, vibrations 

induced by the earthquake, wind or moving loads /parts /occupants can cause 

adverse effects, such as the resonance or excessive displacements of the structure. 

These results can lead to the over-stressing of structural members and even the 

failure of the entire structure. Typical examples included the collapse of the 

Tacoma Narrows Bridge in 1940 and the San Francisco–Oakland Bay Bridge 

failure in 1989. Therefore, the dynamic effects are critical to the structural safety. 
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Meanwhile, for certain types of applications, the vibration control is vital to 

ensure the functionality. For example, astronomy telescopes searching signals 

from the distant spaces are commonly required to be isolated from all sorts of 

vibrations, in order to satisfy the stringent signal processing criterion (e.g. 

displacement needs to be controlled in the ranges of a few nanometres) (Preumont, 

2011). Vibration control systems are installed to minimise oscillations to 

acceptable level. The minimisation relies on the predication made by a dynamic 

analysis package, and this predication has to be computed to a high order of 

accuracy for its purpose, where fast and higher-order accurate algorithms would 

be desirable for the analysis. It can be seen that the dynamic analysis is paramount 

in many aspects.  

 

When a truss-type structure is subject to a dynamic load, the structural members 

may have to sustain cyclic tension and compression forces. If the axial force 

exceeds a certain threshold, either the failure of brittle components or the 

buckling/yielding of the elastic members will occur. In the case of component 

failure, the stiffness of the system will change suddenly, and the force will be 

redistributed in the remaining members, and the whole system needs to be re-

evaluated. In the case of buckling/yielding, the post-buckling behaviour of the 

structural members can be very complex, involving lateral deflections and 

inelastic cyclic of truss members as shown in Figure 1.1.6. This inelastic post-

buckling cyclic behaviour of the truss member was discussed by Malla et al. 

(2011) and some valuable insights have been obtained. However, the linearity is 

not the issue that this research is aiming to address, because this study is focused 

on a new fundamental dynamic analysis method for truss-type structures. A 

tailored made variational theory and the resultant analysis method are developed 

for this purpose. Although it is presented for the linear cases only in this thesis, 

the theory and the method could be expanded to non-linear cases, using a similar 

developing procedure demonstrated in this research. 
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Figure 1.1.6 – Post-buckling inelastic cyclic behaviour of truss member (Malla et 

al., 2011) 

 

A survey of the literature found that current studies regarding the dynamic 

analysis of truss structures are based on either the direct integration methods or 

the modal decomposition method. The central difference scheme was used by Yu, 

Li and Luo (2011); the popular average acceleration method of the Newmark’s 

family was used by various authors (Thai and Kim, 2011; Malla et al., 2011). Gao 

(2007) used modal decomposition method for his random seismic response 

analysis. The paper of Koohestani and Kaveh (2010) discussed special treatment 

to system matrices to break down a large eigenproblem into a smaller one and 

thus facilitate the modal decomposition method. 

 

However, these methods are known to have various drawbacks. For the modal 

decomposition method, first of all, it is limited to linear systems only. Secondly, 

as modern truss-type structures tend to contain many structural elements hence the 

number of degree-of-freedoms can get very large. It is known that the 

eigenproblem associated with the modal decomposition method is very difficult to 

solve for large systems. In practice, lower frequency modes are often considered 

and other modes are omitted in the analysis; however the result without the 
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contributions of intermediate and high frequencies will not be able to meet the 

requirement in high precision applications such as vibration control problems and 

shock wave problems. Thirdly, Duhamel time integration may have to be used if 

there is no analytical solution corresponding to particular excitation forces, 

however, this exercise is very expensive computationally. 

 

Direct integration methods do not have the issues associated with the modal 

decomposition method. However, there are a few issues for this type of methods, 

namely, the numerical stability, numerical dissipation and the order of accuracy. 

For the stability issue, this type of methods can be grouped into conditionally 

stable schemes and unconditionally stable ones. The central difference method 

found in the literature is a conditionally stable method hence the time step has to 

be very small to satisfy the stability requirement. It is desirable to use 

unconditionally stable methods, so that the results obtained can be assured not to 

“blow up” due to inappropriate time steps. The average acceleration method of the 

Newmark’s family is a popular method belongs to the group of methods 

possessing the unconditional stability. However, it does not have the desired 

property of numerical dissipation (Hilber and Hughes, 1978). The spurious higher 

mode responses may not be damp out without the numerical dissipation, and 

hence the solution may be contaminated. Various improvements have been made 

to introduce numerical dissipation (Wilson, 1968; Hilber, Hughes and Taylor, 

1977; Chung and Hulbert, 1993). However these methods introduce algorithmic 

damping not only in the desired high frequency range, but more or less in the low 

frequency range as well, therefore these methods all produce bigger period and 

amplitude errors than the original average acceleration method (Hilber and 

Hughes, 1978; Chung and Hulbert, 1993). The direct integration methods use 

certain assumed variation pattern for the acceleration, velocity and displacement. 

Because these assumptions are not flexible, it is often found the accuracy of direct 

integration method is not high. The average acceleration method and those 

improved methods are only second-order accurate, and the central difference 

method is even first-order accurate. To improve the accuracy of the results, the 

time step has to be reduced from a relatively large value to much smaller values, 
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and the reduction depends on what level of accuracy is required. The use of 

smaller time step inevitably means more calculations need to be done for the same 

problem, and hence the computational cost will increase, sometimes, dramatically. 

From the numerical examples presented in Chapter 9, it can be seen that this 

increased computational cost will make the direct integration method less 

favourable for high-precision applications. 

 

In light of these drawbacks, the search for higher-order accurate methods with 

improved algorithmic attributes has always been a major interest of the research 

community. Several alternative linear analysis methods have been proposed 

recently for the structural dynamics in general. It is suggested that higher-order 

algorithms can offer benefits such as suitable for long-term evaluation and 

preserving system invariants (Fung, 1999a).  Larger time step can also be used 

without compromising the accuracy. These alternatives include higher-order 

methods based on the Newmark scheme (Kim et al, 1997; Fung, 1998b), the 

precise time integration methods (Zhong and William, 1994; Fung, 2006; Wang 

and Au, 2009), collocation methods (Golley, 1996; Wang and Au, 2004; Rostami, 

2012), differential quadrature method (Fung 2001a), various new weighted 

residual methods (Golley, 1999; Fung, 2003b; Idesman, 2007) and the variational 

methods (Luo, Huang and Zhang, 2003; Luo, Liang and Li, 2007; Grossi and 

Albaracin, 2007). 

 

In this research the so-called Unconventional Hamilton-type Variational Principle 

(UHVP) (Luo et al., 2003) is used to underpin the development of a new linear 

analysis method for truss-type structures, which utilises finite element 

discretisation in both spatial and temporal domains to derive higher-order 

algorithms. The UHVP based method offers a series of advantages for the 

dynamic analysis, such as: 

 

 No knowledge is required for solving the partial differential equation. 

 No need for separate treatments of solution and altering the forcing 

function as used in some recent methods. 
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 Straightforward and intuitive. 

 Possesses solid mathematical ground. 

 A wide range of governing relations is included. 

 Several existing variational laws / principles are embraced. 

 

Several higher-order algorithms are obtained with this method, and the numerical 

characteristics of these algorithms are discussed in this thesis. The developed 

algorithms are compared with the popular average acceleration method in terms of 

the accuracy and efficiency. 

 

1.2  Objectives 
 

The objective of this research is to construct a new, tailor-made system of 

variational theory for the dynamic analysis of truss-type structures, and to develop 

a new space-time finite element method accordingly. To achieve this objective, it 

is necessary to accomplish the following sub-objectives: 

 

(1) To develop a system of Unconventional Hamilton-type Variational Principles 

tailored for truss-type structures.  

 

(2) To lay a solid theoretical foundation for the development of a space-time finite 

element method for truss-type structures, which can be extended to other 

applications (such as non-linear and multi-physics problems). 

 

(3) To propose a new approach to develop the space-time finite element for truss-

type structures based on the proposed UHVP. 

 

(4) To develop a tailor-made procedure for construction of the space-time finite 

element method for truss-type structures based on the proposed UHVP. 

 
(5) To test the stability, consistency, accuracy, and the efficiency of the proposed 

finite element method with different temporal interpolation schemes. 
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(6) To verify the proposed variational principles and the space-time finite element 

method with numerical examples. 

 

1.3 Methodology 
  

To develop a new analysis method, various approaches emerged recently have 

been reviewed and evaluated, and Unconventional Hamilton-type Variational 

Principle is chosen to underpin the proposed method after the review. However, in 

order to develop the proposed method, tailored principles preserving and utilising 

the characteristics of truss-type structures are required. To this end, five bespoke 

principles suitable for this type of structures are proposed. The one-field 

(displacement) and two-field (displacement and momentum) formulations are 

used for the subsequent development of the new analysis method since these two 

principles contain enough and necessary field variables for the problem and lead 

to the most economic equation sets.   

 

Having derived the UHVP integration formulations, the space-time finite element 

method is utilised to take the advantages offered by these formulations in the aim 

to construct higher-order algorithms. The semi-discretisation treatment of the 

space-time domain is selected. While the spatial discretisation is rather standard, 

four time finite elements are considered in the temporal domain to obtain the 

different numerical properties. These time finite elements are based on the 

Hermite cubic polynomials and the Lagrange polynomials of various orders. 

 

It is important to evaluate the numerical characteristics of the resultant algorithms. 

The convergence is a key issue in this regard. Since the convergence can be 

verified by judging the stability and consistency (Hughes, 1987), the algorithms 

derived are investigated in these two respects. 

 

Numerical examples are also required to verify the performance of the proposed 

algorithms. This is done by comparing the solutions obtained from the algorithms 

with the results from the analytical method (modal decomposition method) and 
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the average acceleration method. The absolute and relative errors are used to 

compare these schemes. 

   

1.4 Organisation of the thesis 
 

The structure of the thesis is as follows: 

 

In Chapter 1, the background of dynamic analysis of truss-type structures, 

research objectives and the adopted methodology have been presented. 

 

Chapter 2 reviews the current research on linear dynamic analysis of truss-type 

structures, and the weakness of these methods is highlighted. In order to find 

suitable alternative methods, various established linear analysis methods and 

emerging methods proposed recently for structures in general are reviewed and 

discussed in detail. Unconventional Hamilton-type variational principle is chosen 

to underpin the proposed method for the dynamic analysis of truss-type structures. 

 

The development of variational methods for dynamic problems is presented in 

Chapter 3. Firstly Hamilton’s Principle is examined and its unfitness for dynamic 

analysis is clarified. The first suitable variational principle - Gurtin’s principle and 

its variants are presented next. Another important branch, Hamilton’s Law of 

Varying Action (HLVA) is reviewed subsequently and some further 

developments related to HLVA are also presented. Finally, the recently proposed 

unconventional Hamilton-type variational principle (UVHP) in the general form is 

introduced. The relationship between UVHP and other variation law / principles is 

discussed. 

 

Chapter 4 derives five tailored UVHPs for truss-type structures. In each of the 

principles a pair of functionals is found. It is proved that the governing equations 

and the initial / boundary conditions will be recovered naturally when the 

variation of either functional is made to vanish. The principles employ up to five 

independent fields, and these fields can be reduced by admitting various control 
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equations as prerequisites, so that a series of simplified principles are derived 

systematically.  

 

Time finite elements are reviewed in Chapter 5. Two fundamental aspects of 

implementing the finite element in the temporal domain are presented first, and 

the choice of this research is explained. Various time finite elements suitable for 

initial-value problems are reviewed. Four time finite elements for the proposed 

method are presented in detail.  

 

In Chapter 6, two classes of space-time finite element algorithms based on the 

unconventional Hamilton-type variational principle are developed. Firstly, the 

one-field and two-field variational formulations are presented. The finite element 

discretisation of the spatial domain is then applied to each variational formulation, 

resulting in a set of integro-differential equations. Subsequently these equations 

are transformed into a set of algebraic equations with the finite element 

discretisation in time, from which the space-time finite element algorithms 

specific for truss-type structures are found. 

 

The stability of the proposed algorithms is investigated in Chapter 7 by examining 

the spectral radius of the amplification matrix of each algorithm. It is found that 

these algorithms possess different stability properties; three out of four algorithms 

are conditionally stable, and one algorithm is unconditionally stable. 

 

In Chapter 8 the consistency of the proposed algorithms is investigated by the 

comparison of the numerical amplification matrix with the exact one, and finding 

the leading truncation error term. It is found these algorithms are consistent. 

While the one-field algorithm is second-order accurate with the cubic Hermite 

time element, the order of accuracy of the two-field algorithms seems to be 

proportional to the order of the time approximation. Second- and higher- order 

results can be generated. 
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The performance of the proposed algorithms is evaluated in four numerical 

examples in Chapter 9, and the results are compared with reference schemes. It is 

found that the UVHP algorithms produce much improved results compared to the 

Average Acceleration Method (AAM) using the same time step, at the same time, 

the computational cost for UVHP algorithms can be lower. To improve the 

accuracy of the AAM results, much increased computational cost is demanded. In 

contrast, these additional costs can be lower for UVHP algorithms as well. 

 

The final Chapter summarises the thesis and presents the conclusions of the 

research, areas for further studies are also recommended. 
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Chapter 2  Overview of Linear Dynamic Analysis 
Methods 
 

2.1   Introduction 
 

This chapter reviews the current dynamic analysis methods for truss-type 

structures and newly emerged methods for structural dynamics in general. First, 

current methods for truss-type structures are reviewed in Section 2.2. It is found 

the current research in this area is still restricted to modal decomposition method 

and a couple of direct integration methods; however, there are several drawbacks 

with these classical methods, which are discussed in Section 2.3. Section 2.3 also 

examines other established main-stream linear analysis methods and various 

dynamic analysis methods proposed recently for structural dynamics in general, in 

order to identify suitable alternatives to the current methods. These methods 

include different types of direct integration methods, higher-order methods based 

on Newmark scheme, precise time integration method, weighted residual methods, 

collocation methods, differential quadrature method and variational methods. 

 

2.2   Current research on dynamic analysis of truss-type structures 
 

There are relatively few studies on dynamic analysis of truss-type structures in the 

literature. The review conducted by this author found that the existing methods 

used for either linear or non-linear truss-type structures can be classified into two 

categories 

 

 Modal decomposition method 

 Direct integration method  

 

Modal decomposition method 
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Koohestani and Kaveh (2010) proposed a special technique to deal with the 

eigenproblem associated with free vibration and buckling of cyclically repeated 

space truss structures. Advantage is taken of the cylindrical coordinate system to 

obtain system matrices in a special pattern, which decomposes the eigenproblem 

into smaller sub-problems easy to solve. In this fashion decomposition method for 

the dynamic analysis can be facilitated. However, this treatment can only be 

applied the particular type of truss. In addition, the forced vibration of trusses is 

not considered.  There are other research apply the modal decomposition method 

directly, see Gao (2007) for example, without addressing the associated 

eigenproblems. 

 

Direct integration method 

Two direct integration methods are found in the literature. In one paper by Yu, Li 

and Luo (2011), the discretised motion equations are solved with the central 

difference method. However this method is conditionally stable only and this 

method is only first-order accurate. In one paper discussing nonlinear time-history 

analysis of truss structures (Thai and Kim, 2011), the response of each time step is 

solved initially with the average acceleration method (AAM) of the Newmark 

family, which is then inputted into the iteration process for the nonlinearity 

consideration. In the paper of Malla et al. (2011) the AAM is also used to solve 

the dynamic equations considering post-buckling behaviours of the structure. The 

Newmark family method will be reviewed in detail in the next subsection. 

 

2.3   Linear analysis methods for structural dynamic problems 
 

In this section the classical methods and newly emerged methods for linear 

dynamic analysis are reviewed, including modal decomposition method, various 

direct integration methods, higher-order methods based on Newmark scheme, 

precise time integration methods, weighted residual methods, collocation method, 

differential quadrature method and variational methods. 
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2.3.1 Equation of motion 

 

The structural dynamic problem can be expressed conveniently with the equation 

of motion. For a Single-Degree-of-Freedom (SDOF) system this equation is in the 

following form 

 
( ) ( ) ( ) ( )mu t cu t ku t f t+ + =                              (2.3.1a) 

       
 
where , , ,m c k f are the mass, damping coefficient, stiffness coefficient and 

excitation force respectively. ( )u t  is the displacement field to be determined and 

the superimposed dot represents the time differentiation operation of the field. 

( )f t  is the time-varying force. The initial condition can be expressed as  

 

( )
( )

0

0

0

0

u u

u u

=

= 

                    (2.3.1b) 

 

The analytical solutions are available if Eq. (2.3.1a) is homogenous, i.e. ( ) 0f t = . 

This corresponding solution is called the homogenous solution. Analytical 

solutions are also known for a few types of non-homogenous equations. However, 

if the excitation force is of an arbitrary type, then the Duhamel integral may have 

to be used to find the so-called “particular solution” related to the force. So the 

solution of the problem in Eq. (2.3.1) is given by the summation of the 

homogenous solution ( )hu t  and the particular solution ( )pu t . 

 

( ) ( ) ( )h pu t u t u t= +         (2.3.2) 

 

The homogenous solution ( )hu t can be found in many textbooks such as (Tedesco 

et al., 1999) and the particular solution can be found by using the Duhamel 

integral as 
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( ) ( ) ( )
0

t

pu t f h t dτ τ τ= −∫        (2.3.3) 

 

where ( )h  is the impulsive response function of the system. 

 

For a Multi-Degree-of-Freedom (MDOF) system, the equation of motion can be 

put into a matrix format as below in which the boldface characters represent 

corresponding vectors/ matrices of the system 

 

( ) ( ) ( ) ( )t t t t+ + =MU CU KU F                  (2.3.4a) 
 

With the initial condition 

 

( )
( )

0

0

0

0

=

=

U U

U U 

                   (2.3.4b) 

 

The solution of an MDOF system can be obtained using many methods, which are 

to be reviewed in the following sub-section. 

 

2.3.2 Classical methods of dynamic analysis 

 

Modal decomposition method and Duhamel integration 

This method was developed for solving dynamic problems for linear MDOF 

systems. It has been well established that the response of a linear MDOF system 

can be obtained from its modal response components (Hughes, 1987; Zienkiewicz, 

1977), as long as the physical damping of the system is of orthogonal type and 

satisfies the Caughey condition 1 1− −=CM K KM C . The modal decomposition 

method transforms the original coupled MDOF equations (in the form of Eq. 

(2.3.4)) into a set of uncoupled SDOF differential equations (in the form of Eq. 

(2.3.1)), which can be solved individually by using analytical solutions or the 

Duhamel integration. The solutions of these uncoupled equations are then 
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combined to obtain the response of the original system. 

 

High precision result at any desired time instance can be obtained with the modal 

decomposition method. However, in order to obtain the uncoupled equations, it is 

required to solve the eigenproblem associated with the dynamic system first, and 

that would be a difficult, even impossible, task for a system with large number of 

degree-of-freedoms. In addition, the Duhamel integration per se is rather 

computationally expensive to find the response history, especially for systems 

with large numbers of DOFs. Therefore, improvements have been proposed to 

tackle these difficulties. Successful efforts have been made by Liu to replace the 

Duhamel integration by the piecewise Lagrange polynomial approximation (Liu, 

2001) and the Birkhoff polynomial approximation (Liu, 2002) of the load 

functions. However, the overall accuracy is compromised as the particular 

solution thus obtained is inherently less accurate than the homogeneous solution.  

 

Direct integration methods  

This family of methods use various finite difference discretisation techniques in 

the time domain to transform the original differential equations into a set of 

algebraic equations, which can be solved much easier. Many widely used methods 

belong to this category. The early direct integration methods include the central 

difference method, the Newmark’s family of methods (Newmark, 1959) , Wilson-

θ  method (Wilson, 1968), HHT-α  method (Hilber et al., 1977), Houbolt method 

(Houbolt, 2012), Park method (Park, 1975), Bossak method and Bazzi-

Anderheggen method (Bazzi and Anderheggen, 1982). Recently some more 

methods have been added into this big family, including an explicit and 

unconditionally stable method proposed by Itzkowitz and Levit (1987),  the 

improved Houbolt’s family of methods (Chung and Hulbert, 1994), the 

generalised- α  method (Chung and Hulbert, 1993), the generalised average 

acceleration method promoted by Kim et al (1997), the sub-time step method by 

Fung (1997b, 2001b). 
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It is impossible to review all direct integration methods in this chapter; therefore a 

few typical ones are selected and presented in what follows. For a more 

comprehensive review of these various schemes, the reader is referred to the work 

of Dokainish and Subbaraj (1989) and Subbaraj and Dokainish  (1989).  

 

One of the most influential methods for structural dynamics is the Newmark 

method. In this method, the approximated displacement 1n+u  and velocity 1n+v  at 

the end of the time step 1nt t +=  are solved from the following equations 

 

( )

( )

2 2
1 1

1 1

1 1 1 1

1 2
2

1

n n n n n

n n n n

n n n n

n n n n

t t t

t t

β
β

γ γ

+ +

+ +

+ + + +

−
= + ∆ + ∆ + ∆

= + ∆ − + ∆

+ + =
+ + =

u u v u u

u u u u
Mu Cu Ku F
Mu Cu Ku F

 

   

 

 

     (2.3.5) 

 

where t∆  is the time step and 1n nt t t+∆ = − . Two parameters β and γ  are in place 

to control the algorithmic properties. It is required that 12 2β γ≥ ≥  to ensure an 

unconditionally stable numerical scheme. When 1
2γ =  the resulting schemes are 

second-order accurate but non-dissipative; while 1
2γ >  the algorithm becomes 

dissipative, but the accuracy decreases to first-order. Other existing methods can 

be derived with different β , γ  values. If 1
2γ =  and 1

12β = the implicit method 

of Fox and Goodwin (Fox and Goodwin, 1949) arises; when 1
2γ =  and 1

6β =  

the linear acceleration method is obtained and if 1
2γ =  and 1

4β =   the average 

acceleration method is derived. 

 

Since the original Newmark method can only generate either dissipative first-

order accurate algorithms or non-dissipative second-order algorithms, various 

proposals have been put forward to alter this type of method to have the desired 
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numerical stability and dissipation properties. Among the second-order accurate 

algorithms are Wilson-θ  method, HHT-α  method, collocation method (Hilber 

and Hughes, 1978), WBZ- α  method (Wood et al., 1980), generalised-α  method 

(Chung and Hulbert, 1993). 

 

2.3.3 Newly developed methods 

 

Higher-order methods based on the Newmark scheme 

A fourth-order algorithm was obtained by Tarnow and Simo (1994) using a sub-

marching procedure applied to the Newmark method. The resulting algorithm is 

non-dissipative, and the accuracy is not as good as other fourth-order methods.  

The concept of average acceleration used in the original Newmark method was 

generalised by Kim et al. (1997), a higher-order and unconditionally stable 

algorithm was achieved. However, this algorithm is also non-dissipative. 

Dissipative, unconditionally stable and higher-order accurate schemes were 

derived by Fung with the sub-stepping procedure (Fung, 1997b,c, 2001b; Fung 

and Chow, 1999, 2002). The essence of sub-stepping procedure is to evaluate the 

responses at the sub-time step locations with Newmark method individually, and 

then combine these responses with the corresponding weighting factors to obtain 

the solution at the end of the time step. The algorithm is unconditionally stable 

and the dissipation is controllable with an ultimate spectral radius parameter. The 

accuracy is related to the number of sub-time steps and can be adjusted to the 

desired order. These sub-time step locations can be determined by the roots of a 

polynomial, which in turn can be given explicitly in terms of the ultimate spectral 

radius parameter and the number of the sub-time steps. The weighting factors can 

be solved from a set of algebraic equations once the sub-time step locations are 

determined. However, there are several drawbacks with this method: 

 

 Complex time step has to be used if the desired order of accuracy exceeds 

three; computational cost is hence higher due to the high cost of computation 

of complex numbers. 
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 Excitation force needs to be modified to maintain the same accuracy of the 

particular solution as the homogeneous solution. 

 Excitation force needs to be extrapolated in case of sub-step positions are 

outside of the current time step. 

 

Precise Time Integration (PTI) Methods  

Zhong and William(1994) proposed a time integration method, called the precise 

time step integration method, for a high precision analysis of structural dynamics. 

In their method, with the assistance of a new variable Y , 

 

2
= +

CUY MU         (2.3.6) 

 

the second-order differential equation Eq. (2.3.4) was transformed into a first-

order equation 

 
1 1

4 2

− − 
= − − + 
 

CM C CMY K U Y F       (2.3.7) 

 

Combined with the velocity expression derived from Eq. (2.3.6) 

 
1

1

2

−
−= − +

M CU U M Y        (2.3.8) 

 

A matrix equation was derived as 

 

′= +V HV F          (2.3.9) 

 

in which  
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1
1

1 1
2; ;

4 2

−
−

− −

 
−      ′= = =   

    − −  

M C MU 0
V H F

Y FCM C CMK
   (2.3.10) 

 

The load term F  was assumed to vary linearly within the time step ( )1,k kt t + . The 

general solution was obtained as the following 

 

( ) ( ){ } ( )1 1 1 1
1 1 1 1k k k k k k kt t− − − −
+ + + +

′ ′ ′ ′ ′= ∆ × + + − + + ×∆V T V H F H F H F H F F  

 (2.3.11) 

 

in which 1k kt t t+∆ = −  and the amplification matrix was 

 

( ) ( )expt t∆ = ×∆T H         (2.3.12) 

 

The high precision of Zhong’s algorithm lies in the accurate calculation of the 

exponential matrix T . The key to this is dividing the time step into a large number 

of segments with the length being ( )integer 202N
t Nτ ∆= ≥  and using the 

following 2N property 

 

( ) ( ) ( ){ }
2

2
exp exp exp

2

N
N

N

tt t τ ∆  ∆ = ×∆ = × = ×  
  

T H H H    (2.3.13) 

 

When 20N = , 2 1048576N = , therefore τ is such a small figure that a truncated 

Taylor expansion can be used to approximate ( )exp τ×H very accurately.  

 

( ) ( ) ( ) ( )2 3 4

exp
2! 3! 4! a

τ τ τ
τ τ

 × × ×
× ≅ + × + + + = + 

 
 

H H H
H I H I T   (2.3.14) 
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It is then followed by 

 

( ) { }2N

at∆ = +T I T         (2.3.15) 

 

A scaling and squaring technique was used for the calculation of Eq. (2.3.15) to 

obtain T . The accuracy of Zhong’s method was only affected by the accuracy of 

the matrix inversion of H  and the load approximation. The selection of the time 

step t∆  can be made considerably large (as long as the load approximation is 

acceptable for such a time step) and independent to the modal frequencies of the 

structural system. However, as shown in Eqs. (2.3.14) and (2.3.15), the 

computation of ( )t∆T  involved multiple matrix operations, which made the 

computation not so efficient for large systems.  

 

To reduce the computational effort, Fung (1997a) proposed a similar precise time 

step integration method. The second-order equation of motion was tackled 

directly, and the solution was expressed using the initial conditions, the steady-

state response in addition to the step-response and impulsive-response matrices. 

With the steady-state response studied by others (Leung, 1986), Fung’s work 

focused on the derivation of the step-response and impulsive-response matrices, in 

which the scaling and squaring technique was employed as well to make the time 

segment small enough for the precise calculation of the matrices using the 

truncated Taylor series. In contrast to Zhong’s original method, the symmetry of 

matrices was introduced, and the relations between the response matrices and their 

time derivatives were investigated in order to improve the computational 

efficiency. As demonstrated in his paper, the accuracy was high, but the stability 

of the method was unconditionally unstable or conditionally stable at the most, 

depending on the order of the Taylor expansion. 

 

Efforts have been made to improve the PTI method through many other ways, 

interested reader is referred to the works of (Lin et al., 1995; Shen et al., 1995; Gu 

et al., 2001) for more details. In particular, the truncated Taylor expansion of the 
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exponential function was replaced by the Padé approximation (Wang and Au, 

2009) and the generalised Padé approximation (Fung, 2005; Wang and Au, 2009) 

in the evaluation of the matrix exponential function to attain unconditional 

stability and controllable numerical dissipation. Wang and Au (2009) further 

replaced the linear approximation of the excitation forces by three different types 

of quadrature formulations to eliminate the errors associated with the matrix 

inversion, thus the accuracy was further improved. The order of accuracy can be 

set as desired by adjusting the algorithmic parameters.   

 

In these works mentioned above the matrix multiplications are still required; 

consequently the computational cost is still high for large systems. Fung (2006) 

proposed an improved version of PTI method to tackle this problem, in which the 

computational efficiency was firstly improved by reducing the dimension of the 

exponential matrix ( )exp t×∆H through the Krylov subspace method. The 

efficiency was further improved by using the Padé approximation instead of the 

truncated Taylor series in the evaluation of the exponential matrix, along with 

transforming the inhomogeneous governing equation into an equivalent 

homogeneous one, by the dimensional expanding method (Wang et al., 2002), to 

avoid seeking the particular solution.  

 

However there are several drawbacks with the precise time step integration 

method: 

 

 Computational cost is high due to the multiplication of the system matrix. 

 Accuracy will be compromised if the inversion of the amplification matrix is 

still used. 

 Particular solution is less accurate compared to the homogenous solution. 

Dimension expansion method can be used to avoid seeking the particular 

solution, however, at a price of increased computational cost. 
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Weighted residual methods  

The weighted residual method is widely used for various problems. As popular for 

solving the static problems, it is not surprising that this method is also widely-

used for various initial-value problems, including structural dynamics. 

Zienkiewicz and co-authors (1984) re-derived many direct integration methods 

under the unified SSpj framework using weighted residual method. However, 

other found the straightforward application of the weighted residual method in the 

time domain did not offer advantages over existing finite difference methods 

(Segerlind, 1989). In the 1990’s, time-discontinuous Galerkin method was 

introduced by Hughes and Hulbert for dynamic analysis (Hughes and Hulbert, 

1988; Hulbert and Hughes, 1990; Hulbert, 1992; Hughes and Stewart, 1996). In 

their approach, the temporal and spatial domains are discretised simultaneously 

forming unstructured meshes to capture discontinuities or sharp changes in the 

solution. The trial functions for the displacement and velocity, as well as the test 

function, are allowed to be discontinuous between the “space-time slabs” 

generated from the simultaneous discretisation. These quantities are then 

substituted in the Galerkin formulation for finding the solution; additional least-

squares term may be incorporated to enhance the stability. The algorithm thus 

obtained is unconditionally stable and third-order accurate for linear 

elastodynamics problems. However, the scheme is asymptotic annihilating thus 

too dissipative in the high-frequency range. 

  

It is desired that the numerical schemes to be unconditionally stable, high order of 

accuracy and with adjustable numerical dissipation. Many weighted residual 

based methods can only have up to second-order accuracy if unconditional 

stability is guaranteed, and they are either non-dissipative at all or over-dissipative 

at the high-frequency end. This issue was successfully solved by Fung in a series 

of works. In the work of Fan and Fung (1997a,b), a general framework was 

proposed to offer algorithms with those desired properties. The equation of 

motion was transformed into first-order form, and the Lagrange finite elements 

were used for the trial and test functions. The trial functions were interpolated 
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through one more node than that of the test functions in order to keep the number 

of the unknowns equal to the number of equations after the incorporation of the 

initial conditions. This algorithm is unconditionally stable and up to fourth-order 

accurate. In addition, the dissipation is fully controllable with an algorithmic 

parameter. The time-continuous Galerkin methods (such as SSpj algorithms) and 

the time-discontinuous Galerkin method can be unified into this framework.  

 

Another weighted residual based method called the weighting parameter method 

was proposed by Fung later on for the same purpose. The cubic Hermite time 

element was employed for the time approximation of the displacement (Fung, 

1996). The residual of the governing equation was then weighted by two 

weighting functions. However these weighting functions were not specified in the 

first place, rather, four weighting parameters were introduced to solve the 

weighted equation. The weighting parameters used were the time integration of 

the inner product of the weighting functions with the trial functions, which also 

controlled the algorithmic characteristics, such as accuracy and dissipation. The 

weighted parameters were obtained by comparing the numerical solution with the 

analytical solution and eliminating the leading term of the truncated error. Two 

families of algorithms were derived. One posses the third-order accuracy and is 

asymptotically annihilating; the other posses the fourth-order accuracy and has no 

numerical dissipation at all. Unconditional stability is achievable for both families. 

A similar treatment was used by Golley (1999) where eight undetermined 

parameters were used in his scheme. These parameters were selected subsequently 

with the aim to minimise errors, guarantee unconditional stability and improve 

numerical efficiency. The numerical dissipation is fully controllable in this 

treatment. 

 

The weighting parameter method was further developed recently. Fung (1999a,b) 

used weighting parameters instead of weighting functions in the recurrence 

formulation, the undetermined values at the end of time step were related to the 

initial values through the weighting parameter matrix. The weighting parameters 
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were so selected that the Padé approximation (or the generalized Padé 

approximation) of the exponential function in the analytical solution of the 

original equation was re-produced. Once the weighting parameters were 

determined the end value could then be worked out. It leads to an unconditionally 

stable algorithm of at least nth-order accurate with controllable dissipation ( n  is 

the number of the undetermined coefficients in the displacement approximation). 

