
Abstract

There is a problem in the world of digital forensics. The demands on digital forensic investigators 
and resources will continue to increase as the use of computers and other electronic devices 
increases, and as the storage capacity of these devices increases. The digital forensic process 
requires that evidence be identified and examined, and resources to do this are constrained. This is 
creating a backlog of work as seized media and devices wait to be analysed, and some 
investigations or checks 'in the field' may be reduced or discarded as impractical. There is a 
technique which can be used to help quickly to collect and examine data to see if it is of interest. 
This technique combines statistical sampling and hashes as described by Garfinkel et al (2010).

This tool can use a Bloom filter to match the hashes from disk sectors against the stored hashes for 
a file which is being searched for. The tool was successfully implemented and the Bloom filter false 
positive rate was as predicted by theory (Roussev, Chen, Bourg, & Richard, 2006) which confirmed 
that the Bloom filter had been correctly implemented. This tool was written in Python which proved 
a simple to use programming language. This prototype tool can provide the basis for further work 
on a practical tool for use in real world digital forensics investigation.

2



 1 Introduction

The objective was to develop and evaluate a proof of concept forensic triage tool which would 
sample sectors from a disk, generate hash values, then compare those hash values with a reference 
set of hash values for the sectors. This comparison would be done using both a database of values, 
and a Bloom filter representation of the values.

 2 Material and methods

 2.1 Small Block File Hash Analysis

It has been described how the sampling of small blocks off disk and hashing can be used in 
forensics (S. Garfinkel et al., 2010). This research has two main themes. One is identifying files 
types from small blocks, looking for discriminators such as are found in jpeg file types. The other 
theme is looking for known files by sampling small blocks. The concept of 'distinct blocks' is 
introduced, that is the idea that to compare the hashes of two small blocks to see if they come from 
the same file, then the small block must be distinct ,that is not found in other files. Sampling small 
blocks rather than reading a whole file speeds up the matching process. 

 2.2 Matching Hashes

The hashes of the sectors read off disk need to be checked for a match against the hashes from the 
sectors in the search file. The search file sector hashes can be stored in a database, and this is the 
most obvious approach. As the sectors are read off disk, they are hashed and the database is checked 
for a match on that hash value. As the size of the database increases, then it would be expected that 
this look up will take longer. In real world examples the database could conceivably contain the 
individual hashes for each sector for thousands of files. So, it is worthwhile to consider whether 
there are efficient alternatives to a database for doing this matching.

 3 Theory

 3.1 Bloom Filters

As speed of analysis is an issue, then Bloom filters are of interest as they offer a fast way to make a 
comparison, in this case between the hash of a sector from a disk and the reference set of sector 
hashes for the known bad file. Bloom filters provide a means to quickly test whether an object is a 
member of a set. They can return a true negative, but not a false negative. They can return a true or 
a false positive, The eponymous Bloom filter was developed by Burton H. Bloom (Bloom, 1970). 
The purpose of the Bloom filter is to represent members of a set in a bit vector, which can then be 
used to compare an object and see if it is equal to a member of the set. Bloom filters cannot give 
false negatives, that is an object identified as not being a member of the set definitely will not 
belong to it. The Bloom filter can give false positives, but at a predicted level of probability. The 
Bloom filter match does not absolutely confirm a match, but as effectively a pre-processor it 
reduces the amount of checking whether an object is the member of a set by eliminating many true 
negatives.

The Bloom filter is a single bit vector initialized to be 0 0 0 0 0 0 0 .. etc. It is a bit representation of 
the members of a set. There is a set of values, which could for example be data blocks, or dictionary 
words, or urls, against which objects are to be compared to see if they are in the set. Each of these 
values is hashed to produce a number. The hash value of this is used to set the corresponding bit in 
the Bloom filter to 1. There can be multiple hashes of the same value using different hash functions. 
This is repeated for the all the members of the set to result in a Bloom filter of the form 1 1 0 0 1 0 .. 

3



etc. where each 1 means at least one member of the set has a hash value corresponding to that index 
in the Bloom filter. To query if another object is possibly a member of the set, the same algorithm is 
used to produce hashes for this object and a comparison made with the Bloom filter. If every bit set 
to 1 by the object is also set to 1 in the Bloom filter, then it may be a member of the set. However, if 
any bit set to 1 by the object is set to 0 in the Bloom filter then it cannot be a member of the set.

