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Abstract

We describe an immune inspired approach to achieve self-
expression within an ensemble, i.e. enabling an ensemble of
autonomic components to dynamically change their coordi-
nation pattern during the runtime execution of a given task.
Building on previous work using idiotypic networks, we con-
sider robotic swarms in which each robot has a lymph node
containing a set of antibodies describing conditions under
which different coordination patterns can be applied. Anti-
bodies are shared between robots that come into communi-
cation range facilitating collaboration. Tests in simulation in
robotic arenas of varying complexity show that the swarm is
able to learn suitable patterns and effectively achieve a forag-
ing task, particularly in arenas of high complexity.

Introduction
Current and emerging ICT scenarios increasingly rely on
complex distributed software systems in order to function
properly in dynamic and unpredictable environments Zam-
bonelli et al. (2011). This results in a need for the software
controlling such systems to become autonomic in adapting
behaviours such that quality of service of the system is main-
tained.

In Zambonelli et al. (2011), the authors describe two im-
portant dimensions of adaptation that can occur within au-
tonomic systems, which they refer to as where and what.
Where relates to where adaptation takes place, i.e. at the in-
dividual or ensemble level. What on the other hand refers to
the set of mechanisms the system can utilise to adapt. They
distinguish between self-adaptation and self-expression: the
former refers to components or ensembles modifying their
parameters so as to exploit their current abilities, whereas
the latter describes the ability of radically modifying at run-
time the structure of components and ensembles. In terms
of ensembles, self-expression could result in re-structuring
in terms of topology (e.g., switching from a hierarchy to
a collective of peers) or of control regime for interactions
(e.g., switching from being a collective decision-making en-
semble to a competitive market-based one) Zambonelli et al.
(2011).

While self-adaptation mechanisms at both individual and
ensemble levels has been the focus of much research (e.g.

see Salehie and Tahvildari (2009) for overviews), mecha-
nisms for achieving self-expression in distributed systems
are less well-understood, particularly with respect to sys-
tems that enable software within an ensemble to express
at run-time the most useful interaction topology or con-
trol regime. Inspired by the fact the features and proper-
ties apparent in the natural immune system such as scala-
bility, adaptivity through learning and decentralization map
naturally to those desired in autonomic systems Cabri and
Capodieci (2013), we describe an idiotypic-network ap-
proach to self-expression. We consider a swarm-robotic sce-
nario in which multiple robots have to fulfil a simple forag-
ing task. Multiple coordination patterns, i.e. collaborative
strategies, are available to the robots to face the problem;
robots contains a lymph node describing a set of antibodies
that indicate a suitable strategy — by sharing of antibodies
across the swarm when robots come into contact with each
other, the entire swarm is able to learn to solve the prob-
lem over time, even when placed in environments of varying
complexity.

Previous Work
A fruitful line of work within robotics that started with Ishig-
uro et al. (1995) has applied inspiration from Jerne’s idio-
typic network theory to develop behaviour arbitration mech-
anisms in individual robots. Antibodies consist of a match-
ing condition to match environmental conditions, an action,
and of receptors that enable interactions with other antibod-
ies. The resulting network of stimulatory and suppressive
connections alters concentrations of antibodies; the one with
the highest concentration applies its action. Various weak-
nesses in this work that required hand-coding of antibodies
for instance have recently been addressed in Whitbrook et al.
(2010b), who consider evolutionary methods for generating
antibodies and reinforcement learning to connecting them in
a network, resulting in a system that has been ported suc-
cessfully to real-robots Whitbrook et al. (2010a). We extend
this work in that we deal with swarms of robots rather than
individuals, and that rather than considering individual ac-
tions, the robots must select a cooperative strategy to take



Figure 1: A footbot. Sensors and actuators are placed as fol-
lows: (1) omni-directional sensing camera, (2) proxity sen-
sors, (3) LEDs, (4,5) wheels and ground sensors, (6) RAB
sensor and actuator

Figure 2: Simple example arena. Footbots in action are
shown, together with the blue light symbolizing the nest and,
in the opposite end, a red light for indicating the food area.

part in.

