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Abstract 

Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject 

of an increasing focus of research. This work has elucidated PHOSPHO1’s central role in the 

biomineralization of bone and other hard tissues, but has also implicated the enzyme in other 
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biological processes in health and disease. During mineralization PHOSPHO1 liberates 

inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its 

substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of 

PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment 

where mineral crystals may nucleate and subsequently invade the organic collagenous 

scaffold. Here, we examine the evidence for this process, first discussing the discovery and 

characterization of PHOSPHO1, before considering experimental evidence for its canonical 

role in matrix vesicle-mediated biomineralization. We also contemplate roles for PHOSPHO1 

in disorders of dysregulated mineralization such as vascular calcification, along with 

emerging evidence of its activity in other systems including choline synthesis and 

homeostasis, and energy metabolism. 

Keywords: PHOSPHO1, phosphocholine, inorganic phosphate, biomineralization, matrix 

vesicle 

1. Introduction 

Biomineralization of the skeleton is a fundamental process indispensable for health and 

wellbeing throughout life. The vertebrate skeleton is a complex organ which performs varied 

and diverse functions encompassing its action as a biomechanical and protective scaffold in 

conjunction with the musculature, its role in calcium and phosphate ion homeostasis, and 

recent evidence demonstrating its capacity as an endocrine organ involved with energy 

homeostasis(1). At the level of molecular constituents bone is composed of a combination of 

inorganic mineral, Type I collagen, non-collagenous proteins (NCPs) and water, arranged 

into an extremely ordered hierarchical structure(2). The fine details of this architecture remain 

controversial at the nanostructural level(3), particularly with respect to differences between 
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embryonic and mature tissue, however the mineral phase has come to be regarded as a 

poorly-crystalline substituted hydroxyapatite phase, mainly composed of calcium phosphate. 

Biomineralization of the skeleton therefore requires generation and manipulation of calcium 

and phosphate ions on a massive scale. The biological mechanisms through which ions are 

liberated, contained, and targeted to the developing collagenous framework, and ultimately 

nucleate mineral in a controlled manner, remain the subject of intense research. Phosphatase 

enzymes are essential in promoting biomineralization as one pathway through which 

inorganic phosphate (Pi) may be liberated from biological molecules. These include enzymes 

with a canonical role in bone development such as tissue non-specific alkaline phosphatase 

(TNAP). While TNAP activity has long been implicated in the mineralization process, it is 

now recognized that TNAP is only one component and the full story requires a more complex 

biochemical system. 

Orphan phosphatase 1 (PHOSPHO1; EC 3.1.3.75; encoded by the Phospho1 gene in the 

mouse and the PHOSPHO1 gene in humans) has been an increasing focus of research in this 

field over the last 20 years and now holds an established function in biomineralization. Here 

we review the scientific literature on the characterization, localization, regulation and activity 

of PHOSPHO1 with respect to its role in physiological and pathological biomineralization, 

along with potential contributions to other biological processes. 

2. Characterization, protein structure and substrate specificity 

PHOSPHO1 (originally known as 3X11A) was initially cloned from chick hypertrophic 

growth plate chondrocytes, in which a 5-fold increase in expression was observed in 

comparison to resting or proliferative chondrocytes(4). This distinct upregulation was also 

found be approximately 100-fold higher than in non-chondrogenic tissues. Although the 

specific function of this novel protein was at this stage unknown, sequencing of the 3X11A 
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RNA transcript derived from differential display analysis revealed two partially conserved 

domains which bore sequence similarity to the phosphotransferase enzyme superfamily, 

including the ATPases and various phosphatases catalysing Pi liberation from a range of 

phosphomonoester substrates(4). Primers designed against these motifs succeeded in 

transcribing a 537bp fragment from RNA isolated from the human osteosarcoma SaOS-2 cell 

line, demonstrating 69% similarity to the chicken sequence(5). These fragments were 

identified as corresponding to several previously unattributed EST transcripts from both the 

human and mouse Phospho1 gene, with a high degree of conservation at both the gene and 

protein level between these two mammalian species. Chromosomal mapping led to the 

conclusion that the Phospho1 gene was indeed conserved between the bird and mouse 

genomes, located within a region of conserved synteny on the HSA17 and GGA27 

chromosomes respectively(5). 

Stewart et al used homology modelling to identify three conserved peptide motifs composing 

the active site; certifying PHOSPHO1’s membership of the Mg2+-dependent haloacid 

dehalogenase (HAD) superfamily(6). These included two characteristic aspartic acid residues 

in motif 1 which co-ordinate the catalytic Mg2+ ion in this family, along with other markers 

such as the hydrophobic amino acid residues within motif 2. Along with identification of 

orthology between PHOSPHO1 in rat and the previously identified species, substantial 

homology between the amino acid sequences of PHOSPHO1 and proteins in the fruit fly was 

also found, along with several plant species including the LePS2 phosphatases in the tomato 

plant involved with phosphate homeostasis(7-9). 