Let

m = the number of bits in the Bloom filter
k = the number of hashing function
H be the hashing function

an example where m = 16, k = 3, members = { X0, X1,X2)

Bloom filter initialised to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

There are 16 bits in the Bloom filter, so the hashing function H has to return a value between 0 and 
15 with equal probability of any particular value. With m the number of bits in the Bloom filter, 
then H has to generate an index value between 0 and 1-m. So if m is 16 then H has to generate 
values between 0 and 15 which would require H to be a 4 bit number as 24 will give 16 values. 
Accordingly, sometimes Bloom filter lengths are expressed as an exponential of 2, and that gives 
the bit size needed from the hash, such that a Bloom filter of length 216 bits needs a 16 bit hash 
which will give 216 possible values. As in this case there are 3 hashing functions each to produce a 
value between 0 and 15 to be used to set that index in the Bloom filter to 1.

e.g. H(X0) = {2, 4, 6} , H(X1) = {0,3,6), H(X2) = {7,8,9}

adding the hash values as a bit vector to the initialised Bloom filter

Index 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Initialised Bloom 
filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hashed values of 
member X0

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

Resulting Bloom 
filter

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

Then continue for the other members i.e.

Hashed values X1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Resulting Bloom 
filter

1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Hashed values X2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Resulting Bloom 
filter

1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0

The final Bloom filter can then be used to see if an object may be a member of the set. If the object 
is a member of the set then it will have the hash values that correspond directly to set bits in the 
Bloom filter. If any of the hash values of the object correspond to a 0 in the Bloom filter then that 
proves that it cannot possibly be a member. A false negative is impossible. However, a false positive 

4



is possible. For instance in this example, and object could have hash values {2,3,6]. Those bits are 
set to 1 in the Bloom filter, however they have not all been set as a result from hashing a single 
member, but comprise results from hashing several members. This is a trivial example. With a small 
bit length a Bloom filter would soon be set to all ones, as Bloom filters are typically used to 
represent large sets the bit length in practice is much larger.

As well as being a compact representation, Bloom filters allow fast comparison, as a look up could 
be done of each of index of the bit set to 1 by the object. If any of those indices in the Bloom filter 
is a 0 then that is a negative, otherwise it is positive, but it may be a false positive or a true positive. 
As mentioned, Bloom filters can give false positives, but not false negatives. When looking if an 
object is a member of a set, a false negative would be of concern. However, a false positive should 
only mean that if the members of the set were then queried directly the false positive would become 
apparent. While this would have involved unnecessary processing, then how significant the false 
positive is would depend on the circumstances. For instance a false positive in a url cache simple 
requires reloading the url cache from the source.

Although the concept of the Bloom filter is clear and elegant, the mathematics involved and the 
calculation of false probability rates are not intuitive. From (Roussev, Chen, et al, 2006) who cite 
(Fan, 2000) and (Mitzenmacher, 2002).

Where, n = the number of elements in the set whose membership will be represented by the Bloom 
filter, m = the number of bits in the Bloom filter and k = the number of hash functions to be applied 
to each element and then update the Bloom filter

Then the probability of a false positive is given as;

P=1−1−
1
m


kn


k

which approximates to 1−e−kn/m k

The predicted probability for false positives can be compared with experiment results to check the 
validity both of the Bloom filter calculation, and its implementation in the experiment.

 3.1.1 Programs to make and use the Bloom Filter

The program for producing the Bloom filter needs to first initialise all the indices to zero. The 
program then sequentially reads every sector of the file. Each sector is hashed and if the hash is 
distinct it is written to the database and also used to set indices in the Bloom filter bit array. This 
process is repeated until every sector in the file has been read. The program design can be illustrated 
as below.