However, additional weighting parameters might be required to maintain the 

accuracy of the algorithm under certain circumstances. The displacement 

approximation can also be related to the Taylor expansion of the exact solution to 

predetermine some of the coefficients (Fung, 2000a, 2003c). The order of 

accuracy of the unconditionally stable method was increased to 2n . In another two 

papers by Fung (2003a,b), the initial and final displacement and velocity were 

weakly enforced at the beginning and the end of the time step, the accuracy was 

further improved to 2 3n + . This treatment also provided a unified framework for 

various continuous, time-discontinuous and bi-discontinuous Galerkin schemes. 

 

A new time-continuous Galerkin method was proposed recently by Idesman 

(2007). This method offers the improved accuracy and reduction in computation 

time compared to the standard time-continuous Galerkin methods. The trial 

functions and test functions were in the form of power series for the displacement 

and velocity fields. Additional weighting scalar functions were utilised to provide 

additional numerical dissipation. The unknown quantities at the end of the time 

step can be attained by a direct solver or a predictor/ multi-corrector procedure. 

The method is unconditionally stable and the numerical dissipation is controllable. 

Idesman also presented a strategy to combine small/null and large numerical 

dissipation methods for the treatment of the spurious oscillations encountered in 

problems such as wave propagations. 

 

In general this category of method produces highly accurate results, although 

there might be additional costs, such as additional weighting parameters or 

stabilizing functions are required to solve the solution accurately. 
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Collocation methods  

The concept of the collocation method is very easy to understand - it requires the 

governing equation to be satisfied at the specified time nodes thus the unknown 

coefficients in the field approximation can be determined, and consequently the 

displacement/ velocity at the end of the time step can be worked out subsequently. 

The Wilson-θ  method is a typical example of the collocation method. Simple it 

may seem, yet this method is capable of producing high precision results if 

suitable collocation points are used, thus the choice of the collocation points is 

crucial. 

 

Golley (1996) presented a fourth-order accurate algorithm in which a cubic 

approximation of the displacement was used and two Gauss points were chosen as 

the collocation points, however the algorithm is only conditionally stable. Fung 

(2000b) proposed an unconditionally stable high-order collocation method whose 

order of accuracy is controllable. The concept of weighted parameter is used again 

there and the collocation points are given by the roots of a polynomial in terms of 

the ultimate amplification factor, which in turn is adjustable. 

 

The combination of weighted residual and point collocation method was utilised 

by Wang and Au (2004), leading to an unconditionally stable high-order 

algorithm. A fifth-order time finite element was employed to approximate the 

displacement field with the displacements, velocities and accelerations at both 

ends of the time step, one of the two collocation points was chosen with a θ  

parameter as used in the Wilson-θ  method while the other at the end of the time 

step. In addition, the weighted residual was required to vanish within the time step 

where another parameter was introduced. These parameters influence the 

algorithmic accuracy, stability and dissipation. The dissipation can be adjusted 

with several parameters. The procedure is less straightforward than other 

weighted residual methods. 
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Rostami  et al. (2012) chose the equally-spaced points within the time step as the 

collocation points, in combination with the quartic B-spline approximation of the 

displacement field, to construct a conditionally stable scheme. 

 

Differential quadrature method  

The differential quadrature method was initially proposed by Bellman and Casti 

(1971), and introduced by Fang et al. (1999) for structural dynamic problems. 

Later, a more general application of this technique was utilised in combination 

with the point collocation method by Fung for initial value problems of various 

orders (Fung, 2001a, 2001c). The key tool used in this method is to approximate 

the time derivatives of a target function with the weighted function values at 

distinct sampling points within the time interval. Initial values can be incorporated 

explicitly during the process. The approximated quantities are then substituted 

into the governing equation directly, leading to a set of algebraic equations in 

terms of the function values at all sampling points. Once these values are solved 

for, the end value is then obtained by the Lagrange interpolation. The accuracy 

and the stability of the scheme depend on the selection of the n  sampling points. 

In general, the scheme is at least nth -order accurate, and the order of accuracy can 

be further improved to 2 1n − or 2n  for the end values of the time step if the 

sampling points are chosen as the roots of a polynomial in terms of a dissipation 

parameter. The given scheme is unconditionally stable with controllable 

dissipation. This method was also shown to be equivalent to the implicit Runge-

Kutta collocation method (Fung, 2002b). The method is shown to be applicable to 

nonlinear problems as well (Liu and Wang, 2008). 

 

Variational methods 

In additional to the methods reviewed as above, variational methods have also 

been applied to dynamic problems. In fact, this type of method is also the earliest 

method applied to the dynamic problems. Typical examples can be found in 

(Courant, 1943; Gurtin, 1963; Argyris and Scharpf, 1969; Levinson, 1976).  

Informations such as the governing equation and the initial conditions can be 
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derived by finding the stationarity of a variational statement. In fact, the 

governing equation even needs not to be used to solve the problem. It is often 

found that variational methods offer several significant advantages, such as the 

expediency of manipulation; ease of incorporation of constraints and boundary 

conditions; free choice of reference system (Courant, 1943; Lanczos, 1970).  

Particularly, for time-dependent problems, variational methods may offer 

solutions directly without any knowledge of solving the partial differential 

equation involved (Bailey, 1976), thus this type of method is also very appealing. 

There are several variational principles/ laws for dynamic problems, including 

Hamilton’s Law of Varying Action, Hamilton’s Weak Principle, Gurtin’s 

Principle and its simplified variants.  

 

Recently a novel type of variational principle, so-called Unconventional 

Hamilton-type Variational Principle (Luo et al., 2003), has been proposed and 

applied to various initial-value problems. Satisfactory results are obtained (Huang 

et al., 2006; Jiang and Luo, 2008; Li and Luo, 2007; Luo et al., 2006). This type 

of principle has a solid mathematical foundation and takes full account of the 

characteristics of dynamic systems, which is not fully satisfied by other 

variational principles/ laws. In addition, it embraces several existing variational 

principles and laws. Therefore it is of interest to explore this principle to construct 

a new method for the dynamic analysis of truss-type structures.  

 

2.4   Summary 
 

In this chapter, existing analysis methods for truss-type structures and various 

recently developed methods for linear structural dynamics in general are reviewed. 

Modal decomposition method can be used to find analytical homogeneous 

solutions. However, it is generally difficult to solve the associated eigenproblem 

for large systems in the first place. Meanwhile, the forced vibration has to be 

calculated with either the expensive Duhamel integration method or various force 

approximation techniques at a price of compromised accuracy. Various direct 
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integration methods are among those popular methods in use. However, the 

accuracy for many well-known schemes is limited to second-order if 

unconditionally stable solutions are desired. In addition, the numerical damping is 

normally not adjustable. The family of precise time integration methods can 

achieve high precision numerical results by calculating the amplification matrix 

with nominal errors. Several variants of this method and the associated advantages 

and drawbacks are reviewed. Weighted residual method is another popular type of 

method. Several higher-order and unconditionally stable algorithms with 

controllable dissipation were proposed recently, although additional 

computational cost might be incurred. Collocation method can produce highly 

accurate results however the choice of the collocation points is crucial. 

 

Various variational principles and laws have also been used and offer several 

advantages for the dynamic problem. The recently proposed Unconventional 

Hamilton-type Variational Principles (UHVP) has a solid mathematical 

foundation and takes full account of the characteristics of dynamic systems. This 

variational principle is used to underpin the proposed analysis method in this 

research. 
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Chapter 3  Variational Methods for Initial-value 
Problems 
 

3.1 Introduction 
 

Problems of structural dynamics belong to the category of initial-value problem, 

therefore, the existing variational methods for this category in general are 

reviewed in this chapter to provide a general introduction on available approaches. 

Variational principles and statements for elastodynamic problems are of primary 

interest. Firstly, the unfitness of the well-known Hamilton’s Principle for initial-

value problems is examined, followed by the review of Gurtin type principles and 

some simplified variants. However, the derivation of Gurtin type principles is 

quite cumbersome, and the resultant algorithms are computationally expensive 

due to the convolution operation employed. Variational approaches without the 

convolution operator are examined next with particular emphasis on Hamilton’s 

Law of Varying Action and its variations. In the final part of this chapter, a novel 

type of variational principle called Unconventional Hamilton-type Variational 

Principles is reviewed. This type of principle not only contains all necessary 

relations and conditions for initial-value problems, but also embraces some 

established variational laws and principles, such as Hamilton’s Law of Varying 

Action and others.  

 

3.2 Preliminary 
 

Let an arbitrary volume V be enclosed by its boundary S , which in turn can be 

divided into two complementary disjoint subsets Sσ and uS . A traction is 

prescribed on Sσ , denoted as T . The displacement is prescribed on uS , denoted 

as u . Sσ and uS  satisfy 
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uS S Sσ=  and 0uS Sσ =        (3.2.1) 
 

1 2 3( , , )n n n=n is the outward pointing normal to the boundary. 

 

3.3 Variational methods for initial-value problems 
 

Analytical mechanics, or the variational approach of mechanics, examines two 

scalar quantities, the “kinetic energy” and the “potential energy” of the studied 

system, and seeks the solution from the point of view of energy. Originated by 

Leibniz, and further developed by Euler, Lagrange and Hamilton, as well as many 

modern scholars, this subject becomes an indispensable foundation for mechanics. 

 

Hamilton’s principle is one of the best-known variational principles, and indeed 

this principle was adopted in the early years for structural dynamics (Argyris & 

Scharpf, 1969). It is not difficult to find that this principle is still referred to in 

current textbooks (for example the classical one by Tedesco (1999)) and papers 

(Heppler et al., 2003, Grossi and Albaracin, 2007). However, Hamilton’s principle 

does not satisfy the pre-conditions for initial-value problems and is hence not 

really suitable for this type of problem, including structural dynamics. The reason 

is discussed as below. 

 

3.3.1 The unfitness of Hamilton’s principle for initial-value problems 

 

Hamilton (1834, 1835) presented a variational approach for the determination of 

the motion of objects. However, his philosophy was somehow mis-interpreted in 

the historical development of the analytical mechanics, and what is now called 

“Hamilton’s Principle” is actually not what Hamilton promoted in his original 

work (Bailey, 1975a). 
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Being a “constrained variational principle” (Chen, 1990), Hamilton’s principle is 

suitable for boundary-value problems, where the unknown field attains pre-

determined values at the lower and upper temporal boundaries thus the variation 

of the functional vanishes at both boundaries. It is easy to see that this is not the 

case for initial-value problems since the value at the upper boundary is not known 

at all. Many researchers have pointed out the flaws using this principle for initial-

value problems (Gurtin, 1964a; Tiersten, 1968; Tonti, 1973; Reddy, 1976; 

Simkins, 1981): 

1) The first order derivative operator ( t∂ ∂ ) used in the initial-value problems 

are not self-adjoint with respect to the following operator used in 

Hamilton’s principle. 

 

( ) ( ){ }1

0
1 2 1 2, , ,

t

V t
u u u x t u x t dtdV〈 〉 = ∫ ∫                  (3.3.1) 

 

2) Incorrect zero velocity / momentum condition would arise at the upper 

temporal boundary. 

 

3) Initial conditions of the problems are not included in Hamilton’s principles 

 

4) Spatial boundary conditions need to be imposed as constraints. 

 

The first and the fourth points are quite straightforward, and the second and third 

points may be illustrated as follows. 

 

Let 1
2

T muu=   and 1
2

V kuu= denote the kinetic energy and the potential energy of 

a single mass-spring system, respectively. f is a conservative force. With 

Hamilton’s principle one has 
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( ) ( )1 1

0 0

T V u 0
t t

t t
dt f dtδ δ− + =∫ ∫                 (3.3.2a) 

 

or  

 

( )1 1

0 0

1 1 u 0
2 2

t t

t t
muu kuu dt f dtδ δ − + = 

 ∫ ∫                 (3.3.2b) 

 

Performing the variation operation and integrating the kinetic energy term by part 

gives 

 

( )1
1

0
0

u u 0
t t t

t tt
mu ku f dt muδ δ =

=− − + + =∫        (3.3.3) 

 

Satisfaction of Eq. (3.3.3) hints that in addition to the control equation 

 

0mu ku f− − + =         (3.3.4) 

 

another condition arises, viz. 

 

1

0
u 0t t

t tmuδ =
= =          (3.3.5) 

 

It should be noted that one of the trailing terms
0

u t tmuδ = vanishes due to 

0
u 0t tδ = =

 
for the given initial displacement in the variational context, therefore 

Eq. (3.3.5) becomes 

 

1u 0t tmuδ = =            (3.3.6) 

 



Chapter 3 Variational methods for initial-value problems 

 

 

36 

 

Eq. (3.3.6) implies the velocity u  (or the momentum mu ) at the instant 1t  has to 

equal to zero since the variation of the displacement uδ  does not necessarily 

vanish at the upper temporal boundary. This postulation, however, is obviously at 

fault. It is also clear that the initial conditions, i.e., the initial displacement and 

initial velocity, are not included in either Eqs. (3.3.2) or (3.3.3). 

 

As pointed out by Tonti (1973), methods based on Hamilton’s principle ignore the 

initial conditions for the first time derivatives of the unknown variables at the 

lower temporal boundary; and insert various artificial conditions at the upper 

temporal boundary, transforming the initial-value problem into a boundary-value 

problem. However, this boundary-value problem is not equivalent to the original 

initial-value problem and does not in general give the same solution. The only 

benefit of this transformation is that the control equation found with the 

transformed boundary-value problem is the differential equations of the original 

initial-value problem. 

 

3.3.2 Gurtin’s variational principles 

 

The breakthrough came when Gurtin (1963, 1964a, 1964b) introduced a novel 

type of variational principles for linear initial-value problems. Gurtin transformed 

the original problem to an equivalent boundary-value problem containing the 

governing equations and the initial conditions implicitly, by using a convolution 

operator in the following bilinear form.  

 

( ) ( ) ( ){ }1 2 1 20
, , ,

t
u u x t u x t u x dτ τ τ∗ = −∫      (3.3.7) 

 

Gurtin gave a general variational principle with the displacement u , the strain 

tensor e  and the stress tensor τ  as the independent variables. In the principle, a 

functional, which can be regarded as “a function of functions” was used to 
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incorporate the relationships of these variable fields for the dynamic problem. The 

functional given by Gurtin was ( )Λ u,e, τ  as the following 

 

( ) ( ) ( ) ( )[ ]( )

( ) ( ) ( )

[ ]( ) ( ) ( )
,

1 1, ,
2 2

, ,

, ,
u

ijkl ij kl i iV V

ij ij ij j i iV V

i i i i iS S

c x t e e x t dx x u u x t dx

t e x t dx t f u x t dx

t T u x t dx t T T u x t dx
σ

ρ

τ τ

 Λ = ∗ ∗ + ∗ 

  − ∗ ∗ − ∗ + ∗   
 + ∗ ∗ + ∗ − ∗ 

∫ ∫

∫ ∫
∫ ∫

u,e, τ

         (3.3.8) 

 

Taking variation of ( )Λ u,e, τ  and making it to vanish will lead to a set of 

admissible fields satisfying the governing equation, strain-displacement relation, 

the stress-strain relation as well as the initial conditions and boundary conditions 

simultaneously. Several more principles were also given by Gurtin, in which 

different relations and boundary conditions were met in the selection of the 

variable set. When the variations of the functionals are made to vanish, the 

governing equation, the initial condition and the rest of boundary conditions will 

be obtained. 

 

Gurtin’s method uses Laplace transform and inverse Laplace transform. 

Reddy(1976) argued additional errors would be introduced in these transforms. 

However Gurtin’s method is a great achievement in developing variational 

principles for initial-value problems, and many have been inspired to find more 

variational principles in this approach (Wilson and Nickell, 1966, Nickell and 

Sackman, 1968, Sandhu and Pister, 1970, Tonti, 1973, Herrera and Bielak, 1974, 

Reddy, 1976, Gellert, 1978, Bhutani and Gupta, 1982, Luo and Cheung, 1988, 

Peng et al., 1996). Indeed, the convolution technique is still applied in recent 

dynamic algorithms (Soares Jr, 2011, Panagiotopoulos and Manolis, 2011). 

 

Tonti (1973) pointed out the Laplace transform and the inverse-Laplace transform 

were not actually necessary for finding the equivalent control equations. He 

demonstrated a method to obtain directly the integro-differential equations given 
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by Gurtin. Further, Tonti highlighted that initial-value problem in the original 

differential equation form could be deduced directly from the stationarity of 

suitable functionals. 

 

Reddy (1976) presented a modified Gurtin-type variational principle for 

viscoelasticity problems, also using the convolution bilinear operator. The 

resulting control equations are in the original differential equation form, not as the 

one in Gurtin’s integro-differential form. The underpinning theory for Reddy’s 

procedure is a theorem proven by Vainberg et. al.(1964). This theorem states that, 

if an operator ( )N is of potential, then a functional ( )J u  can be found as 

 

( ) ( ) ( )
0

0 ,
u

u
J u J u N u du= + ∫       (3.3.9a) 

 

Where 

 

( ) ( )0

1 2 1 20
, , ,

t

V
u u u x t u x t dtdx=   ∫ ∫       (3.3.9b) 

 

Reddy casted the control equations for linear viscoelastic problems into an 

operator form, including: 

 

• Strain-displacement relation 

• Equation of motion 

• Stress-strain relations 

• Displacement and traction boundary conditions 

• Displacement and velocity initial conditions 

 

By utilising Vainberg’s theorem, a functional can be found whose stationarity 

leads to the solution of the linear viscoelastic problem. The functional given is 
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[ ] ( ) [ ]

( ) ( )

, ,

0 0

1 1, , ,
2 2

1 , ,
2

1, , 2 ,
2

u

ij
m m i j j i ij m m

ijkl ijkl m
kl kl ij m m S

m
m m m m m m mS

J u u u u f u

G E T u u

T u u v u u d u
σ

ρ σ γ ρ

γ γ γ

ρ ρ

 = + + − −  

   + ∗ + − −  

 − + − − −       

 



 

  (3.3.10) 

 

in which 

 

( ) ( )
0

, ,
t

a b a x b x t dτ τ τ∗ = −∫  

[ ] ( ) ( )
0

, , ,
t

V
a b a x b x t dxdτ τ τ= −∫ ∫  

[ ] ( ) ( )
0

, , ,
t

S S
a b a x b x t dSdτ τ τ= −∫ ∫  

[ ] ( ) ( ){ }0 0
, , ,

t

V
a b a x b x t dx

τ
τ τ

=
= −∫  

 

It is noticeable that various authors, Gurtin (1964a), Sandhu and Pister (1970) and 

Reddy (1976) all demonstrated the feasibility of generating particular variational 

functionals from a general one, by allowing certain boundary conditions to be met 

at the outset. In Gurtin’s work (1964a), for example, the functional given in Eq. 

(3.3.8) can be reduced to 

 

( ) ( )[ ]( ) ( )

[ ]( ) ( )

1 1, ,
2 2

, ,

i i ij ijV V

i i i iV S

x u u x t dx t e x t dx

f u x t dx t T u x t dx
σ

ρ τ Φ = ∗ + ∗ ∗ 

 − ∗ − ∗ ∗ 

∫ ∫
∫ ∫

u,e, τ

  

(3.3.11)  

 

when the strain-displacement relations ( ), ,
1
2ij i j j ie u u= + , the stress-strain 

relations ij ijkl klc eτ =  and the boundary conditions ˆi iu u=  are admitted in the 

selection of  the set of variables u , e and τ . 
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However the drawback with these functionals given by Gurtin, Sandhu and Pister, 

Reddy as well as Herrera and Bielak (1974) is that they all contain double 

convolution operations in the form 1 2 3u u u∗ ∗ , which makes the computations 

rather cumbersome and expensive.  

 

3.3.3 Variational formulations without convolution operator 

 

To avoid the convolution computation and construct more straightforward 

variational formulations, other treatments have been explored by many 

researchers. One effort was made by Tiersten (1968) to introduce the boundary 

and initial conditions into the variational statements with the aid of Lagrange 

multipliers. However, while boundary conditions were built into the variational 

statement via Lagrange multipliers, the initial conditions were introduced with the 

weighting terms, not Lagrange multipliers, thus his method is a mixed method. 

Inspired by Tiersten’s work, Simkins (1978) used purely Lagrange multipliers and 

constructed variational statements containing the governing equation, boundary 

conditions, as well as the initial conditions naturally. The trial solution hence can 

be chosen freely. 

 

From the equation of motion, 

 

, 0k lk l
k

U u
u

ρ σ∂
+ − =

∂
          (3.3.12)  

 

where U is the potential energy of the system, lkσ the stress tensor. 

Along with the boundary conditions 

 

0k ku u− =  on uS                   (3.3.13a) 

0k l lkF n σ− =  on Sσ                  (3.3.13b) 
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and the initial conditions (the barred quantities are the given initial values) 

 

( ) ( )0 0 0,k ku t u t− =  ( ) ( )0 0 0k ku t v t− =                     (3.3.14)  

 

A variational formulation can be constructed  

 

( )

( ) ( ) ( )

( ) ( )

1 1

0 0

1

0

(1)
,

(2) (3)
0 0

(4)
0 0 0

u

t t

k lk l k k l lk kt V t S
k

t

k k k k k kt S V

k k kV

U u u dVdt F n dVdt
u

u u dVdt u t u t dV

u t v t dV

σ

ρ σ δ σ δλ

δλ δλ

δλ

 ∂
+ − + − ∂ 

+ − + −  

+ − =  

∫ ∫ ∫ ∫

∫ ∫ ∫
∫





  

(3.3.15)  

 

The Lagrange multipliers, ( ) ( 1, 2,3, 4)i
k iδλ  = , can be determined by the 

elimination of redundant boundary conditions, after applying the divergence 

theorem and integration by parts to Eq. (3.3.15) for several times. However, as 

Simkins admitted, “the identification of which boundary terms are to be 

eliminated does not always proceed from obvious physical consideration”. Smith 

(1979) questions Simkins’ method is not a variational method but a weighted 

residual method in nature, because there is no functional and “therefore nothing to 

vary”. In his response, Simkins (1979) highlights the distinct difference between a 

weighted residual method and a variational method –  while the analyst makes the 

choice of weighting functions and determines how the residual is weighted in the 

former method, “the physical law or balance make the choices automatically” in 

the latter. 

 

Chen (1990) presented a procedure to obtain an unconstrained variational 

statement for dynamic problems, by virtue of the so-called Principle of Total 

Virtual Action. According to Chen, the total virtual action of a system consists 

five individual parts.  
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The first part is the basic virtual action of system integrated over the space –time 

domain [ ]0 1,V t t× . 

 
1

0

t

H t V
A LdVdtδ δ= ∫ ∫         (3.3.16) 

 

where , ,
1 1
2 2i i ijkl i j k lL u u C u uρ= −  is the Lagrange density of the system.  

 

The second part is the virtual action contributed by the prescribed body force if , 

 
1

0

t

b i it V
A f u dVdtδ δ= ∫ ∫                      (3.3.17) 

 

The third part is due to the surface force iT over the boundary, [ ]0 1,S t t×  

 

( )1 1

0 0 u

t t

S i i i i it S t S
A Tu dsdt T u u dsdt

σ

δ δ δ= + −∫ ∫ ∫ ∫     (3.3.18) 

 

The fourth part is the change of the action at the temporal boundaries 0t and 1t  

 

( ) ( ){ } ( ){ }
( ) ( ){ } ( ){ }

0

1

0 0
0

1 1
1

t i i i i iV t t

i i i i iV t t

A P u t v u u d

P u t v u u d

δ δ ρ

δ ρ

=

=

   = − − − Ω   

   − − − − Ω   

∫

∫





   (3.3.19) 

 

in which iP is the  “density of generalised momentum over V ”; ( )0
iu and ( )0

iv are 

the given initial displacement and velocity. ( )1
iu and ( )1

iv are the counterparts at the 

upper time boundary. The quantity ( ) ( )0
0i iu t vρ  −  is an impulse required for the 

jump of velocity at jt in case ( ) ( )j
i j iu t v≠ . 
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The fifth part is needed for cases where discontinuity in time occurs, the 

contribution of the impulse iP at the instance *t ( *
0 1t t t< < ) is  

 

( )*
P i iV

A P u t dVδ δ= ∫         (3.3.20) 

 

Adding up all five parts one has 

 

T H b S t PA A A A A Aδ δ δ δ δ δ= + + + +               (3.3.21) 

 

Vanishing of the total virtual action TAδ will give the satisfaction of the motion 

equation and boundary conditions as well as the initial conditions, as expressed in 

Eqs. (3.3.13) to (3.3.14). In addition, the relation between the momentum and the 

velocity are also satisfied at both temporal termini.  

 

3.3.4 Hamilton’s Law of Varying Action  

 

Parallel to various approaches to construct aforementioned variational 

formulations, different treatments to the boundary variations have also been 

explored. In a paper published by Pian and O’Brien (Geradin 1974) an “extended 

form” of Hamilton’s principle was used. 

 

( ) ( )1 1

0 0

t t

t V t
T U Q dt mu u dVδ δ δ δ− + =∫ ∫ 

                 (3.3.22) 

 

It is found that the theory underpinning this equation was later on named as 

“Hamilton’s Law of Varying Action”. 
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Classical form of Hamilton’s Law of Varying Action  

Bailey reviewed the original work of Hamilton (1834, 1835) and examined the 

philosophy and concepts regarding Hamilton’s Principle in the literature. He 

highlighted that the theory presented in Hamilton’s work was actually not what 

has been known as Hamilton’s Principle (1975a, 1975b, 1976), and the 

significance of the original work was far beyond Hamilton’s Principle. Bailey 

referred Hamilton’s theory as Hamilton’s Law of Varying Action (HLVA), – 

taken from Hamilton’s own words, “Law of Varying Action” (Hamilton, 1834). 

For stationary systems, Hamilton’s Principle can be derived from this law and has 

been successfully applied to boundary-value problems. Nevertheless, as Bailey 

pointed out, Hamilton’s Principle has also long been mis-applied to non-stationary 

systems but failed to produce direct solutions. 

 

By “stationary”, the system is supposed to satisfy the following condition: 

 

1

0

T u 0
u

t t
i t t

i

δ =
=

 ∂
= ∂ 

        (3.3.23) 

 

Hamilton’s Law of Varying Action states (Bailey, 1975a) 

 

( )1
1

0
0

TT+ W u 0
u

t t t
i t tt

i

dtδ δ =
=

 ∂
− = ∂ 

∫


      (3.3.24) 

 

T is the kinetic energy of the system; W is the work done by the conservative and 

non-conservative forces, although some argues that there is no such functional for 

non-conservative forces since their work are “path dependent” (Smith and Smith, 

1977, Smith, 1977). 

 

Obviously, when the system is stationary, HLVA is reduced to Hamilton’s 

Principle as 
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( )1

0

T+ W 0
t

t
dtδ =∫         (3.3.25) 

 

However, in contrast to the requirements of vanishing of variations at time 

extremities imposed on Hamilton’s Principle, 1

0
u u 0t t

i t t iδ δ =
= = = , HLVA 

places no such restrictions by introducing the negative of these trailing terms in 

the equation, thus more general approximating functions are allowed in HLVA. 

The historical development of HLVA and Hamilton’s Principle was reviewed in 

the paper named “A New Look at Hamilton’s Principle” (Bailey, 1975a) . There 

had been a debate on variations of the trailing terms, with Smith and Smith on one 

side while Bailey on the other. Bailey (1975a) suggests, while u iδ and u iδ 

vanish at the instant 0t =  due to the fact u i and u i are the known initial conditions, 

“it is impossible, unless the answer is known in advance, to choose 1t  to be that 

instant in time at which 0i
i

T qq δ ∂ = ∂ 
”. This point of view was presented in a 

series of his work published in the 1970’s and stressed again in his later work 

within the context of calculus of variations (Bailey, 1987).  There is no need for 

any artificial postulations for the variations of boundary terms, simply because 

they are cancelled off when the variation of the kinetic energy is taken by part, 

with only the motion equation remaining. 

 

1
1 1

0 0
0

1

0

T T T Tu + Q u u
u u u u

T T+ Q u 0
u u

tt t t t
i t t i i i t tt

i i i i

t

i it
i i

d dt
dt

d dt
dt

δ δ δ

δ

= =
= =

     ∂ ∂ ∂ ∂
+ − + −    ∂ ∂ ∂ ∂     

 ∂ ∂
= − + = ∂ ∂ 

∫

∫

  



  (3.3.26)  

 

In Bailey’s work, the direct solution is obtained when the displacement field 

approximated with a power series and the initial conditions, is substituted into Eq. 

(3.3.24). The trial function is in the form 
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0 0 1
12

u u u
N

j
i i i ij

j

tt A tτ τ τ
=

 = + + = 
 ∑      (3.3.27) 

 

where 0u i  and 0u i  are the initial displacement and velocity, respectively. ijA are 

the coefficients to be solved for by the satisfaction of Eq. (3.3.24). [ ]0,1τ ∈ is a 

dimensionless time. The approximated solution converges to the exact one when 

the number of terms N  is increased. When the problem at hand is simple enough, 

and N  is big enough, the solution obtained is the analytical one. However, as 

some recent research has pointed out that Bailey’s approach may result in ill-

conditioned equations when N  is increased (Sheng, 1998a). In addition, Bailey’s 

algorithm is only conditionally stable (Fung, 2003d). 

 

Other forms of Hamilton’s Law of Varying Action  

Baruch and Riff (1982) argue that in addition to the two treatments of temporal 

boundary variations presented in the work of Bailey and Smith and Smith, there 

are another four possible combinations of boundary variations, resulting six 

“correct formulations” for initial-value problems. They suggest that any 

combination of the displacement and velocity at any arbitrary instant may be used 

as “initial values” for the problem at hand, because “the physical solution of a 

given dynamic problem exists and it is unique”. The displacement trial functions, 

and consequently the velocity trial function, are different for each formulation, in 

order to allow for different vanishing boundary variations. The variations were 

constructed from the same set used for the trial functions, in the classical 

variational manner. Each of these six formulations was deemed “correct”. These 

six formulations can be summarised briefly as the following. 

 

Formulation 1 

( ) ( ) ( )

( ) ( )

1 1

0 0
1

1

0 0

0

0; 0

t t

t t

TT V dt f udt u t
u t

u t u t

δ δ δ

δ δ

∂
− + − =

∂

= =

∫ ∫




              (3.3.28a) 
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This formulation is of HLVA form used by Bailey, the variations of initial 

displacement and velocity vanish. 

 

Formulation 2 

( )

( ) ( )

1 1

0 0

0 1

0

0; 0

t t

t t
T V dt f udt

u t u t

δ δ

δ δ

− + =

= =

∫ ∫                 (3.3.28b) 

 

This formulation is the classical form of Hamilton’s Principle, when the force f is 

conservative. 

 

Formulation 3 

( )1 1
1

0
0 0

T u 0
u

t t t t
t tt t

T V dt f udtδ δ δ =
=

∂ − + − = ∂ ∫ ∫


               (3.3.28c) 

 

This formulation is of the classical form of HLVA, combined with the vanishing 

boundary variations 

 

( ) ( )0 10; 0u t u tδ δ= =   

 

Formulation 4 

( ) ( ) ( )

( ) ( )

1 1

0 0
0

0

1 1

0

0; 0

t t

t t

TT V dt f udt u t
u t

u t u t

δ δ δ

δ δ

∂
− + + =

∂

= =

∫ ∫




             (3.3.28d) 

 

Formulation 5 

( ) ( ) ( )

( ) ( )

1 1

0 0
1

1

0 1

0

0; 0

t t

t t

TT V dt f udt u t
u t

u t u t

δ δ δ

δ δ

∂
− + − =

∂

= =

∫ ∫




              (3.3.28e) 
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Formulation 6 

( ) ( ) ( )

( ) ( )

1 1

0 0
0

0

0 1

0

0; 0

t t

t t

TT V dt f udt u t
u t

u t u t

δ δ δ

δ δ

∂
− + + =

∂

= =

∫ ∫




              (3.3.28f) 

 

The vanishing temporal boundary variations can be presented in pairs in the 

following figure.  

 

 
 

Figure 3.3.1 – Combinations of vanishing variations (Baruch and Riff, 1982) 

 

The drawbacks with Baruch and Riff’s argument are two-fold. Firstly, it is 

difficult to justify the assumptions made for some of the formulations from the 

point of view of physics; Secondly, given  6n  “correct formulations” for a system 

with n numbers of DOFs, there would exist 6n sets of simultaneous equations for 

the problem. Which set(s) of formulations are capable of producing the desired 

accuracy and how to choose the “right” set are unexplained. Furthermore, as 

pointed out in the reply of Simkins (1983), there would be more than 6 

formulations for a SDOF system with Baruch and Riff’s concept, if one treats the 

variations of any arbitrary instant within the time domain as the initial conditions. 
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Borri et al. (1985) adopted a two-field formulation of HLVA with the generalised 

momentum replacing the velocities in the trailing terms. He referred to the 

principle as “Hamilton’s Weak Principle” (HWP), 

 

( )1
1

0
0

u
t t t

t tt
L L dt pδ δ δ =

=+ =∫        (3.3.29) 

 

in which f uLδ δ=  is the virtual work of the generalised conservative and non-

conservative forces. Lp u
∂= ∂ 

the generalised momentum. The advantages of 

adopting the momentum field p rather than the velocity field u are two-fold. 

