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Abstract 

Component-Based Development (CBD) has been broadly used in software 

development as it enhances the productivity and reduces the costs and risks involved 

in systems development. It has become a well-understood and widely used technology 

for developing not only large enterprise applications, but also a whole spectrum of 

software applications, as it offers fast and flexible development. However, driven by 

the continuous expansions of software applications, the increase in component 

varieties and sizes and the evolution from local to global component repositories, the 

so-called component mismatch problem has become an even more severe hurdle for 

component specification and retrieval. This problem not only prevents CBD from 

reaching its full potential, but also hinders the acceptance of many existing 

component repository.  

To overcome the above problem, existing approaches engaged a variety of 

technologies to support better component specification and retrieval. The existing 

approaches range from the early syntax-based (traditional) approaches to the recent 

semantic-based approaches. Although the different technologies are proposed to 

achieve accurate description of the component specification and/or user query in their 

specification and retrieval, the existing semantic-based approaches still fail to achieve 
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the following goals which are desired for present component reuse: precise, 

automated, semantic-based and domain capable. 

This thesis proposes an approach, namely MVICS-based approach, aimed at 

achieving holistic, semantic-based and adaptation-aware component specification and 

retrieval. As the foundation, a Multiple-Viewed and Interrelated Component 

Specification ontology model (MVICS) is first developed for component specification 

and repository building. The MVICS model provides an ontology-based architecture 

to specify components from a range of perspectives; it integrates the knowledge of 

Component-Based Software Engineering (CBSE), and supports ontology evolution to 

reflect the continuous developments in CBD and components. A formal definition of 

the MVICS model is presented, which ensures the rigorousness of the model and 

supports the high level of automation of the retrieval. Furthermore, the MVICS model 

has a smooth mechanism to integrate with domain related software system ontology. 

Such integration enhances the function and application scope of the MVICS model by 

bringing more domain semantics into component specification and retrieval. Another 

improved feature of the proposed approach is that the effect of possible component 

adaptation is extended to the related components. Finally a comprehensive profile of 

the result components shows the search results to the user from a summary to satisfied 

and unsatisfied discrepancy details. The above features of the approach are well 

integrated, which enables a holistic view in semantic-based component specification 

and retrieval. 
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A prototype tool was developed to exert the power of the MVICS model in expressing 

semantics and process automation in component specification and retrieval. The tool 

implements the complete process of component search. Three case studies have been 

undertaken to illustrate and evaluate the usability and correctness of the approach, in 

terms of supporting accurate component specification and retrieval, seamless linkage 

with a domain ontology, adaptive component suggestion and comprehensive result 

component profile. 

A conclusion is drawn based on an analysis of the feedback from the case studies, 

which shows that the proposed approach can be deployed in real life industrial 

development. The benefits of MVICS include not only the improvement of the 

component search precision and recall, reducing the development time and the 

repository maintenance effort, but also the decrease of human intervention on CBD. 
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1. Introduction  

1.1 Problem Statement  

Component-Based Development (CBD) has been widely used to develop software 

systems by assembling and composing already built software components. Numerous 

advantages of CBD have been identified such as shortened development life cycle 

[36], reduced time-to-market [119][146], and reduced development costs [36][146]. 

However, at present CBD still fails to reach its full potential and has not been as 

widely accepted as it should be due to a few unsolved major hurdles, one of which is 

the lack of effective and automated methods for holistically and semantically 

specifying and retrieving existing components that precisely match user reuse 

requirements [126]. 

The above problem is basically caused by the lack of semantic-based component 

specification/repository and retrieval technologies. In order to solve the problem, four 

research questions need to be further investigated. 

 Is it possible to construct an ontology to cover all component 

specification? 
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First of all, in the semantic-based approach, the ontology plays a key role in 

supporting the component specification and retrieval. Up to now, there is still 

no suitably defined ontology that is able to cover the complete characteristics 

of component specification
1
.  

 How to design the architecture of an ontology so that it can organise all 

characteristics via various relationships?  

Secondly, although a few approaches have started to use an ontological 

domain model in the component retrieval process, to date it is clear that the 

ontology in these approaches has a too simple and monolithic structure and 

few relationships to deal with the specification and retrieval of modern 

components [171][190][191]. 

 How to link component specification ontology with domain ontology?  

Thirdly, even if a hypothetical component specification ontology exists, the 

range of application is limited by the lack of a method to link the 

specification ontology to different domain specification ontologies. 

 How to design a technique based on component specification ontology to 

calculate the search precision?  

                                            
1

 According to the development of component based software engineering, the characteristics mentioned here update dynamically 
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Moreover and as part of the consequence, the existing approaches also failed 

to rank the components found (result components) with accurate relevance 

rating and clear unsatisfied discrepancy to reuse requirements.  

To summarise the research hypothesis, is it possible to develop an effective and 

automated technique for semantically specifying and retrieving existing components 

that precisely match user reuse requirements by solving the four research questions. 

1.2 Objectives of the Proposed PhD Research 

To overcome the limitations in semantic-based component specification and retrieval 

mentioned in section 1.1, a novel ontology-based approach is proposed to achieve 

holistic and semantic-based component specification and automatic and precise 

component retrieval.  

The objectives of the research include:  

 To develop a holistic ontology-based approach  

“Holistic” means that the ontology-based approach has been systematically 

structured as a spectrum of different aspects in component specification and 

retrieval, such as domain specific component information, adaptive assets 

information and the way to present result components comprehensively.  
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“Ontology-based” means that the component specification and retrieval 

approach is based on a component specification ontology model suitably 

defined with ontology languages.  

With the help of this model, the characteristics of the component may be 

specified from multiple perspectives with semantic expression in the 

repository. The scope of the specification ontology may thus be extended by 

links between many specific domains in a smooth manner.  

 To assess the search precision of the result components 

Whereas the existing component specification and retrieval methods only 

generally differentiate the similar components, a method of search precision 

calculation algorithm that can assess the search precision numerically may 

reflect more accurately how the search results match with the user 

requirements. 

 To build a prototype tool to illustrate and scale up the approach.  

A prototype tool with an example component repository may help verify and 

automate the approach, particularly if it can implement the complete process 

of component search, starting from filling the initial query and ending up 

with receiving the search results (i.e. to list in the result component profiles).  
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 To do case studies to evaluate the approach.  

Properly designed case studies may help evaluate the practibility and 

efficiency of the approach in both theoretical and practical level, if the 

participants do use our prototype tool or put the approach into their own  

practices. 

1.3 Contributions to Knowledge 

The proposed ontology-based approach has benefits over existing work in component 

specification and retrieval, in terms of i) the Multiple-Viewed Interrelated Component 

Specification(MVICS) ontology model; ii) the method of linking domain ontology 

with the MVICS; iii) the improved component retrieval method; v) the result 

component profile. The project originally contributes to the current state of the art by 

producing the following key technologies, which are integrally linked in a holistic and 

semantic-based specification and retrieval framework:  

 In correction of Multiple-Viewed and Interrelated Component 

Specification ontology model (MVICS)  

The MVICS model provides an ontology-based architecture to specify 

components from a range of perspectives, it accommodates domain 

knowledge of CBSE and application domains, and supports ontology 

evolution to reflect the continuous developments in CBD and components. 
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Another unique feature is that the effect of possible component adaptation 

assets/methods are also described under the MVICS model, which enables a 

more systematic and holistic view in component specification and selection. 

OWL-DL is adopted to define the classes, individuals, relationships and 

constraints of the MVICS. Via these formal definitions in OWL-DL, the 

automatic semantic-based component search and validation are achieved with 

the support of an ontology reasoner.  

 To take into account domain ontology linkage method  

To extend the scope of the component specification ontology into specific 

domains, a domain ontology linkage method is developed. The method links 

the domain specific ontology with the MVICS by two mechanisms: 

Association Link (AssL) and Aggregation Link (AggL). These two links can 

be used to connect all the classes of the required domain ontology with their 

related classes in the MVICS, which enhances the function and application 

scope of the MVICS-based component specification and retrieval. 

 To improve semantic-based component retrieval method 

The existing semantic-based component retrieval method is improved based 

on the MVICS model in the following aspects: 1) the relevance rating for the 

result component is calculated on the basis of the search paths. The rating is 
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more accurate than the existing approaches as it is produced with the help of 

the tree structure of the MVICS. The result component are obtained by 

matching with the lower level classes, with higher precision; 2) the relevance 

rating method is updated dynamically by changing the factors of the search 

precision calculation algorithm, according to user feedback; 3) the domain 

specific components are gained through the domain linkage paths (AggL and 

AssL); 4) the adaptive components assets/methods can be retrieved through 

the adaptive search paths, which provide more choices for the user.  

 Find comprehensive result component profile  

A result component profile is designed to present the comprehensive search 

result of each result component. In addition to the usual contents of the result, 

such as the component name and search precision, the profile also presents 

the new features offered by the MVICS-based approach, such as the 

percentage of matched keywords, search paths, optional adaptive 

assets/methods and QAs suggestions. All the above search results are 

classified and shown in a specially designed display panel, including 

summary, result representation by facet of the MVICS and result 

representation by search path. 
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1.4 The Structure of the Thesis 

This thesis is organised as follows: 

Chapter 1 gives the background, motivation, scope and original contribution of the 

thesis. 

Chapter 2 provides an overview of the current state of software reuse, 

component-based development and ontology.  

Chapter 3 presents a critical evaluation of existing representative related work in 

semantic-based component specification and retrieval, which triggers the motivation 

of the research. 

Chapter 4 proposes a framework for the holistic, semantic-based, adaptation-aware 

component specification and retrieval approach. 

Chapter 5 describes the Multiple-Viewed Interrelated Component Specification 

ontology model, the domain specific ontology linkage method and their formal 

definition.  

Chapter 6 focuses on presenting the key parts of the holistic and precise component 

retrieval method. 
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Chapter 7 explores the realisation of the proposed approach in the form of a prototype 

tool. It describes the tool‟s system architecture, as well as the activities of each 

function module. 

Chapter 8 provides laboratorial and industrial experiments as the evidence for the 

evaluation of the proposed approach and tool with four case studies according to a set 

of criteria. 

In chapter 9, conclusions are drawn based on the case studies and evaluation. 

Potential future work is identified for further development of the proposed approach 

and tool. 
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2. Literature Review 

In the literature review, a broad survey was completed which investigates the current 

state of the art of software reuse, component-based development and ontology. These 

technologies are the foundations of the development of the proposed approach. 

Through the range of the investigation from broad to detail, the merits of the existing 

techniques are recognized as well as the demerits, which are then addressed as 

research topics in the project. 

2.1 Software Reuse 

Software reuse is the use of existing software, or software knowledge, to build new 

software. It is the process whereby an organization defines a set of systematic 

operating procedures to specify, produce, classify, retrieve, and adapt reusable assets 

for the purpose of using them in its development activities. Reusable assets can be 

from any part of the software development life cycle including software components, 

objects, software requirement analysis and design models, domain architectures, 

database schemas, code documentation, test scenarios, and plans[54][111][156]. 

According to the survey from the ESDS Software Reuse Working Group [86] in 2006, 

up to 92% of a new application can be developed by reusing existing software, about 

68% that is domain specific and about 24% that is domain independent. And in recent 
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years, the proportion continued to expand. Software reuse is widely used, because it 

has a lot of the expected benefits including: lower development costs, higher 

productivity and better use of resources, reduced cycle time and quicker development, 

lower training costs, easier maintenance, higher quality, lower risk, better 

interoperability [167]. 

2.1.1 The Process of Software Reuse 

Software reuse involves three steps: abstraction of the assets, storage of the assets and 

recontextualisation of the assets [54]. Abstraction focuses on designing a reusable 

asset. Software reuse advocates drawing a strong distinction between designing 

reusable code as opposed to salvaging code from current systems [43]. The designed 

reusable assets can be roughly classified into three groups of different sizes as follows 

[167].  

 Object and function reuse. Software components that implement single 

functions, such as a database connection or a class, may be reused. This type 

of reuse, based on function libraries or class libraries, has been commonly 

used for the past 40 years. Many libraries of functions and classes for 

different types of application and platform are available. These can be easily 

used by invoking them with other application code. 

 Component reuse. All components of an application may be reused. For 
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example, GUI components developed as part of a word-processing system 

may be reused in a spreadsheet system. 

 Application system reuse. The whole of an application system may be reused 

by customizing the application for different users or by developing 

application families that have the same architecture but are tailored for 

specific users. 

The second step of software reuse is to make these assets available for others to use. 

Software developers often encounter this problem in the process of storing and 

retrieving components. Even in simple cases, storing and retrieving assets proves to 

be difficult due to the multiple ways that software can be indexed [52]. Particularly 

for larger software development, many reusable assets and their related diverse 

software, design diagrams, software processes, or associated development tools are 

needed; a simple storage and retrieval mechanism is not possible. 

The final challenge for software reuse is recontextualisation. This involves making 

what is reused understandable to those who will incorporate it into their systems [54]. 

At this point, software reuse advocates it is necessary to motivate others to use 

reusable assets and ensure that the assets are technically compatible. Reuse of 

software components raises not only cognitive issues of understanding but also raises 

issues of incentives that managers often need to address along with the technical 

issues of compatibility[159][175]. 
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2.1.2 Software Reuse Approaches 

To meet the challenges in the process, many approaches have been developed to 

support software reuse over the past 20 years. The question which is the most 

appropriate approach in the development depends on the requirements of the system. 

The key factors that should be considered include: the development schedule, the 

expected software lifetime, the background, skills and expertise of the development 

team, the criticality of the software and its non-functional requirements, the 

application domain and the platform [167]. The representative approaches of software 

reuse are introduced as follows. 

2.1.2.1 Design Patterns  

When executable components are reused, they are inevitably constrained by detailed 

design decisions that have been made by the implementers of these components [38]. 

These decisions range from the particular algorithms that have been used to 

implement the components to the objects and types in the component interfaces [63]. 

If these design decisions conflict with the particular requirements then reusing the 

component is either impossible or introduces significant inefficiencies into the 

system. 

One way around this is to reuse more abstract designs that do not include 

implementation details. These are then implemented specifically to fit the application 
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requirements. This approach to reuse has been embodied in the notion of design 

patterns [131][179][182]. A “pattern” is a description of the problem and the essence 

of its solution so that it may be reused in a different setting. A pattern is not a detailed 

specification. Rather, it can be thought of as a description of accumulated wisdom and 

experience [13][28][64]. It is a well-tried solution to a common problem.  

2.1.2.2 Generator-Based Reuse  

The concept of reuse through patterns relies on describing the concept in an abstract 

way and leaving it up to the software developer to create an implementation. It was 

suggested that an alternative approach to this was generator-based reuse [154]. In the 

approach, reusable knowledge is captured in a program generator system that can be 

programmed by the domain experts using either a domain oriented language or an 

interactive CASE tool.  

Generator-based reuse takes advantage of the fact that applications in the same 

domain, such as the business systems, have common architectures and carry out 

comparable functions. Generator-based reuse is cost effective for applications such as 

business data processing. Furthermore, it is much easier for end users to develop 

programs. There are inefficiencies in generated programs. In other words, it may not 

be possible to use this approach in systems with high performance or throughput 

requirements. Moreover, generator-based reuse is limited to specific domains. 
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2.1.2.3 Application Framework  

In the early stages of Object Oriented Programming (OOP), objects were regarded as 

the most appropriate abstraction for reuse. However, experience has shown that 

objects are often too fine-grained and too specialised to a particular requirement. The 

larger-grain abstractions called Frameworks provide a better solution for 

object-oriented reuse [167]. 

An Application Framework is a system built by a collection of various classes and 

interfaces between them [39][137][187]. Applications developed using a framework 

has the great potential for further reuse through software product line technologies. 

Consequently, the maintenance of these systems such as modifying family members 

to create new family members is simplified [167].  

2.1.2.4 COTS Product Reuse  

A commercial-off-the-shelf (COTS) product [6][7][17][100][167] is a software that 

can be used directly by its buyer without any modifications. As COTS product is 

developed for general purpose, such as word-processing, database management, etc., 

it usually has many features that can be reused in many different applications. 

Although there can be problems with this approach to system construction [176], 

COTS is widely used across government and enterprises because they offer 

significant savings, in terms of costs and development time.  
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Some types of COTS products have been very popular for many years, such as 

database management and GUI. Very few developers want to implement their own 

database system. However, until the mid-1990s, integrating these large systems and 

making them work together was a big challenge because most large systems were 

designed as standalone systems [150][173]. 

At present, well-defined Application Programming Interfaces (APIs) that allow 

program access to system functions is always available in COTS product. 

Consequently, constructing a large system by integrating a range of COTS product is 

a popular approach. In this way, the costs of development and delivery times are 

reduced. Furthermore, risk may be reduced as the mature COTS products are already 

available. 

2.1.2.5 Software Product Line  

A product line is a related set of applications that has a common domain-specific 

architecture [11][172], which allows the implementation of planned reuse of 

components within an organization.  

Such architecture supports the structured assembly of product-line components, 

whereby various components to be assembled following the implicit rules of planned 

architecture. This approach has proven to be very successful for industry that 

produces many variants of products with similar functionality. Based on the future 
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plans of product development, the components are developed according to guidelines 

of product-line architecture and thus enables them to be reused (i.e. assembled) under 

the same guidelines [172].  

2.1.2.6 Component-Based Development 

Component-Based Development (CBD) is a representative approach of software reuse. 

It focuses on reduction of development time through technical facilities that enable 

the easy assembly and upgrading of systems with the pre-defined components. 

Because we propose to solve the existing problems in CBD by using the 

semantic-based method, an intensive literature review was completed to find the 

current state of art of Component-based Software Engineering (CBSE) and ontology 

in the following sections.    

2.2 Component-Based Software Engineering (CBSE) 

Nowadays, software is widely used in daily life of almost every sector. To satisfy the 

demand of various users in terms of efficiency, flexibility, reliability and security, to 

name a few, software has become more powerful in function, and more complicated 

in structure. As a result, software programs have become larger and more complex, 

and thus more time-consuming for the programmers to deliver. Having been 

perceived as a means to be able to help deliver a more user-friendly system within a 
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tight timeframe, Component-based Software Engineering began to develop in the late 

1980s. 

By using a component-based development approach, i.e. developing software systems 

by assembling and composing components which have already been built, it is 

apparent that component-based development has contributed tremendously to the 

software industry in the following aspects [112][158][167]: 

 Increase developer‟s productivity 

 Reduce skills requirement 

 Shorten development life cycle 

 Reduce time to market 

 Increase quality of the developed system 

 Decrease development costs  

In spite of these foregoing benefits, it carries the following restraints in software 

development [167]: 

 Time and effort required for development of components, 

 Unclear and ambiguous requirements, 

 Conflict between usability and reusability, 

 Component maintenance costs. 
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Fig. 2.1. Process of CBSE 

To understand these restraints in further detail, we need to have a closer look into the 

basic process of CBSE. A very important characteristic that distinguishes 

component-based development from other types of development is the separated 

development processes for system development and component development, which 

is illustrated in Figure 2.1. In system development, specialized products are built 

through reuse. While in component development, general components are built for 

reuse [2]. 

The focus to develop reusable components is stressed through the separate 

component-development process, which ends with delivery to a common component 
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repository where reusable components are stored. Mili [137] provides an elegant 

definition of reusability of a software components as the aggregation of the quality 

attributes usability, and usefulness. These attributes must be first class goals for the 

component-development in order to maximize reusability of the components. 

In a component-based system development process, the development team focuses on 

efficient development of a system dedicated for a certain purpose. The goal of the 

system development process can thus be compared to the goal of a traditional 

software systems development process, but the major difference is the method to 

integrate the selected components (Component Composition). 

The steps inside the red dotted lines are the core steps of CBD, including component 

certification, component specification, component retrieval and component 

composition, among which component specification and retrieval are the focus of this 

research.    

2.2.1 Component Certification 

With the objective of evaluating the current necessity for software components, 

Carnegie Mellon University‟s Software Engineering Institute (CMU/SEI) has studied 

industry trends in the use of software components [9]. The study examined the 

existing components from both technical and business perspectives. One of inhibitors 

for adopting software component technology is the “Lack of certified components”.  
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To solve the above limitation, Trass and Hillegersberg [174] discuss the conditions 

for the growth of component markets. Some of which are intrinsic characteristics of 

certification processes, such as the documentation and component quality and 

well-defined services. More evidence [25][66][67][183] also points to certification as 

the key precondition for CBSE to be successfully adopted in the large. Moreover, 

certified components used during development will have predetermined and 

well-established criteria in order to reduce the risks of system failure. However, there 

is no consensus of what component certification really means within the CBSE. In 

[29], Councill established a satisfactory definition about what software component 

certification is: 

“Third-party certification is a method to ensure that software components conform to 

well-defined standards; based on this certification, trusted assemblies of components 

can be constructed.” 

To show that a component conforms to well-defined standards, the certification 

process must provide a certificate that evidences that it fulfils a given set of 

requirements. Thus, trusted assembly, application development based on third-party 

composition, may be performed based on previously established quality levels.  

The existing component certification approaches can be divided into two stages: from 

1993 to 2001, the approaches appearing in this stage were mainly focused on 

mathematical and test-based models; and after 2001, the focus of the techniques and 
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models shifted gradually to predicted quality requirements. The representative 

approaches in the early stage are listed in the order of appearance, including Poore et 

al. [151], Wohlin & Runeson [188], Rohde et al. [155], TCI [134], Voas [180], Voas 

& Payne [181] and Morris et al. [139]. The approaches focusing on reuse level degree, 

reliability degree, among other properties in the second stage, include Stafford & 

Wallnau [169], Councill [29], Hissam et al. [68], McGregor [133]. However, 

component certification is still an open research area. The effort to develop a 

component certification standard is still ongoing. 

2.2.2 Component Specification 

In CBSE research, much effort has gone into developing specification techniques for 

software components. The component specification initially concentrated on syntactic 

description of interfaces, and eventually moved to adding some semantic information, 

namely as pre- and post-conditions on the operations defined in the interfaces. To date, 

current research has extended the semantic information to include a little more 

operational descriptions. 

2.2.2.1 Characterisation of Components 

As more and more systems are built from existing components, it has become 

increasingly important to have a proper characterisation of components [16]. Without 
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such a characterisation, much effort is wasted on the comprehension and adaptation of 

components each time they are used.  

In a way, a characterisation of components is similar to but extends the 

characterisation of object technology. It is used to provide a basis for the development, 

management and use of components. Therefore, it can be referred to as 

object-oriented characterisation of components [62]. 

The structural elements are essential aspects of a component in the sense that they 

constitute the component. Following the general convention, these structural elements 

are called “attributes”. Among these elements are those that are relevant to the 

interface of the component i.e., the elements that form part of the component‟s 

external view. These observable elements are particularly important from the 

viewpoint of component management use and form the basis of other aspects of 

component characterisation. 

Another aspect of a component is the operations with which other system components 

interact with it. These operations capture the dynamic behaviour of the component 

and represent the service/functionality that the component provides. 

As in the case of objects, attributes and operations are the most essential aspects of a 

component. In addition, the structural composition of the component from attributes is 

usually subject to further constraints i.e., compositions of attribute instances may not 
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be allowed. These constraints are called “structural constraints”. Some examples are 

the constraints about the abstract state of the component. 

In terms of the dynamic behaviour of a component, not all possible sequences of 

operation invocation on the component are allowed. That is, there are operational 

constraints that specify the permissible operation patterns. This aspect is similar to 

that of an object captured by the state transition diagram. 

Besides proactive control, which is usually in the form of explicit operation 

invocation, another form of control used to capture system behaviour is reactive 

control, which is usually in the form of an event-driven implicit operation invocation. 

It is often the case that certain aspects of a system are better captured through 

proactive control, while other aspects of the system are better captured in the form of 

reactive control. To facilitate reactive control, a component may generate events from 

time to time, which other components in the system may choose to respond to. The 

Java component model i.e., JavaBeans, provides such support. 

A component may interact with a number of other components from specific 

perspectives (or playing specific roles). The interactions between the component 

concerned and these other components may differ depending on the components and 

their related perspectives. The port specification goes some way towards this direction. 

In general, this suggests the need for defining perspective/role-oriented interaction 

protocols for a given component i.e., multi interfaces. A component may be used, and 
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play different roles, in different circumstances. The circumstances provide the 

contexts of use for the component.  

Another aspect of a component is its non-functional properties such as reliability, 

performance and deployability [8][26]. In the context of building systems from 

existing components, the characterisation of the components‟ non-functional 

properties and their impact on enclosing systems are particularly important. However, 

not much work has been done in this area. 

2.2.2.2 Component Specification Approaches  

The mess of work are proposed in the area of component specification, the 

representative approaches are categorized in terms of early approaches, 

design-by-contract methods, formal methods, and framework-based approaches.  

 Early Approaches 

Object Management Groups‟ CORBA and Microsoft‟s COM/COM+ component 

frameworks relied entirely on interface definition language (IDL) to specify a 

component. The IDL specification contained a description of the operations and 

types that the component used in its interfaces, including the exact signature of 

the operation with its parameters.  
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With the introduction of the CORBA Component Model (CCM) by the Object 

Management Group and the .NET framework by Microsoft, both groups moved 

away from having IDL as the only method of specification. CCM is extended, 

including provides and requires interfaces, event sources and sinks, and attributes. 

The .NET framework went away from explicit specification of an IDL choosing 

instead to rely on the components themselves to supply the necessary information 

(extracted via .NET‟s Common Language Runtime). 

Another popular method for writing specifications is free-text. This is a carryover 

from more traditional programming methods, from the days of libraries of 

procedures and, more recently, of standard template libraries. The Swing library 

of GUI components available as part of Sun Microsystems JavaTM releases is 

specified using JavaDoc, a web-based specification method that is the de facto 

standard of learning about Java components (as well as the Java library itself). 

Free-text-based specification is still popular because of two reasons. It is human 

readable and understandable, and with the advent of web hyperlinks, even easy to 

use. Free-text allows the component implementer to specify just about anything 

they wish about the component, to any level of precision.  

 Design-by-Contract 

Another category of component specifications is the one made popular by the 

Cheesman and Daniels component specification process [24] as well as by the 
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Catalysis Approach of D‟Souza et al. [34]. Both approaches employ 

design-by-contract methods, which are characterized by the assertion that a 

component can be precisely specified solely by the specification of operations in 

the interfaces offered by that component. These methods define the contract as a 

collection of assertions that describe what a component does and does not do. Not 

only do these assertions precisely describe the behavior of the operations in the 

component, they are also logical expressions of the entities in the information 

model of the component. The key assertions of the contracts are invariants, 

pre-conditions, and post-conditions.   

Design by contract methods generally specifies the design of the component 

using a graphical language, most often UML. UML can be used, because almost 

all of the specification methods that fall in this category assume that the 

component developer will use object-oriented methods to design and implement 

component functionality. The processes described in [152] and [155] focus 

almost entirely on the development of the component. The extension mechanism 

of stereotypes in UML is used to build component specification architectures and 

component interaction diagrams. These models describe using UML, the 

interfaces provided by the components in the model, and in the case of [152], the 

interfaces required by the component. Some design by contract methods may 

develop behavioral diagrams, such as collaboration diagrams, interaction 

diagrams, or even state machines that have been applied at the component, rather 
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than object level. The heart of this UML specification is a model containing a set 

of class elements, stereotyped as components, each naming an interface, and each 

containing a list of operation signatures. These are the provided interfaces of the 

component.  

The resultant component specification is specified in UML, with the contract 

constraints specified in some formal language; typically, they are expressed in 

OCL [185]. The results in a component specification using a graphical model 

with textual attributes attached to specific operations in the model. 

In the description of their specification method, Liu and Cunningham [128] state 

that their method provides two complementary purposes: (1) to specify expected 

functionality required by a component to fill a specific need; and (2) to specify 

the actual functionality implemented in an available component. They, however, 

provide no reason for this position. 

The Catalysis Approach offered by D‟Souza et al. [34] employs an action 

language to specify operational constraints instead of using OCL. The claim here 

is that the action language offers fully operational specification capabilities. 

Kim et al. [118] offers a methodology which, like D‟Souza‟s, also employs an 

action system, instead of static OCL constraints. They state that the difference 

between their approach and others in this category is that they use this action 
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system to express dynamic configuration properties of the component. In their 

method, components are again modeled in UML, defining object relationships 

within the component. Once interfaces are developed, the dynamic operational 

specification of each operation in the interface is specified in simple statements in 

an action language based on existence dependencies2. To obtain the rigor desired 

by the authors, these statements are then translated into Petri nets [111] to take 

advantage of formal analysis techniques. These Petri net specifications are then 

used to build an execution model. They state that their method offers theoretical 

means for describing and analyzing both structural and behavioral aspects of 

components.   

 Formal Methods 

Unlike the design by contract approaches discussed previously, component 

specification via formal methods tends to focus more on verification of the 

specified model and component reuse. Formal specifications provide precise 

descriptions of problem requirements, component function, and component 

structure [147]. Formal inference defines a mechanism for reliably and 

formally comparing problem requirements and component specifications. 

However, most specification methods concentrate their efforts on the 

structural and operational aspects of the interfaces of the component.  
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Penix and Alexander [148] concentrate on formal specification of the 

component inputs and outputs using axiomatic expressions specifying the 

pre-conditions and post-conditions on the inputs to and outputs of, 

respectively, the component interface operations in terms of the components‟ 

modeled domain and range. They also allow for constraints to be specified 

not only for specific operations, but for the component as a whole. Properties 

describing the environment in which the component will execute are given 

only cursory attention, and there is no discussion of the dependencies 

between the specified component and other system elements. 

Morel and Alexander [138] also offer an approach formalizing the pre- and 

post-conditions of component interfaces. Their motivation is the 

development of a component adaptation framework, stating that matches 

found between components in the selection process will never likely meet all 

the requirements. Thus, closely matching components will need to be adapted 

in order to be assembled into the target component system. They have 

extended the ideas in [168] to include system level properties. The 

component specifications are written in Rosetta, which is a systems level 

design language for modeling heterogeneous systems. A facet specifies a 

particular aspect of a system or component. Facets can describe behaviors 

and more general requirements. A facet operates in a declared domain 

(system environment), which defines semantics available to the facet. 
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 Frameworks 

Frameworks offer a foundation for methods of component specification. 

They direct the contents and format of specifications, but do not dictate a 

process or prescribe methods to obtain the information that makes up the 

contents of the specifications. Frameworks are far more comprehensive in 

defining the amount of information required for a component specification 

because they focus on generalizing component operation in a specific 

environment.  

Three prominent commercially available frameworks (.NET, CCM, and EJB) 

focus on implementation and development of components that are 

constrained to the environment for which they were developed. Even though 

they provide a good set of practical solutions to many of the issues facing 

component development, there is a lack of support for component selection.  