There have also been previous attempts to apply idiotypic
network ideas to swarms. In Jun et al. (1999), a distributed
version of Ishiguro et al. (1995) is proposed, in which in-
dividual robots choose an appropriate action according to a
changing environment and the experiences of nearby robots.
In Luh et al. (2006), instead of a single action, more com-
plex behaviours are selected as a results of modelling a two
layered immune network, merged as interaction among an-
tibodies in the single robot and then distributed throughout
all the swarm. Our works differs from both these publica-
tion, firstly in the robotic scenarios used and for switching
coordination patterns as a response of the designed artificial
immune network; this implies not only selecting behaviours,
but also roles, statuses and interactions within the coordina-
tion pattern, and can result in dynamically changing inter-
acting topologies, e.g. switching from a peer-to-peer coor-
dination pattern to a purely stigmeric communicative collab-
orative effort and vice-versa.

Sensor Purpose
LED actuator 12 light emitting diodes sur-

round the robot. LEDs can be
different colors

Omni-directional
light sensing camera

senses colored lights: returns
their distance and angle of per-
ception with respect to the sens-
ing robot

Wheels actuator enables movements
24 proximity sensors for detecting collisions
Range and Bearing
sensor and actuator
(RAB)

sends/receives infra-red packets
of a fixed 10 bytes size

Ground sensor detect strong variations in the
floor color

Table 1: Sensors and actuators modelled in robot simulation

Task and robot description
We model a simple task in which a swarm of robots, ini-
tially randomly distributed in a confined arena, are required
to collect food from a source and return that food to a nest,
in an iterative process. The goal of the task is to maximise
the total amount of food returned to the nest in a fixed time
period, although performance can also be evaluated in terms
of the rate of food collection over shorter time periods. The
robot used in the simulation is called a footbot, and is one
of the types of robot used in the swarmanoid project Dorigo
et al. (2012) and in other previous research regarding swarm
robotics coordination, e.g. Capodieci and Cabri (2013) —
see Figure 1. The sensors and actuators used on the robot
are relatively simple. For instance, each robot is not able
to calculate its position in space, nor does it have any con-
cept of orientation. The modelled sensors and actuators are
shown in table 1.

Coordination Patterns
Three coordination patterns are considered: a completely
swarm approach, a peer-to-peer (p2p) directly communica-
tive approach and a baseline coordination strategy operated
with the limited amount of sensors and actuators. The arti-
ficial immune system (AIS) enables the robots to select be-
tween these patterns based on their assessment of the com-
plexity of their current environment and expected utility.

RACO: Robotic Ant Colony Optimization
RACO is a robotic application of the well-known ant colony
optimization family of algorithms Dorigo et al. (1996). In
a typical ACO implementation a virtual pheromone trail
is used to guide agents towards an object of interest; in
a robotic scenario, as it is difficult for a robot to actively
modify the environment by laying pheromones, some of the
robots in the swarm adopt the role of pheromone: each robot



Figure 3: States and conditions for the RACO algorithm

is assigned a (small) probability p of acting a pheromone,
with the remaining (1 − p) act as ants. All the robots start
by uniformly diffusing into the area following a very simple
diffusive algorithm: each robot starts with a random orien-
tation and starts moving in a straight line; if a collision is
sensed in one or more of the 24 proximity sensors the robot
reacts by moving in the opposite direction from the sensed
collision. If a robot that has decided to act as a pheromone
reaches the food area (represented by a red emitting light) or
the nest area (blue light), the robot stops moving and lights
all 12 of its LEDs in yellow. Robots from the ants group
continue to diffuse uniformly until they sense a pheromone;
at this point they follow the pheromone trail rather than dif-
fuse uniformly. The intensity of the pheromone is repre-
sented by the brightness of the emitted light. The more in-
tense the light, the greater the distance from which it can
be perceived by other robots. Intensity decays according to
equation 1 which models evaporation over time (also shown
in Figure 4).

