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Abstract

In this paper, we present a new systematic approach to the solution of the
hypergeometric-like differential equation and its associated equation. The method
produces, fout court, the general solution of these equations in the form of a
combination of a standard Rodrigues formula and a ‘generalized’ Rodrigues
formula, of a type due originally to Goncalves [5] and recently considered, again,
by Area et al [1]. In addition, a novel analysis of a class of integrals determining
the generalized Rodrigues formulae is given, which complements an original
analysis of Area et al [1]. Finally, the relation between the hypergeometric-type
differential equation and the hypergeometric equation is elucidated further,
following the work of Koepf and Masjed-Jamel [7].
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1. Introduction

Consider the ‘hypergeometric-type’ second-order linear ordinary differential
equation (with non-negative integer n)
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p(2)yn(2) +q(2)y,(2) + 2,3, (2) =0 1)

where p(z) is a quadratic function, ¢(z)a linear functionand 4,, is independent of

z. As usual, the dashes denote differentiation with respect to the function
argument (in this case the variable z). Our interest here, is in extracting, by a new
systematic process, a Rodrigues formula solution to equation (1). The method is
inspired by an old paper by Gongalves [5], although in the current work we are
able to eliminate particular assumptions made by Goncalves, for example, that the
A, of equation (1) takes the particular form that we derive below.

The method that we adopt has three parts.

(a) First, (1) is rewritten in self-adjoint form, in the usual way [8], then
transformed into the formal adjoint of equation (1).

(b) Next, we assume the solution of the formal adjoint of (1), (6) below, is
given as the nth-derivative of another second-order linear ordinary
differential equation of (effectively) the same class as (1), but, this time of
a particular inhomogeneous form.

(c) Finally, we assume that this second differential equation is exact and may
be integrated directly.

The outcome of the above three-part recipe is a system of four equations in
four unknowns that emerge from the method, which, when solved and combined
with the rest of the analysis, leads to the general solution of (1) which has, as a
special case, a Rodrigues formula format. In fact, as an advance on previous work,
we are able to derive the general solution to equation (1) with the ‘second
solution’ arising automatically from the general method. This ‘second solution’ is
given in terms of a generalized Rodrigues formula considered recently by Area et
al [1], though derived, already, by Gongalves [5]. Further, we are able to apply the
method to the so-called associated equation [6] of equation (1), equation (24)
below, and obtain the general solution to (24) as a combination, also, of a
Rodrigues formula and a generalized Rodrigues formula.

When considering the generalized Rodrigues formulae, it proves necessary to
determine a particular class of integrals. This problem was studied in detail by
Area et al [1], but there is a “‘gap’ in their discussion which we fill-in here, by re-
analysing the problem of evaluating the said integrals in an entirely different
manner. The connection with the hypergeometric equation is also discussed.

2. The Solution Method

First, (1) is rewritten in self-adjoint form as [8]
%[p(Z)w(Z)y; (2)]+ o(2)4,y,(2) =0 (2)

where @(z) the solution of the Pearson differential equation
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Lol = (o) 3)
is given by
(2)
(2) = eIZ(Z)dZ @
)

Following Gongalves [5], we transform equation (2) by the change of dependent
variable

w,(2) = &(2) y,(2) (5)
so that equation (2) becomes
(2w, (2) +[2p'(2) —q(2)Iw, (2) +[P"(2) = 4'(2) + 2,1 w, (2) = O (6)

with equation (6) being the formal adjoint of equation (1). Equation (6) is the
starting point, also, of the analysis of Area et al [1]. However, the details of the
analysis presented here differs from that of Gongalves [5] and Area et al [1]. Next,
we associate equation (6) with an inhomogeneous second-order linear ordinary
differential equation of the same class. We write this equation, with new
dependent variable v, (z), as

p(2)vy(2) +1,(2)v, (D) + 11,9, (2) = B, 1(2) (7)

with 7,(z) ( a linear function) and x, (independent of z) to be determined and
P,_1(z) an arbitrary polynomial of degree n—1. We now assume that the nth
derivative of (7) reduces to (6) exactly. This gives rise to the identities

n

n

; [PV}, (2) + 7, (2)V}, (2) + 1, (2)]
= p(2)w)(2) +[2P'(2) — q(2)]w;, (2) +[p"(2) - 4'(2) + 2, Iw, (z)  (8)
and
w, (2) =v{" () (9)

