
Learning to Solve Bin Packing Problems with an Immune Inspired
Hyper-heuristic

Kevin Sim1 , Emma Hart1 and Ben Paechter1

1 Institute for Informatics and Digital Innovation,
Edinburgh Napier University,

Merchiston Campus, Edinburgh, EH10 5DT
k.sim@napier.ac.uk

Abstract

Motivated by the natural immune system’s ability to defend
the body by generating and maintaining a repertoire of an-
tibodies that collectively cover the potential pathogen space,
we describe an artificial system that discovers and maintains
a repertoire of heuristics that collectively provide methods for
solving problems within a problem space. Using bin-packing
as an example domain, the system continuously generates
novel heuristics represented using a tree-structure. An novel
affinity measure provides stimulation between heuristics that
cooperate by solving problems in different parts of the space.
Using a test suite comprising of 1370 problem instances, we
show that the system self-organises to a minimal repertoire
of heuristics that provide equivalent performance on the test
set to state-of-the art methods in hyper-heuristics. Moreover,
the system is shown to be highly responsive and adaptive: it
rapidly incorporates new heuristics both when entirely new
sets of problem instances are introduced or when the prob-
lems presented change gradually over time.

Introduction
Heuristic search methods have been shown to be successful
in solving a wide-range of real-world problems. Typically
for a given application domain, a range of heuristics for solv-
ing problems will exist; these might range in nature from
simple rules encapsulating expert knowledge to complex
search algorithms that need to be tuned by experts to work.
Commonly, different heuristics will work well on problems
in different parts of the problem space. By collecting to-
gether a set of heuristics, it is hoped that collectively, the
weaknesses of individual heuristics can be compensated for
by other heuristics in the set (Burke et al., 2003). The goal of
the hyper-heuristics field is to find automated methods that
can both generate appropriate sets of heuristics and provide a
means of selecting between heuristics in the set, given either
a new problem instance or even a partially solved problem
instance.

While such approaches have proved successful in many
application areas, most hyper-heuristic approaches fail to
continuously learn from experience On the one hand, the
failure to exploit previous knowledge leads to inefficient
hyper-heuristics; on the other, if the characteristics of in-
stances of problems in the domain change over time, a

hyper-heuristic may need to be completely re-tuned or in
the worst case redesigned periodically. An ’ideal’ hyper-
heuristic would be able to exploit previous knowledge
through access to some kind of memory, rapidly adapt ex-
isting knowledge to new circumstances, and additionally,
generate new knowledge when previous knowledge is not
applicable.

We observe that the immune system fulfils very similar
properties in its role as a host maintenance and defence sys-
tem. The immune system maintains a repertoire of anti-
bodies that has been shown theoretically to cover the space
of potential pathogens. Clonal selection mechanisms pro-
vide a means of rapidly adapting existing antibodies to new
variants of previous pathogens; meta-dynamic processes are
able to generate novel antibodies; a memory mechanism en-
ables the immune system to respond rapidly when faced with
pathogens it has previously been exposed to.

Using this analogy, we present a system that is shown ex-
perimentally to outperform single human-designed heuris-
tics by a significant margin and furthermore, is shown to
be more adaptable and responsive than a recent state-of-the-
art hyper-heuristic approach when faced with a continually
changing problem landscape, thereby addressing the needs
of real-world practitioners more fully. The novel system de-
scribed has the following features:

• it generates novel heuristics from a library of component
parts

• it utilises meta-dynamic processes to both add and remove
heuristics from the system resulting in a self-organising
network of heuristics

• it sustains a network of interacting heuristics of minimal
size that collectively solve problems from the whole of
the problem space

• it encapsulates memory in the sustained network enabling
rapid adaptation to new problems

Background
We briefly cover some background in relation to the tested
application domain of bin-packing and outline the immunol-

ogy that inspired this approach before describing the system
in detail.