5



The program to create the Bloom filter from the sector hashes from the search file was named 
makebf.py . Hashes for each sector in the source file (IMG_0036.JPG) are generated using the Unix 
dd command and md5sum operating system commands 

 c = "dd if=" + ifile + " skip=%s count=1 | md5sum" % (s)
        os.system(c)
        result=os.popen(c).read()

The hash value is used to set indices in the Bloom filter bit array. The number of hash functions 
used to set the Bloom filter bit array is a variable k. The md5sum value is a 32 character 
hexadecimal. Where for example the Bloom filter bit length is 216  bits, then a 4 character 
hexadecimal gives 244  or 216  possible values. So a sequence of 4 character hexadecimal 
values from the md5sum hash can be extracted, each one then converted to set to 1 an index in the 
Bloom filter. This is repeated for consecutive hexadecimal values k times. The result is that the 
Bloom filter bit array is set to 1 in k locations, each with an index value between 0 and 216−1 .

for i in range(k):
                bf[int(result[i*b:(i*b)+b], 16)]=1
        with open(bloomfile, 'wb') as fh:
            bf.tofile(fh)

6

Figure 1: Schematic for constructing Bloom Filter

START

Initialise Bloom Filter to all zeroes

Read sequential sectors of target 
file. Generate hashes.

Distinct sector?

Use hash value in algorithm to 
generate Bloom Filter index values

Set Bloom Filter index values to 1

Yes

No

Last sector?

Yes

No

Completed Bloom Filter



This is repeated for every sector in the jpeg file, to give a database of hashes for each sector, and a 
Bloom filter bit array with some indexes set to 1.

A full code listing is available at http://www.napier.ac.uk/...... As well as the Bloom filter, a database 
of the hashes was also created by the program.

From the literature review it was apparent that Bloom filters could offer speed benefits in matching 
(Farrell, Garfinkel, et al, 2008), It was also attractive to see if a Bloom filter could be implemented 
and how it would perform. The program to use the database is still useful because it can be used as 
a check on the Bloom filter results, and is also insurance against the possibility of the Bloom filter 
program not working as predicted. After creating a Bloom filter bit array which also 'stores' hashes 
for all the distinct sectors in the file, experiment can then be carried out against a disk, or disk 
image, to see if the file may be present. Again, this program samples sectors and does not read the 
entire disk image. Each sector is hashed and that hash is used to set indices using the same 
algorithm as used to generate the Bloom filter bit array. If these indices are all set in the Bloom 
filter then that is a match, although with the Bloom filter this could be a false positive. If there is a 
match this is displayed. Whether it matches or not the next sector is sampled and hashed. It would 
be possible to break the program on the first match, as at that stage the file has been located, 
however this may be a false positive match.

The program which used the Bloom filter to check for matches in the disk image was named 
useby.py . In this program sampled sector hashes are generated in the same way as in the usbdb.py 
i.e.

 for s in range(sstart,sstop,sint):
        match = 0
        c = "dd if=" + ifile + " skip=%s count=1 | md5sum" % (s)
        os.system(c)
        result=os.popen(c).read()

The difference in the two programs is of course the comparison, which is using the Bloom filter bit 
array. For the md5sum hash value, the same algorithm is used as was used in the makebf.py 
program. If for the hash of a particular sector all k hash Bloom filter hash functions, there is a match 
in the Bloom filter bit array then that is a Bloom filter match and is displayed.

      for i in range(k):
            #print[int(result[i:i+4], 16) % 2**16] , bf[int(result[i:i+4], 16) % 2**16]
            if bf[int(result[i*b:(i*b)+b], 16)] == 0:
            #if bf[int(result[i:i+b], 16)] == 0:
                match = 0
                break
            else:
                match = 1
        if match == 1:
            print str(j) , 'bf Sector ' , s , ' hash ', result[:32] , ' is a match.'

A full code listing is available at http://www.napier.ac.uk/.....

 4 Results

 4.1 Triage

Combining the techniques of sampling, hash analysis and matching using Bloom filters which have 
been described above it is possible to conceive a tool which can look for a file quicker than would 
be the case with full disk collection and examination. The concept of rationally rationing limited 
resources by prioritizing needs is well known, and triage is best known for its medical application in 

7

http://www.napier.ac.uk/


life threatening situations. The parallel situation, of limited resources, can arise in computer 
forensics, where there is insufficient resource in the time available to comprehensively analyse 
seized or suspect data, and what is required is a technique to quickly identify suspicious data 
warranting further investigation, while eliminating data which is not suspicious. The role of triage 
in the digital forensics process has been clearly identified as contributing to closing the gap between 
growing demand for forensic examination and the limits on investigation resource (Cantrell, 
Dampier, Dandass, et al, 2012) (Overill & Silomon, n.d.). This triage approach has been modelled 
for computer forensics in the field, based on an informal but effective approach being used by 
investigators (Rogers, Mislan, Goldman, Wedge, & Debrota, 2006) and there are commercially 
available tools to support a triage approach such as STRIKE (System for TRIaging Key Evidence) 
(S. L. Garfinkel, 2010). It has also been applied to mobile devices (Walls, Learned-Miller, et al, 
n.d.) (Mislan, Casey, & Kessler, 2010). Another triage based approach to digital forensics 
categorises seized data according to a quick profile of the user (Grillo, Lentini, et al, 2009), this is 
an interesting approach, but in this study we are ignoring the user and only considering the data.

