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               The Shape of Uncertainty in Revenue Management 

 

Abstract 

The revenue management problem we address is traditionally posed by the budget airlines. These 

airlines do not tend to have protected classes but instead use dynamic pricing to determine allocation 

policy. This usually means that passengers who book early get discounted rates, while those booking 

closer to the date of the flight pay higher rates. We expand on earlier work with the newsvendor 

problem to employ a network equilibrium solution which takes account of both customer and airline 

objectives to formulate a dynamic solution to the pricing and allocation of airline tickets in an 

uncertain demand and supply market. We make use of phase diagram analysis when identifying 

performance during two stages of the pricing strategy consistent with the airline demand and pricing 

information. One phase diagram (endogenous) identifies efficient frontiers jointly associated with 

customer satisfaction and airline performance. The other (exogenous) identifies optimal performance 

with regard to the global market place. The optimal solution strategy is achieved by a stochastic 

differential equation set with price and booking closure as control variables. The solution is illustrated 

with data from the airline industry. The interaction between goodwill costs and the price elasticity of 

demand for varying levels of forecasting accuracy shows that contribution to profit benefits from i) 

the incorporation of goodwill costs ii) low levels of elasticity for good forecasting iii) high levels of 

elasticity for poor forecasting. We identify a breakeven level of forecasting stability which establishes 

an equilibrium between lean and agile practice.   

 

Key Words: Revenue Management, Dynamic Pricing, Airline Booking, Stochastic Scheduling, 

Customer Goodwill 

 

1. Introduction 

Yield and revenue management are becoming increasingly important following on from success in the 

airline and hotel business to the widespread use of online sales and booking systems. Car rental, 

restaurants, cargo shipping, entertainment, and the manufacturing and fashion industries are all new 

areas of implementation. Most methods incorporate the finite supply of an item of inventory during a 

limited time horizon for sales under conditions of varying and often uncertain demand frequently 

defined in product-oriented terms which fail to take into account customer behaviour. Assumptions 

are often made about the demand and supply distributions, for example that they follow a Poisson, 

normal or other distribution. This can lead to a limitation in the range of application of the 

methodology to areas where such distributions occur. Another limitation is caused by ignoring the 

ability of an operator to overcome fluctuations in demand and supply through good forecasting and 
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demand modelling methods. There is a need for a broader analysis which incorporates the effect of 

uncertainty, measured using prediction or forecasting errors, on airline profit.   

Unpredictable variability results in uncertainty, while uncertainty becomes risk when it is 

manageably quantifiable. In order to map prediction variability, risk and uncertainty we need an 

applicable mapping structure or topology which is able to illustrate different dimensions of the 

business model. Changes in forecast accuracy might be attributable to features of the market such as 

the degree of competitiveness and uncertainty experienced when entering new trading markets. Some 

businesses might be content to explore smaller scale niche markets for their products where the 

uncertainty is lower and perhaps more quantifiable. Others may seek to expand their business by 

entering more profitable high volume global trading markets with greater attached risk to the venture 

(Figure 1a). What both types of business would want to do is optimise their expected profit levels 

within the trading environment of uncertainty. 

 

    

  Figures 1a and 1b. Global and Local Topologies 

 

Another dimension of the graphical layout is the level of uncertainty arising between the 

customer and the business operator. An operator might be prepared to sacrifice customer goodwill for 
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the ability to cancel services at short notice in order to run a more cost efficient business. 

Disappointed customers might decide to change future plans and even turn to another operator which 

creates uncertainty for both the business operator and the customer at the local level, identified as the 

interface between customer and business operator (Figure 1b). We will argue that the mapping 

structures of these two levels, global and local, are distinct, with the global topology being an open 

one with a potentially unbounded efficient frontier, while the local topology is closed, with bounded 

optimality being achieved at the intersection of three efficient frontiers.   

Figures 1a and 1b illustrate a way of mapping uncertainty in a business framework where 

transactions occur in a global (operator trading) and local (customer/operator) context. The objective 

in both cases is to employ an optimal business strategy depending on the type of market entered as 

well as the customer base being sought. Figure 1a generates four segments depending on the 

uncertainty level and the size or volume of the market trade. Operators entering the high volume 

market frequently meet with stiff competition and volume discounts as well as greater market 

uncertainty. On the other hand finding a niche market may result in low uncertainty, low volume 

output with higher prices. Figure 1b segments the uncertainty according to a customer/operator based 

service coordination policy. The customer tends to benefit from the availability of spare capacity 

experienced as maintaining goodwill although this risks the operator’s profit margins. On the other 

hand the operator tends to benefit from increased demand although at the risk of losing future custom. 

Neither the operator nor the customer benefit from high uncertainty levels and so the preferred 

segments tend to be those with low uncertainty and without extremes of spare capacity or unmet 

demand, deemed to be ‘in control’. The remaining challenge is mapping the optimal business strategy, 

such as maximising contribution to profit, to the identified topology of uncertainty.   

In businesses employing revenue management the effects of forecasting errors can be 

incorporated into customer service and goodwill as key aspects of the way customers make choices 

and operators run their businesses. In the airline business, not being able to find a suitably priced seat 

can affect a customer’s propensity to seek future bookings from that airline and, although this 

goodwill cost is difficult to assess, it is considered particularly acute in competitive markets and with 

customers who are frequent air travellers. Goodwill costs may also be associated with the customer’s 

personal inconvenience at having to find a booking elsewhere in addition to the airline’s loss. Such 

costs therefore refer to a longer term feature such as a sense of loyalty and the desire for customers to 

return to the airline in the future having experienced a disappointment while making a change to the 

itinerary such as a name change or flight adjustment which may result in a cancelled booking and also 

deter the customer from making future bookings. 

The incorporation of the price elasticity of different demand segments into a stochastic revenue 

management model reflects customer sensitivity so that airlines can set prices accordingly for each 

segment to maximise total revenue as well as maintain goodwill. The segments themselves should 

have different quality of service characteristics leading to product discrimination while within each 
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segment price discrimination might also be used depending on booking progress. Models have been 

developed which have sophisticated price response functions but rarely in combination with other 

factors such as uncertainty (demand risk), goodwill and the distinction between global (exogenous) 

and local (endogenous) influences. There is a need for an effective tool to monitor and identify 

patterns of uncertainty in revenue management in order to understand and reduce the effects of 

variability in the global market place as well as due to local transactions between customer and 

business. 

The quality of forecasting is generally measured using forecasting errors. A good forecast is made 

when the errors are small so that the forecast mirrors the actual demand. The poorest forecasting 

occurs when nothing is inferred about future demand, which is then modelled using naïve methods. 

That is the forecast of future demand is modelled as the demand for the previous time point. In order 

to identify patterns of uncertainty we simulate forecasting errors using a structured experimental 

design. At one extreme we use good forecasting, which is the demand with a small random change 

added. At the other end we have poor, that is naïve, forecasting. Between these two extremes we 

simulate a weighted average of the two methods reflecting the quality of forecasting. In addition to the 

quality of forecasting, the experimental design includes two other factors: the level of goodwill and 

the price elasticity of demand. The experiment is then repeated at several factor levels and the shape 

of uncertainty reflected by the phase diagrams is analysed.     

The remainder of the paper is organised as follows. The literature on revenue and yield 

management and dynamic pricing is reviewed in Section 2. The methods, including problem outline, 

terminology, formulation and solution are outlined in Section 3. In Section 4 we introduce a case 

study using airline data and use it to illustrate the methodology as well as carry out sensitivity 

analysis. The paper ends with a conclusion in Section 5. 