Immunology
Artificial Immune Systems (AIS) algorithms have been ap-
plied in many domains, including solving combinatorial op-
timisation (CO) problems (Kromer et al., 2012). Unlike
other biologically inspired paradigms there is no de-facto
model used by AIS practitioners. Of the models used the
one most frequently applied to CO problems is clonal selec-
tion theory (Burnet, 1959), however, many other paradigms
exist: we exploit the idiotypic network (Jerne, 1974) model
in this work, in part due to its plasticity and its ability to
describe the memory mechanism exhibited by the immune
system.

Idiotypic network inspired models have been developed
to address machine learning problems such as clustering
(Neal, 2003), however the most relevant line of work in re-
lation the model proposed in this article is in the robotics
domain. An idiotypic network model to perform behaviour
arbitration in mobile robots was one of the first applica-
tions in AIS (Watanabe et al., 1998) and spawned subse-
quent related work. In these early approaches, antibodies
in the network represented behaviours (actions); antibod-
ies were stimulated by environmental conditions and fur-
ther suppressed or stimulated by interactions with other an-
tibodies in a modified version of Farmer’s original equation
(Farmer et al., 1986). The immune repertoire consisted of a
set of antibodies which collectively covered a space of ap-
propriate actions required to achieve the robot goals in the
space defined by environment. In this early work, antibodies
were pre-defined; research focused on evolving connections
and matching strengths between antibodies. In more recent
work, Whitbrook et al have extended earlier work by using
an evolutionary algorithm in separate learning phase to pro-
duce antibodies which are used to seed the network. The
benefits of seeding the network with a diverse and novel set
of antibodies are described in Whitbrook et al. (2010).

In this paper, we adopt a similiar approach to Whitbrook
et al in recognising the need to develop a diverse set of an-
tibodies for potential inclusion in the network. In contrast
to previous work however, our mechanism is not just used
to seed the network in an initial phase but continuously gen-
erates a stream of potential antibodies which are either in-
corporated into the network or rejected according to a meta-
dynamic process. This results in a learning scheme in which
the network is able to continuously adapt over time.

HyperHeuristics
Originally described as “heuristics to select heuris-
tics” (Burke et al., 2003) the field of hyper-heuristics has
evolved to also encompass “heuristics to generate heuris-
tics” (Burke et al., 2010); both methods have the common
goal of searching a landscape defined by the heuristics in or-
der to find a procedure for solving a problem, rather than

searching directly over the solution space defined by the
problem itself. Hyper-heuristic methods have been widely
applied to bin-packing problems. We discuss the most rele-
vant research briefly below.

Heuristic generation Genetic Programming (GP) is typi-
cally used a method of generating new heuristics. In Burke
et al. (2006, 2012) GP was used to automate the design of
heuristics for the bin-packing problem in multiple dimen-
sions. Using a small set of benchmarks, they found the
generated heuristics to be competitive with human-designed
heuristics. In Sim and Hart (2013), the authors introduced
Single Node Genetic Programming as a method to evolve
new heuristics for bin-packing. SNGP, introduced in Jack-
son (2012), differs from the conventional GP model intro-
duced by Koza (1992) in a number of key respects. A single
tree structure is used to represent a population of possible
trees by allowing any node to be the start node. Only muta-
tion is used to change connections with the tree, alleviating
the undesirable affect of bloat found in conventional GP and
enabling different network structures to emerge in addition
to classical tree structures.

Heuristic selection Most hyper-heuristics use a fixed set
of low-level heuristics (whether generated or hand-built) and
define or learn a model to select an appropriate heuristic
based on the current state of the problem or a description of
the problem characteristics. In contrast, Sim and Hart (2013)
introduce an island model based on the concept of Cooper-
ative Coevolution (Potter and De Jong, 2000) in which a set
of islands each contribute a heuristic to a collaborating set
that collectively are able to solve a problem. Crucially, the
number of islands is not prefixed but is adaptable. In Sim
and Hart (2013), an island contains a population described
using SNGP; each island contributes its best heuristic to the
collaboration set. Based on a set of 685 test instances, the
authors showed that the model was able to solve more in-
stances and reduce the number of extra bins required than
an equivalent sized set of man-made heuristics from the lit-
erature.

