
Fang et al. Journal of Cloud Computing: Advances, Systems
and Applications (2015) 4:14
DOI 10.1186/s13677-015-0039-3
RESEARCH Open Access
An approach to unified cloud service
access, manipulation and dynamic
orchestration via semantic cloud service
operation specification framework

Daren Fang1*, Xiaodong Liu1, Imed Romdhani1 and Claus Pahl2
Abstract

Cloud computing offers various computational resources via convenient on-demand service provision. Currently,
heterogeneous services and cloud resources are usually utilized and managed through diverse service portals. This
significantly limits the effectiveness and efficiency for tasks implementation. Fundamentally, it is due to the lack
of adequate specifications for service concepts, operations and interfaces from diverse cloud service models and
types. This paper proposes a service management operation semantic description framework for comprehensive
cloud service operation specification. Relying on ontological modelling techniques, cloud service operations are
specified via entity classification, attribute assertion, relationship assertion and annotation assertion. Further, the
proposed framework benefits from operation reasoning application. It enables intelligent assistance for multiple
operation preparation and remote execution tasks. Based on the approach, a cloud service operation ontology
and a unified service access and manipulation system prototype are implemented. Extensive experiments are
conducted over different cloud service providers and for distinct service models. Obtained results demonstrate
that the approach outperforms existing practices by facilitating reliable and effective service access, manipulation
and interaction tasks.
Introduction
In the era of cloud computing, Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) providers offer on-demand services and
resources for various compute/platform/software needs
[1, 2]. While many cloud service providers (CSPs) provide
unique management portals for their own services and
resources, the interfaces, functionalities and service op-
eration environments are mostly diverse. Indeed, this is
due to the fact that different CSPs tend to act distinctly
while addressing service quality of service (QoS), fea-
tures, customizability, requirements, etc. [3, 4]. As a re-
sult, while trying to manage multiple cloud services
and resources, users often have to use a variety of cloud
portals for different CSPs. This significantly limits the
* Correspondence: d.fang@napier.ac.uk
1School of Computing, Edinburgh Napier University, 10 Colinton Road,
Edinburgh EH10 5DT, UK
Full list of author information is available at the end of the article

© 2015 Fang et al. This is an Open Access artic
(http://creativecommons.org/licenses/by/4.0), w
provided the original work is properly credited
effectiveness and efficiency for tasks deployment and
implementation.
To deal with the above issues, a number of approaches

to cloud service and resource interoperability and port-
ability are proposed. These solutions include but are not
limited to: open cloud API (Application Programming
Interface) development such as jclouds [5], libcloud [6],
fog [7]; service specifications such as TOSCA [8], mOSAIC
[9]; generic cloud management protocols/drivers such as
OCCI [10]. Despite their capabilities of handling certain
specific service and resource categories, it is difficult to find
any that allows adequate management for diverse CSPs’ ser-
vices and resources via a common interface. This is mainly
due to the lack of a unified service specification framework
that can interpret cloud service and resource entities and
deal with the interoperability among CSPs [11].
This paper proposes a new service operation semantic

specification approach, called Service Access and Manipu-
lation Operation Specification (SAMOS) framework. The
le distributed under the terms of the Creative Commons Attribution License
hich permits unrestricted use, distribution, and reproduction in any medium,
.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0039-3&domain=pdf
mailto:d.fang@napier.ac.uk
http://creativecommons.org/licenses/by/4.0

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 2 of 20
framework is underpinned by ontological modelling tech-
niques. It is capable of modelling comprehensive speci-
fications for cloud service operations regardless of the
service/operation/provider types. The variety of service
operations are specified into two categories: service in-
formation requests and service manipulation requests.
For each category, the proposed framework describes
the detailed operation elements involved, including the
parameters, requirement, outcome, condition changes, etc.
Based on SAMOS, a cloud service operation ontology

and a unified service remote management prototype tool
are dev eloped. In this paper, “unified” refers to the term
that an integrated and versatile (specification and man-
agement) solution is provided for heterogeneous services
and resources in multiple cloud environments. To such
extent, the proposed model can interpret and preserve
the complexity which lies behind cloud service operation
executions, in a formal systematic way. By utilizing a cloud
service API mapping mechanism, the tool is compatible
with real IaaS, PaaS and SaaS services from multiple
provider clouds. Accordingly, the ontology and the tool
enable users to effectively view, create and manipulate
a wide range of cloud service and resource data via a
unified structured interface. Additionally, featured with
ontology reasoning techniques, the proposed approach
can provide a series of operation assistances. This means
that appropriate service operations can be dynamically
prepared and/or composed into groups and then exe-
cuted intelligently according to the real-time status of
the target cloud services and resources, even if they
are originated from multiple clouds. Consequently, the
proposed unified cloud service operation specification
and reasoning approach is capable of providing effect-
ive semantic support to deal with cloud (service) inter-
operability issues.
The rest of the paper is organized as follows: Section

“Background and related work” discusses the background
and related work regarding open cloud API, service
semantic specification and generic cloud service man-
agement tool. Section “SAMOS service operation model-
ling framework” describes the core and detailed elements
of SAMOS framework. Section “Service operation re-
quirement verification and dynamic assistance reasoning”
outlines cloud service operation requirement verification
and reasoning assistance mechanisms. Section “Proto-
type implementation” provides the design of the proto-
type system and components, including the API (and
specification) mapping implementation. Section “Case
studies” demonstrates case studies and experiments on
real cloud services. Section “Evaluation and discussion”
evaluates the proposed approach based on findings and
the obtained results. Finally, Section “Conclusions and
future work” concludes the paper with summaries and
future work.
Background and related work
Considerable efforts have been made on enhancing the
interoperability and portability of cloud services. The
practices are widely applied in open cloud API develop-
ments, comprehensive service interface specifications,
versatile cloud management protocols or drivers, etc.

Open cloud service specification framework
The Open Cloud Computing Interface (OCCI [10]) is one
of the earliest attempts to eliminate cloud resource hetero-
geneity. Originally, it was developed only to deal with IaaS
remote management tasks such as resource deployment,
monitoring and automated scheduling. Later, the evolved
Rendering and Extension specification frameworks enable
wider application for PaaS and SaaS services, which conse-
quently make it a generic management driver for a number
of cloud resources.
The OASIS Topology and Orchestration Specification

for Cloud Applications (TOSCA [8]) is a recently estab-
lished standard for clouds. With the aim to enhance cloud
service portability, it enables specifications for diverse
cloud service resources, their relationships and operational
behaviors. With several templates (e.g. service and policy
templates) and types (e.g. node, relationship, requirement
and capability types) specifications, the topology frame-
work can provide semantic support for many cloud service
management and orchestration tasks.
Other than the above well-established practices, a series

of research projects are also implemented towards the
aim. mOSAIC [4], for instance, advocates application/
provider/language-independent cloud service semantic
specifications. The mOSAIC ontology model enables separ-
ation of application-logic and cloud layers and consequently
enhances cloud portability. Likewise, the RASIC framework
[12] attempts to enhance service interoperability through
modelling three horizontal layers (i.e. service frontend,
SOA, virtualization/execution) and two vertical layers
(i.e. semantic and governance). Similarly, the Intercloud
[13] architecture comprises multi-layer cloud service
models and a series of management, federation and op-
erations frameworks. They serve as cloud middleware
to support the service integration. However, these ap-
proaches are developed mainly for infrastructure services
and resources, and cannot be effectively applied to PaaS
and SaaS models.

Open cloud service API
Deltacloud [14] provides a REST [15]-based cloud ab-
straction API that enables service management functions
for a number of IaaS resources. The wide range of CSP
support makes it feasible to manage heterogeneous re-
sources across diverse clouds. Fundamentally, it runs a
series of cloud drivers, which serve as individual service
adapters for each CSP specifically. Deltacloud API along

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 3 of 20
with the management interface enables long-term stabil-
ity for cloud resource utilization.
On the other hand, a number of (stand-alone) language-

dependent cloud APIs are also found. Libcloud [6], for
instance, is a Python library that offers wide support
for many popular CSPs. The library provides interfacing
functions mainly for compute, storage, load balancer, etc.
services. Fog [7] is an API library for Ruby developers. It
also has flexible support for several services from main-
stream CSPs. Jclouds [5] and Dasein [16], are examples of
java API library that supports a wide range of CSPs. Like-
wise, they can be applied to manage various CSPs’ IaaS
compute, platform, database, storage, etc. services.
Some open cloud service API research is also found in

the field. Bastião Silva et al. [17] propose a common API
and SDCP (Service Delivery Cloud Platform) for delivering
services over multi-vendor cloud resources. The platform
is capable of describing diverse cloud concepts (e.g. agent,
domain, and provider) and managing service data and ab-
straction conventions. Similarly, Petcu et al. [18] propose
the mOSAIC java API as an example of open interface for
service deployment and portability. Nonetheless, a draw-
back is that it cannot effectively handle the unique features
offered among distinct cloud services (i.e. lack of support
for many provider-specific service features).

