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Università di Modena e Reggio Emilia

Modena, Italy

Abstract—Morphogenetic engineering represents an interesting

field in which models, frameworks and algorithms can be tested

in order to study how self-* properties and emergent behaviours

can arise in potentially complex and distributed systems. In

this field, the morphogenetic model we will refer to is swarm

chemistry, since a well known challenge in this dynamical process

concerns discovering mechanisms for providing evolution within

coalescing systems of particles. These systems consist in sets of

moving particles able to self-organise in order to create shapes or

geometrical formations that provide robustness towards external

perturbations. We present a novel mechanism for providing evo-

lutionary features in swarm chemistry that takes inspiration from

artificial immune system literature, more specifically regarding

idiotypic networks. Starting from a restricted set of chemical

recipes, we show that the system evolves to new states, using an

autonomous method of detecting new shapes and behaviours free

from any human interaction.

I. INTRODUCTION

In [1], Doursat et al. established a new field of research
called morphogenetic engineering that aims to bridge the gap
between emergent self-architectural structures that are typical
of bio-inspired approaches and the programmability of more
traditional systems engineering approaches. The process of
filling this gap has evident ties with fostering the develop-
ment of self-* properties in generic complex systems. On
the one hand, morphogenetic engineering provides an ideal
test bed for validating design methodologies and implemented
algorithms that aim to foster the autonomic features of these
system [2]. From another perspective, studying evolution in
morphogenetic engineering provides a valuable instrument to
better understand the emergent behaviours that characterize
the self-organizing structures produced within this very new
research field. In this paper we address a part of morphogenetic
engineering known as coalescing, defined in [1] as “a great
number of mobile agents flock and make together dense
clusters, whose contours adopt certain shapes”. Sayama [3]
introduces the concept of swarm chemistry: a tuple of kinetic
parameters is assigned to a swarm of particles that moves as
described by the well known flocking algorithm as firstly intro-
duced by Reynolds [4]. The kinetic parameters (called recipes)
regulate the sensing radius, velocities and other interaction
forces among the components of the swarm. One of the key
discoveries of Sayama was that mixing swarms that feature
different recipes leads to the emergence of robust geometries.

As described in Section II, evolution in swarm chemistry

has already been introduced in previous literature, but it still
remains a topic that deserves deeper discussion, especially
with respect to the evolutionary mechanisms involved and
with regard to how to design systems are able to self-evaluate
whether the chemical swarm manages to create new shapes
or to show new behaviours. The element of novelty of this
paper is to present an Artificial Immune System (AIS) inspired
algorithm that exploits an ad-hoc idiotypic network [5] for
controlling the evolution of single particles composing the
swarm in an artificial chemistry environment: the emergent
property of immune networks of exhibiting cognition [6]
proved to be extremely useful for implementing a Self-
Organising system that was able to discover new shapes
and new behaviours using the same tool described in [3].
Starting from a restricted initial set of known recipes, our
algorithm combines and modifies recipes to create shapes that
were not present in the initial sets. Furthermore, it is able
to maintain diversity by autonomously detecting whether new
recipes are too similar to the previously generated recipes.
This is achieved by introducing novel methods of describing
the fitness of a recipe and the distance between recipes.

The paper is structured as follows: in Section II a brief
overview on the previous attempts to study evolution in swarm
chemistry is presented, also the differences with our approach
will be detailed in that section. Section III will briefly sum-
marize how swarm chemistry works, while Section IV, will
briefly explain the theory behind idiotypic networks. Section V
will present all the details of the implemented algorithm of our
approach. Experiments details, results and related discussion
will be provided in Section VI and Section VII will conclude
the paper with final remarks and future work proposals.