 

Firstly, the velocity-momentum conditions are incorporated in the variational 

statement as demonstrated in a later paper (Peters and Izadpanah, 1988). If one 

takes 2 21 1
2 2L mu ku= −  for an SDOF system, the expansion of Eq. (3.3.29) is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0
1 1 1 0 0 0

0

t

t
ku mu f udt p t mu t u t p t mu t u tδ δ δ+ − + − − −      

=

∫   

 (3.3.30) 

 

Without any constraints on the boundary variations, the satisfaction of Eq. (3.3.30) 

demands that the control equation in the integrand along with the momentum 

conditions on the temporal extremities to be met for any possible variations. In the 

classical form of HLVA, however, these momentum conditions are cancelled off, 

only the control equation is obtained. 

 

Secondly, it is argued that the quantity ( ) /p t m should converge more rapidly to 

the velocity field than the first time derivative of ( )u t does, due of the sensitivity 

of the first time derivative used in the approximation of  ( )u t (Peters and 

Izadpanah, 1988).  
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A direct solution is obtained through the HWP combined with a simple 

assumption on the displacement field (linear interpolation) and velocity field 

(average value) over the time interval [ ]0 1,t t ( )1 0t t t∆ = − . The corresponding 

variations are in the context of the classical calculus of variation. 

 

( ) ( ) ( )0 0
0 11

t t t tu t u t u t
t t

− − = − + ∆ ∆ 
                (3.3.31a) 

( ) ( ) ( )1 0u t u t
u t t

 − = ∆                  (3.3.31b) 

( ) ( ) ( )0 0
0 11

t t t tu t u t u t
t t

δ δ δ
− − = − + ∆ ∆ 

               (3.3.31c) 

( ) ( ) ( )1 0u t u t
u t t

δ δ
δ

 − = ∆                 (3.3.31d) 

 

Substitution of Eqs. (3.3.31) into Eq. (3.3.30) yields  

 

( ) ( ) ( ) ( )1

0

0
0 1 01 f 0

t

t

t tm mu t u t t dt p t
t t t

− − + − + = ∆ ∆ ∆ ∫               (3.3.32a) 

( ) ( ) ( ) ( )1

0

0
0 1 1f 0

t

t

t tm mu t u t t dt p t
t t t

− − + + − = ∆ ∆ ∆ ∫              (3.3.32b) 

 

with the aid of ( ) ( ) ( )0,1i ip t mu t i= = an explicit recurrence scheme arises 

immediately 

 

( ) ( ) ( ) ( )1

0

0
1 0 0 1 f

t

t

t ttu t u t u t t t dt
m t

−∆  = + ∆ + − ∆ ∫              (3.3.33a) 

( ) ( ) ( )1

0
1 0

1 f
t

t
u t u t t dt

m
= + ∫                             (3.3.33b) 

 

Borri et al. (1985) further argued that, while the structure of the scheme being 

maintained, other interpolation functions could be used for the solution. 
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A similar variational statement given by Peters and Izadpanah (1988), as a special 

case of their bilinear formulation for elastodynamics can be given as 

 

( ) ( ) ( ) ( ) ( )1 1

0 0

2 2
1 1 0 0

1 1 =2 2
t t

t t
Ku Mu dt F udt P t u t P t u tδ δ δ δ− − +∫ ∫   (3.3.34) 

 

in which u is the unknown displacement, and K , M , F  and P  are the stiffness, 

mass , force and momentum, respectively.  

 

The left-hand side of Eq. (3.3.34) is the negative variation of action, and because 

 

( ) ( )
( )

( )1 1 1

0 0 0

t t P t

t t P t

dPF u dt u dt u dP
dt

δ δ δ = = 
 ∫ ∫ ∫      (3.3.35) 

 

it is then not difficult to see the right-hand side of Eq. (3.3.34) can be regarded as 

the “virtual action” during the time interval and cross the temporal boundaries, 

with the term of “virtual action” defined as the time integral of the virtual work. 

Thus, Peters and Izadpah made the observation that the sum of the variation of 

action and the virtual action must vanish for the time interval [ ]0 1,t t . 

 

The two authors further point out that, in either HLVA or Hamilton’s Principle 

based formulations, the velocity natural conditions are absent, therefore velocity 

constraints are required for the approximating solution u , implying the 

displacement field has to be 1C class functions rather than more general 0C class 

ones. 

 

Sheng et al. (1998a, 1998b) summarised the work of Bailey, Baruch and Riff, 

Simkins as well as Wu (1977). The various HLVA based formulations of these 

authors are unified and presented in a framework with the assistance of free 
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variables. Both the one-field and mixed field formulations are given. Two 

different treatments of initial conditions were presented therein.  

 

The first treatment enforces the initial conditions directly by linking the variations 

at two temporal end-points with a user-specified parameter matrix α . This 

treatment reduces the number of equations to match the number of the unknowns. 

It generates constrained parameterised formulations in the primal form similar to 

the one-field formulation given by the classical HLVA, or in a mixed form similar 

to the two-field one as proposed by Borri et al. (1985). 

 

Primal form 

Using HLVA as the starting point and assuming that the temporal boundary 

variations are interrelated with a linear function, Sheng obtains 

 

1 1
1

0
0 0

0 1

W 0

with

t t t t
t tt t

t t t t

LLdt dtδ δ δ

δ δ

=
=

= =

∂ + − = ∂ 
=

∫ ∫ u
u

Q α Q
      (3.3.36) 

 

where [ ], T=Q u u  presenting the initial conditions. 

 

Mixed form 

In the mixed form, the Hamiltonian TH L= −u p is used, the equivalent to Eq. 

(3.3.36) is 

 

( )1
1

0
0

0 1

W

with

t t tT T T
t tt

t t t t

H dtδ δ δ δ δ

δ δ

=
=

= =

+ − + =

=

∫ u p p u p u

Q α Q

 

     (3.3.37) 

 

where [ ], T=Q u p gives the initial displacement and momentum. α is the parameter 

matrix. For an SDOF system, α  is a two by two matrix 
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1 1

2 2

a b
a b

 
=  

 
α          (3.3.38) 

 

In the second treatment, initial conditions are not directly imposed, yet they are 

incorporated with the aid of a penalty matrix α . This generates unconstrained 

parameterised formulations, and the number of the unknowns matches the number 

of equations by adding more unknowns stemmed from α . The primal form and 

the mixed form are available respectively. 

 

Primal form 

 

1 1
1

0
0 0

LW 0
t t t t T

t tt t
Ldt dtδ δ δ δ=

=

∂ + − + = ∂ ∫ ∫ u Q α Q
u

    (3.3.39) 

 

where ( ) ( )0 00 , 0
T

= − −  Q u u u u  , in which ( )0u and ( )0u are the vectors 

approximated at the initial time 0t t=  while 0u and 0u are the given initial vectors. 

The dimension of the parameter matrixα  is the same as in the first approach. 

 

Mixed  form 

 

( )1
1

0
0

0
t t tT T T T T

t tt
dtδ δ δ δ δ δ=

=+ − + − + =∫ u p p u H f u p u Q α Q     (3.3.40) 

 

in this case, ( ) ( )0 00 , 0
T

= − −  Q u u p p . ( )0u and ( )0p are the approximated 

values while 0u and 0p are the prescribed initial values. 

 

Sheng et al. argue three advantages of this parameterised approach: 
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• The optimal approximation may be derived when the parameter matrix α  

is properly selected, which is normally determined by a prior/ posterior 

analysis. Although, as the authors admit, the exact solutions for most 

practical problems are difficult to obtain.  

 

• The resulting algorithms have controllable dissipation properties, which 

cover the spectrum from non-dissipative to asymptotic annihilating. 

 

• High order accurate algorithms can be obtained. 

 

However, there are some issues with Sheng’s formulations: 

 

• The calculated initial values ( ) ( )0 , 0u u or ( ) ( )0 , 0u p  by the 

unconstrained parameterised formulation may not equal to the given initial 

conditions values 0 0,u u  or 0 0,u p . 

 

• There will be more unknowns to solve ( 1 2 1 2, , , , , , ,n na a a b b b  ), hence the 

computational cost are higher.  

 

3.4 Unconventional Hamilton-type Variational Principles 

 

The search for new variational methods has not stopped. Having applied 

successfully a novel approach for the derivation of variational principles in 

Gurtin’s convolution form (Luo and Cheung, 1988), Luo extended this approach 

into constructing the so-called Unconventional Hamilton-type Variational 

Principle for various linear and non-linear problems (Luo et al., 2002; Luo et al., 

2003; Huang et al., 2006; Luo et al., 2006; Li and Luo, 2007; Li et al., 2007; Luo 

et al., 2007; Jiang and Luo, 2008). In this type of variational principles, boundary 

conditions and initial conditions are not required to be met a priori, and the 
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stationarity of the first variation of the functional will recover all information 

needed for solving the time-varying problem, including control equations, 

boundary conditions and initial conditions. 

 

Unconventional Hamilton-type Variational Principle employs up to five 

independent field variables to take full account of the time-varying characteristics, 

more general than any other known variational principles or variational statements 

for the same problem. 

 

In the case of linear elastodynamics, Unconventional Hamilton-type Variational 

Principle in the fundamental form, starts from a basic relation. 

 

{ } { } ( ){ }
{ }

1 1 1

0 0 0
, ,

1 1 0 0( ) ( ) ( ) ( ) 0

t t t

i i i i ij i j ij j i ij i jt V t V t S

i i i iV

p u p u dVdt u u dVdt u n dSdt

p t u t p t u t dV

σ σ σ+ − + +

− − =

∫ ∫ ∫ ∫ ∫ ∫
∫

 



   (3.4.1) 

 

This relation is the product of the following two equations. 

 

The first one is based on the integration by parts. 

 

{ } { }1

0
1 1 0 0( ) ( ) ( ) ( ) 0

t

i i i i i i i it V V
p u p u dVdt p t u t p t u t dV+ − − =∫ ∫ ∫      (3.4.2) 

 

The second is based on the divergence theorem. 

 

{ } ( ){ }1 1

0 0
, , 0

t t

ij i j ij j i ij i jt V t S
u u dVdt u n dSdtσ σ σ+ − =∫ ∫ ∫ ∫      (3.4.3) 

 

Eq. (3.4.1) is then simply obtained by subtracting Eq. (3.4.3) from Eq. (3.4.2).  
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In order to construct the desired principle, some manipulations are required. 

Firstly, advantage is taken from the following equation. 

 

( )( )1 1 1
2 2 2i i i i i i i i i ip v v v p p p v p vρ ρ ρ

ρ ρ
= + − − −     (3.4.4) 

 

in which the two fields ip and iv are independent to each other and do not need to 

satisfy the momentum – velocity constraint i ip vρ= . 

 

Another equation will be utilised is  

 

( )( )1 1 1
2 2 2ij ij ijkl ij kl ijkl ij kl ij ijkl kl ij ijkl klE C E Cσ ε ε ε σ σ σ ε ε σ= + + − −   (3.4.5) 

 

Again, ijσ and ijε are independent filed, and do not necessarily satisfy ij ijkl klEσ ε=

or ij ijkl klCε σ=  a priori. 

 

Rewrite terms i ip u and ,ij i juσ in Eq. (3.4.1) as the following, by virtue of Eqs. 

(3.4.4) and (3.4.5) 

 

( )( ) ( )1 1 1
2 2 2i i i i i i i i i i i i ip u v v p p p v p v p v uρ ρ ρ

ρ ρ
= + − − − − −    (3.4.6) 

 

and 

 

( )( )

( )

,

, ,

1 1 1
2 2 2

1
2

ij i j ijkl ij kl ijkl ij kl ij ijkl kl ij ijkl kl

ij ij i j j i

u E C E C

u u

σ ε ε σ σ σ ε ε σ

σ ε

= + + − −

 − − +  

  (3.4.7) 
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After substituting Eqs. (3.4.6) and (3.4.7) into Eq. (3.4.1), the terms on the left-

hand side of Eq. (3.4.1) can be grouped into two complementary parts, Π  and  Γ , 

each representing an energy/work functional. The work done by conservative and 

non-conservative forces are taken into account by the addition into one functional 

and the deduction from the other, thus the total action of these forces are balanced 

off. In this process, the restricted variation technique (Rosen, 1954) is applied to 

the work of non-conservative forces, dealing with the issue of “no work function 

exists for non-conservative forces” (Lanczos, 1970). Initial conditions are also 

manipulated in the same way. 

 

 The two complementary energy functionals are denoted as ( )Π and ( )Γ , with the 

subscript indicating the number of independent fields used in the functionals. For 

each pair of ( )Π and ( )Γ , there always exists  

 

( ) ( ) 0Π + Γ =          (3.4.8) 

 

stemmed from the original equation, Eq. (3.4.1). All additional terms introduced 

into this equation are complementary as well, i.e., some is added to one functional; 

but is subtracted from the other at the same time. 

 

In the most general form considering all five independent fields for the linear 

elastodynamics, the functionals are 
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( )

( )
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∫

(3.4.10) 

 

in which the barred quantities are the prescribed values at the spatial and temporal 

boundaries. The ones with the superscript o  are the restricted quantities during 

the variation (Rosen, 1954). This technique gives a formal presentation of the 

same treatment to the “fixed” quantities in some early works (Argyris and Scharpf, 

1969, Fried, 1969) and improves the clarity of the consequent formulation.α and

β  are the coefficients assisting the construction of the functionals, the value of 

which are not required to be determined. 

 

The vanishing of the first variation of ( )Π and ( )Γ , any one of these two, will 

naturally lead to the control equation, all boundary conditions and the initial 
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conditions. Functionals preserving all these information can only be found with 

Gurtin’s convolution approach, Simkins’ Lagrange multiplier approach and 

Chen’s total virtual action approach, otherwise only partial boundary condition 

but no initial conditions can be derived. However, the computation required by 

Gurtin’s approach is rather cumbersome and expensive in execution because of 

the convolution operation. Although the Lagrange multiplier approach does not 

require convolution computation, the determination of multiple multipliers is less 

straightforward. The total virtual action approach is an exception, which has the 

merit of both ease of computation and preservation, similar to Luo’s approach. 

 

There are two distinctive characters about Luo’s approach. First, this type of 

principle offers a simple, straightforward and mathematically solid foundation to 

underpin the development of variational methods for various problems. Second, 

the functionals thus derived always come in pairs, meaning more functionals can 

be found to suit the particular problem at hand. 

 

Furthermore, it can be proved that other variational principles, such as HLVA and 

Hamilton’s Weak Principle can be re-produced from Unconventional Hamilton-

type Variational Principle. For instance, when the displacement and traction 

boundary conditions, velocity – displacement relation, strain – displacement 

relation and stain – stress relation are satisfied at the outset, which have to be true 

for a valid solution, Eq. (3.4.9) becomes 
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                  (3.4.11)  
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The first integrand is the Lagrangian density. The summation of the second, third 

and forth integrations is the action of the forces within the volume and at the 

boundaries. The variation of Eq. (3.4.11) can be put as 

 

[ ]{ }

1 1

0 0
5

1 1 0 0 0 0 0

ˆ

( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

t V t V

i i i i i i iV

LdVdt LdVdt

p t u t p t u t u t u t p t dV

δ δ δ

δ δ δ

Π = +

+ − + + −

∫ ∫ ∫ ∫
∫

        (3.4.12) 

 

The vanishing of Eq. (3.4.12), along with the admission of initial condition 

0 0( ) ( )i iu t u t= and 0 0( ) ( )i ip t p t=  give 

 

( ) { }1

0
5 1 1 0 0

ˆ ( ) ( ) ( ) ( ) 0
t

i i i it V V
L L dVdt p t u t p t u t dVδ δ δ δ δΠ = + + − + =∫ ∫ ∫          (3.4.13) 

 

This equation is identically the Eq. (3.3.29) given by Borri (1985), and is also 

equivalent to the HLVA equation Eq. (3.3.24). 

 

3.5 Summary 
 

In this chapter, various variational approaches for initial-value problems are 

reviewed. In general, these approaches can be grouped into two categories as 

shown in Figure 3.5.1.  

 

 



Chapter 3 Variational methods for initial-value problems 

 

 

61 

 

 
Figure 3.5.1 – Variational approaches for initial-value problem 

 

The first category is the variational statement approach where no functional is 

available, including Lagrange multiplier method, Hamilton’s Law of Varying 

Action (HLVA), Hamilton’s Weak Principle (HWP), Total Virtual Action 

Principle. When these statements are made to vanish, the control equation for the 

problem will be obtained. Apart from the initial velocity/ momentum conditions is 

contained in HWP, the initial conditions are not satisfied automatically in these 

variational statements. Instead, initial conditions have to be incorporated into the 

approximating function or introduced with Lagrange multipliers. The second 

category is the variational principle approach, including Gurtin’s variational 

principle and it simplified versions, as well as Unconventional Hamilton-type 

Variational Principle (UHVP). All boundary conditions and initial conditions are 

implied in the functional provided by each particular principle. When the 

functional is varied and made to vanish, those boundary/initial conditions will be 

recovered naturally.  

 

The two approaches differ in the presence of a variational functional. A 

variational functional not only leads to a variational statement which can be used 

to find the solution, it also discloses the relationship between various quantities 

from an energy perspective, as demonstrated by the complimentary functionals 

given by UVHP. 
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In the UVHP framework, more variable fields are employed thus fully 

characterising the dynamic system. Moreover, it is found that UHVP embraces 

some existing of the variational laws/ principles such as HLVA, Hamilton’s 

Principle and HWP. 
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Chapter 4  Unconventional Hamilton-type 
Variational Principles for Truss-type Structures 
 

 4.1 Introduction 
 

Given the advantages discussed in Chapter 3, Luo’s Unconventional Hamilton-

type Variational Principle theory is adopted in this chapter to underpin the 

development of new algorithms for the dynamic analysis of truss-type structures. 

Several authors have successfully applied Luo’s theory to various particular 

problems; different Unconventional Hamilton-type Variational Principles 

(UHVPs) were found for particular problems (Li, Luo and Huang 2007, Li and 

Luo 2007, Luo et al. 2002, Luo, Zhu and Yuan 2006). In this chapter, several 

UHVPs tailored for truss-type structures are established. Up to five independent 

variable fields, including the displacement, velocity, momentum, axial force and 

strain, are employed to derive these principles. These principles are inter-related 

in that simplified principles with fewer independent variable fields can be derived 

from a general one, when certain conditions are met at the outset, as demonstrated 

in previous works (Gurtin 1964; Sandhu and Pister 1971; Reddy 1976; Luo and 

Cheung 1988). 

 

4.2 Assumptions 
 

In the current discussion, the standard truss model is adopted, and the following 

assumptions are made within the scope of this research: 

 

• The structural deformation due to the loadings is relatively small 

compared to the overall geometry of the structure, and thus can be treated 

as a linear deformation.  
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• The nodes of the structure are rigid. Therefore, there is no energy loss at 

these nodes throughout the course of the dynamic action. 

• The kinetic energy associated with each node is negligible, due to the facts 

that the mass of a node is small compared to the mass of the rods 

connected.  

• All material is homogenous and isotropic. 

• The structural damping is of linear viscous type. 

 

4.3 Governing equations and boundary/ initial conditions for the 

dynamics of truss-type structures 
 

For a differential section of an arbitrary truss rod in the dynamic equilibrium 

shown in Figure 4.3.1, its dynamic characteristics can be represented by the 

following equations and conditions. 

 

 

Figure 4.3.1 -  A differential section in a typical truss rod 
 

1) Velocity – displacement equation: 

Two frequently encountered quantities in structural dynamics are the 

displacement ( )u  and velocity ( )v . By definition, the relation of the two is 

x

L

dx
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( ) ( )u ,
v , 0

x t
x t

t
∂

− =
∂

                                                     (4.3.1) 

 

where 
t

∂
∂

 is the differentiation operator with respect to time t, and x  is the spatial 

coordinate. 

 

2) Momentum – velocity equation: 

The velocity ( )v  is also related to the momentum ( )p . Follow the definition in 

classical mechanics, the relation of these two is 

 

( ) ( ) ( )p , m v , 0x t x x t− =                                               (4.3.2a) 

or 

( ) ( ) ( )1v , p , 0
m

x t x t
x

− =                   (4.3.2b) 

 

where ( )m x  is the mass density per unit length, measured along the longitudinal 

axis of the rod.   

 

3) Equation of motion: 

 

( ) ( ) ( ) ( )N , u , p ,
f 0

x t x t x t
x c

x t t
∂ ∂ ∂

+ − − =
∂ ∂ ∂

                                    (4.3.3a) 

or 

( ) ( ) ( ) ( )2

2

N , u , u ,
f m 0

x t x t x t
x c

x t t
∂ ∂ ∂

+ − − =
∂ ∂ ∂

                (4.3.3b) 

 

where ( )N ,x t is the axial force field and ( )N ,x t
x

∂
∂

 is the infinitesimal increment 

along the longitudinal axis; ( )f x is the projection of the body force on the 
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longitudinal axis, per unit length; c  is the viscous damping coefficient per unit 

length of the rod and ( )u ,x t
c

t
∂

∂
 is the viscous damping force; ( )2

2

u ,
m

x t
t

∂
∂

 is the 

inertia force. This equation represents the dynamic equilibrium of the studied 

section and can be illustrated in the following figure. 

 

 
Figure 4.3.2 -  Dynamic equilibrium of a differential section 

 

4) Strain – displacement equation: 

The stain ( )ε  measures the deformation of the rod. It is known from the theory 

of elasticity that the strain field is related to the relative displacement of particles, 

and one has the following equation 

 

( ) u( , )ε , 0x tx t
x

∂
− =

∂                                       
(4.3.4)

                               
 

5) Axial force – strain equation:  

Follow Hooke’s Law, the relation between the axial force field and the strain field 

can be easily obtained by incorporating the stress – force relation N Aσ=  

 

( ) ( ) ( )N , A ε , 0x t E x x t− =                                            (4.3.5) 

 

where E  is the elastic modulus and ( )A x is the cross-sectional area of the rod.  
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For an arbitrary section, there are two types of spatial boundary. The first type is 

the displacement boundary where the displacement can be prescribed for any 

point of time; the other one is the traction boundary where the external force at the 

boundary can be prescribed for any point of time. The next two conditions are 

related to these two types of boundary 

 

6) Traction boundary condition: 

 

( ) ( )N , N , 0x t x t− =  on Nx                                              (4.3.6) 

 

where ( )N ,x t  is the given axial force on the traction boundary, Nx  . 

 

7) Displacement boundary condition: 

 

u( , ) u( , ) 0x t x t− =  on ux                          (4.3.7) 

 

where ( )u ,x t  is the given displacement on the displacement boundary, ux    

 

8) Initial conditions: 

 

u( ,0) u( ,0) 0x x− =                         (4.3.8a) 

                           

v( ,0) v( ,0) 0

p( ,0) p( ,0) 0

x x
or

x x

− =

− =
                 (4.3.8b) 

                                  

where u( ,0)x , v( ,0)x  and p( ,0)x  are the given initial displacement field, initial 

velocity field and initial momentum field at the time 0t = , respectively. 
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These equations incorporate the relations for a linear system to support the 

development of the proposed linear analysis method. However various other 

relations, such as non-linear relations and multi-physics relations, can be used as 

well in the similar fashion to consider different behaviours, and thus particular 

variational principles may be developed for those applications. 

 

4.4 A fundamental integral relation 
 

Let the length of a differential section be dx , the length of the rod be L , as shown 

in Figure 4.3.1. The time derivative of a quantity is denoted by a dot over the 

quantity, e.g. ( ) ( )u ,
u ,

x t
x t

t
∂

=
∂

 . [ ]10, t is the time interval of interest. 

 

For two arbitrary and independent continuous fields ( )p ,x t  and ( )u ,x t , it can be 

easily verified that the following equation always holds 

 

( ) ( ) ( ) ( ){ } ( ) ( ){ }1
1
00 0 0

p , u , + p , u , p , u , 0
t L L t t

tx t x t x t x t dxdt x t x t dx=
=− =∫ ∫ ∫     (4.4.1) 

 

In the same fashion, one has the following equation for another two arbitrary and 

independent continuous fields ( )N ,x t and ( )u ,x t  :  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1

00 0 0

u , N ,
N , u , N , u , 0

t L t x L
x

x t x t
x t x t dxdt x t x t dt

x x
=
=

∂ ∂ 
+ − = ∂ ∂ 

∫ ∫ ∫
 

            
(4.4.2) 

 

Subtracting Eq. (4.4.2) from Eq. (4.4.1) yields 
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( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ){ }

1

1

1
1

0 0

0 0

0 00 0

p , u , + p , u ,

u , N ,
N , u ,

N , u , p , u , 0

t L

t L

t L t tx L
x t

x t x t x t x t dxdt

x t x t
x t x t dxdt

x x

x t x t dt x t x t dx==
= =

∂ ∂ 
      − + ∂ ∂ 

               + − =

∫ ∫

∫ ∫

∫ ∫



   (4.4.3) 

 

Eq. (4.4.3) is the underpinning equation for the Unconventional Hamilton-type 

Variational Principles tailored for truss-type structures. Two complementary 

functionals can be constructed out of this equation, and it will be proven later on 

that both of these two functionals, when varied and made to vanish, can lead to 

the governing equations and all boundary and initial conditions. 

 

4.5 Unconventional Hamilton-type variational principles for truss-

type structures 
 

In this section, five variational principles are derived for the dynamic analysis of 

truss-type structures. In these principles, up to five physical fields, namely, the 

displacement field ( )u ,x t , velocity field ( )v ,x t , momentum field ( )p ,x t , axial 

force field ( )N ,x t  and strain field ( )ε ,x t , are treated initially as independent to 

each other. This independence allows finding the Euler equations associated with 

the functionals exactly as the governing equations and boundary / initial 

conditions given in Section 4.3. Therefore, it demonstrates the dynamic 

characteristics of truss-type structures are fully preserved in the presented 

variational principle. Another four variational principles with less independent 

fields are obtained subsequently once one or more governing equations is/are 

satisfied a priori at the outset. In this fashion, the relationships between these 

variational principles are also revealed. 

 

4.5.1 Five-field unconventional Hamilton-type variational principle 



Chapter 4 Unconventional Hamilton-type variational principles 

 

70 

 

Treat five variable fields as independent. The first term in the first integrand of Eq. 

(4.4.3) can be re-written as 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2

p , u ,
1 1m v , p ,
2 2m

1 p , m v , p , v , u ,
2m

x t x t

x x t x t
x

x t x x t x t x t x t
x

= +

− − − −      





       

(4.5.1) 

 

Moreover, the first term in the second integrand of Eq. (4.4.3) can be re-written as 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

u ,
N ,

1 1A ε , N ,
2 2 A

1 1N , A ε , ε , N ,
2 A

u ,
N , ε ,

x t
x t

x

E x x t x t
E x

x t E x x t x t x t
E x

x t
x t x t

x

∂
∂

= +

 
+ − −    

 
∂ 

− − ∂ 

    (4.5.2) 

 

In the following discussion, ( )x  and ( ),x t are omitted for brevity, unless they are 

required to be specified to clarify the boundary values. By virtue of Eqs. (4.5.1) 

and (4.5.2), Eq. (4.4.3) may be written in the form 

 

( ) ( )5 5p, v, u, N,ε p, v,u, N,ε 0Π + Γ =       (4.5.3) 

 

with 

( ) [ ] ( ) ( )1 2
5 30 0

1 ˆp, v,u, N,ε mv p v u u, N,ε p,u
2

ot L
dxdt Π = − − + Π + Π 

 ∫ ∫     (4.5.4) 
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( ) [ ] ( ) ( )1 22
5 30 0

1 1 ˆp, v,u, N,ε p p mv pu u, N,ε p,u
2 m 2m

ot L
dxdt Γ = − − + + Γ + Γ 

 ∫ ∫                    

           (4.5.5) 

 

and 
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( ) ( ) ( ) ( ) ( ){ }

1

1
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o
2

0 0

0 00

ˆ u, N,ε

1 uε N ε f c u u
2

N , u , u , N , u ,u N
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t x L x L
x x

EA dxdt
x

x t x t x t x t x t dt= =
= =

Π

 ∂    = − + − + −    ∂    

+ − +  

∫ ∫

∫

               (4.5.6) 
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x t x t x t x t x t dt= =
= =

Γ

 ∂    = − − − − − − −    ∂    

 + + − 

∫ ∫

∫



  (4.5.7) 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

0

p, u

p , u , p , u , p ,0 u ,0

p ,0 u ,0 p ,0 u ,0 p ,0 u ,0

o

o o o

L

o o o

x t x t x t x t x x
dx

x x x x x x

α
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Π
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∫
   (4.5.8) 
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1 1 1 1
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p, u

1 p , u , p , u , p ,0 u ,0
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x t x t x t x t x x
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α

β

Γ

 − − − =  
 + + − − 

∫
   (4.5.9) 

 

( )5 p, v, u, N,εΠ and ( )5 p, v, u, N,εΓ  are two complementary functionals in which 

the work done by external forces over the time interval [ ]10, t  may be introduced 
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as 
1

o

0 0
f c u u

t L
dxdt −  ∫ ∫  . The fields with the superscript o  are the restricted ones 

when variations are taken (Rosen 1954). These fields are to be held as invariable, 

e.g., ( )1p , 0
o

x tδ = ; the superscript are to be removed once the variation is 

completed, e.g., ( ) ( ) ( ) ( )1 1 1 1p , u , p , u ,
o

x t x t x t x tδ δ  = 
 

. α and β  are the 

coefficients assisting the construction of the functionals, the value of which are 

not required for the forthcoming derivations. 

 

Principle one 

 

If and only if a set of fields, comprising p, v,u, N,ε , is the solution of a dynamic 

problem fulfilling Eqs. (4.3.1), (4.3.2), (4.3.3), (4.3.4), (4.3.5), (4.3.6), (4.3.7), 

(4.3.8a) and (4.3.8b), this set satisfies 

 

( )5 p, v, u, N,ε 0δΠ =  and ( )5 p, v,u, N,ε 0δΓ =  

 

Proof 

 

By taking variation of 5Π , one has 

 

( )

[ ] [ ]{ } ( ) ( )1

5

30 0

p, v, u, N,ε

ˆmv v p v u v u p u, N,ε p,u
ot L

dxdt

δ

δ δ δ δ δ δ

Π

= − − − − + Π + Π∫ ∫  

      (4.5.10) 

 

since 
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1

0 0

00 0 0 0

1 10 0 0

p u

pp u p u u

p , u , p ,0 u ,0 p u

t L

L t L tt t
t

L t L

dxdt

dtdx dt dx
t t

x t x t x x dx dxdt

δ

δ δ δ

δ δ δ

=
=

∂  ∂  = = −   
∂ ∂   

= − −

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫





             (4.5.11) 

 

therefore Eq. (4.5.10) can be re-written as 

 

( )

[ ] [ ]{ } ( ) ( )

( ) ( ) ( ) ( ){ }

1

5

30 0

1 10

p, v, u, N,ε

ˆmv p v p u v u p u, N,ε p,u

p , u , p ,0 u ,0

ot L

L

dxdt

x t x t x x dx

δ

δ δ δ δ δ

δ δ

Π

= − − − − + Π + Π

+ −

∫ ∫
∫

 

         (4.5.12) 

 

where 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

3

0 0

0 0 00

ˆ u, N,ε

u uε ε N ε ε N f c u u

u , u , N , N , u , N , u ,u u N

u u N

t L

t x L x L x L
x x x

EA dxdt
x x

x t x t x t x t x t x t x t dt

δ

δδ δ δ δ

δ δ δ= = =
= = =

Π

 ∂ ∂    = − + − + − + −    ∂ ∂    

+ − + +  

∫ ∫

∫



                    (4.5.13) 

since 

 

( )

( ) ( ) ( ) ( )

1

1

1

0 0

0 0

0 00 0

uN

NN u u

NN , u , N , u , uu N

u N

t L

t L

t Lx L x L
x x

dxdt
x

dxdt
x x

x t x t x t x t dx dt
x

δ

δ δ

δ δ δ= =
= =

∂ 
 ∂ 

∂ ∂ = − ∂ ∂ 
 ∂  = + −  ∂  

∫ ∫

∫ ∫

∫ ∫

       (4.5.14) 

 

consequently Eq. (4.5.13) can be expressed as 
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( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

3

0 0

0 00

ˆ u, N,ε

u NN ε ε ε N f c u u

u , u , N , N , N , u ,u N

u N

t L

t x L x L
x x

EA dxdt
x x

x t x t x t x t x t x t dt

δ

δ δ δ

δ δ= =
= =

Π

 ∂ ∂    = − + − + + −    ∂ ∂    

 + − + −    

∫ ∫

∫

  

                    (4.5.15) 

 

The variation of ( )p,u
o

Π is 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 10

p, u

p , u , p ,0 u ,0 u ,0 u ,0 p ,0

o

L
x t x t x x x x x dx

δ

δ δ δ

Π

= − + + −  ∫       

                

                        (4.5.16) 

 

Substituting Eqs. (4.5.15) and (4.5.16) into Eq. (4.5.12) yields 

 

( )
[ ] [ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

5

0 0

0 00

0

p, v, u, N,ε

mv p v u v p N ε ε

u Nε N f c u p u

u , u , N , N , N , u ,

p ,0 p ,0 u ,0 u ,0 u ,0 p ,0

u N

u N

t L

t x L x L
x x

L

EA
dxdt

x x

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ

δ δ

δ δ

δ δ

= =
= =

Π

 − + − + −
 =  ∂ ∂   + − + + − −    ∂ ∂    

 + − + −    

+ − + −      

∫ ∫

∫
∫





 

                    (4.5.17) 

 

Sufficiency proof: 

 

Suppose the set p, v, u, N,ε  is the solution of the mixed problem including Eqs. 

