
A Bayesian Assessment of Real-World
Behavior During Multitasking

Jeroen H.M. Bergmann1,2
& Joan Fei3 & David A Green3,4

& Amir Hussain5
&

Newton Howard2,6

Received: 7 February 2017 /Accepted: 18 July 2017 /Published online: 12 August 2017
# The Author(s) 2017. This article is an open access publication

Abstract Multitasking is common in everyday life, but its
effect on activities of daily living is not well understood.
Critical appraisal of performance for both healthy individuals
and patients is required. Motor activities during meal prepara-
tion were monitored in healthy individuals with a wearable
sensor network during single and multitask conditions. Motor
performance was quantified by the median frequencies (fm) of
hand trajectories and wrist accelerations. The probability that
multitasking occurred based on the obtainedmotor information
was estimated using a Naïve Bayes Model, with a specific
focus on the single and triple loading conditions. The
Bayesian probability estimator showed task distinction for
the wrist accelerometer data at the high and low value ranges.
The likelihood of encountering a certain motor performance
during well-established everyday activities, such as preparing a
simple meal, changed when additional (cognitive) tasks were
performed.Within a healthy population, the probability of low-
er acceleration frequency patterns increases when people are

asked to multitask. Cognitive decline due to aging or disease
might yield even greater differences.

Keywords Wearable sensors . Activities of daily living .
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Background

Much can be learned about the brain by studying motor coor-
dination [1]. Motor behavior, defined as the combination of
movements that produce purposeful or intended actions,
emerges due to a synergy between a range of systems [2].
The systems involved in this behavior are bounded by certain
parameters and they have evolved to work within real-world
constrains. Everyday living activities arise through the complex
interaction of these factors and dysfunction within these factors
will generate alternative behaviors. The occurrence of large
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changes in everyday living behavior can be an indicator that
(patho)physiological changes are emerging. This is also the
reason that at present, the diagnosis of disorders such as
Alzheimer’s disease still heavily depend on the clinical history
[3] and the observed behavioral changes by relatives and
friends. Furthermore, there is growing evidence that indicates
a link exists between activities of daily living (ADL) and exec-
utive dysfunction in patients suffering from early dementia [4].

It is unclear how changes in certain parameters might affect
the behavior under real-world conditions. The complex inter-
actions underlying behavior can be better understood by e.g.,
exploring effects of cognitive loading in a healthy populations.
This information will be particularly interesting if it represents
behavior that is common in the real-world. To our knowledge,
no detailed assessments of multitasking within an ADL con-
text exists, in which the tasks cover a range of complex every-
day tasks. It still remains ambiguous to what extent everyday
living is affected by cognitive ability. Current cognitive load-
ing experiments often consist of experimental designs that do
not capture the real-world performance of the biological sys-
tem as they would occur on a daily basis. Issues with this
standard experimental approach have been highlighted in a
paper that investigated postural prioritization duringmultitask-
ing [5]. It showed that well-established principles of Bposture
first^ strategies, wherein individuals favors execution ofmotor
components over execution of cognitive components, degrad-
ed when measurements were taken in more complex environ-
ments. This kind of decrement in motor performance can have
devastating real-world impacts if it leads to for example a fall
or injury. To what degree our complex motor performance is
affected by cognitive loading needs to be explored further.

In the case that complex ADLmotor performance is affected
by cognitive loading then logic would imply that we might be
able to predict cognitive loading by monitoring motor behavior
itself. Studies have been performed on more skilled tasks such
as handwriting [6], but activities that stretch over several phases
which make up a complex everyday task have not been
researched under multitasking conditions. In this explorative
study, motor performance is investigated, while variable levels
of cognitive loading are introduced. The probability that multi-
tasking occurred based on motor performance data (hand tra-
jectories and wrist accelerations) will be estimated with a Naïve
Bayes Model. The model is a simple probabilistic method
based on Bayes Theorem. In practice, Naïve Bayes models
often compete rather well compared to more sophisticated
models [7]. The simplicity, large community of users and ease
of implementation makes the Naïve Bayes Model an ideal can-
didate for initial exploration of real-world multitasking.

