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ABSTRACT 
Practical applications of Ad-hoc networks are developing everyday and safeguarding their security is 

becoming more important. Because of their specific qualities, ad-hoc networks require an anomaly detection 

system that adapts to its changing behaviour quickly. Bio-inspired algorithms provide dynamic, adaptive, 

real-time methods of intrusion detection and particularly in initiating a response. A key component of bio-

inspired response methods is the use of feedback from the network to better adapt their response to the 

specific attack and the type of network at hand. 

 However, calculating an appropriate length of time at which to provide feedback is crucial - premature 

feedback or delayed feedback from the network can have adverse effects on the attack mitigation process. The 

antigen-degeneracy response selection algorithm (Schaust & Szczerbicka, 2011) is one of the few bio-inspired 

algorithms for selecting the appropriate response for misbehavior that considers network performance and 

adapts to the network.  The main drawback of this algorithm is that it has no measure of the amount of time to 

wait before it can take performance measurements (feedback) from the network. In this thesis,  we attempt to 

develop an understanding of the length of time required before feedback is provided in a range of types of ad-

hoc network that have been subject of an attack, in order that future development of  bio-inspired intrusion 

detection algorithms can be enhanced. 

Aiming toward an adaptive timer, we discuss that ad-hoc networks can be divided into Wireless Sensor 

Network (WSN), Wireless Personal Area Network (WPAN) and Spontaneously Networked Users (SNU). We 

use ns2 to simulate these three different types of ad-hoc networks, each of which is analysed for changes in its 

throughput after an attack is responded to, in order to calculate the corresponding feedback time. The 

feedback time in this case is the time it takes for the network to stabilise. Feedback time is not only essential 

to bio-inspired intrusion response methods, but can also be used in network applications where a stable 

network reading is required, e.g. security monitoring  and motion tracking. 

Interestingly, we found that the network feedback time does not vary greatly between the different types 

of networks, but it was calculated to be less than half of what Schaust and Szczerbicka used in their algorithm. 
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Chapter 1 
 

1. Introduction 

1.1 Context 

Society is becoming increasingly reliant on functions of computer systems, benefiting from e-health, e-

commerce, e-government and many more systems. From a personal perspective each member of society 

carries and interacts with many computing devices. Considering the sensitivity of computer system 

applications in our lives, guarding the confidentiality, integrity and availability of these systems seems vital. 

Ad-hoc networks are becoming more popular and so the need for ad-hoc network security is becoming more 

apparent. 

Security mechanisms can be divided into attack prevention, detection and recovery (Stallings, 2009). In 

order to remove the vulnerabilities of attack prevention methods, intrusion detection can be used as a second 

wall of defence. Generally, intrusion detection systems (IDS) can be categorised into anomaly detection and 

misuse detection based on their detection methods. One disadvantage of misuse detection is that it can only 

detect previously known attacks, based on their signatures; whereas in anomaly detection, attacks are detected 

through deviation from normal behaviour (Timmis, Lemos, Ayara, & Duncan, 2002). Although anomaly 

detection can have its drawbacks and producing too many false positives is undesirable.  

The biological immune system may be considered a rich source of inspiration for anomaly detection and 

recent advancements in theoretical immunology endorse this idea. Biological systems are self-healing, self-

maintaining, self-organising systems and are self-aware in the way that they have an internal self-image and 

interact with their environment accordingly. The successful and collaborative operation of biological systems 

based on a limited set of rules and with global intelligence which is larger than superposition of individuals 

(Dressler & Akan O, 2010) can contribute to many applications especially in distributed networks. 

Bio-inspired methods, usually try to detect anomaly by building an adapting self-image. This is 

performed by extracting elements of the system that represent the system behavior most and then creating a 

self-image using one of many bio-inspired algorithms. Ad-hoc networks especially require an anomaly 

detection system that adapts to its changing behaviour quickly and distinguishes the normal changes in the 

network from abnormal anomalies that might be the result of an intrusion or misbehavior. The various 

proposed methods of bio-inspired intrusion detection are investigated in section3.2. Intrusion response, which 

is the goal of any intrusion detection algorithm, is then outlined briefly in section 2.4.2. Part of any bio-

inspired intrusion response algorithm is taking measurements from the network to provide feedback to the 

algorithm. Network feedback time is a sensitive issue and can affect the outcome of the response algorithm 
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profoundly. A measurement taken from the network prematurely after a response, while it is in the process of 

rerouting, does not show the real effects of that response, also waiting too long to measure the effects of a 

response can hinder the workings of a network for un-needed lengths of time. Different types of network with 

different sizes can behave differently, and so as a case study, we investigate the shutdown intrusion response 

in three types of network: WPAN (Wireless Personal Area Network), SNU (Spontaneously Networked Users) 

and WSN (Wireless Sensor Network). 

Although having a feedback time is essential to bio-inspired algorithms, it can be used in other ad-hoc 

network applications, where stability is an important issue and network measurements have an impact on the 

outcome. An application could be in ad-hoc network stability analysis, in which we can determine the fault 

tolerance of different types of ad-hoc networks against node failures. Another similar application is the 

inspection of the ad-hoc network resilience to the set of attacks, in which nodes are destroyed such as DOS 

attacks.   

 

1.2 Contributions 

The main contributions of this research are: 

• Calculation of response feedback time for three main types of ad-hoc network: WSN, WPAN and SNU, 

• Development of a method of calculating response time that could be used to improve the bio-inspired 

antigen-receptor degeneracy method (Schaust & Szczerbicka, 2011) for selecting the most suitable 

intrusion response for the current state of the ad-hoc network,  

• Enhancing the implementation of the AODV routing protocol in ns2 simulator to support the node 

shutdown feature.  

• Simulation of an attack response in different types of ad-hoc networks. 

This work can also benefit:  

• Methods that require feedback after a change to the ad-hoc network either bio-inspired or non-bio-

inspired. 

• Stability analysis of ad-hoc networks in case of node failure. 

• Analysis of ad-hoc network resilience against the set of attacks, in which nodes are destroyed such as 

DoS (Denial-of-Service) attacks. 

 

1.3 Overview 

Ad-hoc networks have various applications from military to rescue to monitoring and in many cases they 

provide information that influences the safety of human beings. Having a secure and reliable ad-hoc network 
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where all nodes take the same share of the work load is crucial to the application using the network as an 

infrastructure. A system that detects abnormalities and malicious activity and responds accordingly puts up a 

line of defence for that application which would have deemed extremely vulnerable without.  

An autonomous bio-inspired response selection approach seems to be the promising solution for ad-hoc 

networks security. The antigen-receptor degeneracy method by Schaust and Szczerbicka (2011) is the 

prevalent bio-inspired intrusion response method. We aim to overcome the main weakness of this algorithm. 

In this research we try to work out the time after a shutdown response to an attack in an ad-hoc network after 

which the network readings are dependable and show the effects of the response correctly.  

We are going to address the following research questions: 

• To what extent is it possible to predict the appropriate time-lag in an ad-hoc network following 

an attack before feedback should be provided to a response algorithm? 

• To what extent does the feedback vary with the type and size of network and the type of attack? 

Having answered these questions, it should be possible to design better bio-inspired algorithms for 

intrusion response in ad-hoc networks. 

 

1.4 Scope 

We investigate the different immune inspired intrusion detection and response algorithms, and try to enhance 

intrusion response by calculating the feedback time used to evaluate response effects on the network. In the 

implementation part of the research we focus on AODV as the best overall performing routing protocol in ad-

hoc networks. We consider three main categories of ad-hoc network: WSNs, SNUs and WPANs; and by 

simulating these networks we investigate the effect of ‘node shutdown’ as a response to misbehaviour on the 

network and calculate the time to wait until the network reaches a state of stability where it either cannot 

recover or is nearly recovered. 

The aim of the research is to calculate feedback time in three main categories of ad-hoc networks, 

following a node shutdown response to misbehaviour, and the objectives are: 

• Simulate a shutdown response to misbehaviour in the different categories of ad-hoc networks: WSNs, 

SNUs and WPANs, using an appropriate simulator. 

• Conduct a series of experiments in order to calculate the time taken for the network to return to an 

acceptable level of throughput following an attack response. 

• Analyse the results over a range of scenarios with different percentages of misbehaviour. 

 

1.5 Thesis Structure 

This thesis is organised as follows: 
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• Chapter 2 introduces background information on ad-hoc network security and discusses categories of 

ad-hoc networks, Ad-hoc routing protocols, attacks against ad-hoc networks and intrusion detection and 

response in ad-hoc networks. 

• Chapter 3 presents the literature review and related work on bio-inspired intrusion detection and 

response in ad-hoc networks. In particular, an energy aware immune-inspired misbehaviour detection 

method, which is the predecessor of the antigen-receptor degeneracy technique, is analysed. 

• Chapter 4 describes the enhancement of the antigen-receptor degeneracy intrusion response technique 

by calculating the response feedback time and explains the implementation and simulation details. 

• Chapter 5 explains the evaluation methodology and the experiment design. It then illustrates and 

discusses the experiments results.  

• Chapter 6 finally concludes this thesis by summarising the contributions and discussing future work. 

  



5 
 

 
 

Chapter 2 
 

2. Technology Overview  

2.1 Introduction 

In this chapter we introduce ad-hoc networks as the underlying technology for our work. The main categories 

of ad-hoc networks which are then used in our experiments are described. Routing protocols in ad-hoc 

networks are discussed and our choice of protocol explained. The challenges and specific needs of ad-hoc 

networks like adaptability, limited computation and transmission resources are explained so that we can 

understand the reasons behind solutions devised specifically for ad-hoc networks. Finally the security of ad-

hoc network is considered and attacks and vulnerabilities of these networks are discussed. 

 

2.2 Ad-hoc Networks 

Ad-hoc networking or multi-hop relaying is not a new concept and roots back to 500 B.C. to the time of 

Darius I, the king of Persia, who devised a communication method between his capital and the remote 

provinces of his empire (Byers & Bourgoin, 2005-2006); he used a line of men positioned on high structure 

shouting.  This method was 25 times faster than normal messengers available at that time. Nodes in an ad-hoc 

network cooperate to communicate beyond their wireless transmission range; this and the reduced amount of 

energy in transmitting data from the source to a destination using a multi-hop method is the basis for wireless 

ad-hoc networks. Together with situations where it is not possible to have any other kind of infrastructure 

network between the nodes, like setting up the infrastructure would either be too time consuming or 

expensive, or where the terrain is inaccessible, the need for developing such networks with the reassurance of 

security is clear.  

Wireless ad-hoc networks can have many different uses in our everyday lives for example, traffic data 

that is collected and distributed by vehicle navigation systems, or researchers in a conference sharing 

resources, or the shared use of hardware and software on nodes available to different people, or the detection 

of fire using sensors in a building; It can also have uses in military operations, to sense activity in enemy 

grounds, or disaster areas where communication infrastructure have been destroyed, although like many other 

developments these networks were initially devised for military uses. 

The PRNET project was one of the first distributed wireless multi-hop communication systems. This 

Defence Advanced Research Projects Agency (DARPA) funded project initiated in 1973, was a robust, 

reliable, operational experimental network (Jubin & Tornow, 1987). The nodes in this network were mobile, 

and had a single communications channel, which gave the benefit of simpler channel management techniques 
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and the ease of supporting mobility. The main challenges in PRNET were error and flow control over the 

wireless link, handling link breaks, distributed channel sharing and processing and storing of information in 

each node. 

Modern ad-hoc networks are multi-hop peer to peer networks in which each node manages both the 

routing and processing of the data in a store and forward way (Hubaux, Buttya´n, & Capkun, 2001). Data is 

transmitted to its destination through a series of hops between intermediate nodes, and so reducing the 

required energy for the data exchange according to the inverse square law. Nodes may be mobile or 

stationary, either way they join and leave the network randomly. A mobile ad-hoc network is an 

infrastructure-less wireless network that dynamically changes topology in an unpredictable manner since 

nodes are free to move (Luo, Ye, Lu, & Zhang, 2004). In Latin, ad-hoc literally means “for this,” further 

meaning “for this purpose only” and thus usually temporary (IETF Working Group Charter, 1997). 

Ad-hoc networks are defined as infrastructure-less networks, as opposed to cellular networks, in which 

base stations manage the resources and routing of the data, and nodes only communicate with the nearest base 

station. Base stations themselves manage the routing of the data independently through wired/wireless 

mediums. Nodes in an ad-hoc network are more complex, compared to nodes in a cellular network, as they 

have to perform the routing of the data as well as performing processing operations. 

 Thus Ad-hoc networks are formally defined by (Luo, Ye, Lu, & Zhang, 2004) as: “An Autonomous 

system of mobile hosts connected by wireless links, the union of which forms a communication network 

modelled in the form of an arbitrary communication graph.” 

 

Figure 1- A diagram showing the differences between cellular and ad-hoc architecture, and a hybrid 
one 

An intermediate solution between cellular and ad-hoc is hybrid communication networks, the proposed 

solutions like Multi-Hop Cellular Networks (MCNs) (Ananthapadmanabha, Manoj, & Murthy, 2001) and 

self-organising packet radio ad-hoc networks with overlay (SOPRANO) or integrated cellular ad-hoc relay 

(iCAR) networks (Wu, Qiao, De, & Tonguz, 2001); these show an improvement in the capacity of the system 

significantly.  In these networks mobile ad-hoc nodes can function in the presence of infrastructure and the 

architecture combines the benefits of cellular and ad-hoc networks. Although this architecture seems 

beneficial the ad-hoc networks’ unsolved problems keep it from being commercially deployed: “QoS 
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provisioning and real-time applications, pricing, cooperative functioning, energy-efficient relaying, load 

balancing, and support for multicast traffic” (Hofmeyr, 2000). 

