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ABSTRACT 

 

Purpose of this paper  
The purpose of this paper is to explore the investment appraisal aspects of the new-generation whole-
life cost (NWLC) model and develops a fuzzy new-generation whole-life cost model for 25 simulated 
configurations of a steel-type medium sized office building 
 

Design/methodology/approach  
This work builds on the new-generation whole-life cost model attributed to Ellingham and Fawcett 
(2006) and replaces the binomially derived probability values by a fuzzy relation matrix using the cosine 
amplitude formulae. 
 
Simulated cost data of a medium-sized office building were computed using the existing whole-life cost 
techniques. The cost data were then analysed using the Spearman’s rank order correlation coefficient 
to assess the correlation in the preferences of clients based on each model 
 

Findings and value  
This work reveals a perfect correlation between the standard whole-life cost model and the fuzzy lower 
new-generation whole-life cost model. Equally, there is a strong correlation between the new-
generation whole-life cost model and the fuzzy upper new-generation whole-life cost model. 
 

Research limitations/implications 

This research examined only 25 building configuration permutations and the statistical tests were 
conducted at a 90% confidence interval level. Equally, the results are consistent for typical steel curtain 
baseline office buildings in the Philadelphia region of the United States. 

 

Practical implications  
Employing fuzzy set theory in modelling uncertainty in whole-life costing provides a sufficient and 
robust template for evaluating the cost implications over the estimated life of a building. 
 

Originality/value of paper  
This paper provides a robust technique that can assist decision-makers and facility managers in 
selecting the effective choice amongst a number of competing building configuration alternatives. This 
paper develops a new approach using fuzzy set theory for modelling uncertainty in the new-generation 
whole-life cost mechanism. 
 

Conclusions:  
It is instructive that a single-point whole-life cost estimate might be misleading for construction clients 
requiring conclusive guidance on the most economical option over the life of their built. Hence the 
range of whole-life cost values provided by fuzzy set theory is beneficial for construction clients in 
making more rational decision choices towards selecting an optimal configuration over the estimated 
life of the building 
 

Keywords: fuzzy-set theory, new-generation, office-buildings, uncertainty, whole-life costing 
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1 INTRODUCTION 

 
Investment in modern buildings requires comprehensive evaluation in order to ascertain economic 
viability. Mathematical modelling of whole-life costing provides a relevant framework to assess the 
investment potentials of such buildings. The standard whole-life costing (WLC) has been the general 
approach for evaluating the cost of a building over its expected life. Though, based on the simplistic 
net-present value metric, the standard whole-life costing methodology can arguably be considered the 
most widely-used approach for assessing the cost implication of a built facility over its expected life.  
Recent attention to real-options theory has provided a tangible supplement to the standard whole-life 
costing (WLC) methodology and has resulted in the development of the new-generation whole-life 
costing (NWLC) technique. Despite the advanced mathematical framework of the NWLC, it does not 
seem to fully handle the issues concerning the profile and treatment of uncertainties.  
 
One approach to uncertainty modelling that allows for some degree of flexibility is the fuzzy sets 
framework.  Fuzzy set theory basically imply the inclusion of degree of belonging in evaluating 
variables ((Zadeh 2008). They help to capture irreducible uncertainty as well as model vagueness in 
human reasoning abilities. Fuzzy relations are special cases of fuzzy sets.  Fuzzy relations can be 
defined as a vague relationship between some fixed numbers of variables (Zimmermann 2001). 
Relations are useful in interpreting the attributes of fuzzy systems.   Fuzzy relations are essentially one 
means of modelling the intensity between elements of a fuzzy set. Given the attributes and functions of 
fuzzy relations, it could be effectively used in representing uncertainties in the whole-life cost evaluation 
of buildings. 
      
A primary essence of whole-life costing in buildings is the comparison of alternatives which could assist 
in selecting building configurations that balance a good design with functional performance (Caplehorn, 
2012). In the existing literature on whole-life costing, two different structures of whole-life cost models 
have been identified. While the standard whole-life cost (WLC) model primarily serves as an 
investment appraisal technique, the new-generation whole-life cost (NWLC) model has been further 
enhanced into a decision-making framework, over the life of a building. This paper aims to explore the 
investment appraisal aspects of the NWLC and develops a fuzzy new-generation whole-life cost model 
for 25 simulated configurations of a steel-type medium sized office building. The fuzzy relation is 
developed based on the transformation of binomial probability coefficients of the new-generation 
whole-life cost model. The fuzzy transformation leads on to the evaluation of the respective fuzzy 
lower, fuzzy mean and fuzzy upper new-generation whole-life cost values for each of the 25 building 
configuration permutations. The cost values are then transformed into ranked pairs for each whole-life 
cost model and the ranking pairs are then correlated based on the Spearman’s rank order correlation.  
 