     

2. Literature Review 

There is extensive literature on revenue and yield management including surveys published by 

Weatherford and Bodily (1992), McGill and van Ryzin (1999), Elmaghraby and Keskinocak (2003), 

as well as books by Talluri and van Ryzin (2004), Phillips (2005) and Belobaba et al. (2009). Levin et 

al. (2009) introduce a special issue on revenue management and dynamic pricing with contributions 

spanning a wide range of applications. The earlier yield management solutions proposed by 

Littlewood (1972) and Belobaba (1989) require some knowledge of the demand distribution, such as 

the demand densities of future requests, in order to calculate appropriate seat allocation values. Levin 

et al. (2008) describe a risk-adjusted method which incorporates a simple risk measure permitting 

control of the probability that total revenues fall below a minimum acceptable level under the 

assumption that demand follows a price-dependent, non-homogeneous Poisson process. Some 

methods maximise expected revenue either by offering multiple product classes at different prices or 

by the use of a single product class with dynamically varying price over time (Levin et al., 2008).  
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 Related newsvendor solutions have been proposed which are distribution-free. One of the earliest 

was Scarf (1958) based on setting upper and lower bounds on the optimal solution across all 

distributions. This approach extends the generality of the methodology at the expense of failing to 

identify an exact solution often required by management allocation systems. Later work has extended 

this methodology while also repeating the lower and upper bound approach (Alfares et al., 2005; 

Raza, 2014). In this article we allow for a distribution free approach while restricting the forecasting 

errors to a normal distribution in order to identify an exact solution.  

 Some modelling takes into account customer behaviour factors (Ming et al., 2009; Dana, 

2008) and demand-based pricing (Belobaba et al., 2009) as well as the external environment (Ozkan 

et al., 2014). A key concept in measuring the effect of pricing policy on consumer welfare is 

consumer surplus (Phillips, 2005), which is the difference between a customer’s willingness to pay 

and the price at which he purchases (assumed zero if he does not purchase). The price elasticity of 

demand is incorporated into demand-based pricing (Chap. 4, Belobaba et al., 2009) on the assumption 

that some customers are willing to pay a high price for the convenience of air travel, while others will 

only fly at lower prices. A modelling variation assumes that customers act strategically and bid for 

units of a fixed capacity over time (Vulcano et al., 2002). We take into account both behavioural 

factors, such as the effect of consumer surplus, as well as the external environment associated with 

market and pricing trends.  

Goodwill costs can also be taken into account when identifying an optimal allocation policy. 

An approximate assessment of the airline’s cost of a permanently lost customer is the expected net 

present value of all future bookings from the customer minus the opportunity costs of those bookings 

(McGill and Van Ryzin, 1999). These costs are frequently ignored in the allocation of airline 

passenger seats, although Alfares et al. (2005) did include the incorporation of goodwill or shortage 

costs to update Scarf’s distribution-free algorithm (Scarf, 1958). Goodwill costs might also reflect the 

partial refund of fares, which, it is argued, is optimal in both revenue and social terms (Gallego et al., 

2010). We make use of a ‘mix’ phase diagram specifically to monitor the effect on passenger 

goodwill.  

The literature on forecast accuracy in revenue management is limited by context and 

generality. Lee (1990) concluded that: (a) the mean of the forecast demand was more important than 

the standard deviation; (b) under-forecasting has less impact on revenues than over-forecasting; (c) 

expected revenues rise by 0.5-3% for each 10% rise in the accuracy of forecasting. Poelt (1998) also 

translated a reduction in forecast errors to an increase in revenue, while Weatherford et al. (2002) 

found that the accuracy of demand forecasts was of the greatest importance. Birbil et al. (2009) 

introduce robust versions of the single leg problem to take into account inaccurate estimates of the 

underlying demand distributions. The rationale behind their method is for management to immunize 

the revenues against demand uncertainty. The method uses an adapted demand probability distribution 
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to generate a solution which improves not only the average but also the standard deviation of the 

solution revenues.  

In another approach to reducing the effect of uncertainty, Marcus et al. (2008) model 

stochastic dynamic pricing employed by a budget operator in competition with a full-service carrier 

and the effect that randomness has on optimal under-pricing behaviour by introducing oscillating 

behaviour patterns. Sahin et al. (2009) quantify the economic impact of having uncertainty on the 

inventory level in a newsvendor context. Modarres et al. (2009) analyse the effect of uncertainty in 

capacity allocation. However, the variability of the forecasting errors is not analysed and mapped 

directly by any of these approaches, though issues of bias are addressed as well as the effect of the 

variability of actual fare values and the effects on revenues. The method we adopt takes into account 

the effect of the variability of the forecasting errors on a range of factors, including customer 

goodwill, price elasticity as well as the airline contribution to profit.   

 

3. Methods 

3.1. Problem Outline 

  Earlier research (Kocabıyıkoğlu et. al., 2014) has shown that, when coordinating decisions on 

prices and capacity allocation using nesting, near-optimal performance is usually achieved by a 

simple hierarchical policy that sets prices first, based on a non-nested stochastic model, and then uses 

these prices to optimize nested capacity allocation. Furthermore the largest revenue benefits stem 

from adjusting prices to account for demand risk. One response to this might be to abandon the 

management of capacity allocation altogether since a fare class can be closed by setting sufficiently 

high prices. Such a full implementation of dynamic pricing rarely happens in practice (Kocabıyıkoğlu 

et. al., 2014), however, and we will use a method whereby decisions on prices and capacity allocation 

are coordinated taking into account the risk factors.  

The problem we study, then, simplifies the stochastic dynamic programming approach in 

order to illustrate the structure of demand uncertainty arising from different forecasting methods. We 

assume that there are two classes of passengers, low fare passengers who generally arrive before high-

fare passengers and that there is a two tier pricing strategy as a starting point based on management 

knowledge as well as historical data. We use a demand profile with 23 time intervals from booking 

information extracted from airline data. The first 12 time intervals define the first stage with 

associated low price demand profile. The remaining 11 time intervals define the second stage 

associated with high ticket price. We adjust the starting price at each time interval based on the 

remaining available capacity. If there is a shortage of such capacity then the price is increased and 

decreased otherwise. A transformation is used to distinguish between a local “mix” variable which 

highlights the coordination between the customer and the airline operator and the maintenance of 

goodwill, and a global variable which reflects competition in the market place modelled using the 

price elasticity of demand.  
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We assume that that the forecasting errors are normally distributed to allow for the 

development of path trajectories in significantly uncorrelated phase diagrams, which plot forecast 

error variability against the local and global variables, and monitor the transition from controlled risk 

to high uncertainty. The methodology makes use of four efficient frontiers designed to map and 

monitor local and global uncertainty in the context of optimal contribution to profit. Beginning with 

stage one, a capacitated stochastic dynamic pricing algorithm sequentially adjusts the available seats 

and price at each time interval in order to maximise, subject to capacity limitations, the profit 

function, which incorporates both airline and passenger revenue and costs, since previous research has 

shown that there is only a channel equilibrium solution for the stochastic problem (Pasternack, 1985; 

Pearson, 2003). 

We address the single-leg yield management problem through the analysis of the forecasting 

errors of the demand rather than the variability of the demand. The reason is that a good forecaster 

(demand manager) will produce better forecasts (predictions) with variable demand data than a poor 

forecaster. It is not, therefore, fluctuations in demand but the forecaster’s ability to predict demand 

that determines good performance. We also assume that the forecaster is doing a good job, resulting in 

an unbiased forecast before testing our model beyond this assumption. Finally, although we perform 

simulations using forecasting quality, goodwill costs and elasticity of demand as control variables in 

the objective function, we measure outcomes from the point of view of the airline using the airline 

ticket revenue as dependent variable when plotting these outcomes. In this way we hope to avoid the 

criticism that goodwill costs are difficult to quantify but instead demonstrate that incorporating such 

costs in the objective function benefits airline profit. It is then for the airline operator to discern, 

through customer feedback and research, which efforts at improving goodwill are effectively 

modelled by control levels in the objective function. 