For specifically targeted components, the burden of selection should be 

easier in these environments, by the reason of the environments share a 

common set of environment and system assumptions, and configuration 

properties. However, that since these component frameworks have been 

implemented by different vendors (excepting COM/.NET), the burden of 

selection was not apparent, as component “experts” were able to “select” 

components based on experience and advice from others.  
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Within their own environments, reusability of components is fairly good, due 

to the set of common assumptions on the environment. Even between 

different implementations of the same framework (e.g., CORBA), component 

reuse here is better than the general case. 

Let us look at the following two frameworks to see what they offer in the 

context of specifying components for selection and reuse.  

Han [62] offers an approach to software component specification containing 

four specific sets of information. First, the properties, operation, and events 

of the component form the signature of the component interface. Second, 

constraints further restrict and precisely define component interface. Han 

states that the signature and the constraints together characterize the 

component capability. The third set of information is component usage in 

context. Configurations are defined based on the component usage scenarios. 

A configuration identifies the roles and defines the role-based interfaces of 

the component in a given use context. Lastly, the component‟s 

non-functional properties are useful in assessing the component‟s usability in 

given situations and in analyzing properties of the enclosing systems.  

A framework whose primary focus is the architectural connectivity between 

components, proposed by Tracz [175], is named SOFA, for SOFtware 

Appliances. Self described as a platform for components, SOFA views 
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applications as hierarchies of nested components, wherein each component is 

either primitive or composed of primitive components. As a result of 

hierarchy, all functionality is in primitive components. There is no direct 

mechanism for inheritance of components. The SOFA component model 

specifies several framework-level features. First, SOFA specifies interfaces, 

much in the way as has been done in other methods and approaches. It then 

defines Frames, which are black-box views of the component, containing a 

view of the provided and required interfaces plus some component 

configuration parameters. Next is the Architectures, more of a gray-box view, 

which define the ties between the subcomponents of the modeled component. 

SOFA defines four types of ties: binding, wherein a requires-interface is 

bound to a provides-interface; delegating, wherein a provides-interface of 

component is bound to a subcomponent‟s provides-interface; subsuming, 

wherein a subcomponent‟s requires-interface is bound to a requires interface 

of component; and exempting, wherein the interface of a subcomponent is 

exempted from any ties. Non-exempted ties are realized via a connector, 

which models the interconnection between components, implements 

interaction semantics, and takes account of the deployment details. 

In addition to these structural specifications, SOFA utilizes behavior 

protocols. These protocols represent the formal capture of communication 

between components, modeled as events (specifically emit method call, 



 

- 34 - 
 

accept call, emit return, accept return). Sequences of events are called a trace. 

SOFA then defines that the behavior of an entity (an interface, frame, or 

architecture) is the set of all traces which can be produced by that entity. All 

the information is captured using SOFA‟s Component Description Language, 

or CDL. CDL is like the IDLs we have seen above, but has extensions to 

support frames, architectures, and the behavior protocols. These extensions 

make CDL a rather complex specification language. 

2.2.3 Component Retrieval 

A major limitation of software reuse is the lack of efficient means to search and 

retrieve reusable artefacts from the repository. The same problem is even more severe 

in the CBD.  

There are several factors that impact the search and retrieval process including scope 

of the repository, query representation, asset representation, storage structure, 

navigation scheme, relevance and matching criteria [136]. Most retrieval methods 

focus on one or two of these factors to suit the specific domain they are working in. 

Consequently, these methods do not provide an effective overall retrieval solution. 

As mentioned above, one of the big hurdles in component-based development is how 

to retrieve suitable components. Among the bulk of solutions proposed so far, none of 
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them satisfactorily surpassed the known hurdles in searching and retrieving relevant 

components from a repository. 

The existing approaches can be classified into four different types: 

a) Simple keyword and string search [137] 

Simple keyword searching is most widely used by search engines, whereby a user 

can locate the target object by specifying a set of keywords. The search engine 

will compare them with the labels of the objects and retrieve those matched. This 

is the most simplified approach without giving due consideration to any 

additional information, such as relationships among objects or synonymous 

labels. 

b) Faceted classification and retrieval [143][153] 

The faceted classification approach attempts to classify the objects in the 

repository based on predefined taxonomies, e.g. subjects. Although this approach 

is useful for objects that can clearly fall into such categories, it is less useful for 

those without explicit classification. 

c) Signature matching [192] 

Signature matching focuses on matching of function types and argument types to 

the query specified by the user. Signature matching could be one either at the 
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function level or module level. But sometimes it is difficult to map user 

requirements with function and module signatures. And it does not work for 

multiple components. 

d) Behavioural matching [59][193]  

Behavioural matching is the most involved approach with consideration of the 

functional behaviour of objects, in which objects are provided with input vectors, 

and the outputs generated are compared to the expected outputs. Objects that 

exhibit certain behaviour are retrieved and presented to the user.  

The last two approaches are considered cumbersome and inefficient without giving 

due consideration to the domain and search context information. It is apparent that all 

the search methods mentioned above are lacking accurate semantics of the component 

and the user query.  

2.2.4 Component Adaptation  

Component adaptation refers to the process of changing the component for use in a 

particular application. While the component may only partially satisfy the user 

requirement, it is essential to modify the behaviors of the component [116], which 

may create further difficulties for adaptation when the original components are not 

suitable for additional requirements [56][64].  
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Since the early 1990s, a number of techniques have been developed for adapting 

components. These component adaptation techniques can be categorised into 

white-box and black-box adaptation techniques. White-box techniques (e.g. 

inheritance) require the software engineer to adapt a reused component either by 

changing its internal specification or by overriding and excluding parts of the internal 

specification. Black-box techniques (e.g. wrapping) reuse the component as it is, but 

adapt the interface of the component. Black-box adaptation only requires the software 

engineer to understand the interface of the component, not the internals. 

Many requirements for component adaptation have been identified in the prior 

research [18][116]: 

The adapted component should be used in the same way as the original component 

would have been used, even when the adapted component may behave differently; No 

additional effort should be required to integrate the adapted component to the target 

system, as well as to maintain the client-side view; The original component should be 

open to any future adaptation while maintaining its original identity. 

This suggested that all phases of software engineering need to be considered during 

the component adaptation [65][129][132], including: 

 The design phase, when the component designer specifies the interfaces, 

interoperability, and relationship between components;  
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 The implementation phase, when the components is constructed from design 

specifications, including writing the code, obtaining the source code for all 

the dependent components, implementations of interfaces and database tables, 

compilation and linking of source files;  

 The deployment phase, when the component is deployed into a component 

infrastructure.   

Four representative component adaptation techniques are presented as follows: 

 Inheritance 

Inheritance makes the state and behaviour of the reused component available 

to the reusing component [116]. Depending on the language model, all or 

part of the internal aspects become available to the reusing component. 

One of the important advantages of inheritance is that the code remains in 

just one location. However, it is disadvantaged by the fact that the software 

engineer concerned must have detailed understanding of the internal 

functionality of a superclass when overriding superclass methods and when 

defining new behaviour using behaviour defined in the superclass. 
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 Wrapping 

Wrapping is a process to encapsulate a component to forward the 

functionality of the wrapped component with minor changes based on the 

client's request [44].There is no clear boundary between wrapping and 

aggregation. While wrapping is used to adapt the behaviour of the enclosed 

component, aggregation is used to compose new functionality out of existing 

components providing relevant functionality. A major disadvantage of 

wrapping is that it may result in considerable implementation overhead since 

the complete interface of the wrapped component needs to be handled by the 

wrapper, including those interface elements that need not be adapted. In 

addition, wrapping may lead to excessive amounts of adaptation code and 

serious performance reductions [69]. 

 Superimposition  

Superimposition is a technique based on the concept that the entire 

functionality of a component (rather than that of a single method) should be 

superimposed by certain behavior [18]. The superimposition of a behavior B 

over a component C is the additional overriding behavior of B over the whole 

component C. The principle underlying superimposition is that the 

component C and the overriding behavior B are separate entities which may 
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be reused independently. This overriding behavior is encapsulated as an 

adaptation entity.  

Superimposition is implemented as a language construct in the layered object 

model (LayOM) through the notion of layers. LayOM is an extended 

component object model that, next to instance variables and methods, 

contains parts such as states, categories and layers. The extended 

expressiveness of LayOM furnishes the software developer with powerful 

component adaptation types through superimposition.  

Superimposition attempts to preserve the transparency of the composition of 

components with adaptation types - a component and its clients should be 

unaware of the presence of other adaptation entities that are active on the 

component.  

Superimposition uses nested component adaptation types to compose 

multiple adaptation behaviours for a single component. However, lack of 

component information, limits modification to a simple level, such as 

conversion of parameters, and refinement of operations. Moreover, with 

more layers of code imposed on original code, the overhead of the adapted 

component increases heavily. This degrades system efficiency. 
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 SAGA 

The Scenario-based dynamic component Adaptation and GenerAtion (SAGA) 

[127][184] project has developed a component adaptation approach with 

little code overhead through XML-based component specification, 

interrelated adaptation scenarios and corresponding component adaptation 

and generation. In this project, a Component Definition Language (CDL) is 

used to record the design configuration of components to be reused in 

specific applications. Scenarios are established to capture adaptation 

requirements. 

SAGA is more suitable for the development of traditional component-based 

systems where developers have access to the internal design of components 

and can impose intervention on the adaptation and integration process. 

However, automation is still a challenge in SAGA due to the complexity in 

generating blocks of code according to scenarios and the original component 

code.  

2.3 Ontology  

Ontology attracts many attentions nowadays in computer science. Research fields, 

like knowledge management, intelligent information integration, e-commerce, 

cooperative information system, database integration, all claim that ontology will play 
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a major role in the foreseeable future. The reason of the popularity lies in its promise 

of a shared and common understanding of some domain, which can be communicated 

across people and computers. In general, the accepted industrial meaning of 

"ontology" makes it synonymous with "conceptual model" and is clearly independent 

of its philosophical antecedents [186]. The definitions are adopted here from 

Uscholod [178]: “ontology is an explicit representation of a conceptualization. This 

conceptualization includes a set of concepts, their definition and their 

inter-relationships. Preferably this conceptualization is shared or agreed.” In spite of 

varying interests in research and the use of ontologies, many available languages and 

tools are proposed to construct good ontologies. 

2.3.1 Ontology Language 

The categorization of the existing ontology languages is adopted from the evaluation 

of languages in [12], including traditional ontology languages, web standards and 

web-based ontology languages. Figure 2.2 depicts the candidate languages and their 

relations. 
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Fig. 2.2. Classification of ontology languages 

2.3.1.1 Traditional Ontology Language 

Traditional ontology languages are mostly rooted from AI or Knowledge engineering. 

The languages can be further divided into four groups as shown in Figure 2.2.  

The first group is enriched first-order predicate logic. KIF and CycL whose central 

modeling primitive are predicates can be representative here. However KIF is 

eliminated, since its general purpose is for interchange. CycL is a formal language 

that focuses on proving a general ontology for commonsense knowledge. Its syntax 

derives from first-order predicate calculus, and was first developed in the Cyc project 

[125]. The Cyc has created and manages a large knowledge base for common-sense 

knowledge created with this language. To express real-world concepts the language 

has a vocabulary of terms (about 160 of them), which can be combined into 
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meaningful CycL expressions. Some of the main concepts of CycL are: constants, 

variables, formulas, predicates and microtheories. Microtheories are sets of formulas, 

but they can also participate in formulas, i.e. reification. The microtheories provide a 

context for the truth of formulas. 

The second group is frame-based languages, Ontolingua, F-logic, CML and OCML 

fall into that group. Classes (frames) are the central modeling primitives. 

 Ontolingua  

The term Ontolingua is overloaded, referring both to the system and to the 

language. The Ontolingua language is based on KIF (Knowledge Interchange 

Format) [47] and the Frame Ontology [55]. KIF has a declarative semantic and is 

based on first-order predicate calculus. It provides definitions for object, function, 

relation and logical constants. KIF is a language for knowledge exchange, and is 

tedious to use for the development of ontologies. Thus, the Frame Ontology is 

built on top of KIF, and provides definitions for object-oriented and 

frame-language terms, like class, subclass-of, and instance-of. One good thing 

with the frame-based style is that it is intuitive to humans and thus can be easily 

understood. But axioms can't be expressed in Frame Ontology. 

Ontolingua lets the developer decide whether to use the full expressiveness of 

KIF, where axioms can be expressed, or to be more restricted during the 
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specification by using only Frame ontology terms. An ontology developed with 

Ontolingua is typically defined by: relations, classes (treated as unary relations), 

functions (defined like a relation), individuals (distinguished objects) and axioms 

(relate these terms). 

 F-logic (Frame Logic)  

F-logic [117] was developed in the late 80s. It is a logic language integrated with 

object-oriented or frame-based paradigm. Some fundamental concepts from 

object-oriented languages have a direct representation in F-logic, for example, 

class, method, types and inheritance, and other secondary aspects, like 

polymorphism, can be easily modeled as well. One of the main problems with 

object oriented approach, lack of logic semantics, is overcome here by the logical 

foundation of F-logic. There are many similarities between F-logic and 

Ontolingua, since they both try to integrate frames into logical framework. But 

the frame-based modeling primitives are explicitly defined in the semantics of 

F-logic, while Ontolingua treats them as second-order terms defined with KIF 

axioms. Another difference is that F-logic lacks the powerful reification 

mechanism. Ontolingua inherits from KIF, which allows the use of formulas as 

terms of meta-formulas. 
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 CML (Conceptual Modeling Language) 

CML [160] was developed to support the CommonKADS framework, and is 

basically an informal notation for knowledge modeling. CML offers privileges 

for domain knowledge, inference knowledge and task knowledge. It has many 

similarities with OCML, but lacks operability capabilities [140] and is more or 

less dedicated to CommonKADS. CML provides more primitives than OCML in 

the structural perspective, but the commitment restricts the general ontology 

specification capabilities. CML will not be evaluated further in this paper because 

OCML is similar, but more general. 

 OCML (Operational Conceptual Modeling Language) 

OCML was developed and is maintained by the Knowledge Media Institute (KMI) 

in context of the VITAL project [163]. Its primary purpose is to provide 

operational knowledge modelling facilities and to achieve this, it includes 

interpreters for functional and control terms. OCML provides mechanisms for 

defining relations, functions, classes, instances, rules and procedures. It can be 

viewed to some extent as “operational ontolingua”, which provides theorem 

proving and functional evaluation mechanisms for Ontolingua constructs. The 

operational nature of OCML makes it possible to support quick prototyping, 

which is important for model validation. OCML provides a set of base ontologies 

that forms a rich modeling platform for building other ontologies: meta, functions, 
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relations, sets, numbers, lists, strings, mapping, frames, inferences, environment 

and task-method. The functionality of the base ontologies is roughly analogous to 

Java Foundation Class. 

The third group is Description Logic (DL) language, only of which is Loom.  

 LOOM  

Loom [130] is a knowledge representation and reasoning system based on 

description logic. A distinguished feature of DL is that classes (concepts) can be 

defined in terms of descriptions that specify the properties or restrictions, which 

objects must satisfy in order to belong to the concept. In other words, this means 

that class membership relations can be determined by inference. One of the 

primary tasks of Loom is to compute subsumption relationships between 

descriptions, and organize them into taxonomies. To achieve automatic derivation 

of taxonomies, Loom offers both a language for the description of objects and 

relationships, and an assertion language for specifying constraints on the concepts 

and relations. Loom provides powerful deductive reasoning with underlying 

production and classification-based inference capabilities. 

 Telos  

Telos [141] was constructed to handle several modeling aspects, and brought in 

ideas from knowledge representation, deductive databases and requirement 
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languages for constructing information systems. Basically it's a knowledge 

representation language with an object-oriented focus. An object is either an 

individual (entities, concepts, nodes) or an attribute (relationships, attribute links). 

Telos has high expressive power, especially because individuals and attributes are 

treated uniformly. Integrity, deductive and constraint rules can be specified 

through an assertion sub-language, and constructs for temporal statements are 

offered. The language has hardly been maintained in the last decade, and is 

therefore not suitable in the interoperability and distribution sense. 

2.3.1.2 Web Standards 

In this part we review the works that investigate the possibility of using web standards 

to specify ontologies. 

 XML (Extensible Markup Language)  

XML [21] is the universal format for structured documents and data on the Web, 

proposed by the W3C. The main contribution of XML is that it provides a 

common and communicable syntax for web documents. XML itself is not an 

ontology language, but XML-Schemas, which define the structure, constraints 

and the semantics of XML documents, be used to specify ontology. But since 

XML-schema is created mainly for the verification of XML document and its 
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modeling primitives are more application oriented rather than concept oriented, it 

will not be viewed as ontology language. 

 RDF (Resource Description Framework)  

RDF [124] is an infrastructure for encoding, exchange and reuse of structured 

metadata, proposed also by W3C. RDF provides a standard form for representing 

metadata in XML. The RDF data model consists of three object types: resources 

(subjects; available or imaginable entity), properties (predicates; describing the 

resources) and statements (objects; assigning a value for a property in a resource). 

Principally, information is stored in the form of RDF statements, which are 

machine understandable. Search engines, intelligent agents, information brokers, 

browsers and human users can understand and use that semantic information. 

 RDFS (Resource Description Framework Schema) 

RDF Schema (RDFS) [107] enriches the basic RDF model, by providing a 

vocabulary for RDF, which is assumed to have certain semantics. Predefined 

properties can be used to model instance of and subclass of relationships as well 

as domain restrictions and range restrictions of attributes. Indeed, the RDF 

schema provides modeling primitives that can be used to capture basic semantics 

in a domain neutral way. That is, RDFS specifies metadata that is applicable to 

the entities and their properties in all domains. The metadata then serves as a 
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standard model by which RDF tools can operate on specific domain models, since 

the RDFS meta model elements will have a fixed semantics in all domain models. 

RDFS provides simple but powerful modeling primitives for structuring domain 

knowledge into classes and sub classes, properties and sub properties, and can 

impose restrictions on the domain and range of properties, and defines the 

semantics of containers. 

2.3.1.3 Web-based Ontology Language 

 OIL (Ontology Inference Layer)  

OIL [32] was developed in the On-To-Knowledge project, and is both a 

representation and exchange language for ontologies. The language is combined 

with primitives from frame-based languages, and formal semantics and reasoning 

services from description logics. To enable the use of OIL on the Web it is 

grounded on the W3C standards, XML and RDF(S). The ontology description is 

divided into three layers: object level (concrete instances), first meta-level 

(ontological definitions) and second meta-level (describing features of the 

ontology). OIL provides definitions for classes and slots (relations), and a limited 

set of axioms. Slots are treated like first-class citizens, and can be represented in 

hierarchies. There are several limitations related to axioms, which also limits how 

expressive the language is [40]. OIL has a accurate semantics that forms a 

necessary foundation for effective reasoning support. 
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 DAML+OIL  

DAML+OIL [71] is a semantic markup language for Web resources, and is a 

proposed W3C standard for ontological and metadata representation. DAML 

(DARPA Agent Modeling Language) was transformed to DAML+OIL by 

including some OIL aspects in the language. DAML+OIL is built on RDF and 

RDF Schema, but provides richer modeling primitives, commonly found in 

description logics. Most of the frame-based ideals provided in OIL were removed, 

and assertions are made in terms of a limited set of axioms. The result is a 

language that works better as a delivery platform for ontologies than RDF and 

XTM [12], but has limitations as a language for the development of ontologies, 

because of the removal of the frame-based constructs. 

 OWL (Web Ontology Language) 

OWL is a family of knowledge representation languages for authoring ontologies. 

The languages are characterised by formal semantics and RDF/XML-based 

serializations for the Semantic Web. OWL is endorsed by the World Wide Web 

Consortium (W3C) [106] and has attracted academic, medical and commercial 

interest. Intuitively, OWL can represent information about categories of objects 

and how objects are interrelated. It can also represent information about objects 

themselves. More precisely, on the one side, OWL let describe classes by 

specifying relevant properties of objects belonging to them. This can be achieved 

http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Ontology_(computer_science)
http://en.wikipedia.org/wiki/Formal_semantics
http://en.wikipedia.org/wiki/Resource_Description_Framework
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by means of a partial (necessary) or a complete (necessary and sufficient) 

definition of a class as a logical combination of other classes, or as an 

enumeration of specified objects. OWL let also describe properties and provide 

domains and ranges for them. Domains can be OWL classes, whereas ranges can 

be either OWL classes or externally-defined datatypes (e.g. string or integer). 

Moreover, OWL let provide restrictions on how properties behave that are local 

to a class. Thus, it is possible to define classes where a particular property is 

restricted so that i) all the values for the property in instances of the class must 

belong to a certain class or datatype (universal restriction), ii) at least one value 

must come from a certain class or datatype (existential restriction), and iii) there 

must be at least or at most a certain number of distinct values (cardinality 

restriction). On the other side, OWL can also be used to restrict the models to 

meaningful ones by organizing classes in a subclass hierarchy, as well as 

properties in a sub property hierarchy. Other features are the possibility to declare 

properties as transitive, symmetric, functional or inverse of other properties, and 

couple of classes or properties as disjoint or equivalent. Finally, OWL represents 

information about individuals, providing axioms that state which objects belong 

to which classes, what the property values are of specific objects and whether two 

objects are the same or are distinguished. 

OWL is quite a sophisticated language. Several different influences were 

mandated on its design. The most important are DLs, the frames paradigm and 
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the Semantic Web vision of a stack of languages including XML and RDF. On 

the one hand, OWL semantics is formalised by means of a DL style model theory. 

In particular, OWL is based on the SH family of Description Logics (DL) [72], 

which is equivalent to the ALC DL [5] extended with transitive roles and role 

hierarchies. Such family of languages represents a suitable balance between 

expressivity requirements and computational ones. Moreover, practical decision 

procedures for reasoning on them are available, as well as implemented systems 

such as FaCT [70] and RACER [98]. On the other hand, OWL formal 

specification is given by an abstract syntax, which has been heavily influenced by 

frames and constitutes the surface structure of the language. Class axioms consist 

of the name of the class being described, a modality indicating whether the 

definition of the class is partial or complete, and a sequence of property 

restrictions and names of more general classes, whereas property axioms specify 

the name of the property and its various features. Such a frame-like syntax makes 

OWL easier to understand and to use. 

Moreover, axioms can be directly translated into DL axioms and they can be 

easily expressed by means of a set of RDF triples. This property is an essential 

one, since OWL was also required to have RDF/XML exchange syntax, because 

of its connections with the Semantic Web. 
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Given the huge number of requirements for OWL and the difficulty of satisfying 

all of them in combination, three different versions of OWL have been designed: 

 OWL-Lite is the simplest variant for building a basic frame system (or an 

object oriented database) in terms of class, property, subclass relation, and 

restrictions. OWL-Lite does not use the entire OWL vocabulary and some 

OWL terms are used under certain restrictions. 

 OWL-DL is grounded on DL, and focuses on common formal semantics and 

inference decidability. Description logics offer additional ontology constructs 

(such as conjunction, disjunction, and negation) besides class and relation, 

and have two important inference mechanisms: subsumption and consistency. 

Horrocks and Sattler [71] argued that basic inference in most variations of 

DL is decidable with complexity between polynomial and exponential time. 

The strong Set Theory background makes DL suitable for capturing 

knowledge about a domain in which instances can be grouped into classes 

and relationships among classes are binary. OWL-DL uses all OWL ontology 

constructs with some restrictions. 

 OWL-Full is the most expressive version of OWL but it does not guarantee 

decidability. The biggest difference between OWL-DL and OWL-Full is that 

class space and instance space are disjointed in OWL-DL but not in 

OWL-Full. That is, a class can be interpreted simultaneously as a set of 
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individuals and as an individual belonging to another class in OWL-Full. The 

entire OWL vocabulary can be used in without any restrictions in OWL-Full. 

2.3.2 Ontology Tools 

Ontology is constructed by suitable languages with the help of effective supporting 

tools.  

2.3.2.1 Ontology Editors 

A good editor can save a significant amount of time when developing ontologies by 

helping ontology engineers focus on the semantics without worrying much about 

syntactic organization [33]. This section offers a brief introduction to some popular 

ontology editors for collaborative (or independent) ontology development. 

Protege [48] provides a standalone ontology development environment. It is 

highlighted by its syntax grammar independent user interface and pluggable 

infrastructure. It is suitable for independent ontology development and has a large 

user community. SWOOP [114] takes advantage of both Protege and Ontolingua [42] 

and provides a convenient web-based ontology browsing, editing, debugging [145] 

and publishing interface. 
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2.3.2.2 Ontology Repositories 

Although the Web improves the visibility of centralized ontology development, it is 

hard to achieve a universal ontology for everything (e.g. Cyc) due to huge space 

complexity. Hence, distributed ontology development is preferred in the Semantic 

Web, i.e., small ontologies are authored by different sources in an incremental fashion. 

To reuse existing ontologies, effective web-based tools are in great need to browse, 

search and navigate distributed ontologies. The popular repositories for publishing 

and searching ontologies on the Web are detailed below. 

 DAML Ontology Library  

DAML ontology library [91] indexes user submitted ontologies and provides 

browse/search services. It organizes ontologies by their URI, users annotations 

supplied during ontology submission (e.g. submission date, keyword, open 

directory category, funding source and submission organization), the defined 

class/property, or the used namespace. Users can run sub-string queries over a 

defined class/property. 

 SchemaWeb  

SchemaWeb [99] provides services similar to DAML ontology library with better 

human/machine user interface (i.e. both HTML and web service interface). It 

adds more services: i) for human user - it provides full text search service for 
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indexed ontologies, and a customizable resource search interface by letting users 

specify triple patterns; ii) for machine agents - it searches the “official” ontology 

of a given namespace or the resource with the user specified triple patterns; it also 

navigates RDF graph through RDFS properties (i.e. sub- ClassOf, subPropertyOf, 

domain, range), and publishes RSS feeds about new ontology submissions. 

 W3C’s Ontaria  

W3C‟s Ontaria [105] stores RDF documents (including ontologies) and provides 

search/navigation services in the repository. It allows a user to i) browse a RDF 

file as a list of triples, a list of used properties, or a list of populated classes, and ii) 

browse relations between RDF files. 

 SemanticWeb Search  

SemanticWeb Search [101] provides an object oriented view of the Semantic Web, 

i.e. it indexes instances of well-known classes including rdfs:Class, rdf:Property, 

foaf:Person, and rss:Item. It partially supports ontology search by finding 

instances of rdfs:Class and rdf:Property; however, its search results are biased to 

terms from the namespace of WordNet 1.6. 

 Swoogle  

Swoogle [88] indexes millions of Semantic Web documents (including tens of 



 

- 58 - 
 

thousands of ontologies). It enables users to search ontologies by specifying 

constraints on document metadata such as document URLs, defined 

classes/properties, used namespaces, and RDF encoding. Moreover, it provides 

detailed metadata about ontologies and classes/properties in an object oriented 

fashion. It has an ontology dictionary that enables users to browse the vocabulary 

(i.e. over 150KB URIrefs of defined/used classes and properties) used by 

Semantic Web documents, and to navigate the Semantic Web by following links 

among classes/properties, namespace and RDF documents. In addition, it is 

powered by automatic and incremental Semantic Web document discovery 

mechanisms and updates statistics about the use of ontologies in the Semantic 

Web on a daily basis. 

2.3.2.3 Ontology Language Processors 

An ontology construct expresses descriptive semantics, and its actionable semantics is 

enforced by inference. Hence, effective tools, such as parsers, validators, and 

inference engines, are needed to fulfill the reasoning capability. A detailed 

developers‟ guide is available online [108], and experimental evaluation can be found 

in W3C‟s OWL Test Cases report [104].  

 OWLJessKB [73] is the descendent of DAMLJessKB [120] and is based on the 

Jess Rete inference engine. 



 

- 59 - 
 

 Java Theorem Prover (JTP) [95], was developed by Stanford University. It 

supports both forward and backward chaining reasoning by using RDF/RDFS and 

OWL semantics [51]. 

 Jena [80] was developed by HP Labs at Bristol [22]. It is a popular open-source 

project, which provides sound and almost complete (except for blank node types) 

reasoning support for RDFS. The latest version of Jena also partially supports 

OWL reasoning and allows users to create customized rule engines. 

 F-OWL [79] was developed by UMBC [195]. It is an reasoning engine which is 

based on Flora-218. 

 FaCT++ [83] was developed by Manchester University [177]. It is the 

descendent of FaCT [70] reasoning system, which provides full support for 

OWL-Lite. And the latest version complete support for OWL-DL reasoning and 

partially for OWL 2. 

 Racer [102] is a DL-based reasoner [58]. It provides reasoning over 

RDFS/DAML/OWL ontologies through rules explicitly specified by the user. 

 Pellet [96] was developed by the University of Maryland. It is a „hybrid‟ DL 

reasoner that can deal both TBox reasoning as well as non-empty ABox reasoning 

[166]. It is used as the underlying OWL reasoned for SWOOP ontology editor 

[114] and provides in-depth ontology consistency analysis. 
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 TRIPLE [89] was developed by Sintek and Decker [165]. It is a Horn Logic based 

reasoning engine and employs the same features of F-logic. Different with 

F-logic, it does not support fixed semantics expression for classes and objects. 

This reasoner can be used by translating the DL-based OWL into a language 

(named TRIPLE) handled by the reasoner. Extensions of DL that cannot be 

handled by Horn logic can be supported by incorporating other reasoners, such as 

FaCT, to create a hybrid reasoning system. 

 SweetRules [87] is a rule toolkit for RuleML. RuleML has highly description 

capability, which is based on courteous logic programs. It provides additional 

built-in semantics to OWL, including prioritized conflict handling and procedural 

attachments [87]. The SweetRules engine also provides semantics preserving 

translation between different languages and ontologies (implicit axioms). 

2.4 Analysis and Conclusion 

The literature review is conducted in respect of the theories, the technologies, the 

approaches and the tools that related to the semantic-based component specification 

and retrieval. It starts from the software reuse in which the features of the mainstream 

reuse approaches are introduced and are analyzed according to the criteria including 

the development schedule, the expected software lifetime, the criticality of the 

software and its non-functional requirements, the application domain and the platform. 

The existing software reuse approaches have their own advantages and applicable 

app:lj:%E7%90%86%E8%AE%BA?ljtype=blng&ljblngcont=0&ljtran=theory
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conditions. In fact, among them there are no clear boundaries. Often there are two or 

even many methods are used together during software reuse development. 

And then, the review focuses on the component-based development in which the key 

steps are expressed, including component certification, component specification and 

retrieval, and component adaptation. Through the review, it was found that the 

research of CBD is centred on finding appropriate formal approaches for describing 

components, the architectures for composing them, and the methods for 

component-based software construction. Through over 20 years of continuous 

improvement, CBD approach has been increasingly used in the software development. 