The aim of this study is to investigate to what extent meal
preparation is influenced by multitasking. It is hypothesized
that multitasking will increase the probability of observing
Bslower^ motion patterns, as defined by a decrease in the
median frequency.

Methods

Subjects

In total 21 (8 male, 13 female), healthy participants were re-
cruited, with a mean age of 23 (±3) years, an average height of
170 (±8) cm, and an average weight of 67 (±12) kg. All par-
ticipants gave written and informed consent to volunteer for
the study and the protocol was approved by King’s College
London BDM Research Ethics Subcommittee.

Equipment

Participants wore a body sensor network (Xsens Technologies
Ltd., The Netherlands). The network consisted of four sensors;
they were attached to the right upper arm, right lower arm,
head, and back (Fig. 1). The back sensor was used as reference
sensor to determine if all other sensors worked appropriately.

Sensors on the arm and back were kept in place by double-
sided tape and straps. The head sensor was placed on a non-
slip elastic headband.

Procedure

Subjects were asked to perform the task of preparing a meal
during a 40-s trial. The meal preparation consisted of making
as many sandwiches as possible and it was constructed to
include several items from the Motor Activity Log (MAL)
for the upper extremity [8]. Participants were asked to butter
and cut as many slices of bread as possible within 40 s.

Subjects were instructed to speak freely and/or perform an
additional cognitive activity (stroop task) during certain trials,

Fig. 1 Experimental setup. Four inertial measurement units (sensors)
were attached to the subject. They were placed just above the wrist, the
upper arm, the lower back, and on the head
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while always performing the aforementioned everyday motor
task. Four conditions were implemented and these consisted of
just performing the motor task (single-task condition),
performing the motor task while speaking (dual-task condition
with speech) or while conducting a stroop task (dual-task con-
dition with stroop task), and finally performing the motor activ-
ity concurrently with both speaking and a cognition task (triple
task condition). The single task condition consisted of a trial at
the start of the experiment and one at the end. A total of three
trials were recorded for all other conditions. Conditions were
pseudo-randomized in order to eliminate sequence effects in
the outcomes.

Stroop Task

The cognitive loading task consisted of a specific audio-spatial
assignment. The auditory spatial task utilized a spatial stroop
stimulus and it was presented through a wireless stereo head-
phone. Within one trial, three stimuli were given, with 10 s
between each stimulus. The subjects were requested to response
to unilateral aural stimuli. The stimuli consisted of the words
BLeft^ and BRight^ delivered through either the left or right
headphone speaker. If the word matches the side, it was present-
ed to (i.e., BLeft^ in the left ear) the result is congruous and
therefore the appropriate response was to tell the researcher it
was correct by shaking the head up and down. If incongruous,
the subject is asked to state it was incorrect by shaking sideways.

Stimuli generation for the stroop task, as well as the data
acquisition was performed in Matlab R2014a (MathWorks
Inc., Natick, MA, USA).

Stroop Task Response Detection

The head-mounted sensor was used to collect the angular ve-
locities (°/s) in pitch direction (ωpitch; stating it was Bcorrect^)
and yaw direction (ωyaw; stating it was Bincorrect^). The pow-
er spectral density P( f ) was estimated for each direction (ω)
using Welch’s method [9]. The method is based on applying a
discrete Fourier transform (DFT, see Eq. 1) to estimate the
power spectra, then splitting the data into windows, taking
modified periodograms of these windows and finally averag-
ing the obtained periodograms.