In the current work, a simplified version of SNGP is used
to generate novel heuristics and the island model described
above is replaced by an AIS algorithm which is shown to be
able to find, maintain and adapt a collaborating set of heuris-
tics that equals or outperforms other previous approaches.

1D BPP and Benchmarks
The objective of the one dimensional bin packing problem
(BPP) is to find a packing which minimises the number of
containers, b, of fixed capacity c required to accommodate
a set of n items with weights ωj : j ∈ {1 . . . n} falling in
the range 1 ≤ ωj ≤ c, ωj ∈ Z whilst enforcing the con-
straint that the sum of weights in any bin does not exceed
the bin capacity c. The lower and upper bounds on b, (bl and

bu) respectively, are given by equation 1 Any heuristic that
does not return empty bins will produce, for a given problem
instance, p, a solution using bp bins where bl ≤ bp ≤ bu.

bl =

n∑

j=1

ωj ÷ c

 , bu = n (1)

Table 1 shows the parameters from which the benchmark
problem instances used in this study were generated. Data
sets ds1, ds2 & ds3, introduced by Scholl et al. (1997) all
have optimal solutions that vary from the lower bound given
by Equation 1. However all are known and have been solved
since their introduction (Schwerin and Wäscher, 1997). All
of the instances from FalU and FalT , introduced by Falke-
nauer (1996), have optimal solutions at the lower bound ex-
cept for one (Gent, 1998).

Six deterministic heuristics commonly cited in the liter-
ature are used for comparison — FFD, DJD, DJT, ADJD,
BFD and SS. Descriptions of each of these heuristics can be
found in Sim and Hart (2013). Note that in the implementa-
tion used here, each deterministic heuristic is presented with
each problem instance’s items pre-sorted in descending or-
der of size.

Implementation
The system comprises of three main parts: a database of
problem instances, a heuristic generator and the AIS as il-
lustrated by Figure 1.

Heuristic

Generator

Figure 1: System Model

The system is designed to run continuously; problem in-
stances can be added or removed from the system at any
point. A heuristic generator akin to gene libraries in the nat-
ural immune system provides a continual source of potential
heuristics. The AIS itself consists of a set of heuristics (akin
to antibodies in the natural immune system that interact with
each other based on an affinity metric. The overall goal of

the system is to develop a repertoire of heuristics that can
solve the set of problem instances to which they are currently
exposed and that can adapt its structure and constituent parts
as the problem instances change in nature. The component
parts are described in detail below.

Heuristic Generator
Heuristics are represented using a tree structure and are gen-
erated using only the initialisation process used in SNGP
(Jackson, 2012) resulting in structures as shown in the ex-
ample given in Figure 2 — this tree shows one of the de-
terministic heuristics from the literature DJD encoded in a
tree format. A fixed set of terminal and function nodes are
available to the generator and are defined in Table 2 which
combines nodes according to the process outlined in Algo-
rithm 1. Further details outlining the justification for the
choice of nodes and further details on the SNGP process can
be found in Sim and Hart (2013). One heuristic is generated
per iteration of the AIS algorithm.

FS

2 C

3

B3A B1

X

/

<

IGTZ

The tree structure is repeatedly

evaluated from the top IGTZ

node until it fails to pack any

more items into the current bin

at which time a new bin is opened.

The left conditional child branch

checks to see if the free space is less

than 2 times the bin capacity

divided by 3.

If this is true the second branch is

evaluated and packs the best 3 items

into the current bin.

If false the third branch is evaluated

and the B1 node is executed and

packs the single best item.

Figure 2: DJD Heuristic Expressed as a Tree

Algorithm 1 Heuristic Generation

1: Each of the terminal nodes T ∈ {t1, . . . tr} are added
exactly once. The terminal nodes are given an integer
identification number ranging from 1 . . . r.

2: A number, n, of function nodes are selected at random
from the set of all function nodes F ∈ {f1, . . . , fs} and
given an identification number ranging from r+1, . . . to
r + n. This allows for the possibility of duplicate func-
tion nodes within the population or for SNGP structures
with function nodes omitted.