II. RELATED WORK

Previous attempts to provide evolutionary features in
swarm chemistry or other morphogenetic related systems,
fall into four distinct categories. The first category deals
with the need to have a human user act as a judge in order
to provide some sort of fitness measure that can be used
to control the magnitude of subsequent mutations involved
in the evolutionary process. A less recent example can be
found in [7], in which the authors apply a genetic algorithm
for designing three dimensional components: after each
generation, the eye of the beholder was used to control how
these 3D objects mutated over time. Similarly, in the case



of swarm chemistry, the concept of hyperinteractivity [8]
involves having several users to participate in the evolutionary
design process by subjectively selecting and manipulating
preferred swarm patterns. Another category deals with
excluding human presence by seeking open-ended evolution.
In swarm chemistry, this kind of evolutionary algorithm also
excludes the need for a fitness function [9] as it discriminates
between active and passive individuals of the swarm. Tuples
describing kinetic parameters are transferred from active to
passive particles whenever active components collide or fall
within the perceptive radius of inactive parts of the swarm.
A third category of evaluating the evolutionary properties
in coalescing systems can be found in [10], in which the
system knows a priori the shape it wants to achieve, thus
in each time step, the whole swarm manages to measure
its fitness as a difference between the currently achieved
shape and the objective goal shape. A final category can be
classified as goal-oriented evolution: let us suppose a set
of moving robots that are able to self-assemble and create
different formations [11] such that different shapes are suited
for performing different tasks (such as overcoming obstacles
of the surrounding environment). In this case, the fitness
function can be measured according to how well the current
shape manages to solve the specified tasks.

The novel approach we present is aimed at focusing on
the evolutionary capabilities of a chemical swarm in a de-
centralized manner, obtained by exploiting the information a
single individual of the swarm is able to observe: in this way,
we are able to define a fitness function that can be used for
controlling the evolution. In our novel algorithm that merges
artificial immunology and swarm chemistry, each individual
of the swarm is associated with the concept of a virtual
lymphnode that is able to host a multitude of interconnected
antibodies able to evolve over the duration of the experiments.
According to a fitness function that takes into account only
local information, the concentration that characterizes each
antibody inside each swarm individual changes over time so to
provide the fittest immunological response in terms of kinetic
parameters to be assigned to the swarm individual. The dy-
namics of this adaptive process follows a design methodology
that we have previously formulated [12], [13] and applied
in a robotic swarm foraging scenario [14]. We will show
how this immune-inspired approach achieves self-organisation
within the swarm, resulting in the creation of new shapes and
behaviours, starting from a restricted set of recipes previously
found with the hyperinteractive method. Moreover, to further
prove the effectiveness of the presented approach we introduce
additional methods of analysing the generated recipes, in order
to enable the system to self-evaluate its ability to discover new
shapes and behaviours without the need of human users.

III. SAYAMA’S SWARM CHEMISTRY

Detailed accounts of swarm chemistry algorithms can be
found in the previously cited publications, however in this
section we briefly summarise the most relevant aspects, par-

ticularly since our algorithm is built from the JavaTM imple-
mentation of Sayama’s swarm chemistry available on line1.
In the remainder of the article, we use the same terminology
adopted by Sayama in his original publications.

In [3], [8], [9] the concept of swarm chemistry is
introduced as an artificial chemistry framework in which
particles are moving according to a flocking algorithm that
is characterised by kinetic parameters assigned to each of
the swarm constituent individual (i.e. sensing radius R,
normal speed Vn, maximum speed Vm, strength of cohesive
force c1, strength of aligning force c2, strength of separating
force c3, probability of random steering c4 and tendency for
self-propulsion c5). Sayama demonstrated that in this kind
of coalescing system, a number of interesting morphogenetic
properties emerge from the stigmergic interactions among the
individuals composing the swarm: for example, when a single
tuple of kinetic parameters is assigned to a whole swarm,
the homogeneous swarm is able to show dispersal, coherent
linear and even oscillatory motion patterns, depending
on the parameter set chosen. Much more interesting and
yet unpredictable behaviours arise when the swarm is
heterogeneous, i.e. when different swarms characterized by
different kinetic parameters are confined within the same
space. This gives rise to the name swarm chemistry, as the
process of mixing different recipes (as different values of
assigned kinetic parameters) together in order to create new
robust structures or other notable behaviours. A single recipe
r that characterizes a heterogeneous swarm is written in the
form:

Recipe r:

P1 ⇤ (R0, Vn0 , Vm0 , c10 , c20 , c30 , c40 , c50)
P2 ⇤ (R1, Vn1 , Vm1 , c11 , c21 , c31 , c41 , c51)
...
PN ⇤ (RN , Vn

N

, Vm
N

, c1
N

, c2
N

, c3
N

, c4
N

, c5
N

)

Recipe r is composed of N different types, with Pi with
i 2 [1, ..., N ] being the number of individuals of the swarm
that are currently characterized by the ith type of recipe. The
reader is directed to the swarm chemistry website for viewing
sample heterogeneous swarms with mixed recipes1.