An overview of whole-life costing is discussed in the next section. After which, a review on the 
approaches to modelling uncertainty is examined. The research method is discussed in the 
subsequent sections, along with the results from the study. A discussion on the benefits of this 
approach is then treated and directions for future research are suggested. 
 
 

2 BACKGROUND: WHOLE-LIFE COSTING 

 
The subject of whole-life costing relates to the systematic evaluation of the cost of a facility over its 
expected life. According to the CIFPA (2011), whole-life costing is simply the systematic consideration 
of relevant costs and revenues associated with acquisition and ownership of a project over its 
estimated life. Despite a fairly abundant literature on whole-life costing across various disciplines, it 
remains to be proven whether existing whole-life cost models actually reflect the costing realities in 
built facilities (Clift and Bourke 1999, Ellingham and Fawcett 2006, Fawcett et al. 2012, Ferry, Brandon 
and Ferry 1999, Kirkpatrick 2000, Kishk 2005, Malik 2012). A major concern on the performance of 
existing whole-life cost models mostly relates to the inexactness in the running costs projections. Ferry 
et al., (1999) reckons that the estimation of the running costs in built facilities is often a product of 
guess work and will be dependent on a mix of personal preferences and policy standards. A logical 
approach to overcoming this misalignment between theory and practice of whole-life costing may 
suggest the accumulation of actual cost data over a building’s life and comparing them to the 
estimated costs from whole-life cost models. This approach will however require enormous time and 
efforts, and may still be froth with biases. In the UK, for example, companies are only legally obliged to 
keep such data for a period of 3 years after which they can be discarded. Hence availability of data 
may prove to be a daunting challenge (Bordass 2000, Kishk and Al-Hajj 2000, Tietz 1987). Even in 
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instances where such data have been meticulously kept and can be made available, such exercise 
could still be seen as grossly intrusive and give rise to privacy concerns (Callaghan, Clarke and Chin 
2009). More so, in residential buildings, there is not much legislation regarding the retention of cost 
data. Hence, there has been a clear gap in establishing the usefulness and limitations of existing 
whole-life cost models. 
 
In the current literature on built facilities, two different mathematical models of whole-life costing have 
been developed. The first one, more commonly known in the construction industry is the standard 
whole-life cost model. The more recent one, termed the new-generation whole-life cost model is 
attributed to Ellingham and Fawcett (2006). Table 1 reports on the essential attributes of these two 
models. 
 

Table 1. Comparative Difference in Existing Whole-life Costing Techniques 

 

 Property Standard Whole-life 
Cost Technique 

New-Generation Whole-life 
Cost Technique 

1 Mathematical Form Closed-form Expression Binomial  Expansion 

2. Uncertainty Assumption of 

Cash flows 

None Bivariate 

3. Risk Analysis Methodology Not Applicable Probabilistic 

4. 

 

Effect of Inflation and 

Discounting 

Inflation and discounting 
and jointly computed 

Inflation and discounting are 
separately computed 

5 Evaluation mechanism Discrete summation only Discrete Summation and 
Decision-tree analysis 

6. Time-Value of Cash flows Exponentially Declining Linearly declining or 
ascending 

 
Cost estimation in built facilities generally take account of the objectives and requirements of a cost 
system, as well as its constraints and assumptions (Tokede, Sloan and Brown 2013). Conceptually, the 
paths to cost-modelling are often a choice between simulation and mathematical modelling (Farr 
2011). Mathematical cost models could be useful and effective wherever data inputs are certain, have 
little or no variability and are available. Such instances may by implication ignore the existence of 
uncertainties (as observed with the standard whole-life cost technique, see Table 1). Given the scope 
of whole-life costing, this approach of ignoring uncertainties in the model framework, may conceal 
crucial aspects of the model. Nevertheless, mathematically cost modelling has been the pervasive 
approach used in the whole-life costing of built facilities and till date it is yet to be seen that building 
clients take notice of it in investment appraisal situations (Caplehorn 2012).  
 
An alternative to the use of mathematical models in whole-life costing is the simulations technique. 
Simulations are a cheaper way to conduct a simplified analysis of a system (Farr 2011). Simulations 
however fail to establish fundamental relationships and may provide outputs based on unverified or 
static assumptions. Boussabaine and Kirkham (2008) also expressed that simulations are more of a 
satisfactory  than  an optimal alternative in cost modelling. 
 