The main features are: 1) the basic CBD framework has been widely accepted, in 

particular the emergence of a large number of component-based models; 2) according 

to the increasing user requirements, many new methods continue to arise and improve 

for each step of CBD; 3) a large number of components are provided from the 

gradually mature open source or commercial component markets; 4) human 

interaction during the CBD is decrease with the help of the development tools. 

Currently, the CBD is still a key research area, one of the important reasons is the 

component mismatch problem is still not well addressed, even many traditional 

approaches are proposed for the component specification and retrieval (as mentioned 

in section 2.2.2 and 2.2.3).  
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In the recent years, the ontology is applied to improve the precision of the component 

specification and retrieval, which has become a new hotspot. In the third section, the 

review introduces the ontology and its related issues, such as ontology languages, 

ontology editors, ontology repositories and ontology language processors. Ontology 

describes the aspects of the real world that can be used multiple times in different 

applications. The description capability and reasoning capability can improve the 

search effectiveness in the process of component specification and retrieval, and 

reduce the impact of the human intervention by the following reasons: 1) ontology 

provides a mechanism to represent and store domain specific knowledge, which can 

be used to find the most related components; 2) the relationships of ontology can 

exploit the additional knowledge embedded in domain ontology to augment and 

correct the user requirements; 3) the formal definitions of the ontology can provide 

the high degree of automation with the help of ontology tools in the component 

specification and retrieval.  

The completed literature review benefits the research in the thesis with the following 

conclusions: 

1) Software reuse is a widely-used comprehensive approach to improve the 

efficiency and to reduce the costs of the development of various software 

systems. 



 

- 63 - 
 

2) CBD is one of the most popular approaches of the software reuse by the reason of 

components are the most suitable and widely used assets for software reuse. 

3) The component mismatch is a persistent and difficult problem, which limits the 

application and development of the CBD. 

4) To solve the mismatch problem, ontology is introduced to help understand the 

semantics of components. Ontology is useful because it provides a means of 

understanding what the components mean in both the domain model and reuse 

repository. 

5) The OWL-DL has the potential to define the contents of the used ontology by the 

reason of its appropriate description and reasoning capability. 

6) Ontology is constructed conveniently by OWL-DL with the help of relevant 

effective supporting tools.
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3. Related Work 

As mentioned in the literature review, the mismatch between requirements and 

selected components has existed as a rather persistent problem in Component-Based 

Development (CBD), and is getting increasingly severe with the emergence of 

modern software systems and the evolution of CBD. At an early stage, software 

developers modify the code of accessible components to satisfy the requirements. 

This approach is known as white-box reuse, which is applicable to local repositories 

and incurs much of the cost in making the changes. Thereafter, most local repositories 

extend to external or even global markets, and components are usually reused “as is”, 

i.e. without changes to the code. This type of reuse is known as black-box reuse. As 

the investigation in [10][57][137] shows, more and more component venders put their 

components on the Internet, which gradually forms numerous online component 

agencies (component repositories). The representative websites [174] include 

ComponentSource, Flashline, Buydirect, Brattbery, and Findcomponents. The 

growing component markets raise thirteen conditions [176] which affect CBD. Three 

of them play a crucial role in connection with overcoming the mismatch problem, 

including user query formulation, standard specification of components and 

component retrieval with search relevant rating. Because the user query formulation 
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refers to the research area of natural language processing and Artificial Intelligence 

areas, etc. It is not the research topic.  

Our research focuses on the last two issues, which are referred to as component 

specification and retrieval. The existing approaches to component specification and 

retrieval are classified into two types: traditional and ontology-based.  

3.1 Traditional Component Specification and Retrieval 

Projects   

The traditional project is that one or more traditional component retrieval approaches 

are used. The traditional approaches include keyword searching [135], faceted 

classification [143], signature matching [192] and behavioral matching [193]. The 

keyword searching approach is used to component retrieval first in the early 1990‟s. 

The search engine compares users keywords to the names of the objects and retrieves 

matches. It does not take into account additional information such as relationships 

among objects or synonymous names. In order to improve the precise of the simple 

keyword search, the other three approaches were developed. The faceted classification 

approach makes an attempt to classify the objects in the repository based on 

predefined taxonomies. It is useful for objects that can clearly fall into such categories. 

Signature matching focuses on the type and number of arguments defined for methods 

and in essence takes an indirect approach to identifying whether an object is relevant. 

Behavioral matching is the most involved approach because it takes into consideration 
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the functional behavior of objects. In this approach, objects are provided with input 

vectors and the outputs generated are compared to the expected outputs. Objects that 

exhibit a certain behavior are retrieved and presented to the user. In the late 1990‟s, 

the traditional approaches had been developed to mature, and widely used in the 

process of component specification and retrieval. 

Typical examples of component specification and retrieval projects using the 

traditional approaches includes: Agora, Morebased, Maracatu, Zhuge and Zaremski. 

 Agora 

Agora [161] is component search research project at the Software Engineering 

Institute of Carnegie Mellon University. It supports two basic processes: the 

location and indexing of components and the search and retrieval of a component. 

Agora uses a JavaBeans agent and a CORBA agent for locating and indexing 

component information. Once a component has been identified, the interface 

information is decomposed into a set of tokens and is saved in a document. Agora 

combines introspection with Web search engines to look for components in the 

software marketplace with the help of keyword search and faceted classification 

approaches. The query keywords and options specifying the types of components, 

are searched against the index collected by the search agents. Each result includes 

meta-information e.g. the URL of the component. Moreover, application-specific 
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lexicons are integrated in Agora, which can be used to facilitate searches in 

application domains such as manufacturing, healthcare, and finance. 

 Merobase  

Merobase [82] is a search and tagging engine that allows users to find, remember 

and share components on the Internet. In contrast with first-generation code 

search engines, Merobase treats source code modules first as class abstractions 

rather than chunks of text, and is thereby able to offer a much wider range of 

search options. In particular, Merobase specializes in finding components based 

on their interface (or API) rather than the strings in their source code. Merobase 

supports four basic kinds of searches. Using the Merobase Query Language 

(MQL) users can look for components that have a particular name or contain a 

given string in their source code. The user can search for components that 

represent a particular logical abstraction - either a function-oriented abstraction or 

an object-oriented abstraction. In addition, Merobase supports a wide range of 

constraints which allow users to narrow down their search to components with a 

particular set of properties. 

 Maracatu 

Maracatu [46] is developed jointly by Recife Center for Advanced Studies and 

Systems (C.E.S.A.R) and institute of Mathematical and Computing Sciences of 
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San Paulo University. It is a search engine for retrieving source code components 

from development repositories. The tool is structured in a client-sever 

architecture: the client side is a plug-in for the Eclipse IDE, while the server side 

is represented by a web application responsible for accessing the repositories in 

the Internet or Intranets. Two versions of the engine were developed, with new 

features being added for use in industrial practice. To demonstrate the tool, two 

experiments are presented for comparing the text matching mechanism (first 

version) with the facet mechanism implemented in the last version. The 

experiment showed that the facet-based mechanism alone does not have good 

performance but, when combined with text-based search, is a better overall 

solution. 

 Zhuge’s project 

Zhuge [194] proposed a problem-oriented and rule-based component repository. 

Based on the repository, a framework was designed to describe a component‟s 

behavior by problem-solving mechanism, with which it is possible to assure that 

the retrieved components will fulfil the requirements specified in the query. This 

framework supports the component search tool in two aspects. Firstly, the reuse is 

developed from the component level to the problem-solving level. Users are 

encouraged to concentrate on the problem description and solve the problem 

through top-down refinement rather than plunge into the technical details at the 
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beginning. Secondly, the environment evolution is during running. The candidate 

components for composing an application are simulated through case-based rule 

reasoning. The candidate components are dynamically checked before composing 

an application system. 

 Zaremski’s project 

Zaremski [193] developed a component specification matching tool on the basis 

of analyzing component foundational definitions. It is intended to use as much 

information associated with the description of software components as possible 

by describing their signatures, behaviours and so forth. With this tool, the 

definitions were explored for applying specification matching to various 

applications. Although the idea of specification match was originally initiated by 

the software library retrieval application, it can also be applied in other areas of 

software engineering. 

3.2 Ontology-based Component Specification and Retrieval 

Projects 

Traditional component search is not effective for component selection, suffering from 

lower recall and precision, i.e., poor completeness and accuracy of components 

matching [171]. Traditional approaches are rather limited in accommodating 

semantics of user queries and domain knowledge. To solve this problem, ontologies 
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have been introduced to help understand the semantics of components, from the early 

2000‟s. Here some typical ontology-based approaches that specially focus on 

component specification or involve the whole process of the component specification 

and retrieval are analyzed as follows.  The methods based only on component 

specification are given first. 

 Girardi’s 

Girardi‟s [50] project first developed GRAMO, which is a technique for the 

construction of domain and user models to be reused in the development of 

multi-agent applications. To support the GRAMO, an ontology-based meta 

domain model ONTODUM is built to represent the knowledge of techniques for 

the specification of the requirements of a family of multi-agent systems in an 

application domain. The goal of the project is the specification of a methodology 

for Agent-based Domain Engineering, and a framework for ontology-based 

specification of agent-based reusable artefacts, exploring both compositional and 

generative approaches. In the approach, domain models are being used as the 

main resources for the construction of Domain Specific Languages [49][162]. 

The advantages of using the ONTODUM for the representation of reusable 

products have been shown in a software development environment for 

Multi-agent Domain Engineering. However, it should be redesigned according to 

the particular knowledge of those development techniques. 
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 Sugumaran’s  

Sugumaran‟s approach [171] enables a user to execute more intelligent queries by 

using domain knowledge and natural language parsing techniques. The approach 

includes a natural language interface, a domain model and a reusable repository. 

This approach introduces domain ontology to exploit the additional knowledge to 

augment or revise a user‟s initial query. In this way, the ontology serves as a 

surrogate for the meaning of terms so that a more complete response to a user 

query will be produced. However, the domain ontology in this approach is too 

simple, which only covers quite limited semantic information; the gauge of 

relevance in component retrieval is not covered; No ontology-based component 

description method is presented to specify the component; and the prototype tool 

needs much manual work to operate, therefore further improvement in 

automation is needed. 

 Pahl’s 

Pahl [144] investigates how ontology technologies can be utilised to support 

software component development. A link between modal logic and description 

logics proves that the provision of reasoning support for component behaviours, 

which is essentially characterised by the component‟s interaction processes with 

its environment and by the properties of the individual operations requested or 

provided in these interactions. The objective of the project was to provide 
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reasoning support for semantically described components. Some shortcomings 

limited the realization of their objective, e.g., the architecture of the software 

development ontology is not as comprehensive as necessary to cover the 

components‟ attributes; the relationships provided for the reasoning are not 

adequate to implement the necessary reasoning; no component matching 

architecture is proposed. 

 Braga’s 

Braga [19][20] addresses the interoperability problem between component 

information repositories. In this approach, an integration layer is developed to 

help search and identify suitable reusable components. This layer is based on 

mediators and domain ontologies to provide the binding of different components 

to their domain concepts. To assist the identification of related components and 

their appropriate domain organization, each mediator encloses one domain 

ontology and provides the mapping to their respective repository of components. 

The mediation layer promotes domain information integration and provides 

mechanisms to translate component requests across ontologies. The limitation of 

this approach is that it only focuses on the business components, with no 

consideration for other kinds of components, such as GUI components, controller 

components and IT function components.  
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 Liu Quan’s 

Liu Quan‟s approach [126] presents a component description scheme in the OWL 

language. The schema illustrates the abstraction hierarchy of a component 

specification, which consists of several facets [62][126], such as Basic 

Information, Component Type, Component Function, Application Domain and 

Interface information. Each facet represents a group of characteristics of the 

component. Clearly the schema is not ontology-based and its semantics not 

computer-recognizable. The component description information is associated 

with an ontology to provide semantic meaning, which builds the foundation for 

semantic reasoning in the component retrieval process. In Liu‟s work, the 

component description schema has no rules or individuals in it, hence it is not a 

component specific ontology yet. The gauge of relevance in component retrieval 

is not covered and neither is there an implementation and evaluation to prove the 

approach.  

 Yao’s 

Yao [190] treats a software component as a service described in semantic service 

representation format and enhances the retrieval by semantically matching 

between the semantic representation of a user query and component description 

against domain ontology. A domain ontology-based matchmaker compares a user 

query in a conceptual graph with the component service descriptions in other 
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conceptual graphs. In addition, the component search does not happen just in the 

local repository, it extends to the World Wide Web. A conceptual graph method 

is proposed to indicate the relevance between the user query and the result 

components. Its main drawbacks include the fact that both the details of how to 

analyze the user query and component specification based on semantics and the 

translation of the query into WSDL/RDF are not available. Similar to Liu‟s 

approach, the details of the domain ontology architecture and the linkage 

technique are not given. Furthermore, there is no implementation to validate the 

approach. 

 Yen’s 

Yen [45][191] proposed an On-line Repository for Embedded Software (ORES) 

that uses an ontology-based approach to facilitate repository browsing and 

effective search. It provides effective component retrieval and facilitates the 

capture of component properties. An integrated mechanism was presented to 

facilitate efficient and cost-effective embedded software development. However, 

the architecture of the ontology used in this approach is monolithic, which means 

too many classes with less relationships were enumerated in one single facet.  
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3.3 Limitations of Related Work and Conclusion 

The existing approaches closely related to ontology-based component specification 

and retrieval have been analysed in the previous sections. From this literature analysis, 

we conclude that existing component specification and retrieval approaches failed to 

have a sound semantic model as their foundation, preventing them reach an 

adequately sufficient level of automation and comprehension of the semantics of 

components. Consequently, these approaches have the following drawbacks in the 

delivery of the desired aims:  

1) the ontology models in existing approaches are all domain specific, therefore a 

generic computing-oriented overview is missing, often leaving the component 

retrieval in a unsystematic style and within too narrow a scope; 

2) the architecture of the ontology in existing approaches is monolithic and has few 

relationships, which limits their semantic expressiveness; 

3) the existing ontology-based specification and retrieval approaches presume that 

the domain ontology in use already exists; the method of domain ontology 

retrieval is not mentioned. Furthermore, the evolution of the domain ontology is 

not considered; 

4) the search precision calculation method of the result components is missing or not 

efficient in the existing approaches. Therefore, the existing approaches can not 
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further distinguish which one matches the user requirements more for very 

similarity components. 

5) the search of the possible adaptive assets/methods are not considered in the 

existing approach. Lack of the semantic description, the possibility of using the 

adaptive assets/methods is overlooked.   

6) the display of the result components is ineffective. Existing approaches just show 

the basic search result such as the name of the result component, the search 

precision, and the text-based result component specification. However further 

details of the search result are missing, such as the search paths of each user 

query keywords, the percentage of the matched keywords and the adaptive 

searching result. This information is also important for the users to make the final 

decision. 
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4. The Approach 

4.1 Overview 

By investigating the literature review and the related work, one critical problem of 

CBD is that the most suitable component in the repository can not be retrieved 

automatically, in particular for large complex software applications and from a huge 

collection of very diverse or sometimes very similar components. These problems not 

only prevent CBD from reaching its full potential, but also hinder the acceptance of 

many existing large component repositories. The repositories here refer to the 

enterprise-grade local component repository, mature open source and commercial 

component markets [10][137][174]. These repositories have the following features: 1) 

large size, 2) great variety and 3) large number of similar components. For example, 

the Componentsource commercial repository locates more than 10,000 components 

which are classified into more 120 function type and other categories. In some 

frequently-used function, it contains more 400 similar components.     

To overcome the above problems, existing approaches have engaged a variety of 

technologies to support better component specification and retrieval, among which 

several recent research projects attempted to use domain models and ontologies in 

component retrieval [20][144][171][190][191]. Although these approaches reduce the 
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severity of the problem to some extent, it is clear that the drawbacks mentioned in 

chapter 3 still exist. 

To improve the state of art, a novel and complete ontology-based approach is 

developed and then fully realized for holistic and semantic-based component 

specification and follow-on automatic and accurate component retrieval. As the 

foundation of the proposed approach, a Multiple-Viewed and Interrelated Component 

Specification ontology model (MVICS) is first developed for component specification 

and repository building. The MVICS model provides an ontology-based architecture 

to specify components from a spectrum of perspectives; it integrates the knowledge of 

Component-Based Software Engineering (CBSE), and supports ontology evolution to 

reflect the continuous developments in CBD and components. A formal definition of 

the MVICS model is presented, which ensures the rigorousness of the model and 

supports a high level of automation of retrieval. Furthermore, the MVICS model has a 

smooth mechanism to integrate with a domain related software system ontology. Such 

integration enhances the function and application scope of the MVICS model by 

bringing more domain semantics into component specification and retrieval. Finally, 

based on the MVICS model and the domain model integration, a MVICS-based 

component repository and search tool has been developed. The MVICS approach 

supports semantic-based component matching and adaptive component matching; it is 

fully automated, and presents a comprehensive profile of the result components 

instead of merely a value of relevance. The result of retrieval includes not only the 
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matching components but also accurate relevance rating and unsatisfied discrepancy, 

which are presented to CBD engineers in the component matching profile.  

4.2 The MVICS Framework 

The framework of the MVICS approach is shown in Figure 4.1, which defines the 

architecture of its key elements. It consists of four key parts, namely query 

requirements collection, ontology construction, repository construction and 

component retrieval. 

 

Fig. 4.1. The framework of the MVICS approach 
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4.2.1 Query Requirement Collection 

To retrieve a component with the ontology-based approach, the first step is to collect 

the user requirements correctly and then to represent it with the ontology semantics. 

This task can be accomplished in two steps: initial query generation and semantic 

query refinement. The architecture of the query requirement collection is shown in 

figure 4.2.  After the two steps processing, the user requirements in natural language 

are translated to OWL format.  

 

Fig. 4.2. The architecture of the query requirement collection 

 Initial Query Generation 

The user specifies the requirements for the necessary components in a natural 

language which employs imperative or nominal sentences. A heuristic-based 

approach is used to identify keywords and concepts expressed by the user and to 



 

- 81 - 
 

generate an initial query. Subsequently, related terms (synonyms) of the 

keywords and concepts are also identified for query expansion. The 

heuristic-based approaches [30] have been researched for years, which focus on 

the natural language processing and Artificial Intelligence areas. In 

MVICS-based approach, we assume that the Initial Query Generation has been 

completed, as it is not the focus for our research.  

 Semantic Query Refinement 

The keywords and concepts identified in the previous step are mapped against the 

MVICS ontology model to ensure that correct terms (keywords and concepts) of 

the requirements are used in the query. Then all the terms involved are expressed 

in OWL, which is favoured here in terms of its capacity in the description of 

semantics. In this query refinement step, query requirements in natural language 

are translated into OWL format without misunderstanding.    

4.2.2 Ontology Model Construction  

In the ontology construction part, the MVICS ontology model has a key role in the 

approach. It is the computer-recognisable ontological representation of the semantics 

of component specification. The MVICS is developed on the basis of CBSE 

knowledge and IT application domain knowledge. And it is managed by the ontology 

evolution mechanism. The role of the MVICS model includes supporting the semantic 
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query refinement, conducting the component specification, connecting the domain 

ontology and supporting the sub-functions in the component retrieval, such as search 

precision calculation and adaptive component search and component QAs suggestion. 

The structure of the ontology model construction is shown in the figure 4.3. The 

domain ontology is retrieved from the ontology library and further connected to the 

MVICS by the Association Link and Aggregation Link when searching the relevant 

domain component. The details of the MVICS model and the domain ontology 

linkage technique are described in the Chapter 5.  

 

Fig. 4.3. The architecture of the query requirement collection 

4.2.3 Component Repository 

A component repository is built based on the MVICS model. Available components 

were specified according to MVICS model and populated into the repository. A 

component specification creation mechanism is developed to facilitate the 
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specification process. For the component retrieval, the MVICS model and component 

specification is defined in OWL, corresponding with the OWL format user 

requirements. The MVICS approach also accommodates the impact of component 

adaptation with a new concept called “adaptive component search”.  The available 

adaptation assets, their related adaptation method information and their impact on the 

targeted components are defined and stored in the component repository as an integral 

part of MVICS. The structure of the repository construction part shows in the figure 

4.4. 

 

Fig. 4.4. The architecture of the repository construction 
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4.2.4 Component Retrieval  

Having the above two phases in place, the component retrieval is thus regarded as the 

matching between the users query description and the ontological component 

specification in the retrieval (as shown in figure 4.1). Another unique feature of the 

component retrieval is the component adaptation information considered. Some of the 

discrepancies can be solved through the component adaptation. The available adaptive 

assets are stored in the Adaptation assets repository and an adaptive methods or assets 

suggestion mechanism is built to help the user to make the decision. With the help of 

the adaptation classes in the MVICS model, the components whose specification 

satisfies the user requirements after adaptation are indentified as part of the result as 

well.  

The retrieval returns detailed search results, including not only the matching 

components but also accurate relevance rating (search precision) and unsatisfied 

discrepancy in descending order. Components with the same search precision will be 

presented in the descending order of the selected QAs. The precision indicates the 

level of relevance of the result components with a precision calculation algorithm and 

the QAs suggestion helps user avoid the neglect of the non-functional requirement. 

All the results of the retrieval are presented to CBD engineers in a comprehensive 

component matching profile, which gives the user a full understanding of each result 

component and helps them to make a decision.
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5. Multiple-Viewed Interrelated Component 

Specification Ontology Model (MVICS) 

A holistic ontology model of component specification provides the foundation for 

effective semantic reasoning in the component retrieval and improves substantially 

the precision of component retrieval. The MVICS ontology model has a pyramid 

architecture, which contains four facets: function model, context model, intrinsic 

model and meta-relationship model, as shown in Figure 5.1. The first three models 

(function model, intrinsic model and context model) can be viewed as sub-ontology 

models, each of which describes one facet of component specification (locates at the 

three sides). The forth (meta-relationship model) is used to store four types of 

inter-relationships among the classes of the first three models (locates on the bottom). 

As a whole they construct a complete spectrum of semantic-based component 

specification. All the four models are ontology-based, extracted from the analysis of 

CBSE knowledge, and have extension slots for further upgrade according to the 

evolution of CBSE and components.  
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Fig. 5.1. Multiple-Viewed and Interrelated Component Specification Ontology Model 

OWL-DL is adopted to define the classes, individuals and relationships of the above 

four sub-models. These formal definitions enable automatic ontology validation and 

semantic-based component search with the support of ontology reasoner. 

5.1 Function Model 

The function model specifies the function, domain information and interface. As an 

ontological model, the top level classes include Function Type, Component Domain 

and Interface.  

Functions are performed by components which represent fundamental characteristics 

of software. The sub classes and sub sub-classes of Function Type are classified by 

the Computer Technology. Due to the fact that classes may overlap, the subclasses of 

class Function Type are defined in detail and are classified without any overlap (i.e., 
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disjoint),e.g., Data Cleaning, Data Conversion, Data Entry, Data Validation, Data 

Verification and so forth.  

Specific application domain ontologies can be interfaced with the function model as 

the subclasses of class Component Domain. These subclasses consist of two types 

Association Link and Aggregation Link which are used to link the domain ontology 

classes with related MVICS classes. The details of Association Link and Aggregation 

Link will be introduced in chapter 5.5.  

Class Interface includes two composite sub-classes Pre-conditions and 

Post-conditions, each are then further composed of a set of method pre-condition and 

method post-condition according to the methods/procedures in the component. Take 

Pre-conditions as an example, its sub class “Pre-conditions of method n” has three 

subclasses including Parameter Type, Parameter Range and Constraint, in which 

class Parameter Range is to describe a range based on parameter type. To describe 

the parameter range accurately, number restriction constructor (≤, ≥) in DL is 

required.  

Figure 5.1 a) shows the top three levels of classes in the function model. The details 

of the function model (OWL format) list given in the appendix A.1.  
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          a)                      b)                    c) 

Fig. 5.2. Top three level classes of a) function model, b) context model, c) intrinsic model 

To define the model in OWL-DL, let  represent the top class. n

iC , 
n

jC , n

kC  

represent classes in the n
th

 level of the hierarchical architecture. The details are as 

follows: 

1

iC    

 where i = Function Type, Application Domain or Interface 

which defines that Component Function Type, Component Application Domain and 

Component Interface are the top level classes of the function model. 

n

i
C   1n

kC  , which defines 
n

i
C  is a subclass of 1n

kC  , for example,  
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2

DataConversionC   
1

FunctionTypeC , which states class Data Conversion is a subclass of 

class Function Type.  

In the model, the subclasses of the same level of one class mutually disjoint. 

If n

iC   1n

kC   and 
n

jC   1n

kC  , then n

iC   
n

jC  = , which defines that 

if n

iC
 
is subclass of 1n

kC  and 
n

jC is subclass of 1n

kC  , then the intersection of n

iC  

and
n

jC is null.
 

For example, 

If 2

DataConversionC   
1

FunctionTypeC and 
2

DataEntryC   
1

FunctionTypeC ,  

then 2

DataConversionC   
2

DataEntryC  =  , 

which defines class Data Conversion and class Data Entry are disjoint on 

condition that they are the same level subclasses of class component type. 

In the function model, all the top classes have a large tree type architecture of subclass, 

sub subclass and so forth.  In this sub model, isA is the only relationship to link the 

classes and its subclass. In knowledge representation, isA is a relationship where one 

class A is a subclass of another class B, and isA is of a transitivity. The way to define 

the relationship with OWL-DL as follows: 

http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Subclass
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For isA relationship, we assert that the range of the relationship is the respective 

class n

iC :  

n

iC ≡ isA . 1n

iC  , which defines n

iC
 
has an isA relationship with its subclass 

1n

iC  , for example,                  

1

FunctionTypeC ≡ isA . 2

DataConversionC , which states the relationship isA links the class 

Data Conversion to the class Function Type.   

5.2 Context Model 

The context model is used to represent the reuse context information of the 

components, including but not limited to the application environment, hardware and 

software platform, required resources and possible dependency with other 

components. The top level classes consist of Operating System, Component Container, 

Hardware Requirement, Software Requirement. The context model is built in the 

same way as above two models, i.e., using isA to build ontology hierarchies of class 

operating system and class component container, and using isAttributeof to specify 

the value set of the attributes of the classes. Figure 5.1 b) shows the top three levels of 

classes in the context model. The details list in the appendix A.2.  

The classes and relationships are defined in OWL-DL in the same way as that in the 

intrinsic model. The details are as follows:   
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1

iC             

where i = OS, Platform, CPU Requirements, Disk Requirements or Memory 

Requirements.  

which defines that Component OS, Component Platform, Component CPU 

Requirements, Component Disk Requirements and Component Memory Requirements 

are the top level classes of the context model. 

n

i
C   1n

kC  , which defines 
n

i
C  is a subclass of 1n

kC  , for example,  

2

WindowsC   1

OSC , which states class Windows is a subclass of classOS. 

In the model, the subclasses of the same level of one class are mutually disjoint. 

If n

iC   1n

kC   and 
n

jC   1n

kC  , then n

iC   
n

jC  = , which defines that 

if n

iC
 
is subclass of 1n

kC  and 
n

jC is subclass of 1n

kC  , then the intersection of n

iC  

and
n

jC is null.
 

For example,  

If 2

WindowsC   1

OSC
 
and 2

LinuxC   1

OSC , then 2

WindowsC   2

LinuxC  =  , 

which defines class Windows and class Linux are disjoint on condition that they 

are the same level subclasses of class component type. 
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Different from the function model, two types of relationships are used to show the 

links between the classes in different layers. isA relationship is used to describe super- 

and sub-class links between component type. isAttributeof defines the value set of an 

attribute of a class in the ontology model, e.g., Memory Requirement class is linked 

with a set of Memory Value classes under the “isAttributeof” relationship. The 

relationships are defined as follows: 

For isA relationship, we assert that the range of the relationship is the respective 

class n

iC :  

n

iC  ≡∀isA . 1n

iC  , which defines n

iC
 
has an isA relationship with its subclass 

1n

iC  , for example,                  

1

OSC ≡∀isA . 2

WindowsC , which states the relationship isA links the class Windows 

to the class OS.   

For the isAttributeof relationship, we assert that the range of the relationship is the 

respective attribute class 1n

attributeC  : 

n

iC  ≡∀isAttributeof . 1n

attributeC  , which defines n

iC
 
has an isA relationship with 

its subclass 1n

attributeC  , for example,  

1

eMemoryR qC ≡∀isattributeof . 
2

MemoryValueC , which defines the relationship 

isAttributeof links the class Memory Requirements to class Memory Value. 
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5.3 Intrinsic Model 

The intrinsic model specifies the basic information of a component, including only its 

name, vendor, price, version, date and type. In the proposed approach, such 

information is defined as “intrinsic information” of the component. A taxonomy of 

the intrinsic information is developed first, which includes top level attributes such as 

Component Name, Component Vendor, Component Price, Component Version, 

Component Date and Component Type. All the attributes in this taxonomy are finally 

modelled as classes in the intrinsic ontology model of MVICS. Figure 5.1 c) shows 

the top three levels of classes in the intrinsic model. The details of the intrinsic model 

(OWL format) are listed in the appendix A.3.  

The way to define the intrinsic model classes with OWL-DL is the same with the 

function model.  

1

iC    

where i = Name, Vendor, Price, Version, Date or Type, 

which defines that Component Name, Component Vendor, Component Price, 

Component Version and Component Type are the top level classes of the context 

model. 

n

i
C 1n

kC  , which defines 
n

i
C  is a subclass of 1n

kC  , for example,  
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2

DLLC
1

typeC , which states class DLL is a subclass of class component type. 

In the model, the subclasses of the same level of one class mutually disjoint. 

If n

iC 1n

kC   and 
n

jC 1n

kC  , then n

iC
n

jC  = , which defines that if n

iC
 
is 

subclass of 1n

kC  and 
n

jC is subclass of 1n

kC  , then the intersection of n

iC  and
n

jC is 

null.
 

For example, If 
2

javaC 1

typeC and 2

.NETC
1

typeC , then 
2

javaC 2

.NETC  = , 

which defines class java and class .NET are disjoint on condition that they are the 

same level subclasses of class component type. 

For isA relationship, we assert that the range of the relationship is the respective 

class n

iC :  

n

iC ≡ isA . 1n

iC  , which defines n

iC
 
has an isA relationship with its 

subclass 1n

iC 

,
  for example,                  

1

typeC ≡ isA . 2

DLLC , which states the relationship isA links the class DLL to the 

class component type.   