    

3.2 Terminology 

Table 1 introduces the symbols used during the analysis. Some of these, such as the terms ‘overage’ 

and ‘underage’ may need illustrating. Traditionally these terms are associated with the newsboy 

problem, whereby a newsboy takes copies of a newspaper to sell on the street. If he takes too many 

then he has some surplus copies which are his overage. If he takes too few he has a shortage of copies 

known as underage. So, if supply is greater than demand the newsboy has overage while if supply is 

less than demand he has underage. We apply these terms to the airline operator selling passenger 

seats. If there are spare seats these are the airline operator’s overage as the supply of seats exceeds the 

demand for them. Similarly, if there are no seats left while there remains some demand then the 

difference between the demand and the supply is the airline operator’s underage.  

 We extend this usage by referring to the customer’s ‘overage’, which is when he books a seat 

but does not use it. Similarly the customer’s underage occurs when he is unable to book a seat in his 



9 

 

price bracket because there is not one available (usually due to the airline closing the booking in this 

price range).                        

 

  

Table 1. Definition of terms 

 

The marginal contribution to profit 𝑐𝑝 is also the cost of the airline ticket since overheads are assumed 

constant. The overage and underage costs of the downstream operator (this is usually the customer 

buying the seat, but it could also be an intermediary buying seats for other users) are 𝑐𝑜1
 and 𝑐𝑢1

 

respectively, while for the upstream operator (usually the airline operating the flights) they are 𝑐𝑜2
 and 

Symbol Interpretation 

       𝑐𝑢1
  Goodwill Cost of customer disappointment at unavailable seat or (this 

cost – Compensation) or weighted average 

𝑐𝑜2
 

 

 Goodwill Cost to airline of concern at loss of customer (Overbooking 

costs can be incorporated if necessary) 

𝑐𝑝0
 Baseline contribution to profit (Baseline ticket cost: determined by the 

historical profile and the market). This is fixed at each stage 

𝑐𝑜1
 Cost to customer of booking and not using seat (such as Ticket Cost – 

Refund) averaged over all bookings 

𝑐𝑢2
 Cost to airline of unsold seats (such as Ticket Cost or Refund or 

weighted average) 

𝑐𝑝  Variable contribution to profit (Variable ticket cost : used in 

optimisation methods) 

k Safety factor (determines amount of additional seats,  

𝑘𝜎𝑒, to hedge against forecasting uncertainty) 

 kΦ  Cumulative Normal Distribution Function (Steady state newsvendor 

ratio) 

(k)  Normal Density Function 

𝜇𝐷 Expected demand  

𝜇�̂� Forecast demand 

𝜇𝑄 Expected supply of seats 

𝜎𝑒 Standard deviation of forecasting errors 

C Seat capacity (updated during allocation process) 

%Underage Underage as a % of mean demand 

%Overage Overage as a % of mean demand 

Error CV Error standard deviation divided by mean demand 



10 

 

𝑐𝑢2
. An interesting feature of the problem and the way it is formulated is that the downstream 

operator’s overage is the same as the upstream operator’s underage, though they may have different 

attitudes to these phenomena resulting in unequal costs. For instance a customer, whose decision 

variable is the number of tickets, Q, to order, may buy two tickets one for himself and one for a 

business colleague  and, in the end, only need one. This is overage from the point of view of the 

customer since Q>D. The customer may set the price of overage 𝑐𝑜1
at the cost of the ticket if no 

refund is possible under the airline terms and conditions. If a refund is possible then the cost of 

overage is set at the difference between the full price paid and the refund price. From the alternative 

point of view of the airline operator, whose decision variable is the demand, D, generated through 

pricing and other restrictions, there is now an empty seat which is less than a full airline resulting in 

underage, costing 𝑐𝑢2
, since D<Q. The cost to the airline of this underage may be set at the refund 

price, assuming that the seat is not sold in that time period. If the seat fare is neither refunded nor 

levied because of low demand then the cost of underage is simply equal to the full fare. There are 

other aspects of the problem such as overbooking, which occurs close to scheduled flight take-off and 

requires that the airline persuade some passengers to take another flight.    

 

3.3 Problem Formulation 

The revenue management problem we address is posed by both budget and traditional airlines which 

employ demand-based pricing methods based on dynamic pricing to determine allocation policy 

(Phillips, 2005). This usually means that passengers who book early get discounted rates, while those 

booking closer to the date of the flight pay higher rates, though this can change depending on the state 

of supply and demand. 

 

                                                                            C 

                  

                                                       𝜇𝐷                                             𝑘𝜎𝑒                      

                                                                       𝜇𝑄             

            Figure 2. Remaining capacity ( C ) seat demand (𝜇𝐷) and supply allocation (𝜇𝑄)   

  

Figure 2 illustrates the way in which we model the airline yield management problem. The allocation 

decision is made by setting the value of the safety factor, k, at time t. This determines the amount of 

seats,𝑘𝜎𝑒 in addition to expected demand to hedge against forecasting uncertainty so that the objective 

function is optimised. The decision is made repeatedly during the period from the opening of the 

booking schedule to flight take-off. During this period the values of the expected demand,𝜇𝐷 expected 

supply, 𝜇𝑄 the safety factor, k, the standard deviation of the forecasting errors, 𝜎𝑒, and the remaining 

capacity, C, are changing as the bookings progress. So also is the value of the seat fare which is 
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adjusted to ensure that sufficient capacity remains after each time period. Lowering the price results in 

increased demand in the next time period which restores excessive remaining capacity while 

increasing the price has the reverse effect. We note that the cabin capacity is not necessarily equal to 

the supply allocation. If the capacity is less than the allocation then overbooking occurs. If it is greater 

than the allocation then seats may be protected for allocation to high fare customers at the time of 

take-off to ensure customer satisfaction by avoiding disappointment. In our formulation we avoid 

overbooking by limiting the number of seat bookings to the capacity of the airplane.  

 

3.4 Transformation of Variables 

We transform the variables (Pearson, 2003; 2010) for the expected demand (𝜇𝐷) and supply (𝜇𝑄) by 

use of a sum difference transformation so that 𝜇 = 𝜇𝑄 − 𝜇𝐷 and 𝜂 = 𝜇𝑄 + 𝜇𝐷. The transformed 

variable, 𝜇, is the local variable reflecting the way in which the airline relates to its customers (or 

other partners in the transaction; see Figure 1b), while the transformed variable, 𝜂, is the global 

variable reflecting pressure from outside competition and market forces (see Figure 1a). In our 

analysis the value of the expected demand is determined from airline data. The value of the expected 

seat allocation (supply) is found by solving a stochastic differential equation, set up using an objective 

function, together with dynamic pricing methods based on elasticity of demand differentiated between 

different types of passengers, described later in this article.  

 

3.5 Assumptions 

Our model has six assumptions:  

1.) That the overhead costs are fixed so that a change in the ticket price is accurately reflected by 

a change in the contribution to profit.  

2.) Unbiased demand and supply fitting or forecast techniques are applied. 

3.) The relationships between the standard deviation of the errors and the demand and supply 

means are well behaved. 

4.) That the global (𝜂), but not the mix (𝜇), variable affects price changes so that 𝑐𝑝 does not 

depend on 𝜇 since   DQD 2 . This is an approximation based on the fact that 

changes in the mix variable, 𝜇, occur in order to improve smooth coordination between the 

customer and the airline operator maintaining goodwill, while changes in the global variable 

reflect shifts to high volume trading and competition in the market place modelled using the 

price elasticity of demand.  