There is however a growing body of opinion  that for whole-life cost models to be useful and true to its 
function, the existence of uncertainties has to be acknowledged and provided for in its model 
framework (Bankole et al. 2012, Gluch and Baumann 2004, Verbruggen, Marchohi and Janssens 
2011). Core areas of uncertainties in cost estimation include: cashflow data, building-life, investor’s 
commitment, component service life and future decisions. Uncertainties, have been defined as lack of 
information which could stem from cognitive sources and non-cognitive sources (Ayyub 2006). An 
understanding of the exact nature of uncertainties affecting respective variables in whole-life costing 
situations will go a long way in better representing variables over the expected life of a built facility. A 
review on the specific features of the existing whole-life cost models will be examined: 
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2.1 Standard Whole-life Cost Model (WLC) 

 
The standard whole-life cost model dates back at least to Flanagan and Norman (1983), through a 
funded research by the Royal Institute of Chartered Surveyors [RICS] Education Trust. Since then, 
there has been a progression of studies on the subject of whole-life costing. Cole and Sterner (2000) 
documented and distinguished between the nomenclatures of whole-life costing which includes full 
cost accounting, total cost accounting and life-cycle cost accounting. Other related approaches to 
whole-life costing not explicitly reported by Cole and Sterner are through-life costing, total costing and 
whole-life cycle costing. It was however, Kishk (2005) that conjectured that all this variants are based 
on the same closed-form mathematical algorithms. Park and Sharpe (1990) explained that closed-form 
mathematical algorithms normally converge  to a particular value. 
 
Generally, the standard whole-life costing employs the present-value metric hinged on the discounting 
technique to evaluate the cost of built facilities. Mathematically, the standard whole-life cost formulae 
can be represented as: 
 

 
    
    (1) 
 

Where  = Equivalent cash flow,     and     
 

Conceptually, the standard whole-life cost mechanism sums up the present-value figure of the 
respective time of occurrence (usually years) of an estimated cost. Hence, the standard whole-life cost 
technique is more generally termed the “Net Present-Value” in whole-life cost evaluation scenarios. 
The present-value figure for each year is obtained based on the discounting technique, which involves 
the use of a discount-rate to exponentially scale-down the numerical value of a projected cost, relative 
to its expected time of occurrence. The farther into the future a project cost, the lesser its value relative 
to the present time. 
 
 

2.2 New-Generation Whole-life Cost Model (NWLC) 

 
The New-Generation Whole-life Costing technique was introduced by Ellingham and Fawcett (2006). 
The philosophical difference between the new-generation whole-life costing and the standard whole-life 
costing lies in the inclusion of uncertainty in the model framework. The assumption regarding the 
uncertainty in cash flow values is represented in binomial form – implying a proportionate increase or 
decrease in cashflow values over the expected life of a built facility. The chances for the occurrence of 
each cashflow were obtained by a normalized probability figure based on the binomial theorem. An 
exemplar on the probability-coefficient assumptions and binomial cashflow values is shown in the 
Figure 1 and Figure 2 respectively, representing the probability coefficient and the respective binomial 
cashflow projections for the first four years of a built facility, starting from year 0.  
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Figure 1.  Probability Coefficients in NWLC      Figure 2. Binomial Cashflow Values (4% increase annually)      
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The major issue that arises in comparing the standard whole-life cost model with the new-generation 
whole-life cost model is that the former ignores the uncertainties in cashflow values, while the later 
imposes an unverified pattern for uncertainty - which may as well be wrong.  
 
The central contribution of the new-generation whole-life cost model appears to be its admittance of an 
existential uncertainty in cash flow values, over the life of a built facility. This level of awareness on the 
existence of uncertainties in the cashflow projection of whole-life cost models, regardless of the 
simplicity, remains an invaluable contribution from the new-generation whole-life cost model. Besides, 
it provides a systematic and tractable approach to whole-life costing within the limitations of a 
mathematical modelling framework.  

 

3 MODELLING UNCERTAINTY 

 
In modelling uncertainty, probability theory is often the traditional and widely-accepted mechanism 
across various disciplines (Zadeh 1995). According to Raftery(2003), there are three common 
approaches to evaluating probability-values. These are: an objective calculation based on observed 
relative frequencies of past incidences; prior basis derived from visible symmetry and personalistic or 
subjective approach. All these approaches tend to provide a single-value figure representing the 
likelihood of occurrence of an uncertain event. There have however been a number of concerns on the 
sufficiency of such single-value estimate in capturing the entire facets of uncertainty (Dubois et al. 
2004, Kosko 1990, Zadeh 1995) since it principally provides information on the likelihood of an 
uncertain event. According to Ayyub and McCuen (2011), uncertainties may be classified as 
vagueness, likelihood and/or ambiguity. While probability theory may be appropriate for dealing with 
uncertainties regarding the likelihood of events (Kishk and Al-Hajj 2000, Kosko 1990), it could prove 
insufficient to deal with the vagueness and ambiguity aspects inherent in event occurrence (Zadeh 
1995, 2008, Zimmermann 2001). More generally, Zadeh (1995, pp274)  states that “probability theory 
tends to be much less effective in situations where dependencies between variables are not well-
defined, the knowledge of probabilities is imprecise and/or incomplete, the systems are not 
mechanistic, and human reasoning perceptions and emotions do play an important role”. These 
situations highlighted by Zadeh are arguably typical to whole-life costing scenarios and hence the 
applicability of fuzzy sets needs to be keenly considered. 
 