A PHOSPHO1 model protein structure was developed, based upon the crystal structure of the 

phosphoserine phosphatases (PSPs)(6,10). This model revealed conservation of residues 

complexing the substrate phosphate group, however those residues which confer substrate 

specificity to phosphoserine in the PSPs are absent. Roberts et al purified recombinant human 
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PHOSPHO1 by amplification of a curtailed cDNA transcript from the SaOS-2 osteosarcoma 

cell line and continuous spectrophotometric phosphate assays with several potential 

phosphomonoester substrates revealed PHOSPHO1’s specific activity towards the 

metabolites phosphoethanolamine (PEA) and phosphocholine (PCho), with highest activity 

between pH6.0-7.2(11). Disruption of the protein active site using site-directed mutagenesis 

decreased PEA and PCho hydrolysis dramatically to an undetectable level in some 

mutants(12). 

3. Bone biology and mineralization 

The ubiquitous phosphatase TNAP has a long-established role during skeletal 

biomineralization. Mutations in the ALPL gene are associated with several skeletal disorders 

in humans including various forms of hypophosphatasia(13-15). Genetic ablation of TNAP in a 

mouse model induced a phenotype mimicking infantile hypophosphatasia with severe skeletal 

abnormalities(16,17), including those in dental and craniofacial mineralization and 

morphology(18,19). Detailed ultrastructural examination of these mice revealed that although 

hypomineralization of the skeleton was evident, hydroxyapatite mineral crystals were 

generated as normal(20). The hypomineralized phenotype was therefore attributed to the 

inability of the mineral phase to propagate in the absence of TNAP’s hydrolysis of the potent 

mineralization inhibitor pyrophosphate (PPi)
(20,21). 

These observations led to the hypothesis that another phosphatase was active during skeletal 

biomineralization with PHOSPHO1 a strong candidate to fulfil this role. Following the 

observation of PHOSPHO1 upregulation in mineralizing hypertrophic chondrocytes(4), 

immunohistochemistry revealed localization of the protein to these cells in the chick growth 

plate, along with active bone surfaces at the ossification front and in the trabecular 

compartment(22). Whole-mount in situ hybridization in the embryonic chick lower limb 
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furthermore demonstrated expression of PHOSPHO1 restricted to the developing bones 

during ossification(23). In vivo suppression of PHOSPHO1 activity using the non-competitive 

inhibitor lansoprazole (identified specifically as an inhibitor of PHOSPHO1(24)) during chick 

development induced ablation of mineralization in the lower limb bones(23). Together these 

data provided strong evidence that this novel phosphatase plays a critical role in the very first 

steps of skeletal biomineralization. 

The generation of the PHOSPHO1 knock-out mouse (Phospho1-/-) enabled the detailed 

investigation of its phenotype and thereby allowed interrogation of the enzyme’s specific 

function in the skeleton(25). Huesa et al used a variety of compositional and biomechanical 

analyses to show that the mineral:matrix ratio of femora of juvenile Phospho1-/- mice was 

significantly lower than wild-type controls, accompanied by plastic deformation upon 3-point 

bending and a reduced hardness and elastic modulus(26). A further investigation of the 

mechanical properties of these bones corroborated this high fracture toughness and also 

showed significantly higher indentation distance increases under reference point indentation 

compared to wild-type controls(27). Histological examination of Phospho1-/- long bones 

revealed reduced mineralization in the trabecular compartment, while 10-15% of 10-day old 

mice exhibited a complete lack of secondary ossification centre development(25). These bones 

also demonstrated osteoid accumulation; a hallmark of hypophosphatasia (Figure 1). 

Interestingly, micro-computed tomography (µCT) revealed no differences between 4-week 

Phospho1-/- and wild-type mice in bone volume relative to tissue volume (BV/TV), but rather 

a significantly reduced bone mineral density (BMD) which was accompanied by diverse 

spontaneous greenstick fractures and marked thoracic scoliosis(25) (Figure 1). Similarly, 

PHOSPHO1 plays a critical role in fracture healing, with induced tibial fractures in 

Phospho1-/- mice demonstrating osteoid accumulation and elastic deformation upon loading 

after four weeks post-surgery(28). 
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These findings have been extended to investigate the function of PHOSPHO1 in the 

development of bone’s hydroxyapatite mineral phase at the smallest length scales. X-ray 

diffraction (XRD) along with thermogravimetric analysis (TGA) revealed a lower bulk 

mineral content with significantly lower mineral:matrix ratio in Phospho1-/- femora, also 

accompanied by a smaller apatite crystal size(29). Backscattered scanning electron microscopy 

(BSE-SEM) furthermore revealed generalized hypomineralization relative to wild-type mice 

in transverse tibial cross-sections of the same animals(29). Further analysis of the Phospho1-/- 

microstructure exposed diffuse regions of hypomineralization in diaphyseal cortical and 

trabecular bone with large areas of osteoid accumulation(30). Interestingly, there was no 

discernible anatomical pattern between individual Phospho1-/- animals, but regions lacking 

mineral exhibited small focal areas of mineral nucleation at their borders, which failed to 

propagate more widely. 