3: The function nodes have all their child nodes assigned
at random from nodes with a lower id thus preventing
any infinite looping.

4: A single node is chosen at random to be the root node.

Table 1: Data sets ds1, ds3 and FalU were created by generating n items with weights randomly sampled from a uniform
distribution between the bounds given by ω. Those in FalT were generated in a way similar to Falkenauer (1996) so that the
optimal solution has exactly 3 items in each bin with no free space. Scholl’s ds2 was created by randomly generating weights
from a uniform distribution in the range given by $ ± δ. The final column gives the number of instances generated for each
parameter combination.

Data Set capacity (c) n ω #Problems
ds1 100,120,150 50,100,200,500 [1,100],[20,100],[30,100] 36× 20 = 720
ds3 100000 200 [20000,30000] 10
FalU 150 120,250,500,1000 [20,100] 4× 20 = 80
FalT 1 60,120,249,501 [0.25,0.5] 4× 20 = 80

Data Set c n $ (avg weight) δ(%) # Problems
ds2 1000 50,100,200,500 c

3 ,
c
5 ,

c
7 ,

c
9 20,50,90 48× 10 = 480

Table 2: Nodes Used

Function Nodes
/ Protected divide returns -1 if denominator is

0 otherwise the result of dividing the first
operand by the second

> Returns 1 if the first operand is greater than the
second or -1 otherwise

IGTZ Evaluates the first operand. If it evaluates as
greater than zero the result of evaluating the
second operand is returned otherwise the result
of evaluating the third operand is returned

< Returns 1 if the first operand is less than
the second or -1 otherwise

X Returns the product of two operands
Terminal Nodes

B1 Packs the single largest item into the current bin
returning 1 if successful or -1 otherwise

B2 Packs the largest combination of exactly 2 items
into the current bin returning 1 if successful or
-1 otherwise

B2A Packs the largest combination of up to 2 items
into the current bin giving preference to sets of
lower cardinality. Returns 1 if successful or -1
otherwise

B3A As for B2A but considers sets of up to 3 items
B5A As for B2A but considers sets of up to 5 items

C Returns the bin capacity
FS Returns the free space in the current bin

INT returns a random integer value ∈ (−1, ...,+5)
W1 Packs the smallest item into the current bin

returning 1 if successful else -1

AIS

The AIS component is responsible for constructing a net-
work of interacting heuristics and for governing the dynamic

processes that enable heuristics to be incorporated or re-
jected from the current network. These two aspects are now
described.

Affinity A key aspect of this is the affinity metric that de-
fines the manner and the extent to which heuristics can in-
teract. In the natural immune system, affinity is defined
by physical and chemical interactions between molecules of
different shape, with molecules with complementary struc-
tures showing highest affinity (the well known lock-and-key
analogy). We re-interpret the notion of complementarity in
the heuristic space as follows:

Definition Heuristic HA is complementary to Heuristic
HB if Heuristic HA uses fewer bins than Heuristic HB on
at least one problem instance

The affinity of Heuristic HA for Heuristic HB is equal
to the number of extra bins ∆babp used by Heuristic HB

summed across the set of l problem instances available to
the system, and is defined in equation 2. Note that affinity
between two heuristics is asymmetrical.

αab =

l∑
p=1

∆babp

{
∆bapbp = bbp − bap : if bap < bbp
∆bapbp = 0 : otherwise

(2)
The total stimulation experienced by a heuristic is the sum

of the affinities with all other heuristics in the network and
is given by Equation 3 where there are m heuristics present
in the network.

sx =

m∑
j=1

αxj (3)

An example for a system of m = 3 heuristics and l = 3
problems is given in figure 3.

Network Dynamics Each iteration, one new heuristic is
generated and is made available to the network. The affin-
ity metric described encourages diversity between pairs of

H1

P1
P2

P3

H2
H3

H1 is the best heuristic on P1
H1 and H2 are equal winners on P2

H3 is the best heuristic on P3

H1 gets a stimulation value from H2 on

P1 of 3 as it solves P1 using 3 less bins.