Intensity(t) =MaxIntensity

−
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expTime

1− (α− β)
+ e(α−β)(

6t
expTime )

)
(1)

In eq. 1, MaxIntensity represents the maximum value
for the light intensity emitted by the robot’s LEDs. exp-
Time is the maximum expiration time (when the intensity
reaches zero), t is the time variable and α and β are con-
stants. When the expiration time of the pheromone reaches
zero, the pheromone robot switches its role to become an
ant robot once more. However, if an ant robot comes within
a distance d of the pheromone, the pheromone regenerates
and its value is reset to MaxIntensity . When the expiration
time of the pheromone reaches zero, the pheromone robot
switches its role to become an ant robot (see Figure 3). Ev-
ery robot makes its decision to act as a pheromone every
time the food or nest area is reached, and that’s how new
pheromones are created.

Figure 4: Exponential evaporation time for the pheromone
robot: emitted light intensity A over time

AMORPH: Amorphous computing inspired path
formation

The second coordination pattern strongly relies on commu-
nications in the form of packets sent and received with the
RAB sensor and actuator built in each robot. This is purely
peer-to-peer (p2p) approach in which roles are assigned dy-
namically according to the current situation. This strategy
is inspired by the work of Abelson et al. in Abelson et al.
(2000) which studies the use of bio-inspired algorithms for
achieving collaboration among a potentially large number
of devices connected in unknown way. The algorithm is de-
scribed in detail in Abelson et al. (2000); the modifications
required to adapt this to a robotic swarm are discussed be-
low. Its underlying concept is to diffuse a gradient across
the amorphous net of communicating robots indicating the
shortest path from the nest to the food source.

The swarm starts by contracting who will be the path
opener: any robot sensing the nest area (blue light) sends
a message to nearby robots indicating its distance from the
light. Any robot receiving a distance greater than the one it
currently holds begins to diffuse; the process results in the
single robot that is furthest from the light becoming the path-
opener and remains stationary (robot A in figure 5). Robots
diffuse uniformly until one robot reaches the nest area (red
light) at which point it becomes the path-closer (robot-F in
figure 5) and halts. This robot sends out a packet to nearby
robots via infra-red signalling through the RAB actuator)
consisting of the tuple (SenderID, gradient, state, succes-
sorId). Gradient is an indicator of the distance to the start of
the path, state is a boolean value indicating whether a robot
is currently part of the path, successorID is the ID of the
robot that previously sent the highest gradient value to the
receiving robot. The path-closer sends the maximum gradi-
ent value (255). Receiving robots store the highest value re-
ceived g. They then transmit a new gradient g−1. The chain
ends when the path-opener receives a gradient and transmits



Figure 5: Schematic of an example situation in the amor-
phous path formation algorithm: communication is variable
due to random placement, obstacles and limited RAB range
for signalling. A possible communication topology is shown
by the lines and arrows. At the end of the algorithm, robots
A,C,F provide the path from food to nest area.

a message that a path is ready to be formed (setting the state
packet to 1). All robots (including the path-opener) receiv-
ing state 1 set their LEDS to a specific colour thus indicating
the path. Robots not on the path now follow the lit path to
the food.

An emergent property of this algorithm is that the path of
lit robots formed is exactly one-robot thick. The robots that
are inside this path will be referred as nodes, while the other
robots can still be called ant robots since their behaviour now
is very similar to the one described in the previous coordi-
nation pattern.

Baseline strategy: blind diffusion
An additional cooperative strategy is represented by a coor-
dination pattern that uses the minimum amount of sensors
and actuators. It is called blind diffusion, since all the robots
are blind, in the sense that they disable the omni-directional
camera, thus are unable to sense lights and colour for being
attracted towards the point of interests in the arena.