For the isAttributeof relationship, we assert that the range of the relationship is the 

respective attribute class 1n

attributeC  : 
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n

iC ≡  isAttributeof . 1n

attributeC  , which defines n

iC
 
has an isA relationship with 

its subclass 1n

attributeC  , for example,  

1

venderC ≡ isattributeof . 2

vendernameC , which states the relationship isAttributeof 

links the class vendor name to class component vendor. 

5.4 Meta-relationship Model 

The Meta-relationship model provides a semantic description of the relationships 

among the classes in different facets (sub-models) of MVICS. Four types of 

relationships are identified. Let‟s define a relationship as CA  CB, where CA and 

CB are classes in different facets of the MVCIS model. To define these relationships 

in DL, we create a transitive rule Rmatch, which defines a matching relationship from 

CA to CB. It means that if CA matches the requirement of a component search then CB 

will match the requirement as well. The above four relationships are then defined as 

follows. 

5.4.1 Matching Propagation Relationship 

Matching Propagation Relationship, CA 
Pro  CB, it means that if CA satisfies the 

requirement of a component search then CB and all its subclasses will satisfy the 

requirement as well. In component retrieval, such a relationship will enable all the 

components under CB and its subclasses to be part of the result components for a user 

query that is matched by CA. The impact on the search path of this relationship is 
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given in part a) of Figure 5.3. When the search engine identifies CA as a match with 

the user search keyword K1, it will continue to search for result components in the 

subclasses of CA, and at the same time also identify CB as a match. It would not 

continue the search in subclasses of CB, because all the subclasses of CB are deemed 

as matching.  

For example, when users search for a component with keyword “IBM VisualAge”, 

the search will find the class IBM VisualAge in the context model. The instances 

linked (via its leafclass) to class IBM VisualAge will be recorded as result components. 

In the MVICS, class IBM VisualAge has a Matching Propagation Relationship with 

Java class and C++ class which are subclass of Component Type class in the intrinsic 

model. With the semantic information provided by this relationship, the component 

type can be run by IBM VisualAge are Java and C++. This indicates that the result 

component obtained while the user query is matched class Java or class C++ are also 

the result components when the user search keyword is “IBM VisualAge”. Therefore 

component type class Java and class C++ in the intrinsic model can be seen as the 

subset of platform class IBM VisualAge. 

The DL definition of matching propagation relationship is then as follows: 

Relationship definitions: CA  ≡ ∀Rmatch . CB 

Role assertions: < CA . CB > :  ∀Rmatch 
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Fig. 5.3. The impact on search path: a) Matching Propagation Relationship; b) Conditional 

Matching Propagation Relationship; and c) Supersedure Relationship 

5.4.2 Conditional Matching Propagation Relationship 

Conditional Matching Propagation Relationship, CA 
PrC o  CB (attri=V), in MVICS, 

it means that if CA satisfies the requirement of a component search then CB and its 

subclasses may satisfy the requirement if their attribute attri has value V. In 

component retrieval, the relationship enables that the components under CB are part of 

the result components for a user query that is matched by CA, if their attri has value V. 

This relationship will impact on the search path as follows: when the search engine 

identifies CA as a match with a user search keyword K1, it will continue to search for 

result components in the subclasses of CA, and at the same time search CB and its 

subclasses on the condition of attri=V, as shown in b) of Figure 5.3. 
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For instance, when a user searches for a Silverlight type component by keyword 

“Silverlight”, the search will find the class Silverlight in the intrinsic model. The 

instances linked (via its leafclass) to class Silverlight will be recorded as result 

components. In the MVICS, class Silverlight has the Conditional Matching 

Propagation Relationships with class Component Type in Context facet. With the 

semantic meaning specified by Conditional Matching Propagation relationship, we 

know that the compatible platform of Silverlight type component is Visual Studio 

2008, Visual Studio 2005, Visual Basic 2008, Visual Basic 2005, Visual C# 2008 and 

Visual C# 2005. The compatible platform adds to class B as an attribute provide by 

the Conditional Matching Propagation Relationship. Then the search will continue to 

search the result components by the platform keywords in the Context model. 

Therefore the instances of class Visual Studio 2008, Visual Studio 2005, Visual Basic 

2008, Visual Basic 2005, Visual C# 2008 and Visual C# 2005 in context model will 

be found as the result components of keyword” Silverlight” as well. 

The DL definition of conditional matching propagation relationship is then as follows: 

Relationship definitions: CA  ≡ ∃Rmatch . CB,  

if CB CV , where CV defines the classes have value V 

Role assertions: < CA . CB > : ∃Rmatch 
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5.4.3 Matching Negation Relationship 

Matching Negation Relationship, CA 
Neg  CB, in MVICS, this relationship means 

that if a result component is obtained by a keyword matching with CA, then the result 

component cannot be obtained by another keyword matching with CB. This 

relationship deals with problems caused by the incompatible requirements in a user 

query. When users input several keywords, CA and CB, which are matched with two 

different keywords respectively, they may have Matching Negation Relationship, i.e., 

a result component cannot belong to both classes simultaneously. To tackle this 

problem, the user query can be treated as two groups of keywords. One group 

consisting of the keyword matched with CA, the other group consisting of the keyword 

matched with CB. The Matching Negation Relationship is usually used for the user 

query refinement. 

The matching negation relationship is defined in OWL-DL as follows: 

Relationship definitions: CA  ≡ ¬∀Rmatch . CB 

Role assertions: < CA. CB > :  ¬∀Rmatch  

5.4.4 Supersedure Relationship 

Supersedure Relationship, CA 
Sup  CB, in MVICS, Supersedure Relationship 

means that if the content of class CB has higher priority to the content of class CA, then 
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the result components obtained by matching CA will be replaced by the result 

components obtained by matching CB. This relationship provides the following impact 

on the search path, as shown in c) of Figure 5.3: when the search engine identifies CA 

as a match with the search keyword K1, it will stop searching for result components in 

the subclasses of CA, but turn to searching from CB and its subclasses.  

Up to now, this relationship is especially used to describe the relationship between 

class Platform Hardware Requirements (including CPU and Memory) and 

Component Hardware Requirements. The relationship shows the hardware 

requirements for platform, which need to be considered by users. It means if class 

Platform is matched with the user requirements, sometimes the relevant information 

of the platform hardware requirements will precede the result component hardware 

requirements. In this case, the component hardware requirements will be replaced by 

platform hardware requirements which need to be presented to users. To illustrate the 

Supersedure Relationship between class Platform and class Hardware Requirements, 

we take Microsoft Visual Studio 2008 as an example. Microsoft Visual Studio 2008 

requires 384MB memory. Its memory requirements are beyond the result 

components‟. In this case, the memory requirements of result component will change 

to 384MB. 

The supersedure relationship is defined in OWL-DL as follows: 

Relationship definitions: CA Rmatch . CB  if and only if CA   CB 
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Role assertions: < CA. CB > : Rmatch if and only if CA   CB 

All the above four sub component specification ontology models are defined in OWL. 

These OWL documents can be seen as the paths that connect user queries and result 

components. 

5.5 Linkage between Domain Related Software System 

Ontology and MVICS 

The original MVICS model is a component specification ontology model based on the 

IT specific functions, rather than the application domain related functions and other 

features. Therefore this MVICS model does not support domain oriented component 

specification and retrieval. To extend the MVICS-based component search into a 

specific domain, two mechanisms, namely Association Link (AssL) and Aggregation 

Link (AggL), are developed to integrate the domain related software system ontology 

into MVICS. With such integration, the domain ontology is linked to MVICS 

effectively and thus extends the application scope of MVICS without changing the 

architecture of the model. Different from traditional ontology mediation, the 

connection between MVICS and the domain related ontology neither uses the method 

of ontology merging to create a new ontology, nor uses the method of ontology 

mapping to make the same or similar ontologies to establish contacts. The two 

mechanisms AssL and AggL are used to link two different kinds of classes of domain 
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ontology to the MVICS. And then, the AssL and AggL are defined formally and to 

automate the component search and repository building. In the function model of 

MVICS, the class Component Domain is set to interface domain ontology with 

MVICS. The AssL and AggL generated from the integration will be stored under the 

class Component Domain.  

5.5.1 Association Class and Association Link 

Those classes in the domain ontology which can be viewed as sub classes of a 

MVICS class are named as “Association class”. The Association classes in the 

domain ontology represent specific operations, as a specialization of their MVICS 

super classes in the relevant domain. Association Link is used to link these classes 

with their super class counterparts in MVICS. 

Figure 5.4 shows an example of AssL. The class Document Log in financial domain 

ontology can be viewed as a sub-class of the class Document Processing in MVICS, 

because logging is a specific of document processing in the financial sector, therefore 

the Document log link to Document Processing with AssL. 
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Fig. 5.4. An example of Association Link 

5.5.2 Aggregation and Aggregation Link 

Aggregations in MVICS are defined as a set of MVICS classes which work together 

to implement a larger function. Apart from the classes in the specific domain that can 

be linked in the way of AssL, other domain operation modules are more 

comprehensive and multifunctional. In this case, a set of reusable Aggregations in 

terms of the IT function in MVICS are first established, to represent the function of 

the domain operations. These reusable Aggregations are the function units of MVICS 

with minimum intersection of reusable MVICS functions. Each Aggregation is 

viewed as a reusable unit oriented to different functional operations. To link a domain 

model with MVICS, an Aggregation Link is defined as a link from a domain class to 

an Aggregation in MVICS. Classes in the domain ontology are linked to MVICS 
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through AssL, where a counterpart super/subclass relation exists, and/or AggL, where 

a domain class is composed of one or a set of Aggregations in MVICS.  

 

Fig. 5.5. An example of Aggregation Link 

An example of AggL is shown in Figure 5.5. In total, class Payment System in 

financial domain ontology has the following ten functions which are already defined 

in MVICS, including Data Security, Data Validation, Data Conversion, Data Editing, 

Data Conversion, Database Management, User Administration, Reporting, Email and 

system Encryption. The first nine functions are composed into an Aggregation 

(Payment 3) in MVICS, and linked with AggL to class Payment System. In addition to 

the above nine functions, the class Payment System has an extra function Encryption, 

and this is expressed with an AssL from class Payment System to the MVICS class 

Encryption. Thus, the whole function of class Payment System is expressed by a 

combination of the AssL and AggL. 

http://www.componentsource.com/features/data-validation/index.html
http://www.componentsource.com/features/data-conversion/index.html
http://www.componentsource.com/features/editing/index.html
http://www.componentsource.com/features/data-conversion/index.html
http://www.componentsource.com/features/database-management/index.html
http://www.componentsource.com/features/email/index.html
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Classes in the domain ontology are therefore linked to MVICS, either through AssL 

where a corresponding super/subclass relation exists, or through AggL where a 

domain class is composed of one or one set of Aggregations in MVICS. Via these two 

mechanisms, different domain ontologies can be integrated with MVICS by building 

new links of AssL and AggL. To automate the integration between domain ontology 

and MVICS, a domain ontology migration method was proposed. This method 

supports the semi-automation of the integration through the following process: Step 1: 

Association class identification; Step 2: operation module analysis; Step 3:  

Aggregation update. With the aid of a domain expert, the domain ontology can be 

integrated with MVICS more smoothly and effectively. 

5.5.3 Linkage Definition 

The linkage between the domain ontology and the MVICS are established by 

Association Class, AssL, Aggregation and AggL. Because the Association Class is a 

kind of domain ontology class, the definition of the Association Class is the same as 

the domain ontology class.  

To define AssL in OWL-DL, let n

iC represent a class in the n
th

 level of the 

hierarchical architecture of the MVICS model. Let m

dC represent a class in the m
th

 

level of the hierarchical architecture in the domain ontology. Let‟s assume there is an 

AssL relationship. The relationship is then defined as follows:   
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 we assert that the definition of the relationship is the respective class n

iC :  

n

iC ≡∀isA . m

dC , 

 for example,                  

3

DTC ≡∀isA . 3

MTC , which defines the relationship AssL links the class Money 

Transfer in the domain ontology to the class Data Transfer in the MVICS. 

To define Aggregation in OWL-DL, let
n

iC represent a class in the n
th

 level of the 

hierarchical architecture of the MVICS model. Let 
AC  represent an Aggregation in 

the MVICS model. The Aggregation is then defined as follows: 

AC  ≡ 
1

m
n

i

i

C


  

To define AggL in OWL-DL, let m

dC represent a class in the m
th

 level of the 

hierarchical architecture of the domain ontology. Let 
AC  represent an Aggregation in 

the MVICS model, we define the AggL relationship as that the linked class in domain 

ontology ( m

dC ) must have an IsA relationship with at least one linked Aggregation 

(
AC ) in MVICS.  

m

dC ≡∀isA . 
AC  
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6. Holistic and Precise Component 

Retrieval Method 

“Holistic” here refers to the fact that the MVICS is a comprehensive component 

specification model, and the approach considers a spectrum of respects in component 

specification and retrieval. As a core part, the MVICS-based component retrieval is 

achieved through original component search, domain component search, and adaptive 

component search. In addition, result component precision calculation and result 

component profiles, make the approach more complete to help the user find the more 

suitable components.  

6.1 MVICS-based Component Retrieval  

The MVICS component retrieval is based on the MVICS model and the linkage with 

the domain ontology model. It focuses on retrieving the relevant components from the 

repository according to the refined user keywords. For all components and their 

related adaptive assets located in the repository, their specifications are represented by 

the MVICS model and the related domain ontology in a semantic and logical way. 

The component name links to the relevant classes, which belongs to the MVICS and 

the linked domain ontology. The MVICS component retrieval will identify the 
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matched classes with the refined user keywords. And it will retrieve the result 

components via the matched classes. As a unique feature of the MVICS-based 

approach, the adaptive components can be matched by identifying the adaptive search 

path. And the results provide not only the matched components with the relevant 

adaptation assets/methods, but also their suggested effort. The adaptive search results 

give users more options during the system development. Overall, four types of search 

paths are identified according to the location of the matched classes in the ontologies. 

6.1.1 MVICS Component Search Path  

The first type is original MVICS search path, which is generated by analysing the 

matched class in the function model, intrinsic model and context model of the MVICS. 

It starts from the matched class located in the sub model of MVICS, and ends with its 

top level class in the corresponding sub model. For example, the keywords “Windows 

XP” is matched with the class Windows XP in context model. The search path is from 

the beginning class Windows XP to the top class OS as shown in Figure 6.1. 

 

Fig. 6.1. Example of the original search path 
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6.1.2 AssL and AggL Search Path  

The second and third types of search path are called domain Association Link (AssL) 

search path and domain Aggregation Link (AggL) search path, which are connected 

with domain specific keywords. In the MVICS-based component retrieval, the AssL 

and AggL are used to generate the domain related keywords search paths.  

 

Fig. 6.2. Example of domain AssL search path 

According to the definition, AssL is used to link the domain class (Association class) 

with their super class counterparts in MVICS. When the user keyword is matched 

with an Association class, a domain AssL search path is generated starting from this 



 

- 110 - 
 

Association class, linking with its super class in the MVICS by AssL, and ending with 

the top class in the corresponding sub model. Here we cite keywords “Document 

Log” as an example. As shown in Figure 6.2, the search path starts from the matched 

class Document Log in the financial domain ontology, and then connects to the class 

Document Processing by the AssL, finally it ends with the top level class Function 

Type in the function of MVICS. 

 

Fig. 6.3. Example of domain AggL search path 
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For the domain AggL search path, it is built in accordance with the definition of AggL, 

in the event that the user keyword matched with a domain ontology class, which links 

up with an Aggregation in MVICS model. The domain AggL search path can be 

counted as the set of original MVICS search paths, which are obtained by the original 

MVICS classes located in the Aggregation. For example, the class Payment System in 

the financial domain ontology is matched with the user keyword, and it links with the 

MVICS model through an Aggregation (Payment 3) as shown in 6.3. According to the 

definition of Aggregation, each class in the Aggregation (Payment 3) has an original 

MVICS search path in the MVICS model. Therefore, the search path of class Payment 

System is the set of search paths of these MVICS classes.   

6.1.3 Adaptive Search Path 

The last type is the adaptive search path, which is achieved during the adaptive 

component retrieval. In MVICS-based specification, we call those components whose 

function and QAs may vary via the application of adaptation assets “adaptive 

components”. The adaptive components are linked to a class via adaptation 

methods/assets if the component becomes relevant to that class after adaptation with 

that method or asset.  

The retrieval path is then recorded as an adaptive path, in contrast to the direct path, 

i.e. without adaptation. In addition, an adaptation suggestion will give every matched 

methods/assets an effort suggestion. The effort suggestions are classified into three 
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levels, which indicate the effort to complete the adaptation as Strong, Medium and 

Weak. The conclusion of method efforts comes from the analysis of the popular 

component adaptation methods in the literature review chapter. The degree of effort is 

given on basis of the two criteria: 1) whether software engineers need to have much 

related knowledge, and 2) whether they need to do many preparations for the task. 

 For each available adaptation methods/asset, the effort suggestion information is 

defined as attributes of the relevant classes, which are stored in the MVICS model as 

well.  

It may not be possible for an adaptation mechanism to satisfy each requirement, since 

these criteria are drawn from disparate sources. Six popular methods are considered 

including Active Interface, Binary Component Adaptation, Inheritance, SAGA, 

Superimposition and Wrapping. By evaluating component adaptation mechanisms 

against these requirements, we can determine which existing adaptation methods need 

most effort. The following list presents the conclusions of method efforts: 

Strong Effort:         Active Interface, Inheritance, SAGA  

Medium Effort:       BCA, Superimposition  

Weak Effort:         Wrapping  

In the component retrieval stage, the search path that connects the user keyword to the 

matched class via the adaptation method/assets is recorded as an adaptive component 

search path. An example is taken as shown in Figure 6.4, the Components 1, 2, 3 that 
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are located in the repository have no relationship with the class Data Security. 

However the components 1, 2, 3 whose function varies to meet the user query “data 

security” via the application of adaptation assets “Wrapper 1”. After the adaptive 

search, the components 1, 2, 3 are identified as the result components for the query 

“data security” and their search paths are recorded as the adaptive search path which 

connected through the adaptive asset “Wrapper 1”. 

 

Fig. 6.4. Example of adaptive component search path 

6.2 Result Component Precision Calculation Method 

In order to obtain the high component matching precision, a precision calculation 

method is developed by analyzing the search paths of the result component. The 

Weight of class (W) is defined first as the foundation of the method.  
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6.2.1 Weight of Class 

In each sub-model of MVICS, every class is given a weight to calculate the relevance 

of each search result. The rules of weight assignment are: i) In one facet, the lower a 

layer is the heavier weight its classes have; ii) In different facets, classes at the same 

depth in the function model are heavier than those in the intrinsic and context models. 

The weight assignment method is defined as follows: 

W = (1+X)
n
  (1) 

where n is the level of the layer in which the class locates, X = 0.5 for class in the 

function model, X = 0.3 for class in the intrinsic model, X = 0.2 for class in the 

context model 

The initial weights (X) of the classes in each model are given based on our experience 

and subject to continuing adjustment. According to the test data collected from the 

user, the initial weights will be updated dynamically after every 100 groups of user 

keywords are obtained. Each group of the keywords will be recorded and classified by 

the facets of the MVICS. The rules of dynamic original class weight assignment are: 

the more frequently the keywords are used in a facet, the heavier is the original weight 

of this facet. Let N represent the occurring times of the keywords in a facet, the 

subscripts f, i, c indicate the related facet (function, intrinsic or context).  The weight 

assignment rules are defined as follows: 
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0.5
f

f

f i c

N
X

N N N
 

 
; 0.3 i

i

f i c

N
X

N N N
 

 
; 0.2 c

c

f i c

N
X

N N N
 

 
  (2) 

Moreover, in order to further improve the accuracy of the original weights, the 

MVICS approach takes into account the background of users. The users are classified 

into three groups, including software engineering researchers, software engineers and 

software engineering amateurs. Let the superscript of X and N represent the group of 

the users. The superscripts R, E, A indicate which user group is related, namely 

software engineering researchers, software engineers and software engineering 

amateurs. Taking into account the impact of the user‟s background, the original 

weight assignment rules are refined as follows: 

0.5

R E A

f f f
R E A

R E A R E A R E A

f

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

 

      
 

 

0.3

R E A

i i i
R E A

R E A R E A R E A

i

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

 

      
    

(3) 

0.2

R E A

c c c
R E A

R E A R E A R E A

c

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

 

      
 

 

Some users may wish only to be influenced by the views of the users in their own user 

group. Hence, the following rules are proposed to assign original class weight for this 
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purpose, i.e., in support of user group oriented component search, which can further 

improve the precision of search results. 

0.5

R

fR

f

f

N
X

N
  ; 0.3

R
R i
i

i

N
X

N
  ; 0.2

R
R c
c

c

N
X

N
   

0.5

E

fE

f

f

N
X

N
  ; 0.3

E
E i
i

i

N
X

N
  ; 0.2

E
E c
c

c

N
X

N
 

           

(4) 

0.5

A

fA

f

f

N
X

N
  ; 0.3

A
A i

i

i

N
X

N
  ; 0.2

A
A c
c

c

N
X

N
 

 

6.2.2 Weight of Search Path 

The weight of a search path (Wp) in the MVICS (original component search path) is 

the sum of the weights of the classes included in it. The weight of a domain ontology 

class is given on the basis of the MVICS class weights. As mentioned in the chapter 5, 

the AssL and AggL were developed to link the domain ontology to the MVICS. In the 

domain ontology, for the class linked with a MVICS class via AssL, its weight is the 

same as the sub-class of the MVICS class it linked to. For a domain class linked with 

MVICS through AggL, its weight is the sum of weights of classes contained in the 

Aggregation. The Wp of the AggL is the sum of the weight of the classes and 

aggregations included in it. 
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6.3 Precision Calculation Method 

To correspond with the MVICS model in which component specifications are 

classified into three facts, the keywords of a user query are also divided into three 

groups: Function Keywords (FK, the domain keywords belong to FK), Intrinsic 

Keywords (IK), and Context Keywords (CK).  

The MVICS-based component search will then match the three groups of keywords 

one by one in the OWL files of MVICS and the domain ontology. Meanwhile, it will 

record the search path of each keyword and calculate the weight of the path. After 

retrieval, a set of records is obtained for each keyword, which includes the result 

component name, the search path and its weight. The match precision of a result 

component (Pc) is calculated with the following unified formula: 

1 1 1

1 11

a b d

r r r

r r r
f i ci j n

t tt
t tt

WpFK WpIK WpCK

Pc X X X

WpFK WpCKWpIK

  

 

     
  

 
  (5)  

The numerators in the formula represent the path weight of the result components that 

partially match with the keywords in each facet, and the denominator represents the 

path weight of those perfectly matched. X is the original weight, X = 0.5 for a class in 

the function model, X = 0.3 for one in the intrinsic model, X = 0.2 for class in the 

context model. The yield value of the X for each sub model is given based on our 
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experience, and it will be updated dynamically by the dynamic original weight 

assignment. 

6.4 Result Component Profile  

In contrast to most existing approaches, which present only the name and precision of 

the result component, a holistic Result Component Profile is designed (as shown in 

Figure 6.5) of the result component to help the user make the best decision in 

component selection. The profile consists of: i) the result component name is shown 

in the top middle; ii) search summary next, including the precision with component 

adaptation, and the precision without adaptation; iii) the match results in sub models: 

function model, intrinsic model, and context model; iv) the match results in the 

domain ontology model; v) the associated adaptation method or asset and its incurred 

effort.  

The new structural result component profile shows the result from the whole to the 

part. First of all, the summary helps the user to realize how close of the match 

between the result component and the user query right away. It includes the result 

component precision with adaptation and without adaptation by which the best several 

components are selected for the further comparison. The next is the match results in 

sub facets of the user query that are classified according to the sub-models of the 

MVICS and the domain ontology. The search details in each facet help the user 



 

- 119 - 
 

further pick the most suitable component in the previous set of similar components by 

considering the requirements. Finally, the details of the adaptive search result will be 

considered as additional factors to help the user to make the decision.  

 

Fig. 6.5. The Result Component Profile
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7. Realisation of the MVICS-Based 

Component Specification and Retrieval 

To exert the power of the MVICS model in expressing semantics and process 

automation in component specification and retrieval, a MVICS-based component 

search tool and related component repository have been developed. The tool 

implements the complete process of component search, starting from filling the initial 

query and ending up with receiving the result component profile; the whole process is 

accomplished automatically. The tool consists of a set of modules, which carry out 

component search, including Dynamic Class Weight Assignment, Search Precision 

Calculator, Search Time Recorder and QAs Suggestion Processer. A component 

repository is built to store the components and their relevant adaptation 

assets/methods under the structure of the MVICS model and linked domain ontology 

model. Corresponding to the MVICS approach framework, the system architecture 

contains four functional parts: Users Query Refinement, Ontologies and Component 

Repository, Component Search and Result Display. The Ontologies and Component 

Repository is identified as the core of the component search process and it controls or 

supports the key subsystems in other parts of the tool. As the foundation of the search 

tool, the MVICS OWL files and the corresponding component specification in the 
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Ontologies have been introduced in previous sections. Other functional parts of the 

search tool will be described in the following subsections in the order of the workflow 

of component search. 

7.1 Realisation of MVICS-Based Component Repository 

Different from the current ontology-based approaches, the MVICS model is more 

versatile in terms of refining the user query, supporting component specification and 

managing the repository. Being registered into a repository, a component will be 

specified in a MVICS format form. The specification of this component will be linked, 

with the help of the form, to the relevant classes of each sub-model in the MVICS. 

Such a linkage reveals the semantic information of the originally syntax-based 

component specification, through either the relationship between classes within one 

facet, or the interrelationship between different facets. Furthermore, the domain 

semantics are represented with the linkage of MVICS to domain models.  

All the contents of the MVICS model, including classes (MVICS classes and domain 

ontology classes), relationships, interrelationships, AssLs, AggLs, Aggregation, and 

relevant adaptive component information, are saved into four types of OWL files. 

When a user searches for components, the user‟s keywords will be searched in the 

OWL file to locate the matched classes in the MVICS. All the components relevant to 

the matched classes are identified as result components for this particular search. 
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Moreover, the components in the repository are managed with the support of the 

MVICS as well. When a component is changed, added to, or deleted from the 

repository, the repository manager can complete the operation by modify the OWL 

file of the component specification related classes. The impact of this operation to 

other classes will be realised through the automatic process by the reasoner. 

7.1.1 OWL Files 

During the component search process, the MVICS model plays a primary role, which 

specifies components from a range of perspectives. The contents of the MVICS model 

and domain ontology, including classes, individuals, relationships and constraints are 

edited by the ontology-editing tool Protégé [84] and are saved in OWL files. 

According to the facets of the MVICS and the domain ontology model, the OWL files 

can be categorised into four types, including the Original MVICS OWL file, Linkage 

OWL file, Adaptive OWL file and Domain Ontology OWL file. 

The Original MVICS OWL file is generated by editing the contents of the function, 

intrinsic, context and meta-relationship models of the MVICS model. The Association 

Class, Aggregation, AssL and AggL are applied to integrate the domain ontology with 

the MVICS. Such contents are saved in the linkage ontology OWL file. The adaptive 

OWL file consists of the OWL format specification of the adaptive methods/assets, 

the relationship between the adaptive methods/assets and the MVICS class, and the 

adaptive suggestions (represented as the attributes). The connected domain ontology, 
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its classes and superior-subordinate relationships are saved in the domain ontology 

OWL file. 

7.1.2 Component Repository 

Under the management of the MVICS and the domain ontology, 600 components 

(actually component specifications) are stored in a Microsoft Access database. The 

specifications of the components were selected from component sale websites, open 

source websites and the MVICS project website. The component names are registered 

with the related classes in the ontologies (MVICS and domain). The repository is 

maintained via the MVICS project website (http://ceres.napier.ac.uk/staff/chengpu/ind 

ex.asp). 

7.2 Financial Domain Related Ontology 

To implement the MVICS-based approach to a specific domain, a financial domain 

related software system ontology was built as an example, by migrating existing 

financial operation ontologies. Following the proposed domain ontology migration 

method, financial operation ontology was retrieved from the protégé ontology library 

[85] with help of Google filetype search [35]. The required financial operation 

ontologies were then developed by migrating the financial operations from the 

selected ontologies. Each class in the new ontology represents one software system or 

module that carries out a financial operation. Superior-subordinate relationships have 

http://ceres.napier.ac.uk/staff/chengpu/ind
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been used to describe the affiliations of the functions of these systems or modules. 

The top level classes include Asset Management Systems, Payments & Transfers 

Systems and Risk Management Systems. Their subordinates and the subsequent 

sub-subordinates constitute their sub classes and sub-sub-classes, till the most specific 

function units at the bottom level. Finally, the relevant AssLs, Aggregations and 

AggLs are developed by the domain expert. The full details of the financial domain 

ontology are shown in Appendix B. 

The method to define the domain ontology in OWL-DL is the same as the MVICS 

ontology, except the classes locate at the same level are not disjoint in domain 

ontology.  

1

iC    

n

i
C   1n

kC  , which defines 
n

i
C  is a subclass of 1n

kC  , for example,  

2

FIC   1

PEC , which states class Fund Investment, is a subclass of Private Equity. 

Among these classes, hasA relationship is used to describe super- and sub-class links 

between classes in the adjacent levels. The relationship is defined as follows: 

Relationship definitions:  

n

iC  ≡ ∀hasA . 1n

iC  , for example, 

1

PEC  ≡ ∀hasA . 2

FIC , which defines the relationship hasA links the class Private 

Equity to the class Fund Investment.   
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To transfer the component semantics between the MVICS and the financial domain 

ontology, AssLs and AggLs were established to link the financial domain ontology 

with the MVICS. All the Association classes, Aggregations and their related AssLs 

and AggLs are stored as the subclasses of the financial domain class in the function 

model of MVICS. 

7.3 User Interface  

Prior to the functional parts, a user-friendly interface is developed for users to fill in 

the search keywords and to operate the search options. A sample user interface of the 

tool is shown in Figure 7.1.  

 

Fig. 7.1. The main interface of the prototype tool 
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On the top left, there is a text area for the user to fill in search keywords. On the 

bottom left, these are three columns of option buttons: the first column lists the 

available domain ontologies, which has Financial Domain as an example. The second 

column spreads out user-oriented options which include Software Engineering 

Researcher, Software Engineer and Software Engineering Amateur. The 

user-oriented options can further improve the search precision by using different 

parameters, which are obtained by analyzing the user queries and collecting the users 

feedback. The last column lists the three available quality attributes. The result 

components are presented based on selected QA from high to low, when they have a 

similar search precision. The use of the option buttons will be introduced in the case 

study. On the right hand side of the UI is a black panel showing the summary of 

search results. 