H2 gets a stimulation value from H1 on

P1 of 0 as it uses more bins and is ignored.

This is repeated for each heuristic and
each problem instance.

The total stimulation recieved by each heuristc is:

 P1 P2 P3
H1 = (3 + 2) + (0 + 1) + (1 + 0)

H2 = (0 + 0) + (0 + 1) + (0 + 0)
H3 = (0 + 1) + (0 + 0) + (1 + 2)

Figure 3: Affinity between Complementary Heuristics

heuristics leading to increased network performance by sus-
taining those that cover different parts of the problem space.
In a practical application however, it is reasonable to assume
that in addition to maintaining diversity, important goals of
the system should be to find (1) the set of heuristics that
most efficiently cover the problem space and (2) the set that
collectively minimise the total number of bins used to solve
all problems the network is exposed to. While the latter is
addressed by sustaining any heuristic with non-zero stimu-
lation, the former goal requires some attention.

Previous AIS models relating to idiotypic networks at-
tempt to use Farmer’s original equation (Farmer et al., 1986)
to govern the dynamics of addition and removal of nodes
from a network. In machine-learning applications such as
data-clustering this was quickly found to lead to population
explosion e.g. Timmis et al. (2000), later addressed by using
resource limiting mechanisms (Timmis and Neal, 2001). In
previous robotic applications, the situation is avoided com-
pletely by using a network of fixed size and focusing only
on evolving connections. In more theoretical models such as
Hart (2006) the criteria are not relevant, as the goal is sim-
ply to show that a network can be sustained. In this heuris-
tic case, simply sustaining all heuristics that contribute to
covering the heuristic space is likely to lead to population
explosion in the same manner observed in data-mining ap-
plications, as no pressure exists on the system to encourage
efficiency.

Therefore, at the end of each iteration, the contribution
made by each heuristic to the overall performance is calcu-
lated in terms of whether it plays a unique contribution in
determining the overall quality of the system. Any heuris-
tic whose contribution is subsumed by one or more other
heuristics is removed from the system. Thus, in Figure 3
heuristic H2 is subsumed by the combination of H1 and
H3 and is therefore removed from the system. This simple
method thus provides pressure on the system to minimise
the number of heuristics used. This can be thought of as
an artificial form of apoptosis that removes antibodies that

cover duplicate parts of the landscape and allows for prolif-
eration of new cells only in the case that they cover an equal
or greater area of the search space that an existing heuristic
is occupying.

Pseudo-code describing the network dynamics is give in
Algorithm 2. H is the set of heuristics currently present
in the network, E is the set of problems in the current en-
vironment. Note that there is a single parameter in the al-
gorithm that defines the maximum concentration a heuristic
can reach. This parameter introduces user control over the
period of the network memory and is discussed in section .

Algorithm 2 AIS Pseudo Code
1: repeat
2: Add a randomly generated heuristic
3: Optionally change the set of problem instances
4: for all heuristics i ∈ H do
5: Calculate current stimulationi using Equation 3

based on E
6: if stimulationi > 0 then
7: if concentrationi < concentrationmax then
8: concentrationi ← concentrationi + 1
9: end if

10: else
11: concentrationi ← concentrationi − 1
12: end if
13: end for
14: Remove heuristics with concentration ≤ 0
15: Remove all heuristics that give no global improve-

ment (oldest first)
16: until stopping criteria met

Experimental Results
A number of experiments were conducted using the model
described with the test set of 1370 instances previously de-
scribed in section .

Baseline comparison on a static dataset
An initial experiment was performed in order to compare
the AIS model to previous work in terms of solution qual-
ity on a static data set. 1370 instances were split into two
sets: the training set comprised of the first and then every
second problem instance from each of the data sets with the
remaining problem instances used as a test set. This split
ensured an even distribution of problem instances from each
of parameter combinations used to generate them in the test
and training set. All 685 problems in the training set were
placed in the AIS environment, and the AIS algorithm run
for 200 iterations. The quality of the network is measured
in terms of the number of problem instances for which the
known optimal solution was found by at least one heuris-
tic, and additionally in terms of the number of extra bins

required to solve the instances compared to the known opti-
mal. Results are recorded for problem instances in the train-
ing set, and then on the test set of instances (with no further
iteration of the network). The experiments are repeated 30
times, reinitialising the system each time. Results are com-
pared to using each of the single deterministic heuristics and
to the island model described in Sim and Hart (2013) and
shown in table 3a.