5.) The prediction errors are normally distributed 

6.) That price elasticity of demand for airline seat tickets applies, so that increasing the price of a 

ticket decreases demand and vice versa. 
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3.6 Objective Function 

The objective is to maximise expected profit: 

E{Profit} = E{Contribution from captured demand – Costs of overage – Costs of underage} 

Now E{Contribution from captured demand} = 
eppD σ}c)Φ(k)1(k(k)({cμ    

And E{Cost of overage} =   euo σ})cc()(k)kkΦ{(
21

  

While E{Cost of underage} = 
eou σ})cc())Φ(k)1(k(k)({

21
  

So that 

E{Profit} =   epouuopD σ})ccc())Φ(k)1(k(k)()cc()(k)kkΦ{(cμ
2121
 

       
(1) 

subject to: 𝜇 − 𝑘𝜎𝑒 = 0,  (Newsvendor Constraint)                         (2) 

where (k)  and  kΦ  are the normal distribution density and cumulative distribution functions, 

respectively, for safety factor, k and the forecasting errors are assumed to have a normal distribution. 

We are then able to find the maximum value of the objective function (1) subject to the constraint (2) 

by applying a Lagrange multiplier with decision variables ,  and k. We then incorporate price 

elasticity assuming that the ticket price depends on  but not .  

 

3.7 The equilibrium solution under changing variability 

The equilibrium solution under changing variability is derived in Pearson (2003) and requires that 

both of the following equations hold (a summary of the proof is in Appendix A): 

puouo
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        (3) 
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        (4) 

Eq. (3) is the ‘mix’ (overage/underage) solution, which tracks the way partners across decision 

frontiers synchronize their efforts to reach optimality (Figure 1b), and Eq. (4) is the ‘global’ (volume) 

solution, which tracks the relationship between uncertainty and the volume of trade experienced in the 

market sector (Figure 1a). Together they form a dynamic system of stochastic differential equations, 

which trace the optimal solution in circumstances where uncertainty increases or decreases over time 

and also with relation to differing contractual and marketing strategies. 

 

3.8 The steady State Solution 

A feature of the problem is that when 𝐶 = 𝜇𝑄 the optimal solution is 
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        (5) 
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We will call this the steady state solution since it corresponds to the classical newsvendor problem 

with constant rate of variability. It is found by substituting 𝜇𝑄 = 𝐶 so that 𝜇 = 𝐶 − 𝜇𝐷  and 

D

e

D

e

C 





















)(μ

σe  

while  𝜂  = 𝐶 + 𝜇𝐷 and 

D

e

D

e

C 







 













)(

σe . If we substitute these results into Eqs. (3) and (4) 

we get Eq. (5). We interpret this result by noting that the ability to choose a value  𝑘 =
(𝜇𝑄 − 𝜇𝐷)

𝜎𝑒
⁄  

such that 𝜇𝑄 = 𝐶 requires that the error variability (𝜎𝑒) does not depend on the expected supply ( 𝜇𝑄 ), 

which is now a constant. The solution therefore reverts to the steady state solution, which serves as a 

valuable reference point. It also means that the rate of change of the error variability with respect to 

the expected demand is found from Eq. (4) to be 

)cccc)(c(2

cσ
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2211







kD 
 

     (6) 

 

3.9 Equilibrium solution incorporating price elasticity 

We incorporate price elasticity within our equilibrium solution by making use of the assumptions 

outlined in Section 3.5. The fifth assumption, that the forecasting errors are normally distributed, is 

the result of skilled forecasting, though there may be instances where the assumption may break 

down. One such instance is when the demand is very low which may result in a Poisson distribution. 

The equilibrium solution under conditions of changing variability can be shown, by using a Lagrange 

multiplier (see Appendix A), to be 
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As in Eq. (5) a feature of the problem is that when 𝐶 = 𝜇𝑄 we again make use of the fact that 
















 DD  when we add Eqs. (8) and (9) to get the optimal solution. Now we have to take into 

account the dependence of the forecast variability,𝜎𝑒 on the contribution to profit,𝑐𝑝 as well as the 

dependence of the contribution to profit on the global variable, η. We find that    
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since 
𝜕𝜎𝑒

𝜕𝜂
=

𝜕𝜎𝑒

𝜕𝑐𝑝

𝜕𝑐𝑝

𝜕𝜂
+

𝜕𝜎𝑒

𝜕𝜇𝐷

𝜕𝜇𝐷

𝜕𝜂
 and 

𝜕𝜎𝑒

𝜕𝜇
=

𝜕𝜎𝑒

𝜕𝑐𝑝

𝜕𝑐𝑝

𝜕𝜇
+

𝜕𝜎𝑒

𝜕𝜇𝐷

𝜕𝜇𝐷

𝜕𝜇
 and it is assumed that 𝑐𝑝 does not depend 

on 𝜇 so that 
𝜕𝑐𝑝

𝜕𝜇
⁄  =0. Eq. (10) now forms the basis of our subsequent analysis. Two features are 

worthy of comment. Firstly the rate of change of the contribution to profit (𝑐𝑝, reflected by the ticket 

price) with respect to volume (η, reflected by the ticket sales) is typically negative (assumptions 4 and 

6). Secondly the rate of change of the variability of the forecasting errors with respect to the marginal 

contribution to profit can be modelled by considering current practice pricing policy.  

 

3.10 Assumed Link between Error Variability and Current Practice Pricing  

We model forecasting error variability as being at its lowest in the area of current practice pricing 

policy. In this way we reduce the risk of making bland assumptions and predictions about demand for 

seats in an area of pricing remote from current practice. Figure 3 illustrates this where 𝑐𝑝0
 is the initial 

current practice price and the equation linking error variability to a revised price,𝑐𝑝 is given by: 

 𝜎𝑒 = 𝜎𝑒0
{𝑟𝜎 (

𝑐𝑝

𝑐𝑝0

− 1)
2

+ 1}        (11) 

 

  

                          Figure 3. Error Variability versus Contribution to Profit (Price) 

We note that 𝑟𝜎 controls the rate at which the quadratic expression for variability changes with respect 

to price. Therefore changing the price from the current practice level,𝑐𝑝0
 typically has the effect of 

increasing the forecast variability since the forecasting practitioner is operating outside of his familiar 

territory. If the forecaster has knowledge of the broader market with respect to pricing then a lower 

(or even zero) value of  𝑟𝜎 can be used. In our modelling we set 𝑟𝜎 = 0.1 so that doubling the current 

Current practice area where 
forecaster is most reliable

     𝑐𝑝0
 

𝜎𝑒0
 

𝝈𝒆 

𝒄𝒑 
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practice price is associated with a 10% increase in the error standard deviation while trebling the price 

is associated with a 40% increase. We note that the rate of change of error variability with respect to 

the contribution to profit is: 

𝜕𝜎𝑒
𝜕𝑐𝑝

⁄ = 2𝜎𝑒0
𝑟𝜎 (

𝑐𝑝

𝑐𝑝0

− 1) /𝑐𝑝0
       (12) 

We use this in Eq. (10), together with the approximation 
𝜕𝜇𝐷

𝜕𝑐𝑝
⁄  (=

1

2

𝜕𝜂
𝜕𝑐𝑝

⁄ ) based on assumption 

4, to calculate the optimum value of k based on the price elasticity. 

