

A Holistic Semantic Based Approach to

Component Specification and Retrieval

Chengpu Li

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Edinburgh Napier University

School of Computing

July 2012

Abstract

Component-Based Development (CBD) has been broadly used in software

development as it enhances the productivity and reduces the costs and risks involved

in systems development. It has become a well-understood and widely used technology

for developing not only large enterprise applications, but also a whole spectrum of

software applications, as it offers fast and flexible development. However, driven by

the continuous expansions of software applications, the increase in component

varieties and sizes and the evolution from local to global component repositories, the

so-called component mismatch problem has become an even more severe hurdle for

component specification and retrieval. This problem not only prevents CBD from

reaching its full potential, but also hinders the acceptance of many existing

component repository.

To overcome the above problem, existing approaches engaged a variety of

technologies to support better component specification and retrieval. The existing

approaches range from the early syntax-based (traditional) approaches to the recent

semantic-based approaches. Although the different technologies are proposed to

achieve accurate description of the component specification and/or user query in their

specification and retrieval, the existing semantic-based approaches still fail to achieve

II

the following goals which are desired for present component reuse: precise,

automated, semantic-based and domain capable.

This thesis proposes an approach, namely MVICS-based approach, aimed at

achieving holistic, semantic-based and adaptation-aware component specification and

retrieval. As the foundation, a Multiple-Viewed and Interrelated Component

Specification ontology model (MVICS) is first developed for component specification

and repository building. The MVICS model provides an ontology-based architecture

to specify components from a range of perspectives; it integrates the knowledge of

Component-Based Software Engineering (CBSE), and supports ontology evolution to

reflect the continuous developments in CBD and components. A formal definition of

the MVICS model is presented, which ensures the rigorousness of the model and

supports the high level of automation of the retrieval. Furthermore, the MVICS model

has a smooth mechanism to integrate with domain related software system ontology.

Such integration enhances the function and application scope of the MVICS model by

bringing more domain semantics into component specification and retrieval. Another

improved feature of the proposed approach is that the effect of possible component

adaptation is extended to the related components. Finally a comprehensive profile of

the result components shows the search results to the user from a summary to satisfied

and unsatisfied discrepancy details. The above features of the approach are well

integrated, which enables a holistic view in semantic-based component specification

and retrieval.

III

A prototype tool was developed to exert the power of the MVICS model in expressing

semantics and process automation in component specification and retrieval. The tool

implements the complete process of component search. Three case studies have been

undertaken to illustrate and evaluate the usability and correctness of the approach, in

terms of supporting accurate component specification and retrieval, seamless linkage

with a domain ontology, adaptive component suggestion and comprehensive result

component profile.

A conclusion is drawn based on an analysis of the feedback from the case studies,

which shows that the proposed approach can be deployed in real life industrial

development. The benefits of MVICS include not only the improvement of the

component search precision and recall, reducing the development time and the

repository maintenance effort, but also the decrease of human intervention on CBD.

Acknowledgments

I have so many people to thank for the help of my PhD study. Firstly, it is hard to

overstate my gratitude to my first supervisor Dr. Xiaodong Liu, second supervisor

Professor Jessie Kennedy and penal chair Professor Ben Paechter. Without their

inspirational guidance, constant encouragements and unselfish help, I could never

finish my doctoral work. They are not only my teachers, but also lifetime friends and

advisors.

Secondly, I wish to thank my colleagues at the Centre of Information and Software

Systems in Edinburgh Napier University for their support and feedback, and for

providing me with such a stimulating and friendly working atmosphere.

Thirdly, I would like to thank my case study partners Mr. Jia Ding (SE) in Beijing

Mysoft Technology Co., Ltd, Mr. Xikun Yang (SSE) and Mr. Jie Li (SE) in Mobile

Game Development Department of Gameloft Co., Ltd and other anonymous

participants whose test results and valuable comments validate and further improve

my research outcome.

Fourthly, I would acknowledge Agilent Technologies Foundations for the research

grant that partly sponsored my PhD project.

II

I would give the last but most appreciated thanks to my wife and my parents for their

unceasing moral and daily life support throughout the three and half years of my PhD

study.

Declaration

I declare that the work described within this thesis was originally taken by me

between the dates of registration fro the degree of Doctor of Philosophy at Edinburgh

Napier University, October 2007 to August 2011.