(4.3.1), (4.3.2), (4.3.3), (4.3.4), (4.3.5), (4.3.6), (4.3.7), (4.3.8a) and (4.3.8b), 
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substituting these conditions into Eq. (4.5.17) yields ( )5 p, v, u, N,ε 0δΠ =
 

naturally. 

 

Necessity proof: 

 

Assume Eq. (4.5.17) equals to zero for any variations of the five fields, then it 

arrives naturally that the products in square brackets have to vanish 

simultaneously, on the consideration that the variations v, p, ε, N, uδ δ δ δ δ  are 

arbitrary and independent to each other. This implies the simultaneous satisfaction 

of Eqs. (4.3.1), (4.3.2a), (4.3.3), (4.3.4), (4.3.5), (4.3.6), (4.3.7), (4.3.8a) and 

(4.3.8b), and proves that this set is the solution of the problem.  

 

It can be seen from above that ( )5 p, v, u, N,εΠ  is a functional whose Euler 

equations are exactly the governing equations and boundary / initial conditions for 

a truss-type structure. Compared with the other variational statements reviewed in 

Chapter 3, it can be seen that in addition to the advantage of the direct 

incorporation of all initial conditions in formulation, more conditions such as the 

constitutive one are also satisfied within the space – time volume and on the 

boundary. These conditions are contained naturally without using any artificial 

multipliers or convolution operators.  

 

In a similar fashion, it is found 

 

( )

[ ][ ] ( ) ( )1

5

30 0

p, v, u, N,ε

1 1 ˆp p p mv p m v p u u p u, N,ε p,u
m m

ot L
dxdt

δ

δ δ δ δ δ δ δ

Γ

 = − − − + + + Γ + Γ 
 ∫ ∫  

                        (4.5.18) 

 

in which 
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( )

[ ]

[ ]

( ) ( ) ( ) ( )
( ) ( ) ( )

1

1

3

0 0

o

0 0

0
0

ˆ u, N,ε

1 1 1N N N ε ε N
2

1 1N ε ε N
2

N Nu u f u u

u , N , u , N ,

N , N , u ,

u N

u N

N

N

t L

x L x L
t x x

x L
x

EA
EA EA

EA dxdt
EA

c
x x

x t x t x t x t
dt

x t x t x t

δ

δ δ δ

δ δ

δδ δ

δ δ

δ

= =
= =

=
=

Γ

  − − − −    
  = − − −    
 ∂ ∂  − − − −  ∂ ∂   

 + +  
 + −   

∫ ∫

∫



                        (4.5.19) 

 

and 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 10

p, u

p ,0 p ,0 u ,0 u ,0 p ,0 u , p ,

o

L
x x x x x x t x t dx

δ

δ δ δ

Γ

= − + −  ∫
  

                               (4.5.20) 

 

The integration { }1

0 0
u p

t L
dxdtδ∫ ∫   in Eq. (4.5.18) may be transformed by 

integration by parts as 

 

{ }

( ) { }
1

1 1
1

0 0

00 0 0 0

u p

u p u p u p u p

t L

L t L tt t
t

dxdt

dtdx dt dx
t

δ

δ δ δ δ=
=

∂ = − = − ∂ 

∫ ∫

∫ ∫ ∫ ∫



 

                    (4.5.21) 

 

similarly the term 1

0 0

N u
t L

dxdt
x

δ∂ 
 ∂ ∫ ∫  in Eq. (4.5.19) may be transformed as 
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( )

( ) ( ) ( ) ( )

1

1

1

0 0

0 0

0 00 0

N u

uu N N

uu , N , u , N , Nu N

u N

t L

t L

t Lx L x L
x x

dxdt
x

dxdt
x x

x t x t x t x t dx dt
x

δ

δ δ

δ δ δ= =
= =

∂ 
 ∂ 

∂ ∂ = − ∂ ∂ 
 ∂ = + −  ∂  

∫ ∫

∫ ∫

∫ ∫

        (4.5.22) 

 

By virtue of Eq. (4.5.22), Eq. (4.5.19) may be re-written as 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

3

o

0 0

0 00

ˆ u, N,ε

u Nε N ε N ε f u u

u , u , N , N , N , u ,u N

u N

t L

t x L x L
x x

EA c dxdt
x x

x t x t x t x t x t x t dt

δ

δ δ δ

δ δ= =
= =

Γ

 ∂ ∂    = − + − − + −    ∂ ∂    

 + − + −    

∫ ∫

∫

              

                     (4.5.23) 

 

The substitution of Eqs. (4.5.20), (4.5.21) and (4.5.23) into Eq. (4.5.18) yields 

 

( )
[ ] [ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

5

0 0

0 00

0

p, v, u, N,ε

p mv v v u p ε N ε

u Nε N f c u p u

u , u , N , N , N , u ,

p ,0 p ,0 u ,0 u ,0 u ,0 p ,0

u N

u N

t L

t x L x L
x x

L

EA
dxdt

x x

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ

δ δ

δ δ

δ δ

= =
= =

Γ

 − + − + −
 =  ∂ ∂   + − − + − −    ∂ ∂    

 + − + −    

+ − + −      

∫ ∫

∫
∫





                           

                    (4.5.24) 

 

It can be proved in a similar manner that, the sufficient and necessary condition of 

( )5 p, v, u, N,ε 0δΓ =  is the simultaneous satisfaction of Eqs. (4.3.1) through to 

(4.3.8b), which means ( )5 p, v, u, N,εΓ  is another functional whose Euler 

equations are the governing equations and boundary / initial conditions.  
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This completes the proof of Principle one. 

 

4.5.2 Four-field unconventional Hamilton-type variational principle 

When the relation of p  and v  is admitted as a prerequisite as per Eq. (4.3.2), a 

variational principle with four independent fields p, u, N,ε  may be derived as 

follows. 

 

The two complementary functionals can be found by substituting Eq. (4.3.2) into 

Eqs. (4.5.4) and (4.5.5), yielding 

 

( ) ( ) ( )1 2
4 30 0

1 ˆp,u, N,ε pu p u, N,ε p,u
2m

ot L
dxdt Π = − + Π + Π 

 ∫ ∫  (4.5.25) 

 

and 

 

 ( ) ( ) ( )1 2
4 30 0

1 ˆp,u, N,ε p pu u, N,ε p,u
2m

ot L
dxdt Γ = + + Γ + Γ 

 ∫ ∫                     

                    (4.5.26) 

 

( )4 p, u, N,εΠ and ( )4 p, u, N,εΓ  are a pair of complementary functionals  

which satisfy  

 

( ) ( )4 4p,u, N,ε p,u,N,ε 0Π + Γ =                                 (4.5.27) 

 

Principle two 

 

If and only if a set of fields, comprising p,u, N,ε , is the solution of a dynamic 

problem fulfilling Eqs. (4.3.1), (4.3.3), (4.3.4), (4.3.5), (4.3.6), (4.3.7), (4.3.8a) 

and (4.3.8b), this set satisfies 
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( )4 p, u, N,ε 0δΠ = and ( )4 p, u, N,ε 0δΓ =  

 

Proof 

 

By taking variation of 4Π , one has 

 

( )

( ) ( )1

4

30 0

p, u, N,ε

1 ˆp u u p p p u, N,ε p,u
m

ot L
dxdt

δ

δ δ δ δ δ

Π

 = + − + Π + Π 
 ∫ ∫  

             (4.5.28) 

 

Substituting Eqs. (4.5.11), (4.5.15) and (4.5.16) into Eq. (4.5.28) yields 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

4

0 0

0 00

0

p, u, N,ε

1 N uu p p f u p u N ε ε ε N
m

u , u , N , N , N , u ,

p ,0 p ,0 u ,0 u ,0 u ,0 p ,0

u N

u N

L t

t x L x L
x x

L

c EA dtdx
x x

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ δ

δ δ

δ δ

= =
= =

Π

 ∂ ∂      = − + + − − + − + −      ∂ ∂      

 + − + −    

+ − + −      

∫ ∫

∫
∫

 

   

                    (4.5.29) 

 

Bearing in mind the governing equations (4.3.2) are now the prerequisite of this 

principle, thus are satisfied in the outset. As proved in Principle one, all the 

square brackets have to vanish when the functional ( )4 p, u, N,εΠ finds its 

stationarity, meaning 

 

 1u p 0
m

− =   i.e.,  1u p
m

=                 (4.5.30) 

 

By using Eq. (4.3.2b), it is easy to find 
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1u p v
m

= =                    (4.5.31) 

 

It is clear that all governing equations are contained in ( )4 p, u, N,ε 0δΠ =

implicitly or explicitly. 

 

In a similar fashion, performing the variation on the functional ( )4 p, u, N,εΓ  

 

( ) ( ) ( )1

4 30 0

1 ˆp,u, N,ε p p p u u p u, N,ε p,u
m

ot L
dxdtδ δ δ δ δ δ Γ = + + + Γ + Γ 

 ∫ ∫    

                   (4.5.32) 

 

Substituting Eqs. (4.5.21), (4.5.23) and (4.5.20) into Eq. (4.5.32) gives 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

1

1

4

0 0

0 00

0

p, u, N,ε

1 N up u p f c u p u ε N ε ε N
m

u , u , N , N , N , u ,

p ,0 p ,0 u ,0 u ,0 u ,0 p ,0

u N

u N

t L

t x L x L
x x

L

EA dxdt
x x

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ δ

δ δ

δ δ

= =
= =

Γ

 ∂ ∂      = − − + − − + − + −      ∂ ∂      

 + − + −    

+ − + −      

∫ ∫

∫
∫

 

  

                    (4.5.33) 

    

Once again, all governing equations are presented implicitly and explicitly in the 

statement ( )4 p, u, N,ε 0δΓ = .  

 

The sufficiency and necessity proofs are similar to the ones of Principle one. 

( )4 p, u, N,εΠ and ( )4 p, u, N,εΓ are, therefore, a pair of complementary 

functionals suitable for the dynamics of truss-type structures. This completes the 

proof of Principle two. 
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4.5.3 Three-field unconventional Hamilton-type variational principle 

 

One may obtain one pair of complementary functionals when Eqs. (4.3.1) and 

(4.3.2) are admitted and hence the fields p and v are replaced with u at the outset. 

u, N,ε  are the remaining independent fields. 

 

By substituting Eqs. (4.3.1) and (4.3.2) into Eqs. (4.5.4) and (4.5.5), one has 

 

( ) ( ) ( )1 2
3 30 0

1 ˆ ˆu, N,ε mu u, N,ε u
2

ot L
dxdt Π = + Π + Π 

 ∫ ∫               (4.5.34) 

 

and 

 

( ) ( ) ( ) ( ) ( )1 2
3 30 0

mu1 ˆ ˆu, N,ε mu u u, N,ε u
2m

ot L
dxdt

t
∂ 

Γ = + + Γ + Γ ∂ 
∫ ∫



          (4.5.35) 

 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 10
ˆ u m u , u , m u , u , mu ,0 u ,0

mu ,0 u ,0 mu ,0 u ,0 m u ,0 u ,0 }

{
o o o oL

o o o

x t x t x t x t x x

x x x x x x dx

α

β

Π = − +

+ − −

∫   

  

 (4.5.36) 

 

and 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 10
ˆ u 1 m u , u , m u , u , m u ,0 u ,0

m u ,0 u ,0 m u ,0 u ,0 1 m u ,0 u ,0

{

}

o o o oL

o o o

x t x t x t x t x x

x x x x x x dx

α

β

Γ = − − −

+ + − −

∫   

  

                                              

                    (4.5.37) 
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Again, α and β  are the coefficients assisting the construction of the functionals, 

the value of which are not required in the following discussion. 

( )3 u, N,εΠ and ( )3 u, N,εΓ  are a pair of complementary functionals such that 

 

( ) ( )3 3u, N,ε u, N,ε 0Π + Γ =                  (4.5.38) 

 

Principle three 

 

If and only if a set of fields, comprising u, N,ε , is the solution of a dynamic 

problem fulfilling Eqs. (4.3.3), (4.3.4), (4.3.5), (4.3.6), (4.3.7), (4.3.8a) and 

(4.3.8b), this set satisfies 

 

( )3 u, N,ε 0δΠ = and ( )3 u, N,ε 0δΓ =  

 

 

 

Proof 

Taking variation of ( )3 u, N,εΠ , one has 

 

( ) { } ( ) ( )1

3 30 0
ˆ ˆu, N,ε mu u u, N,ε u

ot L
dxdtδ δ δ δΠ = + Π + Π∫ ∫                          (4.5.39) 

 

Integrating the first integral by parts 

 

{ }1 1
1

2

0 20 0 0 0

umu u mu u m u
t L L tt t

tdxdt dt dx
t

δ δ δ=
=

  ∂ = −   ∂   
∫ ∫ ∫ ∫               (4.5.40) 

      

and expand the term ( )ˆ u
o

δ Π  in Eq. (4.5.40) as 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 10
ˆ u m u , u , mu ,0 u ,0

u ,0 u ,0 mu ,0 }
{

o L
x t x t x x

x x x dx

δ δ δ

δ

Π = − +

+ −  

∫  



             (4.5.41) 

 

 Substituting Eqs. (4.5.15), (4.5.40) and (4.5.41) into Eq. (4.5.39), yields 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }

1

1

3

2

20 0

0 00

0

u, N,ε

N u uf u m u N ε ε ε N

u , u , N , N , N , u ,

m u ,0 u ,0 u ,0 u ,0 u ,0 mu ,0

u N

u N

L t

t x L x L
x x

L

c EA dtdx
x t x

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ

δ δ

δ δ

= =
= =

Π

  ∂ ∂ ∂  = + − − + − + −    ∂ ∂ ∂    

 + − + −    

 + − + −   

∫ ∫

∫
∫



  

                                                                   

                  (4.5.42) 

 

Similarly, take variation of ( )3 u, N,εΓ   

 

( ) ( ) ( )1
2 2

3 32 20 0

u m u ˆ ˆu, N,ε mu u m u u u, N,ε u
ot L

dxdt
t t

δ δ δ δ δ δ
 ∂ ∂

Γ = + + + Γ + Γ ∂ ∂ 
∫ ∫     

                    (4.5.43) 

 

It can be seen that 

 

( ){ } { }

1

1 1
1

2

20 0

2

020 0 0 0 0

umu

umu u mu mu u

t L

t L L t Lt t
t

dxdt
t

dxdt dx dxdt
t

δ

δ δ δ=
=

 ∂
 ∂ 

 ∂
= = − ∂ 

∫ ∫

∫ ∫ ∫ ∫ ∫  

             (4.5.44) 

 

and 
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( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

1 10
ˆ u u ,0 m u ,0 u , m u ,

m u ,0 u ,0 u ,0

{
}

o L
x x x t x t

x x x dx

δ δ δ

δ

Γ = −

 + − 

∫  

 

               (4.5.45) 

 

By virtue of Eqs. (4.5.23), (4.5.44) and (4.5.45), it is found Eq. (4.5.43) may now 

be transformed as 

 

( )

[ ]

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }

1

1

3

2

20 0

0 00

0

u, N,ε

u N uε N ε ε N f c u m u

u , u , N , N , N , u ,

m u ,0 u ,0 u ,0 u ,0 u ,0 m u ,0

u N

u N

t L

t x L x L
x x

L

EA dxdt
x x t

x t x t x t x t x t x t dt

x x x x x x dx

δ

δ δ δ

δ δ

δ δ

= =
= =

Γ

  ∂ ∂ ∂  = − + − − + − −   ∂ ∂ ∂    

 + − + −    

 + − + −   

∫ ∫

∫
∫



  

                                                                     

                    (4.5.46) 

 

In a similar fashion to the proof of Principle one, and bearing in mind that Eqs. 

(4.3.1) and (4.3.2) are the preconditions of this principle, it can be observed in the 

variational statements Eqs. (4.5.42) and Eq. (4.5.46) that all Governing equations 

have to be satisfied when the stationarity of ( )3 u, N,εΠ  and ( )3 u, N,εΓ are found, 

thus ( )3 u, N,εΠ  and ( )3 u, N,εΓ  are a pair of complementary functionals for a 

dynamic problem. This completes the proof for Principle three. 

 

4.5.4 Two-field unconventional Hamilton-type variational principle 

 

When the relations Eqs. (4.3.2), (4.3.4) and (4.3.5) are admitted as prerequisites, a 

two-field variational principle with only p and u as the independent fields may be 

derived as follows. 

 

Substituting Eqs. (4.3.2), (4.3.4) and (4.3.5) into Eqs. (4.5.4) and (4.5.5), one has 
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( ) ( ) ( )1 2
2 10 0

1 ˆp,u pu p u p,u
2m

ot L
dxdt Π = − + Π + Π 

 ∫ ∫                (4.5.47) 

and 

 

( ) ( ) ( )1 2
2 10 0

1 ˆp,u p pu u p,u
2 m

ot L
dxdt Γ = + + Γ + Γ 

 ∫ ∫                (4.5.48) 

 

whereas ( )p,u
o

Π and ( )p,u
o
Γ are given by Eqs. (4.5.8) and (4.5.9) respectively,  

 

( )

( ) ( ) ( ) ( ) ( )

1

1

1

2 o

0 0

0 00

ˆ u

1 u f c u u
2

u ,
u , u , N , u ,u N

u N

t L

t x L x L
x x

EA dxdt
x

x t
EA x t x t x t x t dt

x
= =
= =

Π

 ∂    = − + −    ∂     
∂ 

+ − +   ∂ 

∫ ∫

∫

              (4.5.49) 

 

( )

( ) ( ) ( ) ( ) ( )

1

1

1

2 2 o

20 0

0 00

ˆ u

1 u u u f u u
2

u , u ,
u , N , u ,u N

u N

t L

t x L x L
x x

EA EA c dxdt
x x

x t x t
EA x t EA x t x t dt

x x
= =
= =

Γ

 ∂ ∂    = − − − −    ∂ ∂     
 ∂ ∂  + + −  ∂ ∂   

∫ ∫

∫

       (4.5.50) 

 

It can be easily verified that  

 

( ) ( )2 2p, u p,u 0Π + Γ =                   (4.5.51) 

 

Therefore they are a pair of complementary functionals. 

 

Principle four 
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If and only if a set of fields, comprising p,u , is the solution of a dynamic 

problem fulfilling Eqs. (4.3.1), (4.3.3), (4.3.6), (4.3.7), (4.3.8a) and (4.3.8b), this 

set satisfies 

 

( )2 p, u 0δΠ = and ( )2 p, u 0δΓ =  

 

Proof 

 

Taking variation of ( )2 p, uΠ , one has 

 

( )

( ) ( )1

2

10 0

p, u

1 ˆp u u p p u p,u
m

ot L
dxdt

δ

δ δ δ δ

Π

  = + − + Π + Π    
∫ ∫  

              (4.5.52) 

 

and the variation of ( )1
ˆ uΠ  is given by  

 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

o

0 0

0

0

0 0

ˆ u

u u f c u u

u ,
u , u ,

u ,
u , N , u ,

u

u

u N

u N

t L

x L
x

t

x L x L
x x

EA dxdt
x x

x t
EA x t x t

x dt
x t

EA x t x t x t
x

δ

δ δ

δ

δ δ

=
=

= =
= =

Π

∂ ∂  = − + −  ∂ ∂   
 ∂ 

−     ∂  +  
∂ 

+ + ∂ 

∫ ∫

∫

               (4.5.53) 

 

Using integration by parts, the first term in the first integrand may be expressed as 

 



Chapter 4 Unconventional Hamilton-type variational principles 

 

87 

 

( ) ( )

( ) ( )

1

1 1

1

0 0

2

020 0 0

00

u u

u ,u u u ,

u ,
u ,

u

u

u

u

t L

t L t x L
x

t N L
N

EA dxdt
x x

x t
EA dxdt EA x t dt

x x

x t
EA x t dt

x

δ

δ δ

δ

=
=

=
=

∂ ∂ − ∂ ∂ 
∂  ∂

= −   ∂ ∂   
∂ 

−  ∂ 

∫ ∫

∫ ∫ ∫

∫

             (4.5.54) 

 

Therefore ( )1
ˆ uδΠ is transformed as 

 

( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

2

20 0

0

0

0

ˆ u

u f cu u

u ,
u , u ,

u ,
N , u ,

u

u

N

N

t L

x L
x

t

x L
x

EA dxdt
x

x t
EA x t x t

x
dt

x t
x t EA x t

x

δ

δ

δ

δ

=
=

=
=

Π

  ∂ = + −  ∂   
 ∂ 

−     ∂   +  
∂  + −  ∂  

∫ ∫

∫

                (4.5.55) 

 

Substituting Eqs. (4.5.11), (4.5.16) and (4.5.55) into Eq. (4.5.52), one has 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

2

2

20 0

00

00

p, u

1 uu p p f cu p u
m

u ,
u , u ,

u ,
N , u ,

p ,0 p ,0 u ,0 u ,0 u ,

u

u

N

N

t L

t x L
x

t x L
x

EA dxdt
x

x t
x t x t EA dt

x

x t
x t EA x t dt

x

x x x x x

δ

δ δ

δ

δ

δ

=
=

=
=

Π

  ∂  = − + + − −    ∂    
 ∂  + −     ∂   
 ∂  + −  ∂   

+ − + −  

∫ ∫

∫

∫

 

( ) ( ){ }
0

0 p ,0
L

x dxδ  ∫

             (4.5.56) 

  

Taking variation of ( )2 p, uΓ , one has 
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( ) ( ) ( )1

2 10 0

1 ˆp,u p p p u u p u p,u
m

ot L
dxdtδ δ δ δ δ δ Γ = + + + Γ + Γ 

 ∫ ∫                (4.5.57) 

 

The variation of ( )1
ˆ uΓ  is given by 

 

( )

[ ]

( ) ( ) ( ) ( ) ( )

( ) ( )
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1

1
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0 00

00

ˆ u

u u u uu u f u u
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u , N , u ,

u ,
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t x L x L
x x

t x L
x

EA EA EA c dxdt
x x x x

x t x t
EA x t EA x t x t dt

x x

x t
EA x t dt

x

δ

δ δ δ δ

δ δ

δ

= =
= =

=
=

Γ

  ∂ ∂ ∂ ∂ = − − − − −  ∂ ∂ ∂ ∂   
 ∂ ∂    + + −    ∂ ∂     
 ∂  +   ∂   

∫ ∫

∫

∫



  

                    (4.5.58) 

 

Therefore ( )2 p, uδΓ is obtained by substituting Eqs. (4.5.20), (4.5.21) and (4.5.58) 

into Eq. (4.5.57), 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1
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2
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00
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1 up u p f u p u
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u ,
N , u ,
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u
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N

N

t L

t x L
x

t x L
x

EA c dxdt
x

x t
x t x t EA dt

x

x t
EA x t x t dt

x

x x x x x

δ

δ δ

δ

δ

δ

=
=

=
=

Γ

  ∂  = − + + − −    ∂    
 ∂  + −     ∂   
 ∂  + −  ∂   

+ − + −  

∫ ∫

∫

∫

 

( ) ( ){ }
0

0 p ,0
L

x dxδ  ∫

            (4.5.59) 

 

It is clear from Eqs. (4.5.56) and (4.5.59) that the Euler equations given by both 

( )2 p, uΠ  and ( )2 p, uΓ  are the boundary condition ( ) ( )u , u , 0x t x t− = on the 
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displacement boundary ux (Eq. 4.3.7); as well as the initial conditions Eqs. (4.3.8a) 

and (4.3.8b), plus the following two equations 

 

 1 p u 0
m

− =                     (4.5.60) 

 

and 

 

 
2

2

u f cu p 0EA
x

∂
+ − − =

∂
                   (4.5.61) 

 

With the precondition Eq. (4.3.2b), Eq. (4.5.60) is essentially the governing 

equation (4.3.1), i.e. 

 

1 p u v u 0
m

− = − =                     (4.5.62) 

  

With the prerequisites Eqs. (4.3.4) and (4.3.5), the Euler equation (4.5.61) is in 

fact the governing equation (4.3.3) 

 

( )
2

2

u Nf cu p ε f cu p f cu p 0EA EA
x x x

∂ ∂ ∂
+ − − = + − − = + − − =

∂ ∂ ∂
                 (4.5.63) 

 

Therefore all governing equations are obtained in the variations of ( )2 p, uΠ  and 

( )2 p, uΓ , and this two functionals are consequently a set of complementary 

functionals for the dynamic problems of truss-type structures. This completes the 

proof of Principle four. 

 

4.5.5 One-field unconventional Hamilton-type variational principle 
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When the governing equations (4.3.1), (4.3.2), (4.3.4) and (4.3.5) are admitted in 

( )5 p, v, u, N,εΠ  and ( )5 p, v, u, N,εΓ  one more pair of functionals are found with 

u  is the only remaining field. 

 

The two functionals ( )1 uΠ and ( )1 uΓ are as follows 

 

( ) ( ) ( )1 2
1 10 0

1 ˆ ˆu m u u u
2

ot L
dxdt Π = + Π + Π 

 ∫ ∫                 (4.5.64) 

 

and 

 

( ) ( ) ( ) ( )1 2
1 10 0

mu1 ˆ ˆu mu u u u
2

ot L
dxdt

t
∂ 

Γ = + + Γ + Γ ∂ 
∫ ∫



               (4.5.65) 

 

Where ( )1
ˆ uΠ and ( )1

ˆ uΓ are given by Eqs. (4.5.49) and (4.5.50) respectively, and 

( )ˆ u
o

Π and ( )ˆ u
o

Γ  are given by Eqs. (4.5.36) and (4.5.37). 

 

( )1 uΠ and ( )1 uΓ  are a pair of complementary functionals such that 

 

( ) ( )1 1u u 0Π + Γ =                    (4.5.66) 

 

Principle five 

 

If and only if u is the solution of a dynamic problem fulfilling Eqs. (4.3.3), (4.3.6), 

(4.3.7), (4.3.8a) and (4.3.8b), this field satisfies 

 

( )1 u 0δΠ = and ( )1 u 0δΓ =  
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Proof 

 

By taking variation of ( )1 uΠ , one has 

 

( ) { } ( ) ( )1

1 10 0
ˆ ˆu m u u u u

ot L
dxdtδ δ δ δΠ = + Π + Π∫ ∫                 (4.5.67) 

 

By virtue of Eqs. (4.5.40), (4.5.41) and (4.5.55), one has 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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u uf cu m u
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N , u ,

m u ,0 u ,0 u ,0 u ,0 u ,0 mu

u
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t L

t x L
x

t x L
x

EA dxdt
x t

x t
x t x t EA dt

x

x t
x t EA x t dt

x

x x x x x

δ

δ

δ

δ

δ δ

=
=

=
=

Π

  ∂ ∂ = + − −  ∂ ∂   
 ∂  + −     ∂   
 ∂  + −  ∂   

 + − + −   

∫ ∫

∫

∫



   ( )( ){ }
0

,0
L

x dx∫

   (4.5.68) 

  

Similarly, taking variation of ( )1 uΓ , one has 

 

( ) ( ) ( )1
2 2

1 12 20 0

u u ˆ ˆu mu u m u mu u u
ot L

dxdt
t t

δ δ δ δ δ δ
 ∂ ∂

Γ = + + + Γ + Γ ∂ ∂ 
∫ ∫        (4.5.69) 

 

Substitution of Eqs. (4.5.23), (4.5.44) and (4.5.45) into Eq. (4.5.69) gives 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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t L

t x L
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x

EA dxdt
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x t
x t x t EA dt

x

x t
EA x t x t dt

x

x x x x x

δ

δ

δ

δ

δ δ

=
=

=
=

Γ

  ∂ ∂ = − + − −  ∂ ∂   
 ∂  + −     ∂   
 ∂  + −  ∂   

 + − + −   

∫ ∫

∫

∫



  ( )( ){ }
0

u ,0
L

x dx∫ 

 

                    (4.5.70) 

 

By making use of Eqs. (4.3.4) and (4.3.5), one of the Euler equations obtained in 

Eqs. (4.5.68) and (4.5.70), ( ) ( )u ,
N , 0

x t
EA x t

x
∂

− =
∂

 , is equal to the traction 

boundary condition Eq. (4.3.6).  Another one, ( ) ( )m u ,0 m u ,0 0x x− =   , is in fact 

one of the initial conditions Eq. (4.3.8b) with the assistance of Eqs. (4.3.1) and 

(4.3.2a). Thus all governing equations have to be satisfied when the two 

functionals find their stationarity. The sufficiency and necessity proofs are similar 

to that in the proof of Principle one, consequently it is clear that ( )1 uΠ and ( )1 uΓ

are a pair of complementary variational principles for the dynamics of truss-type 

structures. This completes the proof of Principle five. 

 

4.6 Summary 
 

Five Unconventional Hamilton-type Variational Principles are presented for truss-

type structures in this chapter. Principle one is the most general one with five 

independent variable fields. It takes full account of the dynamic characteristics of 

a truss-type system. Furthermore, it also incorporates boundary conditions and 

initial conditions without using Lagrange multipliers or any artificial coefficients. 

The derivation of the principle is straightforward and has a solid mathematic 

foundation. In addition, each principle yields a pairs of functionals; either one can 
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be selected to construct numerical algorithms for dynamic solutions. This feature 

makes this principle distinctive to other variational principles and laws. Unlike 

Gurtin’s principle, the presented variational formulation involves no convolution 

operators hence the computation cost is reduced. The other four UHVPs are the 

simplified version of Principle one with less variable fields when certain control 

equations are set as a priori. Simplified versions offer computational advantage 

due to fewer unknowns to solve. This feature is explored in the remaining 

chapters to construct a space-time finite element method for the dynamic analysis 

of truss-type structures. 
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Chapter 5  Finite Elements in the Temporal Domain 
 

5.1 Introduction 
 

Traditionally dynamic problems were solved with various finite difference 

methods in the temporal domain (Richymyer and Morton, 1967; Newmark, 1962). 

Following the fruitful applications of the finite element method (FEM) in the 

spatial domain, it becomes promising and natural to extend the FEM into the 

temporal domain as well for time-varying problems. Finite element in time offers 

“a unified solution strategy for the space-time domain which could give 

synergistic improvements in computational efficiency”; “finite element in time 

could be tuned to give minimum error at points for which the greatest accuracy is 

desired” (Peters and Izadpanah, 1988). The variational principles presented in the 

last chapter lead to several corresponding weak formulations for truss-type 

structures and facilitate a unified solution procedure as suggested by Peters and 

Izadpanah. 

 

In this chapter, two fundamental aspects of implementing time finite element are 

discussed briefly, i.e., the global approximation and piecewise approximation; the 

simultaneous discretisation and semi-discretisation and the associated advantage 

and disadvantage are presented. Various time finite elements used in the 

literatures are reviewed next, followed by the introduction of the time finite 

elements adopted in the present study. 

 

5.2 Global approximation or piecewise approximation 
 

Finite element in time can be implemented in two ways. The first one is the global 

approximation, where time finite elements are applied to the entire time domain 

and the unknown values for all time nodes are coupled together and solved 

simultaneously; the second is to divide the time domain into successive time 

intervals and seeking solutions in a stepwise fashion, i.e., using the known values 
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(either the initial conditions or the results of the previous time step) as the input to 

advance the results at the end of the current time step. This procedure is repeated 

until the end of the time domain is reached. There are pros and cons associated 

with each method, which are summarised in the following table. 

 

 pros cons 

Global 
approximation 

 Presenting time finite 
element and spatial finite 
element in an uniform 
framework. 
 

 Results of higher accuracy 
may be obtained. 1,2 

 More unknowns to be 
solved thus leading to 
significant bigger equation 
set to be solved. 
 

 Less satisfaction in the 
algorithmic stability 
compared to piecewise 
approximation. 1 

Piecewise 
approximation 

 Smaller equation system 
which can be solved more 
economically. 
 

 Improved algorithmic 
stability. 

 Accuracy may be 
compromised1, due to 
error accumulation in each 
step, but it can be 
improved if smaller time 
steps are used. 

1. (Baruch and Riff, 1984) 
2.  (Howard and Penny, 1978)  

Table 5.2.1 – Comparison of global and piecewise approximations 

 

In the presented research, the piecewise approximation, which is of the single-step 

type, is adopted for the proposed numerical scheme, on the consideration of low 

computational cost and the stability reasons. Meanwhile, as highlighted by 

Howard and Penny (1978), the accuracy can be maintained by the suitable choice 

of time step length. 