 4.1.1 HASTT

The tool is a proof of concept for a digital forensics investigation triage tool using disk sector hash 
analysis, sampling and Bloom filter or database for matching. For convenience this tool will be 
given the acronym HASTT (Hash Analysis Sampling Triage Tool).

 4.2 Bloom Filter Implementation

As has already been described, it is inherent with Bloom filters that they can give false positives as 
a result of collisions. This is where a value which is not in the reference set is hashed and matches 
with the Bloom filter because it overlaps with a composite of matches for several values which are 
in the reference set. These collisions are inevitable, although the rate depends on the Bloom filter 
settings.

Particular to sector hash analysis there is however another false positive which is avoidable. The 
concept of distinct sectors has already been described, that is that a sector is distinct if it is unique to 
a file and therefore its presence is a guarantee that the file it came from, and no other, is present. 
The possible combination of values at random for a sector is 512x 28 , an astronomical number. 
Of course sectors are not filled at random, and some sectors are 'indistinct' that is they appear in 
more than one file. It then follows that the detection of an indistinct sector is not a guarantee that the 
file it came from, and no other is present. The clearest, and commonest indistinct sector is 'all nulls'. 
This is common where nulls are used to stuff unused sectors, the 'slack space', in a cluster, and this 
slack space can be used covertly to conceal data (Berghel, Hoelzer, et al, 2006), but in normal use 
will be stuffed with nulls. For example, a file may be 15 sectors in size on a file system organised 
into clusters each of 8 sectors. The 15 sector file requires 2 such clusters, and the unused 16th sector 
may be stuffed with nulls. 

The image file nps-2009-canon2 (30MB FAT16 SD card image) from the Digital Corpora website 
(Digital Corpora, 2012) was used to provide sample files. This image file contains 36 jpeg files. 
From this IMG_0036.JPG was chosen to be the 'bad' file searched for, and the other 35 jpeg files 
would be used for contrast. Before creating a Bloom filter of its sector hashes it was necessary to 
identify any indistinct sectors and then avoid using them when creating the Bloom filter. This was 
done by hashing all sectors on the 30MB corpora and then using the counter module within Python 
to identify any duplicate, and hence indistinct sectors. The duplicate sectors within the 
IMG_0036.JPG were thus identified, and as expected this included the sector of all nulls. There is 
of course the possibility that sectors would remain which might be found on other media in other 
files, but that is unavoidable. 

8



Experimentally it would still be possible to detect any such indistinct sector matches later by noting 
when a positive match is found whether the match occurred on a sector within the known sector 
allocation for the bad file. False positives would be identified in a 2 step approach. When the Bloom 
filter matched a sector which was outwith the known sector allocation, that sector hash could then 
be looked up in the database of all the bad file sector hashes. If the hash value was not in there, then 
it was a false-positive caused by a Bloom filter collision. If the hash value was in the database then 
as in all cases the allocated sectors for the bad file would be known it was therefore a sector from 
another file but identical to a sector in the bad file, and was thus a false positive due to being an 
indistinct sector. Of the 1725 sectors in the bad file IMG_0036.JPG, 1718 were distinct, and 7 were 
indistinct.

A decision had to be made about the parameters to be used in the Bloom filter. It was convenient to 
generate hash functions for the Bloom filter indices by using bytes from the MD5 hash of the sector. 
The MD5 hash is 32 bytes (128 bits), which conveniently could generate 8 x 4 byte chunks (8 x 16 
bits), each being 4 bytes was adequately distinct and each chunk mapping to one of 216 possible 
values, which would map directly to a Bloom filter with a bit length of 216 . 

The predicted false positive rate for a Bloom filter has already been described and is

Pfp = 1−e−kn/m 


k  

In this case the values will be;

n = 1718 This is the number of distinct sectors in the bad file IMG_0036.JPG, each of 
which will be hashed and used to set indices in the Bloom filter.

m = 216 = 65536 This is the bit length of the Bloom filter.