 

3.11 Capacitating the Solution by Incremental Price Adjustments using Price Elasticity  

The equilibrium solution derived in Equation 10 requires that 𝐶 = 𝜇𝑄. We therefore employ a 

mechanism to control for this outcome by adjusting the ticket price appropriately. If there is a surplus 

of remaining capacity then the ticket price falls to stimulate demand to occupy the surplus. If there is a 

capacity shortfall then the ticket price is increased. The amount by which the ticket price is adjusted is 

determined using the price elasticity of demand. Price elasticity is the percentage increase in demand 

for a one percent increase in price, so that: 

Elasticity =  

𝑑𝜇𝐷

𝜇𝐷
𝑑𝑐𝑝

𝑐𝑝

⁄  = 
𝑐𝑝

𝜇𝐷
×

𝑑𝜇𝐷

𝑑𝑐𝑝
= 

𝑐𝑝

𝜇𝐷
×

1

2
×

𝑑𝜂

𝑑𝑐𝑝
     (13) 

We use this to calculate the forecast demand at a certain ticket price based on the forecast demand at 

the base price, 𝑐𝑝0
 as well as the amount to increase the ticket price in the event of a shortage in 

remaining capacity. The formulae we use are: 

𝐹𝑐𝑠𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑃𝑟𝑖𝑐𝑒, 𝑐𝑝 = 𝐹𝑐𝑠𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑃𝑟𝑖𝑐𝑒, 𝑐𝑝0
+  

𝑐𝑝−𝑐𝑝0
𝑑𝑐𝑝

𝑑𝜇𝐷
⁄

  

= 𝜇𝐷 + (𝑐𝑝 − 𝑐𝑝0
) ×

𝜇𝐷

𝑐𝑝
× 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦      (14a) 

Increase in ticket price = 
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒− 𝑐𝑝0

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦×𝜇𝐷−𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
   (14b) 

where the shortage in remaining capacity is the difference between the actual remaining capacity and 

the remaining capacity forecast at the end of the previous time period. If there is a surplus of remaining 

capacity then the ticket price will fall. Equation 14b requires that the denominator is non zero.  

  

3.12 Description of the Algorithm 

Adjustments to the ticket price are therefore used to maintain the remaining capacity requirements, while 

the optimal allocation (value of k calculated from Equation 10) determines when to close the booking 

for that time period. We describe the algorithm below: 

i) Input demand profile for periods 1-23 

ii) Input ticket, underage and price elasticity values and targets for each stage 

iii) Check that demand profile meets capacity requirements and adjust accordingly 
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iv) Set j=0 

v) Set i = 0 

vi) j = j + 1 

vii) Calculate steady state safety factor for stage j 

viii) i = i + 1 

ix) Generate forecast demand for time period i using naïve or random methods 

x) Calculate the standard deviation of the forecasting errors up to the current time period 

xi) Calculate remaining capacity shortage/surplus for previous time period  

xii) Calculate the ticket price adjusted for remaining capacity from Equation 14b  

xiii) Calculate the forecast demand using updated ticket price from Equation 14a 

xiv) Calculate 
𝜕𝜎𝑒

𝜕𝑐𝑝
⁄  from Equation 12 

xv) Calculate the optimal value of the safety factor from Equation 10 and number of tickets sold 

xvi) If j = 1 and i < 12 go to viii) 

xvii) If j = 1 go to vi) 

xviii) If i < 24 go to viii)  

xix) Calculate total airline contribution to profit 

xx) Repeat simulation for different levels of forecasting accuracy, goodwill and elasticity  

 

4. Case Study 

We illustrate the method with an example using data drawn from a large European airline which 

employed an allotments approach with some nesting. We generate a demand function profile as the 

number of bookings, rather than actual demand, which was not available. We combine the bookings for 

the two classes of customers into one demand function profile by adding the high class and low class 

bookings at each time point. There are 23 time points in all, though the periods themselves are not linear, 

the length of each period decreasing as flight take-off approaches. We initially segment into two stages 

of the airline booking problem, although this can be extended into as many stages as required by the use 

of dynamic processing. The first stage, associated with low fare customers, covers the period of time 

after booking opens while the second stage, associated with high fare customers, covers the later period 

up to the time of the scheduled flight. We then allocate an initial price for each ticket based on prices 

charged historically for such seats, so that in our simplified illustration we have one initial price (derived 

from our profile) for low fare customers and one for high fare customers. Adjustments are made to these 

initial prices depending on whether there is a surplus or shortfall of remaining capacity as described in 

section 3.11. 

We use airline data on seat bookings to generate a forecast seat demand for each time period 

for the flight by the use of simulation. Our initial forecast is generated by adjusting the seat demand 

profile by a random factor so that the forecast is fairly close to the assumed demand with a resultant low 
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standard deviation of forecasting errors. We then generate another forecast using naïve forecasting (i.e. 

we simply make our forecast for demand in the next time period equal to the bookings in the current 

period) with a resultant high standard deviation of forecasting errors. Our final forecast is the weighted 

average of the two, which provides a range of forecasts from very good to poor depending on the value 

of the exponential weighting factor, where high values indicate poor forecasting weighted towards the 

naïve method.     

A range of costs describe the aspects of the budget airline yield management problem. The 

contribution to profit, 𝑐𝑝0
 is the initial cost of the ticket and is typically determined exogenously through 

competition in the market place as well as historical flight data. We set the value at 15 units (where each 

unit is €10) during the first stage (weeks 1-12) and 30 units at the second stage (weeks 13-23). The 

customer underage (goodwill) cost, 𝑐𝑢1
 reflects the disappointment cost of not being able to book a seat 

because there is not one available.  In our example we set this at 10% of the ticket cost at stage one 

(=0.1×15) and 20% (=0.2×30) at stage two. In the case of the airline overage cost 𝑐𝑜2
 this reflects the 

airline’s concern at losing a customer booking. This has been set at 20% of the ticket cost at stage one 

(=0.2×15) and 40% at stage 2 (=0.4×30). The cost of customer overage, 𝑐𝑜1
 is the ticket cost reflecting 

the loss to the customer of booking a seat and not using it. We set this at the cost of the ticket at both 

stages, but if refunds are possible this would be the difference between the ticket cost and the refund. 

Unsold tickets reflect the cost of the lost opportunity to the airline, 𝑐𝑢2
 as loss of contribution to profit, 

but this may also be the loss incurred when a refund is made. When both of these situations are possible 

the cost can be calculated as the weighted mean of the ticket cost and the refund cost depending on how 

often refunds occur compared with non-refunded unsold seats. In our illustration we assume zero refund 

so that at stage one both the customer overage and airline underage costs are 15 while they are 30 at 

stage two. Hence 𝑐𝑜1
= 1.5, 𝑐𝑢1

= 1.5, 𝑐𝑜2
= 3, 𝑐𝑢2

= 13.5. The equilibrium solution with constant 

variability during stage one is, from Eq. (5) 

565.0
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     (15) 

And so k = 0.164. For stage two the equilibrium solution gives a value of k = 0.293. 

The cost settings described in the previous section may not all be available to the airline. We 

therefore describe another approach based on targets derived from previous experience with allocation 

obtained from profiling historical demand and pricing information. The first target is that the underage 

expectation is 9% of mean demand at stage one while it is 6% at stage two. This reflects the ambition 

to capture more of the customers demanding tickets at stage two than at stage one since the stage two 

customers pay more for their tickets. This target is derived from the aspiration to capture a certain 

proportion of demand and depends on the forecasting ability of the airline. 