 

Figure 2- A diagram showing a typical ad-hoc network as a graph 

In an ad-hoc network where infrastructures like base stations, routers and switches don’t exist, wireless 

nodes connect using the neighbouring nodes as connecting nodes. In Figure 2a typical ad-hoc network is 

depicted. Each node is shown using a small circle, with its transmission range as the bigger circle. Nodes 

located within the transmission range of other nodes are able to send and receive data from that node and 

therefore neighbours, this is illustrated by connecting the two nodes in the graph with a line. 

2.3 Categories of Ad-hoc Networks 

Wireless ad-hoc networks can be categorized in many ways, according to the area they cover like PAN, LAN, 

MAN, WAN or RANs (Cordeiro & Agrawal, 2006), according to their applications like military applications, 

collaborative and distributed computing, emergency operations, wireless mesh networks, wireless sensor 

networks, Hybrid wireless networks (Murthy & Manoj, 2004), but generally the below classification 

(Dressler, 2006) fulfils our purposes. 

• WSN- Wireless sensor networks are a type of ad-hoc network in which the devices are cheap, small and 

stationary, and able to sense some physical characteristic of the environment and transmit it to a base 

station or another node. The nodes have limited computational and communication capabilities and 

(rechargeable) batteries are the main source of power. These devices could be used in battlefield 

surveillance of enemy territory where they could be scattered from a plane and activities could be 

detected and monitored. Another application area is the health of large bridges and structures; bio 

sensing, machine prognosis and environmental monitoring could be commercial application fields 

(Cordeiro & Agrawal, 2006). 

• WPAN- Wireless Personal Area Networks are localized networks in which nodes are associated with a 

given person and aim at enabling wireless communication between the devices a user is carrying. The 

nodes vary between a few centimetres to a few meters in range, and usually utilize a single hop point to 

point wireless link to exchange data. Bluetooth and infrared data association and ZigBee are the main 

technologies used to implement WPANs. PDAs and mobile phones are the main platforms for WPAN. 
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• SNU- Spontaneously networked users are networks formed on demand to exchange data, have 

multimedia communications or use entertainment applications like multiuser games. The nodes in this 

network are usually devices with higher processing power and greater bandwidth capabilities, like laptop 

computers and PDAs. Dynamic multi-user games and groupware and collaborative tools are some of the 

applications in this category of ad-hoc networks (Dressler, 2006). Table 2-1 describes the differences in 

the three categories of ad-hoc networks. 

Table 2-1- Differences in the three categories of ad-hoc networks; WSN, WPAN and SUN (Dressler, 
2006) 

Requirement WSN WPAN SNU 

Energy  High high low 

Storage High medium low 

Mobility Limited low high 

Heterogeneity Limited high low 

Processing Power High medium low 

Group Formation No high high 

Surrounding Conditions High low low 

Security Low high medium 

Varying user demands None medium high 

 

2.4 Routing Protocols in Ad-hoc Networks 

Routing in ad-hoc networks is different from traditional fixed routing protocols; it has to be capable of dealing 

with the dynamic nature of these networks. As mentioned before ad-hoc networks can be implemented in 

many different areas such as military, emergency, conferencing and sensor applications. Based on the 

implemented category of ad-hoc network the appropriate routing protocol is used. For example in a military 

application a low probability of detection and interception is a key factor, while in a sensor application 

minimum energy usage is most important (Kuosmanen, 2002). 

There are two main types of routing protocols in ad-hoc networks, proactive or table driven and reactive 

or on-demand routing protocols. Proactive routing protocols need to maintain an up-to-date list of destinations 

and their routes which would mean high data maintenance and slower reaction to changes in the network, 

although packet forwarding is faster as the route is already present. Destination Sequenced Distance Vector 

(DSDV) is an example of a proactive routing protocol. Reactive routing protocols determine the route when 

needed, and have smaller route discovery overheads. These protocols use a flooding approach for route 

discovery, which is more time consuming and could lead to network clogging. The reactive methods of 

routing are more dynamic and have less data maintenance overhead. Dynamic Source Routing (DSR), 

Temporally Ordered Routing Algorithm (TORA) and Ad-hoc On Demand Distance Vector Routing (AODV) 

are the main protocols of this type (Zou, Ramamurthy, & Magliveras, 2002). 
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AODV is experimentally shown to have the overall better performance over DSR and TORA (Gupta, 

Sadawarti, & Verma, 2010), while each protocol has advantages and disadvantages of its own and better for 

some applications over others. DSR works better with applications of moderate mobility, having lower 

overhead it is better suited to networks with lower bandwidth and power. TORA supports multiple routes and 

multicasting and so it is better suited to larger networks of dense population. Below is a table showing a 

comparison between these three routing protocols in terms of network metrics with “1” rated as best and “4” 

worst numerical value.  

The AODV routing protocol was chosen for experiments in our project because of its overall prevalence 

amongst other reactive routing protocols. As seen in Table 2-2 AODV acts moderately in all aspects and 

performs better in the throughput and packet-drop measurements. AODV is also a popular choice for bio-

inspired solutions for intrusion detection and response and can be seen in (Sahu & Shandilya, 2010). 

Table 2-2 –A numerical comparison of three reactive routing protocols (Gupta, Sadawarti, & 
Verma, 2010) 

Metrics  AODV DSR TORA 

Scalability 2 3 1 

Delay  3 2 4 

Routing overhead 2 1 3 

Drop packet 1 2 3 

Throughput  1 2 4 

Dynamic adaptability 2 3 1 

Energy conservation 2 1 3 

 

2.5 Challenges of Ad-hoc networks 

The special properties of ad-hoc networks brings about challenges specific to them, while these challenges are 

the main basis for security threats, they are also what distinguishes them from structured networks, making 

them useful for their application. In the next section explain how these properties can be compromised and 

misused to attack ad-hoc networks briefly, but here we look into the properties of ad-hoc networks to better 

understand them. The main challenges in ad-hoc networks are as follows (Morais & Agrawal, 2006), (Murthy 

& Manoj, 2004) and (Brutch & Ko, 2003): 

Nodes in ad-hoc networks usually rely on exhaustible forms of energy, with the device’s network 

interface being the largest consumer of energy. This provides the basis for a denial of service attack, by using 

up the node’s energies and flooding the network or more sensitive nodes with requests. Also this constraint 

brings selfish behaviour of nodes, dropping packets implying not enough battery to perform a task. 

Nodes in an ad-hoc network use a shared wireless medium to access the network, and this in itself brings 

about some new constraints, specifically the limited bandwidth. Nodes have to wait before they send packets 

into the channel, and interference causes packet loss.  A good routing protocol manages the use of the shared 

channel in an optimum way, using the maximum amount of resources available to it. The limit in bandwidth 
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is also a basis for denial of service attacks, where more sensitive nodes are targeted with fake packets and 

other nodes are prevented from accessing the network. Also with wireless communication come other 

challenges such as noise, fading and interoperation: when two independently formed ad-hoc networks come 

close to each other physically, their interaction would be a challenge and security may be a major concern. 

The dynamic nature of ad-hoc networks means nodes in ad-hoc networks are free to join, move or leave 

and this indicates the need for support for high scalability. Some routing protocols perform better with fewer 

nodes and other with more, and so using the right protocol for the application helps nodes better manage their 

communication tasks. Route acquisition, service location and encryption-key exchange are a few examples of 

tasks that will require considerable overhead as the network size grows. The free movement of nodes in the 

network means that so a malicious node can change its position and target a different node, and so it is very 

difficult to track the malicious behaviour of the compromised node (Li & Joshi, 2006). 

Nodes in an ad-hoc network must work together and cooperate to perform the required task efficiently. 

This might not be very simple when differences in the amount and priority of data exist; e.g. a critical fire box 

should not be wasting its batteries to relay gaming data. Also a selfish node could compromise the working of 

the network by not taking its share of the workload, and not relay data it categorises as lower priority.  

All the above challenges and constraints must be considered when working on ad-hoc networks, aiming 

for a high level of quality of service in the network. Parameters such as end-to-end delay, jitter, throughput 

and packet loss probability are a few measurements that should be explored in these networks. 

2.6 Security of Ad-hoc Networks 

In order to communicate, nodes in an ad-hoc network need communication protocols that consider the nature 

of ad-hoc networks, being dynamic and noting the limit in bandwidth, they provide the only infrastructure to 

ad-hoc networks. Traditional routing protocols have one weakness that underlies the multitude of attacks 

defined for ad-hoc networks; they all trust the neighboring node as being self and non-malicious (Djenouri, 

Khelladi, & Badache, 2005). Encryption may help the confidentiality of the data transmitted through the 

network, but most encryption methods have their vulnerabilities and considering the limited resources in ad-

hoc networks their use is limited. Attack that target the availability of the network and the validity of the paths 

cannot be mitigated by encryption, as usually the control parts of packets are modified to perform such 

attacks; or false signals are fabricated and sent into the network. In addition, eavesdropping is a serious attack 

that cannot be detected (Djenouri, Khelladi, & Badache, 2005), and the attacker may collect data and then try 

to break the encryption. 

2.6.1 Attacks on Ad-hoc Networks 

Ad-hoc networks are more vulnerable compared to other networks, because of their dynamic and distributed 

ad-hoc topology, multicast transmission and location awareness (Chow & Yeung, 2002). Ad-hoc networks are 

becoming more and more useful in our everyday lives as well as advances in their commercial/military uses. 

In these wireless networks the overall energy usage of communication is decreased significantly according to 

the inverse square law, and this allows for devices with limited energy resources to enter into a cooperative 
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network in which each node cooperates to allow for the benefit of low energy communication for the whole 

network.  

There are a few issues regarding the quality of service and security of ad-hoc network that need to be 

addressed to provide for a better experience in the use of ad-hoc networks. There is no physical barrier for ad-

hoc networks and so they are extremely exposed. Also as there is no central point of access in an ad-hoc 

network key management in encryption/authentication methods is a major problem as is also the issue of an 

unprotected routing in an ad-hoc network. Also the cooperation of the nodes in an ad-hoc network is 

important as some nodes might try to take advantage of the network in an unfair way. 

In an ad-hoc network we could have malicious or compromised nodes. These nodes perform attacks with 

the intention of damaging the confidentiality, availability, integrity, authentication or repudiation of a node or 

network (Kong, Luo, Xu, Gu, Gerla, & Lu, 2002). Also selfish nodes are nodes that drop packets, or fail to 

forward them to save their own battery.The following list gives a broad view of the possible attacks in an ad-

hoc network (Djenouri, Khelladi, & Badache, 2005), (Li & Joshi, 2006), (Singh & Yadav, 2007), (Komninos, 

Vergados, & Douligeris, 2007) and (Kong, Luo, Xu, Gu, Gerla, & Lu, 2002): 

• Routing Attacks: Compromised or unauthorized nodes in a network can fabricate or modify routing 

signal in order to reroute the data through themselves and get unauthorized access to the data. These 

attacks include worm hole, black hole, replay, routing table poisoning and breaking the neighbour 

relationship. 

• Eavesdropping: Eavesdropping is a passive attack that cannot be detected, as it does not affect the 

operation of the routing protocol. An intruder which has gained unauthorized access using one of the 

other attacks can then start to gather and analyse data in order to break the encryption applied to the data. 

• Denial of Service: Denial of service attack tries to stop the operation of the entire network by disrupting 

the routing function; this attack takes advantage of the limited battery resources of the nodes in the 

network and tries to consume these resources prematurely. Sleep deprivation, rushing attacks (Hu, Perrig, 

& Johnson, 2003) and routing table overflow are examples of denial of service attack. 

• Sybil Attack: These attacks are possible where a repudiation system exists to state the legitimacy of 

nodes in the network. An attacker can cause the isolation of legitimate nodes by fabricating messages to 

blacklist those nodes. Black mail is a kind of Sybil attack. 

• Masquerading: During the neighbour acquisition process an attacker might act as another node, 

capturing messages and replaying or modifying them posing as a legitimate node. 

• Location Disclosure: By analysing the traffic in a network, the attacker can discover the location of a 

node, which is sensitive in some applications. 

2.6.2 Intrusion Detection and Response in Ad-hoc Networks 

After looking into the structure, challenges and attacks in ad-hoc networks we would need to look for 

methods of counteracting these attacks and vulnerabilities. We could try and tackle this from many different 
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angles which could be either signature based or anomaly detection. Signature based methods identify an 

attack using pre-identified signatures specific to that attack while anomaly based methods try and identify 

deviations from normal behaviour. Signature based methods benefit from having lower false positives and 

anomaly detection methods benefit from being able to identify unknown attacks. Signature based methods 

suffer from higher false negatives which is very dangerous.  

Among traditional Intrusion Detection Systems (IDS), two main categories of IDS exist: Distributed and 

Centralised IDSs. Centralised IDSs are deployed in structured networks and on more central points of the 

network like switches, routers and gateways and process data real-time for the entire network. This is not 

possible in ad-hoc networks where central points of access don’t exist and we have to rely on partial and 

localized data. So the IDS is usually based on the node in ad-hoc networks rather than having a network based 

one. We look into host based techniques for anomaly detection in ad-hoc networks. 