Service and resource management tools for
heterogeneous clouds
Bernabe et al. [19] demonstrate an access control system
for multi-vendor cloud resource management. The pro-
posed ontology specifications can describe various en-
tities (e.g. cloud, system, software, etc.), whereas the
authorization model can deal with user authentication
and authorization tasks. Despite its advanced hierarch-
ical role-based access control, the application is cur-
rently limited to IaaS resources and a single CSP (AWS
EC2 [20]).
Cloud Data Imager (CDI) [21] is seen as a complete

system to provide comprehensive functionalities for
accessing and managing storage resources across diverse
clouds (i.e. Dropbox, Google Drive, and Microsoft SkyD-
rive). The proposed CDI library is able to handle a variety
of functions including user authentication, folder listing,
file downloading, etc. Another work addressing resource
utilization monitoring issues over heterogeneous multi-
tenant clouds is found in DARGOS [22]. The proposed
architecture can provide highly reliable monitoring func-
tions. These approaches would only work for their own
limited cloud service models/types.
A model-based cloud service integration platform [23]

is advocated to drive service orchestration for business
application integration. The proposed framework addresses
three levels of modelling: cross-organizational business
processes, service operation/orchestration, and dynamic
member services binding. Nonetheless, the approach fo-
cuses mainly on enhancing cloud service and resource inte-
gration for certain specific business processes. The platform
is not an ideal tool for a diversity of cloud service and
resource management tasks.
In summary, there are well-established cloud specification

standards and considerable native/third-party open cloud
service API libraries for application over various cloud
resources and many CSPs. Meanwhile, many approaches
are proposed as a means towards generic cloud service
management. They bring some alternatives for avoiding
vendor lock-in plus flexible management of services and
resources. Nevertheless, due to the gaps among existing
studies, currently no solution is available for a unified
and effective management of diverse cloud service models/
types regardless of CSPs. Consequently, this signifi-
cantly limits the effectiveness and efficiency for cloud
service management and composition tasks.
SAMOS cloud service operation modelling
framework
SAMOS models cloud service operation via three compo-
nents: cloud service entity and operation classification,
cloud service entity datatype specification, and cloud
service entity operational relationship specification.
Cloud service entity and operation classification
specifications
In fact, certain membership or association relationships
can often be found among the various service and oper-
ation entities for every individual CSP. These facts can
be well modelled with ontology classification techniques
(see Fig. 1).
Specifically, cloud services and CSPs are asserted as

ontology classes. According to their membership func-
tions (e.g. a service belongs to a certain CSP), the service
class is seen as a subclass for the CSP class. Then, cloud
service instances (CSIs) created within a cloud service
are specified as individuals of the service class.
The classification also applies to additional cloud entities,

such as service operation parameter entities, service
configuration entities, and service accountability and user
authorization data (e.g. service regions, instance attributes,
user account data, etc.). Here, considering that almost all of
such entities tend to be CSP-specific (i.e. the data formats,
names, descriptions, etc. of the entities would all be unique
from one CSP to another), they are specified as “provider-
specific service aspect” (PSSA). Nonetheless, some PSSAs,
i.e. common service/software aspects, may fundamentally
indicate the same entity, despite their distinct PSSA names
(e.g. public IP addresses, open VM images and SQL data-
base data entries). These associated entities are declared
with equivalence (via “equivalent class” or “same individual”

Fig. 1 Cloud service entity and operation classification specifications

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 4 of 20
axioms). Fig. 1 summarizes the association relationships
among cloud services, CSIs and PSSAs.
Further, the diversity of cloud service operations are

asserted as ontology classes and individuals according to
their associations. As illustrated in Fig. 1, cloud service
operation class comprises four subclasses: IaaS, PaaS,
SaaS and Common Operations. They each own a set of
relevant operations. Obviously, for IaaS, PaaS and SaaS,
the majority of the categorized operations would be dif-
ferent from each other. Then, the common cloud service
operations, which are available widely for all service
models (e.g. “list instance”, “set region”), are gathered in
the Common Operation class.
Fig. 2 Cloud service entity datatype specifications
Cloud service entity datatype specifications
As cloud concepts and entities are established in appro-
priate class hierarchy, their datatype specifications are to
be described in detail. Generally speaking, cloud services
appear the same (entity) to all users, and hence own no
typical data-relevant properties. In contrast, CSIs, which
are created and owned by certain users, are unique to
the owners; they own specific data formats, i.e. IDs, cre-
ation times, names, etc. These details are attached to the
entities via ontology datatype property assertions. With
such, a CSI can be easily recognized with its unique ID,
whereas other relevant datatype information can be ef-
fectively addressed when required. Similarly, datatype
specification also applies to all PSSAs, e.g. strings, integers,
dates, URLs, or some unique provider-specific service data
formats (see Fig. 2).
Indeed, these data properties enable precise datatype

format demonstration, differentiation and validation for
cloud entities and operations. With the extracted data
presentation patterns and respected pattern examination
mechanism, validations can be effectively implemented
for cloud service operation preparation and execution
(e.g. validations of authorization, input, output, condi-
tion, etc.).

Cloud service entity operational relationship
specifications
Cloud service operations can be seen as reflections of
the operational relationships among relevant cloud service
and operation entities. For instance, I) “Create instance”
and “List instance” can describe the creation and inclusion
relationships from a cloud service to its instance(s). II)
“Get instance ID” and “Modify instance name” can clarify
the retrievable and modifiable relationships from a service

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 5 of 20
instance to its property and condition. This is how SAMOS
tackles cloud service operation specification by modelling
the diversity of service entity operational relationships.

Classification of cloud service operations
Shown in Table 1, based on the different nature and in-
tentions of cloud service operations, we first divide them
into two categories: service information request (SIR)
and service manipulation request (SMR).

SIR
At the cloud service level, SIR often relies on collecting
all available cloud service’s settings and instances (e.g.
get available regions and list instances). At the CSI level,
it is usually to retrieve the diverse real-time information
of a certain service instance (e.g. get instance status). At
the PSSA level, it tends to acquire the real-time informa-
tion of the specific CSP entities (e.g. get VM image ID).
Generally, SIR operations would not alter any cloud service,
CSI or PSSA after execution.

SMR
At the cloud service level, SMR is usually to handle the
general service settings and overall instances management
tasks (e.g. set region and delete all instances). At the CSI
level, it is mainly regarding some specific instance control
and modification functions (e.g. reboot VM instance). At
the PSSA level, it is for the manipulations implemented
on those unique CSP entities (e.g. delete VM image). On
successful execution, SMR should alter the target cloud
service/CSI/PSSA in an intended way.

Cloud service operation object property specifications
Based on the proposed operation classifications, the diverse
cloud service operations can then be described, shown in
the form of various operational relationships among rele-
vant cloud services, CSIs and PSSAs. These relationships
can be adequately described using ontology object property
assertions. Figure 3 illustrates the representation of cloud
service operations using object property specifications. Ba-
sically, “hasSIR” and “hasSMR” are asserted to describe the
types of operations available, between cloud service/CSI/
PSSA and relevant operation concepts. For instance, the
“create” and “list” operations between cloud services and
Table 1 Classification of cloud service operations

Operation type Description Examples

Service
Information
Request (SIR)

Operation requested to
retrieve service entities and
entity information

List owned service
instances, get instance
ID, get available
platforms

Service
Manipulation
Request (SMR)

Operation requested to make
changes to cloud services,
CSIs or PSSAs

Create new instance,
terminate instance,
modify instance name
CSIs can be represented with “hasSMR create instance”
and “hasSIR list instance”, respectively; the “get attribute”
and “modify” operations between CSIs and PSSAs can
be represented with “hasSIR get attribute” and “hasSMR
modify…”, to demonstrate their operational relationships.
Additionally, the details of cloud service operations, i.e.