A complementary approach to handling the aspects of uncertainty regarding vagueness and ambiguity 
is fuzzy set theory (Zadeh 1995). Belohlavek et al., (2009) defined fuzzy set theory as a calculus that 
can be used in formalizing our intuitions about composition of graded categories. Baloi and Price 
(2003) clearly expressed that fuzzy set theory is not intended to replace probability theory but rather to 
provide solutions to problems that lack mathematical rigour. Other benefits with the fuzzy set approach 
are: they provide a tool to address variability associated with human abilities and performance 
(Mccauley-Bell and Badiru 1996); they provide a more flexible structure for combining qualitative and 
quantitative information (Sii, Ruxton and Wang 2001); they provide a way to deal with ill-defined and 
complex problems (Dikmen, Birgonul and Han 2007); they add value to the quality of decision-making 
(Byrne 1997) and allow for a reasonable trade-off between information usage and practical problems 
solving (Zadeh 2008).  
 
There are two resounding similarities between probability theory (PT) and fuzzy set theory (FST) in 
handling uncertainties. Both describe uncertainty with numbers in unit interval (0, 1) and both combine 
set propositions; associatively, commutatively and distributively (Kosko 1990). The authors of this 
paper have also observed that another distinction between both fuzzy set theory and probability is that 
while probability provides information based on the pattern in information available and accessible, 
fuzzy set theory attempts to model uncertainty based on the structure of the information available and 
accessible. Kosko (1990) however provides a more abstract distinction between PT and FST, which is 
in the manner of treatment of a set (A) and its set-theoretic opposite (A

c
). 

 
Given, the practical possibilities engendered by fuzzy set theory in uncertainty modelling, this study 
explores the fuzzy approach in modelling the new-generation whole-life cost of buildings. This 
approach will be important as more facets of uncertainty could be captured and more so, being a new 
approach to modelling whole-life costs could provide a more robust and realistic alternative to the 
closed-form mathematical expressions commonly used in practice. 
 
 
 



Fuzzy New-Generation Whole-life Cost Model        6 
 

 
4 FUZZY NEW-GENERATION WHOLE-LIFE COST MODEL 
 
The background literature on fuzzy set theory can be found in Ross (2009). One key aspect in the 
fuzzy set approach to uncertainty modelling is the development of a membership function. Membership 
functions represents the degree of similarity of different objectives of a defined parameter (Shaopei 
1998). Membership functions also help to characterize the relationship between parameters and could 
be used to translate subjective terms into mathematical measures (Kim et al. 2006) .As previously 
noted, in situations where no variability exists, closed-form algorithms, simple observation and 
Cartesian products may be effective approaches to developing the membership function (Ross 2009). 
However, where variability exists, membership values on the interval [0, 1] may lead to the 
development of fuzzy relation. In such situations, an observable pattern may be assumed and hence a 
fuzzy relation may be developed based on linguistic knowledge from experts, use of look-up tables and 
other specialized pattern classification mechanisms. In situations where the structure of the uncertainty 
needs to be considered, fuzzy relations may be more aptly determined through similarity methods that 
attempt to model some sort of structure in data. There are many methods available but the most 
prevalent are the cosine-amplitude and the max-min methods (Ross 2009). Some authors on fuzzy set 
theory has termed the max-min method, a conservative solution because it employs the goodness of 
one value to compensate the badness of another (Loetamonphong and Fang 2001). This work will 
utilise the cosine-amplitude similarity metric in developing a fuzzy new-generation whole-life cost model 
 
The similarity metric makes uses of a collection of data samples, k, and assumes they form a data 
array, K 
 

K = {k1, k2,…,kn} 
 

Each of the elements, ki, is itself a vector of length m, i.e. ki = {ki1, ki2,…,kim}, Each element of a 
relation, rij, results from a pairwise comparison of two data samples, k i and kj, the relation matrix will be 
of size, n x n. the cosine method calculates, rij, in the following manner and guarantees that 0 ≤ rij ≤ 1:  
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In the classical new-generation whole-life cost model developed by Ellingham and Fawcett (2006), 
probability values based on the binomial assumption is utilised in computing the respective present-
value cost figures over the expected life of a built facility.  In the fuzzy new-generation whole-life cost 
model developed, the probability values derived by the binomial model framework can all together be 
converted into a fuzzy relation. In order to however, retain the relation matrix, to be of n x n 
dimensions, zeros will be inserted in the empty spaces, as seen in figure 3 below 
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Figure 3. Probability Coefficients arranged in matrix and binomial cash flow values (inset right) 
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Using the cosine amplitude formulae in eqn (2), the probability values arranged in matrix form in figure 
3 is converted into a fuzzy relation. The fuzzy relation is then used with each of the binomial cash flow 
values to derive the fuzzy lower, fuzzy mean and fuzzy upper cash flow values. The computations for 
the fuzzy relations are implemented with scripts written on a computer software package - Python

® 
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Figure 4: Fuzzy Matrix Relation of Binomially derived Probability values and binomial cash flow values (inset left) 

 

 