IV. IDIOTYPIC NETWORKS IN ARTIFICIAL IMMUNOLOGY

This section provides a basic introduction to the family of
algorithms found within the field of artificial immune systems,
commonly referred to as immune or idiotypic networks, in or-
der to provide the reader with all the means for understanding
the core methodology that drives the evolutionary capabilities
for the presented coalescing system. Artificial Immune Sys-
tems (AIS) represent a computational approach for designing
intelligent systems and cover a variety of algorithms that have
been used in a multitude of different applications [15]. Taking
inspiration from biological immunology in order to design

1http://bingweb.binghamton.edu/⇠sayama/SwarmChemistry/



computational systems, offers great potential for the system
engineer [16] due to the fact that the adaptive layer of the
biological immune system features a number of characteristics
that are often sought by the designer of self-* systems, namely
decentralization, scalability, self-non self discrimination and
learning capabilities. Immune networks were first proposed
by Jerne in [17], where he described an immunological model
in which antibodies not only were able to bind with antigens
(via epitope-paratope affinity) but also with other antibodies,
thus creating a dynamic network in which suppression and
stimulation signals are able to vary the concentration of the
antibodies over time and the topology of the resultant network.
The pattern of concentration of the antibodies characterizes
the immunological response — various mathematical models
have been proposed to describe how concentration is regulated,
using differential equations that calculate the variation of
concentration over time as a function of the stimulation and
suppression signals that occur within an observed idiotypic
network (e.g. [16]). Usually, modelling an idiotypic network
for solving a computational problem involves modelling the
antibodies as data structures that can be matched against some
external variables perceived from the environment and then
deploying a corresponding action or combination of actions
according to the activated antibodies. Immune networks are
shown to provide cognition and memory [5], [6], for instance
improving future responses by taking into account whether
a previously selected action resulted in a positive or negative
feedback, and sharing this information throughout the network
in the form of stimulation and/or suppression signals.

V. AN AIS-INSPIRED MODEL FOR EVOLUTIONARY SWARM
CHEMISTRY

Our approach focuses on individual particles, rather than
on the whole swarm. In this way, we are able to evaluate a
macroscopic behaviour (such as a shape formation) starting
from the microscopic level, i.e. from the individuals. Each
individual i of the swarm is associated to a lymphnode Lc

i

that is able to host a multitude of interconnected antibodies.
An antibody Abj is represented by a tuple in the form
hAction A,Expected utility Uti and is characterized by a
concentration level and affinity values regarding all the other
antibodies hosted in the same lymphnode (see Fig. 1).

The action field of the antibody tuple is a formal description
of a recipe, written in the same form as introduced in Sec-
tion III; this data structure defines which kinetic parameters
should be followed by an individual. The second field of the
antibody represents the concept of expected utility as a result
of a fitness function calculated (from the point of view of
lymphnode Lc

i

) according to two observable variables Ho

and He: we define the first one as index of local homogeneity
that represents the number of neighbouring individuals that
are currently sharing the same kinetic parameters as Lc

i

. The
latter variable is defined as index of local heterogeneity and
represents the number of different tuples of kinetic parame-
ters currently adopted by the observable neighbourhood. The
neighbouring radius is the same as the one specified as the

Fig. 1. Antibodies representation inside a single swarm individual modelled
as a lymphnode.

Fig. 2. A black circle is centred in the observed lymphnode-swarm individual.
Inside the neighbouring radius, the observed individual is able to perceive
two particles that share the same kinetic parameters since different coloured
particles indicate individuals that are following different kinetic parameters.
At the same time, the same particle can observe four dark green particles,
one light green particle and two purple particles. As a result of all of that,
the fitness function will be calculated using H

o

= 2 and H
e

= 3 as inputs.

first kinetic parameter in the part of the action-recipe that Lc
i

is currently following (R) and the evaluation of the fitness
function occurs periodically after each time interval Teval.
The fitness function itself is detailed in the next sub-section,
however an example of situation is depicted in Fig. 2, in which
we show a screenshot of Sayama’s simulation environment
with mixed recipes; in that figure we show how Ho and He

are sensed by a single particle2.