K = 8 This is the number of hash functions applied to the MD5 sector hash in 
order to set an index in the Bloom filter bit array.

This gives a value of Pfp = 0.00000164

For convenience Pfp was calculated for m = 212  also, as that could be mapped to chunks of 3 
bytes from the MD5 hash of the sector. For both m = 216 and m = 212 ,values of k =8 and k = 4 
were used for comparison. A tabulation of the results for Pfp is;

M (BF bit length) K (# of hash functions) Predicted FP rate

65536 ( 216 ) 8 0.00000164

4 0.00009820

4096 ( 212 ) 8 0.75266841

4 0.43731715

Because of the advanced maths, and the complexity of understanding how the Bloom filter 
probabilities compute, at an early stage it was decided to run some experiments to assess whether 
the program written to compute matches using Bloom filters agrees with the predicted false 
positives. The experiment for false positive was run against the 30MB USB memory stick, 
containing the 'bad' file 'IMG_0036.JPG' and 35 other 'good' files. This was done sampling every 
100th sector, and with 100% of all sectors.

9



Initial evaluation of Bloom filter parameters, predicted false Positive vs actual (10 iterations)

M (BF bit length) K Sectors 
sampled

Predicted FP 
rate

Predicted FP 
count

Actual FP 
count

Actual/
Predicted

65536 ( 216 ) 8 6080 0.00000164 0 0 0.00

4 6080 0.00009820 1 0 0.00

4096 ( 212 ) 8 6080 0.75266841 4576 4468 0.98

4 6080 0.43731715 2659 2481 0.93

65536 ( 216 ) 8 60799 0.00000164 0 0 0.00

4 60799 0.00009820 6 10 1.67

4096 ( 212 ) 8 60799 0.75266841 45761 44445 0.97

4 60799 0.43731715 26588 24833 0.93

Constants: n = 1718; image file = 30Mnpsf1.raw; target file=img_0036.jpg; K= # of hash 
functions

Table 1: Bloom filter false positives - predicted vs actual (30MB)

The results were encouraging, but not exact. The reasons for the discrepancy could be due to the 
particular distribution of sectors on this disk, but the high correlation gives confidence that the 
program is implementing the Bloom filter correctly, and is consistent with the false positive rate 
predicted by theory. It was decided to repeat the experiments on a larger scale, against a 256MB 
USB stick. First with a stick containing a single copy of the bad file, and with the 35 good files 
copied hundreds of times to fill the stick.

M (BF bit length) K Sectors 
sampled

Predicted FP 
rate

Predicted FP 
count

Actual FP 
count

Actual/
Predicted

65536 ( 216 ) 8 489471 0.00000164 1 0 0.00

4 489471 0.00009820 48 85 1.77

4096 ( 212 ) 8 489471 0.75266841 368409 361720 0.98

4 489471 0.43731715 214054 213984 1.00

Image file = 256Mjcusbf1.dd 

Table 2: Bloom filter false positives - predicted vs actual (256MB)

For the 216 bit length the actual and predicted totals are minuscule and consistent. Though the 
numbers are small the actual false positives for the 212 bit length Bloom filter are very slightly 
less than predicted. Interestingly this is in contrast to a paper (Bose et al., 2008) which contends that 
the established formula for Bloom filter false positives will underestimate the actual false positive 
rate, though by a slight amount which can be negligible for a large value of m and a small value of 
K.

 5 Discussion

Baseline experiments established the effect of what might be termed environment factors. These 
factors would include how the program is executed and the environment it is run in. The data source 

10



type would also be a factor to baseline. As well as establishing benchmark times, the base lining 
quantified the effect of these environmental factors to identify which might be significant so that 
later when the parameters for Bloom filter settings were varied then any change in output such as 
program times could more reasonably be attributed to the change in the parameters.

Once base lining had been established then the Bloom filter parameters were varied to see what 
effect that has on outputs. The two variable Bloom filter parameters are the bit length of the Bloom 
filter (m) and the number of hashing functions (k) used to set the Bloom filter. Other variables for 
experimentation are the source file size and the sampling intervals. Different permutations of these 
parameters were tested. These are the only parameters a Bloom filter can take, and it was important 
to assess if the false positive rates were as predicted, and also to see what the  effect on speed is of 
varying these.