7.4 User Query Refinement 

User query refinement has been developed in depth [30][170]; it focuses on 

determining the nouns and verbs from natural language, and processing the keywords 

based on the related domain model. According to the existing user query refinement 

methods, the MVICS component search tool combines three sub systems including 

Synonym Operator, Symbol Operator and Keywords Discriminator (as shown in 

fugire 7.2). The Synonym Operator formats the synonyms into a uniform keyword 

based on the classes of the MVICS model. The Symbol Operator identifies the 
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function of number restriction constructors (≤, ≥, <, >), and logic symbols (¬). With 

the support from the MVICS model, the Keywords Discriminator recognizes 

keywords which are suitable for database search, such as the keywords of exact 

component name, component version and component vendor which are implemented 

through database keyword search directly. This is because a database search on these 

terms will obtain the same search result but with a faster speed than the MVICS based 

ontological search.  

 

Fig. 7.2. The structure of the user query refinement 

7.5 MVICS Component Search  

The MVICS component search is based on the MVICS model and the linkage with 

the domain ontology model. It focuses on retrieving the relevant components from the 

repository according to the refined user keywords by identifying the search paths. The 
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MVICS component search identifies the matched classes in the MVICS, AssL, AggL 

and adaptive OWL files with the refined user keywords and it retrieves the result 

components via the matched classes. The workflow of the MVICS component search 

is shown in Figure 7.3, the details will be introduced in the following sub-sections. 

 

Fig.7.3. The workflow of the MVICS component search 

7.5.1 Refined User Keywords Parser  

Prior to the component search, the refined user keywords will be further processed by 

the Refined User Keywords Parser (RUK Parser). The parser first parses the 

keywords based on the sub models of MVICS. It classifies the keywords into three 

groups, including function keywords (domain related keywords belong to function 

keywords), intrinsic keywords and context keywords. In the second step, the parser 

generates several scratch storages for the component search according to the numbers 
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of the keywords. The scratch storages deposit the temporary search data generated 

during the searching process.  

7.5.2 MVICS Component Search Path  

The MVICS component search tool searches the classified keywords in the function 

model, intrinsic model and context model of the model and the domain ontology 

model respectively. The components related to the matched classes in each model are 

identified as the result components. The search also assigns a precision to illustrate 

the relevance rating for each result component, which is calculated on the basis of 

search paths obtained during the search. Four types of search paths are identified 

according to the location of the matched classes in the ontologies as mentioned in the 

previous chapter, including the original MVICS search path, the Association Link 

(AssL) search path, the Aggregation Link (AggL) search path and the adaptive search 

path. 

7.5.3 Adaptive Component Search Scratch Storage and Adaptive 

Suggestion Processing 

The adaptive component search is actually part of the MVICS component search. The 

search results are the components that match with the user query after the relevant 

adaptation. For the MVICS component search tool, the same number of scratch 

storages for the adaptive search paths will be created after the adaptive component 
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search. The searched keywords with their matched adaptation methods/assets are 

saved in the corresponding storages as show in Figure 7.3. In addition, an adaptation 

suggestion processing will give every matched method/asset an effort suggestion. The 

effort suggestions are classified into three levels, which indicate as Strong, Medium 

and Weak. For each available adaptation method/asset, the effort suggestion 

information is defined as attributes of the relevant classes, which are stored in the 

MVICS model. An adaptation suggestion process invokes these attributes and saves 

them in the adaptive search result storage for displaying to the user. 

7.5.4 Result Component Oriented Data Conversion  

After the component search, the search results will be processed by the Result 

Component Oriented Data Converter. The data converter will implement three tasks. 

The first task is to map the four types of component search paths (the original MVICS 

search path, the AssL search path, the AggL search path and the adaptive search path) 

into Function Keyword search path (pFK), Intrinsic Keyword search path (pIK) and 

Context Keyword search path (pCK), based on whether the matched classes in the 

component search paths belong to the function model, the intrinsic model or the 

context model of the MVICS. The second task is data conversion. The original search 

results and the adaptive search results in the scratch storage are saved according to 

users keywords. In order to calculate the precision of each result component, the 

keyword oriented search results (original and adaptive) should be converted into 
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result component oriented by the data converter. The converted data includes the 

result component names and related search paths (pFK, pIK and pCK), are stored in a 

new scratch storage. The third task is that the data converter records the information 

of matched keywords, unmatched keywords and adaptive information for each result 

component.  

7.5.5 Precision Calculation 

Based on the converted data, the match precision of a result component (Pc) is 

calculated with the unified formula (Formula (5)) as defined in Chapter 6. 

7.5.6 Dynamic Weight Assignment 

The MVICS component search tool is based on the tree structure of the MVICS 

model, and calculates the precision of the result component by supplying the values of 

the search path weights and the original weights (X) into the Formula (5). As 

mentioned in section 6.2.The X of the classes in each model are updated dynamically 

by the weight assignment Rules (2) after every 100 groups of user keywords are 

obtained. Moreover, in order to further improve the accuracy of the original weights, 

the dynamic X are further updated by taking into account the impact of the user 

backgrounds with the weight assignment Rule (3) and Rule (4). 
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7.5.7 QAs-based Result Component Ordering 

After the calculation of result components precision, the result components are listed 

in the descending order of precision. If the user selects the option button of “QAs 

suggestion”, the result components with the same search precision will be further 

ranked in the descending order of the values of the selected QAs. A QAs-based result 

component order processor will put the result components that have more QA related 

factor (as mentioned in section 5.1) in front. 

7.5.8 Result Component Profile  

In the MVICS-based component search approach, a Result Component Profile is 

proposed to present a comprehensive view of the search result to the user. This task is 

fulfilled by the result component profile creator in the MVICS-based component 

search tool. The creator collates and arranges the search result and the result 

component precision, in accordance with the result component profile format. It 

carries out three functions: firstly, the result component precision is formatted with 

the accuracy of 2 decimal digits; secondly, for each result component, its relevant 

search paths are arranged by the MVICS-based component search result, domain 

related component search and adaptive component search; and thirdly, having gone 

through the MVICS component search and the adaptive component search, the result 

component profile creator will calculate the percentages of the matched keywords 

amongst all searched keywords in every facet. 
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7.5.9 Search Time Recorder 

To measure the speed, the tool has a Search Time Recorder device, which is used to 

record the time consumed during component search. The device has two recording 

points: the first point is used to measure the model search time, and it is set to the 

completion of the MVICS-based search (includes adaptive component search). The 

second point is used to measure the post-search processing time, and it is set to the 

formation of the result component profile. The post-search processing time includes 

the search precision calculation, the user query record, the QAs-based result 

component order and the result component profile generation.  

7.6 Result Display 

In the MVICS component search tool, three panels are developed to show the results. 

In the user-friendly UI (Figure 7.2), the black panel at the right hand side shows the 

summary of search results, which comprises the result component names and their 

precisions. The result components are arranged in the descending order of their 

precision. If the QAs suggestion options (deployability and maintainability) are 

selected, the result components that match the most QAs related factors will be listed 

at the front of the list if the result components happen to have the same value of 

precision. If the user clicks the result component name, the result component profile 

will appear. In contrast to most existing component search tools, which only present 
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to the user the name and precision of the result component, the MVICS tool provides 

a holistic profile of the result component to help the user make the best decision in 

component selection. The profile shows the matching result in each sub-model of 

MVICS, the result in domain ontology and the corresponding adaptation information. 

By clicking the component name in the profile, the complete specification of the 

component will be presented. 

7.7 The MVICS Project Website 

In order to facilitate the users to test the approach through the prototype tool, a project 

website (http://ceres.napier.ac.uk/staff/chengpu/index.asp) was built as an 

intermediary platform. The project website helps users find the relevant information 

of the project (Appendix C.1) test the prototype tool online (Appendix C.2), and leave 

comments and feedback. The website contains the following main information for the 

users: 

 The introduction of project. It details the project background, main contributions, 

critical methods and the architecture of accessible ontologies (MVICS and 

domain ontologies).  

 The instruction of the MVICS component prototype search tool. It specifies the 

applicable domain keywords, layout of the UI, the component search steps, the 

functions of the tool and the specification of the result component profile.  

http://ceres.napier.ac.uk/staff/chengpu/index.asp
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 The specification of the sample components. The specifications of six hundred 

sample components are represented and managed by the facets classification 

methods on this website. 

 The online prototype tool. This tool is transformed into a web application (Java 

applet) and published on the website. 

 Database keyword search. On the website, a traditional component search tool 

was plugged in as well, which was supported by the basic keyword search and the 

faceted classification approaches. This search tool is placed here for the 

comparison test with MVICS component search tool. The comparative criteria 

include search recall, precision and speed, etc. 

 User registering and member interface. Prior to the test, users are requested to 

register as a member first. Part of the registration information is the user 

background, which will be recorded as the data for analysis in the user-oriented 

search. A user-friendly member interface panel will pop up after log in.  

 Own component register. Users can register their own components by filling out a 

MVICS format registration form. With the consent from the administrator, the 

component specifications are link to the related class with the ontologies. The 

semantics will be generated and extended with the help of defined relationships. 

The registered components are exhibited on the component list and can be used 



 

- 136 - 
 

for the approach evaluation.  

 Feedback questionnaire. A questionnaire of the test result will be prompted to the 

user for completion. It refers to search recall, search precision, result display, and 

other related questions. 

Moreover, the project website helps the administrator to manage the component 

repository and summarise the feedback and comments. 

 Component specification management. In the backend management of the 

website, the registered components (including the component specification which 

are added by the repository administer and the users) can be managed by the 

administrator, e.g. add, amend, approve, reject and delete components. 

 Data statistics of the questionnaires. The outcome of questionnaires will be 

recorded and analysed at the backstage by generating an XML-based result 

summary, which will be updated after every ten questionnaires. 
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8. Case Studies 

8.1  Introduction 

Three case studies have been undertaken to illustrate and validate the MVICS-based 

approach, in terms of its capabilities of 1) supporting the accurate component 

specification and retrieval, 2) seamless linkage with the domain ontology, 3) adaptive 

component suggestion, 4) comprehensive result component profile and 5) Quality 

Attributes suggestion. Each case study focuses on one or more of the above aspects. 

Case studies are selected for the analyses, only when the relevant participants meet all 

of the following 4 criteria: 1) They are specialised in one type of software, and 

focused on component reuse for software development; 2) They possess large 

quantity of components, with similar functions, and with independent intellectual 

property rights; 3) They are interested in new semantic-based approach and willing to 

feedback their comparison of  the MVICS-based approach with their existing 

techniques; 4) Their participation may help test one or more of the 5 capabilities of 

the MVICS-based approaches. As the start point, the first case study is an essential 

experiment which aims at checking the correctness and the capability of the 

MVICS-based approach. The first four capabilities of the method can be validated by 

this case study. As further extension of the evaluation, the other two case studies place 
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stress on exhibiting the advantages of the approach in real-life applications. The 

large-scale two-stage Metadata Management Platform System (MMPS) project case 

study focus on testing the capability 1), 3) and 4). And the Racing Games case study 

focus on testing the capability 1), 2), 4) and 5). The user feedback has been collected 

as the results of MVICS validation, and as the basis for further improvement. 

8.2 Essential Validation and Evaluation of the MVICS 

Prototype Tool 

8.2.1 Background 

The empirical method is used for the MVICS approach validation; user feedback is 

collected after testing the use of the prototype tool. To exemplify the use of the 

MVICS component search prototype tool, twelve search scenarios with corresponding 

search results are offered on the project website. Users can opt to test some of these 

given scenarios, or construct their own scenarios for the testing. In this case study, a 

financial domain scenario of developing an encrypted Cash Management Systems 

with user-friendly interface is taken as an example, to illustrate the function and 

process of the MVICS repository and its linkage with a domain related software 

system ontology. As mentioned in section 7.2, a financial domain related software 

system ontology has been built, by migrating existing financial operation ontologies. 

The relevant AssLs, Aggregations and AggLs have been developed with the support of 
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domain experts and saved under the sub-class Financial of class Component Domain 

in the Function model. 

8.2.2 The Process  

The functional requirements of the required encrypted Cash Management Systems, as 

its name implies, basically include encryption and cash management. Generally 

speaking, the software system will be composed of a number of components and it 

will manage liquidity, account balances, payments and other functions related to cash 

management under an encryption environment. The required components are .NET 

type, more specifically Silverlight or .NET Class. Correspondingly, they will be 

deployed in a Windows environment with Visual Studio 2008 or above. 

After the user query refinement, the scenario is specified as the following search 

requirements:   

Function:     Cash Management, Encryption 

Component Type:      Silverlight, .NET Class 

Component Platform:   Windows 

Component Container:  Visual Studio 2008 

The user may fill in the relevant keywords into the text area of the search UI and click 

the financial domain option button to extend the search into financial specific 

components. Next the deployability suggestion option button is selected to ensure the 

result components which can be deployed in more platforms to be listed in the front of 

http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
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the result list. Lastly, the user-oriented option buttons are left blank for original 

precision calculation. Once the search starts, the search tool first identifies which 

sub-model the keywords belong to in MVICS. Meanwhile, the information of the 

keywords and their related models are recorded by the requirement recorder for future 

refinement. The search engine searches the keywords one by one in the original 

MVICS OWL file, the financial domain OWL file and the adaptive OWL file 

respectively.  

During the search process, the relationships between the sub-models provide more 

semantics: for instance, the matched class silverlight in the intrinsic model has a 

Matching Propagation Relationship with class multimedia, graphics and animations in 

function model. With the semantics of the interrelationship, the silverlight type 

components should have the function multimedia, graphics and animations. Therefore, 

these functions are taken into account in the search as supplement. At the same time, 

in the context model, the matched class visual studio 2008 specifies that the OS 

requirements should be Windows XP or above by the Conditional Matching 

Propagation Relationship. With the support of the Supersedure Relationship, the 

search tool will identify the components as the result if the edition of their container is 

beyond the 2008, e.g. visual studio 2010.  

The keywords “Encryption, Silverlight, .NET Class, Windows and Visual Studio 

2008” are matched with the classes of MVICS, and their relevant components are 

http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
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identified as the result components first. Afterwards, the search tool continues to 

search the unmatched keywords “Cash Management” in the financial domain OWL 

files in the same way.  

After searching the MVICS and the financial domain ontology OWL files, the tool 

searches available adaptive methods/assets in the adaptive OWL files. All the 

components relevant to the matched classes are identified as the result components of 

the search, and the precision for each result component is calculated on the basis of 

the retrieved search paths by the Precision Calculator. The findings offer the user 

more options to develop the cash management software systems. 

The names of the result components and their precision are displayed in the 

descending order of precision; the more portable components are listed in front of 

other components with the same precision on the right panel of the UI. When a result 

component is highlighted, its result component profile will pop up, which provides 

comprehensive search information for each result component, including the result 

component name, overall precision of the component search, the match results in 

function, intrinsic and context model, the match result in the financial domain 

ontology and the available adaptation methods/assets with their efforts to apply.  

To compare with the MVICS component search tool, an SQL database search tool and 

a domain ontology-based component search tool are presented on the project website 

for the comparison test. The SQL database search tool implements the traditional 
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keyword search approach with the support of the facet classification and behavior 

matching approach. The domain ontology-based component search tool implements 

the existing domain ontology-based approach. It uses the same financial domain 

ontology for refining the user requirements and specifying the component without the 

support of MVICS. Software engineers, researchers and amateurs are able to use the 

applications with the same testing scenarios and to comment on the tool and the 

search result via a questionnaire. 

8.2.3 Analysis  

As mentioned in chapter 7, to facilitate users understand the MVICS component 

search prototype tool and to perform the comparison testing and leave comments, a 

project website is built. To date, 125 users have tested the tool in practice, among 

whom 43% from Europe, 33% from Asia, 17% from North America and 7% from the 

rest of the world. In the self-appraisal to scale their own software engineering 

experiences from level 1 to 5, 15% opt for scale 1, 7% for 2, 44% for 3, 23% for 4 and 

11% for 5. The explanation of test participant‟s experiences level is shown in Table 

8.1.  

Users are classified into three groups:  

 Software Researchers are those who pursue research careers in institute or 

software companies;  
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 Software Engineers are those who engage themselves in software development in 

the software companies; 

 Amateurs cover the rest of the users.  

Given such a classification, the different impacts of user‟s background and 

occupations are tested. The differentiation of academic and industrial, professional 

and amateur is to verify the impacts of different users‟ behaviour on the results of 

MVICS-based approach in application. This classification can be used as the basis of 

further improvement. It will also make it convenient to provide users of different 

background with Precision calculations fitful for their own application scenarios. 

Table 8.1. Level of Experience of Testers 

Level of Experience Explanation Proportion 

1 
user has more than 10 years 

software engineering experience 
7% 

2 user has more than 5 years 15% 

3 user has more than 3 years 44% 

4 user has more than 1 year 23% 

5 user has no experience 11% 

Table 8.2. Professional Background of Testers 

Occupation Software 

Researcher 

Software 

Engineer 

Amateur 

No. of respondents 59 39 27 

Years of experience 

(Average) 

7 5 3 
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The information of test participant‟s professional background is shown in Table 8.2. 

And the results of these component retrieval experiments are analyzed and given in 

Figure 8.1.  

Precision and recall [153][190] are two critical dimensions to evaluate the 

effectiveness of the component search. The MVICS component search tool improves 

the search precision and recall, particularly for the large repository as shown in Figure 

8.1 a. and 8.1 b. Such improvements come from its semantic foundation, i.e., the 

formalized MVICS ontology model and its linkage with the domain ontology, as well 

as the successful automation in the repository and search tool. MVICS represents 

component specification in a multi-faceted and hierarchical structure. In addition, the 

interrelationships in the MVICS model and the linkages with the domain offer more 

semantic meaning among the classes of the ontologies (MVICS and domain). In this 

case, more search paths are retrieved during the search process. This should lead to 

further improvement on recall and precision. Comparatively, with lower description 

capability and less relationship in their ontology, other existing domain ontology 

search tools offered lower satisfaction in precision and recall than the MVICS-based 

tool. Without the support of ontology for the component specification and retrieval, 

the traditional search tool offers even lower satisfaction when searching in a large 

repository. 
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(a) Satisfaction of Precision             (b) Satisfaction of Recall 

  

(c) Satisfaction of Result Display           (d) Satisfaction of Adaptation Suggestion 

 

(e) Search Speed                          (f) Maintenance Effort 

Fig. 8.1. The level of satisfaction of the MVICS component search tool, existing ontological 

domain specific search tools and traditional search tools 

The result display is to indicate the degree of user satisfaction with the display of the 

result components in terms of the completeness, clearness and usefulness. Via the 
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proposed result component profile, the search results are shown more effectively in 

the MVICS component search tool (Figure 8.1c). 

The criteria adaptation suggestion is used to estimate the degree of usefulness and 

user acceptance of the found adaptation suggestion. With the novel and unique feature 

of the proposed adaptation component search among all component search tools, the 

MVICS offers remarkably improved satisfaction in the aspect of adaptation 

suggestion, as shown in Figure 8.1d. 

Further to the improvement of search accuracy, the MVICS component search tool 

also takes into account other related properties, such as search speed. As mentioned in 

the section 7.5, the tool has a Search Time Recorder device to record the time 

consumed of model search time and post-search processing time. Figure 8.1e shows 

the comparison of the search speeds of the different search tools in repositories of 

varying sizes. Ignoring the time consumed in the pre-preparation work, the existing 

domain ontology search tools and the traditional search tools are faster than the 

MVICS approach when the size of a repository is less than 500 components; however, 

the MVICS component search tool becomes faster when the repository is large. This 

is because the MVICS component search tool searches classes in the ontology along 

its multi-faceted and hierarchical structure. The reason for the speed loss in the 

MVICS component search tool is the additional semantic processing, i.e., 
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semantic-based precision calculation, adaptive component search and data collection 

for a whole profile of result components.  

Regarding the effort of maintenance, it is observed that the ontology-based search 

tools (MVICS and existing domain ontology-based approach) are easier to manage in 

medium-sized repositories, as shown in Figure 8.1f. Again this advantage comes from 

the fact that the MVICS component search tool uses an ontology formally defined in 

OWL-DL, which makes it possible for automatic validation through ontology 

reasoners. More effort in developing the AssLs, Aggregation and AggLs to integrate 

domain ontology model into MVICS will ensure the domain viability of the MVICS 

approach. 

8.3 Large-scale Two-stage Metadata Management Software 

System Case Study 

This case study places more emphasis on demonstrating that the MVICS-based 

approach is capable for industrial scale component-based development in real life. 

The use of MVICS enhances component specification and the highly automated 

capability that improves the efficiency of large-scale multi-functional software 

development. In particular, the approach utilizes its unique adaptive component 

suggestion to provide more appropriate choices for the developers. 
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8.3.1 Background 

In this case study, we cooperated with Beijing Mysoft Technology Co., Ltd. [97] in 

the development of metadata management software system for China State Grid 

Beijing Branch. Beijing Mysoft Technology Co., Ltd. is a developer and service 

provider that specializes in Enterprises Management Systems and Database 

Management Systems. Its independently developed product “Smart Collaborative 

Management Platform” passed the system evaluation by China National Software 

Testing Centre (CSTC) [90]. Mysoft has successfully constructed a number of 

Enterprise Integrated Service Management Platforms and Enterprise Portal 

Management Platforms, which are applied to enterprise database management, 

enterprise integrated office management, human resources management, asset 

management, customer relationship management, procurement management, and 

portal management. 

The project of the large-scale two-stage metadata management software system was 

done by the development group led by Mr. Jia Ding, which consisted of 10 members. 

The MVICS-based approach is then applied to resolve the problems encountered in 

the previous process. The problems are similar to those often occurring in CBD, 

including inappropriate component specification, inaccurate component retrieval and 

missing of adaptive components (a kind of low level of component search recall). The 
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MVICS approach is implemented with support of the Mr. Ding led four-person test 

group. Their feedbacks are collected as the results of MVICS validation. 

8.3.2 Mysoft’s Existing Component Specification and Retrieval 

8.3.2.1 Introduction 

Mysoft has about 500 components, including 58 metadata management components, 

in their in-house repository. The components are obtained from foregoing projects 

related to metadata management system development. The component developers 

produce the components, which can implement one or more functions of metadata 

management. Because the components come from different projects, the diversity of 

their characteristics is large, such as size, functions type, container and platform. In 

order to specify the components accurately and clearly, a popular business component 

specification method was selected [41]. The method divides the specification of a 

component into seven levels, including interface, behaviour, interaction, quality, 

terminology, task and marketing. The specification aspects of each level are shown in 

Figure 8.2.  

After the specification, the components are saved in Mysoft‟s in-house repository 

with the specification documents (an example is given in Table 8.3) searchable 

through keywords. An SQL database search tool is proposed to facilitate the 

component retrieval. In order to further support narrowing the search space and still 
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retrieve relevant components, three facets of the search parameters are classified for 

the developers. The details of function type facet, component type facet and platform 

facet are shown in Figure 8.3.  

 

Fig. 8.2. Specification levels and specification aspects 
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Table 8.3 Example of component specification document 

Mysoft Data Analysis ASP 025 

Function Summary: 

 

Add data mining and multi-dimensional analysis to ASP.NET applications. 

Mysoft Data Analysis ASP 025 is a comprehensive data analysis, data mining, 

and visual reporting solution for ASP.NET 2. With Mysoft Data Analysis ASP 

025, your users can break down raw data in any manner they require using 

easy-to-understand Windows commands. By incorporating the Mysoft Data 

Analysis ASP 025 in your application, you can deliver an almost endless array of 

reports. Mysoft Data Analysis ASP 025 is able to slice and dice information 

efficiently and provide customers with an intuitive end-user experience. Mysoft 

Data Analysis ASP 025 delivers numerous layout customization options with 

total end-user control over each individual on-screen report. Mysoft Data 

Analysis ASP 025 Subscription with Source code Licenses available. Data 

Source Support, Display Table Data into Fully Customizable Visual Reports, 

Control the Level of Detail, Arrange Values Hierarchically, Automatic and 

Manually Specified Totals, Sort Data and Display Top Rows, Filter Data, Hide 

unnecessary values in the axes and Filter the data against which calculations 

are based. 

Component No.: DA-03-025 

Version: 1.0 

Component Type: ASP.NET WebForms, ASP.NET AJAX, .NET Class, AJAX 

Built Using: Visual C# .NET 

Product Class: User Interface Components 

OS Windows 7, Windows Vista, Windows XP, Windows 2000 

Compatible 

Containers: 

 

Microsoft Visual Studio 2010, Microsoft Visual Studio 2008, Microsoft Visual 

Studio 2005, Microsoft Visual Basic 2010, Microsoft Visual Basic 2008, 

Microsoft Visual Basic 2005, Microsoft Visual C++ 2010, Microsoft Visual C++ 

2008, Microsoft Visual C++ 2005, Microsoft Visual C# 2010, Microsoft Visual C# 

2008, Microsoft Visual C# 2005 

Prerequisites: Disk Space Required: 10MB 

Memory Required: 64MB 

Behaviors: TypeCodes 

Self. ListOfTypes->forall (b:Types) | (b. TypesCode > 00) 

TypeCodes::convertTypeCode(name : Typename): TypeCode 

pre : self.ListOfTypes->exists(b: Type | b. TypeName = Typename) 

Throughput: 2.3s 

Response time: 23ms 

Time 

distribution 

0.0425ms 
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Fig. 8.3. Facets of search parameters 

8.3.2.2 Search Scenario  

To test the Mysoft component specification and retrieval method, a scenario of 

developing a two-stage Metadata Management Software system (MMS) was adopted. 

The function requirements of the MMS are divided into two stages. In the first stage, 

the five basic metadata management functional modules are built, including metadata 

survey, metadata analysis, metadata management and metadata mining. The last three 

modules can be further divided into several sub-modules. In the second stage, an 

operation metadata browser and analysis module is developed by holding, improving 

or optimizing the basic modules in first stage and creating new function modules; two 
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new second stage modules, namely metadata management and metadata mining are 

created; the modules of metadata management and metadata are kept. Figure 8.4 

shows the details of the function requirements of the two stages. The modules with 

light grey are created in the first stage; the modules with dark light are added in the 

second stage; the black modules in the second stage are improved or optimized on the 

basis of the first stage modules. The solid arrow indicates the process of improvement 

and the dotted arrow shows the optimization. 
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Fig. 8.4. Two-stage functional requirements 
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8.3.2.3 Process 

For the first stage requirements, system developers search for components by adding 

the function keywords into the text area of the tool. The function keywords comprise 

from the top level system functions to the bottom level specific functions. More 

accurate keywords are added, more precise the result components are obtained. 

SQL-based search tool retrieve the components by matching with the contents of the 

component specification documents. The result components are listed in the order of 

the matched keywords from the most to the least.  

Before the developers use the “most accurate” components for the further 

development, they still need considerable effort to read the component documents for 

the following reasons: 1) the keyword-based search is not efficient. It often results in 

too many or too few hits, or it may retrieve components that are completely unrelated. 

The search precision depends on the regulation and quality of component description. 

However, the component descriptions are written by different component developers 

textually in natural language. It is difficult to improve the search efficiency. For 

example, when you search for the keyword “order processing”, the text “in order to”, 

“reorder”, and “can not order” are also matched with the keyword; 2) the sizes of the 

result components vary from single specific function module to large multi-functions 

module. Predictably, the three sizes of result components will be retrieved in 

comparison with the function scope of the requirement, as shown in Figure 8.5. The 
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first size of the result component (component 1) contains one or more Required 

Functions (RF), which is in the boundary of the required system functions scope. The 

second size, like component 2, part of its functions belongs to the required functions. 

Last, all the required functions are included in the component 3. The decisions of 

which components will be used need further analysis by considering other factors, 

such as effort for the composition, capability of the developer, further development 

for the second stage. After the component search, the developers still need much 

effort to select the components. Furthermore, the final decision depends largely on the 

background of the developers. 

 

Fig. 8.5. Three sizes of result components compares with required system functions scope 

For the second stage, the component search process and the problem encountered will 

be the same as the first stage. Furthermore, a new problem emerges in the process of 

function improvement or optimization: although the component adaptation is an easy 
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way to reach the goal, the Mysoft method does not support the adaptation for the 

reason of lacking adaptive assets and poor support of the adaptation methods.  

Although a large number of adaptation assets in similar projects are preserved, most 

of them are neither specified in the component repository nor linked to their related 

components. Therefore, adaptation assets/methods cannot be effectively used let 

along reused; this drawback reduces the efficiency of the CBD. The problems will be 

solved by the MVICS-based approach. 

8.3.3 MVICS Component Specification and Retrieval 

8.3.3.1 Introduction 

The MVICS ontology model contains a large amount classes about the data 

management, which are organized into tree type architecture. Each class is formal 

defined to present one data management function and is not disjoint with others. The 

relationship between the super- and sub-classes and the inter-relationship among the 

different facets of the MVICS are investigated with the help of domain experts. 

Although the MVICS covers most data management functions classes, new functions 

may emerge which were missed during the rapid development of applications. In the 

MVICS-based component specification, the missing functions will be generated as 

new classes in the MVICS structure. The component information, related adaptive 

assets description and QAs-oriented factors are specified by completing a component 
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specification registration form in the MVICS prototype tool (as shown in the 

Appendix C.3). After the registration, the data management components, their 

component adaptation assets and suggestion information are connected to the related 

classes in the MVICS. 

8.3.3.2 Process  

In the first stage, the same scenario is used to examine the MVICS approach in the 

component specification and retrieval. The keywords are first processed by the 

Synonym Operator to ensure that correct terms are used in the query. And then the 

refined keywords map against the MVICS component OWL file to find the matched 

classes automatically. At the same time, the relationships between the classes provide 

more semantics information to retrieve more related classes. In addition to the original 

component search, the adaptation component search occurs by matching the keywords 

with the adaptation OWL file. The search paths (original and adaptive) of each 

function are recorded for calculating the search precision. Finally, all the components 

related to the matched classes are identified as the result components for development. 

After the retrieval, the result components are listed in descending order of precision. 

For each result component, a comprehensive result profile of each component shows 

information from the summary to the details including: the result component name, 

overall precision of the component search, the match results in function, intrinsic and 
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context model and the available adaptation method(s) or asset(s) with their efforts to 

apply. 

8.3.3.3 Analysis 

The use of the MIVCS-based approach eliminates or relieved the problems which 

occurred in the Mysoft method in the first stage. The problem of the wrong or 

unrelated results disappears due to the semantic matching between the refined query 

and the OWL format specification. The result component precision and the profile 

will help the developers to make a better decision with less effort and limited lower 

background. For the second stage, the component search process will be same as the 

first stage. The MVICS-based approach surpasses the Mysoft method in function 

improvement, and the implementation of optimization is easier with the help of 

adaptation matching result. The related adaptation assets/methods will be 

recommended, which offer more development options to the developer. 