The thesis is written by me and has been produced using Microsoft Word.

Publications from the PhD Work

[1] Li, C., Liu, X., Kennedy, J. (2010). Achieve Semantic-based Precise Component

Selection via an Ontology Model Interlinking Application Domain and MVICS.

In: Proceedings of the 22nd International Conference on Software Engineering

and Knowledge Engineering (SEKE'10). San Francisco, USA: Knowledge

Systems Institute.

[2] Li, C., Pooley, R., Liu, X. (2010). Ontology-Based Quality Attributes Prediction

in Component-Based Development. In: International Journal of Computer

Science & Information Technology (IJCSIT), 2(5).

[3] Li, C., Liu, X., Kennedy, J. (2009). A Multiple Viewed Interrelated Ontology

Model for Holistic Component Specification and Retrieval. In: Proceedings of the

1st International Conference on Advanced Software Engineering & Its

Applications (ASEA2009), Springer-Verlag's LNCS. Volume 59, (pp. 50-69).

Springer-Verlag.

[4] Li, C., Liu, X., Kennedy, J. (2008). Semantics-Based Component Repository:

State of Arts and a Calculation Rating Factor-based Framework. In: Proceedings

of Computer Software and Applications Conference. (pp. 751-756) IEEE

Computer Society Press.

http://www.iidi.napier.ac.uk/c/people/peopleid/11709503
http://www.iidi.napier.ac.uk/c/people/peopleid/199
http://www.iidi.napier.ac.uk/c/people/peopleid/41
http://www.iidi.napier.ac.uk/c/publications/publicationid/13351076
http://www.iidi.napier.ac.uk/c/publications/publicationid/13351076
http://www.iidi.napier.ac.uk/c/people/peopleid/11709503
http://www.iidi.napier.ac.uk/c/people/peopleid/199
http://www.iidi.napier.ac.uk/c/publications/publicationid/13366277
http://www.iidi.napier.ac.uk/c/publications/publicationid/13366277
http://www.iidi.napier.ac.uk/c/people/peopleid/11709503
http://www.iidi.napier.ac.uk/c/people/peopleid/199
http://www.iidi.napier.ac.uk/c/people/peopleid/41
http://www.iidi.napier.ac.uk/c/publications/publicationid/13187130
http://www.iidi.napier.ac.uk/c/publications/publicationid/13187130
http://www.iidi.napier.ac.uk/c/people/peopleid/11709503
http://www.iidi.napier.ac.uk/c/people/peopleid/199
http://www.iidi.napier.ac.uk/c/people/peopleid/41
http://www.iidi.napier.ac.uk/c/publications/publicationid/13091310
http://www.iidi.napier.ac.uk/c/publications/publicationid/13091310