Finally, the last part of the method assumes that equation (7) is exact in that we
may write (following [5] again)

p(2)v, (2) + 1, (2)vy, (2) + 12, (2) = %[p(Z)V; (2)+L,(2)v, ()] = F,4(2)  (10)

with 7, (z) to be determined.
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The identities (8) and (10) enable the identification of the four unknowns: 4,,,
U, ¢,(z) and r,(z). Using Leibnitz rule for the nth-derivative, we find that the
identity (8) yields

r(2)=(2-n)p'(z)—4(2) (11a)

and
n(n-1)

M + 17" (2) + p'(2) =2, + p"(2) = 4'(2) (11b)

while enforcing the identity (10) leads to

L,(2)=1,(2)-p'(2) (12a)

and
0, (2) = (12b)

So, from equations (11) and (12), we have

r(2)=(@2-n)p'(z)—q(2) (13a)

and
0, (2)=A-n)p'(z) —q(2) (13b)

and
ty, =1=n)p"(z) —q'(2) (13c)

and
A, = —g[(n ~1)p"(2) +2¢'(2)] (13d)

3. The Solution(s)

We can now start to ‘roll-back’ the above process by solving (9) for v,(z) and
then substitute in (9) for w,(z) and then substitute in (5) for y,(z). First, we
rewrite (10) using (13b) to get

%[p(Z)v,'q (2) +[A-n)p'(2) =4, ()] = P, -1 (2) (14)

Integrating equation (14), repeatedly, we get

vn(Z):pn(z)a)(z)[J‘pnﬂ_;Z[Pn(z)+Dn]dZ+CnJ (15)

(2)o(2)

with C, and D,, (for arbitrary n) integration constants and P,(z) an arbitrary
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polynomial of degree n. Next, we substitute (15) back through (9) and (5) to get
the general solution of equation (1) as (see [5] again)

( ) dz" P (2a(2)
If we set P,(z) = D, =0 in (16), then we get a particular solution to (1) as

O [pu ()[j;[&(zwan]dzwnﬂ (16)

c, d"
o(2) dz

and (17) is indeed the Rodrigues formula solution to (1), subject to the condition
(13d). The actual forms that the C, are presented, for example, in reference [2].
Interestingly, if we set P,(z)=C, =0 in (16), then we get a second particular
solution to (1) as

Ya(2) = " (D(2)] (17)

d
_ 18
| P ()] M(z)w(z) (18)

and (18) is the extended Rodrigues formula solution to (1), discussed recently by
Area et al [1]. Solution (18) is subject to the condition (13d) also.

yn(Z) =
w

)

4. The Associated Equation

We consider, now, the relationship [6] between the basic equation (1) and its so-
called associated equation, with an eye to producing a Rodrigues formula solution
for the associated equation. If we differentiate (1) m times, m < n, we find that,

with 3(2) = < [0,(2), we g
Z

PO + 4 @D @] + 279 (2) =0 (19)
where
m(m—1)

, P@+mg(2)+4, (20)

q,(2)=mp'(2)+q(z), "=

Apparently, equation (19), with (20) in mind, is of the same class as equation
(1), so that equation (19) comes within the compass of the Rodrigues’ formula
solution methodology and we can write down a Rodrigues formula solution to

equation (19). Indeed, since y(’") (z) is a polynomial of degree n—m, (20) has a
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Rodrigues’ formula solution of the form (16), but with allowance for the
difference in degree of the polynomials and the specific form of the coefficients

q,,(z) and A;". Making these allowances, we find that the Rodrigues formula for

Y (2) is

(m)(2) = LU z z 1 z M1z m
e w,,(z) dz"™" l:p () )£.|. pn—m+1(2)wm ) [P,_,,(z2)+ D, ]dz+C, J:l
(21)
with C" and D" independent of z and where w,, (z) is a solution of
%[P(Z)a)m (Z)] =4 (Z)a)m (Z) (22)
so that
w,,(2) = p" (2)w(2) (23)

The associated equation is obtained from (19) by transforming (19) into the
same format as (1), that is, we wish to write (19) as

P (@)Yum(2)+4(2)Ynm + AnmVnm(2) =0 (24)
with 4, ., to be determined. In fact, it is well-known that [6]

Yum(2) = ()" p2 ()M (2) (25)
and

’Z(p”p +p'lg + (% —1)p’]j

p

(26)

Anm(2) =4y = Ay —

Relations (24) and (26) yield the usual expressions for the associated equation.
Finally, from (21), (23) and (25), we get the Rodrigues formula solution to (24),
the associated equation, as

m

N G T & i N S S
Y (2) pree dzn_m{p()w( )fj Ty ) DM G H

(27)

Setting P,_,,(z) = D,’ =0 in (27), we get a more standard Rodrigues formula
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solution to (24) as

=D"Crp

2@ dm

VYnm(2) = o(2)

dz""

1461

SLp" (2)o(2)] (28)

(See Table 1 for some examples, to within a conventional normalizing constant.)