A. Fitness of a recipe
Intuitively, the purpose of the fitness function is to balance

the number of similar individuals (i.e. those particles that share
the same kinetic parameters) against the number of individuals
with different kinetic parameters observable in the same ra-
dius. However, the function should avoid concentrating similar
or diverse particles inside a restricted neighbouring radius. In

2According to [3], the colour of a particle in the swarm chemistry simulator
is a function of parameters c1, c2 and c3



Fig. 3. A graph that shows how fitness values change according to the
local point of view of a swarm individual. In this represented case, N

R

=
300 (maximum population value in Sayama’s swarm chemistry framework),
K0 = 10

other words, we want a single particle to be physically close
to those that shares the same colour, but at the same time
we aim at a mix with different coloured particles, and at the
same time, avoiding situations in which all the particles are
concentrated in a restricted portion of space. We modelled
this situation with a pseudo-Gaussian formula whose graph is
reported in Fig. 3 and described by eq. 1. Ho and He are local
homogenous/heterogenous indexes, NR is the total number of
neighbour individuals, K0 is a constant that is used to move
the maximum value of the function according to a specified
value of local heterogeneity index.
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e
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It is important to stress that this fitness function is just
one of the many that can be used in this context, however
it allows a single particle to evaluate its performance after
each time interval without the need for global observers or
strong communicative capabilities among the other swarm
individuals. Note that this approach differs from that in the
original papers in which individuals were unaware of the
fact that their neighbouring particles were following different
kinetic parameters.

The fitness function plays a key role during the pre-
experimental phase (detailed later in this section), in connec-
tion with initialising the expected utility field of the initial set
of antibodies.

B. Action selection
The action field of an antibody tuple is a formal description

of a recipe: each recipe can be characterized by more than one
type (as seen in Section III). However, since a single particle
during a single time interval can be characterized by only one

tuple of kinetic parameters, we have to define the process of
action selection. From the point of view of the single particle,
selecting an action that features a recipe composed of N types
means that the ith tuple of kinetic parameters will have a
certain probability pi to be selected that is dependent on the
ratio between the population of the ith type of the recipe
and the total population indicated by the recipe stored in the
antibody. In eq. 2 we formally describe the process of action
selection by indicating how pi is obtained.

pi =
PiPN
j=1 Pj

with i 2 [1, N ] (2)

Equation 2 (which describes the concept of stochastic
differentiation) implies that a large swarm operating an action
selection based on the same antibody will converge to the
original design of the associated recipe.

C. Pre-experimental phase
Since we have now all the necessary elements to model the

concept of virtual lymphnode and its constituent antibodies, we
can describe how the pre-experimental phase takes place. We
start by providing the system with a set of seventeen initial
recipes that are described in the swarm chemistry website1.
These recipes show a fairly complete collection of observable
behaviours that are typical of swarm chemistry and they have
been discovered by students, researchers and by using the
methodologies summarized in Section II. Each recipe is tested
for an evaluation time Teval at the end of which, an antibody
is created that features the tested recipe in its action field.
The expected utility field is calculated for each individual
(as described in Section V-A), so that all the obtained fitness
values (one for each swarm individual) are averaged into a
single value to be stored in the expected utility field of a
single antibody. At the end of the pre-experimental phase,
we therefore have a set of seventeen antibodies that will
be initialized with a concentration level and stored inside
each individual to be later used in the evolutionary algorithm.
Note that, at the beginning, each individual contains the same
set of initial antibodies — this is in contrast to common
approaches in genetic computing, in which the diversity of
the initial population is a fundamental requirement for success-
fully implementing bio-inspired evolutionary algorithms [18];
in our presented algorithm, the diversity of the antibodies is
obtained as a consequence of evaluating the single individ-
uals in a complete decentralized manner. The diversification
of the experiences among the swarm individuals will cause
their antibodies to undergo different concentration levels and
unpredictably different generations of new antibodies (see
Section V-E).

Before the initial time step, each individual randomly (with
uniform probability distribution) selects one of the seventeen
antibodies, so to then apply the process of action selection.