Table of Contents

1. INTRODUCTION .. - 1 -

1.1 Problem Statement .. - 1 -

1.2 Objectives of the Proposed PhD Research .. - 3 -

1.3 Contributions to Knowledge ... - 5 -

1.4 The Structure of the Thesis ... - 3 -

2. LITERATURE REVIEW ... …..- 10 -

2.1 Software Reuse... - 10 -

2.1.1 The Process of Software Reuse.. - 11 -

2.1.2 Software Reuse Approaches .. - 13 -

2.1.2.1 Design Patterns .. - 13 -

2.1.2.2 Generator-Based Reuse .. - 14 -

2.1.2.3 Application Framework ... - 15 -

2.1.2.4 COTS Product Reuse ... - 15 -

2.1.2.5 Software Product Line ... - 16 -

2.1.2.6 Component-Based Development ... - 17 -

2.2 Component-Based Software Engineering (CBSE) .. - 17 -

2.2.1 Component Certification .. - 20 -

2.2.2 Component Specification ... - 22 -

2.2.2.1 Characterisation of Components .. - 22 -

2.2.2.2 Component Specification Approaches ... - 25 -

2.2.3 Component Retrieval ... - 34 -

2.2.4 Component Adaptation .. - 36 -

2.3 Ontology ... - 41 -

2.3.1 Ontology Language ... - 42 -

2.3.1.1 Traditional Ontology Language ... - 43 -

2.3.1.2 Web Standards ... - 48 -

2.3.1.3 Web-based Ontology Language ... - 50 -

2.3.2 Ontology Tools .. - 55 -

2.3.2.1 Ontology Editors .. - 55 -

2.3.2.2 Ontology Repositories .. - 56 -

2.3.2.3 Ontology Language Processors .. - 58 -

2.4 Analysis and Conclusion ... - 60 -

II

3. RELATED WORK ... - 64 -

3.1 Traditional Component Specification and Retrieval Projects ... - 65 -

3.2 Ontology-based Component Specification and Retrieval Projects .. - 69 -

3.3 Limitations of Related Work and Conclusion ... - 75 -

4. THE APPROACH ... - 77 -

4.1 Overview ... - 77 -

4.2 The MVICS Framework ... - 79 -

4.2.1 Query Requirement Collection .. - 80 -

4.2.2 Ontology Model Construction ... - 81 -

4.2.3 Component Repository .. - 82 -

4.2.4 Component Retrieval ... - 84 -

5. MULTIPLE-VIEWED INTERRELATED COMPONENT SPECIFICATION

ONTOLOGY MODEL (MVICS) ... - 85 -

5.1 Function Model .. - 93 -

5.2 Context Model .. - 86 -

5.3 Intrinsic Model... - 90 -

5.4 Meta-relationship Model ... - 95 -

5.4.1 Matching Propagation Relationship ... - 95 -

5.4.2 Conditional Matching Propagation Relationship ... - 97 -

5.4.3 Matching Negation Relationship ... - 99 -

5.4.4 Supersedure Relationship .. - 99 -

5.5 Linkage between Domain Related Software System Ontology and MVICS - 101 -

5.5.1 Association Class and Association Link .. - 102 -

5.5.2 Aggregation and Aggregation Link ... - 103 -

5.5.3 Linkage Definition ... - 105 -

6. HOLISTIC AND PRECISE COMPONENT RETRIEVAL METHOD - 107 -

6.1 MVICS-based Component Retrieval ... - 107 -

6.1.1 MVICS Component Search Path ... - 108 -

6.1.2 AssL and AggL Search Path .. - 109 -

6.1.3 Adaptive Search Path ... - 111 -

6.2 Result Component Precision Calculation Method .. - 113 -

6.2.1 Weight of Class.. - 114 -

6.2.2 Weight of Search Path ... - 116 -

6.3 Precision Calculation Method .. - 117 -

III

6.4 Result Component Profile ... - 118 -

7. REALISATION OF THE MVICS-BASED COMPONENT SPECIFICATION

AND RETRIEVAL ... - 120 -

7.1 Realisation of MVICS-Based Component Repository .. - 121 -

7.1.1 OWL Files ... - 122 -

7.1.2 Component Repository .. - 123 -

7.2 Financial Domain Related Ontology .. - 123 -

7.3 User Interface... - 125 -

7.4 User Query Refinement... - 126 -

7.5 MVICS Component Search .. - 127 -

7.5.1 Refined User Keywords Parser .. - 128 -

7.5.2 MVICS Component Search Path ... - 129 -

7.5.3 Adaptive Component Search Scratch Storage and Adaptive Suggestion Processing - 129 -

7.5.4 Result Component Oriented Data Conversion ... - 130 -

7.5.5 Precision Calculation ... - 131 -

7.5.6 Dynamic Weight Assignment .. - 131 -

7.5.7 QAs-based Result Component Ordering.. - 132 -

7.5.8 Result Component Profile .. - 132 -

7.5.9 Search Time Recorder- 133 -

7.6 Result Display .. - 133 -

7.7 The MVICS Project Website .. - 134 -

8. CASE STUDIES ... - 137 -

8.1 Introduction ... - 137 -

8.2 Essential Validation and Evaluation of the MVICS Prototype Tool - 138 -

8.2.1 Background .. - 138 -

8.2.2 The Process .. - 139 -

8.2.3 Analysis ... - 142 -

