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Abstract 
 

It is shown that similarity solutions to a partial differential boundary value 

problem for power law fluids may be generated by the application of a multi-

parameter stretching group. Furthermore, the resulting ordinary differential 

boundary value problem arising from the initial group analysis is itself trans-

formed to an initial value problem by the application of a further stretching (one-

parameter) group transformation. The resultant initial value problem is solved by 

a standard forward marching method.  
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1.  Introduction 
 

      In this paper, we present a similarity group analysis of the equation of motion 

of a semi-infinite body of pseudoplastic (power law) fluid occupying the half- 

space 0y  [2, 8], that is 
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where ),( tyu  is the x-component of velocity in a cartesian system. The fluid is set 

in motion at time 0t  by imparting a constant velocity U  on the boundary ;0y  

since the effects of this velocity is expected to decay and eventually vanish as we 

move into the body of the fluid, equation (1.1) is to be solved with the boundary 

conditions 
 

                                  00)(0)0(  ,   t,t;     uU,   t,tu                             (1.2) 
 

In equation (1.1), m/  is the ratio of the fluid density   to the empirical constant 

,m  characteristic of the fluid, defined via equation (2) of [2]; the parameter n  also  

is characteristic of the fluid [2]. The solution process proposed here for the partial 

differential equation (1.1) with boundary conditions (1.2), and where the novelty 

lies, involves the complete reduction of the original problem (1.1)/(1.2) to an 

initial value problem entirely by stretching group transformations. 

      The solution process and paper are organized as follows. The first part of the 

process, presented in section 2, involves the identification of a 3-parameter 

stretching group transformation that the original problem (1.1)/(1.2) is invariant 

under [5, 6]. This is achieved by demanding [5, 6] that the original problem 

(1.1)/(1.2) be invariant under the more basic stretching [9] 5-parameter group 
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.5,,2,1 ,0  kak  Next, once the 3-parameter stretching group is determined,  

it is then used, in section 3, to transform the partial differential boundary value 

problem (1.1)/(1.2) into an ordinary differential boundary value problem. To do 

this, we assume the existence of an implicit solution [4] to the original problem 

(1.1)/(1.2) of the form 
 

                                            0)),/(,,,( Umtyug                                            (1.4) 
 

with g an arbitrary function, which is to be invariant under the 3-parameter group 

of section 2. This invariance requirement on (1.4) leads to two systems of partial 

differential equations having identifiable [5, 6] similarity solutions, which, in turn, 

allows a similarity transformation of the partial differential boundary value 

problem (1.1)/(1.2) into an ordinary differential boundary value problem. The 

final part of the reduction process, presented in section 4, uses another [1, 3, 7]  
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stretching group transformation to transform the ordinary differential boundary 

value problem, obtained from the invariant solution  analysis of section 3, into an 

ordinary differential initial value problem. Finally, in section 5, the resultant 

initial value problem is solved by a standard fourth-order Runge-Kutta forward 

marching method and the results of our analysis compared with previous work on 

the problem, that is, (1.1)/(1.2). 

 

2.  Determining the r-parameter group 

 

Following Moran [5] and Moran and Marshek [6], we will use the 5-parameter 

stretch transformation (with the group parameters 51 ,, aa   positive real variables) 
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to construct an r-parameter group transformation, which we write as a group, ,rG   

and a subgroup, rS  [5,6], that is 
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The demand that equation (1.1) and the boundary conditions (1.2) be invariant 

under the 5-parameter group transformation (2.1), leads to relations that determine 

both the order r of the transformation group (2.2) and the values of the group 

indices .,,11 rcb   It will be apparent that the r-parameter group (2.2) is simply 

another way of writing the 5-parameter group (2.1), that is, the 5 parameters are 

not independent and so .5r  This means that equation (1.1) and the boundary 

conditions (1.2) will be invariant under the r-parameter group transformation a 

fortiori. 

      Applying the transformations (2.1) and the chain rule to equation (1.1), we 

find (subscripts on u  or u  implying partial differentiation) 
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If we require equation (1.1) to be invariant under the transformation (2.1), then 

from (2.3) we must have 
 

                                                14
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Also, if we demand that the boundary conditions (1.2) be invariant under the 

transformations (2.1), then we require 
 

                                                         35 aa                                                         (2.5) 
 

From (2.4) and (2.5), we see that we may take 21  , aa  and 3a  as the basic 

independent group parameters, with the transformation (2.2) now taking the form 

of a 3-parameter group transformation, which we write as a group, ,3G  and a 

subgroup, 3S  [5, 6], that is    
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      In the next section we show that by determining the group invariants 

associated with 3S  and 3G  [5, 6], that the partial differential boundary problem 

(1.1)/(1.2) can be transformed to a corresponding ordinary differential boundary 

problem, (3.3) below. 

 
3.  The 3-parameter group analysis 

 

The next stage of the analysis, is the reduction of the partial differential boundary 

value problem (1.1)/(1.2) into an ordinary differential boundary value problem.  

Critical to this analysis is the determination of the group invariants of 3S  and 3G   

[5, 6] and invariant solutions of (1.1)/(1.2) under 3G  [5, 6]. If we express the  

solution to our partial differential boundary value problem implicitly, then we may 

introduce the function g such that the implicit solution is written as [4, 8] 
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 For (3.1) to be invariant under the group ,3G  we seek invariants, ,g  of the form 
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      So, by partial differentiation of (3.2) with respect to 21,aa  and ,3a  any 

(absolute [5, 6]) group invariant for the group 3G  must satisfy the partial 

differential system (where we may drop the bars) 
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That is, we have three independent linear homogeneous partial differential 

equations, in five variables, which has two solutions [6].  