In the very early studies of its function, characterization of the Phospho1-/- bone phenotype 

was performed in young juvenile mice, and therefore to examine the bone phenotype more 

fully Javaheri and colleagues investigated whether PHOSPHO1 plays a persistent long-term 

role in the adult bone’s biology where skeletal turnover is relatively slow(31). Using digital 

image correlation (DIC) the expected lower stiffness of Phospho1-/- was found, which was 

corrected with age. µCT analysis demonstrated several differences in tibial trabecular 

microarchitecture, including trabecular number and connectivity, between Phospho1-/- and 

wild-type mice which changed transiently across four age groups, with significant differences 

detected in the 5- and 34-week age groups, but not in the 7- or 16-week groups. Upon 

examination of the cortical bone however, the authors noted a significant reduction in BV/TV 

in animals from 7 weeks of age which was not corrected over time. NanoCT scanning (0.6µm 

resolution) furthermore revealed a greater number of larger osteocyte lacunae, along with 

higher vascular porosity in Phospho1-/- tibiae; a surprising finding which was compounded by 
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an early increase in both Pdpn (E11) mRNA expression in primary osteoblast cell cultures, 

potentially indicating accelerated terminal osteocyte differentiation in these cells(31). 

PHOSPHO1 may therefore play a role in regulation of osteocytogenesis, which in turn may 

regulate bone microarchitecture in skeletally mature animals. Further research is required 

however to assess whether this relationship is mediated through reduced mineralization, or 

whether PHOSPHO1 may act within a distinct mechanism altogether. Our data also shows 

that the Phospho1-/- phenotype is present during skeletal development, with murine embryos 

exhibiting a reduced extent of mineralization across all bones during embryogenesis 

(unpublished data; Figure 2). 

Aged 1-year old Phospho1-/- mice showed reduced plasma concentrations of TNAP with a 

concomitant increase in ectonucleotide pyrophosphatase/phosphodiesterase1 (NPP1), thereby 

resulting in significantly higher PPi concentrations compared with wild-type controls(25). 

Intriguingly, high serum PPi is a key characteristic of infantile hypophosphatasia in humans, 

with the resulting inhibition of mineralization attributed to the ensuing 

rickets/osteomalacia(17,32). Yadav et al attempted to rescue the Phospho1-/- phenotype by 

cross-breeding with mice over-expressing TNAP (ApoE-Tnap) and thereby reduce PPi 

concentration(25). While the authors did indeed observe a ~4-fold increase in TNAP in plasma 

and a significant reduction in PPi, the hypomineralized Phospho1-/- phenotype was not 

corrected, with animals exhibiting persistent skeletal defects at 7-months. Furthermore 

PHOSHO1; TNAP double knock-out (Phospho1-/-; Alpl-/-) mice exhibited complete ablation 

of skeletal mineralization and perinatal lethality(25). These data were augmented and 

confirmed in vitro with osteoblast-like MC3T3-E1 cell lines (clones 14 and 24) along with ex 

vivo metatarsal cultures using specific PHOSPHO1 and TNAP inhibitors in culture(33). 

PPi is known to regulate the expression of other mineralization-associated proteins, 

particularly osteopontin (OPN; Spp1)(34-36). Along with PPi, OPN is another potent 



  

9 
 

mineralization inhibitor(37-39). The protein’s inhibitory effects are mediated through its 

phosphorylation status(40,41) and this has been shown to be regulated by TNAP(42). 

Significantly elevated OPN, which also exhibited a greater degree of phosphorylation 

compared to controls, was found at the protein and gene levels in serum and spinal lysates of 

Phospho1-/- mice at 1- and 3-months postnatal(43). Interestingly, no differences were observed 

in femoral lysates. Yadav et al investigated the interplay between PHOSPHO1 and OPN 

through the generation of Phospho1-/-; Spp1-/- mice and found a partial rescue of the 

Phospho1-/- phenotype, with animals at 1- and 3-months of age exhibiting a reduction in the 

typical hyperosteoidosis and thoracic scoliosis which characterises the single knock-out 

animal(43). The Phospho1-/- hypomineralized mouse phenotype is therefore partially 

attributable to an increased expression of OPN which may obstruct mineralization during 

bone formation. This is likely exacerbated by a relative hyperphosphorylation of OPN, 

mediated by the established reduced expression of Alpl in Phospho1-/- mice(25,43). 

Collectively these findings establish a non-redundant role of PHOSPHO1 in mediating 

biomineralization of the skeleton, as well as its regulated synergy with TNAP, along with 

other mineralization-associated factors including PPi and OPN, as part of this process. 

4. Dental mineralization 

Along with its established role in bone biomineralization, PHOSPHO1 has also been 

implicated in the mineralization process of the dentition. McKee et al studied dentin 

formation in perinatal mice and found localization of PHOSPHO1 to odontoblasts during the 

very first steps of dentin formation(44). Phospho1-/- mice exhibited reduced mineralization in 

the dentin by histology, µCT and radiography; a phenotype which was aggravated by the 

additional deletion of one Alpl allele (Phospho1-/-; Alpl+/-). Others have examined 

PHOSPHO1 function in the other dental hard tissues, namely cementum and enamel. 
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PHOSPHO1 was found to show expression in osteoblasts and cementoblasts of alveolar bone 

and cementum respectively during their mineralization phases where osteoid accumulation 

was evident in the bone and was accompanied by delayed mineralization of the cellular 

cementum in Phospho1-/- animals(45). Intriguingly, acellular cementum formation was normal, 

despite downregulation of Phospho1-/- in a bone sialoprotein knock-out model in this 

region(46). PHOSPHO1 is therefore an enzyme critical for the integrity of the periodontal 

tissue interface, along with normal development of these hard tissues. In enamel, Phospho1-/- 

mice exhibited a 25% increase in tissue volume, with a significantly reduced level of 

mineralization(47). The authors furthermore reported that ablation of PHOSPHO1 caused loss 

of enamel prism morphology and an impaired crystal organization compared to wild-type 

mice. 