Many traditional techniques for anomaly detection exist such as Classification Based, Clustering Based, 

Statistical Techniques and Information Theoretic (Chandola, Banerjee, & Kumar, 2009). Classification 

techniques use labelled (training) data to learn a model and test a case instance using the learnt model. In 

clustering based anomaly detection methods similar data instances are grouped into clusters. In this 

unsupervised or semi-supervised technique new data is then considered normal if it belongs to a normal 

cluster and anomaly if it does not. In statistical anomaly detection technique a stochastic model is fitted to the 

given data and normal data instances are assumed to occur in high probability regions of the model, whereas 

anomalies are assumed to occur in low probability regions of the model. Information Theoretic techniques 

assume that anomalies cause irregularities in the information content of the data which is measured using 

information theoretic measures like entropy or Kolomogorov complexity. 

Bio-Inspired techniques can be viewed as a relatively new approach to anomaly detection and response, 

which provide an effective distributed, lightweight adaptive solution to anomaly detection. In short these 

techniques are usually based on creating a self-image using feature selection, and differentiating non-self from 

self, using different algorithms. The self-image is an adaptive one, meaning that it evolves with the system. 

This concept of an adaptive self-image along with the lightweight and distributed nature of bio-inspired 

methods make them great candidates for use in ad-hoc networks. We will discuss the bio-inspired approach to 

the detection and response to attacks in ad-hoc networks in the next section. 

2.7 Conclusions 

In this chapter we briefly discussed ad-hoc networks, their specific challenges and properties. We were 

acquainted with the three main types of ad-hoc networks: WPAN, SNU and WSN. We then looked at the 

security of ad-hoc networks and how bio-inspired solutions could be the best answer to the many challenges 

security of ad-hoc networks poses. In the next chapter we will expand the idea of immune-inspired security in 

ad-hoc networks and talk about the need of an adaptive autonomous response. 

 



 

 
 

Chapter 3 
 

3. Immune-inspired Security in Ad-hoc Networks 

3.1 Introduction 

Biological systems have been thriving for millions of years and have intricate ways to achieve goals both 

simply and effectively. Many biological systems like those of ant colonies or bee hive behaviour exist where 

each member of the system has a small role but a greater goal emerges out of the combined accomplishments 

of each member. This concept has received much attention in the ad-hoc community as it resembles the 

distributed nature and needs of ad-hoc networks. Ant Colony inspired routing protocols for Ad-hoc networks 

such as Sensor-driven Cost-aware Ant Routing (Chen, Guo, Yang, & Zhao, 2006), Improved Adaptive 

Routing (IAR) algorithm (Aghaei, Rahman, Gueaieb, & Saddik, 2007) and ANT Colony Optimization (ACO) 

method (Saleem, 2011). BeeAdHoc is also a swarm based routing protocol which has had an immune based 

solution developed for its security which is explained in detail below. In addition to that the most promising 

immune-based IDSs are discussed and reasons are given into why we chose the feedback timer as a tool to 

help give better performance in these algorithms. 

 

3.2 The Biological Immune System 

The biological immune system is the basis of all inspiration for Artificial Immune Systems (AIS). The 

purpose of the immune system is to protect the body from threats posed by toxic substances and pathogens 

and to do so in a way that minimises harm to the body and ensures its continued functioning. The immune 

system in different organisms has different complexity, and the mammalian immune system is the most 

intricate. The human immune system as one of the most studied immune systems has many properties; it is 

distributed, diverse, dynamic, error tolerant, self-protecting and adaptable. This system in the lower level is 

composed of single cells, each working according to a simple set of rules, but the aggregation of these cells 

(of which there exists many types) gives the complex behaviour we observe. This means each cell has only a 

small set of tasks to perform, and so we think of light weight distributed agents collaborating in a non-central 

configuration. 

The human immune system is layered; it has three lines of defence to pathogens: the skin, the innate 

immune system, and the adaptive immune system. Physiological conditions like temperature and ph also 

contribute to the elimination process of the pathogens. 

The innate immune system is the first line of defence after the skin has been ruptured. Some form of 

innate immune system exists in all organisms. The innate immune system does not change during the lifetime 
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of an organism, it is inherited and so it evolves over the life time of a species. It produces a generic response 

to all pathogens. Its main task is to do the housekeeping of the body and as well as clearing the body of the 

remains of dead cells and other unwanted substances, it senses any damage to the body and the presence of 

bacteria or virus signatures it knows of innately. It can then initiate an inflammatory response and inform the 

adaptive immune system as well as trying to destroy the pathogen by itself. The time in which the innate 

immune system deals with the pathogens is crucial to the adaptive system, while it prepares a specific 

response to tackle the identified pathogen. 

The adaptive immune system develops during the life time of an organism; specifically no two organisms 

of the same species have exactly the same adaptive immune systems. This is because the adaptive immune 

system responds to pathogens the organism has encountered during its lifetime and as the environment for 

each organism is different to the other, the repository of responses for each is different.  The adaptive immune 

system has memory; this means if a pathogen is detected a second time the response time would be much 

shorter and more effective than the first. This is because the more effective cells in fighting the pathogen turn 

into memory cells that can be summoned to multiply next time it is activated. There is another property within 

the adaptive immune system which is the need for co-stimulation; this means if there is no confirmation from 

other cell types, the cell will not be able to implement its defence mechanism (Hofmeyr, 2000), (Forrest & 

Hofmeyr, 2001), (De Castro & Timmis, 2002). 

The immune system has many other properties; it is distributed, diverse, dynamic, error tolerant, self 

protecting and adaptable. This system in the lower level is composed of single cells, each working according 

to a simple set of rules, but the aggregation of these cells (of which there exists many types) gives the 

complex behaviour we observe. This means each cell has only a small set of tasks to perform, and so we think 

of light weight distributed agents collaborating in a non central configuration. 

Ad-hoc networks have properties that remind us of a network of cells interacting with each other. They 

are a set of processing nodes that work independently and without a central point of control. They also 

interact with each other and send messages in the form of radio waves. These resources restrained nodes need 

lightweight methods deployed on them to manage the interactions between them with their changing 

topology. This leads to the idea of using similar interaction models as those in the human immune system, for 

ad-hoc networks to go towards a more secure, while robust and adaptable interaction system. 

3.3 Immune Based Algorithms 

Up to now a number of general purpose algorithms have been developed in AIS. These are mainly based on 

the discrimination of self from non-self. The positive selection algorithm ensures that only useful cells are 

selected to be used in the immune system. By useful we mean those that actually respond to pathogens. The 

negative selection algorithm is responsible for eliminating detector cells that detect self as pathogen, and so 

after the elimination a set of cells that only recognise non-self will remain. The Idiotypic network theory is 

another bio-inspired network model used to simulate immune networks. The co-stimulation of B-cells and T-

cells has also been reflected in immune inspired algorithms while the clonal selection algorithm is inspired 
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from the way antibodies are produced in a stage of hyper mutation, and those antibodies with the best 

response to the antigen are then selected as memory antibodies (Timmis, Hone, Stibor, & Clark, 2008).  

The danger theory and the following Dendritic Cell Algorithm (DCA) is more recent and has been named 

as a second generation algorithm. The DCA takes advantage of positive and negative feedback loops from the 

signals produced in the tissue regarding the safe or dangerous context of the tissue, and the detection of 

pathogen related signatures. It then uses all these inputs and presents a state of suspicion to pathogen or safe. 

These states from a set of cells performing the DCA in different time frames are accumulated to initiate a 

detection alarm. This algorithm has shown to be very light weight, while performing quite well in producing 

fewer false positives compared to other anomaly detection methods (Greensmith & Aickelin, 2008).  

 

3.4 Immune-Inspired Intrusion Detection Systems 

Ad-hoc network security has requirements that relate to the biological immune system greatly; any security 

solution for ad-hoc networks would need to be light-weight, adaptive and real-time. We try to investigate the 

main solutions proposed so far for bio-inspired methods for misbehaviour detection in ad-hoc networks in this 

section looking into their positive and negative points. 

Sarafijanovic and Le Boudec have worked on misbehaviour detection in ad-hoc networks using immune 

inspired methods and have produced a series of publications: (Sarafijanovic & Le Boudec, 2004), (Le Boudec 

& Sarafijanovic, 2004), (Sarafijanovic & Le Boudec, 2005) and (Sarafijanovic & Le Boudec, 2005). They 

have mainly concentrated on algorithms inspired by negative selection throughout their research on AIS and 

improved their system by giving it memory and adding a negative feedback loop to make it more 

dynamic/adaptable. 

The AIS in (Le Boudec & Sarafijanovic, 2004) is implemented on each node of the network, with the 

nodes communicating and distributing signals. Each node has a thymus that keeps a repository of self-antigen 

which is kept up-to-date and free from non-self antigen. Antigens are produced by the nodes by observing the 

events of interest of neighbouring nodes for a time limit (every 10s), and sent on the route which has had a 

packet loss (the source has not had a reply from the destination). Packet loss (delay) is the danger signal, the 

non-malicious nodes producing self-antigen give a form of positive feedback and therefore reinforces the 

misbehaviour detection process. The system is devised for the DSR routing protocol. It needs more time to 

detect misbehaviour than previous work by the authors that do not have a virtual thymus, but this is 

compensated to some extent by using memory detectors. Clustering is also implemented in this AIS which is 

a feature that is proven to increase true positives and decrease false positives in other works of the authors 

(Sarafijanovic & Le Boudec, 2004) which also incorporates negative and clonal selection.  

This system is simulated using GloMoSim (Zeng, Bargodia, & Gerla, 1998), with a fixed network size of 

40 nodes and so scalability has not been tested. Also all nodes have the same transmission range of 355 m and 

with random mobility of 1 m/s, so in a way nodes are exactly the same. This system is real-time and nodes 
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have an up-to-date repository of detectors and antigen representing self. The previous version of this system 

was offline and required a learning phase. The work done by the authors concentrates on two misbehaviours:  

1) Non-forwarding route requests and non-answering from its route cache,  

2) Non-forwarding data packets (Sarafijanovic & Le Boudec, 2004).  

The proposed system’s (Le Boudec & Sarafijanovic, 2004) classification rate is affected by the 

misbehaviour probability of malicious nodes; at very low and very high rates it is very in-accurate. The main 

problem the author had was the mapping of parameters, which affected results greatly and therefore they 

propose the automatic generation of parameters. 

Farooq (2009) focuses on BeeAdHoc which is a Swarm Based routing protocol, and proposes BeeAIS-

DC that overcomes the weaknesses of previous anomaly detection systems for this routing protocol: BeeAIS 

and BeeSec. BeeSec is not immune inspired and is a cryptographic system which requires key management. 

This is usually a challenge in ad-hoc networks, because it requires a central point of contact. BeeAIS is an 

immune based algorithm that discriminates between self and non-self. It has static nodes, needs a 50s training 

period, is not adaptable and does not have a dynamic self-image. These AISs are all based on the BeeAdHoc 

routing protocol (Forooq, 2009) which is inspired from the way bees communicate in a hive. BeeAdHoc is 

specifically designed for ad-hoc networks and has shown better performance and high throughputs in dynamic 

topologies. In order to mitigate the security problems of BeeAdHoc, the routing algorithm itself has had to be 

modified in all occasions to allow for the implementation of these security mechanisms. 

In BeeAIS-DC, the antigens are the scouts1 and forager2 type 1 and forager type 2. The attacks 

considered here are Forging Forward Scout, which try to install a fake route, and Forging Backward Scout, 

which spoofs backward scouts. They used ns2 (Issariyakul & Hossain, 2012) and implemented the BeeAIS-

DC network, with nine nodes and a simple topology. For attack implementation, they launched two different 

types of routing attacks, and monitored the traffic in three points of the networks to generate a traffic map. 

Each scout has a Dendritic Cell (DC) associated with it, that resides in the node, it samples scouts within its 

lifetime and if the scouts have danger signals higher than a threshold the DC matures and goes to the thymus 

(the DC has to check its state at the end of each interval), in which a co-stimulary signal is used to assign a 

high danger level to the scout and the path associated with it. The detectors in the thymus are generated 

randomly and then using negative selection (NS) those that match the semi-mature antigen collected are 

known as self and deleted, and the rest remain. They are then updated in a genetic algorithm manner, also 

when a detector is matched with an antigen in a mature DC it is activated. 

In Drozda (2010), an energy aware method has been devised to detect misbehaviour in ad-hoc networks. 

This is done using a set of features that are applied as cascading classifiers, with the energy cost of the 

                                                                 
1 Scouts are responsible for finding routs in the network, and giving these routs to Foragers 
2 Foragers are the main workers; they receive data packets and deliver them to their destination in a source routed mode. 

Forager nodes are of two types, delay foragers and lifetime foragers, which gather the delay or battery lifetime of the 
nodes they visit.  
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classifier increasing as the need for precision in detection is recognised. The OSI protocol stack is studied, 

and features are extracted from each level that help keep track of the correct routing behaviour of the 

neighbouring node with regard to the packets coming from it; the behaviours of nodes downstream are 

monitored by the nodes upstream in the route and calculated features are sent back towards where the packets 

came from attached to the acks going to the same node. This feature set propagation is done periodically using 

time windows of 50, 100, 250 and 500 seconds, which affects greatly the performance of the proposed 

method. Figure 3 shows the method Drozda uses to calculate weights assigned to each feature shown in 

Figure 4.  