 

5.3 Simultaneous discretisation or semi-discretisation 
 

There are two approaches to apply the finite element method in the temporal 

domain. The first approach is found in the early publications of the time finite 

element study, where time was treated as an additional dimension along with the 

spatial dimensions (Oden, 1969); the resulting space-time domain was discretised 
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with shape functions based on both the spatial and the temporal coordinates, 

therefore some refers this treatment as Space-Time Finite Element Method 

(STFEM) (Bajer, 1986). Mathematically, this discretisation procedure may be 

expressed as 

 

( ) ( ) ( )ˆ, , ,i i
i

x t N x t x tξ ξ=∑           (5.3.1) 

 

in which ( ),iN x t is the shape function, ( )ˆ ,i x tξ  are the general coordinates of the 

pivot points. The STFEM approach has been successfully applied to a one-

dimensional problem (Yu and Hsu, 1985), as well as to multi-dimensional 

problems (Kim, 2001; Bajer, 1986; Hughes and Hulbert; 1988). It is found 

particularly useful for problems with sharp changes in solutions, such as wave 

propagation problems (Hulbert and Hughes, 1990). However, the disadvantages of 

this approach are two-fold. The first one is that the resultant equation sets are 

bigger in size thus would require more computational resource to handle (Kim, 

2003); the other is that the algorithmic stability issue becomes more sensitive, 

especially for non-rectangular space-time elements (Bajer, 1986). 
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Figure 5.3.1- A simultaneous space-time finite element discretisation (Hughes and 

Stewart, 1996)  

 

The second approach is the so-called “semi-discretisation” approach, i.e., the 

dynamic system is firstly discretised in the spatial domain, leading to either the 

equations of motion in the form of a set of ordinary differential equations, or an 

energy functional containing these equations implicitly. Finite element treatment 

in time is then applied to approximate the time-dependent variable field(s) thus a 

set of algebraic equations are obtained, which can be solved with various schemes. 

This discretisation procedure may be expressed as 

 

( ) ( ) ( )ˆ, ,i i
i

x t N t x tξ ξ=∑          (5.3.2) 
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Figure 5.3.2 – A  semi-discretisation of the space-time domain (Cushman, 1979)  

 

There are abundant research works adopting this approach for various problems 

(Gellert, 1978; Golley, 1996; Lee and Kwak, 1993; Golley and Amer, 1999) 

because of the ease of implementation in the algorithm and less demanding for the 

computational resources. 

  

Although these two approaches deal with the same task with different tactics, it 

has been shown that the STFEM approach is equivalent to the semi-discretisation 

one, if rectangular space-time elements are used (Sanz-Serna, 1983). In addition, 

given the drawbacks of STFEM, Zienkiewicz stated that the benefit of the 

STFEM approach for structural dynamics was limited (1977). For problems 

involving high frequency elements, however, the merits of STFEM are evident, 

such as capable of capturing accurately discontinuities in the solution and ease of 

adopting unstructured mesh in the space-time domain (Hughes and Hulbert, 1988; 

Hulbert and Hughes, 1990; Hulbert, 1992; Cella et al., 1980) .  

 

In the present research, the semi-discretisation approach is adopted due to its 

convenience. 

 

5.4 A review of time finite elements in the semi-discretisation 
application 
 

The pioneers of the finite element in time were Argyris and Scharpf (1969) and 

Fried (1969). Since the publication of their research, the application of time finite 
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elements have been further explored by Zienkiewicz (1977) and many others (Riff 

and Baruch, 1984; Hulbert and Hughes, 1990; Bailey, 1975; Cushman, 1979).  

 

Various approximation functions have been used for the approximation in the 

temporal domain, including cubic Hermite polynomials, Lagrange polynomials 

and B-splines, as well as power series and Taylor series. 

 

Cubic Hermite time element 

One of the most popular interpolation functions is the cubic Hermite polynomials. 

Starting from Hamilton’s Principle, Argyris and Scharpf (1969) used these 

functions for the displacement approximation and the first derivates for the 

velocity approximation in their formulation. The algorithm was second-order 

accurate. They demonstrated their procedure could be extended further for the 

adaptation of shape functions of arbitrary orders.  

 

The same approximation was used by Fried (1969) and Geradin (1974) in their 

stepwise algorithms. Geradin found that, when the cubic Hermite approximation 

was directly applied, the resultant algorithm was only conditionally stable. To 

overcome this problem, the same treatment used by Bathe and Wilson (1972) was 

employed to derive an unconditionally stable algorithm while the accuracy was 

affected only slightly. The response at the end of the time step was obtained in a 

two – step procedure: 1) the response at the end of a slightly larger time step is 

evaluated first; 2) the desired response is to be interpolated from that response and 

the initial values. It may be illustrated in the following figure. 

 

 
Figure 5.4.1- Geradin’s unconditionally stable procedure (Geradin, 1974) 

nt tn+1 t

1

2
2
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In a variational formulation proposed by Riff and Baruch (1984), the displacement 

and the velocity were identically approximated with the cubic Hermite functions 

and the first derivatives of these functions. However, in contrast to the calculus of 

variations, the variation of the approximated field was based on the second 

derivatives of the cubic Hermite polynomials. A conditionally stable algorithm 

was attained.  

 

A similar approach was proposed by Golley and Amer (1999). In their procedure, 

the cubic Hermite polynomials and their first and second derivatives were used for 

the approximation of the displacement, velocity and acceleration respectively. 

These approximated quantities were then substituted into the governing equation 

and the residual was found. The weighted residuals, expressed as the functions of 

eight weighted integrals, were made to vanish to give rise to a recurrence 

formulation for the evaluation of the end values. These weighted integrals were 

determined on the consideration of algorithmic accuracy, stability, desired 

dissipation and numerical characteristics.  

 

Lagrange time element 

In addition to the Hermite polynomials, another popular choice for the time 

approximation is the Lagrange polynomials. A typical application was given by 

Fung (1998), in which the displacement and the momentum were treated as 

independent variables in a variational formulation. While these quantities were 

approximated with Lagrange polynomials of a given order, their variations were 

approximated with a different polynomial of one order lower. The resultant 

algorithms were found to be unconditionally stable with controllable numerical 

dissipation. 

 

The performance of three types of Lagrange time finite elements was investigated 

in terms of accuracy, stability and numerical dissipation (Fan et al., 1997). The 

three types of Lagrange polynomials used for the approximation were: 
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• Lagrange polynomial 

• Piecewise discontinuous Lagrange polynomial 

• Piecewise continuous Lagrange polynomial  

 

The equation of motion was expressed in the first order form and solved by the 

generalised Galerkin method. The test functions were taken as polynomials of one 

order less than that of the trial functions. It was found that  

 

• With various combinations of trial functions and test functions, accuracy 

of different orders can be achieved, ranging from second-order to sixth-

order. 

 

• Various numerical dissipation was obtained. While unconditionally stable, 

non-dissipative algorithms can be obtained with the Lagrange polynomials, 

unconditionally stable and asymptotic annihilating algorithms can be 

derived with the piecewise discontinuous Lagrange polynomials. A third 

case exist when the piecewise continuous Lagrange polynomials were 

adopted; the result can have desired dissipation between the first two cases. 

 

The effect of using lower order test functions were verified by Sheng et al. (1998) 

in their Hamilton’s law based formulation. 

 

The application of Lagrange approximation to arbitrary load functions was 

successfully used  to avoid the expensive Duhamel integration for the particular 

solutions (Liu, 2001), and a semi-analytical algorithm of structural analysis based 

on the modal decomposition  method was thus obtained. 

 

Different types of approximating functions can be used in conjunction. In a paper 

by Gellert (1978), both the cubic Hermite polynomials and the second-order 

Lagrange polynomials were used, while the former was employed to approximate 
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the displacement, and latter is used for the load interpolation. A similar treatment 

was given by Golley and Amer (1999) with more combinations. 

  

B-spline and power series 

 Recently, B-spline functions have been utilised for the time finite element 

approximation (Rostami et al., 2012). The velocity and the acceleration were 

derived from the time derivatives of the displacement approximation. These 

quantities were substituted into the control equation at the collocation points. High 

accuracy can be achieved. This algorithm is an explicit one, therefore, it has the 

advantage of high computational efficiency, but it also shares the drawback of 

conditional stability as other explicit algorithms.  

 

Another type of time approximation function is the power series, which can be 

regarded as the general form of the Hermite and the Lagrange polynomials. A 

power series is normally in the following form, 

 

( ) 0,1,2,
n

n
nx t t nα= =∑           (5.4.1) 

 

The initial values (displacement and velocity) can be enforced strongly in the 

displacement approximation as demonstrated in a series of works by Bailey. 

Alternatively, these initial values can be enforced only weakly as shown in (Fung, 

2003a, 2003b). Many established algorithms use power series approximation, 

including the Houbolt algorithm, the Wilson-Farhoomand procedures, the HHT 

method, and so on, Zienkiewicz et al. (1984) put forward a general framework 

unifying these algorithms and classified them under the category of the SSpj

algorithms (Single Step with approximation of degree p for equations of order j). 

In many applications, the power approximation is only up to third-order. 

 

Higher-order power series was attempted in later researches. Howard and Penny 

(1978) proposed a power series of the fifth-order (quintic element) for the 
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displacement approximation in order to account for the continuity of accelerations 

at the time element boundaries. The authors found with this approximation the 

errors were reduced significantly compared with the popular cubic Hermite 

approximation. However, this scheme was a conditionally stable one.  An 

unconditionally stable algorithm based on the same fifth-order approximation was 

presented by Wang and Au (2004), in their approach the weighted residual 

method and the collocation method were combined and two parameters were put 

in place to control the stability and the accuracy. The solution was found to be 

fifth-order accurate.  

 

High order accurate algorithm based on a power series of the order n  with 

undetermined coefficients was proposed by Fung (2000). The power series was 

utilised to approximate the displacement field while the velocity and acceleration 

were subsequently derived from the time derivatives of the displacement field. 

The second-order differential governing equations were then transformed into a 

set of algebraic equations in terms of the coefficients. Once these coefficients 

were solved, the end value sought for was then obtained by back substitution. The 

accuracy and the stability of this scheme depend on the selection of n  collocation 

parameters. In general, the scheme is at least nth -order accurate, and the order of 

accuracy can be further improved to 2 1n − or 2n  if the collocation parameters are 

chosen as the roots of a polynomial in terms of the ultimate amplification factor. 

The given scheme is unconditionally stable one with controllable dissipation.  

 

Although it is found many unconditionally stable algorithm were constructed with 

trial functions and test functions of different orders, as reviewed in the subsections 

of the Hermite and the Lagrange time elements.   Idesman  (2007, 2011) present 

an unconditionally stable time-continuous Galerkin method with trial functions 

and test functions of the same order, which also has controllable numerical 

dissipation.  
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In this research, several suitable time finite elements are identified for the 

proposed UHVP algorithms, including the cubic Hermite element, Lagrange 

elements of various orders.  These time finite elements are reviewed next.  

 

5.5 Time finite element employed in the study 
 
5.5.1 Cubic Hermite time element  

 
The cubic Hermite time finite element offers a straightforward way to incorporate 

the initial displacement and velocity into the unknown displacement field 

approximation, which is very convenient for structural dynamic problems. 

 

Typical, the cubic Hermite polynomials may be expressed as Eq. (5.5.1), where 

t
tτ = ∆   is the local dimensionless time within the time step t∆ . 

 

[ ]

2 3 2 3
0 1

2 3 3 2
0 1

1 3 2 ; 3 2 ;

2 ; 0,1

φ τ τ φ τ τ

ϕ τ τ τ ϕ τ τ τ

= − + = −

= − + = − ∈
                                    (5.5.1) 

 

 
Figure 5.5.1 – Plot of the cubic Hermite polynomials 

 
Accordingly the first derivatives with respect to τ are 
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[ ]

2 2
0 1

2 2
0 1

6 6 ; 6 6 ;

1 4 3 ; 3 2 0,1

d d
d d
d d
d d

φ τ τ φ τ τ
τ τ

ϕ τ τ ϕ τ τ τ
τ τ

= − + = −

= − + = − ∈
    (5.5.2) 

 

 
Figure 5.5.2 – Plot of first derivatives of the cubic Hermite polynomials 

 

Using the cubic Hermite polynomials, the piecewise displacement field within a 

time interval [0,1]  as shown in Figure 5.5.3 is approximated with the time nodal 

values of the displacement and velocity at the two time boundaries, 0 1 0 1ˆ ˆ ˆ ˆ, , ,u u v v  . 

 

( ) ( ) ( )
( )

0 0 1 1 0 0 1 1ˆ ˆ ˆ ˆ

1

u u u v vτ φ φ τ ϕ τ ϕ

τ

= + + ∆ + ∆

∆ =
                (5.5.3) 
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Figure 5.5.3 – The cubic Hermite approximation 

 

The velocity field is derived accordingly as 

 

( ) ( ) ( ) ( )

( )

0 01 1
0 1 0 1

1 ˆ ˆ ˆ ˆ

1

du d dd ddv u u v v
dt d t d d d d

τ φ ϕφ ϕττ τ τ
τ τ τ τ τ

τ

 = = + + ∆ + ∆ ∆  
∆ =

              (5.5.4) 

 

It can be easily verified that the approximated displacement and velocity will give 

the initial values at 0τ =  and the end values at 1τ = . 

 

5.5.2 Lagrange time elements  

 

Various Lagrange time elements may be constructed with the corresponding 

Lagrange polynomials. A standard Lagrange polynomial can be expressed with 

several pivot points ( ) ( )ˆ ˆ, , 0,1,2,...,i ix y i n=  in the following form (Gerald and 

Wheatley, 1994) 

 

( )
( )0,

ˆ

ˆ ˆ

n
j

i
j j i i j

x x

x x
φ

= ≠

−
=

−∏                    (5.5.5) 

  

0 1 τ

u,v

u0,v0

u1,v1

u(τ)=f(u0,v0,u1,v1)
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Consequently the unknown field, for example the displacement field can be 

approximated with the values ˆiu  at n  pivot points  

 

( )
0

ˆ
n

i i
i

u t uφ
=

=∑           (5.5.6) 

 

The order of the approximation is determined by the parameter n . When 1n = , 

the approximation becomes a linear one. The linear approximation has been used 

in many early earlier publications. When 2n =  the approximation is also referred 

as “quadratic interpolation” (Lee and Kwak, 1993). 

 

In this research, Lagrange elements of various orders are used, including the 

second-, third- and fifth- order elements, respectively. These time finite elements 

are shown to give different characteristics to the resultant algorithms, and these 

characteristics are to be discussed in Chapters 7 & 8. 

 

Second order interpolation 

In the second order interpolation, the shape functions iφ  are 

 

( )( )

( )

( ) [ ]( )

0

1

2

1 1 2 ;
2

2 ;
1 1 0,2
2

φ τ τ

φ τ τ

φ τ τ τ

= − −

= −

= − ∈

      (5.5.7) 

 

in which τ is again the dimensionless time. The three functions are plotted as 

below. 
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Figure 5.5.4 – Second order Lagrange polynomials 

 

Third order interpolation 

In the third order interpolation, the four shape functions iφ  are 

 

( )( )( )

( )( )

( )( )

( )( ) [ ]( )

0

1

2

3

1 1 2 3 ;
6

1 2 3 ;
2
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2

1 1 2 0,3
6

φ τ τ τ

φ τ τ τ

φ τ τ τ

φ τ τ τ τ

−
= − − −

= − −

−
= − −

= − − ∈

                   (5.5.8) 

 

They can be shown graphically as below 

 

 
Figure 5.5.5 – Third order Lagrange polynomials 
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Fifth order interpolation 

The fifth order interpolation is also used in the present study, for which the shape 

functions iφ  are 

( )( )( )( )( )

( )( )( )( )

( )( )( )( )

( )( )( )( )

( )( )( )( )

( )( )( )( ) [ ]

0
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4

5

1 1 2 3 4 5 ;
120
1 2 3 4 5 ;
24

1 1 3 4 5 ;
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1 1 2 3 5 ;

24
1 1 2 3 4 0,5

120

φ τ τ τ τ τ

φ τ τ τ τ τ

φ τ τ τ τ τ

φ τ τ τ τ τ

φ τ τ τ τ τ

φ τ τ τ τ τ τ

−
= − − − − −

= − − − −

−
= − − − −

= − − − −

−
= − − − −

= − − − − ∈

   

            (5.5.9) 

 

These shape functions are plotted as below 

 

  
Figure 5.5.6 – Fifth order Lagrange polynomials 
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obtain the prescribed values at these pivot points. Obviously, the more pivot 

points, the more accurate the approximation within the time interval. 

 

5.6 Summary 
 

In this chapter, different ways of applying finite element discretisation in the 

temporal domain for dynamic problems is briefly reviewed. The piecewise 

approximation and semi-discretisation approach of applying time finite element 

are chosen for the present research. Time finite elements in existing literatures are 

reviewed, and particular ones suitable for the proposed space-time finite element 

algorithms are presented.  

 

 



Chapter 6 One-field and two-field UHVP algorithms 

 

 

111 

 

Chapter 6  One-field and Two-field UHVP 
Algorithms 
 

6.1 Introduction 
 

Based on the Unconventional Hamilton-type variational principles presented in 

Chapter 4, two algorithms are developed here to offer direct solutions for the 

dynamics of truss-type structures. These two algorithms are based on the one-field 

principle (Principle five) and the two-field principle (Principle four) respectively. 

The reasons for the adoption of these two particular principles lie in two aspects: 

 

• It is well-understood that the status of a dynamic system can only be 

determined by describing its displacement and the momentum /velocity. 

The two-field principle yields the formulation employing nothing but 

exactly these two variable fields, therefore, the two-field principle is the 

most suitable choice. The mixed formulation thus generated may also offer 

certain algorithmic advantages, such as unconditional stability. (Fung et al., 

1998). On the other hand, the status of a system can also be described if 

the velocity and displacement fields are linked together by differentiation 

operation, therefore the one-field principle can also be adopted. 

 

• These two principles are also economic choices since there are fewer 

unknowns to be solved. For an n-DOFs system, these two principles both 

render 2n numbers of unknowns, while other UHVPs would result in 3n, 

4n and 5n unknowns respectively. 

 

In section 6.2, two variational formulations are given for the one-field and two-

field UHVP algorithms. The derivation of these two types of space-time finite 

element algorithms is then presented in section 6.3. For each algorithm, the semi-
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discretisation approach is adopted, where the spatial discretisation is performed 

first in a standard finite element procedure. The time discretisation using different 

time finite elements is presented next. The whole time domain is divided into 

successive sub-intervals, and the formulations for the end values within the time 

sub-interval are given. The solution from the current sub-interval is used as the 

initial values for the next sub-interval, and hence forms a single step time 

marching scheme. Summary are given in section 6.3. 

 

6.2 Variational formulations for one-field and two-field 

algorithms 
 

The variational expressions presented in the Chapter 4 are established on the basis 

of an individual rod member. To analyse the response of the entire structure, the 

contributions from all rod members need to be taken into account. To this end, 

variational formulations for individual rods are summed up to reflect the dynamic 

equilibrium of the whole structure. Consequently, for a structure with nr numbers 

of rods this summation is in the form of  

 

( )
( )

( ) ( )

( )
2

1

2 ( ) ( )
10 0

1 1 1

p, u

1 ˆpu p u p,u 0
2m

i
f

nr
i

i
onr nr nrt l i i

i i i
dxdt

δ

δ δ δ

=

= = =

Π

 = − + Π + Π = 
 

∑

∑ ∑ ∑∫ ∫ 

   (6.2.1) 

 

based on Principle four, and 

 

  
( )

( ) ( )
( )

( )
1

1

2 ( ) ( )
10 0

1 1 1

u

1 ˆ ˆm u u u 0
2

i
f
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i

i
onr nr nrt l i i

i i i
dxdt

δ

δ δ δ

=

= = =

Π

 = + Π + Π = 
 

∑

∑ ∑ ∑∫ ∫ 

    (6.2.2) 

 

based on Principle five. 



Chapter 6 One-field and two-field UHVP algorithms 

 

 

113 

 

Here the functional Π  is used for finding the solution. However, it should be 

noted that the other functional Γ  is equivalent for this purpose, as proved in 

chapter 4. 

 

For a solution of the problem, the boundary and initial conditions Eqs. (4.3.7) and 

(4.3.8a, b) have to be satisfied, in addition, by choosing carefully the trial 

functions ( )p ,x t , ( )u ,x t  to ensure these conditions are indeed fulfilled in the 

forthcoming derivation, the last two equations may be reduced as 
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( ) ( )
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2
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1 1
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i i
f f
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i
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nr nrt l t l

i i

nr nrt lx l
x f f

i i

EA dxdt f c dxdt
x

dt x t x t dx

δ

δ δ

δ δ

=

= =

=
=

= =

Π =

 ∂  − −  + −    ∂   

+ + − =

∑

∑ ∑∫ ∫ ∫ ∫

∑ ∑∫ ∫

   

             (6.2.3) 

 

and 
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=
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=
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Π

 ∂  = − + −    ∂   

+ + − =

∑

∑ ∑∫ ∫ ∫ ∫

∑ ∑∫ ∫

 



     (6.2.4) 

 

Eqs. (6.2.3) and (6.2.4) are the underpinning formulations for the development of 

the one-field and the two-field UHVP algorithms in the following derivation. 
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6.3 UHVP based space-time finite element algorithms 
 

In this section, two classes of space-time finite element algorithms are adopted to 

obtain direct solutions of the dynamics of truss-type structures.  

 

The space-time finite element schemes have demonstrated its advantages in many 

publications for cases where higher accuracy is desired. In the construction of the 

presented algorithms, the structural system is firstly discretised in the spatial 

domain, followed by a separate discretisation in the temporal domain. This 

discretisation procedure belongs to the category of so-called “semi-discretisation”.  

 

In the following subsections, the one-field algorithm and the two-field algorithm 

are presented respectively. 

 

6.3.1 One-field variable algorithm 

 

6.3.1.1 Discretisation in the spatial domain 

 

The standard finite element discretisation procedure is adopted here. The 

displacement field of a rod is approximated with its nodal displacement values. To 

that end, a global coordinate system for the entire structure and a separate local 

coordinate systems for each rod are set up. In a truss-type structure, all external 

loadings are applied to the node(s) only, and each truss rod bears only 

tension/compression forces and undergoes deformations along the axial direction. 

Thus, for an arbitrary rod, on the assumption of small structural deformation, its 

displacement field can be simplified as a one-dimensional one along the axial 

direction. Therefore the local coordinate system is set conveniently along this 

axial direction as well. 
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For a typical truss rod ab  in the Euclidian global system OXYZ, six displacement 

components are required to describe the deformation of ab . Let , ,aX aY aZD D D  be 

the components for the node a ; whereas , ,bX bY bZD D D  for the node b , as shown 

in Figure. 6.3.1a. In Figure 6.3.1b, the resultant nodal displacements of each node 

are denoted as au and bu  in the local coordinate system. By comparison of Figure 

6.3.1a and Figure6.3.1b, it is easy to see that the following relations 

 

cos cos cosa aX aY aZu D D Dα β γ= + +      (6.3.1a) 

cos cos cosb bX bY bZu D D Dα β γ= + +       (6.3.1b) 

 

 in which cosα , cos β  and cosγ  are the directional cosines with respect to the 

global axes OX , OY and OZ , respectively. 

 

  

 
 

Figure 6.3.1a –  Nodal displacements in the global coordinate system 
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Figure 6.3.1b –  Nodal displacements in the local coordinate system 

 

Eqs. (6.3.1a) and (6.3.1b) can be couched in the matrix format as follows 

 

= ×ab abu T D          (6.3.2) 

 

in which 

 

a

b

u
u

 
=  

 
abu                            (6.3.3) 

{ }, , , , , T
aX aY aZ bX bY bZD D D D D D=abD       (6.3.4) 

 

T  is the transformation matrix  

 

{ }
{ }

1 3 1 3

1 31 3

0
0

× ×

××

 
=  

 

T1
T

T1
         (6.3.5) 

 

in which 

 

{ }cos cos cosα β γ=T1                 (6.3.6) 
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Once abu  is obtained, the displacement field measured in the local coordinate 

system can be interpolated from this vector. A linear interpolation operator ( )xs  

is employed for this purpose, which is 

 

( ) l x xx
l l
− 

 
 

s =          (6.3.7) 

 

where l  is the length of the rod, therefore, 

 

 ( ) ( ) ( ) ( ), ab abu x t x x t= × = × ×s u s T D        (6.3.8) 

 

The term u
x

∂
∂

 in Eq. (6.2.4) can thus be transformed as 

 

( ) ( ) ( )u ,
ab

x t x
t

x x
∂ ∂

= × ×
∂ ∂

s
T D            (6.3.9) 

 

where 

 

 ( ) { }1 1 1
x

x l
∂

= −
∂
s

                    (6.3.10) 

 

Meanwhile, the first order time derivative of the displacement field may be 

written as 

 

( ) ( ) ( ), abu x t x t= × ×s T D                    (6.3.11) 

 

The body force { }, , T
X Y Zf f f=f described in the global system can be translated 

into the local coordinate system for each rod as f  
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cos cos cosX Y Zf f f fα β γ= + +                (6.3.12a) 

 

i.e. 

 

f = ×T1 f                  (6.3.12b) 

 

The term { }( )

00
N u

ift x l
x dtδ =

=∫  in Eq. (6.2.4) represents the virtual actions of the axial 

forces at the nodal positions. Under the assumptions made in Chapter 4, the sum 

of these virtual actions { }( )

00
1

N u
if

nr t x l
x

i
dtδ =

=
=
∑∫ is equal to the sum of the virtual 

actions of the exciting forces applied to all nodes because there is no energy loss 

at these nodes.  

 

For instance, in the case of Figure 6.3.2, this relation is 

 

{ } ( ){ }( )
4

00 0
1

N u
if ft t Tx l

x
i

dt t dtδ δ=
=

=

= ×∑ ∫ ∫ L D       (6.3.13) 

 

where ( )tL  is the nodal force vector; D is the nodal displacement vector. 

 

 
Figure 6.3.2 - Virtual actions of nodal force and axial forces 
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Thus Eq. (6.2.4) can be re-written as 
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[ ]{ }

( ) ( ){ } ( ) ( ){ }

( ) ( )

( )

( )
1

1

2
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0 0 0 0
1 1

0 0
1 1

u

1 um u u u
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i i
f f
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i i

nd nrt lj jT
f f

j i

EA dxdt f c dxdt
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δ δ

δ δ

=

= =

= =

Π

 ∂  = − + −    ∂   

+ × + − =

∑

∑ ∑∫ ∫ ∫ ∫

∑ ∑∫ ∫L D

 



  

(6.3.14) 

here nd is the total number of the nodes of the truss-structure. 

 

By virtue of Eqs. (6.3.8), (6.3.9), (6.3.11) and (6.3.12b), Eq. (6.3.14) is now 
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+ ×
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L D

 


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0 0
1 1
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i
f

nd nrt l iTi T T i
f f

j i
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= =

− × × × × × ×

=

∑ ∑∫ ∫ D T s s T D

 

(6.3.15) 

 

It is noted that the terms ( )( )
m

iT T× × × ×T s s T , 
( )iT

T EA
x x

 ∂ ∂
× × × × ∂ ∂ 

s sT T   and 

( )( )iT T c× × × ×T s s T  are all related to the properties of each rod element, 
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including material properties and geometrical properties, Eq. (6.3.15) can be put 

in the following form  

 

( )

( ) ( )
( ) ( ) ( ) ( )
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δ
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=

=

= =
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= × × − × ×

+ × − × ×
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=
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∑∫

∑∫
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D M D D K D

F D D C D

L D D M D

 





    (6.3.16) 

 

in which 

 

( )
( ) { }( )( )

0
m

il ii T T
e dx= × × × ×∫M T s s T               (6.3.17a) 

( )
( )

( )
( )

0

i
iTli T

e EA dx
x x

 ∂ ∂
= × × × × 

∂ ∂ 
∫

s sK T T              (6.3.17b) 

( )
( ) { }( )( )

0

il ii
e dx= × × ×∫F T1 f s T               (6.3.17c) 

( )
( ) { }

( ) ( )

0

il ii T T
e c dx= × × × ×∫C T s s T              (6.3.17d) 

 

are the elementary matrices/ vector for the ith  rod. 

 

For the spatial discretisation of the entire structure, let ( )tD  contain the nodal 

displacement components for all nodes.  

 

( ) { } { }1 1 1 2 1 2, , , , , , , , , ,T T
X Y Z X ndX ndY ndZ nt D D D D D D D D D D= … =D             (6.3.18) 

 



Chapter 6 One-field and two-field UHVP algorithms 

 

 

121 

 

and n  is the number of degree of freedom of the structure. Let ( )tL be the global 

nodal force vector,  

 

( ) { } { }1 1 1 2 1 2, , , , , , , , , ,T T
X Y Z X ndX ndY ndZ nt L L L L L L L L L L= … =L                (6.3.19) 

 

Following the standard discretisation procedure, the variational expression for a 

truss-type system is in the following form 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

0

0

ft T T T T T

T

f f

t t t t t t t dt

t t

δ δ

δ

 × × + + − × − × × 

− × × =

∫ D M D F L D K D C D

D M D

  



  

          (6.3.20) 

 

wherein the time-invariant M , K and C  are the assembled global matrices 

related to the mass, stiffness and damping properties, and ( )tF  is the discretised 

body force vector. Upon this equation, time finite element can be introduced for 

deriving a direct solution of the dynamic problem. 

 

6.3.1.2 Discretisation in the temporal domain 

 

To find out the solution for the desired time interval, the entire time domain [0, ]ft  
is divided into successive sub-intervals of equal-length as shown in Figure 6.3.3, 

with the length of the sub-interval (or time step) being 1i it t t+∆ = − . Within each 

time sub-interval, a local time coordinate [ ]0, rτ ∈  is used to facilitate the 

approximation and the value of r  is determined by the adopted time element. The 

initial values at time 0t =  are used in the first sub-interval [ ]10,t  to solve the end 

values at time 1t t= , and these end values are utilised as the initial values within 

the next sub-interval [ ]1 2,t t  for the end values at 2t t= . In this fashion, a recursive 
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scheme is formed, and the time-history of the structural response is obtained step 

by step. During this process, the intermediate values (displacement, velocity) at an 

arbitrary point of time within the time step can also be calculated using the 

interpolation technique. 

 

 
Figure 6.3.3 – Time sub-intervals  

 

From Figure 6.3.3, it is also clear that the relation between the global time 

coordinate t  and the local one τ  within an arbitrary time element [ ]1,i it t +  is as 

follows 

 

[ ]1 0i i
i i

t t tt t t r
r r

τ τ τ+ − ∆
= + = + ∈， ，                (6.3.21) 

 

Using the cubic Hermite element, the approximated displacement field D  

expressed in the local time coordinate may be constructed with the displacement 

vector Dand velocity vector D  at the time nodes within the time step. These time 

nodes include the termini of the time step, and intermediate nodes may be 

involved as well depending on the time element used.  

 

For the time sub-interval [ ]1,i it t + , let  

 

( ) ( ) ( ) ( ) [ ]( )0,T T rτ τ δ τ τ δ τ= = ∈D Ψ V D Ψ V              (6.3.22) 

t
t00= t1 t2 ...t3 t i t i+1 tf...

τ
0 1 rr-1...
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where 
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             (6.3.23) 

 

 
Figure 6.3.4 – Intermediate nodes within time step  

 

Ψ  is the time finite element approximation operator, and ( ) ( ) ( ) ( )φ ϕ , are the 

time element shape functions at the time nodes. I is the identity matrix of the 

order n . V is a state vector for the current time element. 1 2, ,θ θτ τ  are the 

intermediate time nodes. ( )D and ( )D  are the displacement and velocity 

vectors at the time nodes. 

 

t i t i+1

τ
θ1 θ2

D

(τ=0) (τ=r)
τ τ ...

D(   )θ1τ D(   )θ2τD(   )ti

D(   )ti+1
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Correspondingly, the first time derivative of the displacement field and its 

variation may be approximated as 

  

( )

( )

T T T

T

d d d r d
dt dt d t d
r d
t d

ττ
τ τ

δ τ δ
τ

= = =
∆

=
∆

Ψ Ψ ΨD V V V

ΨD V









                      (6.3.24) 

 

To ensure the approximated displacement and velocity obtaining the 

corresponding values at all time nodes, which guarantee the initial conditions, the 

time shape functions φ  and ϕ  have to satisfy the following conditions  

 

( )
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( )

( )

( )

0

0

, 0,1, ,

m mn

m

m

m mn

n

n
d n
d
d n
d
m n r

φ δ

ϕ

φ
τ

ϕ δ
τ

=

=

=

=

= 

                   (6.3.25) 

 

where mnδ  is the Kronecker delta. It is not difficult to see that the cubic Hermite 

element fulfils the requirements laid down in Eq. (6.3.25). 

 

For the sub-interval [ ]1,i it t + , Eq. (6.3.20) is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

1

1 1 0

i

i

t T T T T T

t

T
i i

t t t t t t t dt

t t

δ δ

δ

+

+ +

 × × + + − × − × × 

− × × =

∫ D M D F L D K D C D

D M D

  



      

                    (6.3.26) 
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The substitution of the approximation functions and the corresponding variations 

in the local time coordinate gives 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

0

0

r T T T T T

T

tt t d
r

r r

τ δ τ τ τ δ τ τ

δ

∆  + + − − ×     

− =

∫ D M D F L D K D C D

D M D

  

    



 

 

                    (6.3.27) 

 

Here the force functions ( )tF  and ( )tL  with respect to the global time variable t  

need to be translated into functions  ( )τF


 and ( )τL


 with respect to the local time 

variable τ . This can be easily done within each time step by using Eq. (6.3.21). 