operation conditions, parameters, outcomes and changes
are comprehensively described in SAMOS. Here, we
utilize a series of systematic operation specification ele-
ments to specify the aspects that may be involved (before,
during and after operations). These details are stored in
the form of ontology annotations for the respective object
property relation assertions.
Request subject (SRSubject) SRSubject is recognized
as the target of a cloud service operation. As a user se-
lects a cloud service for operation, the service becomes
the target. Similarly, SRSubject can apply to all CSIs and
PSSAs if selected.
Request parameters (SRParameter) Although some
cloud service operations can execute with only SRSubjects,
many others do need certain parameter inputs, e.g. relevant
restrictions, options, customized data, etc. These are
required by CSPs to enable accurate and successful service
operations. SRParameters specify such details for applicable
service operations. Generally, PSSAs make up the majority
of SRParameters; CSIs can also be involved as SRPara-
meters; it is unlikely for any cloud service to be used as
SRParameter.
Due to the complexity of cloud service operation par-

ameter requirement, a SRParameter attribute notation
system is developed. The denotations and examples of the
SRParameter attributes are shown in Table 2. Basically, ac-
cording to the operation requirements, each parameter is
specified with mandatory/optional differentiations. Then,
depending on whether an operation accepts single/mul-
tiple parameters of the same entity type, the parameters
are also differentiated. Consequently, this ought to enable
a precise specification and interpretation for diverse cloud
service operation (parameter) requirements.
Request outcome (SROutcome) As a cloud service op-
eration is executed, certain data response would be
returned from its CSP, informing the execution result,
e.g. execution status, obtained service information, newly
altered service entities, etc. This operation element is
represented as SROutcome. Typically, for the majority of
operation requests, SROutcome reveals the expected ser-
vice entities to be returned from the respected CSP. For
some simple SMR operations, SROutcome would only
be the (expected) success response.

Fig. 3 Cloud service entity object property specifications

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 6 of 20
Request pre condition (SRPreCondition) According to
CSP restrictions, there may be various operation request
condition requirements. Some operations can be initiated
without any condition constraints whilst others do need
specific condition fulfilments. This is defined as SRPre-
Conditions of cloud service operations. For SRPreCondi-
tion specification, the condition text can be either positive
(“VM == off”) or negative (e.g. “service ! = updating”),
where specific data formats and symbols can be involved
(e.g. “instance count restriction < = 100”). SRPreCondition
applies only to those operations which genuinely require
so; others would have an empty entry (“unconditional”)
for the element.
Table 2 SRParameter symbol notations

SRParameter
attribute

Denotation (in object
property annotation)

Examples service
operations and
SRParameters

Mandatory “[]”

Optional “”

Single “()”

Multiple “<>”

Mandatory
single

“[()]” Rename: [(“new_name”)]

Mandatory
multiple

“[<>]” Reboot: [<“vm1,2…”>]

Optional
single

“()” Set authorization: (“basic”)

Optional
multiple

“<>” Deny access:
<“user1,2…”>
Request post condition (SRPostCondition) Using the
same specification pattern as SRPreCondition, SRPost-
Conditions describes the (expected) post execution condi-
tion of a cloud service operation. Specifically, the condition
is accounted whenever a “new” condition is created. This is
to drive as many as operation compositions (by paring
SRPreCondition and SRPostCondition) towards possible
cloud service orchestrations. Hence, a SRPostCondition
does not necessarily need to contradict the respected
SRPreCondition: some operations may only have SRPost-
Condition and no SRPreCondition; for some operations,
the entities involved in SRPostCondition may be different
from those in the respected SRPreCondition. For instance,
a VM creation operation can have SRPreCondition of
“account restriction == OK” and SRPostCondition of
“VM == running”.

Service operation requirement verification and
dynamic assistance reasoning
While cloud service entities, their attributes and rela-
tionships, and operation elements are comprehensively
specified, relevant service operation assistance reasoning
can be introduced. In fact, this enables effective cloud
service operation execution management, even for cloud
service orchestration tasks.

Basic service operation preparation and execution
A typical use of the cloud service operation specifica-
tions is verification. Given SRSubject, relevant SRPara-
meters and fulfilled SRPreCondition, an operation can
be remotely executed through appropriate programming
interface request. If successfully executed, this would result

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 7 of 20
in certain service entity (data) which matches the respected
SROutcome and/or SRPostCondition.

Service operation parameter verification
Specifically, the verification algorithm of cloud service
operation parameter requirements in Fig. 4 demonstrates
the first control prior to operation execution. Basically, the
service entities, either selected or manually entered data,
are processed in two sets of key-value pairs. One holds the
entity name and type information whilst the other holds
the actual entity data and format information. Then,
according to the retrieved SRParameter specification,
the parameters (names, types and format) are verified
against the relevant mandatory requirements. As all of
the mandatory parameters are satisfied, it would indicate
that the parameter verification process is complete. Subse-
quently, the respected parameter data can be sent to
appropriate operation handler for further action.

Service operation precondition verification
The service operation precondition verification is imple-
mented depending on the nature and format of the con-
dition specification, shown in Fig. 5. Specifically, if the
candidate requires no SRPreCondition (unconditional),
the verification will be complete instantly. Otherwise, the
positive, negative or numerical condition is verified based
on a dynamically initiated real-time service entity informa-
tion check. Once all mandatory verifications are complete,
the operation can then execute as dispatched.
While the above verifications are mainly for use of

simple individual cloud service operations, SAMOS also
Fig. 4 Cloud service operation parameter verification algorithm

Fig. 5 Cloud service operation precondition verification algorithm
offers advanced usages, known as operation assistances.
Indeed, the assistances can be widely enabled, such as to
automatically prepare preconditions and gather parameters,
to program the execution schedules for multiple relevant
operations, or to assess the applicability for potential service
interactions and compositions. They are provided based on
the reasoning analysis of cloud service entity operational
relationships and the operation specification elements in-
volved. For instance, operation grouping applicability can
be analyzed by seeking operations with similar types/re-
quirements in both their SRParameters and SROutcomes;
Operation chaining applicability can be determined when
the operations own SROutcome and SRParameter match,
or SRPostCondition and SRPreCondition match (equiva-
lence). The description summary of the proposed cloud
service operation assistances can be found in Table 3.

Table 3 Cloud service operation reasoning assistance type

Reasoning
assistance
name

Assistance description Reasoning
scale

Operation
scheduling

Precondition
& parameter
preparation

Reasoning steps

BASR To assist in preparation of precondition
and parameters for unsatisfied service
operations

Single
cloud
(CSP)

None Guided
manual input

1. For the unsatisfied SRParameters and
SRPreConditions, list possible options based on
current selected SRSubject and SRParameters, plus
the real-time status of them;

CCSR To assist in multiple concurrent service
operations of similar types

Multiple
clouds
(CSPs)

None Manual input 1. Get SRSubjects’ operations which have satisfied
SRParameters;

2. Filter the operations based on whether their
preconditions fulfil the real-time SRSubject statuses;

3. Produce the operation lists for the applicable
SRSubjects;

SCSR To assist in automatic scheduled
executions of a series of operations in a
logical sequence

Single
cloud
(CSP)

Yes Manual input 1. Get SRSubjects’ operations which have satisfied
SRParameters;

2. For the operations, seek for those which have
precondition SRPostCondition matches;

3. Compose these operations into sequenced
chains by filtering

Them from their factorial combinations, according
to the two-two sequenced connections;

4. Filter the operation chains based on whether the
first operation’s preconditions fulfil the real-time
SRSubject status;

Produce the operation lists for the applicable
SRSubjects

IOSR To assist in seeking possible service
interactions by linking appropriate
operations in a scheduled sequence

Multiple
clouds
(CSPs)

Yes Automatic
preparation

1. For all SRSubjects’ operations, seek for those
which have SROutcomes SRParameters
(equivalence) matches;

2. For all SRSubjects’ operations, seek for those
which have SRPreCondition SRPostCondition
matches;

3. Compose these operations into sequenced
chains as long as their SRPostConditions and
SRPreConditions are not contradictory, according to
the two-two sequenced connections;

4. Filter the operation chains based on whether the
first operation’s preconditions fulfil the real-time
SRSubject status;

5. Produce the operation lists for the applicable
SRSubjects

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 8 of 20
Basic Assisted Service Operation Request (BASR)
assistance reasoning
BASR serves to help users understand the required
SRPreConditions and SRParameters for service operations.
It also assists in relevant operation preparations during
the operation process. Basically, as a user selects certain
cloud service/CSI/PSSA and SRParameter(s), BASR can
actively examine all available operations for unsatisfied
operation conditions and parameters. Then, relevant
information regarding how to fulfil such conditions or/
and obtain the mandatory parameter(s) is produced to
assist the user for further actions.
BASR is implemented on a per cloud service/service

instance and per service request basis. This means that
the assistance algorithm does not consider the potential
subsequent impact resulted from one operation to an-
other (or from service entity to another).