This method benefits from partitioning the feature set into three levels of energy usage, with the energy 

levels escalading as we go into the lower levels of the OSI; but as with traditional security mechanisms in ad-

hoc networks the watchdog features that monitors the forwarding of packets by neighbouring nodes is the 

most effective one in detecting misbehaving nodes. Misbehaviour in this research was non forwarding of 

packets, delaying packets and wormholes. The underlying routing protocol was AODV, with UDP for its 

transport layer, and IEEE 802/11 MAC protocol as the data-link layer protocol. Drozda investigates the 

effectiveness of the feature set from the local and neighbouring nodes in classifying the misbehaviour and 

produces a set of weights quantifying these features. This method also shows a reduction in energy usage in 

comparison with using the watchdog feature alone (Drozda, Schildt, Schaust, & Szczerbicka, 2010).  

The method used by Drozda needs a change in the data link layer of AODV, in order to accommodate the 

features to be sent back. This is said to be performed at no extra cost, but with the feature set size growing 

greatly with the use of the larger sets, this would need clarification. Also the current implementation of this 

method was performed implicitly, and without actually implementing the algorithm on the network nodes. 

The simulation performed was conducted using the Jist/SWANS (Barr, 2012) simulator, which is a java based 

network simulator that has a better performance speed compared with Glomosim and ns2. They used the 

random waypoint movement model with 1718 nodes in a 3000m*3000 m area.  

 

Figure 3- The Wrapper approach (Drozda, 

 

Figure 4- Feature Weights, those 
greater than 0.25 are shown (Drozda, 
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Schildt, Schaust, & Szczerbicka, 2010) Schildt, Schaust, & Szczerbicka, 2010) 

 
Initially 24 features are selected from the OSI protocol stack, which are either performance related like 

throughput or topology related like node degree; also, the watchdog feature and other features from previous 

studies in traditional literature are investigated. The majority of the proposed feature-set are averages of 

primary features1 for each node in a time window. These features have different costs in terms of energy and 

they are classified into three sub classes by their energy rating. They are then used in a cascading manner to 

provide co-stimulation. To find a good feature set to be used by the nodes an optimisation algorithm has been 

used in a wrapper approach, on the feature set. The outcome of this optimization method is a weight assigned 

to each of the features showing their effectiveness, and those that are greater than 0.25 are shown in the table 

in Figure 4. 

 
Table 3-1–A Classification of Immune-based Anomaly detection in ad-hoc networks 

 Routing 
Protocol 

Immune 
Feature 

Simulator Misbehaviours Results Lack 

Drozda 2010 
An Immuno-
Inspired Approach 
to Misbehaviour 
detection in Ad-hoc 
Networks 

AODV Co-Stimulation 
(features from 
other nodes are 
considered when 
something is 
suspicious) 

JiST/ 
SWANS 

Packet 
Dropping, 
Packet 
Delaying,  
Worm holes 

Good feature 
selection method, 
cascading 
classifiers reduces 
energy usage, 
Many nodes in a 
large area 
simulated 

The data is extracted 
from a simulator (not 
real) and the 
computational 
overhead of each 
node is not 
considered. 

Foroog 2008  
A Sense of Danger 
Dendritic Cells 
Inspired AIS for 
MANET security 

BeeAdHo
c 

Danger signals, 
CSM in thymus 
in a sort of NS 
method, with the 
addition of 
randomly 
generated 
detectors or T-
cells. 

ns2 Forging forward 
scouts and 
Forging 
backward scouts 

Claims a better 
performance in 
terms of 
throughput and 
detection rates 

The danger signal is 
not clear, the 
detectors (T-Cells) 
are based on the same 
input as the danger 
signals – a loop 
seems to exist. 

Hortos 2003 
An Artificial 
Immune System for 
Securing Mobile Ad-
hoc Networks 
Against Intrusion 
Attacks 

Secure 
Routing 
Protocol 
(SRP) 

Negative 
selection and 
Genetic 
algorithms 

ns2-SRP* Route 
manipulation 
attack 

The NC method 
uses 8.25% of the 
PC method’s 
memory, with  1% 
false positives 

Does not have much 
immune inspiration. 

Sarafijanovic 2004  
An AIS for 
Misbehaviour 
Detection in 
MANETs with 
Virtual Thymus, 
Clustering, Danger 
Signal and Memory 
Detectors 

DSR Virtual thymus, 
clustering, danger 
signals, memory 
detectors 

Glomosim Not forwarding 
data packets 
Not answering 
route requests 

Reduced number of 
false positives by 
adding danger 
signals 

The comparisons 
made do not show the 
effect of each 
immune feature or the 
clustering separately. 
The danger signal 
could get misused 
itself 

Sarafijanovic 2005  
An Artificial 
immune system 
approach with 
secondary response 

DSR NS, Clonal 
selection, innate 
(No DCA – only 
a repudiation 
system) & 

Glomosim Non-forwarding 
route requests 
and non 
answering from 
its route cache, 

Better response 
time and ability to 
detect new attacks 
reduced false 
positives 

No distributed 
detection, no local or 
cooperative response 
to misbehaving node 

                                                                 
1 Features already available to the node, without any processing performed on data packets. 
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for misbehaviour 
detection in mobile 
ad-hoc networks 

adaptive 
components 

Non-forwarding 
data packets 

* ns2-SRP is simulated by manipulation of DSR protocol 

 

3.5 Immune-Inspired Intrusion Response 

As discussed before all nodes in an ad-hoc network are responsible for relaying data, to enable 

communication between far away nodes. Considering the challenges in ad-hoc networks and the various 

possible misbehaviours associated with them, Drozda et al. (2010) propose an autonomic, adaptive detection 

method that detects misbehaviour with low false positives and limited human intervention. After looking into 

the different methods of bio-inspired intrusion detection for ad-hoc networks, this technique stood out for its 

low false positives, better detection of misbehaviours while using very little energy. We assume this technique 

is now in place and we look into the response to the detection of misbehaviour.  

The problem of selecting a suitable response mechanism in an ad-hoc network can also be solved in a 

bio-inspired way although typically this part of attack mitigation is performed by human intervention and no 

automatic response algorithm exists for WSNs (Schaust & Szczerbicka, 2011). Intrusion response systems can 

be categorised in different ways (Stakhanova, Basu, & Wong, 2007); one of which is by the degree of 

automation. They are categorised into automatic response systems, manual response systems and notification 

systems where only an alert is issued.  

Automatic response systems are themselves categorised into static and adaptive systems, in ad-hoc 

networks where the system is dynamic itself, an adaptive response system would suit it better. Bio-inspired 

algorithms benefit from a property that gives them superiority: adaptiveness. We conclude that devising bio-

inspired methods for adaptive response would be most logical as we focus on the enhancement of one of these 

methods. In this method the ability to have an evolving self-image is provided by a continuous self-feedback 

which corrects the self image using positive or negative updates. Schaust and Szczerbicka (2011) propose a 

bio-inspired response algorithm to intrusions detected. Response methods can be proactive or have a delayed 

response. Here we focus on shortening the delay caused by the response system. 

Node shutdown is a response suited to some attacks such as packet injection (Schaust & Szczerbicka, 

2011).  Generally response systems aim to lessen network loss by depressing the attacker (Ahmed, Samad, & 

Mahmood, 2006). In (Ahmed, Samad, & Mahmood, 2006), the suggested responses to misbehaviour in 

MANETs are removing the misbehaving node from routing tables, blocking traffic to and from it or reducing 

its trust level. Other possible responses are restarting the misbehaving node, flashing the misbehaving node’s 

operating system or shutting it down. In the work done by Schaust and Szczerbicka (2011) the proposed bio-

inspired solution is used to try and find the best response from 3 misbehaviours and 4 possible responses. 

They look for the effects of each response on quality of service parameters like received packets, good-put 

and delivery time with in a specific feedback time period. If the response produced a positive impact the 

affinity of that response toward that misbehaviour is increased and if a negative impact is seen then the 
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affinity of that response is reduced and that response is undone if possible. This way the system learns which 

responses are more suitable for which misbehaviours and develops a form of cognitive memory. 

A drawback of their work was the non-adaptive response feedback time, which is the time when a set of 

network features were measured after the response was enacted. They assumed a fixed response feedback 

time of 5 seconds, which caused a greater number of negative responses mainly due to communication errors, 

while the actual negative response was much lower. They find that a suitable timer is necessary to revoke 

responses that cause the QoS to fall, either because of communication errors or lacking to react to the 

misbehaviour in a reasonable time. Waiting too long to cancel the response is undesirable as it causes 

unnecessary overhead to the network (Schaust & Szczerbicka, 2011). We propose developing a suitable timer 

as an extension to their work stating it as a necessity to their algorithm as nearly all negative feedbacks were 

caused by not receiving an ack. 

3.6 Conclusion 

In this chapter, we have reviewed immune-inspired security solutions in ad-hoc networks. First the 

biological immune system has been introduced as a means of inspiration for the design of immune inspired 

algorithms for the security of ad-hoc networks. We have then looked into the existing immune inspired 

solutions for intrusion response and discussed their positive and negative points. We have then considered the 

problem of response to a detected misbehaviour and concentrated on enhancing the Antigen Receptor 

Degeneracy Algorithm (ARDA) as the only automatic bio-inspired response solution. In the next chapter, we 

try to devise a feedback timer to be used with the algorithm.  
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Chapter 4 
 

4. Improving Immune-Inspired Intrusion Response 

4.1 Introduction 

In this chapter we look into the Antigen-Receptor degeneracy behaviour algorithm (ARDA) in (Schaust & 

Szczerbicka, 2011), as the prevalent bio-inspired autonomous response study for WSNs. We explain the 

algorithm which uses the bio-inspired framework and show how it uses feedbacks to adapt its responses to the 

misbehaviour and network conditions, so that it achieves better quality of service ultimately. As mentioned 

before the ARDA algorithm assumes that an intrusion detection module is in place and tries to match four 

different responses to the following three misbehaviours while adapting to the network conditions and trying 

to maintain a high quality of service. We then discus how we try to improve this method, by finding a more 

accurate feedback time for the shutdown response. 

4.2 ARDA Method  

The ARDA algorithm is a bio-inspired algorithm and is designed in accordance to the bio-inspired 

framework. This algorithm assumes that an intrusion detection module is in place and tries to match 4 

different responses to the following three misbehaviours while adapting to the network conditions and trying 

to maintain a high quality of service. The misbehaviours in the mentioned study are: 

1. Selective packet forwarding: forwarding data packets from specific routes and therefore 

compromising on cooperation in the network. 

2. Artificial packet injection: injecting artificially generated data into the network in order to limit 

bandwidth or mislead other nodes. 

3. Manipulation of packet content: falsifying the collected information by changing content of data 

packets; this misbehaviour is usually associated with a time delay. 

The responses implemented for the above misbehaviours which can be used against any of the misbehaviours 

are: 

1. No Response: used when the misbehaviour is very similar to normal network behaviour. 

2. Shut down: the misbehaving node is shutdown using an over the air command. 

3. Flashing: the misbehaving node’s operating system is replaced by a large packet containing a typical 

OS image of a sensor node. 

4. Blacklisting: the misbehaving node is temporarily back-listed and unavailable for routing. 
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The shutdown response is chosen as the basic response which can be tested for most types of ad-hoc 

network devices, and has a considerable unsettling effect on the network which is equal or greater than the 

other responses.  

The ARDA algorithm is illustrated in Figure 6.  

 

 

Figure 5- Antigen Receptor Degeneracy Algorithm: ARDA. Algorithm requirements are initial 
receptor set Θ with response matching, k value for kNN and inputs are Time window based antigen 

vector A with an anomaly indication from the detection unit (Schaust & Szczerbicka, 2011). 
The ARDA algorithm begins by assuming a receptor set exists and at least one response is assigned to a 

receptor, and responses are mapped onto a mask vector. The assignment is currently performed based on 

expert knowledge and manually. Antigens are collected continuously using a logging mechanism where 

network features are extracted from the communications channel in a specific time of ∆t which is 5 seconds. 

Antigens are then classified as misbehaviours using an existing classification algorithm. The misbehaviours 

are then mapped onto the receptor vector and similarity and distance measurements are computed. Then the k-

Nearest Neighbour algorithm is used to compute the k nearest receptor set using the distance values calculated 

before.  The receptor set is then evaluated and the most similar and minimum distance response is chosen. 

This response is enacted and after an initial settling down time, the feedback procedure is started. This 
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procedure is begun by starting a feedback interval timer and initiating a two-hop acknowledgement 

mechanism, while the quality of service parameters are measured. The authors have used 5 seconds for their 

feedback interval, but as there was a bug in their chosen routing protocol, DYMO, they were not able to 

specify the exact reason where an acknowledgment was not received in the time period. They state that if the 

network quality parameters were better after the response was enacted they would expect a positive feedback 

acknowledgment. The quality of service parameters they used are received packets, good put and delivery 

time.  They were able to identify a response for each misbehaviour but as they had problems in the feedback 

procedure they have suggested the use of an adaptive feedback timer in the end. 

 

4.3 Our Approach 

We focus on the shutdown response, and the network reaction to this response which could be in three ways: 

no change, recover after a short time, or unable to recover. We simulate each type of network to find out 

whether any relationship between the type of network and recovery time exists, or if we can find any other 

factor that affects the time in our experiment. We aim to simulate the three main types of ad-hoc networks 

discussed in previous sections and determine their reaction to the response.  