All robots apply a simple diffusion algorithm: when a col-
lision is sensed through the proximity sensor, they steer in
opposite direction by rotating in a direction opposite to the
angle to incidence w.r.t. their body centre of the proximity
sensor detecting the collision. An emergent property of this
algorithm is that the swarm becomes uniformly distributed
throughout the whole arena. In this algorithm, food is sensed
by ground sensors built in the wheels of each robot that de-
tect floor colours based on a grey-scale. However, it should
be clear that this algorithm will be much less effective that
the previous approaches in terms of the amount of food col-
lected.

Remarks on coordination pattern performance
Previous experimentations with each of three coordination
patterns in a small area led to a number of observations

Figure 6: lymph-nodes are robots with variable connectivity
and they can host a multitude of interconnected antibodies.

that motivates the selection strategy introduced in this pa-
per. Briefly, it was observed that the AMORPH algorithm
performs best (in terms of total food collected) in complex
arenas, where complexity relates to both the size of the arena
and the number of obstacles present. In simple (obstacle
free) arenas, RACO performs best — probably due to the
fact the the RACO algorithm enables more robots to be de-
voted to foraging, rather than being tied up in path construc-
tion. Both algorithms struggle in some situations as both
lack a proper obstacle avoidance behaviour, therefore certain
configurations of either node or pheromone robots can im-
pede performance. This motivates the algorithm presented,
which is not only able to dynamically alter the current co-
ordination pattern due to online feedback regarding current
performance, but also results in subsets of the swarm in fact
following different coordination patterns at any given mo-
ment. This is described in the next section.

SelfEx - Model
The model introduced extends work originally discussed in
Ishiguro et al. (1995). Significantly, we extend the con-
cept of controlling an individual robot through a network of
antibodies that match conditions to actions to a distributed
swarm in which the robots only have limited communica-
tion range. Each robot is modelled as a lymph node that
contains a set of antibodies, connected in an idiotypic net-
work, see Figure 6. Robots can diffuse antibodies from one
lymph node to another, thus the contents of lymph nodes are
continually adapted. In contrast to previous work, antibodies
determine the coordination pattern that should be executed
by the robot at a given moment rather than a specific action.
The algorithm (SelfEx) is given in listing 1 and is described
in detail below.

As we can see in fig. 6 each robot is modelled as a lymph-
node in a net of lymph-nodes whose connectivity varies ac-
cording to the ever changing position of the robots. By tak-
ing a look inside each robot, we can see how each lymph-
node can host a multitude of interconnected antibodies and
each antibody is characterized by a variable concentration
value and it is divided into three main parts that will be ex-



plained in the following section.

Algorithm 1 SelfEx: overview

1: Initialisation: each robot initialised with a set of anti-
bodies

2: Maturation: each robot estimates the complexity of the
environment

3: Selection: each robot selects a start coordination pat-
tern based on its antibody that highest affinity with the
environment

4: repeat
5: Evaluation & Affinity Update: every eval

timesteps, each robot evaluates its performance and
updates the affinities between antibodies in its own
idiotypic network

6: Concentration Update: each robot updates the con-
centration of each antibody within its lymph node

7: Diffusion: the best antibodies are diffused to robots
within communication range

8: until stopping criteria

Antibodies and Affinity An antibody is a tuple of values
〈 Conditions, Action, expected utilities 〉 as follows:

• Condition has two variables, complexity and status.
Complexity is a real-value representing the complex-
ity of the arena. Status ∈ 〈0, 1, t〉 where 0 indicates
an ant robot in the RACO model, 1 a node robot in the
AMORPH model and t indicates the time a robot has
spent in the pheromone state in the case of pheromone
robots.

• Action ∈ 〈BlindDiffusion,RACO,AMORPH〉.

• Utility is the value of the food collected in a time period,
eval by each robot

The affinity between an antibody and the current environ-
ment is calculated as the Manhattan distance between the
calculated complexity and the complexity value stored in the
antibody.