Concurrent Combined Service Operation Request (CCSR)
assistance reasoning
As some cloud services own the same model/type/func-
tion, their service operations are very similar. Indeed, the
operation specification patterns for such operations often
coincide. Due to this nature, these operations can be
composed and then executed concurrently towards greater
efficiency.
CCSR reasoning algorithm enables a convenient means

of executing multiple similar service operations for eligible

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 9 of 20
cloud services or instances, even across multiple clouds.
Specifically, as a user selects multiple SRSubjects and a
series of required SRParameters, CCSR collects the eligible
operations into simultaneously executable groups, and of-
fers the options to the user. For the reason that CCSR as-
sistance is provided at a per request basis, although it acts
to control multiple cloud service entities, the algorithm
does not consider the potential impact resulted from one
request to another. Hence, the assistance still does not
adopt any scheduling controls.
Sequenced Chained Service Operation Request (SCSR)
assistance reasoning
For some service operations, the SRPostCondition of an
operation may happen to match (or be equivalent to) an-
other’s SRPreCondition. In other words, the successful
execution of some operations would enable certain subse-
quent operations dynamically by satisfying their precondi-
tion requirements. As a series of such operations are linked
one another with precondition and postcondition matches,
a sequenced operation chain can be composed in real-time.
SCSR serves to seek such operation chains and provide
assistances in scheduling their sequenced executions. Al-
though this may happen over multiple clouds, we consider
that it would be more reasonable for implementation in a
single cloud. Hence, the scale of SCSR reasoning is re-
stricted to that.
SCSR reasoning seeks for operation combinations

which satisfy the following three requirements: Firstly,
within the available operations of the chosen SRSubjects,
there are coherent/equivalence matches between their
SRPreConditions and SRPostConditions from one to
another (empty condition, like “unconditional”, is not
accounted here). Secondly, all of the SRParameters (if any)
of such operations are presented in prior simultaneously.
Thirdly, the real-time service (entity) condition meets the
SRPreCondition of the first operation (in the chain).
Fourthly, any duplicate/repeated operation is to be
eliminated from the chain. Finally, these dynamically
composed operation chains are arranged, where users
can select and execute them depending on their intension.
Interactive Orchestrated Service Operation Request (IOSR)
assistance reasoning
With a successfully executed service operation, the SROut-
come retrieved in real-time can be used as SRParameter for
further service operations. This provides another means to-
wards dynamic service (operation) orchestrations. IOSR is
designed to provide operation orchestration assistances that
require minimum user effort. It can intelligently select and
compose all necessary operations, and automatically pre-
pare the SRPreConditions and SRParameters for relevant
service interaction tasks. Hence, IOSR assisted operation
tasks only ask users for SRSubjects entry and require no
further user interventions.
In order to provide the assistance with proactive con-

dition and parameter preparation, IOSR reasoning algo-
rithm does not simply consider the exact match between
operations’ SROutcome and SRParameter or between
SRPreCondition and SRPostCondition. Instead, it checks
the equivalence of SROutcome and SRParameter entities.
As long as there is no direct conflict between the SRPre-
Condition and SRPostCondition, a link can be formed (for
certain valid interaction intentions). Indeed, whenever
there are commonly recognizable service and resource
entities, they can result in “orchestration points” between
the interactive pair of clouds, regardless of their CSPs or
service types.

Prototype implementation
This section outlines the implementation in terms of the
deployment of cloud service access and manipulation
ontology (CSAMO) and system prototype tool (USAMS).
Moreover, for real cloud service management enablement,
details of cloud service operation API mapping are pre-
sented, as a key component of the prototype.

System architecture
USAMS is implemented in java. As Fig. 6 shows, it con-
sists of six main components: Specification Interpreter,
Service Entity & Operation Mapping Manager, Service
Operation Scheduler, Service Operation Reasoning En-
gine, Authorization Manager and UI.
CSAMO is deployed based on SAMOS framework. It

encapsulates various real cloud service operation specifi-
cation data, written in OWL 2 [24]. While CSAMO is
utilized as the main knowledge source for cloud service
operations, the User Accounts & Profiles database used
here stores users’ cloud service account data (including
CSP API credentials). This is mandatory for most service
operations over different clouds.
Specification Interpreter is responsible for retrieving

and translating granular service operation and entity
specifications and the respected API request and response
data. This includes interpreting all sorts of cloud service
entities in SIR and SMR operations, plus gathering the
entire operation element details (i.e. SRPreCondition,
SRParameter, SROutcome, etc.).
Service Entity & Operation Mapping Manager man-

ages the operation API mapping entries so that users’
service operation requests can be implemented properly.
It has two separate mappers inside for use of SIR and
SMR operations respectively. Indeed, due to the many
different characteristics between the two operation cat-
egories, the operation handling processes are treated
separately. This prevents potential issues as attempting
to schedule a group of mixed operation tasks.

Fig. 6 USAMS system architecture

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 10 of 20
USAMS UI deals with a wide range of service operation
execution tasks by providing a unified portal for real-
world cloud service access and manipulation. It has two
sub components: Unified Service Access and Manipula-
tion Portal and Service Operation Reasoning Assistance.
While the former allows users view and execute various
service operations, the latter actively assists users for
advanced operation execution tasks. Together, these enable
a generic and interactive portal for service access, ma-
nipulation and interaction regardless of service models/
types/CSPs.
Service Operation Reasoning Engine incorporates four

individual reasoners, each works for a certain operation
assistance scenario. BASR Reasoner assists in preparation
of the required operation data so as to guide users through-
out operation process. The scale of its reasoning is re-
stricted to operations in a single cloud. CCSR Reasoner
assists in grouping similar operations for users so as to
enable simultaneous executions, even if such are imple-
mented across distinct clouds. SCSR Reasoner assists in
scheduling chained tasks when a series of operation are
found with certain execution dependency relations one
another. Finally, IOSR Reasoner assists in implement-
ing service orchestration tasks by analyzing the possi-
bilities for potential operation interactions for selected
services.
Service Operation Scheduler acts to control the schedule

and execution of operation tasks. Whenever a user initiates
an operation, the component would first verify the user’s
API credentials (for the target cloud). Then, the necessary
data format verifications (for SRParameter and SRPre-
Condition) are performed. If no error occurs, the mapped
operation task will be executed execution. Further, for ad-
vanced service operation tasks, the component works
closely with Service Operation Reasoning Engine, enabling
the tasks reasoned by the reasoners. With its internal Dy-
namic Service Condition Checker, it provides various
automatic dynamic scheduling controls for grouped SIR
and SMR tasks. For every SMR operations executed, the
logs are forwarded to Logging Controller.
Logging Controller documents critical system and op-

eration logs so that users can examine them as required.
This enables event tracking, diagnostics and performance
evaluation tasks via the platform.

Mapping service operation ontology specifications to
service API calls Nowadays, most cloud service providers
also release native service API libraries and/or complete
SDKs as customized service and resource control interfaces.
Meanwhile, a series third-party service APIs are also avail-
able as an alternative programmable service and resource
entrance. In fact, these service API call/respond operations
often enable more effective service access and enhanced
service function manipulation, since they allow users to
control services and relevant resources from a much lower
level [25].
While each of the cloud service API requests can be

addressed with certain service operation specification
data, a mapping can be implemented between the API
and respected operation specifications. To enable flex-
ible and generic service access and manipulation via a
single point of interface, we adopt OCSO API [25]. It
comprises OCSO API Adapter which can flexibly invoke
cloud service API libraries as (user) requested. Seen in

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 11 of 20
Fig. 7, the mapping is controlled via Service Entity and
Operation Mapping Manager. Here, depending on the
designated API library and the operation requirement,
each service’s operation (object property assertion) is
mapped to at least one API request (for each library).
Moreover, the additional operation specifications (e.g.
SRParameter, SRPreCondition and SROutcome) must be
consistent with the relevant information against the API
request.
As the mapping between service operation specifications

and API calls is established, the modelled cloud service
operations can be prepared and executed (with relevant
cloud API user account credentials) as retrieved.

Case studies
To demonstrate the practice use and to evaluate the pro-
posed approach, we present some case studies on service
operation specifications and service access, manipulation
Fig. 7 Cloud service operation specification and API call mapping
and orchestration tasks, using a series of services from
multiple popular clouds. In addition to the contents
presented below, more specifications for other cloud
services and providers are provided in Appendices A:
Table 8, B: Table 9 and C: Table 10.