D. Mechanism and immune network dynamics
After each time stamp, concentrations and affinity val-

ues that characterize each antibody inside a lymphnode will



change according to the difference between the expected utility
value as stored in the initial set of the selected antibody and
the obtained fitness. This is known as evaluation phase and it
enables the single individual to discriminate between situations
that lead to positive or negative feedback. Positive feedback
is obtained whenever the chosen set of kinetic parameters
previously assigned to the swarm individual leads to a fitness
value greater than or equal to the one stored in the previously
selected antibody. In cases where the obtained fitness value
is less than the expected value, negative feedback is applied.
Feedback results in a variation of antibody concentration, with
the antibody with highest concentration being selected. The
value of the concentration of each antibody over time depends
on the affinity values amongst all the antibodies: a positive
feedback implies an increase of affinity from all unselected
antibodies to the last previously selected antibody; vice versa,
a negative feedback implies an increase of affinity from the
(last) previously selected antibody towards all other unselected
antibodies. These dynamics and related formulas (shown in
eq. 3) are borrowed (and adapted) from the work of Ishiguro
et al. presented in [19], in which an idiotypic network was
implemented for controlling a mobile robot.

Being able to evaluate if the selected antibody leads to
a positive or negative feedback is useful for calculating the
variation of the concentration of the antibodies composing the
idiotypic network inside each lymphnode, since higher con-
centrated antibodies will be selected during the experiments.

(a)�c
i

�t = Kp

NaX

j=1

aj,icicj �Kn

NaX

k=1

ai,kcick �Kdci

(b)ai,j =
Tni + Tpj

Ti,j

(c)ci =
1

1 + exp(0.5� ci)
(3)

The differential equation the regulates the concentration
over time (�c

i

�t as seen in eq. 3(a)) of the ith of the Na
antibodies inside a single lymphnode is composed of three
separate terms. The first term is used for summing the
stimulation signals, the second term is used for taking into
account the suppression signals and the third term is a decay
rate that represents the tendency of an antibody to die in
absence of any interaction. Each of these terms is regulated
by constants (Kp, Kn and Kd) able to balance the weight
of these three separate terms over the differential equation.
The concentration eq. 3(a) depends on the affinity value (ai,j):
according to eq. 3(b) a generic affinity between antibody i and
j is calculated according to the number of times the selection
of antibody i resulted in a negative feedback (Tni) as well
as the number of times in which the selection of antibody
j provided a positive feedback (Tpj). Ti,j is total number of
times that both these antibodies have been selected. Eq. 3(c)
is the squashing function used in order to ensure stability in
values of the calculated concentration.

The highest concentrated antibody will be selected as re-

sponse for the next time interval. Adaptation occurs through
the implementation of a mutation operator that enables the
lymphnode to create new antibodies as genetic mutations of
existing ones. In [19], the process of mutation was described
as a continuous process — in contrast, in our case study
mutations are triggered by stagnation of the network. This
is detected when, after updating affinities and concentrations
of the stored antibodies, more than one antibody within a
lymphnode shares the same highest level of concentration.

E. Mutation operator

As pointed out in Section V-D, the generation of new
antibodies is a process that occurs whenever more than one
antibody inside a single lymphnode features the same level
of highest concentration. Let us suppose that at the end of
an evaluation phase and after the update of the concentra-
tion values, M antibodies feature the same highest level of
concentration. A new recipe is created by averaging all the
last selected kinetic parameters inside the previously selected
different M antibodies into a single tuple of kinetic parameters
— as a result, the newly generated recipe will feature just one
type. This average is weighted by the number of times each
of the M antibodies has been previously selected, so that if an
antibody has never been selected before, it will not participate
in the mutation operation. The newly generated antibody is
then matched against all the other antibodies stored in the same
lymphnode and erased if it features the same tuple of kinetic
parameters. If the new antibody survives this post-generation
control, it will be initialised with the same level of initial
concentration as in the pre-experimental phase and marked to
be selected for the next time interval.

The algorithm enables mutation and generation of new
recipes according to two levels, a macroscopic level and a
microscopic level. Macroscopic mutations emerge during the
first time interval of the experiment, since we are mixing parti-
cles that selected different actions hence have different kinetic
parameters. From the perspective of the entire swarm, this
results in a single recipe that describes the different choices
of each individual. Microscopic mutations occur within the
process detailed in this section that relates to how a single
particle creates new tuples of kinetic parameters.