We also derive another measure from the underage target (9% in stage one) using experience 

and information gathered from earlier flights. This information can be condensed into a measure of 
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forecasting performance, which is the error standard deviation divided by the mean demand, called 

the error coefficient of variation (Pearson, 2003). This measure, as our study aims to show, typically 

differs between the stages, as the airline seats become allocated, enabling the decision maker to set 

typical underage targets, measured as percentages of the average demand during that time slot. In 

stage one of the airline data the typical error coefficient of variation ( De  ) was 0.279, while at 

stage two it was 0.223 (Table 2). At stage 1, this reflects high demand and high error variability while 

there is low demand combined with low error variability at stage 2. This enables the identification of 

distinct error coefficients of variation at the two stages, though in our example the values turn out to 

be similar due to the low demand in stage 2. The target % underage at stage one is 

  Den kkku  )(1()(100   =9%, which means that  )(1()(100 kkk   = 9/0.279 = 

32.3, leading to a value of k=0.164. The target % overage is   Den kkku  )()(100  . We 

summarise the above reflections in Table 2, where the numbers highlighted in bold type are derived 

from market conditions and historical data, while the other values in italics are dependent on these 

(though the cost coefficients in italics could be evaluated differently rather than as proportions of the 

ticket cost). These targets for underage and overage will also help later in our study to establish the 

efficient frontiers in the ‘mix’ phase diagrams illustrated in Figures 4a and 4b. 

Table 3 shows the results of applying the solution of Eq. 10 dynamically over the 23 time 

periods of the booking cycle. The current practice and optimal price appear as 𝑐𝑝0
 and 𝑐𝑝𝑂𝑃𝑇

 

respectively. The expected demand and forecast demand at the optimal price appear as 𝜇𝐷 and  

𝜇�̂� respectively. The expected allocation (supply quantity) at the optimal price appears as 𝜇𝑄. 𝜇 and 𝜂 

are given by 𝜇 = 𝜇𝑄 − 𝜇𝐷 and 𝜂 = 𝜇𝑄 + 𝜇𝐷, respectively, while 𝜎𝑒 is the standard deviation of the 

forecasting errors. The forecast and updated remaining seating capacity appear as 𝐶𝑓𝑐𝑠𝑡 and 

𝐶𝑛𝑒𝑤, respectively. The optimal value of the safety factor, calculated from Eq. 10 is 

𝑘𝑜𝑝𝑡. The value of 𝑐𝑝𝑜𝑝𝑡
 is updated in this equation, being increased or decreased depending on 

whether the value of the updated remaining capacity (𝐶𝑛𝑒𝑤) is less than or greater than the value of 

the forecast remaining capacity, 𝐶𝑓𝑠𝑡. The increase or decrease is calculated using the price elasticity, 

which for our study is a price elasticity of -1 at stage 1 and -0.5 at stage 2. This reflects the greater 

sensitivity to price of passengers who book early than those who book late. Eq. (14) is then used to 

update the forecast demand in line with the price change and elasticity. 
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                           Table 2 Steady State Solution of Eq. (5) at Two Stages    

 Stage 1 Stage 2  

𝑐𝑢1
 1.5 6 Cost of customer disappointment at unavailable seat or 

(this cost – Compensation) or weighted average 

𝑐𝑜2
 

 

3 12 Cost to airline of concern at loss of customer 

𝑐𝑝0
 15 30 Initial ticket cost (often determined by the market) 

𝑐𝑜1
 1.5 1.5 Cost to customer of booking and not using seat (such as 

Ticket Cost – Refund) 

𝑐𝑢2
 13.5 28.5 Cost to airline of unsold tickets (such as Ticket Cost or 

Refund or weighted average) 

 kΦ  0.565 0.615 Steady state newsvendor ratio 

k 0.164 0.293 Safety factor 

%Underage 9 6 Underage as a % of mean demand 

%Overage 13.587 12.537 Overage as a % of mean demand 

Error CV 0.279 0.223 Error standard deviation / mean demand 

Elasticity -1 -0.5 Percentage increase in demand for a one percent increase 

in price 
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Time 𝜇𝐷 

 

𝜇𝑄 𝜇 𝜂 𝜇�̂� e 𝜎𝑒 𝑘𝑜𝑝𝑡 𝑐𝑝0
 𝑐𝑝𝑜𝑝𝑡

 𝐶𝑓𝑐𝑠𝑡 𝐶𝑛𝑒𝑤 

1 3 3 0 6 3 0  -0.28 15 15 248 247 

2 1.3 2 0.7 3.3 2.3 -1  -0.16 15 17.8 246 246 

3 5 3 -2 8 3 2 0.71 -0.23 15 15 244 243 

4 0.3 2 1.7 2.3 2.3 -2 1.53 -0.06 15 17.8 242 243 

5 20.7 18 -2.7 38.7 18.7 2 1.71 -0.39 15 14.42 227 225 

6 15.6 20 4.4 35.6 20.6 -5 1.79 -0.32 15 15.95 209 209 

7 33 31 -2 64 32 -1 2.95 -0.36 15 15 183 178 

8 23.5 26 2.5 49.5 26.5 -3 3.05 -0.28 15 16.75 158 155 

9 39.9 36 -3.9 75.9 36.9 3 2.88 -0.33 15 15.81 126 119 

10 45.1 42 -3.1 87.1 43.1 2 3.44 -0.30 15 16.53 86 77 

11 9.7 12 2.3 21.7 12.7 -3 3.44 -0.13 15 19.97 70 67 

12 15.9 15 -0.9 30.9 15.9 0 2.83 -0.26 15 16.75 55 52 

13 9.9 11 1.1 20.9 11.9 -2 2.77 -0.33 30 38.4 43 42 

14 6.3 8 1.7 14.3 8.3 -2 2.55 -0.16 30 32.8 35 36 

15 5.7 7 1.3 12.7 7.7 -2 2.00 -0.16 30 27.2 29 30 

16 7.7 8 0.3 15.7 8.7 -1 1.10 -0.25 30 27.2 22 22 

17 6 5 -1 11 5 1 0.89 -0.01 30 30 18 17 

18 0.3 3 2.7 3.3 3.3 -3 1.30 0.10 30 32.8 15 17 

19 6.4 6 -0.4 12.4 6.4 0 1.52 -0.10 30 24.4 11 11 

20 4 4 0 8 4 0 1.58 0.06 30 30 8 7 

21 3.3 3 -0.3 6.3 2.3 1 1.52 0.17 30 32.8 5 4 

22 1.3 2 0.7 3.3 1.3 0 1.64 0.23 30 32.8 3 3 

23 2 1 -1 3 1 1 1.52 0.25 30 30 2 2 
         Table 3. Airline Seat Allocation (Figures shown are for good forecasting) 
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4.1 Demand Profile 

In our method the airline demand data acts as an initial profile over time periods 1-12 (Stage 1) and 

then over time periods 13-23 (Stage 2). Capacity allocation is then managed by a number of methods. 

Firstly, the demand profile is required to meet the underage targets (9% and 6% from Table 2) 

measured against the capacity of the aeroplane. The demand profile is therefore adjusted across all 

time points to match the underage targets. The demand profile, when adjusted, becomes the capacity 

plus 1.09 times the initial demand in periods 1 to 12 and the capacity plus 1.06 times the initial 

demand in periods 13 to 23 as illustrated in Figure 4. The total demand for all 23 weeks is therefore 

adjusted by scaling to match the capacity of the aeroplane and so is based on a capacitated solution. 

Secondly, adjustments are made to the ticket price in order to control for the remaining capacity, as 

described in section 3.11. Thirdly, the remaining capacity is updated at each time period and the 

optimal seat allocation at the new ticket price is again calculated.  

Figure 4 illustrates the demand (Demand) after the above adjustments have been made. It also 

shows the simulated forecast demand using good quality forecasting, characteristically having a low 

standard deviation of forecasting errors, of seat demand derived from the adjusted demand data and 

updated at each time point during the two stages. Finally, it shows the profile of poor quality (naïve) 

forecasting, having a high standard deviation of forecasting errors, of seat demand derived from the 

naïve forecasting method which uses the latest demand value as the forecast for the demand in the 

next time period.  