EC2 service operation specifications
Table 4 shows the specifications of some AWS EC2 [20]
operations (retrieved from CSAMO). Within SAMOS,
the operations are divided into two categories, and seen
in three entity levels. For instance, at EC2 service level,
there are SIRs for overall instance information retrieval
(e.g. “List VM Instance”) and SMRs for (overall) instance
management (e.g. “Create VM Instances”). At EC2 CSI
level, there are SIRs for individual data retrieval (e.g.
“Get VM Architecture”) and SMRs for individual control
(e.g. “Terminate VM Instance”). At EC2 PSSA level, take
EC2 AMI as an example, it has SIRs and SMRs for

Table 4 EC2 service/CSI/PSSA operation specifications (from CSAMO)

Cloud Service
Level Operations

AWS EC2

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM Instance SIR Unconditional EC2 Region(M) EC2
InstanceIDs

Unconditional

Create VM
Instance(s)

SMR < account allowance, i.e.
20 instances per region

EC2 RequestCount(O), EC2 InstanceType(M), EC2 AMIID(M),
EC2 KeyName (M), EC2 SecurityGroup(O), EC2 Region(M),
EC2 Monitor(O), EC2 AvailabilityZone (O), etc.

EC2
InstanceID(s)

Instance(s) is in
“running” state

Resize
VMInstances

SMR Instances are in “stop” state EC2 InstanceIDs(M), EC2 InstanceTypes(M) Operation
Succeeded

Instances are in
“stop” state

CSI Level
Operations

AWS EC2 Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get VM
Architecture

SIR Unconditional EC2 InstanceID(M) EC2 Instance
Architecture

Unconditional

Create VM Image SMR Unconditional EC2 InstanceID(M) EC2 AMIID AMI is in
“available” state

Terminate VM
Instance

SMR Instance is NOT in
“terminated” state

EC2 InstanceID(M) Operation
Succeeded

Instance is in
“terminated” state

PSSA Level
Operations

AWS EC2 AMI (VM image)

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Image
Platform

SIR Unconditional EC2 AMIID(M) EC2 Instance
Platform

Unconditional

Create VM
Instance(s)

SMR < account allowance, i.e.
20 instances per region

EC2 InstanceID(M) EC2 RequestCount(M),
EC2 InstanceType(M), EC2 KeyName (O),
EC2 SecurityGroup(O), EC2 Monitor(O), etc.

EC2
InstanceID(s)

Instance(s) is in
“available” state

Delete Image SMR Image is in “available” state EC2 AMIID(M) Operation
Succeeded

Unconditional

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 12 of 20
specific entity (data) retrieval and control (e.g. “Get Image
Platform”, “Delete Image”).
Further, the detailed operation elements can be well

presented with SAMOS. For instance, basic SIRs such as
“List VM Instance” and “Get VM Architecture”, they do
not require any SRPreCondition and only require a single
SRParameter (each); they would not trigger any SRPost-
Condition change after execution. In contrast, SMRs act
differently: they would alter certain service/CSI/PSSA con-
ditions on successful execution, and may require several
SRParameters (e.g. “Create VM Instance(s)”). Additionally,
even for the same operation, the specifications can differ
for distinct SRSubjects: the two “Create VM Instance(s)”
executable for EC2 and EC2 AMI appear to be very
similar, except that one requires fewer SRParameters than
the other.

Unified cloud service access and manipulation
A practice use of the cloud service operation specifications
is seen as the enablement of unified service access and
manipulation through USAMS. Figure 8 demonstrates the
appearance of USAMS unified service operation interface
(with EC2).
Every SRSubject is initially displayed in a small panel.

There are four buttons in the panel: “Description”, “Use
Entity”, “Information” and “Manipulation”. By clicking
“Description”, users can view its annotation description
through external knowledge sources [26]. “Information”
and “Manipulation” buttons lead to the respected SIR
and SMR operation retrieval (from CSAMO). Then, if a
user’s API account authorization permits, one can exe-
cute operations via USAMS.
Due to the simple nature, SIR operations are executed

concurrently as the user clicks the “Refresh” button aside.
SMR operations are to be executed individually; they would
only execute when the all of the requirements (i.e. SRPre-
Condition and SRParameter(s)) are satisfied, which are
checked dynamically by relevant USAMS components.
To enhance operation parameter input experience, all
dynamically acquired service entity (information) can
be reused as parameters.
In addition, for any CSI or PSSA acquired through SIR

operations, their operation panels can be called from a click
(see Fig. 8). Afterwards, the remaining options follow the
same steps as the above. In this way, USAMS achieves a
unified service access and manipulation through a common
presentation and execution interface, regardless of the CSP,
service or operation types.

Cloud service operation reasoning assistance: IOSR
As previously discussed, an additional benefit of SAMOS
framework is its operation reasoning assistance. Here,

Fig. 8 Unified cloud service access and manipulation

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 13 of 20
we present an IOSR assistance case on orchestrating
EC2 and Rackspace Cloud Load Balancer (RSLB) [27].
As a user selects the two services to seek orchestration

feasibility, the reasoning engine analyzes the possible
entity relationships throughout CSAMO. Here, the com-
mon nature of public IP address becomes the key link for
the orchestration: EC2 instances own public IPs; RSLB in-
stance needs public IPs for node entries; so EC2 instances
can be inserted as nodes for RSLB instances. As a result, a
series of relevant operations can then be selected and
composed into chains. Seen in Fig. 9, based on the real-
time service conditions, USAMS reasoning engine outputs
an operation chain with two EC2 operations and one
RSLB operation. The two EC2 operations are selected to
obtain an IP address whilst the rest is to complete the or-
chestration by using the address. According to the relevant
specifications displayed below each operation, “start VM”
would turn aVM on; “has IP” would acquire its IP address;
“add node” would add the VM into a RSLB instance by
using its IP.
The case validates that IOSR execution process runs

intelligently on operation condition and parameter prep-
aration: for SRPreCondition fulfillment, it adds the “start
VM” operation at the beginning of the chain due to the
“has IP” needing such condition requirement; for SRPara-
meter fulfilment, the IP address is not manually entered
but a dynamic real-time service entity acquired form CSP.

Service operation remote execution performance
The cloud service operation execution performance study
involves a variety of services and operations from multiple
clouds. We provide operation execution time comparisons
between USAMS and provider native command line inter-
faces (CLI). To deal with the test data deviations (e.g. due

Fig. 9 Service orchestration with IOSR operation reasoning assistance

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 14 of 20
to unexpected/slight QoS fluctuation), the results are reg-
ulated: the operation tests are conducted on two separate
days; the results are obtained from several sample tests,
where any excessive values are eliminated.
The services selected for the operation experiment are

EC2, Relational Database Service (RDS) [28], Elastic
Load Balancer [29], Cloud Servers [30], Cloud Databases
[31] and Cloud Load Balancers [27]. They belong to
AWS and Rackspace two CSPs respectively. Accordingly,
the two CLIs involved in the experiment are AWS CLI
[32] and Rackspace CLI (rumm [33]). For SIR, a series
of service instance data retrieval operations are tested to
justify the typical performances for IaaS, PaaS and SaaS
operations individually. For SMR, various service instance
manipulation operations are tested, including instance
creation, deletion, updating, etc.

SIR(s) remote execution performance
Table 5 demonstrates the experiment results of accessing
AWS and Rackspace IaaS/PaaS/SaaS service instance data.
While the two interfaces both show consistent success rates
of 100 %, the response time varies. Generally speaking, the
Table 5 Single SIR access time comparison (via native CLI/USAMS)

Service
provider

Typical SIR List cloud VM
instances (IaaS)

List cloud databa
instances (PaaS)Method

AWS Via native CLI 0.757 sec 0.519 sec

Via USAMS 1.185 sec 1.032 sec

Rackspace Via native CLI 3.242 sec 3.280 sec

Via USAMS 5.534 sec 5.281 sec
CLIs offer faster response than USAMS for all the SIR
operations. Specifically, for AWS SIRs, all the operations
are handled within 1 second via AWS CLI, whereas
USAMS takes some milliseconds extra. Meanwhile, Rack-
space CLI offers slower accesses of more than 3 seconds
for the SIRs, and USAMS requires approximately add-
itional 2 seconds.
The multiple service operation remote execution ex-

periment is implemented in AWS EC2 only, due to its
reliable success rates and with reasonable elapsed time.
For the SIR experiment on retrieving multiple EC2 in-
stances data, it reveals similar access and response pat-
terns between the CLI and USAMS (see Fig. 10). Faster
completion is found via the CLI, regardless of the total
number of operations. However, the overall performance
difference between the two interfaces is minimal, i.e. gen-
erally within 0.3 seconds.