F. The algorithm

Algorithm 1 shows the mechanism behind the proposed
approach as an iterative process that repeats itself with a
frequency described by the parameter Teval. After the pre-
experimental phase (see Section V-C), each individual lymphn-
ode randomly chooses an antibody (with uniform probability).
After the action selection process related to this selected
antibody, the entire swarm is free to move for an evaluation
time Teval: this constitutes the testing phase. At the end of the
testing phase, an evaluation phase as detailed in Section V-D
occurs for every swarm individual: after assessing if the
previous tested recipe caused positive or negative feedback,
affinity and concentration values are updated. The highest
concentrated antibody will be selected: in case of network



stagnation (i.e. more than one antibody features the same
highest concentration level) a mutation operator is performed,
as detailed in Section V-E. Once the process of selection of
the next antibody is complete, the individual starts over from
the testing phase.

Algorithm 1: AIS-inspired evolutionary swarm chemistry
Data: Initial population of antibodies (AB) after

pre-experiments is initialised
Executed by: each lymphnode Lci;
Uniform random selection among AB ;
From selected antibody Abj ! select action Aj ;
TEST: while (t < Teval) do

test the selected action;
end

performance = evaluate(Ho,He);
updated affinities and concentrations;
if stagnation condition is true then

apply Mutation Operator;
add newly generated antibodies to list of antibodies;
select newly generated antibody;

end

else

Select highest concentrated antibody;
end

Action selection related last selected antibody;
goto: TEST;

Algorithm 1 summarizes the most important steps followed
by each swarm individual during the duration of the exper-
iment. Some additional mechanisms that relate to how to
globally evaluate the performance of the whole system are
presented in the next section.

VI. EXPERIMENTS AND DISCUSSIONS

Experiments were performed by implementing the described
algorithm on the top of the JavaTM implementation of
Sayama’s swarm chemistry framework, which is available as
open source1. The system used for simulation features a 2.2
GHz processor, 800 MHz FSB, 4 GB Memory, Java version
7u51 on 64 bit machine. Table I shows the parameters involved
in the simulations, as well as the equation that they relate to.

TABLE I
TABLE OF PARAMETERS AND RESPECTIVE VALUES USED IN THE

SIMULATIONS.

Parameter Value Equation

# of Particles 300 -
Kp 0.5 eq. 3
Kn 0.5 eq. 3
Kd 0.0125 eq. 3
K0 10 eq. 1
Teval 4 sec -

Testing the proposed algorithm is a two-fold process: on the
one hand, we will show in the form of a time line what happens

during the evolutionary behaviour of the swarm. On the other
hand, we will see how it is possible to engineer a system able
to autonomously take into account of whether the swarm has
evolved into new interesting features. This latter aspect will be
possible thanks to the introduction of the concept of distance
between recipes (see Section VI-B).

A. Evolutionary behaviour
Ten different runs with different seeds were used during

the experiments. As visible in Algorithm 1, the first oper-
ation performed by each swarm individual is to randomly
select one of the seventeen antibodies created after the pre-
experimental phase. During the first time interval after the
pre-experimental phase (Tape), from a swarm-oriented point
of view, the behaviours of the separate initial recipes are
essentially still retained: parts of the swarm aggregate within
a small area, while other parts are strongly separated. Many
particles also fluctuate among the sub-swarms in a periodic
motion. We indicate with (t0) the first time interval in which
the immune network starts to self-organize, as fitness values
for the individuals are evaluated at the end of Tape. Some
examples of evolutionary behaviours (obtained from three
different seeds) are shown in Fig. 4: a typical swarm formation
after the pre-experimental phase is shown (only one is shown
as it depends on uniformly random choices), followed by the
swarm formation at t0, 0.25Texp, 0.75Texp and Texp, with the
latter one being the total duration of experiments in terms of
multiples of Teval. The duration of a single experiment (Texp)
depends on the time that is necessary for reaching a condition
of convergence: this condition implies that at a certain point
in time, most of the swarm does not change its recipes during
the subsequent time intervals.