The feedback time is the time it takes for the network to stabilise in reaction to a response. After this 

time, the network parameters are reliable enough to be used in the feature selection part of the ARDA 

algorithm. Earlier collection of data from the network would result in false feedback in the algorithm and later 

data collection would cause delay in response and inability to act on other detected intrusions.   

As mentioned before, the work we aim to do in this study would not only benefit the Schaust algorithm, 

but any other algorithm that needs to read network features after causing a change in the network. Some 

applications of ad-hoc need to be very stable and require guaranteed sensing, coverage and connectivity 

throughout their operation (Al Islam, Hyder, Kabir, & Naznin, 2010) e.g. security monitoring (Chehri, Fortier, 

& Tardif, 2007) and motion tracking (Gu, Lo, & Niemegeers, 2009). 

Other application is in the analysis of ad-hoc network stability, in which we can determine the fault 

tolerance of WSN, WPAN and SNU against node failures. We can answer questions like what is the 

probability of a network to be stabilised after a certain amounts of nodes fail. In the stability analysis, we can 

also investigate the ad-hoc network resilience to the set of attacks, in which nodes are destroyed such as DoS 

attacks. 

4.4 Implementation 

In this section, we discuss the used simulation tools are described; ns2, nam and gawk are some of the tools 

we used in order to simulate the three types of ad-hoc networks and calculate the required measures. We then 

discuss the implementation details of the simulation and result analysis of the experiment. 
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4.4.1 Simulation Tools 

Ns2 (Network Simulator 2) was used as the simulation tool as it was a powerful open-source simulation tool 

that had the basic modules needed for our experiments. Opnet, OMNeT++ and ns2 were considered as 

simulation tools, but as we needed to customise the simulator in order to produce features such as over the air 

shutdown response command, ns2 was chosen. Ns2 has the capability to simulate many features such as, 

traffic source behaviour (www, CBR1and VBR2), routing, packet flow, network topology, multicasting and 

mobile nodes. Ns2 supports five ad-hoc routing protocols, AODV, DSDV, DSR, TORA and PUMA. The 

routing protocol Ad-hoc On-demand Distance Vector (AODV) is one of the built in protocols of ns2.  

Ns2 is a discrete-event driven and an object oriented simulator with a frontend OTcl3 interpreter and 

backend C++ modules. The topology of the simulated network and its overall configuration is initially 

described in OTcl and then a simulator object is defined through the C++ code detailing the network 

protocols, packet headers, etc. OTcl is more suitable for the configuration part of the simulation compared to 

C++, as it is faster to change but slower to run.  

The basic component used to develop our experiment is the ns2 mobile node module. A mobile node is a 

basic ns2 node with the added abilities of mobility and transmitting or receiving from a wireless channel. 

Below is a diagram showing the mobile node structure, which depicts a basic ns2 node connected to an ad-hoc 

routing agent and a network stack consisting of a link layer object, interface queue, a MAC object and a 

physical network interface connected to an antenna. We configured each of these layers according to the type 

of ad-hoc network we were simulating, either WSN, WPAN or SNU. 

 
Figure 6 – Structure of a mobile node in ns2 

 

                                                                 
1 Constant Bit Rate 
2 Variable Bit Rate 
3 Object-oriented Tool Command Language 
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The main simulation and network configuration in ns2 takes place in the tcl script. This is further 

explained in the following section. After describing the network to ns2 using the tcl script is run and the 

output files are analysed for results. There are two main output files, a trace file with all the events such as 

send, receive, packet drop, etc... and a nam file which can then be used by the network animator to view the 

simulation in graphical mode. In our experiment we analysed the trace file using gawk and calculated the 

needed network parameters such as throughput, which is explained in Section 4.4.2. Network throughput as 

the main feature was then illustrated as a chart in MS Excel.   

Nam (Network Animation and visualisation tool) is a separate component used with ns to provide a 

visual interpretation of the network topology. As stated before ns simulations automatically produce the nam 

file containing topology information such as nodes and their configurations, as well as trace data.  

Gawk (Free Software Foundation, 2008) is a pattern scanning and processing language, which is the 

GNU implementation of awk. Gawk is suitable for generating reports and extracting pieces of data for 

processing. In our project Gawk version 4.0.0 was used to analyse ns trace files, in order to produce 

throughput and other network measures. 

 

Figure 7- The implemented framework to compute feedback time for immune-based systems 
 
 

4.4.2 Implementation Details  

Our simulation begins by preparing the framework used to simulate the networks (Figure 7). We require a 

simulation tool that can implement an over the air shutdown or “off” command for its nodes. In our chosen 

simulator, ns2, this part of the AODV routing protocol was missing from the module energymodel. The 

module energymodel is configured to set the amount of energy used to send and receive data packets, the 

energy usage of a node in sleep mode, and tells it what to do during an off command or restart. The C++ 

source code for ns2 version 2.35 was adapted and then recompiled to produce this new version of ns2 used for 

experimentation. 

We describe our network to the simulator by creating an instance of a Tclclass simulator, then 

configuring the nodes and describing the network topology to the simulator. The tcl script consists of several 

parts, initial configuration, network setup and end of the simulation. There are also other maintenance parts 
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such as output file specification, which are given in full in the appendix. The initial configuration is show in 

Figure 8, where node initialisation and topology object configuration takes place. 

 

# Here are the set of initial options  
# channel type 
set opt(chan)              Channel/WirelessChannel; 
# radio-propagation model 
set opt(prop)              Propagation/TwoRayGround; 
# network interface type  
set opt(netif)             Phy/WirelessPhy; 
set opt(mac)               Mac/802_11;# MAC type 
# interface queue type 
set opt(ifq)               Queue/DropTail/PriQueue; 
set opt(ll)                LL; # link layer type 
# antenna model 
set opt(ant)               Antenna/OmniAntenna; 
set opt(ifqlen)            50; # max packet in ifq 
set opt(rp)                AODV; # routing protocol 
# X dimension of topography 
set opt(x)                 300; 
# Y dimension of topography 
set opt(y)                 200; 
# time of simulation end 
set opt(stop)              6; 
set opt(energy)            EnergyModel; 
set opt(initialenergy)     10000; 
set opt(txPower)           0.660; 
set opt(rxPower)           0.395; 
set opt(idlePower)         0.035; 
 
#simulator setup 
set ns          [new Simulator] 
# set up topography object 
settopo       [new Topography] 
# configure the nodes 
$ns node-config -adhocRouting $opt(rp) \ 
 -llType $opt(ll) \ 
 -macType $opt(mac) \ 
 -ifqType $opt(ifq) \ 
 -ifqLen $opt(ifqlen) \ 
 -antType $opt(ant) \ 
 -propType $opt(prop) \ 
 -phyType $opt(netif) \ 
 -channelType $opt(chan) \ 
 -topoInstance $topo \ 
 -agentTrace ON \ 
 -routerTrace ON \ 
 -macTrace ON \ 
 -movementTrace ON \ 
 -energyModel $opt(energy) \ 
 -initialEnergy $opt(initialenergy) \ 
 -txPower  $opt(txPower) \ 
 -rxPower  $opt(rxPower) \ 
 -idlePower  $opt(idlePower) 

 
Figure 8- Initial network configuration in ns2  

For network setup, we stacked the layers as a typical network with the AODV routing protocol, in line 

with the network implemented in (Drozda, Schildt, Schaust, & Szczerbicka, 2010). Nodes use the AODV 

routing protocol to find the path, and have a constant bit stream of 50 ms interval, sending packets of 1500 

bytes size for the application layer, on top of a UDP link layer agent, with the node using the IEEE 802.11 as 

its MAC layer protocol (Figure 9). 
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# Set a connection between node_(2i) and node_(2i+1) 
for {set i 1} {$i < $opt(flow)} { incr i } { 
 set udp_($i) [new Agent/UDP] 
 set sink_($i) [new Agent/LossMonitor] 
 set cbr_($i) [new Application/Traffic/CBR] 

# 1500 - 20 byte IP header = 1480 bytes 
 $udp_($i) set packetSize_ 1500  
 # This size INCLUDES the UDP header 

$cbr_($i) set packetSize_ 1480  
 $cbr_($i) set interval_ 0.05000 
 $cbr_($i) attach-agent $udp_($i) 
 $ns attach-agent $node_($j) $udp_($i) 
 $ns attach-agent $node_($k) $sink_($i) 
 $ns connect $udp_($i) $sink_($i) 
 set l [expr ($i+ 0.0)]  
 $ns at $l "$cbr_($i) start" 
}     

Figure 9 – Network setup in tcl script 

By varying these settings and the number of nodes and the number of data flows the different types of 

network can be simulated. NS2 runs the tcl code and produces a trace file and a nam file which can then be 

viewed using the network animator tool (Figure 12, Figure 17 & Figure 21). Gawk was used to analyse the 

trace file as stated before and produce an incremental throughput as the result of the simulation. After 

considering a few network parameters like throughput, end to end delay and traffic rate, throughput showed 

the effect of node shutdown response better than others and so it was selected as the main network parameter 

for our experiment.  

The end to end delay is the time taken for a packet to be transmitted across a network from source to 

destination. This parameter only shows a rough estimate of the time it takes for a packet to be sent over the 

network. End to end delay cannot display network stability because substitute routes may have longer or 

shorter delays and be perfectly stable. The traffic rate parameter is calculated as follows: 

�
𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 8

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

𝑓𝑓=1

. 

This would disregard whether a packet reached its destination or not, hence not illustrate if a successful 

reroute had occurred. 

Throughput is calculated using the following formula:  

�
𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 8

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

𝑓𝑓=1

. 

We used accumulative throughput and a constant bit rate of sent packets, so the average speed of received 

data remains constant until a response cause it to change. This change is illustrated in our charts 

instantaneously (chapter 5).  

Figure 10 shows a section of gawk code used to calculate throughput for each data flow in a network. It 

begins by working out the duration of the flow and then calculates the average throughput by dividing the 

amount of data (in bits) that reaches its destination for that data flow in the duration of that flow. In order to 

get a more real-time picture of the network throughput, we calculated it incrementally from flow start time to 
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the end of simulation, every 0.1 second. This was done using a Linux shell script calling the gawk parse code 

and setting the flow end time incrementally.  

for (f in flows) { 
 number_flows++; 
 flowend = flow_end_time[f]; 
 flowstart = flow_start_time[f]; 
 flowtime = flowend - flowstart;       
 if ( flowtime > 1 ) { 
 throughput[f] = (packets_received_flow[f]*PKTSIZE*8) / flowtime; 
 printf("%s %f %f %f %f\n", f, flowstart, flowend, rate[f], 
  throughput[f]) >> "stats-throughput.dat"; 
 } 
} 

Figure 10 – gawk code calculating throughput for flows in network 
 

After an overview on the implementation details of our experiment, we go on to discuss the experiment 

design, results and evaluation of our project. 

 



 

 

 

Chapter 5 

5.   Evaluation 

5.1 Introduction 

In this chapter the design of the experiment and the evaluation method are explained. We hypothesise that the 

three categories of ad-hoc network take different lengths of time to recover from the shutdown response 

emitted from an intrusion detection system. In order to evaluate this, we consider an intrusion detection 

system working and in place, and try to measure the effects of one shutdown response upon our network and 

the time it takes for it to recover. The three types of network considered are WSN, SNU and WPAN, and the 

AODV routing protocol is the used ad-hoc routing protocol. In this context the nodes are immobile and 

scattered in a grid structure in the network (e.g. Figure 12). Throughput is the main network performance 

measure that’s effected and measured in this experiment, although latency and delay are affected by attack.  

The three categories of ad-hoc network can behave differently to different responses from Intrusion 

Detection Systems (IDS). In this research we consider the three network categories and try to evaluate the 

effect of node shutdown as a response to misbehaviour. 

5.2 Methodology 

In our study we try to produce a set of response feedback times, with respect to three types of ad-hoc 

networks: WSN, SNU and WPANs. We test each of these networks by simulating each type of network, 

considering the shutdown response to misbehaviour (such as packet injection); where by an over the air 

command the node is shutdown and is not part of the network anymore. Each type of network is tested 30 

times, during each run one CBR1 traffic is set up between a sender and receiver, and a number of misbehaving 

nodes are shutdown. The throughput is then calculated for each run, and an average is produced over the 30 

runs. The throughput usually drops after the response and rises when the network is recovering by rerouting. 

If it is not able to find a different path to communicate, it will keep dropping. The time by which the network 

reaches up to 98% of the pre-response throughput is output as the response feedback time. 

5.3 Experiment Design 

The main characteristics of three types of networks experimented on, are displayed in Table 5-1. As discussed 

before, in WSN there are greater numbers of nodes, but with less transmission power, while in WPANs the 

number of nodes and their transmission capability is usually quite small and so they are placed close together, 

and in SNUs the nodes have higher processing and transmission capability and nodes are placed at a medium 

                                                                 
1 Constant Bit Rate 
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distance from each other. The number of flows stated in Table 5-1, indicate data flows between a source and 

destination, sending data in a constant bit rate (CBR). We experimentally noticed that the AODV 

implementation in ns2 v2.35 shows great instability in the cases where the destination is more than 5 hops 

away from the source, and so we set our flows to use less than that. 