SMR(s) remote execution performance
The SMR operations selected for the experiment are
IaaS and SaaS service instance creation, modification
and termination tasks. Specifically, the IaaS VM creation
se List cloud files
(SaaS)

List cloud load
balancers (SaaS)

Success rate (based
on 200 tests)

0.666 sec 0.550 sec 100 %

1.143 sec 1.263 sec 100 %

4.009 sec 3.202 sec 100 %

5.129 sec 5.483 sec 100 %

Fig. 10 Multiple SIR operations execution comparison

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 15 of 20
operations are deployed with plain Linux Red Hat 7.0
image on m3.large (2vCPU/7.5GB RAM) for EC2 and
4GB standard instance (2vCPU/4GB RAM) for Rack-
space Cloud Servers. Then, the instances created are
used for the termination tests. Meanwhile, the SaaS
cloud load balancer creation and update operations are
performed by creating an http load balancer, followed by
node adding modifications.
Seen from the experiment data in Table 6, overall, the

success rates of all the operations remain at 100 %. Yet,
each operation execution respond appears to be differ-
ent. For AWS IaaS operations, the VM creation tasks are
completed a little faster through CLI, but termination
operations respond quicker via USAMS. For AWS SaaS
operations, the load balancer creation is handled slightly
sooner via USAMS, although CLI manages to update
the load balancers with a bit less time. On the other
hand, with regard to Rackspace SMR tasks, all the VM
and load balancer instance manipulation tasks tend to
consume slightly more time via USAMS.
Further, considering the SMR experiment on starting

multiple VM instances, the execution time data is illus-
trated in Fig. 11. For the 5 to 40 tasks deployed, both inter-
faces require some 20 seconds for completion. No obvious
increase is found despite more operations being involved.
Regarding the performance differences between the two
interfaces, there is not any clear distinction.
Table 6 Single SMR execution time comparison (via native CLI/USA

Service
provider

Typical SMR Create cloud
VM instance
(IaaS)

Terminate
cloud VM
instance (IaaS)

Method

AWS Via native CLI 2.450 sec 2.086 sec

Via USAMS 2.732 sec 1.943 sec

Rackspace Via native CLI 3.237 sec 3.742 sec

Via USAMS 3.383 sec 4.147 sec
Evaluation and discussion
As illustrated in the EC2 case study, SAMOS framework
can adequately model a wide range of operations. Its
classifications of cloud service entities and operations
enable structured specification presentation layout. The
relevant operation element specifications reveal suffi-
cient details for operation executions. Additionally, as
shown in Appendixes A, B and C, the approach can be
flexibly applied to other IaaS providers (e.g. Rackspace
Cloud Servers), and so as other PaaS and SaaS services
(e.g. AWS Elastic Beanstalk [34], Rackspace Cloud Load
Balancers). Consequently, this would enhance cloud service
interoperability and composition. Further, to evaluate
SAMOS against other well-established cloud (service)
specification frameworks/models, we provide the data
comparison with OCCI, TOSCA and mOSAIC. Shown
in Table 7, the four approaches involve dissimilar core/
base model concepts with different specification seman-
tics. They adopt distinct management tools/APIs as cloud
service interfaces and enable service orchestration with
own solutions. In contrast, SAMOS achieves a distin-
guished outcome for service management and orchestra-
tion tasks due to the flexible choices of API libraries and
the lightweight operation reasoning assistances.
Meanwhile, the performance evaluation with USAMS

covers a wide range of typical service operations. Obtained
experiment results illustrate some performance differences
MS)

Create cloud
load balancer
(SaaS)

Update cloud
load balancer
(SaaS)

Success rate (based
on 200 tests)

1.038 sec 0.588 sec 100 %

0.758 sec 0.682 sec 100 %

3.235 sec 3.249 sec 100 %

3.539 sec 3.761 sec 100 %

Fig. 11 Multiple SMR operations execution comparison

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 16 of 20
between the proposed approach and provider-native CLIs.
For SIR operation handling performance, the prototype
demonstrates the same solid success rates regardless of
the type/nature of operations, although there are some
minor processing overheads. Considering SMR operation
tasks, USAMS demonstrates competitive performance in
comparison with the native CLIs. There is no obvious
delay or distinction for many service management tasks
involved. In fact, the slight overheads are caused by two
main factors: the API libraries (AWS Java SDK version
1.8.3 and jclouds Rackspace API libraries version 1.7.0)
used (by OCSO) decide the main processing time; USAMS
components also consume minor extra time while process-
ing the obtained data, preparing for the operations and
other additional tasks. In overall, USAMS enables reliable
cloud service remote management with acceptable per-
formance. The proposed approach offers a more flexible
and intelligent remote management solution than individ-
ual portals of vast cloud service providers.

Conclusions and future work
This paper proposes a cloud service operation specifi-
cation approach which can be applied to diverse cloud
service models and resource types, namely SAMOS.
Table 7 Cloud service specification framework comparison

Approach Syntax/
Semantics

Model core/Base concepts

OCCI OCCI
Grammar

Category, Kind, Mixin, Resource Instantiation, Collections,
Entity, Resource, Link, Action) [35]

TOSCA YAML Topology Templates, Plans/Service, Node, Relationship
Requirement, Capability, Artifact, Policy, Cloud Service

mOSAIC OWL Environment, Infrastructure, Resource, Runtime Comp
Stateful Component, Stateless Component, etc. [37]

SAMOS OWL Entity and operation classifications, Entity datatype sp
Entity operational relationship Specifications, etc.
The framework can reveal comprehensive information
with regard to the involved service entities, their attributes
and relationships, plus a series of operational elements
including parameters, conditions and outcomes. The onto-
logical modelling approach also enables a range of op-
eration reasoning which can provide assistances for
advanced tasks such as simultaneous, chained and service
orchestration operations.
To evaluate the proposed approach, CSAMO semantic

model and USAMS prototype are implemented. Together,
they enable a unified cloud service access and manipulation
via a structured management interface. This is validated
through considerable experiments that are conducted over
Amazon and Rackspace IaaS, PaaS and SaaS clouds. The
test results suggest that the proposed approach can provide
competitive service operation reliability and effectiveness,
especially while handling groups of operation tasks.
In future work, we plan to extend the approach by

introducing service recommendation engine and service
interaction agent. The recommendation module should
enable more user friendly service selection and operation
experiences. The service interaction agent would drive
more effective service compositions with enhanced oper-
ation reasoning applications.
Management interface Service
orchestration

Discovery/ Testing tool, doyouspeak OCCI,OCCI
API

OCCI client

,
Archive [36]

OpenTOSCA, jclouds and PyTosca
API

Pre-defined Plans

onent, mOSAIC API mOSAIC Cloud
Agency

ecifications, USAMS prototype tool, flexible
choice of API libraries via OCSO API

Lightweight
automatic
reasoning

Table 8 IaaS Service/CSI/PSSA operation specifications for rackspace cloud servers

Cloud Service Level
Operations

Rackspace Cloud Servers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List VM Instances SIR Unconditional Rackspace Region(M) Rackspace FlavorID(M) Rackspace
CloudServerIDs

Unconditional

Create VM Instance SMR < Rackspace
CloudServersAbsolute Limits, i.e.
100

Rackspace Server name(M), Rackspace ImageRef(M), Rackspace OSDiskConfig (O),
Rackspace Metadata(O), Rackspace KeyPair(O), etc.

Rackspace CloudServer
InstanceID

Instance is in
“ACTIVE” state

Reboot VM Instances SMR Unconditional Rackspace CloudServerID(M), Rackspace RebootType(M), e.g. SOFT, HARD Operation Succeeded Instances are in
“ACTIVE” state

Resize VM Instances SMR Instances are Rackspace
Standard Flavor

Rackspace CloudServerID, Rackspace FlavorID(M) Operation Succeeded Unconditional

CSI Level Operations Rackspace Cloud Servers Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get VM Flavor SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace FlavorID Unconditional

Get VM Image SIR Unconditional Rackspace CloudServer InstanceID(M) Rackspace ImageRef Unconditional

Create VM Image SMR Unconditional Rackspace CloudServer InstanceID(M) Rackspace ImageRef Image is in “ACTIVE”
state

Terminate VM
Instance

SMR Instance is NOT in “DELETED”
state

Rackspace CloudServer InstanceID(M) Operation Succeeded Instance is in
“DELETED” state

PSSA Level
Operations

Rackspace Cloud Servers Image

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Image
Architecture

SIR Unconditional Rackspace ImageRef (M) Rackspace ImageArch Unconditional

Get Image OS Type SIR Unconditional Rackspace ImageRef (M) Rackspace
ImageOSType

Unconditional

Create VM
Instance(s)

SMR < Rackspace
CloudServersAbsolute Limits, i.e.
100

Rackspace Server name(M), Rackspace ImageRef(M), Rackspace OSDiskConfig (O),
Rackspace Metadata(O), Rackspace KeyPair(O), etc.