As visible in Fig. 4, after Tape, the swarm converges
towards a restricted number of recipes, and later reforms into
a formation with a large number of different recipes in the
latter time intervals. In the intermediate time intervals, notable
behaviours are easy to spot and we can identify both known
and new behaviours. The list of known behaviours that we
can observe from Fig. 4 (as already stored in the initial set of
antibodies in the form of recipes) includes a swarm the splits
into similar sub-swarms (j), gets divided by an “invisible wall”
(this expression comes from previous Sayama’s work, and it
is visible in f), features particles that float around an highly
oscillatory nucleus (looks like the initial recipe called linear
oscillator1, and similar configurations are visible in a, e and
i). The swarm may also organize in concentric circles (g, k

and l).
New behaviours are represented by the fact that the newly

created recipes appear, after a visual inspection, to be qual-
itatively more complex: most of the known behaviours are
observed singularly at the level of single recipe, while due
to the proposed algorithm we are able to mix them and find
many of their features in a single (evolved) swarm. Specifically
with respect to the concentric circular formations that are
created as a result of an evolutionary process, constituent
circles features different distances to each other and different



Fig. 4. Timeline describing the some evolutionary behaviours observed throughout the experiments



values of thickness. Also, in e and i we can see how semi-
circular structures are also created. A more difficult behaviour
to spot on a still image is one we have named tail behaviour, in
which a small sub-section of the swarm is attracted to a larger
part of the swarm as the small one follows the big one in a thin
and long structure (the tail, as most visible in the bottom-right
corner of c). In h, we can see a strongly separated swarm that
features two very diverse sub-structures; also in this picture
and together with b, what we call the umbrella shape is created
and it is clearly recognizable by its green colour. A video of a
typical swarm evolution can be seen as an on line resource3.

B. Qualitative evaluation
The text so far describes that the evaluation of new be-

haviours and shapes are recognised through visual inspection.
As stated in the introduction, we want to provide the system
as a whole with the means to self-recognize whenever new
shapes or behaviours have been found, in order to avoid
the presence of a human being in the evolutionary process
of recipes discovery. As an implication of that, the system
should be able to discriminate whenever a newly created
recipe is different enough from the ones it already knows.
Therefore, in this section we introduce the concept of distance
between recipes. This has some relation to the immunological
concept of self-non self discrimination: initially, we consider
the collection of the seventeen initial recipes generated from
after the pre-experimental phase as self, and whenever a new
recipe is created through our immune network approach, this
new recipe is matched with all the entries of the self-set and
it is added to this set whenever the minimum value among all
the calculated distance values is above a certain threshold Th.
Calculating the distance between two recipes is not a trivial
task, since two recipes may be composed of different types and
for each type, different populations will follow different kinetic
parameters. In order to solve this problem, we introduce two
dimensions for characterizing a single observed recipe.

To define the first dimension we need to fix a recipe that acts
as a reference point: for this purpose we indicate as RZ (recipe
zero) a recipe that is composed of one type that features a
population of one individual with each of its kinetic parameters
set to the minimum value (i.e. 0). Then, referring to a generic
single recipe r1, we introduce the weighted average tuple dr1
that we are able to obtain with the equations in eq. 4.

(a)wi =
Pi

PMAX
with i 2 [1, . . . , N ]

(b)xi,Par
k

= wi
Park

MAXPar
k

with Park 2 {R, Vn, . . . , c5}

(c)dr1 = h
PN

i=1 xi,RPN
i=1 wi

, . . . ,

PN
i=1 xi,c5PN
i=1 wi

i (4)

According to the equations in eq. 4, dr1 is a tuple containing
a weighted average of each kinetic parameter (indicated with

3https://vimeo.com/92732849

Park), normalized over the maximum value they can assume
in the swarm chemistry framework (MAXPar

k

). The weight
wi of the ith of the N types of the recipe is calculated over
the ratio between the corresponding population of the ith type
(Pi, as we are following the notation used in Section III) over
the maximum value of the population of a chemical swarm
(PMAX = 300). Our first dimension is therefore represented
by an eight-dimensional Euclidean distance between dr1 and
dRZ that we call X(r1): the purpose of this dimension is to
summarize the total swarm within a single tuple in a first
attempt to provide a global view of the swarm behaviour,
even if the swarm is characterized by a recipe that features
N > 1 types. However, by doing so we lose the important
information regarding the fragmentation of the recipes: in
other words, two recipes should also be compared in terms of
how the total population is divided among the different types.
For this reason, we introduce a second dimension for each
recipe representing a fragmentation index (fragI ), shown in
equation 5.

fragI =
max(P1, . . . , PN )

PMAX �N
(5)