At the level of local cellular regulation, control of mineralization through the PHOSPHO1 

pathway has been shown to be influenced by the TRPS1 transcription factor in an 

odontoblast-like cell line(48). Mutations in the Trps1 gene are associated with tricho-rhino-

phalangeal syndrome in humans and manifest craniofacial and skeletal dysplasias associated 

with defective endochondral mineralization(49-51). Loss of TRPS1 has also been implicated in 

abnormal tooth development and mineralization(52). Kuzynski and colleagues overexpressed 

Trps1 in preodontoblastic 17IIA11 cells and found reduced mineralization compared with 

controls(48). Interestingly reduction of Trps1 expression also ablated mineralization and was 

associated with downregulation of Phospho1 and Alpl expression. The authors proposed that 

TRPS1 acts to repress mineralization associated genes in dentin in a biphasic manner to first 

inhibit ectopic mineralization, and further to prevent hypermineralization by modulation of 

osteogenic gene expression, including Phospho1. 

5. The PHOSPHO1 mineralization mechanism: matrix vesicle-mediated 

biomineralization 
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Matrix vesicles (MVs) are membrane-bound nano-spherical bodies of approximately 100-

300nm in diameter which are typically rich in lipids and proteins known to chelate Ca2+ and 

Pi, and which are associated with both physiological and pathological biomineralization(53). 

Their function continues to be remain controversial since their discovery in 1967 in growth 

plate cartilage(54,55), with some authors attributing these as specimen preparation artefacts(56). 

Nevertheless, many in vitro and in vivo studies have shown the first mineral crystals in 

diverse mineralized tissues such as bone, dentin, cartilage and mineralized vasculature are 

associated with these structures in the extracellular matrix (ECM)(55,57-63). 

The structure and function of MVs in skeletal and vascular mineralization has recently been 

reviewed by several authors(53,64-67). The biogenesis of these vesicles may occur through 

multiple proposed mechanisms, however the most prevalent theories include polarized 

budding from the parental cell membrane, or from microvilli on the cell surface, as 

demonstrated in hypertrophic chondrocytes and SaOS-2 osteoblast-like cells(68-71). The 

theorized function of MVs in biomineralization is to facilitate a localized concentration of 

Ca2+ and Pi, protected from the ECM, from which hydroxyapatite or its precursors may 

form(53). Vesicles may also assist in concentrating Pi to engender a Pi:PPi ratio which is 

permissible for mineralization(72). MVs are known to be enriched in Ca2+ by way of their 

intracellular biogenesis from mitochondria under oxidative stress, at least in growth-plate 

chondrocytes(73,74). Recently published research by Chaudhary and colleagues may correlate 

well with these findings, showing that Pi stimulates release of MVs from osteogenic cells, 

although the authors did not comment on their mitochondrial origin(75). 

Pi accumulation within MVs is thought to be mediated by extra- and intravesicular 

phosphatases, of which PHOSPHO1 plays a critical role(11,20,25,26,76-78). Stewart and colleagues 

were the first to suggest PHOSPHO1 as a major intravesicular phosphatase, showing its 

presence in MVs isolated from embryonic chick growth plates(77). This was more recently 
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confirmed in MVs isolated from the ECM of both cultured MC3T3 and SaOS-2 osteoblast-

like cells using Western blotting(75) and quantitative proteomics(71,79). Further work using both 

growth plate- and primary osteoblast-derived vesicles established that while TNAP does 

indeed liberate Pi extravesicularly, PHOSPHO1 is biochemically active intravesicularly(24,80). 

Therefore it is hypothesized that accumulation of Pi inside MVs occurs via a combination of 

the intravesicular action of PHOSPHO1 and intravesicular trafficking of TNAP-generated Pi 

via a Type III Na-Pi co-transporter, PiT1 (encoded by the Slc20a1 gene in mice)(77,80) (Figure 

3). Experimental evidence for this hypothesis comes from the work of Yadav and colleagues 

who generated a cartilage specific PiT1 knock-out mouse driven by a col2a1-Cre on a 

Phospho1-null background (Phospho1-/-; PiT1Col2/Col2)(81). The authors report an exacerbation 

of the Phospho1-/- phenotype, including growth plate defects, extensive hyperosteoidosis, 

decreased BMD and impaired mechanical properties. MVs isolated from differentiating 

chondrocytes in these animals furthermore demonstrated a loss of their capacity to nucleate 

hydroxyapatite crystals compared to both Phospho1-/- and wild-type controls(81). Interestingly, 

both Phospho1-/- and Phospho1-/-; PiT1Col2/Col2 MV were reduced in numbers compared to 

wild-types, potentially indicating a role for PHOSPHO1 in MV biogenesis. Together these 

studies, along with those characterising the Alpl-/- and Phospho1-/-; Alpl-/- mice(16,17,20,21,25), 

afford good evidence for this mechanism integrating the PHOSPHO1 and TNAP Pi 

generation pathways. 