 

Substituting Eqs. (6.3.22) and (6.3.24) into Eq.(6.3.27), one has 

 

0T T T T
rδ δ δ δ δ′ ′ ′ ′ ′+ − − − =V M V L V V K V V C V V M V               (6.3.28) 

 

in which 
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L F L Ψ

Ψ
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 

                (6.3.29) 

 

By re-arranging terms one has 
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[ ]{ } 0TT T
rδ ′ ′ ′ ′ ′− − − + =V M C K M V L                (6.3.30) 

 

Eq. (6.3.30) holds for any choice of δ V . Therefore the terms in the curly bracket 

have to vanish, resulting in a set of algebraic equations, viz. 

 

[ ]T T
r′ ′ ′ ′ ′− − − = −M C K M V L                  (6.3.31) 

 

By removing 2n equations corresponding to ( )0 0δ =D  and ( )0 0δ =D  in 

Eq.(6.3.30), the remaining  equations can be solved for all unknown nodal 

displacement and nodal velocity values, including the end values at time 1it t +=  , 

which in turn can be utilised in the next time sub-interval as the initial value for 

the same computation. This process is repeated until the end of the whole time 

domain is reached. 

 

6.3.2 Two-field variable algorithms 

 

6.3.2.1 Discretisation in the spatial domain 

 

The transformation procedure applied earlier to the displacement field is also 

applicable to the momentum field. The momentum field ( ) ( ),ip x t of the ith rod in 

the local coordinate system may be interpolated with the rod’s global nodal 

momentum vector ( ) ( )i tP  as 

 
( ) ( ) ( ) ( ) ( ) ( ),i i ip x t x t= × ×s T P                   (6.3.32) 

 

with 

 

 ( ) ( ) { }, , , , ,i
aX aY aZ bX bY bZt P P P P P P=P                   (6.3.33) 
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Substituting Eqs. (6.3.8), (6.3.9), (6.3.11), (6.3.12b) and (6.3.32) into Eq. (6.2.3) 

gives   

 

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )
2

1

( )( ) ( )

( )
( ) ( )

0 0
1

( )
( ) ( )

( ) ( )

( )

p, u

1
2m

2

i
f

nr
i

i

iTi T T i

inr t l Ti T T i

i

iT
Ti T i

i i

Ti T T

t t

t t dxdt

EAt t
x x

t

t c

δ

δ

δ

=

=

Π =

 
 × × × × × 
   − × × × × × ×  

  
  ∂ ∂ − × × × × × ×  ∂ ∂  

× × × ×
+

− × × × ×

∑

∑∫ ∫

P T s s T D

P T s s T P

s sD T T D

T1 f s T D

D T s s
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 ( ) ( )
( ) ( ){ } ( ) ( ) ( ){ }

( )

( )
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0 0
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nr t l

i ii

nd nrt l iTj jT i T T i
f f

j i

dxdt
t

dt t t dx

δ

δ δ

=

= =

  
 

× ×  

+ × − × × × × ×

=

∑∫ ∫

∑ ∑∫ ∫

T D

L D P T s s T D  

                 (6.3.34a) 

or 
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( )

( ) ( ) ( ) ( )

( )
( )

( )

( )
( ) ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

( )
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( ) ( ) ( ) ( ) ( )

0
1 ( ) ( )

( ) ( ) ( ) ( )

0
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( ) ( ) ( )

0
1 1
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ˆ

2
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f
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f
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i

i
T Ti i i i ie

enr t

i
i Ti ie

nr t Ti i i i i
ee

i
nd nrt Tj jT i i i

f e f
j i

t t t t
dt

t t

t t t dt

dt t t

δ

δ

δ δ

δ δ

=

=

=

= =

Π =

 
× × − × ×  

 
 − × ×  

+ × − × ×

+ × − × ×

=

∑

∑∫

∑∫

∑ ∑∫

MP S D P P

KD D

F D D C D

L D P S D





         (6.3.34b) 

 

where 

 

{ }
( ) ( )

( )

0

i ili T T
e dx= × × ×∫S T s s T                 (6.3.35a) 

 

( ) ( )
( )

0

1ˆ
m

i i
li T T

e dx = × × × × 
 ∫M T s s T                (6.3.35b) 

 

To apply the spatial discretisation, let the n  number of nodal momentum 

components form a global vector ( )tP  

 

( ) { } { }1 1 1 2 1 2, , , , , , , , , ,T T
X Y Z X ndX ndY ndZ nt P P P P P P P P P P= … =P              (6.3.36) 

 

The standard discretisation and assemblage of Eq. (6.3.34b) gives 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( ) ( )
0

0

1 1ˆ
2 2

0

f

f

t T T T

t TT T T
f f

t t t t t t dt

t t t t dt t t

δ

δ δ

 × × − × × − × × 
 

 + + − × − × × = 

∫

∫

P S D P M P D K D

F L D C D P S D





  

                   (6.3.37a) 

 

or 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( )

0

0

ˆ

0

f

f

t T T T T

t TT T T
f f

t t t t t t t t dt

t t t t dt t t

δ δ δ δ

δ δ

× × + × × − × × − × ×

 + + − × × − × × = 

∫

∫

P S D P S D P M P D K D

F L D C D P S D

 



 

                    (6.3.37b) 

 

in which ˆ, , ,S M K C  are four time-invariant matrices; ( )ftP  and ( )ftD  are the 

vectors of the momentum and the displacement at the instant ft t= . The time 

finite element may be introduced at this point.  

 

6.3.2.2 Discretisation in the temporal domain 

 

Following the same principle for constructing a stepwise algorithm, the entire 

temporal domain is again divided into successive sub-intervals as shown in Figure 

6.3.3. Also used is the local time coordinateτ . In the two-field algorithm, the 

displacement field Dand the momentum fields P within an arbitrary time element 

[ ]1,i it t +  are approximated simultaneously using an approximation operator. 

 

( ) ( ) ( ) ( ) ( ) ( ) [ ]( )0,T T rτ τ τ τ τ τ τ≅ = ≅ = ∈D D Φ U P P Φ W    (6.3.38) 

 

where 
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( )

( )
( )
( )

( )

( )
( )
( )

( )

( )
( )
( )

( )

0 1 1

1 11 1 1

2 22 1 1

1 11 1

i in n

n n

n n

i ir n n

t t
t t
t t

t t

θ θ

θ θ

φ τ
φ τ

τ φ τ

φ τ

× ×

× ×

× ×

+ +× ×

   × 
    ×          = × = =   

     
     
 ×         

D PI
D PI
D PΦ I U W

D PI
 



               (6.3.39) 

 

( )τΦ  is the time finite element approximation operator, and ( ) ( )φ  are the time 

element shape functions at the time nodes. I is the identity matrix of the order n .

U is a state vector containing all time nodal values of the displacement within the 

current time element. W  is a state vector containing all time nodal momentums. 

 

For the two-field approximation, the time element shape function only needs to 

satisfy 

 

( ) ( ), 0,1, ,m mnn m n rφ δ= = 

                (6.3.40) 

 

Clearly Lagrange time elements fulfil such requirement. Correspondingly, the first 

time derivative of the approximated displacement and the variations can be 

approximated as 

 

( )

( ) ( )
( ) ( )

( )

T T T

T

T

T

d d d r d
dt dt d t d

r d
t d

ττ
τ τ

δ τ τ δ

δ τ τ δ

δ τ δ
τ

= = =
∆

=

=

=
∆

Φ Φ ΦD U U U

D Φ U

P Φ W

ΦD U













               (6.3.41) 

 

For the time sub-interval [ ]1,i it t + , the substitution of Eqs. (6.3.38) and (6.3.41) 

into Eq. (6.3.37b) gives 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0

ˆ

0

T T
T T

r

T TT T

r T T TT

TT

r d r d
tt d t d d

r

r d tt t d
t d r

r r

δ τ τ δ
τ τ τ

τ τ δ τ τ δ

τ δ τ
τ

δ

  
× × × + × × ×   ∆ ∆ ∆    

  − × × × × − × × × × 
  ∆   + + − × ×    ∆    

− × × × =

∫

∫

Φ ΦW Φ S U W Φ S U

W Φ M Φ W U Φ K Φ U

ΦF L U C Φ U

W Φ S Φ U

   

                    (6.3.42a) 

 

or 

 

( ) ( ) 0T T T T T T T
rδ δ  ′′′′ ′′ ′′ ′′ ′′ ′′ − + + − − + =    

W S U M W U L S S W C K U    (6.3.42b) 

 

where 

 

( ) ( )

( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }
( ) ( )
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0

0

0

0
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r T
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t d
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t d
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d
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t d
r

r r
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τ τ

τ

τ τ τ

τ τ τ
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τ τ

τ

τ τ τ τ

  ′′ = × × 
  

∆′′ = × ×

∆′′ = × ×

 
′′ = × × 

 
∆  ′′ = × + 

′′ = × ×

∫

∫

∫

∫

∫

Φ
S Φ S

M Φ M Φ

K Φ K Φ

Φ
C C Φ

L Φ F L

S Φ S Φ

 

                (6.3.43) 

 

It should be noted that the force functions ( )tF  and ( )tL  have been replaced by 

( )τF  and ( )τL  in the calculation of  ′′L  for each time sub-interval, the 

transformation are exactly the same as explained in the one-field algorithm. The 

terms in the square brackets of Eq. (6.3.42b) must vanish to ensure this equation 
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holds for any variations of the momentum and the displacement, due to the 

independence between δ W andδ U . This requirement may be couched in a matrix 

form 

 
T

T T T T
r

′′ ′′ −    
=     ′′′′′′ ′′ ′′+ −      

S M U 0
W LC K S S

                (6.3.44) 

 

After removing 2n equations corresponding to ( )0 0δ =D  and ( )0 0δ =P , the 

remaining  equations can be solved for all unknown values of displacement and 

velocity at all time nodes within the time element. The same procedures can be 

repeated in the successive time elements forming a recurrence scheme. 

 

6.4 Summary 
 

In this chapter, two classes of UHVP algorithms are presented for the direct 

solution of dynamics of truss structures, based on the variational principles given 

in Chapter 4. Semi-discretisation of the structure in the spatial and temporal 

domains is adopted in the derivation of the algorithms. A set of integro-

differential equations is obtained after the spatial discretisation, which is then 

treated with piecewise time finite element approximation to derive the recurrence 

formulation. In the one-field algorithm the cubic Hermite time finite element is 

used, while Lagrange elements of various orders are applied to the two-field 

algorithms. 

 

In the research, the derived algorithms are translated into computer codes using 

the package Matlab, to evaluate the performance and also to examine the 

associated numerical properties.  



Chapter 7 Stability analysis 

 

 
133 

 

Chapter 7  Stability Analysis 
 

7.1 Introduction 
 

Having obtained the one-field and the two-field UHVP algorithms, their 

numerical performance are to be evaluated. For any recurrence scheme, the 

algorithmic stability and consistency need to be investigated to ensure 

convergence is guaranteed (Hughes, 1987). In this chapter, the stability of the two 

types of algorithms is examined first in detail. The consistency property is to be 

investigated in the next chapter. 

 

Stability is a property of a numerical scheme that a small perturbation at an earlier 

time only produces bounded changes at later time instants in the solution (Geradin, 

1974). Stability is an important property for any recurrence schemes, especially 

for the ones used for long time evaluation. Numerically stable algorithm is 

required 1) to ensure the initial conditions given is not artificially amplified in the 

succeeding computation; 2) to prevent the computational errors from 

accumulating and contaminating the numerical results (Bathe and Wilson, 1972) .  

 

In this chapter, the stability requirement of numerical schemes is briefly discussed, 

and the method for the evaluation of stability is given. The one-field and two-field 

equations given in the last chapter are re-organised to derive the amplification 

matrices, whose spectral radius determine the stabilities of relevant algorithms. 

These spectral radii are given analytically and evaluated against the stability 

criterion for each time finite element individually. 

 

7.2 Stability analysis 
 
7.2.1 The stability of numerical schemes 
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Stability can be classified into three categories: unconditionally stable, 

conditionally stable and unconditionally unstable. An algorithm for which a time 

step restriction must be imposed to prevent the result from being divergent is 

called conditionally stable; while an algorithm does not need such restriction is 

called unconditionally stable (Hughes, 1987). An algorithm is unconditionally 

unstable if the divergence is always present. Some higher- order algorithms have 

been known to be unconditionally unstable (Fung, 1997). 

 

It is desirable to design unconditionally stable algorithms since the time step can 

be chosen only to meet the accuracy requirement. Many researchers have focused 

on this perspective (Itzkowitz and Levit, 1987; Tamma and Namburu, 1990; Fung, 

1999a, 1999b, Yina, 2011). However, sometimes only conditionally stable 

algorithms can be achieved with particular methods. For these algorithms the time 

step has to be restricted below a certain value, which is normally determined by 

the highest frequency of the system.  

 

7.2.2 Evaluation of algorithmic stability 

 
As the nature of the presented algorithms disclosed, the single-step recurrence 

scheme can be presented in general as 

 

1n n n−= +V AV L           (7.2.1) 

  

with nV and 1n−V being the state (response) vector at time nt t=  and 1nt −  

respectively; nL  being the load for the time step [ ]1,n nt t− , and A is known as the 

amplification matrix.  

 

nV  is related to the initial state vector 0V  at 0 0t =  as 
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( )1 2 1

1 2
0 1 2 1

n n n n n n

n n
n n n

− − −

−
− −

= + = + +

=

= + + + + +

V AV L A AV L L

A V A L A L AL L




       (7.2.2) 

 

It can be seen from the above equation that the stability of a particular algorithm 

is greatly influenced by the property of A , and the contribution of  the load 

operator is rather limited.  

 

The spectral radius is related to the maximum magnitude of the eigenvalues of A  

(Hughes, 1987). If ( )iλ denotes the eigenvalues of A , which can be complex in 

some cases,  its modulus is defined as 

 

( ) ( ) ( )i i iλ λ λ= ×          (7.2.3) 

 

where ( )iλ is the complex conjugate of ( )iλ . 
 

The spectral radius of A , ( )ρ A , is then defined as 

 

( ) ( )max i

i
ρ λ=A                   (7.2.4) 

 

It is required that ( )ρ A  should be less than unity for an algorithm to be stable, 

which means the initial condition will not be amplified artificially and any error 

induced in the approximation scheme will be bounded in the sequent computation.  

 

Since it has been rigorously established that a MDOF system can be uncoupled as 

the combination of multiple SDOF components and possesses the same stability 

properties of these components (Hughes, 1987, Wood, 1990), the presented 

algorithms can be evaluated with a SDOF system 
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( )22x x x f tξω ω+ + =           (7.2.5) 

 

where 2
T

πω =  is the natural frequency of the system and T is the corresponding 

period.  ξ  is the damping ratio.  

 

7.3 Stability of the one-field algorithm using the Hermite time 
finite element 
 

The one-field space-time finite element formulation presented in the last chapter, 

i.e., Eq. (6.3.31), is recalled herein  

 

[ ]T T
r′ ′ ′ ′ ′− − − = −M C K M V L         (7.3.1a) 

 

or 

 

( ) ( ) ( ) ( ) ( )( ), , , , ,

T

T T T T
ri j i j i j i j i j

′= −

′ ′ ′ ′= − − −

GV L

G M C K M
   (7.3.1b) 

 

with the vector and matrices defined as 

 

( ) ( )

( ) ( ){ }
( ) ( )

( ) ( ) ( ){ }
( ) ( )

0

2

0

0

0

2

T
r

r T

r T

r T T T

T
r

d dr d
t d d

t d
r

d
d

d
t F L d

r
d rr r

t d

τ τ
τ

τ τ

ω τ τ τ

τ
ξω τ τ

τ

τ τ τ τ

τ

  ′ =  ∆   
∆′ =

 
′ =   

 
∆  ′ = +    

′ =
∆

∫

∫

∫

∫

Ψ Ψ
M

K Ψ Ψ

Ψ
C Ψ

L Ψ

Ψ
M Ψ

 

       (7.3.2) 
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When the Hermite cubic polynomials are used for the time approximation 

operator Ψ , the integer r  equals to unity correspondingly. The algorithm thus 

obtained is referred as UHVP_H3 thereafter in this thesis. The state vector and the 

approximation operator are 

 

( )
( )

( )
( )

( )

2 3

2 3
1

2 3

3 2
1

1 3 2
3 2

2

i

i

i

i

d t
d t

t d t

t d t

τ τ
τ τ

τ
τ τ τ

τ τ

+

+

   − +
   −   = =   ∆ × − +     −∆ ×   

V Ψ




       (7.3.3) 

 

and 

 

( )
2

2

2

2

6 6
6 6

1 4 3
3 2

d
d

τ τ
τ τ τ

τ τ τ
τ τ

 − +
 − ==
 − +
 

− 

Ψ
            (7.3.4) 

 

Let the time step be expressed in terms of the natural period as t Tα∆ = , the 

coefficient matrices become 

 

( ) ( )

( ) ( ){ }
( ) ( )

( ) ( ) ( ){ }
( ) ( )

1

0

12

0

1

0

1

0

1

2

11 1

T

T

T

T T T

T
r

d d
d

T d d

T d

d
d

d

T F L d

d
T d

τ τ
τ

α τ τ

ω α τ τ τ

τ
ξω τ τ

τ

α τ τ τ τ

α τ

  ′ =  
  

′ =

 
′ =  

 

 ′ = +    

′ =

∫

∫

∫

∫

Ψ Ψ
M

K Ψ Ψ

Ψ
C Ψ

L Ψ

Ψ
M Ψ

 

        (7.3.5) 

 

The time-invariant matrices can be expressed explicitly as 
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6 / 5 6 / 5 1/10 1/10
6 / 5 1/10 1/101

2 /15 1/ 30
2 /15

T
sym

α

− 
 − − ′ =
 −
 
 

M        (7.3.6a) 

 

2

13 / 35 9 / 70 11/ 210 13 / 420
13 / 35 13 / 420 11/ 210

1/105 1/140
1/105s m

T

y

ω α

− 
 − ′ =
 −
 
 

K         (7.3.6b) 

 

1/ 2 1/ 2 1/10 1/10
1/ 2 1/10 1/10

2
0 1/ 60

0sym

ξω

− − − 
 − ′ =
 
 − 

C       (7.3.6c) 

 

 

0 0 0 0
0 0 0 01
0 0 0 0
0 1 0 0

r Tα

 
 
 ′ =
 
 
 

M         (7.3.6d) 

 

The state vector at the end of the time step, ( ) ( ){ }11 1

T

i id t t d t+ += ∆ ×V  , re-

organised from Eq. (7.3.3), is obtained from the initial state vector 

( ) ( ){ }0

T

i id t t d t∆ ×=V  . To this end, Eq. (7.3.1b) is partitioned as 

 

00 01 0 0

10 11 1 1

     
=    

    

G G V L
G G V L

        (7.3.7) 

 

From which the end state vector can be solved for as 

 
1 1 1

1 11 10 0 11 1 0 11 1
− − −= − + = +V G G V G L AV G L      (7.3.8) 
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It is clear that 1
11 10

−−G G is the amplification matrix A whose spectral radius 

determines the stability of the algorithm. 1
11 1

−G L  is the load operator for each time 

step. 

 

The two sub-matrices 10G and 11G are given by 

 
2 2

210 2

2 18 6 2 13 1
35 5 5 105 10

2 13 1 1
5 105 10 35 30 15

T T T T T T

T T T T T

πξ απ πξ απ
α α

πξ απ απ πξ
α απ

 
 
 =


− − − −

−
+ + − −


  

G    (7.3.9a) 

 
2 2

11 2 2

6 52 2 22 11 2
5 35 105 10 5
22 1 2 2 4
105 10 5 15 105

T T T T T T

T T T T T

απ ξπ απ ξπ
α α
απ ξπ απ

α α

 
− − − − 

 =
 

− + −  

G    (7.3.9b) 

 

in which the natural frequency ω has been replaced by 2
T

π . 

 

The amplification matrix is hence found to be  
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3 3 4 4 2 2 5 5 3 3
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=
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3 3 2 2 4 4 5 3

2

2

3 2 5

20 20250 11025

(4200 (3150 960 ) 360 5550 11025 )

16800 3840 12600 1440 22200 44100

3360 (1

2

3 /

4 2600 1920 ) ( 480 5520

b

b T

b

Tξ

π α π α

π α πα π α π α π α α

π α π α π α π α π α π α

π α π α π α

ξ

ξ ξ

α πξ ξ π

− +

+ − + − +

− − − + −

− + − + −

=

+

= +

= 3
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18900 )
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α πα

π α π α π α

ξ−

− + − +

                                                                                                                       
(7.3.10) 

 

Correspondingly, the two eigenvalues of the amplification matrix, (1) (2),λ λ , are  

 

( )

( )

4 4 2 2 3 3 2 2 2
(1)

4 4 3 3 2 2 2 2 2

4 4 2 2 3 3 2 2 2
(2)

4 4 3 3 2 2 2 2 2

72 582 204 588 210 315
80 480 1008 48 840 315

72 582 204 588 210 315
80 480 1008 48 840 315

1216
2

B

B

B

α π α π α π ξ α π ξ απξ
λ

α π α π ξ α π ξ α π απξ

α π α π α π ξ α π ξ απξ
λ

α π α π ξ α π ξ α π απξ

α

απ

− − + + + +
=

+ + + + +

− − + + + −
=

+ + + + +

=

( )

6 6 4 4 2 2 5 5

4 4 2 3 3 3 3 3 2 2 4

2 2 2 2 2

21960 88830 99225 6864
32964 68040 69300 44100

146160 132300 1 99225

π α π α π α π ξ

α π ξ α π ξ α π ξ α π ξ

α π ξ απξ ξ ξ

− + − −

+ − + +

− + − +

                                  

          (7.3.11) 
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It is found that both (1)λ and (2)λ will increase over unity when the ratio of the 

time step to the natural period ( )/t Tα = ∆ is sufficiently big, and the ultimate 

radius is ( )72 2 1216 80 1.77+ ≈  when the ratio approaches infinity. Therefore, 

the UHVP_H3 algorithm is conditionally stable. Figure 7.3.1 shows the spectral 

radii of the amplification matrices with various damping ratio ξ  

 

 
 

Figure 7.3.1 – Spectral radii for the amplification matrices of UHVP_H3 
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( )4 4 2 2 6 6 4 4 2 2

4 4 2 2

72 582 315 2 1216 21960 88830 99225
1

80 48 315
α π α π απ α π α π α π

α π α π

− + + − + −
≤

+ +
  

(7.3.12) 

 

To ensure convergent solutions are to be obtained, the time step used in the 

computation must not exceed maxTα . 

 
7.4 Stability of the two-field algorithms with Lagrange time finite 
elements 
 

7.4.1 General form 

 
For the SDOF problem represented by Eq. (7.2.5), the two-field formulation Eq. 

(6.3.43) is recalled 

 
T

T T T T
r

′′ ′′ −    
=     ′′′′′′ ′′ ′′+ −      

S M U 0
W LC K S S

      (7.4.1) 

 

with 
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( ) ( )

( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( )
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0
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0

0

0

0 1 2

1 2 1

1 2

ˆ
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T
r

r T

r T

T
rT

r T T

T
r

T
r

T
i i

i i

d
d

d

t d
r
t d

r
d

d
d

t d
r

r r

d t d d d t

p t p p p t

θ θ

θ θ

τ
τ τ

τ

τ τ τ

τ ω τ τ

τ
τ ξω τ

τ

τ τ τ τ

τ φ τ φ τ φ τ φ τ

τ τ

τ τ

+

  ′′ = × × 
  

∆′′ = × ×

∆′′ = × ×

  ′′ = × × 
  

∆  ′′ = × + 

′′ = × ×

=

=

=

∫

∫

∫

∫

∫

Φ
S Φ S

M Φ M Φ

K Φ Φ

Φ
C Φ

L Φ F L

S Φ S Φ

Φ

U

W

 





 ( ){ }1
T

+

       (7.4.2) 

 

in which 1 2, ,θ θτ τ   are the intermediate time temporal nodes within the time 

finite element, and ( )τΦ the Lagrange approximation vector. It should be noted 

that the matrix S in the expressions of ′′S and r′′S degenerates to a scalar of unity 

for the SDOF problem (from Eq. (6.3.35a)). So does M̂  in the expression of ′′M

(from Eq. (6.3.35b)).  

 

Define state vectors 0V , θV , rV as follows 

 

( )
( )

( )
( )
( )
( )

( )( )
( )( )

( )
( )

1

1

2

12
0

1

1

1

; ;i i
r

i i

r

r

d
p
d

d t d tp
p t p t

d

p

θ

θ

θ

θ
θ

θ

θ

τ
τ
τ

τ

τ

τ

+

+

−

−

 
 
 
 
 

        = = =     
       

 
 
 
  

V V V


     (7.4.3)  
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With these definitions, Eq. (7.4.1) can be re-organised and partitioned in the order 

of the temporal nodes as follows 

 

00 0 0 0 0

0

0

r

r

r r rr r r

θ

θ θθ θ θ θ

θ

     
     =    
         

G G G V L
G G G V L
G G G V L

       (7.4.4) 

 

( )G and ( )L are the coefficient sub-matrices and the load sub-vectors grouped 

correspondingly. The end state vector rV can be solved in the following procedure. 

Firstly, one has 

 
1

0
0 0

0

r

r rr rr r r r

θθ θ θθ θ θ θ

θ

−            
= − + = +           

           

G G GV L A GL
V V

G G GV L A GL
  (7.4.5) 

 

from which 

 

0r r r= +V A V GL          (7.4.6) 

 

It is obvious the amplification matrix rA varies according to the approximation 

functions adopted. In the following sub-sections, the stability of the algorithms 

based on the second- and higher-order Lagrange polynomials will be examined in 

detail. 

 

7.4.2 Algorithm using second-order Lagrange time finite element 

 
When the second-order Lagrange polynomials are used for the time 

approximation operator Φ , the integer r  equals to two correspondingly. The 

algorithm thus obtained is referred as UHVP_L2 thereafter in this thesis. The 

approximation operators are 
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( )

( )( )

( )

( )

( ) [ ]( )

1 31 2
2 2

2 2 2 0,2
1 11
2 2

d
d

τ τ τ
τ

τ τ τ τ τ
τ

τ τ τ

   − − −   
   

= − = − ∈   
   
   − −
   

Φ
Φ      (7.4.7) 

 

Let the time step be expressed in terms of the natural period as t Tα∆ = .  The 

time invariant coefficient matrices in Eq. (7.4.2) become 

 

1/ 2 2 / 3 1/ 6
0 2 / 3

1/ 2sym

− − 
 ′′ =  
 − 

S        (7.4.8a) 

 

4 /15 2 /15 1/15
16 /15 2 /15

2
4 /15sym

Tα
− 

 ′′ =  
  

M       (7.4.8b) 

 

2
4 /15 2 /15 1/15

16 /15 2 /15
4

2

/15sy
T

m

απ
− 

 ′′ =  
  

K       (7.4.8c) 

 

1/ 2 2 / 3 1/ 6
4 0 2 / 3

1/ 2

T

sy
T

m

πξ
− − 

 ′′ =  
 − 

C       (7.4.8d) 

 

0 0 0
0 0 0
0 0 1

r

 
 ′′ =  
  

S           (7.4.8e) 

 

The sub-matrices in Eq. (7.4.5) related to the amplification matrix rA  can be 

written explicitly as follows 
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( ) ( )
( ) ( ) ( ) ( )

2

2, 2 2,2
2,2 2,2 2,2 2,2

80
15

0
15

32

T

T T T T
r

T

T

θθ

π α

α

′′ ′′ −
=  ′′ ′′ ′′ ′′+ − 

− 
 

=  
 
  

S M
G

C K S S

    (7.4.9a) 

 

( ) ( )
( ) ( ) ( ) ( )

2

2,3 2,3
2,3 2,3 2,3 2,3

2
3 15

4 8 2
15 3 3

T

r T T T T
r

T

T T

θ

α

πξπ α

′′ ′′ −
=  ′′ ′′ ′′ ′′+ − 

− 
 

=  
 +  

S M
G

C K S S

              (7.4.9b) 

 

( ) ( )
( ) ( ) ( ) ( )

2

3, 2 3, 2
3,2 3,2 3, 2 3, 2
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3 15

8 2
15 3
4

3

T

r T T T T
r

T

T T

θ

α

α

π πξ

′′ ′′ −
=  ′′ ′′ ′′ ′′+ − 

− − 
 

=  
− −  

S M
G

C K S S

    (7.4.9c) 
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5 2
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rr T T T T
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π α πξ

′′ ′′ −
=  ′′ ′′ ′′ ′′+ − 

− 
 

=  
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S M
G

C K S S

     (7.4.9d) 
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( ) ( )
( ) ( ) ( ) ( )0

2

2,1 2,1
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T T
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π ξ
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 

=  
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S M
G

C K S S

     (7.4.9e) 
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3,1 3,1 3,1 3
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1
6 30

2 1
3 15 6

T

r T T T T
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T
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α

πξ π α

′′ ′′ −
=  ′′ ′′ ′′ ′′+ − 

 
 

=  
 −  

S M
G

C K S S

     (7.4.9f) 

 

 

The amplification matrix rA  is found to be  

 

( ) ( )

( )

( )

2 2 2 2 2 2

2 22 2 2

4 4 3 3 2 2 2 2 2

2 2 2 4 4 3 3

2 3 30 25 9 10 25
1

5046 6040 9 10 25 1 3
3

9 36 60 6 60 25

6 10 1 9 36 60 25

r

T
b e

bT e

b

e

π α π α πξα α π α πξα

π α πξαπ α π α πξα

π α π α ξ π ξ α π α πξα

π α ξ π α π α ξ πξα

 + + − − −
 −
 =  + −− − −  

= + + + + +

= + + + + +

A

         (7.4.10) 

 

The two eigenvalues of the amplification matrix rA , (1) (2),λ λ , are  
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( )

( )

(1) (2)

4 4 2 2 3 3 2 2 2

3 3 2 2 2 2 2

Re Im; Re Im

3 44 6 10 40 25
Re

18 1 50 1 20 1
Im

b

b

λ λ

π α π α π α ξ παξ π α ξ

π α ξ πα ξ π α ξ ξ

= + = −

− − + + +
=

− − + − + −
=

   (7.4.11) 

 

It is clear that the two eigenvalues are complex conjugates when the system is 

undamped or under-damped, i.e., 1ξ < , consequently the spectral radius of rA is 

 

( ) ( ) ( ) ( )

( )
( ) ( )

( )

1,2 1 2

24 4 2 2 3 3 2 2 2

23 3 2 2 2

4 4 3 3 2 2 2 2 2

3 44 6 10 40 25

18 50 20 1

9 36 60 6 60 25
1

rρ λ λ λ

π α π α π α ξ παξ π α ξ

π α πα π α ξ ξ

π α π α ξ π ξ α π α πξα
ξ

 = = ×

− − + + +

+ − + + −
=

+ + + + +

<

A

           (7.4.12) 

 

It is required ( ) 1rρ ≤A  for an algorithm to be stable. In order to evaluate the 

stability,  let ( )2 1rρ ≤A , which leads to an inequality 

 

( )
( )

( ) ( )

8 8 7 7 6 6 2 6 6 5 5 3

5 5 4 4 4 4 4 3 4 4 2

4 4 3 3 3 3 3 2 3 3

2 2 2 2

0 72 684 2424 48 4080
1704 60 2400 120 6360

200 100 92 8 880 820

100 71 100 30 5

π α π α ξ π α ξ π α π α ξ

π α ξ ξ π α ξ π α ξ π α ξ

π α π α ξ ξ π α ξ π α ξ

π α ξ ξ παξ ξ

≤ + + + +

+ − + + +

+ + − + +

+ − + −

         (7.4.13) 

 

It can be seen that this inequality holds for any value of 1ξ < , therefore the 

algorithm is unconditionally stable for undamped and under-damped cases. 

 

When the system is critically-damped or over-damped, the two eigenvalues 

become real numbers. In this case, the spectral radius is determined by the larger 
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value of ( )1λ and ( )2λ . Both values are considered here since it is not possible to 

determine in advance which one is larger in the case of over-damped systems. 

 

Let ( ) 21 1λ ≤ , then one has 

 

( )

24 4 2 2 3 3 2 2 2

3 3 2 2 2 2 2

24 4 3 3 2 2 2 2 2

3 44 6 10 40 25

18 1 50 1 20 1

9 36 60 6 60 25

π α π α π α ξ παξ π α ξ

π α ξ πα ξ π α ξ ξ

π α π α ξ π ξ α π α πξα

 − − + + +
 
 − − + − + − 

≤ + + + + +

                       (7.4.14a) 

 

or 
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( ) ( )

( ) ( )

8 8 7 7 7 7 2 6 6 2 6 6

5 5 3 2 5 5 5 5 2 2 2 4 4

4 4 2 4 4 3 2 3 3 2 2

3 3 3 3 2 2 2
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π α ξ ξ π α ξ ξ ξ π α ξ ξ ξ

π α ξ π α ξ π α

− −

− − + −

− − − − −

+ − +

+ + + + −

+ + − +

+ + +

+ + ( )
( )

2 2 2

225

1

10 00

π α ξ ξ ξ

πα ξ ξ

−

− −+

−

≥

                   (7.4.14b) 

 

This inequality holds for any value of 1ξ ≥ . 