The best results shown for the AIS are identical to the
best results presented in Sim and Hart (2013), even though
the Island Model in that publication required evolutionary
operators in order to find solutions and the AIS relies simply
on randomly generated heuristics. Given this performance,
we now examine the response of the system to dynamically
changing data.

Response to dynamically changing data
The AIS method was inspired by the ability of the natural
immune system to rapidly respond to a dynamically chang-
ing environment, in which the self-sustaining network of an-
tibodies is postulated to act as a memory of past responses.
Four experiments were devised in order to investigate the
behaviour of the system under the following dynamically
changing conditions.

1. A set of 685 randomly selected problem instances is in-
troduced every 200 iterations. At this point, problems
currently in the system are removed, the network cleared,
and the system is started from scratch

2. A set of 685 randomly selected problem instances is intro-
duced every 200 iterations. At this point, problems cur-
rently in the system are removed, but the existing network
is retained

3. Every 200 iterations the problem instances used are tog-
gled between those from Scholl’s data sets 1 & 2 (de-
scribed in Table 1). Antibodies in the existing network
are retained.

4. A new problem is introduced every iteration. The existing
network is retained.

Experiment 1 was designed to investigate the time taken
for the system to reach equilibrium from an initial starting
state. The results are shown in Figure 4. Note that in this
graph (and in the following ones) only the first 5 cycles are
shown. At the end of each 200 iteration cycle, the total num-
ber of bins required by the system is assumed to be the best
that can be achieved and is given a score of 0. The y-axis
then shows the number of bins required over and above this
score, enabling different sets of problem instances where the
optimal number of bins required varies to be plotted on a rel-
ative scale to highlight the response to changing conditions.

It is clear that the system performs poorly at the point
of restart requiring up to 1200 extra bins than the best result

0

200

400

600

800

1000

1200

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

N
u
m

b
er

 o
f
B

in
s

G
re

a
te

r
th

a
n
 t

h
e

B
es

t

Iteration

0

10

20

30

40

50

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Response Time Vs Extra Bins

Random 685 Instances

Figure 4: Response when the system is completely restarted
every 200 iterations

0

1

2

3

4

5
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

N
u
m

b
er

 o
f
B

in
s

G
re

a
te

r
th

a
n
 t

h
e

B
es

t

Iteration

Response Time Vs Extra Bins

Random 685 Instances

Figure 5: Response When the Problem Instances are
Changed every 200 iterations

found during each cycle. The response is still rapid however:
the median number of iterations required to reach the best
result is 65 (shown in table4).

Experiment 2 examines the role of memory, implicit in
the sustained network. The system is effectively trained dur-
ing a 200 iteration cycle on a set of problem instances repre-
sentative of the whole set of 1370 problem instances. When
the problem instances are changed, the heuristics already in
the system have a greater probability of performing well on
the new set of problem instances than randomly generated
ones due to the shared problem characteristics. Results are
shown in Figure 5. The median number of iterations to reach
the optimal value is 10 and the total number of bins required
is at most 5 greater than that at the end point (Table 4).

Experiment 3 presents a more difficult test for the sys-
tem; the two alternating problem sets have very different
characteristics. The memory encapsulated in the network is
therefore expected to be of less relevance. Results are shown
in Figure 6 and in Table 4. Performance drops in comparison
to Figure 5 where the memory could be exploited; however,
there is still an improvement in comparison to the complete
re-start applied in Experiment 1.