 

 

               Figure 4. Demand Profile with Good and Naïve Forecasting 

In subsequent analysis a weighted average of forecast demand (where α is the weighting parameter 

with value zero for good quality forecasting and value 1 for naïve forecasting) from the two methods 

is used to generate a new forecast. The factor levels for Expsmooth, Goodwill and Elasticity at the 
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two stages are shown in Table 4. For the simulation, Expsmooth ranges from 0 (α=0) to 2(α=0.6) so 

that the value of Expsmooth corresponding to α=1 in Figure 4 would be 3.33.   

 

Stage 1 Expsmooth  Goodwill  Elasticity  

First level 0 when α = 0.0 0 when 𝑐𝑢1
 = 0, 𝑐𝑜2

 = 0 1 when Elasticity = -1 

Second level 1 when α = 0.3 1 when 𝑐𝑢1
 = 1.5, 𝑐𝑜2

 = 3 2 when Elasticity = -2 

Third level 2 when α = 0.6 2 when 𝑐𝑢1
 = 3, 𝑐𝑜2

 = 6 3 when Elasticity = -3 

 

Stage 2 Expsmooth  Goodwill  Elasticity  

First level 0 when α = 0.0 0 when 𝑐𝑢1
 = 0, 𝑐𝑜2

 = 0 1 when Elasticity = -0.5 

Second level 1 when α = 0.3 1 when 𝑐𝑢1
 = 6, 𝑐𝑜2

 = 12 2 when Elasticity = -1.0 

Third level 2 when α = 0.6 2 when 𝑐𝑢1
 = 12, 𝑐𝑜2

 = 24 3 when Elasticity = -1.5 

   Table 4. Factor Levels in the Experimental Design 

 

Figure 5a shows the mix and global phase diagrams for the two stages of the pricing 

procedure when the forecasting method is good (expsmooth = 0), goodwill is average (goodwill = 1) 

and elasticity is low (elasticity level = 1) representing typically stable conditions commonly 

associating with ‘lean’ systems. In the mix diagram for stage 1, variability and expected volume 

(demand + supply) are higher than at stage 2. Progress during this stage is mapped by the mix plot and 

shows good control, contained as it is within the efficient frontiers. The target solution (1.21, 6.07) 

shown in the figure is found by substituting the values for k (= 0.164 derived from the underage target 

of 9%), cp0
 (=15) and the error CV (=0.279 in Table 2) into Eq. (1). This is explained in Appendix B 

which describes the way in which the efficient frontiers are mapped. The plot oscillates between the 

overage (surplus capacity) and underage (demand exceeds capacity) efficient frontier boundaries 

reflecting the pricing adjustments occurring in Table 3. So, for instance, actual remaining capacity at 

the end of time point 1 is 247 (𝐶𝑛𝑒𝑤=247) since three tickets were sold (𝜇𝑄 =3). Since the remaining 

capacity is less than the forecast capacity (247=𝐶𝑛𝑒𝑤<𝐶𝑓𝑐𝑠𝑡=248) the price at time point 2 increases 

from the base price (17.8 =𝑐𝑝𝑜𝑝𝑡
> 𝑐𝑝0

=15). The amount of the increase is calculated using the price 

elasticity and compensates for the shortage in capacity by reducing demand because of the higher 

price. This has the effect of reducing the expected demand (𝜇𝐷 =1.3) in time point 2 which results in a 

levelling of capacity at the end of this time point (246=𝐶𝑛𝑒𝑤=𝐶𝑓𝑐𝑠𝑡=246). 
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     Figure 5a. Phase Diagrams for Good Quality Forecasting, Average Goodwill and Low Elasticity 

Figure 5a also illustrates the mix diagram for stage 2 where variability and expected volume (demand 

+ supply) are lower than at stage 1. The mix plot again shows good control, contained as it is within 

the efficient frontiers. The target solution (0.72, 2.40) shown in the figure is found (again, similar to 

Appendix B) by substituting the values for k (= 0.293 derived from the underage target of 6%), cp0
 

(=30) and the error CV (=0.223 in Table 2) into Eq. (1). The plot again oscillates between the overage 

(surplus capacity) and underage (demand exceeds capacity) efficient frontier boundaries reflecting the 

pricing adjustments occurring in Table 3. So, for instance, actual remaining capacity at the end of time 

point 14 is 36 (𝐶𝑛𝑒𝑤=36) since seven tickets were sold (𝜇𝐷 =7). Since the remaining capacity is 

greater than the forecast capacity (36=𝐶𝑛𝑒𝑤>𝐶𝑓𝑐𝑠𝑡=35) the price at time point 15 decreases from the 

base price (27.2=𝑐𝑝𝑜𝑝𝑡
> 𝑐𝑝0

=30). The amount of the decrease is again calculated using the price 

elasticity and compensates for the shortage in capacity by reducing demand because of the higher 

price. This has the effect of increasing the expected demand (𝜇𝐷 =5.7) in time point 15 which results 

in a levelling of capacity but not until the end of time point 16 following a repeated price reduction 

(22=𝐶𝑛𝑒𝑤=𝐶𝑓𝑐𝑠𝑡=22). 

 

Finally Figure 5a illustrates the global phase diagrams for stages 1 and 2. In both of these phase 

diagrams the slope of the regression line (plotted using the points on the path) is less than the slope of 

the efficient frontier derived from Eq. 9. This shows that the allocation method is coping robustly with 

the simulated market conditions. 
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   Figure 5b. Phase Diagrams for Poor Quality Forecasting, Average Goodwill and High Elasticity 

 

In contrast to the stable conditions illustrated in Figure 5a, Figure 5b shows the mix and global phase 

diagrams for the two stages of the pricing procedure when the forecasting method is poor (expsmooth 

= 2), goodwill is average (goodwill = 1) and elasticity is high (elasticity = 3) representing typically 

unstable conditions commonly associating with ‘agile’ systems. The mix plot for stage 1 illustrates 

increased underage due to the way in which naïve forecasting lags behind increasing demand. The 

mix plot for stage 2 also illustrates the suboptimal performance and the failure to meet targets. The 

stage 2 global plot has a regression line which reaches the slope of the efficient frontier indicating a 

turning point in allocation capability in the presence of high uncertainty. Both types of plot indicate 

the need for a reassessment of the process and a setting of more appropriate targets. They might also 

assist in the decision to cancel future flights with recurring profile patterns. 

 

4.2. Sensitivity Analysis and Diagnostics 

We carried out a series of tests based on a full factorial design (Table 4) with response variable 

‘Contribution to Profit’ and factors Forecast Quality (expsmooth with levels 0,1 and 2), Goodwill 

(with levels 0,1,2) and Elasticity (levels 1,2,3).  

 



25 

 

 

Figure 6. Analysis of Means Test for Full Factorial Design (Airline Profit) 

An analysis of means test produced the results shown in Figure 6. The profit used is the airline profit 

calculated as the revenue from ticket sales. This illustrates the way in which lean methods, typically 

associated with good forecasting and stable conditions, benefit from low elasticity and where 

goodwill is a key factor in profitability. On the other hand it shows that agile methods, typically 

associated with high variability and unstable conditions, benefit from high elasticity. It also 

demonstrates that incorporating goodwill is generally profitable but moderated by elasticity.  
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 Figure 7. Interaction Plot illustrating Transition from Lean to Agile (Airline Profit) 

Figure 7 is an interaction plot illustrating the transition from lean to agile methods, where we again 

use the airline profit as dependent variable. In the case of our airline example we use the term ‘lean’ 

to represent methods associated with stable demand while the term ‘agile’ denotes unstable demand 

sometimes associated with budget airlines. At the breakeven point we see that elastic and inelastic 

demand have equal profitability, with the transition occurring rapidly between the values of 0.5 and 1 

for the exponential smoothing parameter. The plot illustrates the way in which increased profitability 

is associated with low elasticity in lean methods while being associated with high elasticity for agile 

methods. 