5 RESEARCH METHOD 
The cost data used in this research was based on a simulation of energy conservation measures (see 
Table 2 below) using the EnergyPlus software. EnergyPlus provided the annual consumption for the 
combinations of the simulated baselines. Since combination of the 14 baselines will produce as many 
as 87,178,291,200 (14!) possible combinations, it may be more efficient to utilise field experience and 
engineering judgment to estimate the impact of these combinations on cost-savings. The various 
combinations were therefore scaled based on the context specific end-user factors which considers 
the presence of Interior Lighting (I.L), Exterior Lighting (E.L), Hot Water (H.W), Heating (H), Cooling 
(C), Pumps and Condensers (P-C), Fans (F), Elevators (E) and Small Plug Loads (SPL). These were 
scaled annually accordingly as shown in Table 1, and followed on the work of Hendricken (2012).  

 
Table 2 Energy Conservation Measures and respective scaling based on EnergyPlus Modelling and Engineering Judgment 

 

Energy Conservation Measures I.L E.L H.W H C P-C F E SPL 

Steel curtain baseline 100% 100% 100% 120% 120% 120% 120% 100% 100% 

T-5 lighting upgrade 54% 100% 100% 141% 81% 100% 77% 100% 100% 

LED light tube upgrade  12% 15% 100% 145% 80% 100% 77% 100% 100% 

High efficiency elevator upgrade 100% 100% 100% 100% 100% 100% 100% 50% 100% 

Double pane window upgrade 100% 100% 100% 75% 75% 100% 100% 100% 100% 

Temperature reset strategy 100% 100% 100% 89% 90% 100% 100% 100% 100% 

High-efficiency central boiler 100% 100% 100% 70% 100% 100% 100% 100% 100% 

Variable-air-volume system upgrade 100% 100% 100% 100% 60% 100% 100% 100% 100% 

Dedicated outdoor-air  100% 100% 100% 82% 42% 100% 65% 100% 100% 

Central chiller plant upgrade 100% 100% 100% 33% 33% 100% 100% 100% 100% 

High efficiency central chiller 100% 100% 100% 33% 23% 100% 100% 100% 100% 

Variable-air-volume system upgrade 100% 100% 100% 88% 90% 100% 50% 100% 100% 

Heat pump 100% 100% 100% 100% 98% 100% 99% 100% 100% 

Ground-source heat pump 100% 100% 100% 80% 80% 100% 100% 100% 100% 

Dedicated outdoor air system upgrade 100% 100% 100% 10% 10% 100% 100% 100% 100% 

White roof upgrade 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Insulated walls upgrade 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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By scaling the factors attached with energy-conservation measures using field experience and 
engineering judgment, the total number of possible combinations was reduced to 25 building 
configuration permutations (BCPs). Data was then gathered on the initial cost and maintenance cost 
from the RSMeans (Reeds Construction Data, 2011). The data was then combined with the energy-
consumption equivalents to compute the annual utilities (i.e. gas and electricity) cost of the various 
configurations of a typical steel-constructed medium-sized office buildings in the Philadelphia region of 
the United States. Table 3 reports the whole-life cost estimates of the 25 BCPs. 
 

Table 3: Whole-life Cost Estimates of the 25 Building Configuration Permutations 

 