 

Similarly let ( ) 22 1λ ≤ , then one has 

 

( )

24 4 2 2 3 3 2 2 2

3 3 2 2 2 2 2

24 4 3 3 2 2 2 2 2

3 44 6 10 40 25

18 1 50 1 20 1

9 36 60 6 60 25

π α π α π α ξ παξ π α ξ

π α ξ πα ξ π α ξ ξ

π α π α ξ π ξ α π α πξα

 − − + + +
 
 + − − − − − 

≤ + + + + +

             (7.4.15a) 
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or 

 

( ) ( )
( )

( ) ( )
( ) ( )

( )

8 8 2 7 7 6 6 2 6 6

5 5 2 5 5 2 5 5 2

2 2 4 4 4 4 3 2
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π α ξ ξ ξ ξ ξ π α
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− − ++ + +

+ +

−

−

− − −

+ − − −

−

+

+ +

+

−

+ −+ +

−

( )2500 1 0πα ξ ξ− − ≥

 

                   (7.4.15b) 

 

This inequality also holds for any value of 1ξ ≥ . 

 

It concludes that ( ) 1rρ ≤A  for anyξ  values, therefore the UHVP_L2 algorithm 

is unconditionally stable. The spectral radii of the amplification matrices with 

various damping ratio ξ  are plotted in Figure 7.4.1. The ultimate spectral radius is 

1
3 . 

 
Figure 7.4.1 – Spectral radii for the amplification matrices of UHVP_L2 
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7.4.3 Algorithm using third-order Lagrange time finite element 

 
When the third-order Lagrange polynomials are used for the time approximation 

operatorΦ , the integer r  equals to three correspondingly. The algorithm thus 

obtained is referred as UHVP_L3 thereafter in this thesis. The approximation 

operators are 

 

( )

( )( )( )

( )( )

( )( )

( )( )

( ) [ ]( )

2

2

2

2

1 1 111 2 3 2
6 2 6

1 32 3 5 3
2 2 0,3
1 3 31 3 4

2 2 2
1 1 11 2
6 2 3

d
d

τ τ τ τ τ

τ τ τ τ ττ
τ τ

ττ τ τ τ τ

τ τ τ τ τ

−   − − − − + −   
   
   − − − +   

= = ∈   − −   − − + −
   
   
   − − − +
   

Φ
Φ

                        

                                (7.4.16) 

Correspondingly the time invariant coefficient matrices in Eq. (7.4.2) are now 

 

1/ 2 57 / 80 3 /10 7 / 80
0 81/ 80 3 /10

0 57 / 80
1/ 2sym

− − 
 − ′′ =
 
 − 

S               (7.4.17a) 

 

8 / 35 99 / 560 9 /140 19 / 560
81/ 70 81/ 560 9 /140

81/ 70 99 / 5603
8 / 35sym

Tα
− 

 − − ′′ =
 
 
 

M              (7.4.17b) 

 

2

8 / 35 99 / 560 9 /140 19 / 560
81/ 70 81/ 560 9 /140

81/ 70 9
4

9 / 560
/ 35

3
8sym

T
πα

− 
 − − ′′ =
 
 
 

K              (7.4.17c) 
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1/ 2 57 / 80 3 /10 7 / 80
0 81/ 80 3 /104

0 57 / 80
1/ 2

T

sym
T
πξ

− − 
 − ′′ =
 
 − 

C                (7.4.17d) 

 

0 0 0 0
0 0 0

0 0
1

r

sym

 
 
 ′′ =
 
 
 

S                 (7.4.17e) 

 

The sub-matrices in Eq. (7.4.5) related to the amplification matrix rA  can be 

written explicitly as follows 

 

2 2

2

27 81 270
70 80 560

54 81 270
35 20 140

81 27
80 560

81 27
20 140

T T

T T T
T

sym
T T

θθ

α α

απ πξ απ

α

πξ απ

− 
 
 
 − 

=  
− 

 
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The amplification matrix rA  is hence 

 

1 3

2 2
2

3 4

2 2

151

60 1
4

r

b T b
b b

b b
b T b

α

π α

 − 
 =
 −

− 
 

A          (7.4.19) 

 

where 
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( ) ( )
( ) ( )

( )

4 4 2 2 2 4 4 2 2 2 2 3 3
1

6 6 5 5 2 4 4 3 3 3
2

2 2 2

4 4 3 3 2 2 2 2 2
3

4

13440 10 32 396 2205 10 96 2100

256 1920 7680 240 4320 13440

1800 25200 25200 11025

24 64 280 370 210 735

3660

b

b

b

b

π α ξ π α π α π α π α ξ π α πα

π α π α ξ ξ π α ξ ξ π α

ξ π α παξ

π α π α ξ π α ξ π α παξ

π

= + − + + +

= + + − + + +

+ + +

= − + − + +

= ( )4 4 3 3 2 2 2 551256600 18900 19800 12600 4α π α ξ ξ π α παξ+ + − − +

 

           (7.4.20) 

 

The two eigenvalues of the amplification matrix rA , (1) (2),λ λ , are  

(1) (2)Re Im; Re Imλ λ= + = −          (7.4.21) 

 

where 

 

Re

2

Im

2

6 6 4 4 2 2

5 5 4 4 2 3 3 3
Re

3 3 2 2 2

4 4 2 2
2

Im 3 3 2 2 2

Re

Im

64 3720 20250 11025
240 3840 5040
5580 18900 3150

720 11100 22050
1

1920 8400 6300

Nu
b

Nu
b

Nu

Nu

π α π α π α

π α ξ π α ξ π α ξ

π α ξ π α ξ παξ

π α π α
πα ξ

π α ξ π α ξ παξ

=

=

 − + − +
 

= + − + 
 − + + 

 − +
= −  − + + 

   (7.4.22) 

 

Again, that the two eigenvalues are complex conjugates when 1ξ < , consequently 

the spectral radius of rA is 

 

( ) ( ) ( ) ( )1 2 2 2Re Im 1rρ λ λ ξ = × = − <A              (7.4.23) 
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Let ( )2 1rρ ≤A , one has 

 

( )12 12 11 11 2 10 10

9 9 3 9 9 8 8 4

8 8 2 8 8 7 7 5

7 7 3 7 7 6 6 6

6 6 4

7587840 165120

36096000 1555200 109209600
27705600 532800 212889600
15120000

0 61440 1013760

0 17683200 225792000
423360000

π α π α ξ ξ π α

π α ξ π α ξ π α ξ

π α ξ π α π α ξ

π α ξ π α ξ π α ξ

π α ξ

≤ + + −

+ + +

+ + +

+ + +

+ +

( )

6 6 2 6 6

5 5 5 5 5 3 5 5

4 2 4 4

3 3 3 3 3 2 2 2

167832000 1890000
592704000 762048000 15606000

1333584000 463428000 4630500

1614060000 158760000 1250235000
486202500

π α ξ π α

π α ξ π α ξ π α ξ

ξ ξ π α

π α ξ π α ξ π α ξ
παξ

+

+ + +

+ + −

+ + +
+

 (7.4.24) 

 

The above inequality will be invalid when ξ  and α  are small enough, which 

means ( ) 1rρ >A  for certain combinations of ξ  and α . It is clear the most 

extreme case is obtained when 0ξ = for an undamped system, then Eq. (7.4.24) 

degenerates to 

 

( )4 8 8 6 6 4 4 2 2165120 532800 189000 61440 00 46305+ 00+α π α π α π α π α≤ − −  

(7.4.25) 

 

From which the unstable range of α  is found to be 70, 2π
 
  

, and the algorithm 

becomes stable once 7 0.4212
t
Tα π

∆= ≥ ≈  . Interestingly, this hints for an 

undamped multi-degree-of-freedom system the stability of the results is 

determined by the lowest frequency of the system. This is in contrast to the 

stability properties of many conditionally stable algorithms whose stability 

restriction are determined by the highest frequency. 
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On the other hand, for a critically-damped or over-damped system, the two 

eigenvalues become real numbers. In this case, the spectral radius is determined 

by the larger value of ( )1λ and ( )2λ .  Let  ( ) 21 1λ ≤ , which leads to  

 

( )2 2
Re Im 2Nu Nu b+ ≤                (7.4.26a) 

 

or 

 

( )
( ) ( )
( ) ( )
( )

12 12 2 11 11 10 10

2 10 10 2 9 9 2

3 9 9 2 8 8

2 8 8 3 8 8 2
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27
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ξ ξ π α ξ π α ξ

ξ π α ξ ξ π α

ξ π α ξ π α ξ ξ ξ
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+ − − +

+ − − +
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2 5 5 2 4 4 2

2 4 4 4 4 3 2

3 3 2 3 3 2 2

3 3
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π α ξ π α ξ ξ ξ

ξ π α ξ π α ξ ξ

ξ π α π α ξ ξ ξ

π α ξ π α ξ ξ ξ

π α ξ

+ − −

+ − − + −

+ − + − −
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+ + ( )
( )

2 2 2 2 2

2

0 277830000 1

486202500 1

0

π α π α ξ ξ ξ

πα ξ ξ

+ − −

+ − −
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                                    (7.4.26b) 

 

It is clear that Eq. (7.4.26b) holds for any 1ξ ≥ .  
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Similarly, let ( ) 22 1λ ≤ , one has 

 

( )2 2
Re Im 2Nu Nu b− ≤                   (7.4.27a) 

 

or 
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              (7.4.27b) 
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Which also holds for any 1ξ ≥ , therefore for critically-damped and over-damped 

systems the algorithm is “unconditionally” stable. Overall UHVP_L3 algorithm is 

conditionally stable because of the criteria to be satisfied for under-damped 

systems. The spectral radii of the amplification matrices with various damping 

ratio ξ  are plotted in Figure 7.4.2. The ultimate spectral radius is 1
4 .  

 

 
Figure 7.4.2 – Spectral radii for the amplification matrices of UVHP_L3 

 

Figure 7.4.3 shows the localised region where the spectral radius exceeds unity for 

the undamped system.  
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Figure 7.4.3 – Range of the unstable ratio α  of UVHP_L3 

 

7.4.4 Algorithm using fifth-order Lagrange time finite element 

 
When the fifth-order Lagrange polynomials are used for the time approximation 

operatorΦ , the integer r  equals to five. The algorithm thus obtained is referred as 

UHVP_H5 thereafter in this thesis. The approximation operators are 
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   (7.4.28) 

 

The procedure to evaluate the algorithmic stability condition is identical to the 

ones for UHVP_L2 and UHVP_L3. It is found the algorithm employing the fifth-

order element is also conditionally stable as illustrated in Figure 7.4.4 below. 

Similar to UHVP_L3 algorithm, the unstable range of α  of UHVP_L5 algorithm 

is bounded, which means the algorithm will become stable when the length of the 

time step increases. Another observation is made that the stability property varies 

in accordance with the damping ratio; the conditional stability is only at presence 

for a certain range of damping ratio. For the undamped case, the unstable region 

for α  is approximately ( )0.45 ,1.3T T . 
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Figure 7.4.4 – Spectral radii for the amplification matrices of UHVP_L5 

 

7.5  Conclusion 
 

In this chapter, the stability of the one- and two- field algorithms based on 

Unconventional Hamilton-type Variational Principles are examined in 

combination with the time finite elements reviewed in Chapter 5. It is found that 

the UHVP_H3 algorithm is conditionally stable, and the maximum length of the 

time step is 21 1.45π ≈  times the natural period to guarantee stable results. The 

UHVP_L3 and UHVP_L5 algorithms are also found to be conditionally stable. 

However, their conditional stability can shift to unconditional stability when the 

damping ratio increases. In addition, the unstable range of the time step is 

bounded, therefore, large time steps can be accepted for the stability consideration 

as long as it stays outside of the unstable range. The best UHVP algorithm with 

regards to the stability property is the UHVP_L2, which possesses the desired 

characteristic of unconditionally stable. 
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Chapter 8  Consistency Analysis 
 

8.1 Introduction 
 

If an algorithm is stable and consistent, its convergence is assured. Stability 

having been investigated in the last chapter, the consistency properties of the 

algorithms are to be evaluated next. The consistency is judged by the examination 

of the local truncation error. Two approaches for this exercise are briefly reviewed, 

and the second approach (i.e., comparing the amplification matrices and the load 

operators) is adopted in the subsequent investigation. Both the analytical solution 

and three approximation solutions generated from the presented algorithms are 

expanded in Taylor series and compared. Conclusions for the consistency 

associated the UVHP_H3, the UVHP_L2 and UVHP_L3 algorithms are reached 

in Section 8.3. However, it is not successful to obtain a theoretical conclusion for 

the UVHP_L5 scheme, its performance will be illustrated numerically in the next 

chapter. 

 

8.2 Consistency analysis 
 
8.2.1 Consistency 

 
As reviewed in Chapter 7 (Eq. (7.2.1)), the formulation of a single step recursive 

scheme can be expressed in general as  

 

1n n n−= +V AV L           (8.2.1) 

 

When the scheme is an approximation, A and nL are the approximated 

amplification matrix and load operator. If an analytical scheme is available, these 

two quantities are then exact – denoted as ExactA and ExactL . The exact solution 
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( ) ( ) ( ){ },
T

u t u tt =V  or ( ) ( ){ },
T

u t p t=V at the time instants 1nt − and 1n nt t t−= + ∆  

satisfy 

 

( ) ( )1n Exact n Exactt t −= +V A V L           (8.2.2) 

 

The essence of all numerical schemes is to simulate Eq. (8.2.2) as closely as 

possible. Nevertheless a certain amount of errors always occur in all numerical 

schemes. When the analytical solution ( )ntV and ( )1nt −V are substituted in the 

approximation formulation, Eq. (8.2.1), the local truncation error ( )ntτ  can be 

defined as 

 

( ) ( ) ( )( )1 /n n n nt t t tτ −= − − ∆V AV L                   (8.2.3) 

 

If ( ) kt c tτ ≤ ∆  for all t within the temporal domain, where c is a constant 

independent of the time step and k>0, the numerical scheme defined by Eq. (8.2.1) 

is called consistent, and k is referred as the order of accuracy (Hughes, 1987). 

 

In order to investigate the algorithmic consistency, two approaches can be utilised. 

The first one is to find the local truncation error and evaluate the consistency 

directly by the definition. The other way is to compare the approximation 

amplification matrix and the load operator against the analytical ones, respectively 

(Fung, 1997).  The truncation errors of the relevant entries in the matrix and load 

operator will determine the error of the numerical scheme under consideration. 

Both ways lead to the same conclusion, and the latter approach is adopted in this 

research since insights may be gained in this approach. 

 

Similar to the stability analysis, an SDOF system is used for the investigation, the 

applicability of the findings to MDOF systems were proven by Hughes (1987) and 

Wood (1990). This SDOF problem is again 



Chapter 8 Consistency analysis 
 

 
164 

 

( ) ( ) ( ) ( )2

0 00 0

2

;
t t

u t u t u t f t

u u u v

ξω ω

= =

+ + =

= =

 



        (8.2.4) 

 

8.2.2 The analytical solution of an SDOF system 

 
If ( )û t  is the exact solution to Eq. (8.2.4), it can be divided into two parts – the 

homogenous solution ( )ˆhu t and the particular solution ( )ˆpu t  

 

( ) ( ) ( )ˆ ˆ ˆh pu t u t u t= +           (8.2.5) 

 

The particular solution varies according to the type of the excitation force, ( )f t , 

and the closed form are only available for limited types of loads. However, an 

arbitrary load can be expanded into a Taylor series about 0t =  within a small time 

interval [ ]0, t∆  

 

( ) ( ) ( ) ( ) ( )

( )

2 3
2 3

2 3

0 0 0
0

0

f f f
f t f t t t

t t t
t t

∂ ∂ ∂
= + + + +

∂ ∂ ∂
≤ ≤ ∆



      (8.2.6) 

 

Subsequently the response corresponding to each term of the load expansion can 

be combined linearly to obtain the overall response of the dynamic system under a 

wide class of excitation forces. Without losing of generality, only one term needs 

to be considered in the following discussion. The excitation force is assumed to be 

 

( ) nf t Ft=            (8.2.7) 

 

where F  is the amplitude coefficient, n is an integer and 1n ≥ .The motion 

equation under consideration is now  

 

( ) ( ) ( )22 nu t u t u t Ftξω ω+ + =             (8.2.8) 
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The homogenous solution to Eq. (8.2.8) is 

 

( ) ( ) ( ) ( )
0 0

sin
ˆ cos sin dt

h d d
d d

t
u t e t t u vξω ωξωω ω

ω ω
−    = + +  

   
      (8.2.9) 

 

The particular solution to Eq. (8.2.8) is an indefinite series related to the excitation. 

 

( ) ( ) ( )
( )
( )

( )
( )

2 2 2 3
2 3 4 5

1 4 4 1 21 2ˆ !
2 ! 3 ! 4 ! 5 !

n n n n
pu t F t t t t n

n n n n
ξ ω ξ ξ ωξω+ + + +

 − −
 = − − + +
 + + + + 



           

(8.2.10) 

 

However, it can be proven that the sum of the first four terms will give a solution 

of at least fourth-order accurate simply by substituting the sum of these terms 

back into Eq. (8.2.8).  

  

The analytical amplification matrix ExactA can be derived from Eq. (8.2.9) and its 

first time derivatives  

 

( )
( ) ( ) ( )

( ) ( ) ( )
2

1cos sin sin

sin cos sin

d d d
d dt

Exact

d d d
d d

t t t
t e

t t t

ξω

ξωω ω ω
ω ω

ω ξωω ω ω
ω ω

−

 + 
 =
 

− − 
 

A  (8.2.11) 

 

with 21dω ξ ω= −  being the damped system frequency. When t t= ∆ , the 

Taylor expansion of the entries of ExactA  is (Fung, 1997)  
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( ) ( ) ( )

( ) ( ) ( )
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( ) ( ) ( )
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


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2 3
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ξ ξ ω ξ ξ ξ ω

= − ∆ + − ∆ − − ∆

+ − + ∆ − − + ∆

+

 

          (8.2.12) 

 

The analytical load operator ( )Exact tL is related to the particular solution ( )ˆpu t . A 

truncated Taylor series of at least fourth-order accurate can be obtained from Eq. 

(8.2.10) and its first time derivative, let t t= ∆  

 

( )

( ) ( )
( )
( )

( )
( )

( ) ( )
( )
( )

( )
( )

,

2 2 2 3
2 3 4 5

2 2 2 3
1 2 3 4

1 4 4 1 21 2
2 ! 3 ! 4 ! 5 !

!
1 4 4 1 21 2

1 ! 2 ! 3 ! 4 !

Exact trun

n n n n

n n n n

t

t t t t
n n n n

n F

t t t t
n n n n

ξ ω ξ ξ ωξω

ξ ω ξ ξ ωξω

+ + + +

+ + + +

∆

 − −
 ∆ − ∆ − ∆ + ∆

+ + + + 
=  

− − 
∆ − ∆ − ∆ + ∆ + + + + 

L

             

 

(8.2.13) 
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In the subsequent examination, Taylor expansions of amplification matrices and 

load operators of the presented algorithms will be compared against ExactA  and 

,Exact trunL , to evaluate the local truncation errors. 

  
 

8.3 Consistency of the one-field and two-field algorithms 
 

8.3.1 Consistency of UVHP_H3 algorithm 

 
The one-field formulation given in Eq. (7.3.8) is recalled here for convenience. 

Let t t= ∆ , one has 

  

( )
( )

( )
( )

11 1
11 10 11 1

1

i i

i i

d t d t

t d t t d t
−− −

−

      = − +   
∆ × ∆ ×      

G G G L
 

       (8.3.1) 

 

or  

 

( )
( )

( )
( )

11 1
11 10 11 1

1

1 0 1 0
0 0

i i

i i

d t d t
t td t d t

−− −

−

         = − +      ∆ ∆         
G G G L

 

     (8.3.2) 

 

Compared with Eq. (8.2.1), it is clear that the corresponding approximating 

amplification matrix 3HA  and the approximating load operator 3HL  are the 

following  

 

( ) ( )
1

1
3 11 10

1 0 1 0
0 0H t

t t

−

−   
∆ = −   ∆ ∆   

A G G         (8.3.3) 

 

( )
1

1
3 11 1

1 0
0H t

t

−

− 
∆ =  ∆ 

L G L          (8.3.4) 
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Using Eq. (7.3.10a) and substituting in T tα =  and 2
T

πω = ,  the Taylor series 

of ( )3H t∆A  entries can be obtained as 

 

( ) ( )

( ) ( ) ( )

( ) ( )

2 2 3 3 2 4 4 3 5 5
3

2 2 2 3 2 3 4
3

4 2 4 5

2 3 2 2 4 3 3 5
3

1 1 1 64 281,1 1 4 1
2 3 90 945 135

1 21,2 4 1 1 2
6 45

56 226 1
135 945 126

1 4 82,1 2 8
15 45 315

H

H

H

t t t t

t t t t

t

t t t

ω ξω ξ ω ξ ξ ω

ξω ξ ω ξ ξω

ξ ξ ω

ω ξω ξ ω ξ ξ ω

 = − ∆ + ∆ − − ∆ + − ∆ 
 

+

= ∆ − ∆ + − ∆ + − ∆

 + − + − ∆ + 
 

 = − ∆ + ∆ + − ∆ − + ∆ 
 

A

A

A





( ) ( ) ( )

4

2 2 2 2 3 3
3

4 2 4 4 5 3 5 5

1 82,2 1 2 4 1 1 2
2 15

8 2 1 736 512 118
45 315 42 675 675 1575

H

t

t t t

t t

ξω ξ ω ξ ξω

ξ ξ ω ξ ξ ξ ω

+

= − ∆ + − ∆ + − ∆

   − + − ∆ + − + ∆ +   
   

A





 

(8.3.5) 

 

Comparing Eq. (8.3.5) with Eq. (8.2.12), it can be seen that the local truncation 

errors are ( )3O t∆  for ( )3 2,1HA  and ( )4O t∆  for the other entries, hence the 

displacement homogenous solution is consistent and third-order accurate. 

 

From Eq. (7.3.2), one has 

 

( )
2 31

1 3 20

3 2 nt F d
τ τ

τ τ
τ τ

 −
= ∆  

− 
∫L       (8.3.6) 

 

Therefore one can obtain ( )3H t∆L  from Eq. (8.3.4) as 
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( )
( )

( )( )
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( )

3

2 2 3 2 4 2 4

2 4 4 3 3 2 2 2 2 2

1 1 2 2 3 2 3

2 4 4 3 3 2 2 2
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∆
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L

( )2 2 420

F

t tω ξω

 
 
  
 
 
 ∆ + ∆  

                                                                                                                          

 (8.3.7) 

 

Comparing with Eq. (8.3.7) with Eq. (8.2.13), it can be seen that the leading error 

for the displacement particular solution is ( )2nt +Ο , therefore, the particular 

solution is consistent and at least second-order accurate for the displacement when 

1n = , and higher when 1n > . Overall, the UVHP_H3 algorithm is consistent and 

the accuracy of the solution is at least second-order, third-order if the excitation 

force is of second- or higher-order. 

 

 

8.3.2 Consistency of UVHP_L2 algorithm 

 
The approximating amplification matrix with the second-order Lagrange element 

2LA  is given by Eq. (7.4.9). With the substitution of t∆  and ω , its entries can be 

expanded  as 
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( )

( ) ( ) ( )

( ) ( ) ( )

2 2 3 3 2 4 4 2 5 5
2

2 2 2 3 2 3 4
2

4 2 4 5

2 3 2 2 4 3 2 5
2
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t

t
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∆

 + − + ∆ + 
 
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   + − + ∆ + − + ∆   
   

+

A





  

(8.3.8) 

 

Compared with Eq. (8.2.12), it can be seen that the truncation errors are ( )4O t∆  

for ( )2 1,1LA  and ( )3O t∆  for the other entries, hence the displacement 

homogenous solution is consistent and second-order accurate. 

 

The load operator 2LL  at the end of the time step alongside with the one , 2LθL  for 

the intermediate time node can be obtained from Eqs. (7.4.4) and (7.4.8a-d), 

where they were referred as rGL and θGL , respectively. When the second-order 

Lagrange element is used, one has 
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   (8.3.9) 

 

Therefore the load operator is found to be 
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(8.3.10) 

 

Compared with Eq. (8.2.13), it is trivial to see that the leading error term for the 

displacement particular solution is ( )2nt +Ο , therefore, the displacement particular 

solution is consistent and at least second-order accurate when 1n = , and higher 

when 1n > . Considering both the homogenous and particular solution, the 

algorithm is consistent and the solution obtained is second-order accurate.  

 

8.3.3 Consistency of UVHP_L3 algorithm 

 
The approximating amplification matrix with the third-order Lagrange element 

3LA  is given by Eq. (7.4.18). With the substation of t∆ and ω , its entries can be 

expanded  as 
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(8.3.11) 

 

Compared with Eq. (8.2.12), it can be seen that the truncation error is ( )4O t∆ , for 

all entries, hence the displacement homogenous solution is consistent and third-

order accurate. 

 

The load operator 3LL  at the end of the time step alongside with the one θL  for 

the intermediate time nodes associated with the third-order Lagrange element can 

be obtained from Eqs. (7.4.4), (7.4.17a-d).  When the third-order Lagrange 

element is used, one has 
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The load operator 3LL is found to be  
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(8.3.13) 

 

The leading error term for the displacement particular solution is also ( )2nt +Ο , 

therefore, the particular solution is at least consistent and second-order accurate 

for the displacement when 1n = , and higher when 1n > . Considering both the 

homogenous and particular solution, the algorithm is consistent and the solution 

obtained is at least second-order accurate, and third-order if the excitation force is 

of second- or higher-order. 
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 8.3.4 Consistency of UVHP_L5 algorithm 

 
For this fifth-order approximation, a meaningful Taylor expansion of the 

amplification matrix is not able to be obtained due to the machine epics. However 

its performance will be demonstrated numerically in the next chapter. 

 

8.4 Conclusion 
 

In this chapter, the consistency of the presented space-time finite element schemes 

is examined. It is found that the UVHP_H3, the UVHP_L2 and the UVHP_L3 

algorithms are consistent. However, it is not successful to verify the consistency 

of the UVHP_L5 analytically. Furthermore the order of accuracy for the verified 

schemes is at least second-order, and can be third-order for the UVHP_H3 and the 

UVHP_L3 algorithms if the excitation force is in the proper form.  
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Chapter 9  Numerical Examples 
 

9.1 Introduction 
 

Numerical tests carried out using Matlab are given in this chapter to verify the 

proposed UVHP algorithms and to evaluate their performance. Displacement 

time-histories of selected nodes obtained with these algorithms are compared with 

two reference schemes, one is the analytical method - the modal decomposition 

method; the other is the Average Acceleration Method (AAM) of the Newmark 

family, which is known to be second-order accurate. The results of these schemes 

are evaluated in terms of the accuracy of the results, as well as the computational 

cost associated with different level of accuracy. The absolute error and relative 

error are used for the evaluation, which are defined as follows, respectively 

 

absolute error analytical result approximation result= −      (9.1.1) 

 

100%absolute errorrelative error
analytical result

= ×                        (9.1.2) 

 

Four numerical examples are presented in the following sections. The trusses in 

these examples include a two-degree-of-freedom planar truss, a seven-node planar 

truss and a space truss with one hundred and fifteen numbers of DOFs. A 

periodical load and a chaotic load are used in the examples. In the evaluation, the 

damping is not considered so that the difference of various algorithms can be fully 

preserved. 

 

9.2 Example One – A three-node planar truss 
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A planar truss made up of three isotropic and prismatic rods is illustrated in Figure 

9.2.1. A harmonic load ( ) ( )30cos50L t t kN=  is applied to the node C in the Y 

direction. The values of mechanical parameters are: elastic modulus 210E GPa= ; 

cross-sectional area 2500A mm=  for all rods; material density 37800 /kg m . 

Damping and the self-weight of rods are not considered in this example. The 

initial displacement and initial velocity are given as zero at time 0t = . The Y-

displacement of node C is used to evaluate the UVHP schemes against the two 

reference schemes. 

 
Figure 9.2.1 – Three- node truss 

 

The degree of freedom of this system is two. The time-history of the Y- 

displacement of the node C with a time step 3.5 04t E s∆ = −   is given in Table 

9.2.1, where the relative errors are also given. The time step is taken as one tenth 

of the bigger natural period of the system as commonly adopted in the engineering 

practice. It should be noted that this time step satisfies the stability conditions of 

the UVHP_H3 and UVHP_L5 algorithms, while not the one for UVHP_L3. 

However for the first one hundred steps, the amplification error of UVHP_L3 is 

( )100 1001=1.0001723179657 1 0.017rρ − − ≈A ,  therefore the results of UVHP_L3 

are still meaningful for the comparison.  
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analytical
Y

Displacem
ent

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

0 0 0 0 0 0 0 0 0 0 0 0
0.00175 -1.14E-02 -1.16E-02 1.97% -1.13E-02 0.91% -1.13E-02 0.95% -1.14E-02 0.04% -1.14E-02 0.00%

0.0035 -1.96E-03 -1.29E-03 34.11% -2.17E-03 10.44% -2.16E-03 10.27% -1.96E-03 0.14% -1.96E-03 0.00%

0.00525 -8.31E-03 -9.12E-03 9.77% -8.14E-03 2.00% -8.16E-03 1.86% -8.31E-03 0.03% -8.31E-03 0.00%

0.007 -3.70E-03 -3.47E-03 6.24% -3.67E-03 0.83% -3.67E-03 0.88% -3.70E-03 0.07% -3.70E-03 0.00%

0.00875 -8.01E-03 -6.96E-03 13.08% -8.25E-03 2.98% -8.21E-03 2.56% -8.02E-03 0.13% -8.01E-03 0.00%

0.0105 -1.17E-03 -3.64E-03 212.08% -9.23E-04 20.80% -1.00E-03 13.92% -1.13E-03 2.85% -1.17E-03 0.00%

0.01225 -1.04E-02 -7.11E-03 31.38% -1.03E-02 0.64% -1.02E-02 1.68% -1.04E-02 0.53% -1.04E-02 0.00%

0.014 1.41E-03 -1.44E-03 202.30% 8.41E-04 40.30% 7.46E-04 47.00% 1.47E-03 4.24% 1.41E-03 0.01%

0.01575 -9.58E-03 -8.22E-03 14.16% -8.62E-03 10.04% -8.57E-03 10.48% -9.62E-03 0.44% -9.58E-03 0.00%

0.0175 2.02E-05 4.67E-04 2213.84% -9.40E-04 4755.94% -9.27E-04 4689.77% 3.19E-05 57.92% 2.02E-05 0.01%

0.01925 -5.89E-03 -7.36E-03 24.98% -5.37E-03 8.71% -5.40E-03 8.21% -5.87E-03 0.20% -5.89E-03 0.00%

0.021 -1.05E-03 -1.43E-04 86.33% -9.31E-04 11.34% -9.45E-04 9.94% -1.06E-03 0.73% -1.05E-03 0.00%

0.02275 -5.14E-03 -3.86E-03 24.91% -5.64E-03 9.67% -5.54E-03 7.73% -5.17E-03 0.55% -5.14E-03 0.00%

0.0245 2.07E-03 -2.20E-03 206.47% 2.36E-03 14.23% 2.19E-03 5.79% 2.15E-03 3.86% 2.07E-03 0.00%

0.02625 -7.04E-03 -2.60E-04 96.31% -6.57E-03 6.59% -6.39E-03 9.26% -7.16E-03 1.68% -7.04E-03 0.00%

0.028 4.97E-03 -2.73E-03 154.93% 3.60E-03 27.57% 3.47E-03 30.11% 5.09E-03 2.37% 4.97E-03 0.00%

0.02975 -5.77E-03 9.49E-04 116.44% -3.90E-03 32.40% -3.88E-03 32.85% -5.85E-03 1.32% -5.77E-03 0.00%

0.0315 3.81E-03 -6.88E-04 118.07% 2.18E-03 42.66% 2.23E-03 41.46% 3.82E-03 0.44% 3.81E-03 0.00%

0.03325 -1.85E-03 4.43E-04 123.98% -1.09E-03 40.77% -1.13E-03 38.78% -1.82E-03 1.21% -1.85E-03 0.00%

0.035 3.01E-03 1.67E-03 44.62% 3.20E-03 6.54% 3.15E-03 4.74% 2.99E-03 0.40% 3.01E-03 0.00%

UVHP_L5

Time

AAM UVHP_H3 UVHP_L2 UVHP_L3

 
Table 9.2.1 – Three-node truss – time history of Y displacements of node C (time step = 3.5E-4 s) 
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Figure 9.2.2 – Three-node truss – absolute error of Y displacement of node C (time step = 3.5E-4 s) 
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Figure 9.2.3 – Three-node truss – time history plot of Y displacements of node C (time step = 3.5E-4 s) 
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From Table 9.2.1 and Figure 9.2.2, it can be observed that the results of the 

UVHP algorithms agree with the analytical solutions better than the result of the 

AAM scheme. The relative errors of the higher-order schemes (UVHP_L3 & 

UVHP_L5) are reduced significantly. 