After the comparative test, the developers gave their feedback according to four 

criteria through the questionnaires, including user satisfaction of search precision and 

recall, required time, users satisfaction of adaptive assets/methods and human 

intervention.  
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Fig. 8.6. Feedback analysis of the MVIVS-based approach and the Mysoft approach 

Firstly, the MVICS-based approach improves search recall and precision to some 

extent. The results (Figure 8.6 a) are similar to the prototype experiment, which 

demonstrates the MVICS-based approach is suitable for industrial applications. 

Secondly, for large CBD development, the MVICS approach can shorten the 

development cycle (as shown in Figure 8.6 b) by its powerful description capability 

and logical definition, which can bring highly effective and fast component 

specification. In addition, the use of MVICS-based component registration is also an 

influential factor. Thirdly, the ignored adaptive methods/assets in the Mysoft 

approach are now suggested to the developers, and the resulting improvement is 
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shown in Figure 8.6 c). In particular, from the first to the second stage, part of the 

components used in the first stage are adapted with the help of the adaptive suggestion, 

rather than finding new components; this  is another  reason for the shortened 

development time. Finally, because the MVICS method improves the search recall 

and precision, provides the adaptive assets/methods and corresponding adaptive 

suggestion, the development experience requirements for the developers and the 

efforts for the following system development are reduced. Finally, the effects are 

expressed in the reduction of the human intervention, as shown in Figure 8.6 d).  

8.4 Racing Game Case Study 

Unlike the second case study, this case study focuses on illustrating the ability of the 

MVICS-based approach to develop a domain specific system. Firstly, the aim of the 

case study is to examine the strength of the linkage with domain ontology mechanism 

in real component-based development. In addition to of the improvement of the 

search efficiency and the automated capability in development of component-based 

applications, the benefits can be delivered into specific domain software development 

by using the linkages (AssL and AggL) of the MVICS. Furthermore, the efficiency of 

Quality Attribute suggestion will be reflected in the further game platform 

deployment. 
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8.4.1 Background 

This case study is in collaboration with the Mobile Game Development Department of 

Gameloft Co., Ltd in Beijing [93][103]. Gameloft (Euronext: GFT) ,a French 

publisher, primarily creates games for mobile phone handsets equipped with 

platforms including iOS [76], Android [74], Window Phone [78], BlackBerry OS [75], 

Symbian OS [77] etc. There are various types of classic mobile games which have 

been published in recent years, such as Asphalt series, Block Breaker series, Platinum 

Solitaire series, Guitar Rock Tour series and Uno.  

The Mobile Game Development Department Beijing branch mainly focuses on 

developing Sports Games (SPG), for example, more than 8 types, 12 patterns and 45 

editions of Racing Games (RAG) have been developed. There are large numbers of 

racing background components, racing car model components, racing control 

components, database management components and sound processing components 

that can be reused in the future development of similar games. However, the reuse 

oriented game development is still at white-box level, which restricts their efficiency. 

The current situation of component specification and retrieval is the same as the 

MysSoft in the last case study. The code, software packages, or modules obtained in 

the previous projects, which implement one or more functions, are encapsulated as 

components and are described by their specified interface. A local department 

repository was built to store the components and help the developers reuse by 

http://en.wikipedia.org/wiki/Euronext
http://www.euronext.com/quicksearch/resultquicksearch-2986-EN.html?matchpattern=GFT&entryType=symbol
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/IOS_(Apple)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Windows_Phone_7
http://en.wikipedia.org/wiki/BlackBerry_OS
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/Guitar_Rock_Tour
http://en.wikipedia.org/wiki/Modular_programming
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traditional component retrieval methods. The existing Gameloft component 

specification of retrieval provides a way to improve the development efficiency, 

however, it is still not nearly as satisfying as developers expected, due to the low 

precision and recall of the component search. In particular, the existing methods do 

not consider the influence of component QAs, which will affect the process of 

platform transplantation and even cause redevelopment. As a starting point, a case of 

City Racing Game is selected to test the improvement of the MVICS-based approach 

in the component-based development.    

8.4.2 MVICS-Based Gameloft Component Specification and 

Retrieval  

The application of the MVICS-based approach to the City RAG consists of the 

following steps: i) Development of RAG domain ontology; ii) linkage between 

MVICS and RAG domain ontology; iii) MVICS-based component specification and 

retrieval; iv) MVICS-based QAs suggestion. The last step is actually realized in the 

process of the MVICS-based component specification and retrieval.  

8.4.2.1 RAG Domain Ontology 

The use of an accurate RAG Domain Ontology is a key part of the application of the 

MVICS-based approach in this case study. However, it is difficult to retrieve an 

exiting domain ontology that fully meets the requirements in practice. Usually the 
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structure and contents of the selected ontology need to be modified, added and even 

rebuilt.  

 

Fig. 8.7. The top level classes of RAG domain ontology 

The basic RAG domain ontology used in the case study was retrieved from the game 

ontology library [92]. According to the requirements of RAG, the framework of the 

RAG domain ontology was updated, which consists of seven parts, including the 

Background, Car Model, Game Control, Physical Data Control, Database 

Management, Security Affair Administration and Sound, as shown in Figure 8.7. The 

seven parts are recorded as the top level classes, and their sub-classes, sub sub-classes 

are built by migrating other existing RAG related ontologies, such as Game Database 

Management ontologies and Game Security Affair Administration ontologies.  

The RAG related ontologies were retrieved from the protégé ontology library [85], 

with help of Google filetype search [35]. The relevance specific classes in the selected 

RAG related ontologies were rearranged under the class Background, class Car Model, 

class Game Control, class Physical Data Control and class Sound of the new RAG 

domain ontology.  
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Fig. 8.8. RAG domain ontology 

The method to construct the class Game Database Management and the class Game 

Security Affair Administration is the same: their sub-classes migrate from the 
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relevance existing ontologies. Finally, the new RAG related ontology is updated by 

recording and adding the new features of Gameloft City Racing Game, which cannot 

be obtained from the existing ontologies. Each class in this ontology represents one 

module that carries out a functional requirement in the development of the City RAG. 

Superior-subordinate relationships have been used to describe the affiliations of the 

related modules. The classes of RAG domain ontology is shown in Figure 8.8 and its 

detail list in Appendix D.  

8.4.2.2 Linkage Construction 

To extend the semantic-based component search into the RAG domain, classes of the 

RAG domain ontology are linked to MVICS, either through AssL where a 

corresponding super/sub-class relation exists, or through AggL where a domain class 

is composed of one or one set of Aggregations in MVICS. To automate the 

integration between domain ontology and MVICS, the following steps are taken to 

support the semi-automation of the integration: i) Association class identification; ii) 

Operation module analysis; iii) Aggregation update.  

 Association Class Identification 

Except for the existing class Database Management and class Sound in the 

MVICS, the class Background, class Car Model and class Game Control 

represent specific operations, as a specialization of relevant MVICS classes 
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in the RAC domain. These classes and their sub-classes, sub sub-classes can 

be viewed as sub-classes of their relevant MVICS classes. Therefore, the 

above four classes are identified as the Association Classes, and AssL is used 

to link these classes with their super class counterparts in MVICS. The class 

Background and class Car Model are viewed as the sub-classes of Class 

Rendering Model of the MVICS; the sub-classes of class Game Control, 

including Move, Turn, Stop, Acceleration can be seen as the sub-class of 

class Physical Engine of the MVICS; and these RAG ontology classes are 

linked with MVICS by AssL. 

 Aggregation Analysis 

Differing from the classes in RAG domain ontology that can be linked via 

AssL, the sub-classes of class Physical Data Control and class Security Affair 

Administration are more comprehensive and multifunctional. In this case, we 

first analyze the Aggregations in terms of the IT function in MVICS, which 

represent the group functions of the Data Control and Security 

Administration operations. These Aggregations are viewed as reusable units 

oriented to different Physical Data Control and Game Security 

Administration operations in the RAG domain. The AggL is used to link 

RAG domain classes to the relevant Aggregations in MVICS. For example, 

the Aggregation (Data management 2) in the MVICS model comprises the 
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sub-function classes Data Acquisition, Data Processing, Data Validation, 

Data Conversion and Data Output, which can cooperate to implement the 

Physical Data Control for the RAG. Thus, the class Physical Data Control is 

linked to the Aggregation (Data management 2) through the AggL.  

 Aggregation Update 

In the context of linkage with class Security Affair Administration, a 

problem encountered is that Security Affair Administration for the RAG 

involves issues of interaction with the server. It means that the Class Security 

Affair Administration not only links to Aggregation (Security 1) but also the 

Server Speed related Aggregation. However, there is no such kind of 

Aggregations in MVICS. In this case, the Aggregation of Server Speed, 

namely Aggregation (Server Speed Management), should be added into the 

MVICS. After the new Aggregation update, the class Security Affair 

Administration in RAG domain ontology is linked to the MVICS by 

Aggregation (Security 1) and Aggregation (Server Speed Management).  

8.4.2.3 MVICS-Based RAG Component Specification and Retrieval 

As the linkages were defined formally, the MVICS-based RAG component 

specification and retrieval work is the same as the financial domain example. The 

already built components and related adaptation assets are specified with help of the 
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MVICS and the RAG domain ontology. The QAs related factors of each component 

are identified at the same time as the preparation work for the QAs suggestion. During 

the search, the selected deployability and maintainability of the result components are 

considered. The advantages of search precision and recall, adaptation suggestion and 

result display are also presented. In addition, the use of MVICS-based method 

relieves the problem that occurred in the process of racing game transplantation.  

After its initial development, the racing game is adapted to many editions in 

accordance with mobile devices by the Game Transplantation Group. The 

implementation of the racing Game is restricted by CPU, RAM, OS and size of 

display screen of mobile device. Usually the transplantation Group needs to modify or 

delete some non-requisite components to meet the hardware requirements, and 

sometimes redevelop some functions of the game, such as change some requisite 

components.  

Because the MVICS-based approach provides the QAs suggestions, it can solve the 

above problems in transplantation at a certain level. The features of a component 

which affect their deployrability and maintainability are stored as forms in the class 

Quality Attribute of the function model. Deployability [37][60][109] is defined as the 

ability of a component to run in different computing environments. It does not imply 

that the application will simply require to be recompiled for the new platform. Neither 

does it allow for major re-engineering projects. Deployability is the ability to provide 
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the application on another system with known and economically reasonable cost and 

effort [14]. Maintainability [3][115][142]is defined as a capacity to undergo repairs 

and modifications. Maintenance is of three different types, corrective, adaptive and 

perfective maintenance [4]. Corrective maintenance is the removal of faults, thereby 

improving the reliability of components under the condition that no new faults are 

introduced. Adaptive maintenance is performed when a component is modified to 

meet modifications in the target environment. Perfective or preventive maintenance 

addresses improvements of the components in response to users or designers‟ input 

[123]. The result components that support multiple platforms, convenient 

modification and easy deployment, are recommended in priority to the user. 

8.4.2.4 Analysis 

The implementation of the MVICS approach in this case study is led by Mr. Xikun 

Yang. Other two developers give assistance to developing the ontology, specifying 

and retrieving the components, and developing the RAG game. Their feedbacks 

proved again that the MVICS-based approach improves the search recall and 

precision in practical applications. At the same time, it reduced the problems cause by 

the human intervention to some extent. Because the MVICS-based approach avoids 

the situations that the manual component specification and retrieval, inexperienced 

component adaptation and software transplantation without component QAs 
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suggestion. Users satisfaction of the MVICS-based approach and the Gameloft 

approach as shown in figure 8.9. 

 

Fig. 8.9. User satisfaction of the MVICS-based approach and the Gameloft approach 

 

Fig. 8.10. The statistics of working days for each phase 

However, a noteworthy circumstance is both approaches took about seven weeks on 

the condition that the MVICS-based approach saves time for the game development 

obviously. The MVICS approach saved eight working days in the phases of 

development and transplantation, whereas there time was almost wasted in the 
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component specification and retrieval phase. The statistics of working days for each 

phase is shown in Figure 8.10.  

The MVICS-based approach took more than eight working days to build the RAG 

ontology and the linkage with MVICS ontology. For the Gameloft Beijing branch, the 

MVICS-based approach can only save the time for the next Racing Game 

development. If the next project is another type of game development, such as Role 

Playing Game (RPG) or Action Game (ACT) Puzzle Game (PUZ), part of the class 

Physical Data Control, class Database Management, class Security Affair 

Administration and class Sound of RAG ontology can be reused after minor changes. 

Mostly the MVICS-based approach needs to re-establish the corresponding game 

domain ontology and its linkage with MVICS, which undoubtedly reduces the 

attraction of MVICS in actual applications.  

8.4.3 Extended Game Domain Ontology Model 

To make the MVICS-based approach fully deployed in the Gameloft game 

development, and to avoid extra time and resource consumption of establishment of 

the appropriate ontology and its linkage, the RAG ontology needs to be updated to a 

generic game development ontology for the Gameloft. 

According to the common features of game development for various game types, the 

top level classes of RAG domain ontology needs to be redefined in order to improve 
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its description capability, which can cover all types of games in the Gameloft. The top 

level classes of the updated Gameloft game ontology comprise class Graphics 

Rendering, class Game Control, class Physical Data Control, class Database 

Management, class Security Affair Administration and class Sound, as shown in 

Figure 8.11 (the details of the Gameloft ontology is given in Appendix E). The 

changes are mainly manifested in the class Graphics Rendering and class Game 

Control compared with the RAG ontology. 

 

Fig. 8.11. The top two level classes of the Gameloft ontology 

The class Graphics Rendering refers to coverings all types of the graphics in the game, 

which includes the Background, Character, Visual Effects and Data Display. The 

sub-class Background here is the same as the homonymous class in the RAG ontology. 

The contents of the new Background are more comprehensive. It includes not only the 

Race game, but also the background of the game RPG, ACT and PUZ. The class 

Character extends the class Ccar Model of the RAG ontology. It describes the all the 

types of the Characters occurring in the developed game. The class Visual Effects and 

class Data Display are new in the Gameloft ontology. The Visual Effects mainly affect 

app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
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the large 3D RPG and ACT games which are not used in the existing RAG games. 

The Data Display is listed separately from the class Physical Data Control in the 

RAG ontology, because the Data Display is more important in the other types of 

games. 

The content of the class Game Control is improved that mainly embedded in the new 

sub-classes Plot Control and Regulation control. The Game Control here is not only 

the simple movement of a Character and the change of the background. It refers to the 

change and progress of plot for the games, such as the RAG mission and ACT. The 

Regulation Control focuses on the PUZ type game that should follow the PUZ 

regulations. The rest of the top-level classes are similar to the RAG ontology, and 

needed an update to some new classes according to the new requirements. 

Through the establishment of the Gameloft ontology, the MVICS approach can be 

used in all types of the game development in the Gameloft with less time consumed in 

re-building the new ontology. The pre-preparation work only refers to update some 

classes according to the new specification of the components which greatly saves time 

of MVICS approach deployment. 

8.5 Summary 

The feedbacks from the three case study shows that the MVICS-based approach has 

the five capabilities in the prototype text and practical use. 

app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
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The test results from the first case study shows that the MVICS-based approach 

improves recall, precision, result display, and adaptation suggestion effectively, in 

particular, on the criteria of result display and adaptation suggestion. The result 

profile and adaptation suggestion are new mechanisms that developed in MVICS in 

contrast to other existing component search approaches. For the criteria search speed 

and maintenance effort, the MVICS and traditional approaches cut both ways under 

different conditions, but all within a reasonable range. By testing the prototype tool 

for a large number of scenarios, the initial validation results confirm the improvement 

of the component specification and retrieval in these five aspects has been achieved 

by the MVICS approach.  

On the basis the prototype test, the second case study validates the MVICS approach 

in real applications. The implementation of the two-stage large Metadata Management 

system demonstrates that the MVICS-based approach can be deployed in real life 

industrial development. The benefits of MVICS include not only the improvement of 

the component search precision, reducing the development time, but also the decrease 

of the human intervention on CBD. 

The last case study validates the advantages of the MVICS-based approach, including 

the improvement of search precision and recall, availability in specific domain, 

suggestion of adaptive assets/methods and reduction of human intervention. 

Especially, the QAs suggestion in the MVICS-based approach can play a 
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supplementary role in the later game transplantation phase. However, due to the 

dependency of the MVICS approach on the domain ontology and the RAG domain 

ontology established in this case study only applicable to racing game, the MVICS 

approach may be limited to wider practical applications. The updated Gameloft 

ontology makes the MVICS approach applicable for all types of game development in 

the Gameloft, which solves the above-mentioned application problem. 
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9. Conclusions and Future Work 

The objectives of the research have been achieved by developing the MVICS 

ontology-based approach to solve the component mismatch problem via holistic, 

semantic-based, adaptation-aware and QAs oriented component specification and 

retrieval, and extending the search scope to domain ontology via the developed 

semantic links. The literature investigation has shown that the proposed approach has 

novel contributions to the research area. This chapter first concludes the contributions 

of the MVICS-based approach according to the proposed objectives in the Chapter 1 

and then discusses the possible future directions of the research. 

9.1 Conclusions and Novel Contributions 

9.1.1 Conclusions 

With the continuous expansion of software applications and the increase in 

component varieties and size, it is becoming more imperative in component-based 

development to solve the problem of component mismatch. A major hurdle for wider 

and smoother component reuse is the lack of automated and effective approaches to 

component specification and retrieval. Although domain model and ontologies have 

been attempted in component specification and retrieval, producing improved results, 
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it is clear that the ontologies in existing approaches have too simple and/or monolithic 

a structure and too few relationships to deal with the specification and retrieval of 

modern components. To correct the limitations of existing work, an approach based 

on a multiple-viewed interrelated component specification ontology model has been 

built and evaluated. The following work has been undertaken during the development 

of the approach: 

1) A holistic ontology-based component specification and retrieval approach 

A MVICS-based approach is developed to achieve holistic and 

semantic-based component specification and automatic and precise 

component retrieval (Chapter 5 and 6). The approach has two characteristics, 

namely “holistic” and “semantic-based”. “semantic-based” here refers to that 

the component specification ontology and the domain specific ontology 

cooperates to provide the semantics foundation of the component 

specification. And “Holistic” here refers to that the MVICS is a 

comprehensive component specification model, and the approach considers a 

spectrum of perspectives in component specification and retrieval. The 

approach effectively supports: the original component search, the domain 

component search, the adaptive component search, the result component 

precision calculation and the result component profiles, all of which together 

enable the user to find more suitable components effectively and 
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automatically.  

2) A prototype tool 

As the implementation of the MVICS-based approach, a prototype tool 

(chapter 7) has been developed to exert the power of the MVICS model in 

expressing semantics and process automation in component specification and 

retrieval. The tool implements the complete process of component search, 

starting from filling the initial query and ending up with receiving the result 

component profile. The tool consists of a set of modules, which impact on 

component search, including Dynamic Class Weight Assignment, Search 

Precision Calculator, Search Time Recorder, and QAs Suggestion Processer. 

3) Case studies and evaluation 

Three case studies ( chapter 8) have been undertaken to illustrate and evaluate 

the usability and correctness of the approach, in terms of supporting the 

precise component specification and retrieval, seamless linkage with domain 

ontology, adaptive component suggestion and comprehensive result 

component profile. 
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9.1.2 Contributions 

As a solution for the identified problems, the MVICS-based approach originally 

contributes to the current state of art by producing the following key technologies, 

which are integrally linked in a holistic and semantic-based specification and retrieval 

framework:  

1) Multiple-viewed and interrelated component specification ontology 

model (Section 5.1- Section 5.4) 

The MVICS ontology model has a novel architecture, which contains four 

facets: function model, intrinsic model, context model and meta-relationship 

model. Each of the four models specifies one perspective of a component and 

as a whole they construct a complete spectrum of semantic-based component 

specification. It removes the over-complication problem in traditional 

monolithic ontologies because it has a set of highly coherent and relatively 

loosely coupled sub-models. The inter-relationships among the classes in 

different sub-models ensure a holistic view in component specification and 

retrieval. A formal definition of the classes, relationships and constraints of 

MVICS is given in OWL-DL. Via these formal definitions, the automatic 

semantic-based component search and validation are achieved with the 

support of an ontology reasoner. Overall, the role of the MVICS model 

includes supporting semantic query refinement, conducting the component 
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specification, connecting the domain ontology and supporting the 

sub-functions in the component retrieval, such as search precision calculation, 

adaptive component search and component QAs suggestion. 

2) Domain ontology linkage technique (Section 5.5) 

To extend the MVICS-based component search into a specific domain, two 

mechanisms, namely Association Link (AssL) and Aggregation Link (AggL), 

are developed to integrate the domain related software system ontology into 

MVICS. The AssL and AggL are used to link two different kinds of classes of 

domain ontology to the MVICS. Furthermore, the AssL and AggL are defined 

formally and to automate the component search and repository building. With 

such integration, the domain ontology is linked to MVICS effectively and 

thus extends the application scope of MVICS without changing the 

architecture of the model.  

3) MVICS-based component retrieval method (Section 6.1- section 6.3) 

The MVICS-based component retrieval is based on the MVICS model and the 

linkage with the domain ontology model. It focuses on retrieving the relevant 

components from the repository according to the refined user keywords and 

providing an accurate search precision. As a unique feature of the 

MVICS-based component retrieval, the adaptive component can be matched 
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by identifying the adaptive search path. And the results provide not only the 

matched components with the relevant adaptation assets/methods, but also 

their suggested effort. Finally, as the focus of the MVICS-based component 

retrieval method, a result component precision calculation method is 

developed to indicate the matching degree between a result component and 

the user requirement. The precision values of the outcome are accurate, 

because it is obtained through a search precision calculation algorithm, which 

is established on the basis of the MVICS. 

4) Comprehensive result component profile (Section 6.4) 

A holistic Result Component Profile is designed for the result component to 

help the user make the best decision in component selection. The profile 

shows the result from the whole to the part, which consists of: i) the result 

component name; ii) search summary, including the precision with 

component adaptation, and the precision without adaptation; iii) the match 

results in sub-models: function model, intrinsic model, and context model; iv) 

the match results in a domain ontology model; v) the associated adaptation 

method or asset and its incurred effort.  
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9.2 Limitations and Future Work 

Based on the discussions in former sections, it is concluded that the approach has 

novel contributions and is successful in component specification and retrieval. The 

resulting tool automates the approach and is consistent with the approach. However, 

the MVICS-based approach still has some limitations:   

To face a torrent of new emerging characteristics of components, the structure, 

classes, attributes and relationships, the MVICS model need to keep 

expanding and/or fine-tuned accordingly. The new relationships among the 

classes in the different facets need to keep expanding and being refined to 

accommodate the new component characteristics.  

The MVICS model connects to the domain specific ontology by the AssLs 

and the AggLs. However the linkages are established through the cooperation 

of domain experts and software developer, which involves much human 

intervention. 

The formulas proposed in the chapter 6 lack of the support from the 

mathematics theory. The dynamic class weight calculation, formulae of 

search path weight calculation and the formulae of precision calculation need 

justification and further refinement.  
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The level of the adaptation suggestions at this stage is proposed on the basis 

of our background, It is still weak and lack of widely acceptance.  

In the future, the following sections have explored some possible extensions 

of the present work. 

1) To increase the automation of the establishment of domain ontology 

linkage  

New techniques or mechanisms will be explored to automate the linkage 

establishment by using more rigorous formal definition. The human 

intervention of the process will thus be reduced with the help of relevant 

reasoners. 

2) To refine of the precision calculation  

With wider and more user feedbacks and industrial test results, it is possible 

to achieve further refinement of the formulae of dynamic class weight 

calculation, formulae of search path weight calculation and the formulae of 

precision calculation.  

3) To establish adaptation ontology model 

In the MVICS-based approach, the adaptive component search is taken as an 

integral part of the MVICS-based approach. The component can be identified 
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as a result component, if matched with the requirement after adaptation with 

the relevant methods or assets. Therefore a new facet namely “adaptation 

facet” may be considered in the MVICS. to extend the functionality of the 

existing adaptive component search. 

4) To improve of the quality attributes suggestion 

In the MVICS case study, the impacts of the quality attributes are introduced 

in the component specification and retrieval. The functionality of the QAs 

suggestion can be subjected to further testing and expansion, with the help of 

the feedback from the industrial software development. Along with these 

practices, more QAs will be analyzed which may help build a QAs facet into 

the MVICS model. 

5) To validate the feedbacks from the case studies 

The outcome of the present experimental case study obtained via 

questionnaires can be validated through future practical case studies. 

Drawbacks of MVICS-based approach will then be identified and overcome 

along with more scenarios of MVICS-based approach applied in practice.  
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Appendix A: The OWL Doc of the MVICS 