Finally, Experiment 4 investigates the system response to
slowly changing environmental conditions. Figure 7 shows
how the system responds as problem instances are gradually
introduced to the system. The system starts with no problem
instances and no heuristics. Each iteration one randomly

Single Deterministic Heuristics

Heuristic Problems Extra

Solved Bins

FFD 393 1088

DJD 356 1216

DJT 430 451

ADJD 336 679

BFD 394 1087

SS 383 1112

(a)

Collaborative Heuristic Models

Problems Solved Extra Bins

min max mean sd min max mean sd

Immune 554 559 556 1.4 159 165 162 1.4

Model

Island 552 559 557 1.4 159 164 162 1.4

Model

(b)

Table 3: A comparison of results obtained on a static dataset of 685 problems using a) single heuristics and b) collaborative
methods

10

20

30

40

50

60

70

80

0 2
0
0

4
0
0

6
0
0

8
0
0

1000

N
u
m

b
er

 o
f
B

in
s

G
re

a
te

r
th

a
n
 t

h
e

B
es

t

Iteration

Response Time Vs Extra Bins

Alternating between Scholl 1Scholl 2

Figure 6: Response When alternating between data sets ev-
ery 200 iterations

Table 4: System Response Time to Varying Conditions

Response Time
min max median

Exp1 9 186 63
Exp2 1 111 10
Exp3 15 200 64.5

Exp1, 2 & 3 correspond to Figures 4, 5 & 6 respectively.
The minimum, maximum, and median number of
iterations that were required to reach the optimal value
are shown. All results are taken over 30 data points.

generated heuristic and one randomly selected problem in-
stance are introduced. The graph shows the percentage of
extra bins over the known optimal that are required using
the heuristics present in the network at each iteration. The
number of heuristics sustained by the system is also shown.

Most benefit is gained from adding new heuristics when
few heuristics are present. As the number of heuristics in-
creases, it becomes harder for a newly added heuristic to

0

0.2

0.4

0.6

0.8

1

1
3
7
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1

2

3

4

5

6

7

8

P
er

ce
n
ta

g
e

o
f
E

x
tr

a
 B

in
s

R
eq

u
ir

ed

N
u
m

b
er o

f H
eu

ristics

Number of Problem Instances

Number of Heuristics and Percentage of Extra Bins
Vs Number of Problem Instances

% Extra Bins
Number of Heuristics

Figure 7: Number of Heuristics Sustained and the Percent-
age of Extra Bins Required than Optimal as the Number of
Problem Instances is Increased

find a new niche. Furthermore, the total number of poten-
tial heuristics is limited by the generation method currently
used (although this could easily be extended by adding new
nodes).

Conclusion
We have introduced an AIS model for generating and main-
taining a repertoire of heuristics that solve bin-packing prob-
lems. Results show that the model achieves equal results
to state-of-the-art methods on static data sets, and is ex-
tremely responsive to dynamically changing data-sets, mak-
ing it suitable for use as a continuous learning system. The
memory encapsulated in the network can be exploited to
provide a rapid response to new problems that share char-
acteristics with those previously seen by the network.

The model can be generalised to other domains by re-
placing the component parts of the heuristic generator. Cur-
rently, the generation model does not make use of any evolu-
tionary or cloning operators to improve randomly generated
solutions. By adding this feature in the future, it is hoped to
speed up the response even further.

Acknowledgements
This work was funded by EPSRC grant P/J1021628/1 Real
World Optimisation with Life-Long Learning.

References
Burke, E., Hyde, M., and Kendall, G. (2006). Evolving

bin packing heuristics with genetic programming. In
Parallel Problem Solving from Nature - PPSN IX, vol-
ume 4193 of Lecture Notes in Computer Science, pages
860–869. Springer Berlin / Heidelberg.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and
Schulenburg, S. (2003). Hyper-heuristics: An emerg-
ing direction in modern search technology. In Hand-
book of Metaheuristics, International Series in Oper-
ations Research & Management Science, chapter 16,
pages 457–474. Kluwer.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
and Woodward, J. R. (2010). A classification of hyper-
heuristic approaches. In Gendreau, M. and Potvin, J.-
Y., editors, Handbook of Metaheuristics, volume 146
of International Series in Operations Research & Man-
agement Science, pages 449–468. Springer US.