Rackspace CloudServer
InstanceID

Instance is in
“ACTIVE” state

Delete Image SMR Image is NOT in “DELETED” state EC2 AMIID(M) Operation Succeeded Unconditional

Appendix A

Fang
et

al.Journalof
Cloud

Com
puting:A

dvances,System
s
and

A
pplications

 (2015) 4:14
Page

17
of

20

Table 9 PaaS Service/CSI/PSSA operation specifications for AWS Elastic Beanstalk

Cloud Service Level
Operations

Elastic Beanstalk

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List Applications SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk
ApplicationName(s)

Unconditional

List Application
Environment

SIR Unconditional ElasticBeanstalk Region(M) ElasticBeanstalk
EnvironmentID(s)

Unconditional

Delete Application SMR Unconditional ElasticBeanstalk ApplicationName(M) OperationSucceeded Unconditional

Delete Application
Environment

SMR Unconditional ElasticBeanstalk EnvironmentID(M) OperationSucceeded Unconditional

CSI Level
Operations

Elastic Beanstalk Application Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Application
Environment

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk EnvironmentID Unconditional

Get Application
Versions

SIR Unconditional ElasticBeanstalk ApplicationName(M) ElasticBeanstalk
ApplicationVersionDescrptions

Unconditional

Create Application SMR Unconditional Elastic Beanstalk ApplicationName(M), Elastic Beanstalk ApplicationDescription(O) ElasticBeanstalk
ApplicationName

Elastic Beanstalk
EnvironmentStatus is in
“Ready” state

Update Application SMR Elastic Beanstalk
EnvironmentStatus is in
“Ready” state

Elastic Beanstalk ApplicationName(M), Elastic Beanstalk ApplicationDescription(O) ElasticBeanstalk
ApplicationName

Elastic Beanstalk
EnvironmentStatus is in
“Ready” state

PSSA Level
Operations

Elastic Beanstalk Application Environment

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Application
Environment VMs

SIR Unconditional ElasticBeanstalk EnvironmentID (M) EC2 InstanceIDs Unconditional

Get Application
Environment
LoadBalancers

SIR Unconditional ElasticBeanstalk EnvironmentID (M) Elastic LoadBalancerID Unconditional

Create Application
Environment

SMR Unconditional ElasticBeanstalk ApplicationName(M), ElasticBeanstalk EnvironmentDescription(O),
ElasticBeanstalk EnvironmentName(M), Elastic Beanstalk
ConfigurationOptionSettings<…>(O), etc.

ElasticBeanstalk EnvironmentID Unconditional

Update
Environment
Configuration

SMR Elastic Beanstalk
EnvironmentStatus is in
“Ready” state

Elastic Beanstalk ConfigurationOptionSettings<…>(M) ElasticBeanstalk EnvironmentID Elastic Beanstalk
EnvironmentStatus is in
“Ready” state

Appendix B

Fang
et

al.Journalof
Cloud

Com
puting:A

dvances,System
s
and

A
pplications

 (2015) 4:14
Page

18
of

20

Table 10 SaaS Service/CSI/PSSA operation specifications for Rackspace Cloud Load Balancers

Cloud Service Level
Operations

Rackspace Cloud Load Balancers

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

List Load Balancer
Instance Names

SIR Unconditional Rackspace Region(M) Rackspace
CloudLoadBalancer
InstanceNames

Unconditional

List Load Balancer
Instance Addresses

SIR Unconditional Rackspace Region(M) Rackspace
CloudLoadBalancer
Addresses

Unconditional

Create Load Balancer
Instance

SMR < Rackspace LoadBalancer
Absolute Limits, i.e. 25

Rackspace Region(M), LoadBalancerName(M), LoadBalancerPort(M), Rackspace
CloudServer(O),Rackspace CloudLoadBalancer ExternalNode(O), Rackspace VirtualIP(M) ,
etc.

Rackspace
CloudLoadBalancer
InstanceID

Load Balancer
Instance is in
“ACTIVE” state

Delete Load Balancer SMR Load Balancer is NOT in
“UPDATING” state

Rackspace CloudLoadBalancer InstanceID(M) Operation Succeeded Load Balancer
Instance is in
“ACTIVE” state

CSI Level Operations Rackspace Cloud Load Balancer Instance

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get Load Balancing
Algorithm

SIR Load Balancer is in
“ACTIVE” state

Rackspace Cloud LoadBalancer InstanceID(M) Rackspace
LoadBalancingAlgorithm

Unconditional

List Load Balancer
Instance Nodes

SIR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalance InstanceID(M) Rackspace
CloudLoadBalancer
InstanceNodeID(s)

Unconditional

Edit Load Balancer
Instance Health
Monitor

SMR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalancer InstanceID(M), Rackspace CloudLoadBalancer
HealthMonitor(M)

Operation Succeeded Load Balancer is in
“ACTIVE” state

Add Load Balancer
Instance Nodes

SMR Load Balancer is in
“ACTIVE” state

Rackspace CloudServer(O), Rackspace CloudLoadBalancer ExternalNode(O), Rackspace
CloudLoadBalancer InstanceNodePort(O), etc.

Operation Succeeded Load Balancer is in
“ACTIVE” state

PSSA Level Operations Rackspace Cloud Load Balancer Instance Node

Type SRPreCondition SRParameter/SRSubject SROutcome SRPostCondition

Get LoadBalancer
Instance Node IP

SIR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalancer InstanceNodeID(M) Rackspace Cloud
LoadBalancer
InstanceNodeIP

Unconditional

Get LoadBalancer
Instance Node Port

SIR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalancer InstanceNodeID(M) Rackspace Cloud
LoadBalancer
InstanceNodePort

Unconditional

Edit LoadBalancer
Instance Node Weight

SMR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalancer InstanceNodeID(M), Rackspace CloudLoadBalancer
InstanceNodeWeight(M)

Operation Succeeded Load Balancer is in
“ACTIVE” state

Delete Load Balancer
Instance Node

SMR Load Balancer is in
“ACTIVE” state

Rackspace CloudLoadBalancer InstanceNodeID(M) Operation Succeeded Load Balancer is in
“ACTIVE” state

Appendix C

Fang
et

al.Journalof
Cloud

Com
puting:A

dvances,System
s
and

A
pplications

 (2015) 4:14
Page

19
of

20

Fang et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:14 Page 20 of 20
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
DF from Edinburgh Napier University developed the approach, algorithm,
model and prototype. XL from Edinburgh Napier University supervised,
tested the developments. IM from Edinburgh Napier University and CP from
Dublin City University provided domain specific expertise in the experiment
and evaluation of the approach. All Authors read and approved the final
manuscript.
Acknowledgment
We wish to thank British Royal Society of Edinburgh (RSE-Napier E4161) and
Lawrence Ho Research Fund (LH-Napier2012) for supporting the work
presented. We acknowledge the support from a joint grant by the British
Royal Society and the Royal Irish Academy on a Cloud Migration Framework
2014–2016 (IE131105) and Science Foundation Ireland grant 13/RC/2094 to
Lero - the Irish Software Research Centre (www.lero.ie).

Author details
1School of Computing, Edinburgh Napier University, 10 Colinton Road,
Edinburgh EH10 5DT, UK. 2Lero, School of Computing, Dublin City University,
Dublin 9, Ireland.