      However, if we consider the subgroup ,3S  we seek an invariant, ,  of the form 
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leading to three independent linear homogeneous partial differential equations, in  

four variables, that is, by partial differentiation of (3.4) with respect to 21,aa  and 

,3a    must satisfy 
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(where we drop the bars again) which has one solution [6]. Apparently the sole  

solution   to (3.5) is also one of the two solutions to the 3G  equations (3.3).  
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      From the general theory of the solution of equations such as (3.3) and (3.5) 

[6], we know that we may look for particular group invariants of the form 
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The parameters 31 ,, cb   are evaluated by substituting that the relations (3.6) into 

equations (3.3) and (3.5): this leads to two sets of simultaneous equations for 

),,( 321 bbb  and ),,,( 321 ccc  which are solved to give the particular invariants 
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      As the invariants (3.7) are functionally independent, the general solution, ,g  

of (3.3) is a (differentiable) function [6], f say, of   and ,ĝ  so that 
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Solving the implicit relation (3.8) for ĝ  in terms of, ,  we see that we may rewrite 

(3.7) in the form 
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with )(F  (currently) an arbitrary function. 

      Finally, since ),(UFu   we can now reduce the original partial differential  

equation (1.1), with boundary conditions (1.2), to a boundary value problem in 

one variable only. That is, an ordinary differential equation with appropriately 

transformed boundary conditions. Indeed, under the similarity transformation 

(3.9), equations (1.1) and (1.2) are transformed into the following ordinary 

differential boundary value problem 
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where the dash denotes differentiation with respect to .  

      The relations (3.9) and (3.10) are essentially those obtained by Bird [2] from 

ad hoc dimensional considerations. In fact, ,)1( rn where r is defined by  
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equation (5) of reference [2]. In what follows, it proves convenient to transform 

the system (3.10) into the form obtained by Bird [2] by making the transformation 

),1/(  n  to get (the dash denotes differentiation with respect to ‘new’  ) 
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4.  Reduction to an initial value problem: further group analysis 

 

We wish to solve the system (3.11) to find the dimensionless velocity, ,F  from 

which we can get the x-component of the velocity, ,u  from .UF  That is, we wish 

to solve the ordinary differential boundary value problem 
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Bird solved (4.1) using a semi-analytic method.[2]. In what follows, we solve the  

system (4.1) for ,F following Phan-Thien [8], by turning (4.1) into an initial value 

problem. To do this we introduce, first, the change of variable ,1 FG   when  

the system (4.1) becomes (the variable G is not to be confused with the trans-

formation group) 
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The boundary value problem (4.2) may be transformed into an initial value 

problem now by a one-parameter stretching group transformation (see, for 

example, the books by Na [7] or Bluman and Coles [3] or Ames [1]). If we define 
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and, for invariance, we require 
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To determine 1α  and ,2 we require another equation, and we obtain this by 

forcing a condition on the unknown initial condition ).0(G  Let 
 

                                                        AG  )0(                                                     (4.6) 

 

then, transforming (4.6), we will have 

                                                 AGA 


_____

)0(21


                                              (4.7) 
 

Now, by setting 
 

                                                        121 α                                                   (4.8) 
 

equation (4.7) becomes 1)0(
_____

G  and the simultaneous equations (4.5) and (4.8) 

may be solved, for 1α  and ,2  to give 
 

                                               ,
2

1
1




n
α      

2

1
2




n
α                                        (4.9) 

 

      It remains only to find the group parameter .A  To find ,A  we consider the 

boundary condition at infinity, .1)( G  Transforming the boundary condition at 

infinity, we find that 
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      With everything now in place, the solution procedure is as follows. First, for 

any ,n  we solve the initial value problem 
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to find (an approximation) to ).(G  Next, we use the information from the 

solution to the initial value problem (4.11), that is, ),(G  to solve the required 

system for ,F  from (4.2) with ,1 GF   that is 
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5.  Results and conclusions 

 

The initial value problems (4.11) and (4.12) were solved using a standard fourth-

order Runge-Kutta routine and the results of this solution process are presented in 

Table 1 and Figure 1, for the range of values of n  considered by Bird [2].  

 

Table 1. Numerical values for calculating velocity profiles. 
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The results of Table 1 provide a comparison with the work of Bird [2], the column 

headed 01.0  being the values of the reduced variable   for which the fluid  
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velocity has fallen-off to %1 of the velocity of the moving wall (the xz-plane). 

The numbers in brackets in Table 1 refer directly to Bird’s results. The 

comparison with Bird’s results in Table 1 help to validate the solution method. 

Figure 1 presents two representative solution curves, for the ‘extreme values’ 

line) solid - (1 1F n   and ).line dashed - ( 3/1 2Fn   

 

Figure 1. Typical reduced velocity curves for line) solid - (1 1F n    

and ).line dashed - ( 3/1 2Fn   

 
       

      The approach here is restricted to a basic similarity analysis through the 

medium of stretching groups. Phan-Thien [8] has developed a Lie-group solution 

process for problems slightly more general than (1.1)/(1.2), from which similarity 

solutions may be extracted. The method developed here is, hopefully, simpler. 

      In conclusion, an example of a similarity approach to the group analysis of 

partial differential equations has been presented, the partial differential equation, 

describing unsteady flow in a pseudo-plastic fluid, being reduced to an ordinary 

differential equation. The complete transformation, including boundary con-

ditions, has led to an ordinary differential boundary value problem which in turn 

was transformed to an initial value problem and solved in a standard manner. 
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