Table 5-1–The three types of networks and their settings in this experiment 
 Number of 

Node  
Data 
Flows Test Area 

Number of misbehaving nodes 

10% 20% 50% 

WSN 50 2 Medium(300*400 m) 5 10 25 
WPAN 12 1 Small(150*200 m) 1 2 6 
SNU 20 1 Small(150*200 m) 2 4 10 

 

We tested each type of network with three rates of misbehaving nodes, where in each case 10%, 20% and 

50% of the nodes were assumed to be malicious, and network recovery time was calculated after 30 runs of 

each case in each type of network. The end result was calculated as the point where the average of the 30 runs 

reaches the 98% normal curve. 

Each of the three types of network was simulated for duration of 10 seconds with nodes turning on and 

starting CBR at 1.0 second, initializing and sending data packets of 1500 bytes size, at a rate of one every 

0.05 second and the shutdown response occurring at 4.0 seconds. The throughput was calculated by analysing 

the simulation logs produced by ns2, parsing it using gawk and then the network feedback time was 

calculated using excel. The control throughput (without response) was considered the basis for the threshold 

and when the secondary reaches up to 98% of the control throughput, this was counted as the network 

feedback time. In order to get a more reliable time for each type of network, the experiment was repeated 30 

times with random misbehaving nodes. 

 

5.4 Control Experiments 

In our analysis of the network reaction to the shutdown response, we began by running a set of control 

simulations without any responses, and a chart showing the average throughput of the three types of network 

in the control runs is shown in Figure 11. 
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Figure 11- The average throughput in the control runs for the three types of ad-hoc networks  
 

The control chart is showing that all 3 types of networks stabilise at around 410 kbit/s; this is because the 

constant bit rate data flow, produced by the node application agent, is reaching its destination without any 

interruptions. The control charts were also used to calculate the final feedback time. When the unstable 

network’s throughput reaches 98% of 410 kbits/s, 401.8 kbits/s we regard that network as stable.   

 

5.5 WPAN 

In order to find the network feedback time for a typical WPAN, we simulated a network of 12 nodes, 

scattered in an area of 150*200 m2. The test was repeated 30 times and the position of the misbehaving nodes 

were varied to form a valid test. A sample run is presented in Figure 12. The 90 runs were then analysed for 

their throughput and other network measures using gawk and Excel. 
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(a) 

 
(b) 

Figure 12- A simulation of a WPAN with 12 nodes. (a) The initial flow between two nodes consists of 
nodes 0, 3, 7, 11 before the attack. (b) The rerouted path after node 3 is affected in the attack and is 

shut down by an immune-based intrusion response system. 

 

The visualised examples of WPAN simulations are illustrated in Figure 12. Figure 12-(a) represent initial 

flow(s) before any interruption or attack. Figure 12-(b) display rerouted paths after some nodes in the initial 

paths are affected in the attacks and are shut down by the intrusion response system. 

After drawing the 30 runs of the simulation with the shutdown response call occurring to random nodes 

in the network, three sets of charts were visually distinguishable (Figure 13). A set of unaffected runs where 

the misbehaving nodes were not in the route of the flow and so the response had no effect on the flow. A set 

of non-recovering runs where the shutdown nodes were in a way that the flow was not able to reroute, and the 

recovered flows where the shutdown node was in the route but the flow had managed to find a new path and 
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maintain the flow successfully. In Figure 13 the 30 runs are shown, but some of the runs have similar curves 

and seem to be one. The percentage of these three sets changes in all three types of network, as the number of 

affected runs changes, this is shown in Table 5-4. 

 

Figure 13- Three reaction to response in WPAN, when50% of nodes are shutdown at time 4.0s:  
non-affected, recovered, and non-recovered flows. 

 

 

Table 5-2- The percentage of these three sets changes in all three types of network, as the number of 
affected runs changes 

 WPAN 

Behaviour  10% off 20% off 50% off 

Recovered 7% 20% 23% 

Not recovered 13% 27% 60% 

Not affected 80% 53% 17% 

 

Non-recovered flows 

No-affected flows 

Recovered flows 
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Figure 14, illustrates the average throughput of recovered flows of the 30 runs in a WPAN when some 

nodes are affected after the shutdown response. The response causes a rapid drop in throughput and as the 

network recovers it rises, we can safely say that it has recovered when the throughput reaches the 98% normal 

curve, which is 98% of the control curve. We found out that in a WPAN when 10%, 20% and 50% of nodes 

are shut down, the throughput reaches 98% of its normal value at 6.1 s (Figure 14), 5.6 s (Figure 15) and 4.7 s 

(Figure 16), respectively. The 98% mark was calculated from control experiments as the 98% of the average 

normal WPAN throughput curve.  

 

Figure 14- When 10% of nodes misbehaves in a WPAN, the throughput reaches 98% of its normal 
value at 6.1 s. 

 

 

Figure 15- When 20% of nodes misbehaves in a WPAN, the throughput reaches 98% of its normal 
value at 5.6 s. 
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Figure 16- When 50% of nodes misbehaves in a WPAN, the throughput reaches 98% of its normal 
value at 4.7 s. 

 

5.6 SNU 

In order to find the network feedback time for a typical SNU, we simulated a network of 20 nodes, scattered 

in an area of 150*200 m2. The test was repeated 30 times and the position of the misbehaving nodes were 

varied to form a valid test. A sample run is presented in Figure 17. The 90 runs were then analysed for their 

throughput and other network measures using gawk and Excel. 

 
(a) 
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(b) 

Figure 17- A simulation of a SNU with 20 nodes. (a) The initial flow between two nodes consists of 
nodes 1, 7, 13, 19 before the attack. (b) The rerouted path after node 7 is affected in the attack and is 

shut down by the intrusion response system. 

 

The visualised examples of SNU simulations are illustrated in Figure 17. Figure 17-(a) shows initial 

flow(s) before any interruption or attack. Figure 17-(b) display rerouted paths after some nodes in the initial 

paths are affected in the attacks and are shut down by the intrusion response system. 

Figure 18 illustrates the average throughput of recovered flows of the 30 runs in a SNU when some nodes 

are affected after the shutdown response. The response causes a rapid drop in throughput and as the network 

recovers it rises, we can safely say that it has recovered when the throughput reaches the 98% normal curve, 

which is 98% of the control curve. We found out that in a SNU when 10%, 20% and 50% of nodes are shut 

down, the throughputs reach 98% of its normal value at 4.3s (Figure 18), 4.9s (Figure 19) and 4.7s (Figure 

20), respectively. The 98% mark was calculated from control experiments as the 98% of the average normal 

throughput curve. 
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Figure 18-When 10% of nodes misbehaves in an SNU, the throughput reaches 98% of its normal 
value at 4.3s. 

 

 

Figure 19-When 20% of nodes misbehaves in an SNU, the throughput reaches 98% of its normal 
value at 4.9s. 
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Figure 20-When 50% of nodes misbehaves in an SNU, the throughput reaches 98% of its normal 
value at 4.7s. 

 

5.7 WSN 

In order to find the network feedback time for a typical WSN, we simulated a network of 50 nodes, scattered 

in an area of 300*400 m2. The test was repeated 30 times and the position of the misbehaving nodes were 

varied to form a valid test. A sample run is presented in Figure 21. The 90 runs were then analysed for their 

throughput and other network measures using gawk and Excel. 
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(a) 

 
(b) 

Figure 21- A simulation of a WSN with 50 nodes. (a) The initial flows; nodes 0, 1, 2, 3, 4 and nodes 
39, 38, 42, 46 before the attack. (b) The rerouted path after some nodes 2, 38 and 42 are affected in 

the attack. 

The visualised examples of WSN simulations are illustrated in Figure 21. Figure 21-(a) shows initial 

flow(s) before any interruption or attack. Figure 21-(b) display rerouted paths after some nodes in the initial 

paths are affected in the attacks and are shut down by the intrusion response system. 
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Figure 22 illustrates the average throughput of recovered flows of the 30 runs in a WSN when some 

nodes are affected after the shutdown response. The response causes a rapid drop in throughput and as the 

network recovers it rises, we can safely say that it has recovered when the throughput reaches the 98% normal 

curve, which is 98% of the control curve. We found out that in a WSN when10%, 20% and 50% of nodes are 

shut down; the throughputs reach 98% of its normal value at 6.1 s (Figure 22), 6.0 s (Figure 23) and 4.8 s 

(Figure 24), respectively. The 98% mark was calculated from control experiments as the 98% of the average 

normal throughput curve. 

 

Figure 22-When 10% of nodes misbehaves in a WSN, the throughput reaches 98% of its normal 
value at 6.1s. 
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Figure 23- When 20% of nodes misbehaves in a WSN, the throughput reaches 98% of its normal 
value at 6.0s. 

 

 

Figure 24- When 50% of nodes misbehaves in a WSN, the throughput reaches 98% of its normal 
value at 4.8s. 

 
 
 

5.8 Analysis 

The feedback time for each type of ad-hoc network is calculated in the different attack size: small, medium 

size and large (Table 5-3). In small attacks, in which 10% of ad-hoc nodes are affected and are shutdown as a 

response, the feedback time is 2.1 seconds for both WPAN and WSN and 0.3 seconds for SNU. When a 
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medium size attack happens, which means 20% of nodes are affected, the average feedback time falls to 1.6 

seconds for WPAN and 2.0 seconds for WSN, while rising to 0.9 seconds for SNU type of network. The 

feedback time further falls to an average of 0.7 seconds in WPAN and SNU and 0.8 seconds in WSN for large 

attacks. When the attack size is not known, the maximum calculated time for each type of network can be 

used as the feedback time. In comparison with the time used in the antigen-receptor degeneracy method 

(Schaust & Szczerbicka, 2011) which was 5 seconds, the maximum calculated time is 2.1 seconds. That is 

more than twice of what we have calculated which could save a lot of time and delay in the algorithm. 

 

Table 5-3- The calculated feedback times (in seconds) for different ad-hoc networks 

 
WPAN SNU WSN 

Small (10%) 2.1 0.3 2.1 

Medium (20%) 1.6 0.9 2.0 

Large (50%) 0.7 0.7 0.8 

 

 

We see that in all three types of network, the feedback time becomes less and less as the number of 

shutdown nodes increases. An explanation for this could be because as the percentage of shutdown nodes 

increases, the availability of more options for re-routing falls greatly.  

The recovery behaviour of WPAN and WSN are similar but SNU is different. The area in which the 

nodes are scattered could play a part in the results, as the area per node decreases the distance between nodes 

decreases, the number of neighbours of a node increases, leaving it with more options to re-route in case of a 

rout failure. The network density of WSN and WPAN are similar, but SNU’s density is nearly half as much, 

which could explain the different behaviour of the SNU compared to the other two. 

In all of the networks, after drawing the 30 runs of the simulation with the shutdown response call 

occurring to random nodes in the network, three sets of charts were visually distinguishable (Figure 13). A set 

of unaffected runs where the misbehaving nodes where not in the route of the flow and so the response had no 

effect on the flow. A set of non-recovering runs where the shutdown nodes were in a way that the flow was 

not able to reroute, and the recovered flows where the shutdown node was in the route but the flow had 

managed to find a new path and maintain the flow successfully. The percentage of these three sets changes in 

all three types of network, as the number of affected runs changes, this is shown in Table 5-4. 

 

 

 

Network type 

Attack size (% affected nodes) 
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Table 5-4- The percentage of these three sets changes in all three types of network, as the number of 
affected runs changes 

 WPAN SNU WSN 

Behaviour  10% off 20% off 50% off 10% off 20% off 50% off 10% off 20% off 50% off 

Recovered 7% 20% 23% 7% 20% 23% 15% 22% 27% 

Not recovered 13% 27% 60% 17% 30% 54% 3% 10% 40% 

Not affected 80% 53% 17% 77% 50% 23% 82% 68% 33% 

 

The percentage of recovered data-flows increases as the attack size increases, but this increase is less than 

that of the total effected flows, or the non recovering ones. The percentage of not recovered flows is showing 

the same growth rate as the attack size. As expected the number of affected flows increases with the size of 

attack. 

5.9 Conclusion 
In this chapter we began by explaining our methodology and experiment design. We discussed that in order to 

have valid tests we needed to perform our experiments around 30 times, for each type of network while 

responding to different nodes each time. We began by performing a set of control experiments and worked 

out the point where the network stabilised. We then found the feedback time for each type of network using 

an average of the 30 different tests.  

Interestingly we found that it is not the case that with an increase to the size of attack, the feedback time 

increases as expected, and in our experiments the overall trend was a decrease in feedback time. This could be 

because the number of test cases where the flow cannot recover increase greatly with the attack size. In 

calculating the feedback time we disregarded the cases where the data flow had not managed to reroute after 

the shutdown response because we needed to find out the average time it takes for the network to reroute if it 

was able to. If the attack size is known then its best to use feedback time as suggested by Table 5-3, otherwise 

the maximum time calculated for each type of network is preferred. 
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Chapter 6 
 

6. Conclusions and Future Work 

6.1 Overview  

In order to enhance immune inspired intrusion response in ad-hoc networks we tried to calculate the minimum 

time needed to wait before a feedback was read from the network, called the feedback time.  

In this thesis we began by studying ad-hoc networks and looking into their specific features and challenges for 

the security of ad-hoc networks. We concluded that any security solution for ad-hoc networks would need to 

be light-weight, adaptive and non-centralised. We then looked into bio-inspired methods for intrusion 

detection in ad-hoc networks, as they best fit the required properties for ad-hoc networks. We noticed that bio-

inspired methods use feedback from the network in order to adapt to it, and are usually host based and light-

weight. After reviewing the existing research on bio-inspired intrusion detection methods for ad-hoc 

networks, we focussed on the problem employing an adaptive response to a detected intrusion using bio-

inspired methods.  

