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Abstract 

 
In this paper, we present a new systematic approach to the solution of the 
hypergeometric-like differential equation and its associated equation. The method 
produces, tout court, the general solution of these equations in the form of a 
combination of a standard Rodrigues formula and a ‘generalized’ Rodrigues 
formula, of a type due originally to Gonçalves [5] and recently considered, again, 
by Area et al [1]. In addition, a novel analysis of a class of integrals determining 
the generalized Rodrigues formulae is given, which complements an original 
analysis of Area et al [1]. Finally, the relation between the hypergeometric-type 
differential equation and the hypergeometric equation is elucidated further, 
following the work of Koepf and Masjed-Jamel [7]. 
 
Mathematics Subject Classification: 33C25; 33C45 
 
Keywords: hypergeometric-type differential equation; Rodrigues formula; 
generalized Rodrigues formula; integration technique 
 
 
1. Introduction 
 
Consider the ‘hypergeometric-type’ second-order linear ordinary differential 
equation (with non-negative integer n) 
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0)()()()()( =+′+′′ zyλzyzqzyzp nnnn                                      (1) 
 

where )(zp is a quadratic function, )(zq a linear function and nλ  is independent of  
.z  As usual, the dashes denote differentiation with respect to the function 

argument (in this case the variable z). Our interest here, is in extracting, by a new 
systematic process, a Rodrigues formula solution to equation (1). The method is 
inspired by an old paper by Gonçalves [5], although in the current work we are 
able to eliminate particular assumptions made by Gonçalves, for example, that the 

nλ  of equation (1) takes the particular form that we derive below. 
      The method that we adopt has three parts.  
      (a) First, (1) is rewritten in self-adjoint form, in the usual way [8], then     
            transformed into the formal adjoint of equation (1). 
      (b) Next, we assume the solution of the formal adjoint of (1), (6) below, is    
            given as the nth-derivative of another second-order linear ordinary    
            differential equation of (effectively) the same class as (1), but, this time of          
            a particular inhomogeneous form. 
      (c) Finally, we assume that this second differential equation is exact and may   
            be integrated directly. 
      The outcome of the above three-part recipe is a system of four equations in 
four unknowns that emerge from the method, which, when solved and combined 
with the rest of the analysis, leads to the general solution of (1) which has, as a 
special case, a Rodrigues formula format. In fact, as an advance on previous work, 
we are able to derive the general solution to equation (1) with the ‘second 
solution’ arising automatically from the general method. This ‘second solution’ is 
given in terms of a generalized Rodrigues formula considered recently by Area et 
al [1], though derived, already, by Gonçalves [5]. Further, we are able to apply the 
method to the so-called associated equation [6] of equation (1), equation (24) 
below, and obtain the general solution to (24) as a combination, also, of a 
Rodrigues formula and a generalized Rodrigues formula. 
      When considering the generalized Rodrigues formulae, it proves necessary to 
determine a particular class of integrals. This problem was studied in detail by 
Area et al [1], but there is a ‘gap’ in their discussion which we fill-in here, by re-
analysing the problem of evaluating the said integrals in an entirely different 
manner. The connection with the hypergeometric equation is also discussed. 
 
 
2. The Solution Method 
 
First, (1) is rewritten in self-adjoint form as [8] 
 

0)()()]()()([ =+′ zyzzyzzp
dz
d

nnn λωω                              (2) 
 

where )(zω  the solution of the Pearson differential equation 
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)()()]()([ zzqzzp
dz
d ωω =                                         (3) 

is given by 
 

)(
)(

)(
)(

zp
ez

dz
zp
zq

∫
=ω                                                  (4) 

 
Following Gonçalves [5], we transform equation (2) by the change of dependent 
variable  
 