Figure 2: General experiment program flow

Initial experimentation was carried out on a local PC. This showed that the match time for 
comparing the hash value of the sector was much less than the time taken to read the sector and 
generate the hash value.

Command line 256MB (all times in s) (20 iterations)

Sampling 
interval

Bloom filter match c/w
checks & measures

Disk times Match times

Average Min Max Average Min Max

500 17.5792 17.2202 18.3854 0.0814 0.0792 0.0928

1000 8.7934 8.6020 9.0253 0.0407 0.0400 0.0421

2000 4.3903 4.2863 4.7863 0.0204 0.0198 0.0209

Local PC. Bloom filter m/k settings 216 /4. Image file = 256Mjcusbf1

Table 3: Baseline experiment (command line) 256MB - Disk times vs Match times

11

Program algorithm
Data

Outputs:
Results (i.e. hits,
Accuracy)
Metrics (e.g. time,
accuracy)

Inputs: Variable Parameters
e.g. Bloom filter settings,
sampling interval.

iteration



It is very apparent that while both times are inversely proportional to the sampling interval that the 
disk times are much more significant in overall time than the match time. 

Experiment were repeated sampling and matching disk sector hashes and comparing using the 
database of hashes, and comparing using a Bloom filter. The times for the comparisons were as 
follows;
Command line 256MB (all times in s) (20 iterations)

Sampling 
interval

Match times

Database Matching Bloom Filter Matching

Average Min Max Average Min Max

500 2.4542 2.4310 2.4763 0.0861 0.0824 0.0932

1000 1.2298 1.2169 1.2513 0.0417 0.0400 0.0456

2000 0.6491 0.6069 0.8940 0.0214 0.2030 0.0238

Local PC. Bloom filter m/k settings 216 /4. Image file = 256Mjcusbf1

The inferred huge speed advantage of the Bloom filter over the Database was confirmed. However, 
the database used, SQLite, might be low performance, and comparison with another database, such 
as MySQL could be useful.

All the baseline experiment so far had been done on the local PC. While this has a low specification 
it is a relatively controlled environment, and does not share resources with other users. It was 
expected that performance would be better on the remote VM. As was expected, because of the 
higher specification, the remote VM provided better performance than the local PC. Most testing 
was carried out using the remote VM. On the remote VM experiments were carried out to study the 
effect of varying m and k on Match Times with the following results.

256MB Match Times (in s) for various m/k combinations

m/k 216
/8 m/k 216

/ 4

Sampling 
interval

Average Min σ Average Min σ

500 0.02288 0.01738 0.00245 0.01825 0.01613 0.00488

1000 0.00970 0.00838 0.00145 0.00893 0.00815 0.00070

2000 0.00458 0.00413 0.00048 0.00445 0.00405 0.00045

4000 0.00228 0.00205 0.00028 0.00223 0.00200 0.00015

m/k 212
/8 m/k 212

/ 4

Average Min σ Average Min σ

500 0.69795 0.66138 0.02615 0.41455 0.38968 0.01335

1000 0.35135 0.32975 0.01700 0.20900 0.19480 0.00950

2000 0.17523 0.16158 0.00928 0.10468 0.09075 0.00705

4000 0.08548 0.07623 0.00573 0.05258 0.04333 0.00505

Table 4: 256MB - Comparison of various Bloom filter m and k values – match times – Remote VM

12



Figure 3: 256MB various Bloom filter values –  
average match time vs sampling interval

While match times remain the lesser component of overall program times, when studying the effect 
of m and k, the effect is most noticeable by looking at the match times. The match times for m and k 

values of 212
and 8 are highest, followed by times for a 212

nd 4, with times for 216
and 8 

slightly higher than times for a 216 nd 4. The extra time expected to calculate 8 hashing functions 

compared to 4 was not noticeable. However, with m at 212
the number of false-positives was so 

much greater than with m at 16 that program time was taken in recording and checking all these 
false-positives, each of which was checked in the database.

 6 Conclusions 

Implementing a Bloom filter for evaluation was not especially difficult. The predicted false positive 
rates were very close to those achieved in this case. While testing was limited to a single type of 
database, the Bloom filter gave an impressive speed gain in comparison times over the times 
achieved using the database. It is the opinion of the author that the principle of the Bloom filter 
should be widely understood, along with its' limitations of false positives. The Bloom filter can 
allow very rapid matching against a reference set of values with a predictable false positive rate.