BCP WLC NWLC Fuzzy Lower NWLC Fuzzy Mean NWLC Fuzzy Upper NWLC 

P1 2,029,589 2,583,238 2,032,350 2,402,492 2,537,244 

P2 1,848,349 2,328,460 1,850,740 2,171,716 2,288,570 

P3 1,791,760 2,178,955 1,793,689 2,052,547 2,146,786 

P4 2,049,257 2,550,051 2,051,755 2,386,559 2,508,447 

P5 1,877,534 2,372,287 1,880,001 2,210,768 2,331,185 

P6 2,372,460 2,867,213 2,374,927 2,705,693 2,826,111 

P7 2,133,169 2,534,214 2,135,165 2,403,282 2,500,891 

P8 2,076,580 2,384,709 2,078,114 2,284,112 2,359,108 

P9 2,476,314 2,940,722 2,478,631 2,789,109 2,902,141 

P10 2,390,866 2,880,377 2,393,307 2,720,569 2,839,710 

P11 2,391,844 2,859,567 2,394,177 2,706,872 2,820,711 

P12 2,319,376 2,781,857 2,321,683 2,630,873 2,743,437 

P13 2,206,321 2,566,183 2,208,112 2,448,695 2,536,282 

P14 2,200,841 2,489,862 2,202,280 2,395,504 2,465,848 

P15 2,138,137 2,527,079 2,140,072 2,400,098 2,494,762 

P16 2,081,547 2,377,574 2,083,021 2,280,929 2,352,978 

P17 2,495,692 2,951,022 2,497,963 2,802,373 2,913,196 

P18 2,192,481 2,526,335 2,194,142 2,417,338 2,498,594 

P19 2,157,461 2,406,754 2,158,702 2,325,365 2,386,040 

P20 2,323,585 2,771,292 2,325,818 2,625,132 2,734,099 

P21 2,305,464 2,746,152 2,307,661 2,602,283 2,709,542 

P22 2,124,224 2,491,373 2,126,051 2,371,507 2,460,867 

P23 2,067,634 2,341,868 2,069,000 2,252,338 2,319,083 

P24 2,457,008 2,880,074 2,459,118 2,741,958 2,844,928 

P25 2,145,470 
 

2,446,283 2,146,966 2,348,073 2,421,287 

 
The data obtained was then used to compute the standard whole-life cost (WLC), new-generation 
whole-life cost (NWLC), fuzzy lower new generation whole-life cost, fuzzy mean new-generation whole-
life cost and fuzzy upper new-generation whole-life cost, over an assumed life of 25 years. Based on 
the work of Harrison (2010), a discount rate of 11.28% was used in the standard whole-life cost model. 
This value corresponded to an interest rate of 4% and discount rate of 7% in the new-generation 
whole-life cost models. The computed values were then analysed based on the Spearman rank-order 
correlation to examine the agreement in the ranking of the models. 
 

The Spearman rank-order correlation ( sr ) is used to compare the relationship between ordinal or rank-

ordered variable. According to Corder and Foreman, (2009), the Spearman rank’s correlation is 
applicable, if the sample size is more than or equal to four. According to Gaten (2000), the sample size 
should be between 7 and 30. The study restricted the number of BCPs to the first 25 which is 
considered adequate and realistic, to avoid any information overload for decision-makers 
 
The choice of Spearman’s rank-order correlation is based on the primary essence of whole-life costing 
as a technique for effectively selecting amongst a number of competing project alternatives. In the 
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study herein, the study alternatives are the building configuration permutations. The ranking was done 
by sorting the BCPs from the least to the highest whole-life costs. This was implemented using the 
“Sort & Filter” option in Microsoft Excel 2010.  The sorted cost figures were then ranked and compared 
for each of the whole-life cost models. The general formulae for the Spearman rank-order correlation is 
expressed in equation (3): 
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Where n = number of rank pairs and Di = Differences between ranked pairs 

 

 
Figure 5: Building Configuration Permutations (BCPs) for medium-sized office buildings 

 

 
 

Table 4: Coefficients of the Whole-life Cost Models based on the Spearman Rank Correlation Measure 

 

  Correlation Coefficients 

Parameters 

 

Standard 

WLC 

 

Classical 

NWLC 

 

Fuzzy Lower 

NWLC 

 

Fuzzy Mean 

NWLC 

 

Fuzzy Upper 

NWLC 

Standard 

WLC 
1.00 0.105* 1.00 0.325* 0.360 

Classical 

NWLC 
 1.00 0.105* 0.343 0.793 

Fuzzy 

Lower 

NWLC 

  1.00 0.325* 0.360 

Fuzzy Mean 

NWLC 
   1.00 0.607 

Fuzzy Upper 

NWLC 
    1.00 

  * Values are not statistically significance at the 0.1 level (2-tailed) 
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6 RESULTS AND DISCUSSION 

 
The results obtained for the whole-life cost estimates for twenty-five building configuration 
permutations are shown in Figure 5. Based on a cursory observation, the data obtained shows a very 
high level of correlation between the fuzzy lower new-generation whole-life cost and the standard 
whole-life cost model. This basically implies that the difference between the new-generation whole-life 
cost and the standard whole-life cost is primarily a result of the uncertainty considered in the model 
framework. Where uncertainty or perhaps variability is lacking in the model inputs both models produce 
the same ranking values and thus clients preferences based on cost are perfectly the same. 
 
The correlation coefficient between the remaining variants of whole-life costing was subjected to 
statistical analysis using the SPSS

®
 (Statistical Package for Social Sciences) v20. The results obtained 

between the parameters are summarized in the Table 4. According to (Cohen 1988, 1992), the 
correlation coefficients 0.1, 0.3 and 0.5 will refer to weak, , moderate and strong correlation 
respectively, while correlation coefficients, 0.0 and 1.0 will refer to “no correlation” and “perfect 
correlation” respectively. 
 
The study reveals a large correlation between the Fuzzy Upper New-Generation whole-life cost model 
and the Classical New-generation whole-life cost model, while there is a perfect correlation between 
the standard whole-life cost model and the fuzzy lower new generation whole. Based on Cohen’s 
result, it could also be argued that a moderate correlation exists between the fuzzy mean new-
generation whole-life cost and the classical new-generation whole-life cost. The results between the 
fuzzy lower new-generation whole-life cost and the fuzzy mean new generation whole-life cost were not 
statistically significant. Equally, the agreement between the Fuzzy Mean new-generation whole-life cost 
and the Standard Whole-life Cost model were not statistically significant. This implies that the standard 
and the classical new-generation whole-life cost model are only distinguishable as two models based 
on the considerations of probabilistic uncertainty. Using fuzzy set to model the whole-life cost of 
buildings will however eliminate the need to use two different models as the fuzzy new-generation 
whole-life cost model adequately provides a range of estimates for the whole-life costs of buildings 
which correlates with the standard whole-life cost and the new-generation whole-life cost values. 
Equally, the fuzzy set mechanism provides an approach that reveals the variability in the whole-life cost 
values of buildings for respective configurations, over the expected life. Hence, fuzzy set theory can be 
seen as a robust and sufficient means for modelling uncertainty in whole-life costing. 
 