While, setting P,_, (z)=C)
formula solution to (24) as

=0 in (27), we get a second type of Rodrigues

m
_ (_1)’"1);”], 2 (2) d"" (29)
Vnm(2) = —| p"(2)o(2) —M
w(z) dz (2)o(z)
Associated | g0 1ation Form Rodrigues Formula
Equation
", (pmey gn-m 2 n+l
Legendre 1-:z )Pn m = 2ZPI;,H1 + }'1(11—1)—172 Bym = 0 Bam ()= mog ghm @-z) 1
~ (1-z2)2
. Y , m m 22 an-m —22
Hermite Hy = 22Hy p +2(n=m)H, =0 Ypm(@) =D Cpe W[e ]
2Ly o+ (a+l-2)L) —1M Mz yn—m -
Generalized ’ ’ L (z) = V7G4 T
L 1 m(2a+m) nm a2 """
aguerre + E[(Zn - m) - T] =0 2
b
2 (ahb) ab mem. n— -
Bessel z J';l(a +[@+2)z+ b]./n m ) J;(zamb)( ) %%[ 2nta e 7]
,[n(a+n+1)+—]J(a b _y e 2
2 (ab b) (-pmcm
A-z)p, Vi [rartash): ]Pn n Y (2) = (271)(m+2a)/2(Zfl)(erZb)/Z
n(n+a+b+1) [(b—a)( 5] (a.b) —m
m[(b—a)—(m+a+b)z]z 0) d’ b
Jacobi +| —m(m+a+b) 2 Byn 0 T [(z - 1)( )(z+1)”+ 1

Table 1. Important Associated ODE and their Rodrigues Formulae

(with a, b and ¢ constant)

5. The Integrals

The integrals
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. — 30
La(2) =] ,M(Z)w(z) (30)

have been studied in detail by Goncalves [5] and Area et al [1]. However, the
analysis presented in this section should be seen as a complement to the work of
Area et al [1]. Elementary differentiation shows that the 7,(z) satisfy the

differential equation

THE ){(”’ 2l EZ;”(Z)jI'( )=0 (31)
or
P + =D P @)+ 4@ )+ 1,(2) = 1,(2) (@)

which suggest looking for raising and lowering operators (with the K's
independent of z)

an(z)i+K;:|ln :In+l (333.)
L dz

and

b, (z)i—K;}fn ~ 1,4 (33b)
i dz

where we have assumed that (32) can be written as

[ (Z) +KJr }{bn(z)di—[(;}]n =1, (34)

with
a(z)b(z) = p(2) (35a)

and
by (2) + Kby (2) = (n =1 p'(2) + q(2) (35b)

and
K, 1K, =-1 (35¢)

Taking

a,(z)=c,z+d, (36)

(33a) becomes

|:(c z+d,)— +K+}I =1, (37)
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which is where Area et al [3] begin their analysis of 7,,; so, ¢,, d, and K,” may
be taken as known. Substituting back, we get b, (z) and K, from (35b) and (35c).

5. Discussion and Conclusions

In this final section we will discuss the relation of our methodology to related
work, with particular emphasis given to a comparison with the ‘root paper’ of
Gongcalves [5], which inspired the current approach, and, also, to the work of Area
et al [1] to which the results of the current enquiry are also closely related. Also,
for completeness, we will elucidate the connection between the hypergeometric-
like equations discussed above, and the hypergeometric equation itself.

First, with regard to Gongalves paper [5], we note that, while the current
method has been developed after a close study of this work, Gongalves approach
was that of following a particular path towards his goal and he did rot set-out the
general procedure presented here. Indeed, using the methodology set-out in
section 1, we have derived the expressions (13) for the differential equations’
parameters, assuming only the general forms (7) and (10), whereas Gongalves
approach assumed these results, explicitly or implicitly.