Ωkþ1 ¼ ∑
n−1

j¼0
e−2πi=n

� �jk

ω jþ1 ð1Þ

The DFTequation (Eq. 1) takes in one of the head movement
directions (ωpitch orωyaw) containing n sampled data points, with
an index (j). Here, i is the imaginary unit and k the index to output
Ω.A fast Fourier transform (FFT) was subsequently applied as a
more efficient way of computing the required DFT. The frequen-
cy at which the power spectral density then reaches its maximum
(fmaximum) was compared against an expected relevant

physiological range of .5–.10 Hz [10, 11]. Frequencies outside
this range were assumed as unlikely voluntary physiological re-
sponses and labeled as Bno response given.^ All signals were
checked for a potential second peak whenever the initially de-
tected peak fell outside the physiological range. This approach
was taken in order to prevent incorrect dismissal of data. The
continuous wavelet transform was computed for all signals that
showed fmaximum within the selected range. It was assumed that
the nodding response would be best represented by a Morlet
wavelet. This wavelet is the product of a complex exponential
wave and a Gaussian envelope. The Morlet wavelet’s function
ψ(t) is taken from [12] and can be described by

ψ tð Þ ¼ e
−β2 t2

2 cos πtð Þ ð2Þ

in which t is time with β controlling the shape by balancing the
time and frequency resolution. The following descriptions of the
wavelet equations are adapted from [13, 14]. TheMorlet wavelet
can be defined as a Bmother^ wavelet from which a range of
wavelets can be generated by scaling and translating,

ψa;b tð Þ ¼ 1ffiffiffi
a

p ∙ψ
t−b
a

� �
for a > 0; bϵℝ ð3Þ

in which a is the scaling parameter and b is the translation pa-
rameter, with t denoting the independent variable. The collection
of wavelets that arise from this can be used as an orthonormal
basis. The relevant coefficients can be obtained by

Ca;b; f tð Þ;ψ ¼ ∫∞−∞ f tð Þ∙ψa;b tð Þdt ð4Þ

Varying the values of a and b will provide the continuous
wavelet transform coefficients Ca,b indicating how closely the
wavelet is correlated to the original signal. These coefficients
are of course dependent on the selected waveform (ψ) and
function ( f ). A larger value for Ca,b shows a greater similarity
between ψ and f.

A scalogram of wavelet coefficients was then generated.
The start of a specific response was defined as the point when
the energy level of the fmax scale crossed a pre-set boundary. A
limitationwith applying a single value crossing is the selection
bias. In order to overcome this as much as possible a range of
thresholds were explored by

Tcurrent ¼ Emax

T
T∈ℕ j1≤T ≤100f g ð5Þ

with Emax being the maximum energy and T the threshold
denominator set to produce a current threshold (Tcurrent).
Analysis of pilot data indicated that large shifts could be min-
imized when a Tof 22 was applied. To allow for some random
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variation, Twas set to 30. This gave the following formula to
detect within a 10-s interval the first energy (E) crossing by

E >
Emax

30
ð6Þ

the equation showed good identification of responses across
several pilot test sessions. An example is shown in Fig. 2.

The time at which a certain stimulus was given was
subtracted from the time when a response was detected. This
value represented the response time of the subject. Awindow
size of 10 s was used to identify any responses, as the stimuli
were generated at a .1 Hz rate. The response was labeled
Bincorrect^ if no response was found. Identified responses
were compared to the expected response. If the response was
expected to occur within a specific direction (yaw or pitch) the
response was labeled Bcorrect.^ Otherwise, the response was
deemed Bincorrect.^

However, it could be that there is a response signal present in
both yaw and pitch direction. In this case, it needs to be deter-
mined if a corrective action (yaw and pitch response are sepa-
rated in time) has taken place or if it is crosstalk of the channels
due to for example rigorous shaking. Crosstalk is defined as one
signal overlapping the other and can be formalized as:

tyaw 1ð Þ < tpitch nð Þ⋀tpitch 1ð Þ < tyaw nð Þ ð7Þ

In which tyaw (1) and tpitch (1) are the time points at the start of
the response and tyaw(n) and tpitch(n) are indicating the end of the
response. If any overlap is detected, the signal with the highest
average energy is identified as the leading signal (1 is assigned)
and the other signal is seen as the crosstalk signal (assigning it a
value of .5). If both signals are equal in terms of average energy,
they are both assigned a value of .5 and it can be stated that it is
inconclusive which response the subject wanted to give.