 

7 CONCLUSION 

 
Whole-life costing of buildings plays a significant role in assessing the optimal combination of feasible 
options in the conceptual stage of a building. There are different approaches to the estimation of the 
whole-life cost of buildings, this approach principally differ in the treatment of uncertainty in the model 
framework. The new-generation whole-life cost model is a mathematically tractable and intellectually 
stimulating approach to whole-life costing. However, it is based on a rigid probabilistic mechanism. 
This work explores the use of fuzzy set theory to model the uncertainty in the cashflow values over the 
life of a building and correlates the result with existing techniques. 
 
This work reveals a perfect correlation between the standard whole-life cost model and the fuzzy lower 
new-generation whole-life cost model. Equally, there is a strong correlation between the new-
generation whole-life cost model and the fuzzy upper new-generation whole-life cost model. This revels 
that fuzzy set theory is a robust framework to estimate the whole-life cost of buildings as it provides a 
sufficient and viable template for modelling the whole-life cost of buildings. 
 
It is however instructive that a single-point whole-life cost estimate might be misleading for construction 
clients requiring conclusive guidance on the most economical option over the life of their built. Hence 
the range of values provided by fuzzy set theory is beneficial for construction clients in making more 
rational decision choices in selecting the optimal choice over the estimated life of the building.  
 
Further work will involve the development of an elaborate questionnaire to test which of the models 
best estimates the whole-life cost of buildings over the estimated life. This procedure will therefore 
provide an empirical justification for the models in practice and will help to answer whether a “whole” is 
not simply the “sum of its part”. The Greek Philosopher- Aristotle argues that the “whole” is more! 
Further work will therefore test this hypothesis in subsequent studies. 



Fuzzy New-Generation Whole-life Costing   11 

 

 

6 REFERENCES 

 

Ayyub, B M (2006) Uncertainty modeling and analysis in engineering and the sciences.  CRC Press. 

Ayyub, B M and McCuen, R H (2011) Probability, statistics, and reliability for engineers and scientists.  

CRC press. 

Baloi, D and Price, A D (2003) Modelling global risk factors affecting construction cost performance. 

International Journal of Project Management, 21(4), 261-9. 

Bankole, O, Roy, R, Shehab, E and Cheruvu, K (2012) A prediction system for assessing customer 

affordability of whole life cycle cost in defence industry. Journal of Intelligent Manufacturing, 

23(6), 2407-25. 

Belohlavek, R, Klir, G J, Lewis III, H W and Way, E C (2009) Concepts and fuzzy sets: 

Misunderstandings, misconceptions, and oversights. International journal of approximate 

reasoning, 51(1), 23-34. 

Bordass, B (2000) Cost and value: Fact and fiction. Building Research & Information, 28(5-6), 338-52. 

Boussabaine, A and Kirkham, R (2008) Whole life-cycle costing: Risk and risk responses. Oxford: 

Wiley-Blackwell. 

Byrne, P (1997) Fuzzy dcf: A contradiction in terms, or a way to better investment appraisal. In, 

Proceedings Cutting Edge ‘97, RICS, London. 

Callaghan, V, Clarke, G and Chin, J (2009) Some socio-technical aspects of intelligent buildings and 

pervasive computing research. Intelligent Buildings International, 1(1), 56-74. 

Caplehorn, P (2012) Whole life costing: A new approach. New York: Routledge. 

CIFPA (2011) Whole life costing. London: Chartered Instititute of Public Finance and Accountancy. 

Clift, M and Bourke, K (1999) Study on whole life costing for the department of the environment, 

transport and the regions1860812805, Watford: DETR. 

Cohen, J (1988) Statistical power analysis for the behavioral sciences.  Psychology Press. 

Cohen, J (1992) A power primer. Psychological bulletin, 112(1), 155. 

Cole, R J and Sterner, E (2000) Reconciling theory and practice of life-cycle costing. Building Research 

& Information, 28(5-6), 368-75. 

Corder, G W and Foreman, D I (2009) Nonparametric statistics for non-statisticians: A step-by-step 

approach.  John Wiley & Sons. 

Dikmen, I, Birgonul, M T and Han, S (2007) Using fuzzy risk assessment to rate cost overrun risk in 

international construction projects. International Journal of Project Management, 25(5), 494-

505. 