)()()( zyzzw nn ω=                                                 (5) 
 
so that equation (2) becomes 
 

0)(])()([)()]()(2[)()( =+′−′′+′−′+′′ zwλzqzpzwzqzpzwzp nnnn                (6) 
 
with equation (6) being the formal adjoint of equation (1). Equation (6) is the 
starting point, also, of the analysis of Area et al [1]. However, the details of the 
analysis presented here differs from that of Gonçalves [5] and Area et al [1]. Next, 
we associate equation (6) with an inhomogeneous second-order linear ordinary 
differential equation of the same class. We write this equation, with new 
dependent variable ),(zvn  as 
 

)()((z))()()( 1 zPzvvzrzvzp nnnnnn −=+′+′′ μ                                (7) 
 

with )(zrn ( a linear function) and nμ  (independent of z ) to be determined and 

)(1 zPn−  an arbitrary polynomial of degree .1−n  We now assume that the nth 
derivative of (7) reduces to (6) exactly. This gives rise to the identities 
 

)]()()()()([ zvzvzrzvzp
dz
d

nnnnnn

n
μ+′+′′  

)(])()([)()]()(2[)()( zwλzqzpzwzqzpzwzp nnnn +′−′′+′−′+′′≡      (8) 
 

and 
)()( )( zvzw n

nn ≡                                                      (9) 
 

Finally, the last part of the method assumes that equation (7) is exact in that we 
may write (following [5] again) 
 

)()]()()()([)()()()()( 1 zPzvzzvzp
dz
dzvzvzrzvzp nnnnnnnnn −=+′≡+′+′′ lμ      (10) 

 

with )(znl  to be determined. 
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      The identities (8) and (10) enable the identification of the four unknowns: ,nλ

,nμ )(znl  and ).(zrn  Using Leibnitz rule for the nth-derivative, we find that the 
identity (8) yields 
 

)()()2()( zqzpnzrn −′−=                                      (11a) 
and   

)()()(
2

)1()( zqzpzpnnzrn nnn ′−′′+=′′−
+′+ λμ                   (11b) 

 

while enforcing the identity (10) leads to 
 

)()()( zpzrz nn ′−=l                                         (12a) 
and   

nn z μ=′ )(l                                                         (12b) 
 

So, from equations (11) and (12), we have 
 

)()()2()( zqzpnzrn −′−=                                       (13a) 
and 

)()()1()( zqzpnzn −′−=l                                       (13b) 
and 

)()()1( zqzpnn ′−′′−=μ                                       (13c) 
and 

)](2)()1[(
2

zqzpnn
n ′+′′−−=λ                             (13d) 

 
3. The Solution(s) 
 
We can now start to ‘roll-back’ the above process by solving (9) for )(zvn  and 
then substitute in (9) for )(zwn  and then substitute in (5) for ).(zyn  First, we 
rewrite (10) using (13b) to get 
 

)()]()]()()1[()()([ 1 zPzvzqzpnzvzp
dz
d

nnn −=−′−+′                      (14) 
 

Integrating equation (14), repeatedly, we get 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫ + nnnn

n
n CdzDzP

zzp
zzpzv ])([

)()(
1)()()( 1 ω

ω                   (15) 

 

with nC  and nD  (for arbitrary n) integration constants and )(zPn  an arbitrary  
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polynomial of degree .n  Next, we substitute (15) back through (9) and (5) to get 
the general solution of equation (1) as (see [5] again) 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫ + nnnn

n
n

n

n CdzDzP
zzp

zzp
dz
d

z
zy ])([

)()(
1)()(

)(
1)( 1 ω

ω
ω

    (16) 

      If we set 0)( == nn DzP  in (16), then we get a particular solution to (1) as 
 

)]()([
)(

)( zzp
dz
d

z
Czy n

n

n
n

n ω
ω

=                                 (17) 

 
and (17) is indeed the Rodrigues formula solution to (1), subject to the condition  
(13d). The actual forms that the nC  are presented, for example, in reference [2]. 
Interestingly, if we set 0)( == nn CzP  in (16), then we get a second particular 
solution to (1) as 
 

⎥
⎦

⎤
⎢
⎣

⎡
= ∫ + dz

zzp
zzp

dz
d

z
Dzy n

n
n

n
n

n )()(
1)()(

)(
)( 1 ω

ω
ω

                  (18) 

 
and (18) is the extended Rodrigues formula solution to (1), discussed recently by 
Area et al [1]. Solution (18) is subject to the condition (13d) also. 
 