While this work provides a strong evidence base for the pivotal role of PHOSPHO1 in 

vesicle-mediated biomineralization, the specific biochemical pathway within which it 

achieves intravesicular Pi liberation remains unclear. Stewart et al proposed a mechanism 

through which PHOSPHO1’s substrates PEA and PCho may be generated intravesicuarly by 

enzymatic action upon the vesicle’s phospholipid membrane, as mediated by a phospholipase 

A2 (PLA2) and ectonucleotide pyrophosphatase/phosphodiesterase 6 (NPP6)(82) (Figure 3). 
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The PLA2 family of enzymes catalyse cleavage of the acyl group at the sn-2 acyl position of 

glycerophospholipids resulting in a free fatty acid and lysophospholipid (LPL)(83-85). These 

enzymes may therefore act to breakdown phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) in the MV membrane, forming 

lysophosphatidylethanolamine and lysophosphocholine LPLs respectively along with 

arachidonic acid(82). Indeed the MV membrane has been shown to be enriched in 

phospholipids containing PCho and PEA which progressively decline during 

mineralization(74,86,87), while PCho was also identified as an abundant metabolite in 

developing mouse long bones by matrix-assisted laser desorption/ionization-imaging mass 

spectrometry(88). There are upwards of 30 identified mammalian PLA2 enzymes which exhibit 

a huge range of localizations (including secreted, cytosolic and lysosomal groups) and have 

been shown to be involved with many physiological and pathological processes(83-85). 

Mebarek and colleagues comprehensively reviewed the evidence for the role of 

phospholipases in mineralization, noting several experimental studies confirming expression 

of both secreted and cytosolic PLA2s in chondrocytes and osteoblasts where they play several 

roles(89). While some specific PLA2s have been shown to have an effect on bone formation(90) 

it is currently unclear whether these act directly within the mineralization process. Further 

research is required therefore to identify specific candidate proteins which fulfil this niche. 

A second enzymatic processing phase is hypothesized to convert generated LPL to PCho for 

direct hydrolysis by PHOSPHO1, mediated by NPP6(82). NPP6 is a member of the nucleotide 

pyrophosphatase/phosphodiesterase family and has been shown to possess lysophospholipase 

C activity, catalysing the conversion of lysophosphocholine with a monoacylglycerol by-

product(91-93). Expression of NPP6 has been demonstrated in bone tissue lysate and was 

immunolocalized to hypertrophic chondrocytes and forming bone surfaces(82). Specific 

localization of NPP6 to MVs has yet to be established however. 
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Alternative biochemical pathways through which PHOSPHO1 substrates may be generated 

have also been proposed (Figure 3). Neutral sphingomyelinase 2 (nSmase2) is encoded by the 

Smpd3 gene in mice and is capable of catalysing the hydrolysis of another MV membrane 

phospholipid sphingomyelin, to produce PCho with a ceramide by-product(94). The fro 

mutation in the Smpd3 gene generates a distinctive phenotype with extensive musculoskeletal 

defects resulting in dwarfism(95,96). Khavandgar and colleagues demonstrated that the fro/fro 

mouse exhibits delayed mineralization of the long bones and calvaria, along with impaired 

hypertrophy in growth plate chondrocytes during embryonic development(97). Using tissue-

specific mouse knock-out models it was also established that Smpd3 expression is required in 

both osteoblasts and chondrocytes in a cell-autonomous manner for normal bone 

development(97,98). These effects were moreover shown to influence mineralization during 

tooth development and fracture healing(99,100). Like PC and PE, sphingomyelin is enriched in 

MV preparations and declines during mineralization(74,86,87), while the nSmase2 enzyme has 

been localized to MV isolates in conjunction with PHOSPHO1(79). nSmase2-mediated 

production of PCho may therefore provide another pathway for the intravesicular generation 

of PHOSPHO1 substrates. Another potential alternative pathway includes generation of PCho 

by phosphorylation of choline through the action of the α and β choline kinases (encoded by 

the Chkα and Chkβ genes respectively). While mice lacking Chkα display lethality during 

embryonic development(101), the Chkβ-/- mouse exhibits forelimb deformaties and delayed 

mineralization, accompanied by an extended and disorganized hypertrophic zone within the 

growth plates at the distal radius and ulna(102). PCho was also shown to be reduced by ~75% 

in primary chondrocytes isolated from these animals(102). Intriguingly, PHOSPHO1 was 

upregulated in Chkβ-/- primary chondrocytes, potentially indicating compensation for a 

restricted substrate availability(102). Both Chkα and Chkβ were found to be expressed in 

human osteoblast-like MG-63 cells, and gene silencing of Chkα resulted in a reduction of 
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~70% in cellular PCho with an accompanied inhibition of TNAP activity and mineralization 

in culture(103). 