Model   

A.1 Function Model 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" > 
    <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
    <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" > 
    <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" > 
    <!ENTITY Ontology1228882645 "http://www.owl-ontologies.com/Ontology1228882645.owl#" > 
    <!ENTITY Time_ "http://www.owl-ontologies.com/Ontology1228882645.owl#Time_/" > 
    <!ENTITY Calendar_ "http://www.owl-ontologies.com/Ontology1228882645.owl#Calendar_/" > 
]> 
<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1228882645.owl#" 
     xml:base="http://www.owl-ontologies.com/Ontology1228882645.owl" 
     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
     xmlns:Calendar_="&Ontology1228882645;Calendar_/" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
     xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:Ontology1228882645="http://www.owl-ontologies.com/Ontology1228882645.owl#" 
     xmlns:Time_="&Ontology1228882645;Time_/"> 
    <owl:Ontology rdf:about="http://www.owl-ontologies.com/Ontology1228882645.owl"/>     
    <!--  
    /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Object Properties 
    // 
    /////////////////////////////////////////////////////////////////////////////////////// 
     -->     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#hasApplicationDomain --> 
    <owl:ObjectProperty rdf:about="&Ontology1228882645;hasApplicationDomain"> 
        <rdfs:domain rdf:resource="&Ontology1228882645;Component_Application_Domain"/> 
        <owl:inverseOf rdf:resource="&Ontology1228882645;isApplicationDomainOf"/> 
    </owl:ObjectProperty>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#hasFunctionType --> 
    <owl:ObjectProperty rdf:about="&Ontology1228882645;hasFunctionType"> 
        <rdfs:domain rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
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                    <rdf:Description rdf:about="&Ontology1228882645;Component_Barcode"/> 
                    <rdf:Description 
rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Data_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Encryption"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_File_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Image_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Reporting"/> 
                    <rdf:Description 
rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
    </owl:ObjectProperty> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#isApplicationDomainOf --> 
    <owl:ObjectProperty rdf:about="&Ontology1228882645;isApplicationDomainOf"> 
        <rdfs:range rdf:resource="&Ontology1228882645;Component_Application_Domain"/> 
    </owl:ObjectProperty>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#isFunctionTypeOf --> 
    <owl:ObjectProperty rdf:about="&Ontology1228882645;isFunctionTypeOf"> 
        <rdfs:range rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
        <owl:inverseOf rdf:resource="&Ontology1228882645;hasFunctionType"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Barcode"/> 
                    <rdf:Description 
rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Data_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Encryption"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_File_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Image_Processing"/> 
                    <rdf:Description rdf:about="&Ontology1228882645;Component_Reporting"/> 
                    <rdf:Description 
rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
    </owl:ObjectProperty> 
    <!--     /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Classes 
    //    /////////////////////////////////////////////////////////////////////////////////////// 
     -->     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Account --> 
    <owl:Class rdf:about="&Ontology1228882645;Account"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Adaptation_Assets --> 
    <owl:Class rdf:about="&Ontology1228882645;Adaptation_Assets"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Maintainability"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Adaptation_Methods --> 
    <owl:Class rdf:about="&Ontology1228882645;Adaptation_Methods"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Maintainability"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Aggregation_(Financial) --> 
    <owl:Class rdf:about="&Ontology1228882645;Aggregation_(Financial)"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Financial"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Aggregation_(Game) --> 
    <owl:Class rdf:about="&Ontology1228882645;Aggregation_(Game)"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Game"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Analytics --> 
    <owl:Class rdf:about="&Ontology1228882645;Analytics"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Association_Class_(Financial) --> 
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    <owl:Class rdf:about="&Ontology1228882645;Association_Class_(Financial)"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Financial"/> 
    </owl:Class> 
        <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Association_Class_(Game) --> 
    <owl:Class rdf:about="&Ontology1228882645;Association_Class_(Game)"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Game"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Calculation --> 
    <owl:Class rdf:about="&Ontology1228882645;Calculation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Calendar_/_Schedule --> 
    <owl:Class rdf:about="&Ontology1228882645;Calendar_/_Schedule"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Card_Authorisation --> 
    <owl:Class rdf:about="&Ontology1228882645;Card_Authorisation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Charting_and_Graphing --> 
    <owl:Class rdf:about="&Ontology1228882645;Charting_and_Graphing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Communication --> 
    <owl:Class rdf:about="&Ontology1228882645;Communication"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Compiler --> 
    <owl:Class rdf:about="&Ontology1228882645;Compiler"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Account --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Account"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Administration --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Administration"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Analytics --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Analytics"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Application_Domain --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Application_Domain"/>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Barcode --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Barcode"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Calculation --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Calculation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Calendar_and_Schedule --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Category --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Category"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Charting_and_Graphing --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Charting_and_Graphing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Cleaning --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Cleaning"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
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    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Conversion --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Conversion"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Entry --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Entry"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Processing --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Processing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>    
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Security --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Security"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Transfer --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Transfer"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Validation --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Validation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Verification --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Data_Verification"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Database_Management --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Database_Management"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Education --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Education"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Email --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Email"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Encryption --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Encryption"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Handling --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_File_Handling"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Processing --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_File_Processing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Transfer --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_File_Transfer"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Upload_and_Download 
--> 
    <owl:Class rdf:about="&Ontology1228882645;Component_File_Upload_and_Download"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Financial --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Financial"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Function_Type --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Function_Type"/>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Game --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Game"> 
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        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Compression --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Image_Compression"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Conversion --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Image_Conversion"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Processing --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Image_Processing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Imaging --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Imaging"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_ Integratability --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_ Integratability "> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Interface --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Interface"/>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Maintainability --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Maintainability"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/> 
    </owl:Class>    
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Model --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Model"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_ Integratability "/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Modeling --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Modeling"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Monitoring --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Monitoring"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Navigation --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Navigation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_PDF --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_PDF"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Planning --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Planning"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Portability --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Portability"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Portfolio_Management --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Portfolio_Management"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Post-conditions --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Post-conditions"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Interface"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Pre-conditions --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Pre-conditions"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Interface"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Presentation --> 
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    <owl:Class rdf:about="&Ontology1228882645;Component_Presentation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Quality_Attributes --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Quality_Attributes"/>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Reporting --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Reporting"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Search --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Search"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_System_Administration --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_System_Administration"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Administration"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Text_and_Word_Processing --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Time_and_Date --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Time_and_Date"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Toolbar_and_Menu --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Toolbar_and_Menu"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Tracking --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Tracking"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Type --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Type"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_ Integratability "/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_User_Administration --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_User_Administration"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Administration"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Version_Control --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Version_Control"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Workflow --> 
    <owl:Class rdf:about="&Ontology1228882645;Component_Workflow"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Constraint --> 
    <owl:Class rdf:about="&Ontology1228882645;Constraint"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Container --> 
    <owl:Class rdf:about="&Ontology1228882645;Container"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Dashboard --> 
    <owl:Class rdf:about="&Ontology1228882645;Dashboard"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Data_Management --> 
    <owl:Class rdf:about="&Ontology1228882645;Data_Management"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Data_Transfer --> 
    <owl:Class rdf:about="&Ontology1228882645;Data_Transfer"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
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    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database --> 
    <owl:Class rdf:about="&Ontology1228882645;Database"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Database_Management_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_2 --> 
    <owl:Class rdf:about="&Ontology1228882645;Database_Management_2"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_3 --> 
    <owl:Class rdf:about="&Ontology1228882645;Database_Management_3"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Security_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Database_Security_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Security_2 --> 
    <owl:Class rdf:about="&Ontology1228882645;Database_Security_2"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Distributions_Processing_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Distributions_Processing_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>    
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Distributions_Processing_2 --> 
    <owl:Class rdf:about="&Ontology1228882645;Distributions_Processing_2"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Document_Management --> 
    <owl:Class rdf:about="&Ontology1228882645;Document_Management"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Email --> 
    <owl:Class rdf:about="&Ontology1228882645;Email"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Management_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Management_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Management_2 --> 
    <owl:Class rdf:about="&Ontology1228882645;Management_2"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Marketing --> 
    <owl:Class rdf:about="&Ontology1228882645;Marketing"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Modelling --> 
    <owl:Class rdf:about="&Ontology1228882645;Modelling"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Monitoring --> 
    <owl:Class rdf:about="&Ontology1228882645;Monitoring"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Navigation --> 
    <owl:Class rdf:about="&Ontology1228882645;Navigation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Navigation_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Navigation_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Notifications_and_Approvals --> 
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    <owl:Class rdf:about="&Ontology1228882645;Notifications_and_Approvals"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Operating_System --> 
    <owl:Class rdf:about="&Ontology1228882645;Operating_System"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#PDF_Creation --> 
    <owl:Class rdf:about="&Ontology1228882645;PDF_Creation"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Parameter_Range --> 
    <owl:Class rdf:about="&Ontology1228882645;Parameter_Range"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Parameter_Type --> 
    <owl:Class rdf:about="&Ontology1228882645;Parameter_Type"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Payment_System_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_2 --> 
    <owl:Class rdf:about="&Ontology1228882645;Payment_System_2"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_3 --> 
    <owl:Class rdf:about="&Ontology1228882645;Payment_System_3"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Planning --> 
    <owl:Class rdf:about="&Ontology1228882645;Planning"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Portfolio_Management_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;Portfolio_Management_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>    
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Pre-conditions_of_method_n --> 
    <owl:Class rdf:about="&Ontology1228882645;Pre-conditions_of_method_n"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Pre-conditions"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Profile --> 
    <owl:Class rdf:about="&Ontology1228882645;Profile"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Reporting --> 
    <owl:Class rdf:about="&Ontology1228882645;Reporting"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Search --> 
    <owl:Class rdf:about="&Ontology1228882645;Search"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Settlement --> 
    <owl:Class rdf:about="&Ontology1228882645;Settlement"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Statement --> 
    <owl:Class rdf:about="&Ontology1228882645;Statement"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Switching --> 
    <owl:Class rdf:about="&Ontology1228882645;Switching"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Text_and_Word_Processing --> 
    <owl:Class rdf:about="&Ontology1228882645;Text_and_Word_Processing"> 
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        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Time_/_Date --> 
    <owl:Class rdf:about="&Ontology1228882645;Time_/_Date"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Tracking --> 
    <owl:Class rdf:about="&Ontology1228882645;Tracking"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Transfer --> 
    <owl:Class rdf:about="&Ontology1228882645;Transfer"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#User_Administration --> 
    <owl:Class rdf:about="&Ontology1228882645;User_Administration"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#User_Administration_1 --> 
    <owl:Class rdf:about="&Ontology1228882645;User_Administration_1"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/> 
    </owl:Class>    
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Version_Control --> 
    <owl:Class rdf:about="&Ontology1228882645;Version_Control"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Workflow --> 
    <owl:Class rdf:about="&Ontology1228882645;Workflow"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Workflow_Management --> 
    <owl:Class rdf:about="&Ontology1228882645;Workflow_Management"> 
        <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/> 
    </owl:Class>     
    <!-- http://www.w3.org/2002/07/owl#Thing --> 
    <owl:Class rdf:about="&owl;Thing"/> 
    <!--     /////////////////////////////////////////////////////////////////////////////////////// 
    // 
    // Individuals 
    //    /////////////////////////////////////////////////////////////////////////////////////// 
     -->  
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#ImagXpress_View --> 
    <owl:Thing rdf:about="&Ontology1228882645;ImagXpress_View"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_Imaging"/> 
        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Netrix_DOM_Handing --> 
    <owl:Thing rdf:about="&Ontology1228882645;Netrix_DOM_Handing"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/> 
        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing>     
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#PowerTCP_FTP_for_.NET --> 
    <owl:Thing rdf:about="&Ontology1228882645;PowerTCP_FTP_for_.NET"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_File_Transfer"/> 
        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Rainbow_PDF_Server_Based_Converter --> 
    <owl:Thing rdf:about="&Ontology1228882645;Rainbow_PDF_Server_Based_Converter"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/> 
        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Xceed_Ultimate_Suite_2008 --> 
    <owl:Thing rdf:about="&Ontology1228882645;Xceed_Ultimate_Suite_2008"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/> 
        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing> 
    <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#ezCrypto_.NET --> 
    <owl:Thing rdf:about="&Ontology1228882645;ezCrypto_.NET"> 
        <rdf:type rdf:resource="&Ontology1228882645;Component_Encryption"/> 
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        <rdf:type rdf:resource="&owl;NamedIndividual"/> 
    </owl:Thing> 
</rdf:RDF> 
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net --> 

A.2 Context Model 

<?xml version="1.0"?> 
<rdf:RDF 
    xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
    xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
    xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
    xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns="http://www.owl-ontologies.com/Ontology1226373901.owl#" 
  xml:base="http://www.owl-ontologies.com/Ontology1226373901.owl"> 
  <owl:Ontology rdf:about=""/> 
  <owl:Class rdf:ID="Component_Oracle_JDeveloper"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Oracle"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Tuxedo"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebLogic_Workshop"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebLogic_Portal"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebLogic_Server"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Oracle_Database"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_OSGI_Model"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Model"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_.NET_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_CCM_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_COM_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_JavaBean_Model"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Cplusplus_2005"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
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  <owl:Class rdf:ID="Component_Visual_Cplusplus_2008"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_JavaBean_Model"> 
    <owl:disjointWith rdf:resource="#Component_OSGI_Model"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_CCM_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_COM_Model"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Model"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_FoxPro"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_SharePoint"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_MySQL"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Sun"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Oracle"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Eclipse"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_CodeGear"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Platform"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_OS"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_CodeGear"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Platform"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
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      <owl:Class rdf:about="#Component_Sun"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Oracle"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Eclipse"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Tuxedo"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Oracle"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Workshop"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Portal"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Server"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Oracle_Database"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Unix"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_OS"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_9X"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Eclipse"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Platform"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sun"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Oracle"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_VisualAge_for_Java"> 
    <rdfs:subClassOf> 
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      <owl:Class rdf:about="#Component_IBM"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_VisualAge_Cplusplus"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebSphere_Studio"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WebSphere"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_SUSE"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Linux"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_RedHat"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Kernel"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Disk_Requirements"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_RedHat"> 
    <owl:disjointWith rdf:resource="#Component_SUSE"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Kernel"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Linux"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_PowerJ"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_PowerBuilder"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_XP"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Studio_2008"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Kernel"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Linux"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Component_SUSE"/> 
    <owl:disjointWith rdf:resource="#Component_RedHat"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebSphere"> 
    <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VisualAge_Cplusplus"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebSphere_Studio"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
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      <owl:Class rdf:about="#Component_IBM"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Csharp_.NET"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Cplusplus"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_JBuilder"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Visual_Caf茅"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Kylix"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Delphi"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_CplusplusBuilder"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="#Component_CodeGear"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebSphere_Studio"> 
    <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VisualAge_Cplusplus"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_WebSphere"/> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_Vista"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Linux"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_OS"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Memory_Requirements"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Studio_.NET"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_ME"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Csharp_2005"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Access"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_CPU_Requirements"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
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  </owl:Class> 
  <owl:Class rdf:about="#Component_Delphi"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Visual_Caf茅"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Kylix"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_JBuilder"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_CplusplusBuilder"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="#Component_CodeGear"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebLogic_Workshop"> 
    <owl:disjointWith rdf:resource="#Component_Tuxedo"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Portal"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Server"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Oracle_Database"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Oracle"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Visual_Caf茅"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Kylix"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_JBuilder"/> 
    <owl:disjointWith rdf:resource="#Component_Delphi"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_CplusplusBuilder"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="#Component_CodeGear"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Sun_ONE_Studio"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Sun"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Sun_ONE"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Studio_2005"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_CCM_Model"> 
    <owl:disjointWith rdf:resource="#Component_OSGI_Model"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_COM_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Model"/> 
    </rdfs:subClassOf> 
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  </owl:Class> 
  <owl:Class rdf:about="#Component_Oracle"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sun"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Eclipse"/> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Platform"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Model"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Basic"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Platform"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Internet_Explorer"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Sun_ONE"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Sun"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Component_Sun_ONE_Studio"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Basic_.NET"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Oracle_Database"> 
    <owl:disjointWith rdf:resource="#Component_Tuxedo"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Portal"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Server"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <rdfs:subClassOf rdf:resource="#Component_Oracle"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Basic_2005"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Microsoft"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Microsoft"> 
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    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sun"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Eclipse"/> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <rdfs:subClassOf rdf:resource="#Component_Platform"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Sun"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Sybase"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Eclipse"/> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <owl:disjointWith rdf:resource="#Component_Microsoft"/> 
    <rdfs:subClassOf rdf:resource="#Component_Platform"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_IBM_AIX"> 
    <rdfs:subClassOf rdf:resource="#Component_Unix"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Studio"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_FrontPage"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Sybase"> 
    <rdfs:subClassOf rdf:resource="#Component_Platform"/> 
    <owl:disjointWith rdf:resource="#Component_Sun"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_IBM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Eclipse"/> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <owl:disjointWith rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_NT"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_CplusplusBuilder"> 
    <owl:disjointWith rdf:resource="#Component_Visual_Caf茅"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Kylix"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_JBuilder"/> 
    <owl:disjointWith rdf:resource="#Component_Delphi"/> 
    <rdfs:subClassOf rdf:resource="#Component_CodeGear"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_OS"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_IBM"> 
    <rdfs:subClassOf rdf:resource="#Component_Platform"/> 
    <owl:disjointWith rdf:resource="#Component_Sybase"/> 
    <owl:disjointWith rdf:resource="#Component_Sun"/> 
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    <owl:disjointWith rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_MySQL"/> 
    <owl:disjointWith rdf:resource="#Component_Eclipse"/> 
    <owl:disjointWith rdf:resource="#Component_CodeGear"/> 
    <owl:disjointWith rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebLogic_Server"> 
    <rdfs:subClassOf rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_Tuxedo"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Portal"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle_Database"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_PowerBuilder"> 
    <owl:disjointWith rdf:resource="#Component_PowerJ"/> 
    <rdfs:subClassOf rdf:resource="#Component_Sybase"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebLogic_Portal"> 
    <owl:disjointWith rdf:resource="#Component_Tuxedo"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WebLogic_Express"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Server"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle_Database"/> 
    <rdfs:subClassOf rdf:resource="#Component_Oracle"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_VisualAge_Cplusplus"> 
    <rdfs:subClassOf rdf:resource="#Component_IBM"/> 
    <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/> 
    <owl:disjointWith rdf:resource="#Component_WebSphere_Studio"/> 
    <owl:disjointWith rdf:resource="#Component_WebSphere"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Csharp_2008"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Office"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WebLogic_Express"> 
    <rdfs:subClassOf rdf:resource="#Component_Oracle"/> 
    <owl:disjointWith rdf:resource="#Component_Tuxedo"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Portal"/> 
    <owl:disjointWith rdf:resource="#Component_WebLogic_Server"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/> 
    <owl:disjointWith rdf:resource="#Component_Oracle_Database"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_HP-UX"> 
    <rdfs:subClassOf rdf:resource="#Component_Unix"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_SQL_Server"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_COM_Model"> 
    <rdfs:subClassOf rdf:resource="#Component_Model"/> 
    <owl:disjointWith rdf:resource="#Component_OSGI_Model"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Model"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_CCM_Model"/> 
    <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/> 
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  </owl:Class> 
  <owl:Class rdf:about="#Component_.NET_Model"> 
    <owl:disjointWith rdf:resource="#Component_OSGI_Model"/> 
    <owl:disjointWith rdf:resource="#Component_CCM_Model"/> 
    <owl:disjointWith rdf:resource="#Component_COM_Model"/> 
    <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/> 
    <rdfs:subClassOf rdf:resource="#Component_Model"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Basic_2008"> 
    <rdfs:subClassOf rdf:resource="#Component_Microsoft"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Sun_Solaris"> 
    <rdfs:subClassOf rdf:resource="#Component_Unix"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_2000"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Visual_Cplusplus_.NET"> 
    <rdfs:subClassOf rdf:resource="#Component_Visual_Cplusplus_2008"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Windows_3.X"> 
    <rdfs:subClassOf rdf:resource="#Component_Windows"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_FreeBSD"> 
    <rdfs:subClassOf rdf:resource="#Component_Unix"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Kylix"> 
    <owl:disjointWith rdf:resource="#Component_Visual_Caf茅"/> 
    <owl:disjointWith rdf:resource="#Component_JBuilder"/> 
    <owl:disjointWith rdf:resource="#Component_Delphi"/> 
    <owl:disjointWith rdf:resource="#Component_CplusplusBuilder"/> 
    <rdfs:subClassOf rdf:resource="#Component_CodeGear"/> 
  </owl:Class> 
  <owl:ObjectProperty rdf:ID="hasPlatform"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isPlatformOf"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Platform"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasOS"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_OS"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isOsOf"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="isComponentModelOf"> 
    <rdfs:domain rdf:resource="#Component_Model"/> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="hasComponentModel"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="isCPURequirementOf"> 
    <rdfs:domain rdf:resource="#Component_CPU_Requirements"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="hasCPURequirement"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#Component"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isPlatformOf"> 
    <rdfs:range rdf:resource="#Component"/> 
    <rdfs:domain rdf:resource="#Component_Platform"/> 
    <owl:inverseOf rdf:resource="#hasPlatform"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasComponentModel"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Model"/> 
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    <owl:inverseOf rdf:resource="#isComponentModelOf"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isOsOf"> 
    <rdfs:domain rdf:resource="#Component_OS"/> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf rdf:resource="#hasOS"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasCPURequirement"> 
    <owl:inverseOf rdf:resource="#isCPURequirementOf"/> 
    <rdfs:range rdf:resource="#Component_CPU_Requirements"/> 
    <rdfs:domain rdf:resource="#Component"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasMemoryRequirement"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isMemoryRequirementOf"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Memory_Requirements"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="isDiskRequirementOf"> 
    <rdfs:range rdf:resource="#Component"/> 
    <rdfs:domain rdf:resource="#Component_Disk_Requirements"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="hasDiskRequirement"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isMemoryRequirementOf"> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf rdf:resource="#hasMemoryRequirement"/> 
    <rdfs:domain rdf:resource="#Component_Memory_Requirements"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasDiskRequirement"> 
    <rdfs:range rdf:resource="#Component_Disk_Requirements"/> 
    <owl:inverseOf rdf:resource="#isDiskRequirementOf"/> 
    <rdfs:domain rdf:resource="#Component"/> 
  </owl:ObjectProperty> 
  <Component_Visual_Basic_2008 rdf:ID="ezCryto_.NET"/> 
  <Component rdf:ID="Component_6"/> 
  <Component_Visual_Basic_2008 rdf:ID="PowerTCP_FTP_for_.NET"> 
    <hasDiskRequirement> 
      <Component_Disk_Requirements rdf:ID="Disk_2MB"> 
        <isDiskRequirementOf rdf:resource="#PowerTCP_FTP_for_.NET"/> 
      </Component_Disk_Requirements> 
    </hasDiskRequirement> 
    <hasOS> 
      <Component_Windows_2000 rdf:ID="Windows_2000"> 
        <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/> 
      </Component_Windows_2000> 
    </hasOS> 
    <hasOS> 
      <Component_Windows_ME rdf:ID="Windows_ME"> 
        <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/> 
      </Component_Windows_ME> 
    </hasOS> 
    <hasOS> 
      <Component_Windows_NT rdf:ID="Windows_NT"> 
        <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/> 
      </Component_Windows_NT> 
    </hasOS> 
  </Component_Visual_Basic_2008> 
  <Component_Visual_Basic_2008 rdf:ID="Netrix_DOM_Editor"> 
    <hasOS> 
      <Component_Windows_XP rdf:ID="Windows_XP"> 
        <isOsOf rdf:resource="#Netrix_DOM_Editor"/> 
      </Component_Windows_XP> 
    </hasOS> 
    <hasOS> 
      <Component_Windows_Vista rdf:ID="Windows_Vista"> 
        <isOsOf rdf:resource="#Netrix_DOM_Editor"/> 
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      </Component_Windows_Vista> 
    </hasOS> 
    <hasDiskRequirement> 
      <Component_Disk_Requirements rdf:ID="Disk_7MB"> 
        <isDiskRequirementOf rdf:resource="#Netrix_DOM_Editor"/> 
      </Component_Disk_Requirements> 
    </hasDiskRequirement> 
  </Component_Visual_Basic_2008> 
  <Component_Visual_Basic_2005 rdf:ID="Rainbow_PDF_Server_Based_Converter"> 
    <hasCPURequirement> 
      <Component_CPU_Requirements rdf:ID="Pentium_42.3GHz"> 
        <isCPURequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_CPU_Requirements> 
    </hasCPURequirement> 
    <hasDiskRequirement> 
      <Component_Disk_Requirements rdf:ID="Disk_1GB"> 
        <isDiskRequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Disk_Requirements> 
    </hasDiskRequirement> 
    <hasMemoryRequirement> 
      <Component_Memory_Requirements rdf:ID="Memory_1GB"> 
        <isMemoryRequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Memory_Requirements> 
    </hasMemoryRequirement> 
    <hasOS> 
      <Component_Sun_Solaris rdf:ID="Sun_Solaris"> 
        <isOsOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Sun_Solaris> 
    </hasOS> 
    <hasOS> 
      <Component_RedHat rdf:ID="RedHat"> 
        <isOsOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_RedHat> 
    </hasOS> 
  </Component_Visual_Basic_2005> 
  <Component_Delphi rdf:ID="Xceed_Ultimate_Suite_2008"> 
    <hasMemoryRequirement> 
      <Component_Memory_Requirements rdf:ID="Memory_32MB"> 
        <isMemoryRequirementOf rdf:resource="#Xceed_Ultimate_Suite_2008"/> 
      </Component_Memory_Requirements> 
    </hasMemoryRequirement> 
    <hasDiskRequirement> 
      <Component_Disk_Requirements rdf:ID="Disk_28MB"> 
        <isDiskRequirementOf rdf:resource="#Xceed_Ultimate_Suite_2008"/> 
      </Component_Disk_Requirements> 
    </hasDiskRequirement> 
  </Component_Delphi> 
</rdf:RDF> 
<!-- Created with Protege (with OWL Plugin 3.4, Build 533)  http://protege.stanford.edu --> 

A.3 Intrinsic Model 

<?xml version="1.0"?> 
<rdf:RDF 
    xmlns:p2="http://www.owl-ontologies.com/Ontology1226299693.owl#520.00" 
    xmlns:p1="http://www.owl-ontologies.com/Ontology1226299693.owl#194.00" 
    xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns="http://www.owl-ontologies.com/Ontology1226299693.owl#" 
    xmlns:p4="http://www.owl-ontologies.com/Ontology1226299693.owl#877.00" 
    xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
    xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
    xmlns:p3="http://www.owl-ontologies.com/Ontology1226299693.owl#1301.00" 
    xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
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    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
  xml:base="http://www.owl-ontologies.com/Ontology1226299693.owl"> 
  <owl:Ontology rdf:about=""/> 
  <owl:Class rdf:ID="Component_Java"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Cplusplus"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_.NET"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component_Type"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_VBX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Componen_VCL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ActiveX_COM"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_ActiveX_EXE"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ActiveX_OCX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ActiveX_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ActiveX_.NET_Ready"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_ActiveX_COM"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_.NET_Class"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_.NET"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_.NET_WinForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_ASP_.NET_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_.NET_Web_Service"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_.NET_Compact_Framework"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_WPF"/> 
    </owl:disjointWith> 
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    <owl:disjointWith> 
      <owl:Class rdf:ID="Component_Silverlight"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Price"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Component"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ASP_.NET_AJAX"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_.NET"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_WinForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Web_Service"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Compact_Framework"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Silverlight"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Cplusplus"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Type"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ActiveX_COM"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Componen_VCL"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_.NET_Compact_Framework"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_WinForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
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    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Web_Service"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Silverlight"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_.NET"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Vender"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ActiveX_.NET_Ready"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_ActiveX_COM"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ActiveX_OCX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ActiveX_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_.NET"> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ActiveX_COM"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Componen_VCL"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_Type"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ActiveX_DLL"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Component_ActiveX_COM"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ActiveX_OCX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_.NET_Ready"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Type"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Enterprise_JavaBean"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
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  <owl:Class rdf:about="#Component_Silverlight"> 
    <rdfs:subClassOf rdf:resource="#Component_.NET"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_WinForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Web_Service"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_WebLogic_Workshop_JWS_Control"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ActiveX_COM"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Componen_VCL"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_DLL"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_.NET_WinForm"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_.NET_Web_Service"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Silverlight"/> 
    <rdfs:subClassOf rdf:resource="#Component_.NET"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Version"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_JavaBean"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Name"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_.NET_Web_Service"> 
    <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/> 
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    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Silverlight"/> 
    <rdfs:subClassOf rdf:resource="#Component_.NET"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_DLL"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Componen_VCL"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Java_Class"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Componen_VCL"> 
    <owl:disjointWith rdf:resource="#Component_DLL"/> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_Flash_Flex"/> 
    </owl:disjointWith> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_Flash_Flex"> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_JavaScript_AJAX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/> 
    <owl:disjointWith rdf:resource="#Component_DLL"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith rdf:resource="#Componen_VCL"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ActiveX_OCX"> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_DLL"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/> 
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    <owl:disjointWith rdf:resource="#Component_ActiveX_.NET_Ready"/> 
    <rdfs:subClassOf rdf:resource="#Component_ActiveX_COM"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Java_Servlet"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Date"> 
    <rdfs:subClassOf rdf:resource="#Component"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Component_Java_Applet"> 
    <rdfs:subClassOf rdf:resource="#Component_Java"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_ASP_.NET_WebForm"> 
    <rdfs:subClassOf rdf:resource="#Component_.NET"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Web_Service"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_WPF"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_Silverlight"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_JavaScript_AJAX"> 
    <owl:disjointWith rdf:resource="#Componen_VCL"/> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith rdf:resource="#Component_Flash_Flex"/> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Component_VBX"/> 
    </owl:disjointWith> 
    <owl:disjointWith rdf:resource="#Component_DLL"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_WPF"> 
    <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_WebForm"/> 
    <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Class"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Web_Service"/> 
    <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/> 
    <owl:disjointWith rdf:resource="#Component_Silverlight"/> 
    <rdfs:subClassOf rdf:resource="#Component_.NET"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Component_VBX"> 
    <owl:disjointWith rdf:resource="#Component_DLL"/> 
    <owl:disjointWith rdf:resource="#Component_.NET"/> 
    <owl:disjointWith rdf:resource="#Component_Java"/> 
    <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/> 
    <owl:disjointWith rdf:resource="#Component_Cplusplus"/> 
    <owl:disjointWith rdf:resource="#Component_Flash_Flex"/> 
    <owl:disjointWith rdf:resource="#Component_JavaScript_AJAX"/> 
    <rdfs:subClassOf rdf:resource="#Component_Type"/> 
    <owl:disjointWith rdf:resource="#Componen_VCL"/> 
  </owl:Class> 
  <owl:ObjectProperty rdf:ID="hasName"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Name"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isNameOf"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasPrice"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Price"/> 
    <owl:inverseOf> 
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      <owl:ObjectProperty rdf:ID="isPriceOf"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasVender"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isVenderOf"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#Component_Vender"/> 
    <rdfs:domain rdf:resource="#Component"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasVersion"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isVersionOf"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#Component_Version"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isVersionOf"> 
    <rdfs:domain rdf:resource="#Component_Version"/> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf rdf:resource="#hasVersion"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isVenderOf"> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf rdf:resource="#hasVender"/> 
    <rdfs:domain rdf:resource="#Component_Vender"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isPriceOf"> 
    <rdfs:domain rdf:resource="#Component_Price"/> 
    <owl:inverseOf rdf:resource="#hasPrice"/> 
    <rdfs:range rdf:resource="#Component"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isNameOf"> 
    <rdfs:range rdf:resource="#Component"/> 
    <rdfs:domain rdf:resource="#Component_Name"/> 
    <owl:inverseOf rdf:resource="#hasName"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasDate"> 
    <rdfs:domain rdf:resource="#Component"/> 
    <rdfs:range rdf:resource="#Component_Date"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isDateOf"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isDateOf"> 
    <rdfs:domain rdf:resource="#Component_Date"/> 
    <rdfs:range rdf:resource="#Component"/> 
    <owl:inverseOf rdf:resource="#hasDate"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="hasA"/> 
  <owl:AllDifferent/> 
  <Component_.NET_Class rdf:ID="Netrix_DOM_Editor"> 
    <hasVender> 
      <Component_Vender rdf:ID="Guru_Components"> 
        <isVenderOf rdf:resource="#Netrix_DOM_Editor"/> 
      </Component_Vender> 
    </hasVender> 
    <hasVersion> 
      <Component_Version rdf:ID="V1.6"> 
        <isVersionOf rdf:resource="#Netrix_DOM_Editor"/> 
      </Component_Version> 
    </hasVersion> 
    <hasPrice> 
      <Component_Price rdf:about="# 877.00"> 
        <isPriceOf rdf:resource="#Netrix_DOM_Editor"/> 
      </Component_Price> 
    </hasPrice> 
  </Component_.NET_Class> 
  <Component_WPF rdf:ID="Xceed_Ultimate_Suite_2008"> 
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    <hasPrice> 
      <Component_Price rdf:about="# 520.00"> 
        <isPriceOf rdf:resource="#Xceed_Ultimate_Suite_2008"/> 
      </Component_Price> 
    </hasPrice> 
    <hasVender> 
      <Component_Vender rdf:ID="Xceed_Software"> 
        <isVenderOf rdf:resource="#Xceed_Ultimate_Suite_2008"/> 
      </Component_Vender> 
    </hasVender> 
    <hasVersion> 
      <Component_Version rdf:ID="V5"> 
        <isVersionOf rdf:resource="#Xceed_Ultimate_Suite_2008"/> 
      </Component_Version> 
    </hasVersion> 
  </Component_WPF> 
  <Component_Java_Class rdf:ID="Rainbow_PDF_Server_Based_Converter"> 
    <hasVersion> 
      <Component_Version rdf:ID="V2.0"> 
        <isVersionOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Version> 
    </hasVersion> 
    <hasPrice> 
      <Component_Price rdf:about="#1301.00"> 
        <isPriceOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Price> 
    </hasPrice> 
    <hasVender> 
      <Component_Vender rdf:ID="Antenna_House"> 
        <isVenderOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/> 
      </Component_Vender> 
    </hasVender> 
  </Component_Java_Class> 
  <Component_.NET_Class rdf:ID="ezCrypto_.NET"> 
    <hasPrice> 
      <Component_Price rdf:about="#拢65.00"> 
        <isPriceOf rdf:resource="#ezCrypto_.NET"/> 
      </Component_Price> 
    </hasPrice> 
    <hasVersion> 
      <Component_Version rdf:ID="V2.0.2"> 
        <isVersionOf rdf:resource="#ezCrypto_.NET"/> 
      </Component_Version> 
    </hasVersion> 
    <hasVender> 
      <Component_Vender rdf:ID="Component_Designs"> 
        <isVenderOf rdf:resource="#ezCrypto_.NET"/> 
      </Component_Vender> 
    </hasVender> 
  </Component_.NET_Class> 
  <Component_.NET_Class rdf:ID="Power_TCP_FTP_for_.NET"> 
    <hasVersion> 
      <Component_Version rdf:ID="V3.0.4"> 
        <isVersionOf rdf:resource="#Power_TCP_FTP_for_.NET"/> 
      </Component_Version> 
    </hasVersion> 
    <hasVender> 
      <Component_Vender rdf:ID="Dart_Communications"> 
        <isVenderOf rdf:resource="#Power_TCP_FTP_for_.NET"/> 
      </Component_Vender> 
    </hasVender> 
    <hasPrice> 
      <Component_Price rdf:about="#194.00"> 
        <isPriceOf rdf:resource="#Power_TCP_FTP_for_.NET"/> 
      </Component_Price> 
    </hasPrice> 
  </Component_.NET_Class> 
</rdf:RDF> 
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<!-- Created with Protege (with OWL Plugin 3.4, Build 533)  http://protege.stanford.edu --> 
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Appendix B: The OWL Doc of the Financial 

