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ABSTRACT: Timber grid shells provide efficient ways of covering large openings with relatively small amount of 

materials. With three-dimensional CAD software, it is now possible to model a free-form surface and discretize it in smaller 

straight elements, thus postponing the design of the node-connections geometry to the manufacturing process (i.e. by 

Computer-Aided-Manufacturing). A “low-tech” method for building free-form timber grid shell structures with 

standardized connections is that of assembling an initially flat grid of continuous rods and then, post-forming (bending) it in 

a double curved shape. Accordingly, the latter method doesn’t require high-tech manufacturing processes. However, being 

the final shape influenced by equilibrium of the internal forces, a form-finding procedure is required. A novel “facilitating” 

numerical framework is introduced in this paper: For a given continuous reference shape, a geometrically similar discrete 

model is found by implementation of a six degree of freedom formulation of the Dynamic Relaxation method. Numerical 

methods to the finding of grid cutting pattern, as well as, a Newton-Raphson method to assess the allowable timber cross-

section, are illustrated. The theory is validated by numerical examples of a single-rod case and a corrugated barrel vault. 

KEYWORDS: Free-form structures, Grid shell, Solid wood, Form-finding, Parametric design, Dynamic Relaxation, 

Newton-Raphson. 

 

 

1 INTRODUCTION 123 

A grid shell is a structure that gains its strength and 

stiffness through its double curvature configuration. Its 

advantages are a minimum use of materials, structural 

efficiency and the creation of a large volume, as well as the 

potential for quick and cost-effective construction, (Harris 

et al. [1]). Form-resistant grid shell shapes can be realized 

by connecting short straight beam elements together into 

nodes so discretizing the curved surface to a facetted shell 

or bending initially flat elastic rods such as solid timber 

planks/laths obtaining thus real continuous curves. For this 

second case, two sub-categories can be defined [1] 

differentiating on the geometric parameters assigned to 

generate a grid onto a continuous surface: If screwed 

laminated timber ribs are arranged following geodesic 

patterns (shortest curve onto a surface for two given 

points) the planks composing the rods will only be 
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subjected to torsion and bending around the weak axis [2] 

(e.g. Hanover Expo Canopy, 2000 by Julius Natterer) 

enhancing the allowable width of the cross-section of the 

planks. A different approach was adopted in the design of 

the Mannheim timber grid shell for the Garden Festival 

[3]. In this case, it was assumed a constant distance 

between consecutive nodes of the same rib (composed by 

two overlapping timber laths). According to Pirrazzi et al. 

[2] the resulting (Chebyshev net) geometry of the grid 

shell did not follow the geodesic paths. However, this 

second design approach allowed the possibility of 

assembling the grid shell laid out flat and eventually “post-

forming” it in a double curved geometry by imposing 

external displacements under the form of temporary 

crane/cable systems or adjustable scaffolding [4-6]. Since 

the construction of the Mannheim grid shell, this technique 

only rarely has been used. According to Kelly et al: “The 

reason for the apparent lack of enthusiasm may stem from 

the unique challenges associated with the design and 

formation process” [7]. In fact, in order to draw out the 

post-formed grid shape (and gain information on internal 

stress field) a form finding analysis with large 

displacements formulation is required to simulate the 

curvature formation process. Regardless of the adopted 

numerical method, the form finding will requires the 

definition of initial parameters to be performed, such as the 

cutting pattern geometry of the flat grid and external 

imposed displacements magnitude and direction. To 



facilitate the design process of post-formed grid shells, a 

form finding method is introduced in this paper. 

2 METHOD 

Different authors [6, 8-12] addressed the problem of 

defining numerical methods to speeding up the design 

process of post formed grid shells: An interesting concept 

coming out is that of using a supporting (reference) surface 

on which the mat is “forced” to bend. Generally, the 

method contemplates two consecutive steps: 

 A flat two-way mesh is pulled on the reference 

surface by means of external axial springs [11] or 

external applied forces [9]. Alternatively, the 

mesh is constrained to slide on the surface. 

 With the equilibrium shape eventually found, the 

mesh geometry exceeding the reference surface is 

deleted [9] (a cutting pattern is thus found) and 

degrees of freedom (DoF) of the boundary nodes 

are constrained while the previous external forces 

(or springs) are disabled (released).  Accordingly, 

the system assumes its final equilibrium 

configuration. 

Clearly, a two-step analysis scheme allows finding the 

equilibrium shape close to a reference surface which can 

be modelled in accordance to a wide range of design 

requirements: Harris et al explained how architectural and 

regulation parameters were driving the shape of the Pods 

grid shell roof and only in a second design phase “…a 

number of trials were made to establish a grid onto a 

surface” [13].  