6. Endocrinology and regulation 

As a critical effector of biomineralization it is likely that PHOSPHO1 expression and 

function will be stringently controlled at both the local and systemic level. As a major organ, 

and one which is metabolically expensive to produce and maintain, it is well established that 

bone formation and resorption are tightly controlled by many factors during development and 

in adulthood, some of the most significant of which include the sex steroids(104-106), vitamin 

D(107-109) and parathyroid hormone (PTH)(110-112). Whether the observed differences in 

mineralization caused by regulatory influences are caused wholly or partly by control of 

PHOSPHO1 or other associated proteins is as yet unknown. 

Some evidence for the systemic regulation of PHOSPHO1 comes from work surrounding the 

effect of PTH on osteoblasts, with RNA-seq in an osteocyte-like cell line (IDG-SW3 cells) 

stimulated with PTH in culture demonstrated an effect on both Phospho1 and Smpd3 

expression(113). Houston et al extended these analyses, examining the expression of 

Phospho1, Smpd3 and Alpl specifically in a MC3T3 osteoblast-like cells and ex vivo calvaria 

culture models with continuous PTH exposure(114). The authors report rapid and co-ordinate 

downregulation of Phospho1 and Smpd3 expression after the addition of PTH to culture 

media, which was likely regulated through the cAMP/PKA signalling pathway. This 

downregulation of both Phospho1 and Smpd3 was independently found in Kusa 4b10 cells 

and in young rats exposed to PTH and PTH-related protein 1 (PTHrP)(115,116). The catabolic 

effects of continuous PTH on the skeleton are well demonstrated in human conditions such as 

hyperparathyroidism, however much research has associated this with the upregulation of 

osteoclastogenesis through the RANKL/OPG axis(117-119). These data may indicate however a 
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simultaneous mechanism effecting inhibition of bone formation as mediated by PHOSPHO1.  

The transcription and post-translational modification (phosphorylation) of Runx2, the 

transcription factor and master regulator of osteoblast differentiation, is also strongly 

enhanced by PTH(120). Interestingly, the overexpression of Runx2 in mouse limb bud cultures 

simultaneously enhances the expression of both Phospho1 and Smpd3(121). 

Collectively these data surrounding PTH tentatively suggest that control of bone 

biomineralization may occur by modulating PHOSPHO1 expression, and thereby the MV-

mediated biomineralization mechanism. This relationship is however currently far from 

explicit and much further research is required to establish the regulatory mechanisms behind 

PHOSPHO1 expression and function within the context of the MV. 

7. PHOSPHO1 in pathologies of mineralization 

Aside from its central function in mediating physiological biomineralization, PHOSPHO1 

may also have a role to play in the onset of pathological mineral formation, for example in 

vascular calcification. Phospho1 is upregulated during mineralization of vascular smooth 

muscle cells (VMSCs) in culture, while Phospho1-/- VSMCs exhibited a significant reduction 

in mineral generation(122). Also, the PHOSPHO1 inhibitor, MLS-0263839 reduced 

calcification of cultured VSMCs by ~60% and when combined with the TNAP inhibitor 

MLS-0038949, calcification of VSMCs was reduced by ~80%(122). Phospho1 is also 

upregulated during atherosclerotic vascular calcification in a rabbit model(123). Furthermore, 

Hortells et al induced aortic calcification in a rat nephrectomy model with a 1.2% 

phosphorous diet for 12 weeks post-surgery and observed significant upregulation of 

Phospho1 expression in animals exhibiting calcification, along with several other 

mineralization-associated genes(124). These studies suggest that PHOSPHO1 has a critical role 
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in VSMC mineralization and that ‘‘phosphatase inhibition’’ may offer therapeutic strategies 

to mitigate vascular calcification. 

Several authors have investigated the process responsible for vascular calcification, with 

some implicating PHOSPHO1 and TNAP as part of the MV mechanism(125,126). Scanning 

electron microscopy (SEM) and focussed ion beam scanning electron microscopy (FIB-SEM) 

of human calcified valves and vasculature revealed nanospherical particles composed of 

crystalline calcium phosphate(127). Using in vitro models together with calcified human tissue, 

these particles were later implicated in the formation of mineralized atherosclerotic plaques 

through their initial aggregation and nucleation of the mineral phase(128). Furthermore, 

particles isolated from mineralized aortae were subsequently shown to induce pathological 

changes in valvular endothelial cells (VECs) and valvular interstitial cells (VICs) in 

culture(129). These studies demonstrate compelling similarities between calcified particles 

found in the vasculature and MVs. The localization of PHOSPHO1 or other MV-associated 

enzymes with these structures has not as yet however been confirmed and so the mechanism 

behind their generation remains elusive. 

There is now substantial evidence that the mineralization status of the subchondral bone is 

altered in osteoarthritis, and that this may lead to modified mechanical integrity, engendering 

greater articular cartilage degeneration(130). Phospho1 is upregulated during chondrocyte 

differentiation(131), and aged hypomineralized Phospho1-/- mice exhibit increased articular 

cartilage degradation and osteophyte formation, when compared to the age-matched wild-

type mice(132). Further, non-invasive loading of Phospho1-/- mouse knee joints revealed 

diminished loading-induced changes in the subchondral bone plate thickness and epiphyseal 

trabecular bone microarchitecture(132). Together, these data suggest that the hypomineralized 

bone phenotype in Phospho1-/- mice provokes osteoarthritis pathology. This therefore implies 

that local modifications in the bone matrix mineralization may underpin subchondral bone 
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sclerosis in osteoarthritis, however further analyses are required to fully define this 

relationship. 