 

  Figure 8. Phase Diagrams at the Transition between Lean and Agile 

Figure 8 illustrates the phase diagrams at the breakeven transition between lean and agile methods 

where the profit levels are similar. We illustrate the phase diagrams for the settings (0.65,1,1) for low 

elasticity but these are very similar to the phase diagrams for the settings (0.65,1,3) where the 

elasticity is high. The mix plot for phase 1 illustrates the oscillatory behaviour and more extreme 

values as the forecasting quality deteriorates while at stage 2 the plot starts in a region well outside of 

the target area. The global plots show a movement from fairly stable operation in stage one to a less 

stable position in stage two where the regression plot approaches the maximum slope for optimal 

operation. These plots are of key interest because, in spite of a reduction in forecast quality, the 

system is comparatively insensitive to the price elasticity of demand. Therefore, if forecasting quality 

can be maintained at around this level, there will be greater robustness in the system. 



27 

 

In the final stage of our analysis we repeated the full factorial experiment making use of the 

details from 18 flights drawn from the airline data set. The results were very similar to those described 

above and in Figures 6, 7 and 8, though the breakeven point described in Figure 7 varied between the 

flights. In fourteen of the cases the value of the exponential smoothing parameter, α, at the breakeven 

point lay between 0.3 and 0.8 (the factorial design was later repeated for values of α ranging between 

0 and 1). There were four outliers, three with high values close to 2 while one value was low at 0.1. 

The high values were characterised by smooth transitions in the pattern of the demand so that naïve 

forecasting still gave good results since the demand from one time point to the next was very smooth. 

The low value was characterised by the reverse feature so that the transitions were not at all smooth. 

As a final test we varied the value of 𝑟𝜎 (which controls the rate at which the quadratic expression for 

variability changes with respect to price) around its initial value of 0.1 and found little sensitivity of 

the model in this area, though for values of 𝑟𝜎 greater than 0.5 the model restricted the optimal 

solution much closer to current practice policy, as would be expected.     

 

5. Conclusion 

We develop an effective tool to monitor and map the shape of uncertainty in order to better 

address a number of issues raised in revenue management. Among these issues is the distinction 

between exogenous influences from global factors such as competition in the market place and 

endogenous influences from local factors such as a healthy relationship between the customer base 

and the airline operator. For this purpose we develop ‘mix’ and ‘global’ phase diagrams which map 

and monitor variability against the endogenous and exogenous variables. Another issue is the 

distribution-free methodology which does not make assumptions about the demand distribution but 

only about the distribution of the forecasting errors which makes it adaptable to most demand 

management systems. A further issue is that the methodology can be effective in identifying when the 

process is in control since it maps the progress of the allocation process from a local and a global 

perspective incorporating efficient frontiers to monitor when the it is sub-optimal or out of control. 

The model takes into account limitations in the performance of the forecaster preventing significant 

drifting from the area where the forecaster is most reliable. We address the issue of goodwill costs 

which are included in the model and form a key role in uncovering optimal profit levels in a market 

influenced by demand elasticity. Finally the staged approach allows for discerning division of the 

demand profile so that fare classes can be allocated through flexible adjustments made at the point of 

sale. Furthermore, each stage is chosen with the help of two significantly uncorrelated phase diagrams 

and the results used to make improved choice of stages in subsequent allocations. 

Among our findings is the demonstration that lean methods, defined in the context of airline 

revenue management (but with broader applications in inventory and other systems), benefit from low 

demand elasticity through increased profit levels. Furthermore that the incorporation of customer 
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goodwill costs into the model is generally profitable but less so when there is high demand elasticity. 

We also found that when the demand profile is staged it is the later stage customers that are most 

affected by the transition from stable to less stable conditions. Another finding is that the dynamic 

pricing model produced oscillations in the ‘mix’ phase diagrams due to the correcting effect of the 

price changes which bring the system back to its target performance measures. Finally we find that the 

breakeven point (measured by forecasting quality) defines the equilibrium between lean and agile 

methods with regard to elasticity when profit is the response variable. 

Although the methods described here apply to the single leg revenue management problem 

they can be extended for use generally across revenue management as well as in other contexts. The 

allocation of rooms in a large hotel would benefit from these methods since the capacity of the hotel, 

like that of an aeroplane, is fixed. Another area for extension is the network model where a common 

approach has been the use of ‘bid price’ methods as well as improvements to such methods (Meissner 

et al., 2012). The methods can also be extended to investigate the dynamics of cancellations and 

overbooking (Gosavi et al., 2007) by a relaxation of the steady state capacity requirement that 

𝐶 = 𝜇𝑄. Inspection of the phase diagrams can be used to assess forecasting methods and customer 

satisfaction, as well as monitor progress and decide on whether or not to accept a profiled base price 

and allocation strategy. 

There are some limitations associated with some of the outlined methods. The first is that bias 

can enter into forecasting methods which results in a violation of the normality of the forecasting 

errors assumption. Care needs to be taken when interpreting the phase diagrams in this event using 

them mainly as indicators of when the process becomes out of control. Another limitation is when the 

forecasting errors are not normally distributed which often occurs for small sample sizes. If, for 

instance, only a few seats are booked in a period then the distribution is more likely to be Poisson. 

This, however, can be dealt with by grouping together two or more periods of data with some 

resultant loss in allocation precision.    
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Appendices 

Appendix A  

Changing Variability  

The primal-dual objective function makes use of the primal-dual transformation. We consider the mix 

variable, which is the difference between the dual (Q) and primal (D) variables. We define X=Q-D 

and forecast values DQX ˆˆˆ  . We let 
e  be the standard deviation of DQ eee  , where De and 

Qe  are the demand and supply forecasting error terms, respectively. Then
ekXX ˆ ),(~

2

eekN 

, and
DQXE  )( . e will have a univariate normal distribution with mean zero.  A similar 

result follows for the global variable,  . The transformation applied is: DQ    and DQ  

, so that 2/)(  D
, 2/)(  Q

, and 2/1/  D
, 2/1/  Q

, 2/1/  D
 and 

2/1/  Q
. We are then able to find the maximum value of the objective function (1) subject to 

the constraint (2) by applying a Lagrange multiplier with decision variables ,  and k. We have  
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Eq. (3) follows. Furthermore 
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, which leads to Eq. (4). 

The Hessian determinant is negative definite for 0)( 2    eee
. If there were no clear 

maximum, then the structure of the Hessian would need to be investigated. It could be that the profit 

increases without limit as the global output increases. This would happen if  e
<0, for instance. 

 

Incorporating Price Elasticity 

 

We again use a Lagrange multiplier, but this time we take into account the dependence of the ticket 

price,𝑐𝑝 on the global variable, . Eqs. (8) and (9) follow. We see that Eq. (3) is the same as Eq. (8) 

which reflects the assumption that 𝑐𝑝 does not depend on 𝜇. The difference between Eqs. (4) and (9) 

reflects the dependence of 𝑐𝑝 on  . 

 

Appendix B (Equation of Isovalue Line) 

This is derived by substituting the optimal values for the overage ( vo ) and underage ( nu ) into Eq. 1: 

E(Profit) =

eouuoppD cckkkcckkkckkkc  )})))((1()(()))(()(()))(1()({(
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 = 
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And so    })(){()(
2121 vuonpoupD occucccprofitEc     (B.1) 

On the isovalue line the LHS of Eqs. (1) and (B.1) are constant. Setting k in Eq. (1),  

)( profitEcpD   =
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Equating the RHS of Eq. (B.1) and Eq. (B.2) gives ]))/()(([
2121 nuopouv uccccco  . The 

second result follows by setting k in Eq. (1). 

 