A truth matrix consisting of dichotomized outcomes allows
for easy assessment of performance. The first two cells of each
row can be summed and if this value is greater than 1 the
performance can be labeled as correct. This simple computation

provides a quick top level view of the provided responses. The
summed outcomes were labeled as extracted responses.
Response detection was further validated during a small pilot
trial (see supplementary information).

Motor Performance

Upper limb motion patterns were obtained through a simple
biomechanical model [15]. The Euclidian norm of the hand
trajectory was computed by

pk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ p2y þ p2z

q
ð8Þ

with p as the 3D position vector [px py pz]. This norm was
computed for each index point and used for further analysis.
This norm seems to differentiate well between everyday mo-
tions [15]. Another more Bpractical^ method used the median
frequency (fm) of the acceleration norm (‖a‖) [16], which was
obtained from wrist sensor. The fm was defined as,

1

2
∫ f max

0 P fð Þdf ð9Þ

with f being the frequency in Hz, fmax the maximum frequency
in the spectrum and P( f ) the power spectral density. Median
frequency was computed for both ‖p‖ and ‖a‖ for a 3-s block
that was taken directly after the stroop task stimulus was ap-
plied. For the unloaded condition, a 3-s data block was taken
at similar time intervals. All three fm within a trial were used to
compute an average value representing trial performance. A
detailed data flow diagram for this study is provided in the
supplementary information.

Statistical Analysis

A total of four trials could not be analyzed due to data corrup-
tion (two single and two multitask trials). These trials were
therefore excluded from further statistical testing.

Fig. 2 Example of stroop task
response detection based on
energy percentage of each
wavelet coefficient. Top figure
shows the original angular
velocity signal in yaw direction
across time. Bottom figure shows
the scalogram of wavelet
coefficients. It provides the
percentage of energy for each
coefficient depicted by a heat map
that is given on the side. Dotted
green lines show identified
crossings of the set threshold
(dotted purple line)
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The Kolmogorov-Smirnov test [17] showed that median
frequency (fm) data was not normally distributed (p < 0.01)
for both the hand trajectories and accelerations. The test com-
pares the empirical cumulative distribution function of the col-
lected data with the expected normal distribution, with a sig-
nificant result indicating that the data is not normally distrib-
uted. Q-Q (quantile-quantile) plots further confirmed a non-
Gaussian distribution with zero mean and unit variance [18].
The Q-Q plots are used to visually check for normality (Fig. 3).

Boxplots were used to visualize the data. A rank transfor-
mation procedure was used in order to apply an analysis of
variance on the data [19], with groups consisted of the four
conditions (single task, dual with speech task, dual with stroop
task, and triple task). The ranked fm was used as the dependent

variable. Subsequently, a non-parametric Kruskal-Wallis tests
were performed upon acceleration and position data to estab-
lish if any differences were present between conditions [20].

It is likely that performance outcome (fm) follows a less
ordered function. In order to explore this, a Naïve Bayes ap-
proach was applied on the task limits, i.e., single and triple
task [21]. The Bayesian probability estimator used the predic-
tors of hand trajectory fm and acceleration fm to classify be-
tween the single and triple task condition. AKernel smoothing
density estimator was applied for each predictor, as it was
previously indicated that the data did not follow normality
(see Fig. 3) and thus the density was estimated based on all
the available data points. The prior probabilities are estimated
from the relative frequencies of the single and triple task

Standard Normal Quan�les

Single task Dual 
task (speech)

Dual 
task (stroop)

Triple 
task

ataD deniatb
O fo selitnau

Q

Standard Normal Quan�les

Single task Dual 
task (speech)

Dual 
task (stroop)

Triple 
task

ataD deniatb
O fo selitnau

Q

B

AFig. 3 Q-Q plots showing the
data across the four conditions for
hand trajectories (a) and
accelerations (b)
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condition. The input feature matrix (x) consists of fm columns
for the hand position and acceleration, withCi representing the
two possible classes (i = 1 for single task; i = 2 for triple task),
as described by Bayes’ Rule (Eq. 13).