 

 

Figure 1: Post-formed timber grid shells [12]. 

2.1 TIMBER CROSS SECTION AND CURVATURE 

The internal stresses generated for the effect of post 

forming process, restricts to a certain domain the size of 

the lath’s cross-section. For this reason, a method for 

automatic assessment of the “allowable” laths thickness is 

proposed in this work. 

3 THEORY 

3.1 Dynamic Relaxation method 

In order to handle the large displacements involved in the 

forming process, a suitable numerical method is required: 

An ad-hoc formulation of the Dynamic Relaxation (DR) 

method has been developed for this specific case. The DR 

is a fictitious time increment marching scheme where, the 

position of the nodes representing the structural system is 

obtained by numerical integration of the Newton’s second 

law of motion until the entire system settles down in a 

static equilibrium by application of a viscous or kinetic 

damping term. The method, independently proposed by 

Day [14] and Otter [15], has been extensively used for a 

wide range of non-linear structural problems as for 

instance, the form finding and load analysis of tension 

structures where it leads to more reliable results in terms of 

solution convergence if compared with much known 

matrix schemes with Newton-Raphson solver [16]. The 

method is (in general) implemented by considering three 

translational DoF per node, thus only allowing simulation 

of able/strut behaviour-like. However, it has been proven 

that three DoF schemes can efficiently takes into account 

bending [17] and torsion [18] member stiffness if identical 

moments of area around any axis of the element cross-

section are given. In general, this is not the case of post 

formed timber grid shells, where rectangular cross-section 

may be used. For this reason, a more comprehensive six 

DoF scheme per node (three translational DoF plus three 

rotational DoF) has been developed: Assuming the discrete 

mesh geometry represented by a set {P} of nodes: 

    ][; zyxrrrP ini    (1) 

With x, y, and z being the coordinate values in the (global) 

reference system of the ith node, and a connectivity 

(element) list storing the node’s indexes of the element 

ends (1, 2): 

     21,; iinnnN jnj    (2) 

The rotational DoF are taken into account by assuming, for 

the ith node, a local coordinate system of unit vectors: 

 iii zyx ,,  (3) 

 

With zi the tangent direction to the rod’s longitudinal axis 

and xi, yi the cross-sectional axes.  In addition to the nodal 



lumped masses (mi) needed to compute the displacements,  

rotational masses (moment of inertia ji) are taken into 

account, in order to compute the rotational angles of the 

local system. At each DR time step, the nodal position and 

local system orientation at time t are used to compute the 

corresponding residual (out of balance) forces t

iR and 

moments t

iH acting at the ith node for effect of the 

surrounding elements internal reactions. Thus, the updated 

nodal coordinate and local system orientation at time t + Δt 

are obtained by numerical integration of the linear 

acceleration terms t
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3.2 Modelling cylindrical hinges 

In order to apply the DR method for a two-way grid shell 

system, the kinematic of the nodal connection needs to be 

properly modelled. For a double layer grid shell, standard 

connections such as slotted-hole (Figure 2-a) or clamping 

plate systems may be provided. Alternatively, only one 

grid layer is pre-assembled and formed, thus the second 

layer screwed on a second construction phase. In any case, 

a hinge mechanism occurs at the nodal connections of the 

two-way mat.  

 

Figure 2: Slotted-hole connection system: (a) Schematic 
view; (b) Two distinct {N} and {M} connectivity lists are used 
to define the equivalent numerical model. 

In general such hinge-like connections are (numerically) 

modelled by placing the mesh elements on two staggered 

levels and connecting them by means of link elements 

which allow rotation around their longitudinal axis. 

Although faithful to the real geometry, doubling the mesh 

nodes at each connection generates local eccentricities. On 

the contrary, a “simpler” model with only one node per 

connection is numerically more stable. This can be 

achieved by assuming a double connectivity list (for 

instance {N} and {M}) thus having a list for each direction 

of the mesh (Figure 2-b) and a second local coordinate 

system such that each connection is defined by a single 

position vector (Eq. 1) but two local systems:  

   mimimininini zyxzyx ,,,,,, ,,;,,  (5) 

3.3 Surface constraints 

Fundamental requirement for the initial nodes position is 

obviously that they have to lie on the reference surface. 

Assuming such surface described by a real function of the 

kind 0),,( zyxf  with the function’s arguments 

corresponding to the nodal coordinates (Eq. (1)): 

}0),,(|,,{}{  zyxfzyxP  (6) 

In addition, we have to define a “subspace of interest” of 

the Cartesian space containing the part of mesh (a subset of 

{P}) that we want constrained to slide in the surface. 