4.   The Associated Equation 
 
We consider, now, the relationship [6] between the basic equation (1) and its so- 
called associated equation, with an eye to producing a Rodrigues formula solution  
for the associated equation. If we differentiate (1) m times, nm ≤ , we find that, 

with )],([)()( zy
dz
dzy nm

m
m

n ≡  we get 
 

0)()]()[()]()[( )()()( =+′+″ zyλzyzqzyzp m
n

m
n

m
nm

m
n                     (19) 

 

where 
 

),()()( zqzpmzqm +′=       n
m
n λzqmzpmmλ +′+′′−
= )()(

2
)1(            (20)   

 
      Apparently, equation (19), with (20) in mind, is of the same class as equation 
(1), so that equation (19) comes within the compass of the Rodrigues’ formula 
solution methodology and we can write down a Rodrigues formula solution to 

equation (19). Indeed, since )()( zy m
n  is a polynomial of degree m,n−  (20) has a  
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Rodrigues’ formula solution of the form (16), but with allowance for the 
difference in degree of the polynomials and the specific form of the coefficients 

)(zqm  and .m
nλ  Making these allowances, we find that the Rodrigues formula for 

)()( zy m
n  is 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∫ −+−

−
−

−
m
n

m
nmn

m
mnm

mn
mn

mn

m

m
n CdzDzP

zzp
zzp

dz
d

z
zy ])([

)()(
1)()(

)(
1)( 1

)(

ω
ω

ω
 

(21) 
 

with 
m
nC  and 

m
nD  independent of z and where )(zmω  is a solution of 

 

    )()()]()([ zzqzzp
dz
d

mmm ωω =                                    (22) 
 

so that 
)()()( zωzpzω m

m =                                             (23) 
 
      The associated equation is obtained from (19) by transforming (19) into the 
same format as (1), that is, we wish to write (19) as 
 

0)()( )()( ,mn,,, =+′+′′ zyyzqzyzp mnmnmn λ                          (24) 
 

with mn,λ  to be determined. In fact, it is well-known that [6] 

)()()1()( )(2
, zyzpzy m

n

m
m

mn −=                                     (25) 
and 

       
p

pmqpppm

z mnmn

⎟
⎠
⎞

⎜
⎝
⎛ ′−+′+′′

−−=
])1

2
([

2)(, λλλ                     (26) 

 
Relations (24) and (26) yield the usual expressions for the associated equation. 
Finally, from (21), (23) and (25), we get the Rodrigues formula solution to (24), 
the associated equation, as 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−
= ∫ −+−

−−
m
n

m
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m

m

mn CdzDzP
zzp

zzp
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d

z
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)()(
1)()(
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)()1()( 1

2
, ω

ω
ω

  

(27) 
 

      Setting 0)( ==−
m
nmn DzP  in (27), we get a more standard Rodrigues formula  
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solution to (24) as  
 

)]()([
)(

)()1()(
2

, zzp
dz
d

z
zpCzy n

mn

mn
m

m
n

m

mn ω
ω −

−−
−

=                        (28) 

 

(See Table 1 for some examples, to within a conventional normalizing constant.) 

While, setting 0)( ==−
m
nmn CzP  in (27), we get a second type of Rodrigues 

formula solution to (24) as 
 

⎥
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⎤
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Table 1.  Important Associated ODE and their Rodrigues Formulae  
(with a, b and c constant) 
 
5. The Integrals 
 
The integrals 
 
 

 

Associated  
Equation 
 

 
Equation Form 

 
Rodrigues Formula 

 

 
Legendre 
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Bessel 

 
 

0
),(

, ])1([                                        

),(
, b]2)z[(a

),(
,

2

=+++−

′+++′′

ba
mnJz

mb
nan

ba
mnJ

ba
mnJz

 

 

 