There are also more speculative roles for PHOSPHO1 in osteoarthritis due to its role as a 

phosphatase capable of hydrolysing PCho and PEA. Lipidomic analysis of the synovial fluid 

from patients with osteoarthritis suggests that alterations in the phospholipid composition and 

concentrations are associated with disease development, due to the lubricating function of the 

synovial fluid in the joint(133). Specifically, PC concentrations are increased in the synovial 

fluid of both early (2.7-fold) and late (5.4-fold) osteoarthritic patients in comparison to 

controls(133). Similarly, there has been reported high activity of PLA2, thought to breakdown 

PC, in the synovial fluid of osteoarthritic patients(134) and a role for PLA2, in articular 

cartilage chondrocyte function(135). It has been suggested that the ratio of PC to 

lysophosphatidylcholine is a good diagnostic marker for rheumatoid arthritis(136). However, 

whether this is the case for osteoarthritis and the potential involvement of PHOSPHO1 in this 

is yet to be established. 

8. Other physiological roles 

In the 20 years since its characterization, the vast majority of research focussing on 

PHOSPHO1 has concentrated on biomineralization. However, as a phosphatase capable of 

hydrolysing PCho and PEA with the generation of metabolites such as choline, PHOSPHO1 

has the potential for activity in many other body systems. PC and PE are two of the most 

abundant lipids in the body, comprising 40-50% and 15-20% respectively of total cellular 

phospholipids of any given tissue in mammals(137). These molecules are therefore of critical 

importance in a huge variety of biological systems, from the integrity of plasma membranes, 

and other structures such as vesicles, lipoproteins and chylomicrons, to regulating the activity 

of proteins at the cell membrane(137,138). Interestingly, the breakdown products from PC in 
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particular have also been implicated as signalling molecules(139,140). Although speculative, it 

is therefore an intriguing possibility that PHOSPHO1 may have a role to play in the 

biosynthesis and catalysis pathways of these phospholipids, regulating substrate availability. 

Choline is the breakdown product from PHOSPHO1 activity on the LPL 

lysophosphatidylcholine derived from PC, and is an essential dietary nutrient in mammals. 

Although choline is primarily used in PC biosynthesis, it may also be used to generate betaine 

in the liver and kidney, or acetylated to form the neurotransmitter acetylcholine in the 

brain(141). PHOSPHO1 may therefore be an appealing candidate to act within a secondary 

mechanism of choline homeostasis in these and other tissues. Indeed, gut enteroids 

maintained in choline-deficient media exhibited hypomethylation at 3’ CpG islands within 

the Phospho1 gene, potentially regulating gene expression(142). 

One system within which PHOSPHO1 plays a significant role in this regard is erythropoiesis. 

An expression quantitative trait locus (eQTL) analysis initially found that single nucleotide 

polymorphisms (SNPs) associated with β- thalassemia in human peripheral blood samples 

were also associated with changes in PHOSPHO1 expression(143). PHOSPHO1 was also 

found to be substantially enriched in erythroblasts undergoing differentiation(144). 

Subsequently Huang et al investigated PHOSPHO1 in terminal erythropoiesis; a process 

during which the phospholipid composition of red cells is substantially altered(145). 

PHOSPHO1 expression was significantly upregulated during erythroblast differentiation, and 

moreover loss of PHOSPHO1 induced defective erythropoiesis accompanied by a lack of 

choline generation and an increased phosphocholine:choline ratio. 

Several other studies have found intriguing associations between PHOSPHO1 expression and 

disorders of altered energy metabolism such as diabetes and obesity. Epigenome-wide 

association studies (EWAS) have found significant associations between methylation at loci 

within the PHOSPHO1 and the future risk of type-2 diabetes in human cohorts(146,147). 
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Indeed, Willmer and colleagues highlighted differential methylation at sites within the 

PHOSPHO1 gene as a potentially useful biomarker for clinical application in the early 

detection of type-2 diabetes(148). Moreover, increased methylation was positively correlated 

with high density lipoprotein (HDL) concentration in blood and was decreased in muscle 

tissue from diabetic patients(147). This relationship with HDL concentration was also 

reproduced independently in an EWAS focussed on serum lipid profiles conducted in a 

separate cohort(149). Relatedly, Wu et al further found an association between PHOSPHO1 

and SNPs relating to clinical measures of obesity in a Chinese population(150). These studies 

provide a promising avenue of investigation for future research to consider the mechanisms 

through which PHOSPHO1 may act to influence lipid metabolism and disorders of its 

dysregulation such as diabetes and obesity. Supporting this idea, changes in Phospho1 

expression have been found in several studies examining the thermogenic brown adipose 

tissue (BAT) and the browning of white adipose tissue (WAT), of great relevance to obesity. 

Phospho1 is expressed at a higher level in BAT than WAT(151), and suppression of fatty acid 

oxidation in adipose tissues causes a downregulation in expression during cold challenge(152). 

Furthermore, studies which have investigated creatine metabolism as an alternative pathway 

for thermogenesis in beige fat have implicated PHOSPHO1 in this process, although the 

specific mechanism remains elusive(153,154). 