Dubois, D, Foulloy, L, Mauris, G and Prade, H (2004) Probability-possibility transformations, triangular 

fuzzy sets, and probabilistic inequalities. Reliable computing, 10(4), 273-97. 

Ellingham, I and Fawcett, W (2006) New generation whole-life costing: Property and construction 

decision-making under uncertainty. Oxford: Taylor & Francis. 

Farr, J V (2011) Systems life cycle costing: Economic analysis, estimation, and management. Boca 

Raton: Taylor and Francis Group, CRC Press. 

Fawcett, W, Hughes, M, Krieg, H, Albrecht, S and Vennström, A (2012) Flexible strategies for long-

term sustainability under uncertainty. Building Research & Information, 40(5), 545-57. 

Ferry, D J, Brandon, P S and Ferry, J D (1999) Cost planning of buildings. 7th ed. New York: Wiley-

Blackwell. 

Flanagan, R and Norman, G (1983) 1983,'life-cycle costing for construction', rics, surveyors 

publications ltd, london. 

Gaten, T (cited 2014) Spearman's rank correlation. [Available online from 

http://www.le.ac.uk/bl/gat/virtualfc/Stats/spear.htm.] 

Gluch, P and Baumann, H (2004) The life cycle costing (lcc) approach: A conceptual discussion of its 

usefulness for environmental decision-making. Building and Environment, 39(5), 571-80. 

Harrison, M (2010) Valuing the future: The social discount rate in cost-benefit analysis.  Australia. 

Productivity Commission. 

Hendricken, L, Otto, K, Wen, J, Gurian, P and Sisson, W (2012) Capital costs and energy savings 

achieved by energy conservation measures: Medium office buildings in the greater 

philadelphia region. In. 

Kim, J, Lee, S, Hong, T and Han, S (2006) Activity vulnerability index for delay risk forecasting. 

Canadian Journal of Civil Engineering, 33(10), 1261-70. 

Kirkpatrick, D (2000) Whole life cost forecasting. The RUSI Journal, 145(4), 25-9. 

Kishk, M (2005) On the mathematical modelling of whole-life costs. 21st Annual ARCOM Conference, 

7-9 September 2005, SOAS, University of London, 1, 239-48. 

http://www.le.ac.uk/bl/gat/virtualfc/Stats/spear.htm.


Fuzzy New-Generation Whole-life Cost Model        12 
 

 
Kishk, M and Al-Hajj, A (2000) Fuzzy modelling of life cycle costs of alternatives with different lives. In, 

16th Annual Conference of the Association of Researchers in Construction Management 

(ARCOMM 2000), Glasgow Caledonian University. 

Kosko, B (1990) Fuzziness vs. Probability. International Journal of General System, 17(2-3), 211-40. 

Loetamonphong, J and Fang, S-C (2001) Optimization of fuzzy relation equations with max-product 

composition. Fuzzy Sets and Systems, 118(3), 509-17. 

Malik, A S (2012) Discounting procedures in large engineering projects. In, Systems Conference 

(SysCon), 2012 IEEE International. IEEE1-6. 

McCauley-Bell, P and Badiru, A B (1996) Fuzzy modeling and analytic hierarchy processing to quantify 

risk levels associated with occupational injuries. I. The development of fuzzy-linguistic risk 

levels. Fuzzy Systems, IEEE Transactions on, 4(2), 124-31. 

Park, C S and Sharp-Bette, G P (1990) Advanced engineering economics.  Wiley New York. 

Raftery, J (2003) Risk analysis in project management.  Routledge. 

Ross, T J (2009) Fuzzy logic with engineering applications.  Wiley. 

Shaopei, L (1998) Fuzzy modeling of risky investment decision in civil engineering projects. Uncertainty 

modeling and analysis in civil engineering. In: CRC Press LCC. 

Sii, H S, Ruxton, T and Wang, J (2001) A fuzzy-logic-based approach to qualitative safety modelling for 

marine systems. Reliability Engineering & System Safety, 73(1), 19-34. 

Tietz, S (1987) Life cycle costing and whole-life design. Structural Engineer. Part A, 65, 10-1. 

Tokede, O, Sloan, B and Brown, A (2013) Preserving continuity in whole-life cost models for net-zero 

carbon buildings. In: 29th Annual Conference of the Association of Researchers in 

Construction Management, Smith, S and Ahiaga-Dagbui, D D, Eds.), Reading: ARCOM, 1231-

41. 

Verbruggen, A, Marchohi, M A and Janssens, B (2011) The anatomy of investing in energy efficient 

buildings. Energy and buildings, 43(4), 905-14. 

Zadeh, L A (1995) Discussion: Probability theory and fuzzy logic are complementary rather than 

competitive. Technometrics, 37(3), 271-6. 

Zadeh, L A (2008) Is there a need for fuzzy logic? Information Sciences, 178(13), 2751-79. 

Zimmermann, H J (2001) Fuzzy set theory-and its applications.  Springer. 

 
 