When using a Bloom filter for comparisons the setting of m and k can have a significant, and 
predictable effect on accuracy. The choice of values for experiment was to some extent initially 

arbitrary but the comparison of values of m of  216
and , 212

and for k of 8 and 4 showed a very 

wide range of accuracy especially between the values for m of  216
and . 212

The results in this 
experiment environment showed that a Bloom filter gives a faster match than a database lookup. 
This can be achieved with a low, and predicted low, false positive rate by selecting appropriate 
parameters for the Bloom filter. In this case the key to this was in using the Bloom filter bit length 

of 216
rather than. 212

Whether the number of Bloom filter hashing functions was 4 or 8 made 
relatively little difference.

13

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Match Times
256MB

16&8avmatch
16&4avmatch
12&8avmatch
12&4avmatch

sampling interval

se
co

n
d

s



In this experiment environment when the total times for executing the disk sector hashing 
comparison were measured then the time for  disk read and hashing was much more significant than 
the database or Bloom filter match time. However when looking at the comparison times in detail, 
then the Bloom filter was much quicker than the database. 

References

Berghel, H., Hoelzer, D., & Sthultz, M. (2006). Data hiding tactics for windows and unix file 
systems. Berghel.net. Retrieved from 
http://www.berghel.net/publications/data_hiding/data_hiding.php

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications  
of the ACM, 13(7), 422–426. doi:10.1145/362686.362692

Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., et al. (2008). On 
the false-positive rate of Bloom filters. Information Processing Letters, 108(4), 210–213. 
doi:10.1016/j.ipl.2008.05.018

Cantrell, G., Dampier, D., Dandass, Y. S., Niu, N., & Bogen, C. (2012). Research toward a 
Partially-Automated, and Crime Specific Digital Triage Process Model. Computer and 
Information Science, 5(2), 29–38. doi:10.5539/cis.v5n2p29

Digital Corpora. (2012). Digital Corpora - Disk Images. Digital Corpora website. Retrieved July 
10, 2012, from http://digitalcorpora.org/corpora/disk-images

Fan, L. (2000). Summary Cache : A Scalable Wide-Area Web Cache Sharing Protocol.   IEEE/ACM 
TRANSACTIONS ON NETWORKING, 8(3), 281–293.

Garfinkel, S. L. (2010). Digital forensics research: The next 10 years. Digital Investigation, 7, S64–
S73. doi:10.1016/j.diin.2010.05.009

Garfinkel, S., Nelson, A., White, D., & Roussev, V. (2010). Using purpose-built functions and block 
hashes to enable small block and sub-file forensics. Digital Investigation, 7, S13–S23. 
doi:10.1016/j.diin.2010.05.003

Grillo, A., Lentini, A., Me, G., & Ottoni, M. (2009). Fast User Classifying to Establish Forensic 
Analysis Priorities. 2009 Fifth International Conference on IT Security Incident Management  
and IT Forensics, 69–77. doi:10.1109/IMF.2009.16

Mislan, R. P., Casey, E., & Kessler, G. C. (2010). The growing need for on-scene triage of mobile 
devices. Digital Investigation, 6(3-4), 112–124. doi:10.1016/j.diin.2010.03.001

Mitzenmacher, M. (2002). Compressed Bloom Filters. IEEE/ACM TRANSACTIONS ON 
NETWORKING, 10(5), 604–612.

Overill, R. E., & Silomon, J. A. M. (n.d.). Digital Meta-Forenscs: Quantifying the Investigation. 
London. Retrieved from http://www.dcs.kcl.ac.uk/staff/richard/CFET_2010.pdf

Rogers, M. K., Mislan, R., Goldman, J., Wedge, T., & Debrota, S. (2006). Computer Forensics Field 
Triage Process Model, 27–40.

Roussev, V., Chen, Y., Bourg, T., & Richard, G. G. (2006). md5bloom: Forensic filesystem hashing 
revisited. Digital Investigation, 3, 82–90. doi:10.1016/j.diin.2006.06.012

Walls, R. J., Learned-Miller, E., & Levine, B. N. (n.d.). Forensic Triage for Mobile Phones with 
DEC0DE.

14