] 2[
)1(

)(),(
,

z
b

eanzmndz

mnd

z
b

eamz

m
nCm

zba
mnJ

−
+

−

−

−
+

−
=  

 
 
 
 
Jacobi 

 

[ ]

0
),(

, 
21

 ])()[()(

)1(
           

),(
, )2(

),(
,)

2
1(

=
−

++−−
−++−

+++
+

′++−−+′′−

⎥⎦
⎤

⎢⎣
⎡ ba

nnP
z

zzbamabmbamm

bann

ba
nnPzbaab

ba
nnPz

 

 

])1(
)(

)1[(                     

2/)2()1(2/)2()1(

)1(
)(,

bn
z

an
zmndz

mnd

bmzamz

m
nCm

zmny

+
+

+
−−

−
×

+++−

−
=

 

 



1462                                                                                                            W. Robin 
 
 
 

∫ ++ = dz
zzp

zI nn )()(
1)( 11 ω

                                       (30) 

 
have been studied in detail by Gonçalves [5] and Area et al [1]. However, the 
analysis presented in this section should be seen as a complement to the work of 
Area et al [1]. Elementary differentiation shows that the )(zIn  satisfy the 
differential equation 
 

0)(
)(

)()()1()( =′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +′−
+′′ zI

zp
zqzpnzI nn                              (31) 

or 
)()()()]()()1[()()( zIzIzIzqzpnzIzp nnnn =+′+′−+′′                  (32) 

 

which suggest looking for raising and lowering operators (with the sK '  

independent of z) 
 

1)( +
+ =⎥⎦
⎤

⎢⎣
⎡ + nnnn IIK

dz
dza                                    (33a) 

and 

1)( −
− =⎥⎦
⎤

⎢⎣
⎡ − nnnn IIK

dz
dzb                                     (33b) 

 
where we have assumed that (32) can be written as  
 

nnnnnn IIK
dz
dzbK

dz
dza =⎥⎦

⎤
⎢⎣
⎡ −⎥⎦
⎤

⎢⎣
⎡ + −+

− )()( 1                          (34) 

 
with 

)()()( zpzbza =                                            (35a) 
and  

)()()1()()( 1 zqzpnzbKzb nnn +′−=+′ +
−                       (35b) 

and 
11 −=−+

− nn KK                                                (35c) 
 
Taking 
 

nnn dzcza +=)(                                              (36) 
 

(33a) becomes 
 

1)( +
+ =⎥⎦
⎤

⎢⎣
⎡ ++ nnnnn IIK

dz
ddzc                               (37) 
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which is where Area et al [3] begin their analysis of ;nI  so, ,nc  nd  and 

+
nK  may 

be taken as known. Substituting back, we get )(zbn  and 
−
nK  from (35b) and (35c). 

 
 
5. Discussion and Conclusions 
 
In this final section we will discuss the relation of our methodology to related 
work, with particular emphasis given to a comparison with the ‘root paper’ of 
Gonçalves [5], which inspired the current approach, and, also, to the work of Area 
et al [1] to which the results of the current enquiry are also closely related. Also, 
for completeness, we will elucidate the connection between the hypergeometric-
like equations discussed above, and the hypergeometric equation itself. 
      First, with regard to Gonçalves paper [5], we note that, while the current 
method has been developed after a close study of this work, Gonçalves approach 
was that of following a particular path towards his goal and he did not set-out the 
general procedure presented here. Indeed, using the methodology set-out in 
section 1, we have derived the expressions (13) for the differential equations’ 
parameters, assuming only the general forms (7) and (10), whereas Gonçalves 
approach assumed these results, explicitly or implicitly. 
      Further, Gonçalves [5] does not discuss the associated equation, (24), although 
he does discuss the derivatives of (16), but does not consider the general case 
discussed in section 3. We note in passing, though, that Jafarizadeh and Fakhri [6] 
discuss the associated equation and quote an alternative form of the Rodrigues 
formula (28); also, special cases of (28) are presented in Chenaghlou and Fakhri 
[3,4]. Finally, Gonçalves treatment of the class of integrals represented by 
relations (30) is very specific and a somewhat different problem that that treated 
here and by Areal et al  [1] is considered [5]. (The methodology, being so 
specific, is different too.) 
      Next, turning to the recent work of Area et al [1], we note that as well as 
developing their approach to equation (1) in a different manner to either 
Gonçalves [5] or the current paper, they have to utilize variation of parameters to 
produce the generalized Rodrigues formula, whereas in the current approach, as in 
Gonçalves [5] original work, the full general solution appears at once from the 
basic methodology. This is so, also, for the associated equation, equation (24), as  
well as the original equation (1). As to the integrals, ),(1 zIn+  appearing in the  
generalized Rodrigues formulae, the analysis of section 4 develops their solution 
methodology ab initio, with the results ‘dove-tailing’ into the work of Area et al 
[1], thus closing a ‘gap’ in their discussion and completing the analysis of the  
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).(1 zIn+  All details of the calculations following equation (37) are contained in  