Indicating with B the subspace of interest, the following 

condition applies:  

)(||, iiii

t

ii RRRBr    (7) 

At each DR iteration, the node set P is entirely traversed to 

check whether condition (7) applies: If Bri  thus, the 

residual force 
iR is inserted in Eq. (4) to eventually obtain 

the updated node position, otherwise; only the component 

tangent to the surface 
||,iR  is used to compute the 

acceleration term.  

3.4 Mesh cutting 

Once the elastic grid constrained to the surface reaches a 

static equilibrium configuration, at completion of the first 

DR analysis step, the mesh geometry is initialized for the 

second DR analysis step by “cutting” the excess part. This 

task is performed by interrogating the connectivity lists 

{N} and {M} checking, for each element, whether the 

corresponding end nodes fall into B. In case both end-

nodes are outside the subspace of interest, the element is 

discharged from the connectivity list. However, if the 

element crosses the subspace with one of its end nodes, 

manipulation of the geometry list {P} is required: Let 

assume that B is lower bonded by z ≥ 0 and )(tr is the 

cubic Hermite shape function of the crossing element, 

defined by the end nodes coordinate );(
21 ii rr and tangent 

unit vectors );( 21 zz . The problem is reduced to find the 

value of t0 such that )( 0tr  lies on the global (x, y) plane: 

]1,0[;]0[)( 000  tyxtrt  (8) 

Hence, we take into account only the third component of 

Eq. (8): 

0)( 00  tzt  (9) 

This can be iteratively solved, for instance by Newton-

Raphson method: 
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The value of t0 found by Eq. (10) is then inserted in the 

remaining two x(t) and y(t) thus obtaining 
0r . Extending 

the problem to the general case of B bounded by a plane 

with arbitrary orientation, Eq. (8) becomes: 

0])([ 00  pp rtrt   (11) 

with 
p the vector normal to the plane and 

pr a point of 

the plane. Therefore, the recurrence equation to the search 

of the intersection point between the cubic spline and the 

plane is: 
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The new boundary node so found is added to the node list 

{P} and the connectivity index of the crossing element is 

updated accordingly.  

3.5 Computing the allowable thickness 

As previously mentioned, the combined bending moments 

generated during the forming process of post formed grid 

shells, imposes the laths cross-sectional size to be designed 

under a certain limit value which automatic assessment is 

performed by running a two-step form finding analysis 

with an initial “assumed” value h0 of the laths cross-

sectional height. At completion of the analysis, a h
n+1

 value 

is computed and the DR analysis left to run fewer 

iterations, in order to obtain the new equilibrium for the 

effect of the updated stiffness term Ix. The process is 

repeated until the h value obtained corresponds to a desired 

limit bending stress ratio: According to Eurocode 5 Part 1-

1 [19] (EC5) the following (EC5 6.11 and 6.12) relations 

apply for combined bending: 
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Therefore, assuming a limit stress ratio equal to 1.0 but 

introducing a modification factor km = 0.7 for rectangular 

sections to take into account the variation of material 

properties and stress redistribution [20] (wood shows a 

plastic behaviour at compression failure point, while under 

tension a brittle failure mode occurs). Indicating with  
11.6

j  and 12.6

j the bending stress ratios obtained by Eqs. 

(13) for the generic jth element, we assume that for a given 

equilibrium configuration (at completion of the form 

finding analysis) the resulting maximum stress ratios 11.6

max  

and 12.6

max are represented by the values of two functions, 

whose argument h was set to a certain value h0. 

12.6

max0

11.6

max0 )(;)(   hqhg  (14) 

Therefore, our aim is computing the value hallowable of the 

variable h such that one of the two g(h) and q(h) is equal to 

1.0 while the other one is less that the unity. Calling the 

moment-stress relations: 
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Thus, substituting Eqs. (15) into Eqs. (13) then, by 

rearranging, Eqs. (14) become: 
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Accordingly, the problem is reduced to finding the roots of 

the g(h) and q(h) functions, which can be numerically 

solved by Newton-Raphson method: 
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4 CALCULATION 

4.1 Elastica 

As in [8, 17] the developed six DoF DR formulation is 

tested for the bi-dimensional case, against the analytical 

solution of an initially straight elastic rod pinned at its end. 

The load values of P corresponding to the four shapes are 

obtained according to Timoshenko and Gere [21] as: 
22 )(  LEIKP  with the complete elliptic integral of the 

first kind (K) computed up to the 10
th

 decimal place in 

order to maintain high accuracy of the analytic solution. 