Initialisation A set of antibodies to seed networks were
derived from an initialisation phase; during this phase, a
swarm utilised each individual coordination pattern in each
tested arena over a 50000 time-step period. During this pe-
riod, each robot logged its status, perceived complexity in-
dex and the amount of food it managed to collect during the
evaluation time. These results were then averaged to build
an initial set of 10 seed antibodies. Each robot’s lymph node
is loaded with the same set of 10 antibodies found. The ini-
tial concentration of each antibody in each lymph node is set
to zero.

Maturation The purpose of the maturation phase is for
each robot to estimate the complexity of the environment.
This is calculated according to algorithm 2. Note that the
lower the value of complexity calculated, the higher the
complexity of the arena.

Algorithm 2 SelfEx: Maturation Phase

1: initialise lymph node of each robot with a set of anti-
bodies

2: Goal ∈ {Food,Nest}
3: repeat
4: for all robot i inR do
5: Move according to blind diffusion pattern
6: if Goal encountered then
7: maturationCounteri ←

maturationCounter + 1
8: end if
9: end for

10: until end of maturation phase
11: complexity = averaged value of each robots

maturationCounter

Evaluation and Affinity Update After eval timsteps,
each robot evaluates its own performance u and compares
this to the expected utility uE indicated in the currently ac-
tive antibody. If u > uE then positive feedback is given
to the selected antibody by increasing the affinities from all
other antibodies towards the selected one; in addition to that,
the expected utility field of this antibody is updated with the
newly obtained value. If u < uE then negative feedback re-
sults in the the selected antibody increasing its affinity to all
other antibodies. Affinity values r (between antibody i and
j) are calculated as follows:

ri,j = ω|obtUtilities− expUtilities|+ K0

|dAc− abAc|

ω =

{
status if status is ≤ 1
1− status

evalT ime if status > 1
(2)

The difference between obtained utilities (obtUtilities)
and expected utilities (expUtilities) is weighted according to
the status variables (see section ). In addition, the affinity
is adjusted according to the difference in the detected area
complexity and the complexity value stored in the antibody,
regulated by the constant K0 (< 1).

Concentration Update Antibody concentration updates
are performed in a similar manner to that of Ishiguro et al.
(1995) as shown in eq. 3. The main differences are that we
assume that every antibody is connected to all the other anti-
bodies, antibodies with low concentration are not removed,
and we do not add new antibodies.



dci
dt

= K1

N∑
j=0

rj,icicj −K2

N∑
k=0

ri,kcick +K3Dci (3)

The first term of eq. 3 refers to the stimulation part of the
immune net; the second term (with a negative sign) refers to
the suppression operated by the other antibodies and the lat-
ter term takes into account the euclidean distance D among
all the conditions of the antibodies to the obtained/detected
values of status, utilities and area complexity. Three con-
stants (K1,2,3) regulates the contribution of each of these
effects. The resulting concentration is than squashed to fit
the [1...255] range.

Diffusion The calculated concentrations of the four anti-
bodies with highest concentration in each lymph node are
now shared amongst other robots in range, in order to dis-
tribute knowledge throughout the ensemble regarding cur-
rent performance in a single packet1.
Ant robots broadcast such packets but do not receive

packets as they are able to form their own estimate of how
much food has been collected. Pheromone and Node robots
average its concentration with the external concentration
sent by other robots for each antibody. Following the updat-
ing step, the robot selects the antibody with the highest con-
centration and executes the coordination pattern indicated.

Experiments and simulations
The pre-experimentation phase to establish the initial set of
antibodies was undertaken in two areas; the first was char-
acterized by the highest complexity index (visible in fig. 2,
the simplest area), while the second arena with a high-index
used an extensive sized hexagonal arena with an obstacle
between the straight path from nest to food area. Tests with
the main algorithm were performed in three different arenas:
the two described above and one of intermediate complex-
ity. Each experiment was repeated 10 times, with a differ-
ent random initial distribution of robots each time. In each
arena, experiments were performed with the single RACO
and AMORPH algorithms as well as with SelfEx. Parame-
ters were tuned through an empirical process — values used
in the results reported are shown in table 2. The experi-
ments were performed using ARGoS swarm robotics simu-
lator (Pinciroli et al. (2012)).