 
It can be further seen from Figure 9.2.3 that the period elongation and amplitude 

variation of the AAM scheme is clearly evident. In contrast, the UHVP algorithms 

have much better agreement in both aspects, which means for a MDOF problem 

the period of each mode can be preserved better with the presented UVHP 

algorithms, thus making the overall solution more accurate. 

 
To improve the accuracy of the AAM results, smaller time steps have to be used. 

This will increase the computational cost as a result. The computational cost is 

measured in terms of the computation time consumed by a desktop with an Intel 

Core™ i7 CPU (2.93GHz) and 3GB RAM. It is found that the time step has to be 

halved to 1.75E-04s to get roughly equivalently accurate results to those of the 

UHVP_L2 and UHVP_H3 schemes. To match the accuracy of the UHVP_L5 

results, the time step has to be further reduced to 7.00E-06s, which is 2% of the 

original time step. The costs for the calculation of the dynamic response during 

the period [0, 0.035s] are summarised in Table 9.2.2, from which it can be seen 

that: 

 

• UVHP_H3 is the most efficient scheme for this example. As shown in Figure 

9.2.3, it offers better accuracy than the AAM scheme using the same time 

step. 

• UHVP algorithms are more computationally efficient than the AAM schemes 

for the same level of accuracy in this particular example.  

• On the consideration of the equivalent accuracy, the UHVP algorithms are 

shown to demand much less additional computational efforts compared to the 

AAM, especially when highly accurate results are required. 
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Algorithm Time step (s) Computation time (s) Ratio of computational 
cost 

AAM 
7.00E-06 0.1809 82.23 
1.75E-04 0.0071 3.23 
3.50E-04 0.0036 1.64 

UVHP_H3 

3.50E-04 

0.0022 1.00 
UVHP_L2 0.0035 1.59 
UVHP_L3 0.0045 2.05 
UVHP_L5 0.0088 4.0 

 
Table 9.2.2 - Comparison of computational costs for Example One 
 

Further numerical test shows that an even bigger time step ( 7 04t E s∆ = −  ) can 

be used for the UVHP_L5 algorithms to produce a relatively accurate solution 

compared to the AAM, as illustrated in Figure 9.2.4, which clearly demonstrates 

the advantage of using the higher order approximation. 



Chapter 9 Numerical examples 
 

 
182 

 

 
Figure 9.2.4 – Three-node truss – time history plot of Y displacements of node C (time step = 7E-4s) 

-0.014 

-0.012 

-0.010 

-0.008 

-0.006 

-0.004 

-0.002 

0.000 

0.002 

0.004 

0.006 
0 0.

00
07

 
0.

00
14

 
0.

00
21

 
0.

00
28

 
0.

00
35

 
0.

00
42

 
0.

00
49

 
0.

00
56

 
0.

00
63

 
0.

00
70

 
0.

00
77

 
0.

00
84

 
0.

00
91

 
0.

00
98

 
0.

01
05

 
0.

01
12

 
0.

01
19

 
0.

01
26

 
0.

01
33

 
0.

01
40

 
0.

01
47

 
0.

01
54

 
0.

01
61

 
0.

01
68

 
0.

01
75

 
0.

01
82

 
0.

01
89

 
0.

01
96

 
0.

02
03

 
0.

02
10

 
0.

02
17

 
0.

02
24

 
0.

02
31

 
0.

02
38

 
0.

02
45

 
0.

02
52

 
0.

02
59

 
0.

02
66

 
0.

02
73

 
0.

02
80

 
0.

02
87

 
0.

02
94

 
0.

03
01

 
0.

03
08

 
0.

03
15

 
0.

03
22

 
0.

03
29

 
0.

03
36

 
0.

03
43

 
0.

03
50

 

Ve
rt

ic
al

 d
is

pl
ac

em
en

t o
f n

od
e 

C 
(m

)

Time (s)

Analytical AAM UVHP_L5



Chapter 9 Numerical examples 
 

 
183 

 

9.3 Example Two – A seven-node planar truss 
 

A simply supported truss of seven nodes is subject to a vertical dynamic load

( ) ( )30cos50L t t kN= , as shown in Figure 9.3.1. The degrees of freedom are 

eleven for this structure. The mechanical parameters of this system are: elastic 

modulus 210E GPa= ; cross-sectional area 22827A mm= for all rods; material 

density 37800 /kg m . The damping and the self-weight of the rods are not 

considered. The initial displacement and initial velocity are given as zero at time 

0t =  .  The vertical (Y) displacement of node F is used for the evaluation. 

 

 

 

 

 

 

 

 

 

Figure 9.3.1 – Simply supported seven – node truss 

 

The results for the first one hundred steps with a time step 5 04t E s∆ = −  are 

compared in Table 9.3.1. The time step is so selected to ensure stable results or 

meaningful results (for UVHP_L3) are obtained. It can be seen that all the results 

agree with the analytical solution for the given time step. However, the UVHP 

algorithms obtain better accuracy than the AAM, as shown in Figure 9.3.2, and 

the improvement with the UVHP_L5 algorithm is clearly evident. 
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analytical
Y

Displacem
ent

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

0 0 0 0 0 0 0 0 0 0 0 0
0.0025 -2.30E-03 -2.40E-03 4.32% -2.35E-03 1.92% -2.34E-03 1.57% -2.30E-03 0.09% -2.30E-03 0.00%
0.005 -5.90E-03 -5.88E-03 0.34% -5.97E-03 1.09% -5.96E-03 0.87% -5.93E-03 0.35% -5.90E-03 0.00%
0.0075 -9.74E-03 -9.89E-03 1.55% -9.84E-03 1.05% -9.84E-03 0.96% -9.77E-03 0.29% -9.74E-03 0.00%
0.01 -1.10E-02 -1.10E-02 0.06% -1.11E-02 0.40% -1.11E-02 0.38% -1.11E-02 0.42% -1.10E-02 0.00%
0.0125 -1.01E-02 -1.02E-02 1.18% -1.01E-02 0.05% -1.01E-02 0.09% -1.02E-02 0.89% -1.01E-02 0.01%
0.015 -8.28E-03 -8.40E-03 1.49% -8.36E-03 0.96% -8.35E-03 0.91% -8.36E-03 1.03% -8.28E-03 0.01%
0.0175 -6.12E-03 -6.05E-03 1.11% -6.15E-03 0.60% -6.15E-03 0.62% -6.19E-03 1.28% -6.11E-03 0.02%
0.02 -4.34E-03 -4.38E-03 0.78% -4.29E-03 1.24% -4.29E-03 1.24% -4.46E-03 2.75% -4.34E-03 0.05%
0.0225 -8.62E-04 -8.59E-04 0.25% -9.48E-04 10.00% -9.47E-04 9.90% -9.30E-04 7.90% -8.59E-04 0.25%
0.025 2.12E-03 2.00E-03 5.64% 2.20E-03 3.73% 2.20E-03 3.74% 2.11E-03 0.70% 2.12E-03 0.12%
0.0275 4.54E-03 4.72E-03 3.98% 4.57E-03 0.57% 4.57E-03 0.58% 4.50E-03 0.87% 4.55E-03 0.07%
0.03 3.76E-03 3.66E-03 2.68% 3.76E-03 0.04% 3.76E-03 0.08% 3.80E-03 1.04% 3.77E-03 0.07%
0.0325 4.29E-04 6.93E-04 61.76% 4.50E-04 5.06% 4.53E-04 5.80% 5.52E-04 28.73% 4.31E-04 0.65%
0.035 -3.19E-03 -3.04E-03 4.78% -3.15E-03 1.36% -3.15E-03 1.31% -3.11E-03 2.44% -3.19E-03 0.11%
0.0375 -4.55E-03 -4.57E-03 0.38% -4.47E-03 1.68% -4.47E-03 1.74% -4.42E-03 2.86% -4.55E-03 0.05%
0.04 -2.26E-03 -2.31E-03 1.96% -2.25E-03 0.70% -2.25E-03 0.76% -2.05E-03 9.46% -2.26E-03 0.08%
0.0425 1.75E-03 1.63E-03 6.81% 1.97E-03 12.25% 1.97E-03 12.05% 1.86E-03 6.11% 1.76E-03 0.13%
0.045 6.03E-03 6.21E-03 3.08% 5.97E-03 0.89% 5.98E-03 0.81% 6.14E-03 1.81% 6.03E-03 0.01%
0.0475 8.26E-03 8.20E-03 0.72% 8.38E-03 1.49% 8.38E-03 1.42% 8.44E-03 2.16% 8.26E-03 0.00%
0.05 9.32E-03 9.67E-03 3.70% 9.37E-03 0.50% 9.38E-03 0.57% 9.34E-03 0.23% 9.32E-03 0.00%

UVHP_L5

Time

AAM UVHP_H3 UVHP_L2 UVHP_L3

 
Table 9.3.1 – Seven-node truss – time history of Y displacements of node F (time step = 5E-4 s)
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Figure 9.3.2 – Seven-node truss – absolute error of Y displacements of node F (time step = 5E-4 s) 
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In order to improve the accuracy of the AAM results, smaller time steps are used.  

The improved results are compared with the results of UVHP algorithms in Table 

9.3.2. From this table, it can be seen that the time step has to be reduced by more 

than half to 1.67e-4s to obtain results roughly matching the results of UHVP_H3, 

UHVP_L2 and UHVP_L3; and it has to be further reduced to 1.25e-5s to match 

the results obtained with the UHVP_L5 algorithm, which is as small as 2.5% of 

the UHVP time step. 

 

Time 
UHVP_H3  

( time step = 
5e-4s) 

UHVP_L2 
( time step = 

5e-4s) 

UHVP_L3 
( time step = 

5e-4s) 

UHVP_L5 
( time step = 

5e-4s) 

AAM ( time 
step =    

1.67e-4s) 

AAM ( time 
step =    

1.25e-5s) 

0 0 0 0 0 0 0 
0.0025 1.92% 1.57% 0.09% 0.00% 0.61% 0.00% 
0.005 1.09% 0.87% 0.35% 0.00% 0.12% 0.01% 
0.0075 1.05% 0.96% 0.29% 0.00% 0.92% 0.00% 
0.01 0.40% 0.38% 0.42% 0.00% 0.72% 0.01% 
0.0125 0.05% 0.09% 0.89% 0.01% 0.65% 0.01% 
0.015 0.96% 0.91% 1.03% 0.01% 2.20% 0.02% 
0.0175 0.60% 0.62% 1.28% 0.02% 0.67% 0.03% 
0.02 1.24% 1.24% 2.75% 0.05% 0.40% 0.07% 
0.0225 10.00% 9.90% 7.90% 0.25% 10.18% 0.31% 
0.025 3.73% 3.74% 0.70% 0.12% 3.56% 0.11% 
0.0275 0.57% 0.58% 0.87% 0.07% 2.77% 0.09% 
0.03 0.04% 0.08% 1.04% 0.07% 0.84% 0.08% 
0.0325 5.06% 5.80% 28.73% 0.65% 37.92% 0.61% 
0.035 1.36% 1.31% 2.44% 0.11% 4.24% 0.12% 
0.0375 1.68% 1.74% 2.86% 0.05% 0.75% 0.04% 
0.04 0.70% 0.76% 9.46% 0.08% 1.02% 0.05% 
0.0425 12.25% 12.05% 6.11% 0.13% 0.24% 0.11% 
0.045 0.89% 0.81% 1.81% 0.01% 0.63% 0.00% 
0.05 0.50% 0.57% 0.23% 0.00% 1.45% 0.00% 
Table 9.3.2 - Comparison of relative errors of node F displacements 
 

The computation costs for each scheme using these time steps are compared in 

Table 9.3.3, which are  measured in terms of the computation time for the period 

[0, 0.05s] using the same desktop for Example One. Combining Tables 9.3.1, 

9.3.2 and 9.3.3, It can be seen that: 

 

• UVHP_H3 has the same computational efficiency as the AAM with the same 

time step, while providing more accurate results. 
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• For the same level of accuracy, UVHP_H3 and UVHP_L2 algorithms require 

less computational effort than the corresponding AAM schemes. 

• For highly accurate results, the additional computational cost for UVHP_L5 

is lower than the corresponding AAM scheme. 

 

It summaries that the UVHP algorithms provide a more accurate and efficient 

means than the AAM in this particular example. 

 

Algorithm Time step (s) Computation time (s) Ratio of computational 
cost 

AAM 
1.25E-05 0.2510 40.48 
1.67E-04 0.018 2.90 
5.00E-04 0.0062 1.00 

UVHP_H3 

5.00E-04 

0.0062 1.00 
UVHP_L2 0.0108 1.74 
UVHP_L3 0.0237 3.82 
UVHP_L5 0.1818 29.32 

Table 9.3.3 - Comparison of computational costs for Example Two 
 

9.4 Example Three – A forty one-node space truss 
 
In this example a space truss of forty-one nodes is subject to a dynamic load 

( ) ( )30cos50L t t kN=  applied to node 6 vertically as shown in Figure 9.4.1. The 

mechanical parameters are the same as Example Two. Again, the initial 

displacement and initial momentum/velocity are null, and the self-weight and 

damping are not considered. The degrees of freedom are one hundred and fifteen 

for this system. 
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(a) space truss - plan view and node numbers 

 

 
(b) space truss - elevation 
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(c) space truss - isometric view 

Figure 9.4.1 – Model of the 41 node space truss  

 

The vertical displacement of node 6 is used for the comparison. Initially a time 

step of 3E-4s is selected to meet the stability requirements of all algorithms apart 

from the UVHP_L3, however as explained earlier the result obtained with the 

UVHP_L3 is still meaningful for the first one hundred steps. The results are 

compared in Table 9.4.1 and Figure 9.4.2. 
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analytical
Y

Displacem
ent

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

Y
Displacem

ent

Relative
error

0 0 0 0 0.00E+00 0 0.00E+00 0 0 0 0 0
0.0015 -4.99E-04 -5.04E-04 1.06% -4.85E-04 2.79% -4.90E-04 1.74% -4.97E-04 0.39% -4.99E-04 0.00%
0.003 -9.11E-04 -9.60E-04 5.42% -9.08E-04 0.26% -9.06E-04 0.47% -9.13E-04 0.30% -9.11E-04 0.00%
0.0045 -1.31E-03 -1.31E-03 0.06% -1.31E-03 0.25% -1.31E-03 0.36% -1.30E-03 0.21% -1.31E-03 0.00%
0.006 -1.82E-03 -1.81E-03 0.51% -1.81E-03 0.53% -1.81E-03 0.42% -1.82E-03 0.08% -1.82E-03 0.00%
0.0075 -2.20E-03 -2.24E-03 1.79% -2.20E-03 0.17% -2.20E-03 0.09% -2.20E-03 0.03% -2.20E-03 0.00%
0.009 -2.61E-03 -2.59E-03 0.81% -2.59E-03 0.67% -2.59E-03 0.58% -2.61E-03 0.00% -2.61E-03 0.00%
0.0105 -3.17E-03 -3.10E-03 2.19% -3.16E-03 0.33% -3.16E-03 0.33% -3.16E-03 0.16% -3.17E-03 0.00%
0.012 -3.54E-03 -3.48E-03 1.74% -3.52E-03 0.65% -3.52E-03 0.68% -3.54E-03 0.03% -3.54E-03 0.00%
0.0135 -3.38E-03 -3.44E-03 1.58% -3.40E-03 0.34% -3.39E-03 0.31% -3.39E-03 0.31% -3.38E-03 0.00%
0.015 -3.22E-03 -3.23E-03 0.56% -3.22E-03 0.09% -3.22E-03 0.06% -3.21E-03 0.33% -3.22E-03 0.00%
0.0165 -2.88E-03 -2.88E-03 0.08% -2.87E-03 0.24% -2.87E-03 0.26% -2.90E-03 0.64% -2.88E-03 0.01%
0.018 -2.42E-03 -2.41E-03 0.27% -2.44E-03 1.07% -2.44E-03 1.00% -2.42E-03 0.13% -2.42E-03 0.01%
0.0195 -2.06E-03 -2.04E-03 0.82% -2.07E-03 0.21% -2.06E-03 0.16% -2.04E-03 0.94% -2.06E-03 0.00%
0.021 -1.52E-03 -1.52E-03 0.01% -1.53E-03 0.42% -1.52E-03 0.31% -1.53E-03 0.47% -1.52E-03 0.01%
0.0225 -5.87E-04 -6.63E-04 12.96% -5.98E-04 1.77% -5.98E-04 1.77% -5.84E-04 0.55% -5.87E-04 0.01%
0.024 1.14E-04 1.26E-04 10.34% 9.87E-05 13.62% 9.84E-05 13.89% 1.02E-04 10.77% 1.14E-04 0.01%
0.0255 7.00E-04 6.81E-04 2.67% 7.16E-04 2.24% 7.14E-04 1.99% 7.10E-04 1.39% 7.00E-04 0.02%
0.027 1.18E-03 1.20E-03 1.02% 1.20E-03 1.35% 1.20E-03 1.16% 1.18E-03 0.25% 1.18E-03 0.00%
0.0285 1.29E-03 1.35E-03 4.55% 1.30E-03 0.58% 1.30E-03 0.54% 1.31E-03 1.13% 1.29E-03 0.00%
0.03 1.44E-03 1.42E-03 1.17% 1.47E-03 2.30% 1.47E-03 2.15% 1.44E-03 0.09% 1.44E-03 0.02%

Time

AAM H3 algorithm L2 algorithm L3 algorithm L5 algorithm

 
Table 9.4.1 – Space truss – time history of vertical displacement of node 6 (time step = 3E-4s) 
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Figure 9.4.2 – Space truss – absolute error of the vertical displacements of node 6 (time step = 3E-4s)
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It can be seen from Table 9.4.1 that the results of all algorithms match the 

analytical one well for the given time step, however, it is clear from Figure 9.4.2 

that the UHVP algorithms approximate the analytical solution even better, 

especially the UHVP_L5 scheme. 

 

Smaller time steps are used to improve the accuracy of the AAM results, the 

relative errors of each scheme with various time steps are listed in Table 9.4.2.  

 

Time 
UHVP_H3  

( time step = 
3E-4s) 

UHVP_L2 
( time step = 

3E-4s) 

UHVP_L3 
( time step = 

3E-4s) 

UHVP_L5 
( time step = 

3E-4s) 
AAM (time 

step = 1E-4s) 
AAM (time 

step = 7.5E-
6s) 

0 0 0 0 0 0 0 
0.003 0.26% 0.47% 0.30% 0.00% 1.05% 0.01% 
0.006 0.53% 0.42% 0.08% 0.00% 0.37% 0.00% 
0.009 0.67% 0.58% 0.00% 0.00% 0.32% 0.00% 
0.012 0.65% 0.68% 0.03% 0.00% 0.84% 0.00% 
0.015 0.09% 0.06% 0.33% 0.00% 0.48% 0.01% 
0.018 1.07% 1.00% 0.13% 0.01% 0.21% 0.01% 
0.021 0.42% 0.31% 0.47% 0.01% 1.24% 0.02% 
0.024 13.62% 13.89% 10.77% 0.01% 22.77% 0.08% 
0.027 1.35% 1.16% 0.25% 0.00% 0.30% 0.00% 
0.03 2.30% 2.15% 0.09% 0.02% 0.48% 0.02% 
Table 9.4.2 - Comparison of relative errors of the vertical displacements of node 6    
 

From the above table, it is clear that the time step for AAM has to be reduced to 

1E-4s to get the results close to those of UHVP_L2 and UVHP_H3 algorithms. 

The time step has to be further reduced to 7.5E-6s to obtain the AAM results 

matching the results of UHVP_L5 scheme. The corresponding computational 

costs for these schemes are listed in Table 9.4.3. 

 

Algorithm Time step (s) Computation time (s) Ratio of computational 
cost 

AAM 
7.50E-06 2.0411 24.18 
1.00E-04 0.2428 2.88 
3.00E-04 0.0844 1.00 

UVHP_H3 

3.00E-04 

0.2764 3.27 
UVHP_L2 0.8853 10.49 
UVHP_L3 2.3578 27.94 
UVHP_L5 8.9389 105.91 

Table 9.4.3 - Comparison of computational costs for Example Three 
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It can be seen that: 

 

• The AAM scheme with the time step of 3.00E-04s is the most efficient 

scheme, although its accuracy is known the lowest within all schemes 

compared.  

• For the same level of accuracy, the UVHP_H3 algorithm requires slightly 

higher computational effort than the corresponding AAM scheme. 

• The rest of UVHP algorithms are more computationally expensive than the 

corresponding AAM schemes in this particular example, due to more degrees 

of freedom involved in the calculation. 

 

9.5 Example Four – A seven-node planar truss subject to a chaotic 

excitation force 
 

In this example, the same planar truss used in Example Two (Figure 9.3.1) is 

excited from the static equilibrium position by a chaotic force depicted in Figure 

9.5.1. The load is applied vertically to the node F. The damping and the self-

weight of the truss are not considered.  

 

 
Figure 9.5.1 – Time history of the excitation force applied to the node F 
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The length of the time step used is again 5E-4 seconds, and the results for the 

period [0, 0.035s] are compared in Table 9.5.1. It can be seen that these numerical 

schemes, including the AAM and all UVHP algorithms, give accurate results for 

this initial period, especial the UVHP_L5 results show very high accuracy.  

 

However, similar to the previous examples, the difference starts to appear when 

the calculation is repeated. This is clearly visible in Figures 9.5.2 and 9.5.3 where 

the AAM results “drift” away from the UVHP results.  

 

To improve the accuracy of the AAM results, much smaller time steps have to be 

used. It can be seen from Figure 9.5.4 that the results of the AAM with the time 

step ten times smaller match the results of UHVP_L5 using the original time step. 

Table 9.5.2 confirms this observation from the relative error perspective, and it 

can also be seen from the same table, when the time step is taken as 2.5E-4 

seconds, the AAM results are roughly as accurate as the UVHP_L2 and 

UVHP_H3 results using the original time step, but are still less accurate than the 

UVHP_L3 results. 
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Time 
analytical AAM UVHP_H3 UVHP_L2 UVHP_L3 UVHP_L5 

Y 
Displacement 

Y 
Displacement 

Relative 
Error % 

Y 
Displacement 

Relative 
Error % 

Y 
Displacement 

Relative 
Error % 

Y 
Displacement 

Relative 
Error % 

Y 
Displacement 

Relative 
Error % 

0.0035 6.35E-05 6.36E-05 0.16% 6.34E-05 0.13% 6.34E-05 0.20% 6.35E-05 0.04% 6.35E-05 0.00% 
0.007 3.29E-04 3.28E-04 0.39% 3.29E-04 0.00% 3.29E-04 0.02% 3.29E-04 0.01% 3.29E-04 0.00% 
0.0105 7.73E-04 7.72E-04 0.12% 7.73E-04 0.02% 7.73E-04 0.02% 7.73E-04 0.01% 7.73E-04 0.00% 
0.014 1.23E-03 1.23E-03 0.01% 1.23E-03 0.03% 1.23E-03 0.03% 1.23E-03 0.02% 1.23E-03 0.00% 
0.0175 1.61E-03 1.61E-03 0.08% 1.61E-03 0.00% 1.61E-03 0.00% 1.61E-03 0.01% 1.61E-03 0.00% 
0.021 1.93E-03 1.92E-03 0.06% 1.93E-03 0.00% 1.93E-03 0.00% 1.93E-03 0.01% 1.93E-03 0.00% 
0.0245 2.12E-03 2.12E-03 0.06% 2.12E-03 0.00% 2.12E-03 0.00% 2.12E-03 0.01% 2.12E-03 0.00% 
0.028 2.20E-03 2.20E-03 0.18% 2.20E-03 0.04% 2.20E-03 0.04% 2.20E-03 0.01% 2.20E-03 0.00% 
0.0315 2.31E-03 2.32E-03 0.11% 2.31E-03 0.02% 2.31E-03 0.02% 2.31E-03 0.01% 2.31E-03 0.00% 
0.035 2.65E-03 2.65E-03 0.11% 2.65E-03 0.03% 2.65E-03 0.03% 2.65E-03 0.01% 2.65E-03 0.00% 
 

Table 9.5.1 – Seven-node truss under a chaotic excitation –Y displacements of node F for the period [0, 0.035s] (time step = 5E-4 s) 
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Figure 9.5.2 – Seven-node truss under a chaotic excitation – time history plot of Y displacements of node F (time step = 5E-4 s) 
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Figure 9.5.3 – “close up” of time history plot between [1.00s, 1.05s] (time step = 5E-4 s) 
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Time (s) UVHP_H3      
(Δt=5E-4s) 

UVHP_L2        
(Δt=5E-4s) 

UVHP_L3        
(Δt=5E-4s) 

UVHP_L5           
(Δt=5E-4s) 

AAM              
(Δt=5E-4s) 

AAM                
(Δt=2.5E-4s) 

AAM                    
(Δt=5E-5s) 

0.0035 0.13% 0.20% 0.04% 0.00% 0.16% 0.09% 0.01% 
0.007 0.00% 0.02% 0.01% 0.00% 0.39% 0.20% 0.01% 
0.0105 0.02% 0.02% 0.01% 0.00% 0.12% 0.04% 0.01% 
0.014 0.03% 0.03% 0.02% 0.00% 0.01% 0.01% 0.00% 
0.0175 0.00% 0.00% 0.01% 0.00% 0.08% 0.05% 0.00% 
0.021 0.00% 0.00% 0.01% 0.00% 0.06% 0.01% 0.01% 
0.0245 0.00% 0.00% 0.01% 0.00% 0.06% 0.02% 0.00% 
0.028 0.04% 0.04% 0.01% 0.00% 0.18% 0.02% 0.00% 
0.0315 0.02% 0.02% 0.01% 0.00% 0.11% 0.03% 0.00% 
0.035 0.03% 0.03% 0.01% 0.00% 0.11% 0.02% 0.00% 
 
Table 9.5.2 – Comparison of the relative errors of node F displacements 
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Figure 9.5.4 – Time history plot of Y displacements of node F between [1.00s, 1.05s] with various time steps 
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The computational cost of each scheme for the period [0, 1.05s], measured in 

terms of the computation time consumed by the same desktop used for Example 

One are listed in Table 9.5.3. It can be seen that: 

 

• The UVHP_H3 algorithm again uses less time than the AAM with the same 

time step, while producing more accurate results. 

• The computational cost for the UVHP_L2 algorithm is less than the 

corresponding AAM scheme for equivalent accuracy. 

• Both UVHP_L5 algorithm and the AAM scheme with the smallest time step 

produce equally high- order results, with much increased computational costs. 

 

Algorithm Time step (s) Computation time (s) Ratio of computational 
cost 

AAM 
5.00e-05 1.134  10.70 
2.50e-04 0.267  2.52 
5.00e-04 0.130  1.23 

UVHP_H3 

5.00e-04 

0.106  1.00 
UVHP_L2 0.227  2.14 
UVHP_L3 0.780  7.36 
UVHP_L5 1.627  15.35 

Table 9.5.3 - Comparison of computational costs of Example Four 
 
9.6 Conclusion 
 

Four examples have been given in this chapter to demonstrate the accuracy and 

efficiency of the proposed UVHP algorithms. It is found in these examples: 

 

• The validity of the UVHP algorithms has been verified through the 

comparison with the reference schemes. Both homogeneous and chaotic 

loads are tested, and the UVHP results match the analytical ones very well. 

• All UVHP algorithms have less period elongation and amplitude variation 

than the AAM. 

• With the given time steps, the UVHP algorithms produce much improved 

results compared to the AAM, especially the UVHP_L5 algorithm. At the 
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same time, the computational cost for UVHP algorithms can be lower than 

the AAM schemes for the equivalent level of accuracy. 

• To improve the accuracy of the AAM results, much increased 

computational cost is demanded. In contrast, these additional costs can be 

lower for UVHP algorithms by using higher order approximations. 

• Large time step may be used to produce results with decent accuracy with 

the UVHP algorithm. 
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Chapter 10 Conclusion and Future Work 
 

10.1 Summary 
 

This research aims to construct a new method for the linear dynamic analysis of 

truss-type structures. The proposed method is a space-time finite element method, 

based on Unconventional Hamilton-type Variational Principles tailored for this 

type of structures. The dynamic equilibrium equation and all essential conditions 

are preserved naturally in simple functionals. A fundamental integral relation was 

given, from which five bespoke Unconventional Hamilton-type Variational 

Principles were derived. The intrinsic relations between these principles were also 

revealed. The one-field and two-field principles were used to underpin the 

development of the proposed space-time finite element algorithms. 

 

To construct the proposed method, the semi-discretisation approach of the space-

time domain was adopted. The structure was first discretised with rod element in 

the spatial domain, followed by a separate time finite element treatment in the 

temporal domain. The resultant system equations were a set of algebraic equations 

which could be solved conveniently. The time finite elements utilised in the study 

included the cubic Hermite element, the second-, third- and fifth-order Lagrange 

elements. The stability and consistency of these UVHP algorithms were examined 

in detail, and the accuracy and efficiency of the proposed algorithms were verified 

via four numerical examples. The performance of the proposed UVHP algorithms 

was compared against the popular Average Acceleration Method. 

 

10.2 Conclusions 
 

The main findings of the research are as follows: 
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1. The Hamilton’s principle is not a suitable variational principle for initial-

value problems, despite it is still in use in some modern texts. The reason lies 

in the assumption of the variation vanishing at the upper time boundary 

cannot be justified for initial-value problems in the context of the calculus of 

variation. 

 

2. A system of Unconventional Hamilton-type Variational Principles has been 

developed, which have been proved to be suitable for developing a tailored 

method for the dynamic analysis of truss-type structures. Existing variational 

principles/ law (Hamilton’s Principle, Hamilton’s Weak Principle, and 

Hamilton’s Law of Varying Action) can be verified as special cases of 

Unconventional Hamilton-type Variational Principle in the general form. 

 
3. The proposed method for developing the variational principles is unique. 

Starting from an identical equation, the Unconventional Hamilton-type 

Variational Principles for truss-type structures can be developed in a 

systematic approach. 

 

4. Five tailored Unconventional Hamilton-type Variational Principles suitable 

for the linear dynamic analysis of truss structures have been derived with 

various independent variable fields. These five principles are interlinked and 

the relations between them are revealed. The functionals in each of the 

principles always appear in complementary pairs, and either one can be used 

for the construction of the variational algorithm. These principles also lay a 

solid foundation for the extension to other applications, by introducing 

relevant governing conditions for particular behaviour to be addressed, such 

as non-linear analysis.  

 
5. Two types of space-time finite element algorithms are derived based on the 

one-field and two-field principles, respectively. It is shown that these 

algorithms are capable of producing second- and higher-order results when 

various time finite elements are employed. 
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6. The accuracy of the proposed UVHP algorithms has been verified through the 

numerical examples. It was found that the UVHP algorithms give much 

improved results compared to the popular Average Acceleration Method 

(AAM).  

 
7. The efficiency of the proposed UVHP algorithms has been verified. As 

demonstrated in the numerical examples, the computational cost for the 

UVHP algorithms can be lower than the AAM schemes. Therefore, in 

addition to structural dynamics, the UVHP algorithms may be also considered 

for applications where fast and highly accurate algorithms are required, such 

as the positive control of vibrations. 

 
8. The stability and consistency of the UVHP algorithms have been proven. 

 
In summary, this study has provided a new approach to develop a space-time 

finite element method for truss-type structures, from the variational theory to the 

space-time discretisation. The proposed method is very useful for engineering 

applications that require efficient and accurate dynamic response analysis. It can 

also be extended to other particular applications, such as non-linear analysis and 

multi-physics analysis.  

 
10.3 Future work 
 

1. UVHP_H3, UVHP_L3 and UVHP_L5 algorithms are conditionally stable 

although they can give very accurate results. It is worthwhile to explore the 

means of amending these algorithms to obtain unconditional stability. In the 

literature, three approaches have been proven successful in this respect: 

 

1) Unconditionally stable algorithm may be obtained by combining the 

evaluations at other locations rather than at the end node of the time step 

as demonstrated in (Geradin, 1974, Fung, 1998).  
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2) Unconditionally stable algorithm may be obtained by the combination of 

different methods as demonstrated in (Wang and Au, 2004).  

 
3) Stabilising terms may be considered to be introduced into the formulation 

(Hughes and Hulbert, 1988). 

 
2. The ultimate spectral radii of the presented algorithms are all “fixed” for each 

particular algorithm. Therefore, it is desirable to find suitable measures to 

obtain adjustable ultimate spectral radius to have a better dissipation. 

 

3. A further study considering the post-buckling behaviour of the truss structure 

is worth exploring. Although it is not intended to push truss-type structures 

into the non-linear stage during its service period, unexpected circumstances 

do occur in reality. To prevent adverse deformations and to have more 

assurance on the safety for both the occupants and the structure, a complete 

theory suitable for both linear and non-linear analysis will be more 

advantageous. This research has demonstrated a means to introduce any 

necessary condition into the variational principle and provided a platform for 

the development of a complete theory. 
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