Burke, E. K., Hyde, M. R., Kendall, G., and Woodward,
J. (2012). Automating the packing heuristic design
process with genetic programming. Evol. Comput.,
20(1):63–89.

Burnet, F. M. (1959). The clonal selection theory of ac-
quired immunity. Cambridge University Press, Cam-
bridge, UK.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm
for bin packing. Journal of Heuristics, 2:5–30.

Farmer, J. D., Packard, N. H., and Perelson, A. S. (1986).
The immune system, adaptation, and machine learning.
Phys. D, 2(1-3):187–204.

Gent, I. P. (1998). Heuristic solution of open bin packing
problems. Journal of Heuristics, 3(4):299–304.

Hart, E. (2006). Analysis of a growth model for idiotypic
networks. In Bersini, H. and Carneiro, J., editors, Ar-
tificial Immune Systems, volume 4163 of Lecture Notes
in Computer Science, pages 66–80. Springer Berlin /
Heidelberg.

Jackson, D. (2012). Single node genetic programming on
problems with side effects. In Coello, C., Cutello, V.,
Deb, K., Forrest, S., Nicosia, G., and Pavone, M., edi-
tors, Parallel Problem Solving from Nature - PPSN XII,
volume 7491 of Lecture Notes in Computer Science,
pages 327–336. Springer Berlin Heidelberg.

Jerne, N. K. (1974). Towards a network theory of the im-
mune system. Ann Immunol (Paris), 125C(1-2):373–
89.

Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA.

Kromer, P., Platos, J., and Snasel, V. (2012). Practical results
of artificial immune systems for combinatorial opti-
mization problems. In Nature and Biologically Inspired
Computing (NaBIC), 2012 Fourth World Congress on,
pages 194–199.

Neal, M. (2003). Meta-stable memory in an artificial im-
mune network. In Timmis, J., Bentley, P., and Hart,
E., editors, Artificial Immune Systems, volume 2787
of Lecture Notes in Computer Science, pages 168–180.
Springer Berlin Heidelberg.

Potter, M. A. and De Jong, K. A. (2000). Cooperative co-
evolution: An architecture for evolving coadapted sub-
components. Evol. Comput., 8:1–29.

Scholl, A., Klein, R., and Jürgens, C. (1997). Bison:
a fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Comput. Oper. Res.,
24(7):627–645.

Schwerin, P. and Wäscher, G. (1997). The bin-packing prob-
lem: A problem generator and some numerical experi-
ments with ffd packing and mtp. International Trans-
actions in Operational Research, 4(5-6):377–389.

Sim, K. and Hart, E. (2013). Generating single and multi-
ple cooperative heuristics for the one dimensional bin
packing problem using a single node genetic program-
ming island model. In Proceedings of GECCO 2013,
New York, NY, USA (to appear). ACM.

Timmis, J. and Neal, M. (2001). A resource limited artificial
immune system for data analysis. Knowledge-Based
Systems, 14(34):121 – 130.

Timmis, J., Neal, M., and Hunt, J. (2000). An artificial im-
mune system for data analysis. Biosystems, 55(13):143
– 150.

Watanabe, Y., Ishiguro, A., and Uchikawa, Y. (1998).
Decentralized behavior arbitration mechanism for au-
tonomous mobile robot using immune network. In Das-
Gupta, D., editor, Artficial Immune Systems and Their
Applications, pages 187 – 209. Springer-Verlag New
York, Inc.

Whitbrook, A. M., Aickelin, U., and Garibaldi, J. M. (2010).
Two-timescale learning using idiotypic behaviour me-
diation for a navigating mobile robot. Appl. Soft Com-
put., 10(3):876–887.

	Introduction
	Background
	Immunology
	HyperHeuristics

	1D BPP and Benchmarks
	Implementation
	Heuristic Generator
	AIS

	Experimental Results
	Baseline comparison on a static dataset
	Response to dynamically changing data

	Conclusion