The ARDA algorithm was then chosen as the prevalent bio-inspired intrusion response solution for ad-hoc 

networks, and as its most important part, the feedback procedure was concentrated on. We tried to overcome 

the problem of time to wait after a response was enacted, before taking feedback measures from the network. 

We categorised ad-hoc networks into three types: WPAN, SNU and WSN based on their size and application. 

After modifying ns2 to accommodate for the shutdown response in its implementation of the AODV routing 

protocol and recompiling it, we used it to simulate these three types of networks and calculate the effects of 

the shutdown response to a detected intrusion. We investigated response time in three attack sizes, where 10, 

20 or 50 percent of nodes in the network were engaged in the attack and responded to using the shutdown 

response. We ran the simulation 30 times for each attack size and network type, and calculated an average 

response feedback time for each case by analysing the results using nam, gawk and Excel. Therefore we have 

achieved the objectives we set out to do. 

 

6.2 Discussion  

As our research questions we wanted to know if it was possible to predict the required time to wait before a 

feedback is taken; by dividing ad-hoc networks into three categories, we were able to test the reaction of each 

category to the response. In calculating the feedback time we disregarded the cases where the data flow had 

not managed to reroute after the shutdown response because we needed to find out the average time it takes 
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for the network to reroute if it was able to. We were unable to see a clear trend in the feedback time that 

changed with the different types of networks. 

We also varied the attack size to test its effect on the results. Interestingly we found that it is not the case 

that with an increase to the size of attack, the feedback time increases as expected, and in our experiments the 

overall trend was a decrease in feedback time. This could be because the number of test cases where the flow 

cannot recover increase greatly with the attack size. If the attack size is known, in the tested networks with the 

tested communications scenarios then its best to use feedback time as suggested by Table 5-3, otherwise the 

maximum time calculated for each type of network is preferred. 

In comparison with the time used in the antigen-receptor degeneracy method (Schaust & Szczerbicka, 

2011) which was 5 seconds, the maximum calculated time is 2.1 seconds. That is more than twice of what we 

have calculated which could save a lot of time and delay in the algorithm. 

Briefly, this research has contributed in the following ways. This thesis calculates response feedback time 

for WSN, WPAN and SNU as the three main types of ad-hoc network. It also could be used to improve the 

bio-inspired antigen-receptor degeneracy method (ARDA algorithm) by suggesting the appropriate time lag 

to perform the feedback procedure. Moreover, this thesis upgrades the C++ implementation of the AODV 

routing protocol in ns version 2.35 by resolving an issue in ns2 that prevented node shutdown. This thesis 

then simulates the shutdown response to attacks in different types of ad-hoc networks.  

This research can also benefit methods that require feedback after a change to the ad-hoc network either 

bio-inspired or non-bio-inspired. It can also help analysis of ad-hoc network resilience against a set of attacks, 

in which nodes are destroyed such as DoS attacks or do stability analysis of ad-hoc networks in case of node 

failure. 

 

6.3 Future Work 

We propose using a non-incremental method for calculating the throughput as future work for our project. 

This might benefit feedback time calculation in giving more exact times for the throughput. Testing the 

network for a feedback time based on different types of response could also improve the accuracy and better 

benefit an adaptive algorithm. We recommend running the ARDA algorithm with the feedback time 

calculated here for the shutdown response, and comparing results. We suggest devising a unified software that 

simulates and analyses the results with different parameters regarding the type of network and attack and 

number of runs, in order to produce an all purpose feedback timer that shows network recovery time for 

different purposes. 
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Appendix 

The Code describing a 50 node network to ns2 in tcl. Random nodes are shutdown as a response to 

misbehaviour. The number of data flows and misbehaving nodes are given at run time as arguments. Other 

sized networks are simulated using similar code, and the settings are changed accordingly. 

############################################################### 
# Input arguments 
# argv 0 = rand seed,  argv 1= node off no.,   argv 2 = flow no.,     argv 3 = 
nam file,      argv 4=result1 file  
# 
################################################################# 
 
# 50 NODES with FIXED LOCATION in a 5*10 matrix, AODV routing protocol 
# node shutdown now works in ns2 version 2.35.1, with a modification of the 
function reset-state in the energymodel module, and a recompilation of ns2. 
 
# Define options 
set opt(chan)           Channel/WirelessChannel    ;# channel type 
set opt(prop)           Propagation/TwoRayGround   ;# radio-propagation model 
set opt(netif)          Phy/WirelessPhy            ;# network interface type 
set opt(mac)            Mac/802_11                 ;# MAC type 
set opt(ifq)            Queue/DropTail/PriQueue    ;# interface queue type 
set opt(ll)             LL                         ;# link layer type 
set opt(ant)            Antenna/OmniAntenna        ;# antenna model 
set opt(ifqlen)         50                         ;# max packet in ifq 
set opt(row)  10; 
set opt(col)  5; 
set opt(nn)             [expr $opt(row)*$opt(col)] ;# number of mobilenodes 
set opt(dist)  170;       #distance between nodes 
set opt(flow)  [lindex $argv 2]    ;# number of flows 
set opt(sd)  [lindex $argv 1]    ;# number of shutdowns 
set opt(offtime) 4.0      ;# shutdown time 
set opt(rp)             AODV                       ;# routing protocol 
set opt(MaxX)           300                        ;# X dimension of topography 
set opt(MaxY)           400                        ;# Y dimension of topography 
set opt(stop)           10.0                       ;# time of simulation end 
set opt(energy)         EnergyModel; 
set opt(initialenergy)  11000; #10000; 
set opt(txPower)        0.660; 
set opt(rxPower)        0.395; 
set opt(idlePower)      0.035; 
 
# Source & Dest nodes for Flows 
set opt(source01) 39;  
set opt(dest01) 46; 
 
set opt(source02) 0;  
set opt(dest02) 4 
 
set opt(source03) 20  
set opt(dest03) 25 
 
 
set ns          [new Simulator] 
set tracefd       [open [lindex $argv 4] w] 
set windowVsTime2 [open win6.tr w] 
set namtrace      [open [lindex $argv 3] w] 
$ns trace-all $tracefd 
$ns use-newtrace 
$ns namtrace-all-wireless $namtrace $opt(MaxX) $opt(MaxY) 
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# set up topography object 
set topo       [new Topography] 

 
$topo load_flatgrid $opt(MaxX) $opt(MaxY) 

 
 

set god [create-god $opt(nn)] 
set chan_1 [new $opt(chan)] 

 
 

# configure the nodes 
$ns node-config -adhocRouting $opt(rp) \ 
 -llType $opt(ll) \ 
 -macType $opt(mac) \ 
 -ifqType $opt(ifq) \ 
 -ifqLen $opt(ifqlen) \ 
 -antType $opt(ant) \ 
 -propType $opt(prop) \ 
 -phyType $opt(netif) \ 
 -channelType $opt(chan) \ 
 -topoInstance $topo \ 
 -agentTrace ON \ 
 -routerTrace ON \ 
 -macTrace ON \ 
 -movementTrace ON \ 
 -energyModel $opt(energy) \ 
 -initialEnergy $opt(initialenergy) \ 
 -txPower  $opt(txPower) \ 
 -rxPower  $opt(rxPower) \ 
 -idlePower  $opt(idlePower) 
 
 
                 # seed the random generator function 
expr srand([lindex $argv 0]) 
 
# Define node initial position in nam 
for {set i 0} {$i < $opt(row) } { incr i } { 
 for {set j 0} {$j < $opt(col) } { incr j } { 
  set nodenum [expr ($i*$opt(col))+($j)] 
  set node_($nodenum) [$ns node $nodenum] 
 
  set xpos [expr ($i+1)*$opt(dist)]  
  set ypos [expr ($j+1)*$opt(dist)] 
 
 $node_($nodenum) set X_ $xpos 
 $node_($nodenum) set Y_ $ypos 
  $node_($nodenum) set Z_ 0.0 
 
 } 
} 

 
# Defines the node size for nam 
for {set i 0} {$i < $opt(nn)} { incr i } { 
 $ns initial_node_pos $node_($i) 20 
} 
 
 set flow_start_time 1 
 
# setup flow 1 
set $i 0 
 set udp_($i) [new Agent/UDP] 
 set sink_($i) [new Agent/LossMonitor] 
 set cbr_($i) [new Application/Traffic/CBR] 
 $udp_($i) set packetSize_ 1500 # 1500 - 20 byte IP header = 1480 bytes 
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 $cbr_($i) set packetSize_ 1480  # This size INCLUDES the UDP header 
 $cbr_($i) set interval_ 0.05000 
 $cbr_($i) attach-agent $udp_($i) 
 
 $ns attach-agent $node_($opt(source01)) $udp_($i) 
 $ns attach-agent $node_($opt(dest01)) $sink_($i) 
 $ns connect $udp_($i) $sink_($i) 
  
 $ns at 1 "$cbr_($i) start" 
 
# setup flow 2 
set $i 1 
 set udp_($i) [new Agent/UDP] 
 set sink_($i) [new Agent/LossMonitor] 
 set cbr_($i) [new Application/Traffic/CBR] 
 $udp_($i) set packetSize_ 1500 # 1500 - 20 byte IP header = 1480 bytes 
 $cbr_($i) set packetSize_ 1480  # This size INCLUDES the UDP header 
 $cbr_($i) set interval_ 0.05000 
 $cbr_($i) attach-agent $udp_($i) 
 
 $ns attach-agent $node_($opt(source02)) $udp_($i) 
 $ns attach-agent $node_($opt(dest02)) $sink_($i) 
 $ns connect $udp_($i) $sink_($i) 
  
 $ns at 1.2  "$cbr_($i) start" 
 
 
set i 0 
while { $i < $opt(sd) } { 
 set j [expr round(rand()*($opt(nn)-1))] 
        if { $j != $opt(source01)  &&  $j != $opt(source02)  &&   $j != 
$opt(dest01) && $j != $opt(dest01) && $j != $opt(dest02) } { 
  $ns at $opt(offtime) "$node_($j) off" 
  $ns at $opt(offtime) "puts  $j" 
  incr i;  
 } 
} 
 
 
# Telling nodes when the simulation ends 
for {set i 0} {$i < $opt(nn) } { incr i } { 
    $ns at $opt(stop) "$node_($i) reset"; 
} 
 

 
# ending nam and the simulation 
$ns at $opt(stop) "$ns nam-end-wireless $opt(stop)" 
$ns at $opt(stop) "stop" 
$ns at $opt(stop) "puts \"end simulation\" ; $ns halt" 
proc stop {} { 
    global ns tracefd namtrace 
    $ns flush-trace 
    close $tracefd 
    close $namtrace 
} 
 
 
 
$ns run 
 
 

Gawk code run on the trace file produced by the simulation to determine network parameters such as 

throughput, delay or packet drop is shown below. 
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# - number of flows (senders) 
# - time of simulation run 
# - number of packets sent (at the Application) 
# - number of packets received (at the Application) 
# - number of packets dropped (at the Application) 
# - number of collisions (802.11) 
# - average delay 
# - average throughput 
# - average traffic rate (measured) 
#------------------------------------------------------------------------------ 
function average (array) { 
    sum = 0; 
    items = 0; 
    for (i in array) { 
 sum += array[i]; 
 items++; 
    } 
    if (sum == 0 || items == 0) 
 return 0; 
    else 
 return sum / items; 
} 
 
#------------------------------------------------------------------------------ 
function max( array ) { 
    begin=1; 
    for (i in array) { 
 if (begin || array[i] > largest){ 
     largest = array[i]; 
     begin = 0; 
 } 
    } 
    return largest; 
} 
#------------------------------------------------------------------------------ 
function min(array) { 
    begin=1; 
    for (i in array){ 
 if (begin || array[i] < smallest) { 
     smallest = array[i]; 
     begin = 0; 
 } 
    } 
    return smallest; 
} 
#------------------------------------------------------------------------------ 
function std_deviation(array, avg) { 
    total = 0; 
    items = 0; 
    for (i in array) { 
 delta = array[i] - avg; 
 #print("i="i" array[i]="array[i]" delta="delta); 
 total += delta*delta; 
 items++; 
    } 
    if (total == 0 || items == 0) 
 return 0; 
    else 
 return sqrt(total/(items-1)); 
} 
#------------------------------------------------------------------------------ 
 
 
 
#============================================================================= 
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# 
BEGIN { 
    if (!NEWTRACE) NEWTRACE="true"; 
    if (!PKTSIZE) PKTSIZE = 256; 
    if (!NODE_INITIAL_ENERGY) NODE_INITIAL_ENERGY = 100.0; 
 
    total_packets_sent = 0; 
    total_packets_received = 0; 
    total_packets_dropped = 0; 
    first_packet_sent = 0; 
    last_packet_sent = 0; 
    last_packet_received = 0; 
 