Received: 6 February 2015 Accepted: 10 June 2015

References
1. Marinescu DC (2013) Cloud computing: theory and practice. Elsevier,

Waltham. USA, pp 2–17
2. Buyya R, Vecchiola C, Thamarai S (2013) Master cloud computing: foundations

and applications programming. Elsevier, Waltham. USA, pp 3–27
3. Orozco JMS (2012) Applied ontology engineering in cloud services, networks,

and management systems. Springer Science + Business Media:23–52
4. Moreno-Vozmediano R, Montero RS, Llorente IM (2011) Key challenges in

cloud computing: enabling the future internet of services. IEEE Internet
Computing 17(4):18–25

5. Apache Jclouds. http://jclouds.apache.org/. Accessed 30 Jul 2014
6. Apache Libcloud. https://libcloud.apache.org/. Accessed 12 Aug 2014
7. Fog. http://fog.io/. Accessed 02 Aug 2014
8. TOSCA Overview. https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=tosca#overview. Accessed 27 May 2014
9. Moscato F, Aversa R, Martino BD, Venticinque S (2011) An ontology for the

cloud in mOSAIC. Cloud Computing: Methodology, System, and
Applications. CRC Press:467–485

10. OCCI. http://occi-wg.org/. Accessed 31 Jul 2014
11. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing

environments: challenges, taxonomy, and survey. ACM Computeing
Surveys 47(1):7

12. Loutas N, Peristeras V, Bouras T, Kamateri E, Zeginis D, Tarabanis K (2010)
Towards a Reference Architecture for Semantically Interoperable Clouds.
IEEE 2nd International Conference on Cloud Computing Technology and
Science (CloudCom)., pp 143–150

13. Demchenko Y, Ngo C, de Laat C, Rodriguez J, Contreras LM, Garcia-Espin JA,
Figuerola S, Landi G, Ciulli N (2013) Intercloud Architecture Framework for
Heterogeneous Cloud based Infrastructure Services Provisioning On-Demand.
IEEE International Conference on Advanced Information Networking and
Applications Workshops (WAINA). p 777–784

14. Deltacloud. https://deltacloud.apache.org/. Accessed 22 May 2014
15. Fielding R (2000) Architectural Styles and the Design of Network-based Software

Architectures. https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_
dissertation.pdf. Accessed 16 April 2015

16. The Dasein Cloud API. http://dasein-cloud.sourceforge.net/. Accessed 26 Jun 2014
17. Bastião Silva LA, Costa C, Oliveira JL (2013) A common API for delivering

services over multi-vendor cloud resources. J Systems and Software
86(9):2309–2317

18. Petcu D, Craciun C, Neagul M, Lazcanotegui I, Rak M (2011) Building an
interoperability API for Sky computing. International Conference on High
Performance Computing and Simulation (HPCS). p 405–411
19. Bernabe JB, Marin Perez JM, Alcaraz Calero JM, Garcia Clemente FJ, Perez
GM, Gomez Skarmeta AF (2014) Semantic-aware multi-tenancy authorization
system for cloud architectures. Future Gener Comput Syst 32:154–167

20. Amazon EC2 User Guide. http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-
ug.pdf. Accessed 17 May 2014

21. Federici C (2014) Cloud data imager: a unified answer to remote acquisition
of cloud storage areas. Digit Investig 11(1):30–42

22. Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM, Corradi A, Foschini L
(2013) DARGOS: a highly adaptable and scalable monitoring architecture for
multi-tenant Clouds. Future Gener Comp Syst 29(8):2041–2056

23. Li Q, Wang Z, Li W, Cao Z, Du R, Luo H (2013) Model-based services convergence
and multi-clouds integration. Computer in Industry 64(7):813–832

24. OWL 2 Web Ontology Language Document Overview. http://www.w3.org/
TR/owl2-overview/. Accessed 23 Dec 2013

25. Fang D, Liu X, Liu L, Yang H (2014) OCSO: Off-the-cloud service optimization
for green efficient service resource utilization. J Cloud Computing 3(9).
http://www.journalofcloudcomputing.com/content/3/1/9. Accessed 17
Aug 2014

26. Fang D, Liu X, Romdhani I (2014) A Loosely-coupled Semantic Model for
Diverse and Comprehensive Cloud Service Search and Retrieval. The Fifth
International Conference on Cloud Computing. pp 6-11

27. Rackspace Cloud Load Balancers Developer Guide. http://
docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/clb-devguide-
latest.pdf. Accessed 19 June 2015

28. Amazon Relational Database Service User Guide. http://
awsdocs.s3.amazonaws.com/RDS/latest/rds-ug.pdf. Accessed 02 May 2014

29. Amazon Elastic Load Balancing Developer Guide. http://docs.aws.amazon.com/
ElasticLoadBalancing/latest/DeveloperGuide/elb-dg.pdf. Accessed 16 Sep 2014

30. Rackspace Next Generation Cloud Servers Developer Guide. http://
docs.rackspace.com/servers/api/v2/cs-devguide/cs-devguide-latest.pdf.
Accessed 19 June 2015

31. Rackspace Cloud Database Developer Guide. http://docs.rackspace.com/
cdb/api/v1.0/cdb-devguide/cdb-devguide-latest.pdf. Accessed 06 May 2014

32. AWS Command Line Interface User Guide. http://docs.aws.amazon.com/cli/
latest/userguide/aws-cli.pdf/. Accessed 03 Jun 2015

33. Rackspace rumm. http://rackspace.github.io/rumm/. Accessed 03 Jun 2015
34. AWS Elastic Beanstalk API Reference. http://s3.amazonaws.com/awsdocs/

ElasticBeanstalk/latest/awseb-api.pdf. Accessed 16 April 2015
35. Open Cloud Computing Interface – Core. https://www.ogf.org/documents/

GFD.183.pdf. Accessed 21 Dec 2014
36. Topology and Orchestration Specification for Cloud Applications Version 1.0.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.
Accessed 22 Nov 2014

37. Moscato F, Aversa R, Di Martino B, Fortis T, Munteanu V (2011) An analysis
of mOSAIC ontology for Cloud resources annotation. Federated Conference
on Computer Science and Information Systems (FedCSIS). p 973–980
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.lero.ie/
http://jclouds.apache.org/
https://libcloud.apache.org/
http://fog.io/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#overview
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#overview
http://occi-wg.org/
https://deltacloud.apache.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://dasein-cloud.sourceforge.net/
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.journalofcloudcomputing.com/content/3/1/9
https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=1506049131525213250&btnI=1&hl=en
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/clb-devguide-latest.pdf
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/clb-devguide-latest.pdf
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/clb-devguide-latest.pdf
http://awsdocs.s3.amazonaws.com/RDS/latest/rds-ug.pdf
http://awsdocs.s3.amazonaws.com/RDS/latest/rds-ug.pdf
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-dg.pdf
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-dg.pdf
http://docs.rackspace.com/servers/api/v2/cs-devguide/cs-devguide-latest.pdf
http://docs.rackspace.com/servers/api/v2/cs-devguide/cs-devguide-latest.pdf
http://docs.rackspace.com/cdb/api/v1.0/cdb-devguide/cdb-devguide-latest.pdf
http://docs.rackspace.com/cdb/api/v1.0/cdb-devguide/cdb-devguide-latest.pdf
http://docs.aws.amazon.com/cli/latest/userguide/aws-cli.pdf/
http://docs.aws.amazon.com/cli/latest/userguide/aws-cli.pdf/
http://rackspace.github.io/rumm/
http://s3.amazonaws.com/awsdocs/ElasticBeanstalk/latest/awseb-api.pdf
http://s3.amazonaws.com/awsdocs/ElasticBeanstalk/latest/awseb-api.pdf
https://www.ogf.org/documents/GFD.183.pdf
https://www.ogf.org/documents/GFD.183.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

	Abstract
	Introduction
	Background and related work
	Open cloud service specification framework
	Open cloud service API
	Service and resource management tools for heterogeneous clouds

	SAMOS cloud service operation modelling framework
	Cloud service entity and operation classification specifications
	Cloud service entity datatype specifications
	Cloud service entity operational relationship specifications
	Classification of cloud service operations
	SIR
	SMR
	Cloud service operation object property specifications

	Service operation requirement verification and dynamic assistance reasoning
	Basic service operation preparation and execution
	Service operation parameter verification
	Service operation precondition verification

	Basic Assisted Service Operation Request (BASR) assistance reasoning
	Concurrent Combined Service Operation Request (CCSR) assistance reasoning
	Sequenced Chained Service Operation Request (SCSR) assistance reasoning
	Interactive Orchestrated Service Operation Request (IOSR) assistance reasoning

	Prototype implementation
	System architecture

	Case studies
	EC2 service operation specifications
	Unified cloud service access and manipulation
	Cloud service operation reasoning assistance: IOSR
	Service operation remote execution performance
	SIR(s) remote execution performance
	SMR(s) remote execution performance

	Evaluation and discussion
	Conclusions and future work
	Competing interests
	Authors’ contributions
	Acknowledgment
	Author details
	References