P cljxð Þ ¼ P xjclð ÞP clð Þ
P xð Þ ð10Þ

The probability that an observation belongs to a certain
class (posterior probabilities) were estimated using the predic-
tor space, which was defined by instances on a 2D–grid. The
posterior probability that a classification is Ci for a given ob-
servation was computed by multiplying the conditional joint
density of the predictors for a certain class with the class prior
probability distribution and dividing it all by the joint density
of the predictors [22]. It was hypothesized that a condition
with an increased probability for lower fm should yield a lower
functional performance.

All data analysis and statistics were performed in Matlab
R2014a (MathWorks Inc., Natick, MA, USA).

Results

Boxplots were used to visualize the hand trajectories and ac-
celerations between conditions (Fig. 4).

The ranked analysis of variance showed no significant differ-
ence between conditions for hand trajectory (F(3195) = 0.3170,
p = 0.81) and acceleration (F(3195) = 2.556, p = 0.06). The
Kruskal-Wallis test also found no significant differences for
hand trajectory (H(3) = 0.246, p = 0.97) nor acceleration
(H(3) = 6.852, p = 0.08).

The Bayesian probability estimator showed no clear task
distinction based on the hand trajectory data. However, tasks
could be differentiated based on the acceleration fm values
between the single and triple tasks (Fig. 5). The data indicates
a clear distinction in the obtained fm between single and triple
task performance.

Applying this model for (same dataset) prediction would
generate a misclassification of 38%, with most of the misclas-
sification occurring in the fm of acceleration region between
15.8 and 17.2 Hz covering the .4 to .6 range of task probability.
This region contained 33% of all data points. Values outside
this region yielded a relative good probability for separating
the two tasks across all subjects. In general, higher fm values
for accelerations were found in the single task, while low
values more likely indicated subjects performing a triple task.

Discussion

Results showed no difference in hand trajectories between
the conditions when traditional statistical methods such as

the analysis of variance and Kruskal-Wallis test were used.
However, visualization, analysis of variance and the
Kruskal-Wallis test indicated a clear trend towards lower
fm for multitasking when the acceleration data was explored.
The Bayesian probability estimator showed that differences
existed in the probability estimates between the extremes
(single and triple tasking). This differentiation between the
single and triple task was also observed when the number of
prepared sandwiches were counted. Participants completed
less sandwiches when they were multitasking. It suggests
that subjects will become Bslower^ both in fm accelerations,
as well as in overall functional performance, when they are
requested to multitask. The motor differences appears to be
too small to be subjectively perceived as a decline in per-
formance by subjects, but they become apparent by apply-
ing a simple Naïve Bayes model. The fm feature has previ-
ously been used to successfully classify different activities
of daily living [16, 23], provides a relatively simple and thus
informative metric. However, other features should be ex-
plored in order to determine if discrimination can be further
improved.

Our human perception bias often exists in quantifying
our own performance and this bias is also found in care-
takers assessing activities of daily living in those who suffer
from a decline in cognitive abilities [24]. A more objective
approach to unobtrusively track function will therefore ben-
efit both patients and clinical professionals. This kind of
technology can especially impact those older adults who
are living alone and the change attitude towards technolo-
gies can positively influence the uptake of these devices
[25]. It is important to consider that the activities completed
in this study are very natural and intuitive. Thus, the finding
of any differentiation between single and multitasking in
healthy activities of daily living is therefore a very intrigu-
ing and warrants further investigation.

Accelerations obtained from mobile devices have already
been used for automatically detecting different states of phys-
ical activity [26]. Measuring wrist accelerations might there-
fore provide a smart and acceptable method for monitoring, as
there is no need to define any task specific constrains. This
data can be easily gathered by an unobtrusive wrist worn
accelerometer. However, confirmation of the presented results
in other datasets is still required.