A single recipe is now characterized by two coordinates
relating dimension X and fragI , so that the final dis-
tance between two generic recipes (r1 and r2) is there-
fore their Euclidean distance calculated over this two co-
ordinates and we indicate this distance as D(r1, r2). The
threshold value (Th) used to discriminate between self and
non-self, is calculated (after creating the initial self) as Th =
min[D(ri, rj)], 8ri, rj 2 (self), ri 6= rj . In other words,
we create the initial set from the seventeen initial recipes as
initial self, then for each of these recipes the system calculates
the distance between all the other recipes, with the minimum
obtained value being the threshold value that discriminates
between self and non-self. As an implication of this, when a
newly created recipe is matched against the self repository, it
will successfully be a part of the self if its distance between
all the self elements are greater or equal than Th: in case there
is a self element whose distance with this new recipe is less
than the threshold value, this new recipe is assumed to be too
similar to the ones that the system already knows, and thus
will be discarded.

As a proof of concept of the introduced distance between
recipes the reader can consider this: in Fig. 5 we can see the
two recipes (a,b) from the initial self-set that provides the
minimum distance value (Th): a and b show the behaviours
of the recipes in absence of any perturbation and through
visual inspection they do not hold strong similarities as a

is composed of three types, while b has just two. Moreover,
the oscillatory red nucleus of a oscillates around a perfectly
circular trajectory, while in b a similar nucleus moves back
and forth a straight line, since dashed blue lines represent these
movements. However when we interactively add perturbations



Fig. 5. Representation of the closest two recipes of the initial self-set
according to the distance measure we introduced (a, b). Oscillatory behaviours
under perturbations show similarities (c, d).

in the swarms4, we can see that the responsive behaviours of
these two swarms (in term of oscillatory behaviours in c and
d) shows that these two swarms are somehow related: although
c is a perturbed version of a, we can see that the oscillatory
nucleus in c now resembles the one in b while the circular
motion of d (the perturbed version of b) is similar to the one
in a.

As experiments are repeated over ten different runs, in each
run, all the recipes generated until the stopping criteria were
stored and compared to the self-set according to the distance
measure defined in this section. Some examples recipes that
the system autonomously labelled as new and added to self
are depicted in Fig. 6. Proportions of recipes added to self or
erased are shown in the pie chart in Fig. 7.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel approach based on
the application of artificial immune systems in the field of
morphogenetic engineering; more specifically, an idiotypic
network was designed in order to foster the evolutionary ability
of chemical swarms so to study the emergence of new shapes

4See Sayama’s swarm chemistry related publications for details about the
dynamics of these interactive perturbations

Fig. 7. A pie chart depicting the situation at the end of the self-creation
process after ten runs. All the 68 recipes were autonomously recognized as
new.

and behaviours on the point of view of the single particle.
The design methodology [13] used for this purpose has been
previously and successfully applied to a different case study
in swarm robotics [14]. In this case study, the algorithm was
implemented on the top of an existing implementation of an
artificial chemistry framework and involves mutations at the
level of mixing pre-existing recipes and in the generation of
new tuples of kinetic parameters to be assigned to particles
thanks to a newly introduced genetic operator.

In addition to that, a novel measure of distance among
recipes has been introduced, so to have a system able to
autonomously label whenever newly generated recipes actu-
ally show new behaviours compared to known recipes. The
proposed algorithm was tested in a number of runs and
evaluated in terms of number of behaviours that the system
is able to classify as new, with results visible in Section VI.
We therefore believe that the presented work represents an
interesting addition to the already published methodologies
for evolutionary swarm chemistry. Being swarm chemistry
a morphological model that features both Self-Repair and
Self-Organizing behaviours, with our approach we have also
investigated how to add Self-Evaluating properties in this case
study; by generalizing this approach we believe to have further
contributed to Self-* systems related literature.

As for future work, investigating alternative fitness func-
tions is crucial in order to understand more about the newly
generated behaviours. For instance, it could be interesting
to test a fitness function for an individual that depends on
its trajectory over time rather than its vicinity with other
particles. Also, a more in depth analysis of what happens in
the swarm individual transitions between two recipes could
provide interesting points to discuss.

Another future work is related to the exploitation of the pro-
posed approach in the field of context-dependent applications,
in order to explore the definition of recipes that are not only
related to space but also to information.



Fig. 6. A collection of newly generated recipes that the system autonomously labelled as new.
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