Further, Gongalves [5] does rot discuss the associated equation, (24), although
he does discuss the derivatives of (16), but does not consider the general case
discussed in section 3. We note in passing, though, that Jafarizadeh and Fakhri [6]
discuss the associated equation and quote an alternative form of the Rodrigues
formula (28); also, special cases of (28) are presented in Chenaghlou and Fakhri
[3,4]. Finally, Gongalves treatment of the class of integrals represented by
relations (30) is very specific and a somewhat different problem that that treated
here and by Areal et al [1] is considered [5]. (The methodology, being so
specific, is different too.)

Next, turning to the recent work of Area et al [1], we note that as well as
developing their approach to equation (1) in a different manner to either
Gongalves [5] or the current paper, they have to utilize variation of parameters to
produce the generalized Rodrigues formula, whereas in the current approach, as in
Gongcalves [5] original work, the full general solution appears at once from the
basic methodology. This is so, also, for the associated equation, equation (24), as
well as the original equation (1). As to the integrals, 7,,1(z), appearing in the
generalized Rodrigues formulae, the analysis of section 4 develops their solution
methodology ab initio, with the results ‘dove-tailing’ into the work of Area et al
[1], thus closing a ‘gap’ in their discussion and completing the analysis of the
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1,.1(z). All details of the calculations following equation (37) are contained in

Area et al [1], except for the determination of b, (z) and K,,, which is elementary
and is omitted.

Moving on, we will now elucidate the relationship between equations (1), (19)
and (24) and the hypergeometric equation (for constants «, £ and y) [2]

x(x=1)y"(x) +[(a+ B +Dx - y)V'(x) + afy(x) =0 (38)
First, we consider equation (1), and write-out p(z), ¢(z) and 4, explicitly as
P(2)=poz’ + piz+pa, q(2)=qz+q, and A, =-n[(n-Dpo+q] (39)

with the p,'s and g,'s constants. Next, in (1), following [7], we make the linear
substitution z = ax + b, with a and b constants, to transform (1) into

2 -~ + gl p2—4
x(x =1 y"(x) + ﬂﬁ( Pod2 — P1d1) £ a1\ i —4pop2

y'(x)
Po F2po\ Pt —4pops (40)

~ - [(n =D pg + g1 ]¥(x) = 0
Po

provided

[ 2 [ 2
-4 —p -4
a=T P1 PoP?2 and b= P 51 PoP2 (41)
Do Po

Then, comparing (38) and (40) [7], we see that (40) is a special case of (38) with

2 — iy £ il PP — 4
a:_n’ﬂzn_lJrﬂ and y = Pod2 — P91 =1y P1 —2PoP2 (42)

_ 2
Po F2py \/Pl —4pop

It follows now [7], that the solution to the hypergeometric-type differential
equation (1) can be written in terms of the hypergeometric equation (38).

By utilizing the above change of independent variable, we can extend the
methodology of [7], and elucidate the relationship between equation (19) and the

hypergeometric equation. First, we write-out the ¢,,(z) and 2 explicitly as

4n(2) = @mpo+a)z +mpy +q, and A} =(m—n)[(m+n-2)py+q] (43)
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Next, in (19), we follow [7] again and make the linear substitution z =ax+5, to
transform (19) into

x(x =Dy ()]I"
2mpo + 4y (2pod2 — Prdn) = (2mpo + g\ PE = 4P0P2 | (my i
+ X+ [vp™ ()]

_ 2
Po F2po\ i —4pop2

m-—n

* [g1 + (m+n=1)poly, (x) =0

(44)

Po

provided a and b are determined by (41), as before. Then, comparing (38) and
(44) we see that (44) is a special case of (38) with

a=m—-n, f=(m+n-1)+L- (45a)
Po
and
. (2poq2 — P1a1) = (2mpgy + q1)A/ pL—4pops (45h)

- 2
+2pg J P —4pop2

It follows now, that the solution to the hypergeometric-type differential equation
(19) can be written in terms of the hypergeometric equation (38).

Finally, we have the solution of the associated equation (24) in terms of that
of the hypergeometric equation, as we know already that

Vum(2) = ()" p2 (2)38"(2) (46)

Naturally, there are details in the writing-out of the relationships between the
various equations we have considered and the hypergeometric equation [7], but
we have finished the important part of the problem and the rest of the problem is a
matter of notation. For, example, the development of the solution of equation (1)
in terms of a solution of the equation (38) is presented in detail in [7].

In summary, a new systematic approach to the solution of the hypergeometric-
like differential equation and its associated equation has been developed. Further,
a novel analysis of a class of integrals determining the generalized Rodrigues
formulae arising through the solution methodology has been given and the
relationships between equations (1), (19) and (24) and equation (38) presented.
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