Domain Ontology 

<?xml version="1.0"?> 
<!DOCTYPE Ontology [ 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY xml "http://www.w3.org/XML/1998/namespace" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<Ontology xmlns="http://www.w3.org/2002/07/owl#" 
     xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310633460953.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:xml="http://www.w3.org/XML/1998/namespace" 
     ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310633460953.owl"> 
    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 
    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 
    <Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/> 
    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> 
    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 
    <Declaration> 
        <Class IRI="#Account"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Accounting_Integration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Accounts_Receivables_&amp;_Payables"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Accounts_Receivables_and_Payables"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Adobe_Acrobat_Integration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Advanced_Analytics"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Aggregation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Allocations"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Analytics"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Asset_Management_Systems"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Association_Class"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Authorisation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Authorising"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Automated_Document_Mailings"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Automated_PDF_Creation_and_Collation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Automated_Price_Updates"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Automated_Workflow"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Business_Intelligence"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Calculation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Calendar_/_Schedule_"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Capital_Markets_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Capturing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Card_Authorisation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Card_Processing_/_Payments"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cash_Flow_Forecasting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cash_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Charting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Charting_and_Graphing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Check-in_&amp;_Check-out"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Chip_&amp;_PIN"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Clearing_and_Settlement_Processes"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Client_Acquisition"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Client_Wealth_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Collaborating"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Communication"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Communication_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Consultancy"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Contributions_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Correspondence_Tracking"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Credit_Administration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Customer_Relationship_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Customized_User_Dashboards"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dashboard"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dashboards_and_Visualization"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Conversion"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Conversion_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Editing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Management_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Management_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Security"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Security_MVICS"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Data_Solutions"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Transfer"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Transfer_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Validation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Validation_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_2"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_3"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Security_1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Security_2"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Deal_Flow"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dealing_and_Order_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Deliver"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Distributions_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Distributions_Processing_2"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Distributions_Processing_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Document_Importing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Document_Log"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Document_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Document_Profiling"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Document_Scanning"/> 
    </Declaration> 
    <Declaration> 



 

- 233 - 
 

        <Class IRI="#E-mail"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Electronic_Commerce"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Email"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Email_Archive"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Email_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Email_Rules"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Employee_Profile"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Employee_Transfer,_Promotions_&amp;_Increments"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Fees_and_Commissions"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Financial_Accounting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Fund_Investment_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Hedge_Funds"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Import_Transaction_History"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Information_Search"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Investment_Records_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Investor_Registration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Investor_Reporting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Knowledge_Delivery"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Leave_Management_System"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#MS_Word_Integration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Management_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Management_Fees"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Management_Reporting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mangement_2"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Markers_and_Trend_Lines"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Market_Surveillance_and_Monitoring"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Marketing_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Marketing_Tools"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Menu"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Microfinance_/_Microbanking"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Modelling"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Modelling_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Modelling_Software"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Monitoring"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mutual_Funds_/_Unit_trusts"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Navigation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Navigation_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Notifications_&amp;_Approvals"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Notifications_&amp;_Approvals_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Outlook_and_Email_Integration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#PDF"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#PDF_Creation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#PDF_Creator"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Payment_System"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Payment_System_3"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Payment_system_1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Payment_system_2"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Payroll"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Payroll_Management_System"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Performance_Analytics"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Planning"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Portfolio_/_Fund_Management_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Portfolio_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Portfolio_Management_1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Price_Alerts"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Private_Equity"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Product_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Profile"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Purchasing_and_Transaction"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Query_and_Analysis"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Real_Estate_Investment_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Records_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Redemptions"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Reference_Data_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Reimbursement_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Reporting"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Reporting_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Reporting_MVICS_Association_Class"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Retrieve_Transactions"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Revenue_Analytics"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Risk_Analytics"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Scheduling_and_Calendaring"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Search"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Search_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Search_and_navigation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Settlement"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Settlement_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Site_Navigation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Statement"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Subscriptions"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Switching"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Switching_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#System_Administration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Task_Manager"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Text_and_Word_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Text_and_Word_Processing_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Time_/_Date"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Time_Management_System"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Toolbar"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Tracking"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Trade_Order_and_Risk_Management"/> 
    </Declaration> 
    <Declaration> 
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        <Class IRI="#Transfer"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Transfers_and_Defaults"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#UserAdministration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#User_Administration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#User_Administration_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#User_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Validating"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Version_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Version_Control_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Wealth_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Wealth_Planning"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Web_Interface"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Workflow"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Workflow-Based_Task_Routing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Workflow_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Yield_Calculations"/> 
    </Declaration> 
    <Declaration> 
        <ObjectProperty IRI="#IsA"/> 
    </Declaration> 
    <EquivalentClasses> 
        <Class IRI="#Account"/> 
        <Class IRI="#Accounting_Integration"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Accounts_Receivables_and_Payables"/> 
        <Class IRI="#Payment_system_1"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Advanced_Analytics"/> 
        <Class IRI="#Analytics"/> 
    </EquivalentClasses> 
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        <Class IRI="#Allocations"/> 
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    <EquivalentClasses> 
        <Class IRI="#Analytics"/> 
        <Class IRI="#Cash_Flow_Forecasting"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Analytics"/> 
        <Class IRI="#Client_Acquisition"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Analytics"/> 
        <Class IRI="#Customer_Relationship_Management"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Analytics"/> 
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    </EquivalentClasses> 
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        <Class IRI="#Query_and_Analysis"/> 
    </EquivalentClasses> 
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        <Class IRI="#Card_Authorisation"/> 
    </EquivalentClasses> 
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        <Class IRI="#Automated_PDF_Creation_and_Collation"/> 
        <Class IRI="#PDF_Creation"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Automated_Price_Updates"/> 
        <Class IRI="#Distributions_Processing_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Automated_Price_Updates"/> 
        <Class IRI="#Transfer"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Automated_Workflow"/> 
        <Class IRI="#Workflow_Management"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Calculation"/> 
        <Class IRI="#Yield_Calculations"/> 
    </EquivalentClasses> 
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        <Class IRI="#Calendar_/_Schedule_"/> 
        <Class IRI="#Scheduling_and_Calendaring"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Cash_Management"/> 
        <Class IRI="#Management_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Charting"/> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
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    </EquivalentClasses> 
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        <Class IRI="#Charting_and_Graphing_MVICS"/> 
        <Class IRI="#Markers_and_Trend_Lines"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Check-in_&amp;_Check-out"/> 
        <Class IRI="#UserAdministration"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Chip_&amp;_PIN"/> 
        <Class IRI="#Database_Security_2"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Clearing_and_Settlement_Processes"/> 
        <Class IRI="#Settlement_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Client_Acquisition"/> 
        <Class IRI="#Profile"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Client_Wealth_Management"/> 
        <Class IRI="#Management_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Communication"/> 
        <Class IRI="#Communication_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Consultancy"/> 
        <Class IRI="#Database_Management_1"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Contributions_Processing"/> 
        <Class IRI="#Payment_System_3"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Correspondence_Tracking"/> 
        <Class IRI="#Tracking"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Customer_Relationship_Management"/> 
        <Class IRI="#Email_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Customer_Relationship_Management"/> 
        <Class IRI="#Planning"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Customer_Relationship_Management"/> 
        <Class IRI="#Search_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Customer_Relationship_Management"/> 
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        <Class IRI="#UserAdministration"/> 
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        <Class IRI="#Dashboards_and_Visualization"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Data_Management_Systems"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Dealing_and_Order_Management"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Employee_Transfer,_Promotions_&amp;_Increments"/> 
    </EquivalentClasses> 
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        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Import_Transaction_History"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Investment_Records_Management"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Management_Fees"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Price_Alerts"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Records_Management"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Wealth_Planning"/> 
    </EquivalentClasses> 
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        <Class IRI="#Data_Transfer_MVICS"/> 
        <Class IRI="#Knowledge_Delivery"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Validation_MVICS"/> 
        <Class IRI="#Validating"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Database_Security_1"/> 
        <Class IRI="#Settlement"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Distributions_Processing"/> 
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    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Document_Importing"/> 
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    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Email_Archive"/> 
        <Class IRI="#Email_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Email_MVICS"/> 
        <Class IRI="#Email_Rules"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Email_MVICS"/> 
        <Class IRI="#Outlook_and_Email_Integration"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Employee_Profile"/> 
        <Class IRI="#Profile"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Fees_and_Commissions"/> 
        <Class IRI="#Payment_system_1"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Information_Search"/> 
        <Class IRI="#Search_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Investor_Reporting"/> 
        <Class IRI="#Reporting_MVICS_Association_Class"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Leave_Management_System"/> 
        <Class IRI="#Management_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#MS_Word_Integration"/> 
        <Class IRI="#Text_and_Word_Processing_MVICS"/> 
    </EquivalentClasses> 
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        <Class IRI="#Management_Agg"/> 
        <Class IRI="#Payroll_Management_System"/> 
    </EquivalentClasses> 
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        <Class IRI="#Management_Agg"/> 
        <Class IRI="#Reimbursement_Management"/> 
    </EquivalentClasses> 
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        <Class IRI="#Management_Agg"/> 
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        <Class IRI="#Management_Reporting"/> 
        <Class IRI="#Reporting_MVICS_Association_Class"/> 
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    <EquivalentClasses> 
        <Class IRI="#Mangement_2"/> 
        <Class IRI="#Product_Management"/> 
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        <Class IRI="#Market_Surveillance_and_Monitoring"/> 
        <Class IRI="#Monitoring"/> 
    </EquivalentClasses> 
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        <Class IRI="#Marketing_Agg"/> 
        <Class IRI="#Marketing_Tools"/> 
    </EquivalentClasses> 
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    <EquivalentClasses> 
        <Class IRI="#Modelling"/> 
        <Class IRI="#Modelling_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Modelling_MVICS"/> 
        <Class IRI="#Modelling_Software"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Navigation"/> 
        <Class IRI="#Search_and_navigation"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Navigation_Agg"/> 
        <Class IRI="#Site_Navigation"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Notifications_&amp;_Approvals"/> 
        <Class IRI="#Notifications_&amp;_Approvals_Agg"/> 
    </EquivalentClasses> 
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        <Class IRI="#Payment_System"/> 
        <Class IRI="#Payment_System_3"/> 
    </EquivalentClasses> 
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        <Class IRI="#Payment_system_1"/> 
        <Class IRI="#Reference_Data_Systems"/> 
    </EquivalentClasses> 
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    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Payment_system_2"/> 
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    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Query_and_Analysis"/> 
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        <Class IRI="#Time_/_Date"/> 
        <Class IRI="#Time_Management_System"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Transfer"/> 
        <Class IRI="#Transfers_and_Defaults"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Version_Control"/> 
        <Class IRI="#Version_Control_MVICS"/> 
    </EquivalentClasses> 
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        <Class IRI="#Workflow-Based_Task_Routing"/> 
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        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Automated_Workflow"/> 
        <Class IRI="#Collaborating"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
        <Class IRI="#Portfolio_/_Fund_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Business_Intelligence"/> 
        <Class IRI="#Data_Solutions"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Calculation"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Calendar_/_Schedule_"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Capital_Markets_Systems"/> 
        <Class IRI="#Asset_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Capturing"/> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Card_Authorisation"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Card_Processing_/_Payments"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cash_Flow_Forecasting"/> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cash_Management"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Charting"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Charting_and_Graphing"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Check-in_&amp;_Check-out"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Chip_&amp;_PIN"/> 
        <Class IRI="#Card_Processing_/_Payments"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Clearing_and_Settlement_Processes"/> 
        <Class IRI="#Capital_Markets_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Client_Acquisition"/> 
        <Class IRI="#Wealth_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Client_Wealth_Management"/> 
        <Class IRI="#Wealth_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Collaborating"/> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Communication"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Communication_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Consultancy"/> 
        <Class IRI="#Card_Processing_/_Payments"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Contributions_Processing"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Correspondence_Tracking"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Credit_Administration"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Customer_Relationship_Management"/> 
        <Class IRI="#Data_Solutions"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Customized_User_Dashboards"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dashboard"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dashboards_and_Visualization"/> 
        <Class IRI="#Business_Intelligence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Conversion"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Conversion_MVICS"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Data_Distribution_Systems"/> 
        <Class IRI="#Data_Solutions"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Editing"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Management"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Management_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Management_Systems"/> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Security"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Security_MVICS"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Solutions"/> 
        <Class abbreviatedIRI=":Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Transfer"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Transfer_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Validation"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Validation_MVICS"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_1"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_2"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_3"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_MVICS"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
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        <Class IRI="#Database_Security_1"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Security_2"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Deal_Flow"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dealing_and_Order_Management"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Deliver"/> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Distributions_Processing"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Distributions_Processing_2"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Distributions_Processing_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Document_Importing"/> 
        <Class IRI="#Capturing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Document_Log"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Document_Management"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Document_Profiling"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Document_Scanning"/> 
        <Class IRI="#Capturing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#E-mail"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Electronic_Commerce"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Email"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Email_Archive"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Email_MVICS"/> 
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        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Email_Rules"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Employee_Profile"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Employee_Transfer,_Promotions_&amp;_Increments"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Fees_and_Commissions"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Financial_Accounting"/> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Fund_Investment_Management"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Hedge_Funds"/> 
        <Class IRI="#Portfolio_/_Fund_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Import_Transaction_History"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Information_Search"/> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Investment_Records_Management"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Investor_Registration"/> 
        <Class IRI="#Hedge_Funds"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Investor_Reporting"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Knowledge_Delivery"/> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Leave_Management_System"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#MS_Word_Integration"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Management"/> 
        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Management_Agg"/> 
        <Class IRI="#Aggregation"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Management_Fees"/> 
        <Class IRI="#Hedge_Funds"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Management_Reporting"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mangement_2"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Markers_and_Trend_Lines"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Market_Surveillance_and_Monitoring"/> 
        <Class IRI="#Capital_Markets_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Marketing_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Marketing_Tools"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Menu"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Microfinance_/_Microbanking"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Modelling"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Modelling_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Modelling_Software"/> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Monitoring"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mutual_Funds_/_Unit_trusts"/> 
        <Class IRI="#Asset_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Navigation"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Navigation_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Notifications_&amp;_Approvals"/> 
        <Class IRI="#Collaborating"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Notifications_&amp;_Approvals_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Outlook_and_Email_Integration"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#PDF"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#PDF_Creation"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#PDF_Creator"/> 
        <Class IRI="#Deliver"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payment_System"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payment_System_3"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payment_system_1"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payment_system_2"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payroll"/> 
        <Class IRI="#Financial_Accounting"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Payroll_Management_System"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Performance_Analytics"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Planning"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Portfolio_/_Fund_Management_Systems"/> 
        <Class IRI="#Asset_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Portfolio_Management"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Portfolio_Management_1"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Price_Alerts"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <SubClassOf> 
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        <Class IRI="#Private_Equity"/> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Product_Management"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Profile"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Purchasing_and_Transaction"/> 
        <Class IRI="#Authorisation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Query_and_Analysis"/> 
        <Class IRI="#Business_Intelligence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Real_Estate_Investment_Management"/> 
        <Class IRI="#Alternative_Investment_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Records_Management"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Redemptions"/> 
        <Class IRI="#Hedge_Funds"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Reference_Data_Systems"/> 
        <Class IRI="#Data_Distribution_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Reimbursement_Management"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Reporting"/> 
        <Class IRI="#Transfer"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Reporting_MVICS"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Reporting_MVICS_Association_Class"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Retrieve_Transactions"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Revenue_Analytics"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Risk_Analytics"/> 
        <Class IRI="#Fund_Investment_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Scheduling_and_Calendaring"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Search"/> 
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        <Class IRI="#Contact_&amp;_Document_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Search_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Search_and_navigation"/> 
        <Class IRI="#Business_Intelligence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Settlement"/> 
        <Class IRI="#Card_Processing_/_Payments"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Settlement_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Site_Navigation"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Statement"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Subscriptions"/> 
        <Class IRI="#Hedge_Funds"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Switching"/> 
        <Class IRI="#Authorisation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Switching_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#System_Administration"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Task_Manager"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Text_and_Word_Processing"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Text_and_Word_Processing_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Time_/_Date"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Time_Management_System"/> 
        <Class IRI="#Payroll"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Toolbar"/> 
        <Class IRI="#Distributions_Processing_2"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Tracking"/> 
        <Class IRI="#Association_Class"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Trade_Order_and_Risk_Management"/> 
        <Class IRI="#Capital_Markets_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Transfer"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Transfers_and_Defaults"/> 
        <Class IRI="#Private_Equity"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#UserAdministration"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#User_Administration"/> 
        <Class IRI="#Payment_System_3"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#User_Administration_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#User_Management"/> 
        <Class IRI="#Electronic_Commerce"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Validating"/> 
        <Class IRI="#Authorisation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Version_Control"/> 
        <Class IRI="#Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Version_Control_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Wealth_Management"/> 
        <Class IRI="#Asset_Management_Systems"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Wealth_Planning"/> 
        <Class IRI="#Wealth_Management"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Web_Interface"/> 
        <Class IRI="#Collaborating"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
        <Class abbreviatedIRI=":Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Workflow"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Workflow-Based_Task_Routing"/> 
        <Class IRI="#Deal_Flow"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Workflow_Management"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Yield_Calculations"/> 
        <Class IRI="#Basic_Portfolio_Management_"/> 
    </SubClassOf> 
    <DisjointClasses> 
        <Class IRI="#Asset_Management_Systems"/> 
        <Class IRI="#Data_Solutions"/> 
    </DisjointClasses> 
    <DisjointClasses> 
        <Class IRI="#Asset_Management_Systems"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </DisjointClasses> 
    <DisjointClasses> 
        <Class IRI="#Card_Processing_/_Payments"/> 
        <Class IRI="#Microfinance_/_Microbanking"/> 
    </DisjointClasses> 
    <DisjointClasses> 
        <Class IRI="#Credit_Administration"/> 
        <Class IRI="#Microfinance_/_Microbanking"/> 
    </DisjointClasses> 
    <DisjointClasses> 
        <Class IRI="#Data_Solutions"/> 
        <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/> 
    </DisjointClasses> 
    <DisjointClasses> 
        <Class IRI="#Electronic_Commerce"/> 
        <Class IRI="#Microfinance_/_Microbanking"/> 
    </DisjointClasses> 
    <FunctionalObjectProperty> 
        <ObjectProperty IRI="#IsA"/> 
    </FunctionalObjectProperty> 
    <TransitiveObjectProperty> 
        <ObjectProperty IRI="#IsA"/> 
    </TransitiveObjectProperty> 
</Ontology> 
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net --> 
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Appendix C: The MVICS Project 

Homepage 

C.1 The Homepage 
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C.2 The Online Prototype Tool  
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C.3 The MVICS-based Component Specification Form 
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Appendix D: The OWL Doc of the RAG 

Ontology  

<?xml version="1.0"?> 
<!DOCTYPE Ontology [ 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY xml "http://www.w3.org/XML/1998/namespace" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<Ontology xmlns="http://www.w3.org/2002/07/owl#" 
     xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:xml="http://www.w3.org/XML/1998/namespace" 
     ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl"> 
    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> 
    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 
    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 
    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 
    <Declaration> 
        <Class IRI="#Acceleration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Action"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Action_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-decompilation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-modification"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-plug_in"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Asphalt"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Ass"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Back"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Background"/> 
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    </Declaration> 
    <Declaration> 
        <Class IRI="#Background_Data_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Background_Music"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Building"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Button_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Car_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Car_Model"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cinema"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Citizen"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#City"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#City_Nature"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cloudy"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Country_Nature"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Countryside"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Processing_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Day_Time"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Day_and_Night"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert_Plant_"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert_Road"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dirt"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dubbing"/> 
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    </Declaration> 
    <Declaration> 
        <Class IRI="#F1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Farm"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Farmhouse"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Flat"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Forward"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Game_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Gymnasium"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Hard_Court"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Highway"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Jungle_ATV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Left"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Main_Road"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mall"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Material"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Motor_Home"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Motorcycle"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mountain_ATV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Move"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Night_Time"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Path"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Physical_Data_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Public_Facilities"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Racing_Car"/> 
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    </Declaration> 
    <Declaration> 
        <Class IRI="#Racing_Field"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Racing_Track"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Rain"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Right"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#SUV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Security"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Security_Affair_Administration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sence"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Server_Speed_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Server_Speed_Optimization"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Skyscraper"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Snow"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sound"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Special_Effects_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Speed"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Stock_Car"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Stop"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Street"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sunny"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Truck"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Ture"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#UI_Data_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Villa"/> 
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    </Declaration> 
    <Declaration> 
        <Class IRI="#Weather"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Width"/> 
    </Declaration> 
    <EquivalentClasses> 
        <Class IRI="#Anti-decompilation"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Anti-modification"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Anti-plug_in"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Background_Data_Processing"/> 
        <Class IRI="#Data_Processing_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Processing_Agg"/> 
        <Class IRI="#UI_Data_Processing"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Database_Management"/> 
        <Class IRI="#Database_Management_1"/> 
    </EquivalentClasses> 
    <SubClassOf> 
        <Class IRI="#Acceleration"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Action"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Action_Control"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Agg"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#All-Terrain_Vehicle"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-decompilation"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-modification"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-plug_in"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Asphalt"/> 
        <Class IRI="#Material"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Ass"/> 
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        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Back"/> 
        <Class IRI="#Move"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Background_Data_Processing"/> 
        <Class IRI="#Physical_Data_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Background_Music"/> 
        <Class IRI="#Sound"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Building"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Button_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Car_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Car_Model"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cinema"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Citizen"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#City"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#City_Nature"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cloudy"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Country_Nature"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Countryside"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Processing_Agg"/> 
        <Class IRI="#Agg"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_1"/> 
        <Class IRI="#Agg"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Day_Time"/> 
        <Class IRI="#Day_and_Night"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Day_and_Night"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert_Plant_"/> 
        <Class IRI="#Desert"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert_Road"/> 
        <Class IRI="#Desert"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dirt"/> 
        <Class IRI="#Material"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dubbing"/> 
        <Class IRI="#Sound"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#F1"/> 
        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Farm"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Farmhouse"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Flat"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Forward"/> 
        <Class IRI="#Move"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Game_Control"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Gymnasium"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Hard_Court"/> 
        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Highway"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Jungle_ATV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Left"/> 
        <Class IRI="#Ture"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Main_Road"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mall"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Material"/> 
        <Class IRI="#Racing_Track"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Motor_Home"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Motorcycle"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mountain_ATV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Move"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Night_Time"/> 
        <Class IRI="#Day_and_Night"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Path"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Physical_Data_Control"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Public_Facilities"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Car"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Field"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Track"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Rain"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Right"/> 
        <Class IRI="#Ture"/> 
    </SubClassOf> 
    <SubClassOf> 
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        <Class IRI="#SUV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Security"/> 
        <Class IRI="#Ass"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Security_Affair_Administration"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sence"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Server_Speed_Control"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Server_Speed_Optimization"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Skyscraper"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Snow"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sound"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Special_Effects_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Speed"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Stock_Car"/> 
        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Stop"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Street"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sunny"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Truck"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Ture"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#UI_Data_Processing"/> 
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        <Class IRI="#Physical_Data_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Villa"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Weather"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Width"/> 
        <Class IRI="#Racing_Track"/> 
    </SubClassOf> 
</Ontology> 
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net --> 
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Appendix E: The OWL Doc of the Gameloft 

Ontology 

<?xml version="1.0"?> 
<!DOCTYPE Ontology [ 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY xml "http://www.w3.org/XML/1998/namespace" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<Ontology xmlns="http://www.w3.org/2002/07/owl#" 
     xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:xml="http://www.w3.org/XML/1998/namespace" 
     ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl"> 
    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> 
    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 
    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 
    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 
    <Declaration> 
        <Class IRI="#Acceleration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Action"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Action_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Aggregation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Animal"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-decompilation"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-modification"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Anti-plug_in"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Asphalt"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Association_Class"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Back"/> 
    </Declaration> 
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    <Declaration> 
        <Class IRI="#Background"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Background_Data_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Background_Music"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Building"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Button_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Car_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Car_Model"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cartoon_Character"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Character"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Chart"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Chess"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cinema"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Citizen"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#City"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#City_Nature"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Cloudy"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Country_Nature"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Countryside"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Display"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Data_Processing_Agg"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Database_Management_1"/> 
    </Declaration> 
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    <Declaration> 
        <Class IRI="#Day_Time"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Day_and_Night"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert_Plant_"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Desert_Road"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Diagram"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Diagram_MVICS"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Digit"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dirt"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Else_Ethnic"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Ethnic"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#F1"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Farm"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Farmhouse"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Female"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Flat"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Forward"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Game_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Gender"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Graphic_Rendering"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Gymnasium"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Hard_Court"/> 
    </Declaration> 
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    <Declaration> 
        <Class IRI="#Highway"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Human"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Jungle_ATV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Left"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Main_Road"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Male"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mall"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Material"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Melanoderm"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Meter"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Motor_Home"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Motorcycle"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Mountain_ATV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Move"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Night_Time"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Path"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Physical_Data_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Plot_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Poker"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Public_Facilities"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Puzzle_Character"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Racing_Car"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Racing_Field"/> 
    </Declaration> 
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    <Declaration> 
        <Class IRI="#Racing_Track"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Rain"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Regulation_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Right"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#SUV"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Security"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Security_Affair_Administration"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sence"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Server_Speed_Control"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Server_Speed_Optimization"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Skyscraper"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Snow"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sound"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Special_Effects_Dubbing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Speed"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Stock_Car"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Stop"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Street"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Sunny"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Truck"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Ture"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#UI_Data_Processing"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Uno"/> 
    </Declaration> 
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    <Declaration> 
        <Class IRI="#Villa"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Visual_Effects"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Weather"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#White_Race"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Width"/> 
    </Declaration> 
    <Declaration> 
        <Class IRI="#Yellow_Race"/> 
    </Declaration> 
    <EquivalentClasses> 
        <Class IRI="#Anti-decompilation"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Anti-modification"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Anti-plug_in"/> 
        <Class IRI="#Security"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Background_Data_Processing"/> 
        <Class IRI="#Data_Processing_Agg"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Chart"/> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Data_Processing_Agg"/> 
        <Class IRI="#UI_Data_Processing"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Database_Management"/> 
        <Class IRI="#Database_Management_1"/> 
    </EquivalentClasses> 
    <EquivalentClasses> 
        <Class IRI="#Diagram"/> 
        <Class IRI="#Diagram_MVICS"/> 
    </EquivalentClasses> 
    <SubClassOf> 
        <Class IRI="#Acceleration"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Action"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Action_Control"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Aggregation"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#All-Terrain_Vehicle"/> 
        <Class IRI="#Car_Model"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Animal"/> 
        <Class IRI="#Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-decompilation"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-modification"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Anti-plug_in"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Asphalt"/> 
        <Class IRI="#Material"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Back"/> 
        <Class IRI="#Move"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Background"/> 
        <Class IRI="#Graphic_Rendering"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Background_Data_Processing"/> 
        <Class IRI="#Physical_Data_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Background_Music"/> 
        <Class IRI="#Sound"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Building"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Button_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Car_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Car_Model"/> 
        <Class IRI="#Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cartoon_Character"/> 
        <Class IRI="#Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Character"/> 
        <Class IRI="#Graphic_Rendering"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Chart"/> 
        <Class IRI="#Data_Display"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Charting_and_Graphing_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Chess"/> 
        <Class IRI="#Puzzle_Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cinema"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Citizen"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#City"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#City_Nature"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Cloudy"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Country_Nature"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Countryside"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Display"/> 
        <Class IRI="#Graphic_Rendering"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Data_Processing_Agg"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Database_Management_1"/> 
        <Class IRI="#Aggregation"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Day_Time"/> 
        <Class IRI="#Day_and_Night"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Day_and_Night"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert_Plant_"/> 
        <Class IRI="#Desert"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Desert_Road"/> 
        <Class IRI="#Desert"/> 
    </SubClassOf> 
    <SubClassOf> 
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        <Class IRI="#Diagram"/> 
        <Class IRI="#Data_Display"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Diagram_MVICS"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Digit"/> 
        <Class IRI="#Data_Display"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dirt"/> 
        <Class IRI="#Material"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Dubbing"/> 
        <Class IRI="#Sound"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Else_Ethnic"/> 
        <Class IRI="#Ethnic"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Ethnic"/> 
        <Class IRI="#Human"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#F1"/> 
        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Farm"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Farmhouse"/> 
        <Class IRI="#Countryside"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Female"/> 
        <Class IRI="#Gender"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Flat"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Forward"/> 
        <Class IRI="#Move"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Game_Control"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Gender"/> 
        <Class IRI="#Human"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Graphic_Rendering"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Gymnasium"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Hard_Court"/> 
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        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Highway"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Human"/> 
        <Class IRI="#Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Jungle_ATV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Left"/> 
        <Class IRI="#Ture"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Main_Road"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Male"/> 
        <Class IRI="#Gender"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mall"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Material"/> 
        <Class IRI="#Racing_Track"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Melanoderm"/> 
        <Class IRI="#Ethnic"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Meter"/> 
        <Class IRI="#Data_Display"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Motor_Home"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Motorcycle"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Mountain_ATV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Move"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Night_Time"/> 
        <Class IRI="#Day_and_Night"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Path"/> 
        <Class IRI="#Street"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Physical_Data_Control"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
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    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Plot_Control"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Poker"/> 
        <Class IRI="#Puzzle_Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Public_Facilities"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Puzzle_Character"/> 
        <Class IRI="#Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Car"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Field"/> 
        <Class IRI="#Sence"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Racing_Track"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Rain"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Regulation_Control"/> 
        <Class IRI="#Game_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Right"/> 
        <Class IRI="#Ture"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#SUV"/> 
        <Class IRI="#All-Terrain_Vehicle"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Security"/> 
        <Class IRI="#Association_Class"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Security_Affair_Administration"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sence"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Server_Speed_Control"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Server_Speed_Optimization"/> 
        <Class IRI="#Security_Affair_Administration"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Skyscraper"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
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    <SubClassOf> 
        <Class IRI="#Snow"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sound"/> 
        <Class abbreviatedIRI="owl:Thing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Special_Effects_Dubbing"/> 
        <Class IRI="#Dubbing"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Speed"/> 
        <Class IRI="#Action_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Stock_Car"/> 
        <Class IRI="#Racing_Car"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Stop"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Street"/> 
        <Class IRI="#City"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Sunny"/> 
        <Class IRI="#Weather"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Truck"/> 
        <Class IRI="#Car_Model"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Ture"/> 
        <Class IRI="#Action"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#UI_Data_Processing"/> 
        <Class IRI="#Physical_Data_Control"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Uno"/> 
        <Class IRI="#Puzzle_Character"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Villa"/> 
        <Class IRI="#Building"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Visual_Effects"/> 
        <Class IRI="#Graphic_Rendering"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Weather"/> 
        <Class IRI="#Background"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#White_Race"/> 
        <Class IRI="#Ethnic"/> 
    </SubClassOf> 
    <SubClassOf> 
        <Class IRI="#Width"/> 
        <Class IRI="#Racing_Track"/> 
    </SubClassOf> 
    <SubClassOf> 
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        <Class IRI="#Yellow_Race"/> 
        <Class IRI="#Ethnic"/> 
    </SubClassOf> 
</Ontology> 
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