Area et al [1], except for the determination of )(zbn  and ,−nK  which is elementary  
and is omitted. 
      Moving on, we will now elucidate the relationship between equations (1), (19) 
and (24) and the hypergeometric equation (for constants ,α β  and γ ) [2] 
 

0)()()])1[()()1( =+′−+++′′− xyxyxxyxx  αβγβα                   (38) 
 

First, we consider equation (1), and write-out ),(zp )(zq  and nλ  explicitly as 
 

,)( 21
2

0 pzpzpzp ++=   21)( qzqzq +=   and  ])1[( 10 qpnnn +−−=λ      (39) 
 

with the spk '  and sqk '  constants. Next, in (1), following [7], we make the linear 
substitution ,baxz +=  with a and b constants, to transform (1) into 
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= m   and  
0
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p
pppp

b
−±−

=                   (41) 

 
Then, comparing (38) and (40) [7], we see that (40) is a special case of (38) with  
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0

11
p
qn +−=β  and 

20
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10

20
2
111120

42

42

pppp

pppqqpqp

−

−±−
=

m
γ         (42) 

 

It follows now [7], that the solution to the hypergeometric-type differential 
equation (1) can be written in terms of the hypergeometric equation (38). 
      By utilizing the above change of independent variable, we can extend the  
methodology of [7], and  elucidate the relationship between equation (19) and the  
hypergeometric equation. First, we write-out the )(zqm  and 

m
nλ  explicitly as 

 

2110 )2()( qmpzqmpzqm +++=   and  ])1)[(( 10 qpnmnmλm
n +−+−=      (43) 
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Next, in (19), we follow [7] again and make the linear substitution ,baxz +=  to 
transform (19) into 
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(44) 
 
provided a and b are determined by (41), as before. Then, comparing (38) and 
(44) we see that (44) is a special case of (38) with  
 

,nm−=α
0

1)1(
p
qnm +−+=β                                 (45a) 

and 
 

20
2
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20
2
1101120

42

4)2()2(

pppp

pppqmpqpqp

−

−+±−
=

m
γ                     (45b) 

 

It follows now, that the solution to the hypergeometric-type differential equation 
(19) can be written in terms of the hypergeometric equation (38). 
      Finally, we have the solution of the associated equation (24) in terms of that 
of the hypergeometric equation, as we know already that 
 

)()()1()( )(2
, zyzpzy m

n

m
m

mn −=                                     (46) 
 
      Naturally, there are details in the writing-out of the relationships between the 
various equations we have considered and the hypergeometric equation [7], but 
we have finished the important part of the problem and the rest of the problem is a 
matter of notation. For, example, the development of the solution of equation (1) 
in terms of a solution of the equation (38) is presented in detail in [7]. 
      In summary, a new systematic approach to the solution of the hypergeometric-
like differential equation and its associated equation has been developed. Further, 
a novel analysis of a class of integrals determining the generalized Rodrigues 
formulae arising through the solution methodology has been given and the 
relationships between equations (1), (19) and (24) and equation (38) presented. 
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