An axial stiffness EA=100.0MN and bending stiffness 

EI=100.0kNm
2
 were set. The rod’s length is 10.0m. For 

each of the four buckled states, five DR analyses with 

increasing number of elements (20 up to 36) were 

performed. The analyses were stopped when the following 

inequality limit was reached: ||max iR 9.5e-6P. The 

numerical x displacement of the rod’s right-end node and y 



displacement of the mid-span node are compared to the 

corresponding analytical values in terms of error 

percentage and summarized in Figure 3.  

 

Figure 3: Numerical displacements error at different 
discretization values. 

 

Figure 4: Form finding of a spherical dome. 

4.2 Spherical dome 

This example provides a description of the developed 

method with a practical application to the form finding of a 

grid shell dome. The reference surface is described by the 

equation of a sphere having radius of 11.0m and its centre 

coinciding with the global axes origin. The subspace of 

interest B is defined by z ≥ 4.582m so that each grid node 

which z coordinate at time t is lower than such value, it is 

not constrained to the surface. Accordingly, the part of 

reference surface contained in B configures a spherical cap 

with a span of 20.0m and circa 6.4m high (see Figure 4). 

The unstressed length L0 of the two-way grid is set to 

1.0m. The mesh obtained with the cutting algorithm 

previously described, can be used to find the 

corresponding flat grid by “relaxing” it on a planar surface. 

In fact, although geometrically different, the two meshes 

have the same topology. 

4.3 Corrugated barrel vault 

This example aims to test the Newton-Raphson algorithm, 

described in subsection 3.5 (for cross-section optimization) 

by computing the geometry of a real post formed timber 

grid shell and comparing the resulting outputs in terms of 

stress ratios. The reference surface is modelled in such a 

way to replicate the overall shape of the Downland grid 

shell. Writing the reference surface function 0),,( zyxf  

in the form zyxf ),( , we have: 
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Accordingly, the global (x, y) plane coincides with the 

ground floor level of the real structure which longitudinal 

axis is directed along the y global direction. Hence, the 

subspace of interest B is defined by: (z ≥ 0.0m) 

and )0.250.25( mym  . The resulting corrugated 

barrel vault is 50.0m long, with a varying width of 12.5m 

to 16.0m, while the height varies from 9.5m at the central 

hump to circa 7.4m at the saddles [7].  

According to Harris et al [4] the timber specimens were 

graded as D30 of the BS-EN-338 strength classification 

[22], for which a mean modulus of elastic parallel to the 

grain (E0, mean) of 11.0kN/mm
2
 is given. Such value is 

estimated from tests on timber population at a temperature 

of 20
ᵒ
C and relative humidity of 65%. In these 

environmental conditions the moisture content (MC) of 

wood in general does not exceed 12% (dry timber) while 

the green oak used for the Downland grid shell 

construction had a MC up to 65% [4]. For values of MC 

over the fibre saturation point (≈27%) a reduction in 

stiffness and strength occurs. In order to take this reduction 

into account, a (Edry/Egreen) ratio of 1.3 [23] is considered to 

derive a (reasonable) value of elastic modulus: 

)/(46.8
3.1

2,0
mmkN

E
E

mean
  (19) 

which is used to compute the elements internal reactions, 

thus the out of balance forces t

iR  and moments t

iH . For 

strength, the five-percentile value of 30.0N/mm
2
 given by 

BS EN 338 was considered. A mean value of 0.69kNmm
2
 

[22] is set for the transverse shear modulus. The initial 

rectangular mat shape [4] is preserved during the form 



finding analysis by constraining the vertical displacements 

of the boundary nodes of the flat mat’s longer side. 

For a lath cross-section of 50.0mm x 35.0mm the resulting 

stress ratios 11.6

max  and 12.6

max at analysis completion are 

found to be 100.8% and 99.1% respectively, thus correctly 

“forecasting” the allowable-thickness, max-stress-ratio 

functions.  

 

Figure 5: Corrugated barrel vault. 

5 CONCLUSIONS 

The work presented in this paper has aimed to facilitate the 

design of post formed grid shells, with particular attention 

on the use of timber. A numerical framework is developed 

to address a range of problems at various design stages, 

including form finding, structural analysis and assembly 

definition (flat mat geometry). The accompanying 

numerical tests demonstrated the framework reliability. 

The preliminary tests on the single rod case showed a high 

accuracy level of the six DoF DR formulation in the 

estimation of the load-displacement functions as well as 

the Newton-Raphson algorithm for cross-section 

optimization. 
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