Naïve Bayes models are very attractive for estimating
general probability within real-time domains making it a
suitable model for real-world tracking [21]. It also provides
a computational inexpensive method for differentiating be-
tween tasks and it is relatively easy to implement. A key
aspect of the model is that independence is assumed be-
tween the predictors, which may on occasions be violated.
More sophisticated models should be applied in future stud-
ies to minimize assumptions, but these initial results show
that even a simple method might be able to detect an
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increased probability of certain motor behavior occurring
when healthy individuals start to multitask.

Although, real-world interaction is noisier, more heteroge-
neous and less repeatable than the induced stroop task, the
induced task does reflect the domain of interest a lot better.
The results found in this study seem comparable with other
real-world scenarios. It has already been proven that mobile
phone use has a detrimental influence on driving performance
[27] and interestingly enough, even practice seems to be un-
able to eliminate the disruptive effects of concurrent cell
phone use on driving [28]. Real-world multitasking, might
therefore be strongly engrained into our behavior. This makes
it easier to robustly monitor and assess any potential changes.
It would also indicate that we should investigate cognitive

load effects in the case of human-machine interfaces in order
to make them more ecological valid.

This study shows that even simple everyday tasks per-
formed by healthy individuals can be affected by multitasking
for certain individuals. The potential to monitor this with an
unobtrusive wearable sensor provides an interesting approach
for further exploration in relevant patient populations, such as
Parkinson’s disease (PD).

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that affects the central nervous system and is primarily
found in patients over 50 years of age. Symptoms include dif-
ficulty with motor skills such as walking and writing, as well as
uncontrollable shaking (tremor), and general lethargy. These
symptoms are caused by the death of neurons in the midbrain

Fig. 4 Boxplots of the median frequency across the four conditions for
hand trajectories (a) and accelerations (b). Boxplots of the median
frequency for trajectories (c) and accelerations (d) labeled by the total
number of correct responses given for each trial. Trials that did not

contain any stroop task was labeled as Bno loading.^ The median value
is shown as the central red mark and the edges of the box representing the
25th and 75th percentiles. The whiskers represent the most extreme data
points and red crosses are used for outliners

Fig. 5 Visualizations of the
estimated probability distribution
between single and triple tasks. a
Probability distribution between
single and triple tasks, shown as
heat map, given the features of fm
for position and acceleration. b
Same probability distribution
between single and triple tasks as
shown in a, but now plotted in 3D
for visualization purposes
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that control movement by generating dopamine, a neurotrans-
mitter that modulates neural pathways and allows for smooth,
controlledmovement [29]. In later stages of the disease, patients
may experience trouble with emotional control and dementia
[29, 30]. Studies have shown that early movement impairments
and cognitive deficits can provide insight into the underlying
neurodegenerative processes [31]. In the case of Parkinson’s
disease, changes in physical movement typically precede
changes in language and behavior. Measurements of movement
are therefore particularly valuable as indicators of the earliest
stages of neural dysfunction. In addition, impairments in PD are
exacerbated under simple dual-task conditions requiring the
simultaneous performance of cognitive or motor tasks when
compared to healthy controls [32–34]. This provides further
evidence that the aforementioned method of monitoring ADL
under a range of conditions might be able to accurately predict
changes at the executive level.

Conclusion

An increased probability of finding low median frequencies
(fm) for wrist accelerations was found during complex multi-
tasking compared a single activity. It shows that even in
healthy individuals who are performing everyday tasks,
changes can arise in motor performance due to multitasking.
Differentiation based on probability is possible at the extreme
ends of the recorded values, while overlap exists within the
midrange. It is likely that certain patient populations will show
even more pronounced differences in motor performance dur-
ing multitasking. The opportunity to measure this with a mod-
est wearable sensor makes it of interest for further research in
relevant patient populations.
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