} 
# 
# ============================================================================= 
# 
{ 
 
    if (NEWTRACE == "true") { 
#Example of new trace format 
#1 2  3           4   5 6   7  8  9  10  11      12   13      14  15  16  17         
18  19  20 21    
#s -t 1.142046604 -Hs 0 -Hd -2 -Ni 0 -Nx 1186.47 -Ny 1093.76 -Nz 0.00 -Ne 
100.000000 -Nl AGT -Nw ---  
# 
#22 23 24 25 26 27 28 29 30 31  32  33   34  35   36  37  38  39 40 41 42 43 44 
45   46 47 48 49 50 51 
#Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 40.0 -It cbr -Il 512 -If 0 -Ii 3 -Iv 32 -Pn 
cbr -Pi 1 -Pf 0 -Po 16777215 
 event = $1; 
 time = $3; 
 node = $5; 
 type = $19; 
 reason = $21; 
 packetid = $41;  
 packettype = $35; 
 src = $31; 
 dst = $33; 
 cbr_packetid = $47; #NEW: para monitorar o delay pkt a pkt 
 numhops = $49; 
 opt_numhops = $51; 
 energy  = $17; 
 
# strip  trailing .0 or :0 from src and dst 
 sub(/\.0$/, "", src); 
 sub(/\.0$/, "", dst); 
  
    } else { 
#Example of old format 
#1 2           3   4    5   6 7   8   9   10 11 12  13      14  15   16 17 18 19 
20 
#r 2.112017031 _5_ AGT  --- 7 cbr 532 [13a 5 4 800] ------- [1:0 5:0 30 5] [1] 2 
2 
 event = $1; 
 time = $2; 
 node = $3; 
 type = $4; 
 reason = $5; 
 packetid = $6; 
 packettype = $7; 
 src = $14; 
 dst = $15; 
 cbr_packetid = $6; #ESTA ERRADO! :-( 
 numhops = $19; 
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 opt_numhops = $20; 
  
# strip leading and trailing _ from node 
 sub(/^_*/, "", node);  
 sub(/_*$/, "", node); 
 sub(/^\[/, "", src); 
 sub(/\:0$/, "", src); 
 sub(/\:0$/, "", dst); 
  
    } 
 
if (time > 0 && time < duration/10.0) 
{     
#  print(event" -t "time" -Hs "node" -Hd "type" "reason" "packetid" "packettype" 
"src" "dst" "energy" -Pf "numhops" -Po "opt_numhops); 
 
 
    if ( time < simulation_start || simulation_start == 0 ) 
 simulation_start = time; 
 
    if ( time > simulation_end ) 
 simulation_end = time; 
 
 
    #------------------- 
    #---   Application   --- 
    #------------------- 
    if ( type == "AGT" ) { 
 nodes[node] = node; # to count number of nodes 
  
 flow = src"-"dst; 
 flows[flow] = flow; # to count number of flows 
 
 cbr_flow_packetid = flow" "cbr_packetid; #used to calc end-to-end delay 
 
 if ( time < node_start_time[node] || node_start_time[node] == 0) 
     node_start_time[node] = time; 
  
 if ( time > node_end_time[node] ) 
     node_end_time[node] = time; 
  
 if ( time < flow_start_time[flow] || flow_start_time[flow] == 0) { 
     flow_start_time[flow] = time; 
     #print("flow_start_time["flow"]="time"\n"); 
 } 
 
 if ( time > flow_end_time[flow] ) { 
     flow_end_time[flow] = time; 
     #print("flow_end_time["flow"]="time"\n"); 
 } 
  
 #---  
 #--- SEND 
 #---  
 if ( event == "s" ) { 
  
     if ( time < first_packet_sent || first_packet_sent == 0 ) 
  first_packet_sent = time; 
     if ( time > last_packet_sent ) 
  last_packet_sent = time; 
# rate 
     packets_sent[node]++; 
     total_packets_sent++; 
     packets_sent_flow[flow]++; 
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# delay 
     pkt_start_time[cbr_flow_packetid] = time; 
     ####TESTE @INRIA pkt_start_node[packetid] = node; 
  
 } 
  
 #---  
 #--- RECEIVE 
 #---  
 else if ( event == "r" ) { 
     if ( time > last_packet_received ) 
  last_packet_received = time; 
# throughput 
     packets_received[node]++; 
     total_packets_received++; 
     packets_received_flow[flow]++;       
#    printf("r  %d %d at %f %f\n",node,packets_received[node]++, time, 
last_packet_received); 
  
     pkt_received_per_time[ int(time/10) ]++; 
# end-to-end delay 
     pkt_end_time[cbr_flow_packetid] = time; 
     ###TESTE @INRIA pkt_end_node[cbr_packetid" "flow] = node; 
  
# num hops 
     if (opt_numhops < 16777215) { 
  packet_hops[packetid]     = numhops; 
  opt_packet_hops[packetid] = opt_numhops; 
     } else { 
  num_opt_packets_unrech++; 
     } 
  
 } 
  
 #new trace format 
 node_final_energy[node] = energy; 
 
    } 
 
    #-------------  
    #--- DROP 
    #------------- 
    if ( event == "d" || event == "D") { 
  
 if(packettype == "cbr" || packettype == "tcp") { 
 
     if (type == "IFQ" && reason == "ARP") { 
  packets_dropped["ARP"]++; 
     }  
     else if (type != "MAC" || (type == "MAC" && reason == "RET")) { 
  packets_dropped[type]++;  
     } 
  
     packets_dropped2[type" "reason" "packettype]++; 
  
     if ( reason == "COL" ) 
  total_collisions++; 
     else if ( type != "MAC" || (type == "MAC" && reason == "RET") ) { 
  total_packets_dropped++; 
  pkt_dropped_per_time[ int(time/10) ]++; 
     } 
  
  
 }else { 
     packets_dropped2[type" "reason" "packettype]++; 
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     if ( reason == "COL" ) 
  total_collisions++; 
 } 
    } 
 
 
    #------------- 
    #--- ENERGY 
    #------------ 
    #EXAMPLE: N -t 600.000100 -n 49 -e 8.719321 
    if (NEWTRACE != "true" &&  event == "N" ) { # ENERGY stuff 
     #    printf("%s %s %f %s %d %s %f\n",$1,$2,$3,$4,$5,$6,$7); 
     node_final_energy[$5] = $7; 
    } 
 
} 
} 
##=============================================================== 
 
END { 
 
    number_flows = 0; 
 
# ===== TOTAL RUNTIME ===== 
    total_runtime = last_packet_sent - first_packet_sent; 
 
# ===== OFFERED LOAD ==== (TODO: revise here) 
    if ( total_runtime > 0 && total_packets_sent > 0) 
 load = ((total_packets_sent * PKTSIZE)/total_runtime) / 2000000; # no 
overhead 
 
# ===== FLOWS, RATE and THROUGHPUT  ===== 
    for (f in flows) { 
 number_flows++; 
 flowend = flow_end_time[f]; 
 flowstart = flow_start_time[f]; 
 flowtime = flowend - flowstart;       
 if ( flowtime > 1 ) { #jm 27/10/2005, changed from > 0. Due to big 
values...        
     throughput[f] = packets_received_flow[f]*PKTSIZE*8 / flowtime; 
     rate[f] = (packets_sent_flow[f]*PKTSIZE*8) / flowtime; 
     printf("%s %f %f %f %f\n", f, flowstart, flowend, rate[f], 
throughput[f]) >> filename; #"stats-throughput.dat"; 
#printf("f: %d sent: %d rcvd: %d flowtime: %f \n", f, packets_sent_flow[f], 
packets_received_flow[f], flowtime); 
 } 
    } 
 
# ==== DROPPED ==== 
    for ( typereason in packets_dropped2) { 
 printf("D %s = %d\n",typereason, packets_dropped2[typereason]) >> "stats-
dropped.dat"; 
    } 
 
# ===== END-TO-END DELAY ====  
    for ( flow_pkt in pkt_end_time) { #TODO: trocar para start para mudar estilo 
do end-to-end delay 
 start = pkt_start_time[flow_pkt]; 
 end = pkt_end_time[flow_pkt]; 
        ##DISABLED @INRIA: node_start = pkt_start_node[flow_pkt]; 
 ##DISABLED @INRIA: node_end = pkt_end_node[flow_pkt]; 
 
 delta = end - start; 
 if ( delta > 0 ) { 
     delay[flow_pkt] = delta; 
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     printf("%f %s %f %f\n", start, flow_pkt, end, delta) >> "stats-
delay.dat"; 
 } 
    } 
 
# ===== ENERGY STUFF ===== 
    printf("#node initial final delta\n")>> "stats-energy.dat"; 
    for ( node in node_final_energy) { 
 initial = NODE_INITIAL_ENERGY;  #node_initial_enrgy[node];   #GAMBI: 
arrumar pra ler do ns2.tr 
 final = node_final_energy[node];       
  
 delta = initial - final; 
 delta_energy[node] = delta; 
 printf("%d %f %f %f\n", node, initial, final, delta) >> "stats-energy.dat"; 
  
    } 
    min_node_usedenergy  = min(delta_energy); 
    max_node_usedenergy  = max(delta_energy); 
    avg_node_usedenergy  = average(delta_energy); 
    printf("# usedenergy: avg=%8.4f,  min=%8.4f, 
max=%8.4f\n",avg_node_usedenergy,min_node_usedenergy,max_node_usedenergy) >> 
"stats-energy.dat"; 
 
# ===== NUMBER OF HOPS ==== 
    for ( pkt in packet_hops) { 
 numhops = packet_hops[pkt]; 
 opt_numhops = opt_packet_hops[pkt]; 
 diff = numhops - opt_numhops; 
 printf("%d %f %f %s\n", pkt,  numhops, opt_numhops,diff) >> "stats-
numhops.dat"; 
    } 
    min_packet_hops  = min(packet_hops); 
    max_packet_hops  = max(packet_hops); 
    avg_packet_hops  = average(packet_hops); 
    avg_opt_packet_hops  = average(opt_packet_hops); 
    printf("#    avg=%8.4f min=%8.4f max=%8.4f\n",  
    avg_packet_hops, min_packet_hops, max_packet_hops) >> "stats-
numhops.dat"; 
    printf("#opt avg=%8.4f min=%8.4f max=%8.4f\n",  
    avg_opt_packet_hops, min(opt_packet_hops), max(opt_packet_hops)) >> 
"stats-numhops.dat"; 
    printf("#Num opt packets unreacheble=%8.4f/%8.4f\n", 
    num_opt_packets_unrech, total_packets_received) >> "stats-numhops.dat"; 
 
# ==== RCVD and DROPPED HISTOGRAM ====   
    num_blocks = int(total_runtime/10); 
    for ( b = 0; b <= num_blocks; b++) { 
 sum_rcvd += pkt_received_per_time[b]; 
 # pkt received per time block 
 printf("%d %d %d\n", b*10, pkt_received_per_time[b], sum_rcvd) >> "stats-
pkt_rcvd_per_time.dat"; 
 sum_drop += pkt_received_per_time[b]; 
 # pkt dropped per time block 
 printf("%d %d %d\n", b*10, pkt_dropped_per_time[b], sum_drop) >> "stats-
pkt_dropped_per_time.dat"; 
    } 
 
 
# ==== experimental stuff.... :-) ===== 
    if (avg_opt_packet_hops > 0) { 
 rel_packet_hops = avg_packet_hops/avg_opt_packet_hops; 
    } 
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# =============== 
#      OUTPUT 
# =============== 
#    printf("\ 
##      RUN    OFFRD   #PKTS  PKTS  PKTS |PKTS  PKTS  PKTS  PKTS |         AVG        
MAX      MIN      AVERAGE    AVERAGE     AVERAGE    .MAX   MIN   PATH      AVG       
MAX        MIN      \ 
##FLOWS TIME   LOAD    #SENT  RCVD  DROP |D.IFQ D.ARP D.MAC D.RTR|COLL     
DELAY(s)   DELAY(s) DELAY(s) TPUT (b/s) RATE(b/s)   HOPS       .HOPS  HOPS  
OPTMLITY  ENERGY    ENERGY     ENERGY   \ 
##----- ------ --------#----- ----- -----|----- ----- ----- -----|-------- ------
---- -------- -------- ---------- ----------- -----------.----- ----- --------- -
-------- ---------- ---------\n"); 
 
    printf("%5d %6.1f %7.6f %5d %5d %5d %5d %5d %5d %5d %5d  %8.6f %8.6f  %8.6f  
%8.6f  %8.6f %8.6f  %5d %5d %8.7f  %8.4f %8.6f %8.6f\n", 
    number_flows, 
    total_runtime, 
    load, 
    total_packets_sent, 
    total_packets_received, 
    total_packets_dropped, 
    packets_dropped["IFQ"], 
    packets_dropped["ARP"], 
    packets_dropped["MAC"], 
    packets_dropped["RTR"], 
    total_collisions, 
    average(delay), 
    max(delay), 
    min(delay), 
    average(throughput), 
    average(rate), 
    average(packet_hops),  
    max_packet_hops,  
    min_packet_hops, 
    rel_packet_hops, 
    avg_node_usedenergy, 
    max_node_usedenergy, 
    min_node_usedenergy) >> "stats-summary.dat"; 
 
  # system("cat stats-summary.dat"); 
} 
 
 

Here is the batch codes used to run the above code in order to get a throughput value for every 0.1s. 

gawk -f empty.awk 
i=1 
nodeOff=2 
flow=1 
for((j=1; j<31; j++)) 
do 
 for (( i= 3; i<100; i++))  
 do 
  nsfileName="20n/20n$flow.f-$nodeOff.Off-$j.tr"  
 throughputFileName="20n/20n$flow.f-$nodeOff.Off-$j.dat" 
    
  gawk -v duration=$i -v filename="$throughputFileName" -f parse4.awk 
$nsfileName 
 done 
done 
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