Results and remarks
As stated previously, the experiments were evaluated on the
basis of total performances over the total length of the ex-
periment and the variation of food collected each evaluation
period (by the entire swarm). This latter metric is useful to
note the gradual improvements of each collaborative effort:

1Only four antibodies are distributed due to the limitations of
the RAB sensor

Parameter Description Value
eval evaluation period for affinity step 10,000

l total timesteps experiment run 200,000
m maturation phase length 5500
K0 from equation 2 0.05
K1 from equation 3 0.25
K2 from equation 3 1
K3 from equation 3 0.05
p probability to become a pheromone 0.35

expT ime from equation 1 (RACO) 1500
α from equation 1 (RACO) 0.3
β from equation 1 (RACO) 0.8

Table 2: Values of parameters used for the simulations

the AIS approach should show an average increasing trend in
the amount of food collected in each time interval, in order
to indicate the network is learning. Figure 7 shows the re-
sults of the simplest arena. SelfEx and RACO have similar
performance, although SelfEx is less variable than RACO.
AMORPH performs best in terms of the median value of
food collected and variability. However it is clear from the
right hand figure that the performance of AMORPH deteri-
orates over time, whereas SeflEX and RACO show steady
improvement, suggesting that given further time they may at
least equal the AMORPH performance. In the second arena
(Figure 8) RACO performs best. SelfEx performs better than
AMORPH, particularly in terms of variability. As in the first
arena, the performance of SelfEx increases over time, a pat-
tern not clear in RACO and AMORPH. Finally, in the third
and most difficult arena, the best performance is achieved
by SelfEx (Figure 9). In this arena, performance does not
increase over time, suggesting the ensemble reached con-
sensus on the coordination pattern to adopt very early in the
experiment.

Figure 10 shows the percentage of robots in each evalu-
ation period that follow the different coordination patterns
in Arenas 1 and 3 (figures from a single run). In Arena 1,
the swarm is divided in its choice of pattern — interestingly,
some robots still select the blind diffusion strategy. In con-
trast, in Arena 3, robots eventually converge towards a single
coordination pattern. The ability of SelfEx to enable het-
erogeneous behaviours might be particularly useful in more
dynamic environments.

Conclusions and Future Work
We have introduced a novel approach to managing a col-
laborative swarm of robots by taking inspiration both from
autonomic computing and bio-inspired algorithms, and ex-
tending previous work that used idiotypic network models to
control individual robots. The model was tested on a simple
foraging task in which robots had to choose a coordination
pattern from a set of three different possibilities. Each robot



Figure 7: First test arena results

Figure 8: Second test arena results

Figure 9: Third test arena results



Figure 10: Distrubution of coordination patterns amongst
robots in each time interval. The top figure shows Arena
1, the lower Arena 3. The figures are ’stacked’ in the order
blind diffusion,RACO, AMORPH from the bottom

is a modelled as lymph node hosting a connected network
of antibodies. Sharing of antibodies across robots enables
common decisions to be made as to the best manner to ful-
fill the task. The results shown that the ensemble was able to
deploy Self-Expression, i.e. fragmenting into sub-sets and
initially choosing different coordination pattern. The results
show that the SelfEx approach was able to learn and improve
its performance over time, thus demonstrating the cognitive
ability as emerging property of an immune net. However,
the overall performances also show that how our approach is
slow to converge and the maturation phase implies smaller
quantities of collected food during the initial time intervals:
there is a large room for improvements by appropriately tun-
ing the parameters involved. Additional improvement could
be gained by using a hyper-mutation process in order to
optimise individual antibodies within a network via a local
search process.
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