9. Inhibition of PHOSPHO1 – a therapeutic target? 

The LOPAC and Spectrum chemical reference libraries were used to identify potential 

chemical inhibitors of PHOSPHO1 and semi-automated high-throughput chemical screening 

used to test inhibition of PEA hydrolysis(24). Of those identified, three molecules, 

Lansoprazole, Ebseleln and SCH202676 exhibited non-competitive inhibition of recombinant 

PHOSPHO1 activity by 80% or more(24). This study showed that neither Lansoprazole nor  

SCH202676 inhibited TNAP activity but Lansoprazole has recently been shown to act as a 
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non-competitive inhibitor of TNAP(155). Following this Bravo et al synthesized a series of 

benzoisothiazolone inhibitors of PHOSPHO1, the final selection from which was tested and 

passed medicinal chemistry criteria in deliverability, metabolic stability, solubility and 

permeability, whilst also demonstrating no cellular toxicity(156). 

The development of these compounds opens the potential for inhibition of PHOSPHO1 

activity as a therapeutic intervention. Although there has been no experimental research 

exploring this possibility to date, the imputation of PHOSPHO1’s association with 

pathologies in both biomineralization and lipid metabolism may make it an attractive drug 

target in the future. In terms of disorders of pathological mineralization, while the 

PHOSPHO1-mediated mineralization mechanism is critical for the proper development of the 

skeleton in immature organisms as has been discussed here, there is currently no evidence to 

suggest that it plays an active role in maintenance of the skeleton in adulthood. Ablation of 

mineralization in the adult may be desirable when attempting to control soft tissue 

mineralization e.g. vascular calcification and also ectopic bone formation as is the case in 

several musculoskeletal disorders including osteoarthritis. In these instances pharmacological 

inhibition of PHOSPHO1 may prove to represent an effective intervention which also entails 

limited adverse off-target effects. 

10. Outlook 

Over the past 20 years PHOSPHO1 has been an increasing focus of research in the bone 

biology and biomineralization communities. Work performed in our and in other groups has 

succeeded in establishing its canonical role in MV-mediated biomineralization of the skeleton 

and dentition, while opening new fields of investigation into its function in other body 

systems. Many questions remain to be answered surrounding aspects of PHOSPHO1’s 

biology, including detailed elucidation of its upstream biochemical mechanism, targeting of 
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the enzyme to MVs, how local and systemic regulation is integrated with other aspects of 

bone biology during the bone formation process, and the precise role of PHOSPHO1in 

musculoskeletal disease. Future studies integrating aspects of structural biology and 

biomineralization with cellular and molecular biology and endocrinology will give us a 

holistic appreciation of these processes and contribute to our understanding in this 

fundamental aspect of bone biology. 
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Figure 1: A) Goldner’s trichrome staining of wild-type and Phospho1-/- tibial sections 

demonstrating osteoid accumulation in the trabeculae bone (red staining; black arrowheads). 

Tibiae were dissected from 21 day-old C67BL/6 mice and fixed in 4% paraformaldehyde 

before decalcification in 10% EDTA in PBS and standard histological processing. 3µm 

sections were cut using a rotary microtome and used for staining. Scale bars represent 

200µm. B) Radiographic images of 1-year old Phospho1+/- and Phospho1-/- mice 

demonstrating thoracic scoliosis on ablation of Phospho1 (black arrowheads). Whole-body 

images were acquired using a MX20 Specimen Radiograph System (Faxitron, USA). Scale 

bars represent 20mm. 
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Figure 2: Optical projection tomography (OPT) reconstructions of mouse embryos at 17 days 

of gestation (E17) showing marked ablation of mineralization in bones of the skull in 

Phospho1-/- animals. E17 C67BL/6 wild-type and Phospho1-/- embryos were culled using 

Schedule 1 methods, fixed in 4% paraformaldehyde and whole mount stained in a 0.001% 

Alizarin Red solution in 1% potassium hydroxide. Samples were embedded in 1% agarose 

and scanned using a Bioptonics 3001 OPT Scanner (Bioptonics, UK). Data were 

reconstructed using NRecon (Bruker, USA) and visualised using Imaris (Bitplane, UK). Scale 

bars represent 10mm. 

 



  

44 
 

Figure 3: Schematic diagram illustrating the hypothesised mechanism of PHOSPHO1 

function within MVs. A) PHOSPHO1 functions synergistically with TNAP: 1] TNAP 

hydrolyses its substrates to produce Pi extravesicuarly; 2] Extravesicular Pi is transported into 

the MV via PiT1; 3] PHOSPHO1 hydrolyses Pcho intravesicuarly to further accumulate Pi. 

B) Generation of PHOSPHO1 substrates within MVs: 1] An unidentified PLA2 converts PC 

from the vesicle membrane to lysoPC; 2] NPP6 subsequently catalyses the hydrolysis of 

lysoPC to generate Pcho; 3] PHOSPHO1 liberates Pi from PCho. C) Alternative pathways of 

PCho generation: 1] nSmase2 breaks down SM from the MV membrane to form Pcho; 2] The 

α/β choline kinases phosphorylate choline to form PCho; 3] PHOSPHO1 generates Pi from 

PCho. 

 

 