8.3 Large-scale Two-stage Metadata Management Software System Case Study - 147 -

8.3.1 Background .. - 148 -

8.3.2 Mysoft‟s Existing Component Specification and Retrieval ... - 149 -

8.3.2.1 Introduction .. - 149 -

8.3.2.2 Search Scenario .. - 152 -

8.3.2.3 Process ... - 155 -

8.3.3 MVICS Component Specification and Retrieval ... - 157 -

8.3.3.1 Introduction .. - 157 -

8.3.3.2 Process ... - 158 -

8.3.3.3 Analysis ... - 159 -

IV

8.4 Racing Game Case Study .. - 161 -

8.4.1 Background .. - 162 -

8.4.2 MVICS-Based Gameloft Component Specification and Retrieval - 163 -

8.4.2.1 RAG Domain Ontology ... - 163 -

8.4.2.2 Linkage Construction ... - 166 -

8.4.2.3 MVICS-Based RAG Component Specification and Retrieval - 168 -

8.4.2.4 Analysis ... - 170 -

8.4.3 Extended Game Domain Ontology Model ... - 172 -

8.5 Summary………………………………………………………………………………………- 161 -

9. CONCLUSIONS AND FUTURE WORK ... - 177 -

9.1 Conclusions and Novel Contributions ... - 177 -

9.1.1 Conclusions ... - 177 -

9.1.2 Contributions ... - 180 -

9.2 Limitations and Future Work .. - 183 -

REFERENCE .. - 186 -

APPENDIX A: THE OWL DOC OF THE MVICS MODEL - 199 -

A.1 Function Model ... - 219 -

A.2 Context Model ... - 199 -

A.3 Intrinsic Model .. - 208 -

APPENDIX B: THE OWL DOC OF THE FINANCIAL DOMAIN

ONTOLOGY……………………………………………………………………- 229 -

APPENDIX C: THE MVICS PROJECT HOMEPAGE - 255 -

C.1 The Homepage .. - 255 -

C.2 The Online Prototype Tool .. - 256 -

C.3 The MVICS-based Component Specification Form .. - 257 -

APPENDIX D: THE OWL DOC OF THE RAG ONTOLOGY - 258 -

APPENDIX E: THE OWL DOC OF THE GAMELOFT ONTOLOGY…….- 268 -

List of Figures

Figure 2.1: Process of CBSE…………………………………………………………………..…….-19-

Figure 2.2: Classification of ontology languages……………………………………………..……-43-

Figure 4.1: The framework of the MVICS approach………………………………………...…...-79-

Figure 4.2: The architecture of the query requirement collection………………………………..-80-

Figure 4.3: The architecture of the query requirement collection………………………………..-82-

Figure 4.4: The architecture of the repository construction……..……………………………….-83-

Figure 5.1: Multiple-Viewed and Interrelated Component Specification Ontology Model.........-86-

Figure 5.2: Top three level classes of a) function model, b) context model, c) intrinsic model...-88-

Figure 5.3: The impact on search path: a) Matching Propagation Relationship; b) Conditional

Matching Propagation Relationship; and c) Supersedure Relationship…..……………………..-97-

Figure 5.4: An example of Association Link……………………………..……………………….-103-

Figure 5.5: An example of Aggregation Link…………………………………………………….-104-

Figure 6.1: Example of the original search path………………………..………………………..-108-

Figure 6.2: Example of domain AssL search path……………………………………………….-109-

Figure 6.3: Example of domain AggL search path...…………………………………………….-110-

Figure 6.4: Example of adaptive component search path……………….……………………....-113-

Figure 6.5: The Result Component Profile…………………………………………………….....-119-

Figure 7.1: The main interface of the prototype tool…………………………………………….-125-

Figure 7.2: The structure of the user query refinement………….……………………………...-127-

Figure 7.3: The workflow of the MVICS component search……………………………….…...-128-

Figure 8.1: The level of satisfaction of the MVICS component search tool, existing ontological

domain specific search tools and traditional search tools…………………………………….....-145-

Figure 8.2: Specification levels and specification aspects……………………………………….-150-

Figure 8.3: Facets of search parameters……………………………………………………….…-152-

Figure 8.4: Two-stage functional requirements………………………………………………….-154-

Figure 8.5: Three sizes of result components compares with required system functions

scope……………………………………………………………………………………..…………..- 133

-

II

Figure 8.6: Feedback analysis of the MVIVS-based approach and the Mysoft approach….....-160-

Figure 8.7: The top level classes of RAG domain ontology……………………………………...-164-

Figure 8.8: RAG domain ontology………………………………………………………………...-165-

Figure 8.9: User satisfaction of the MVICS-based approach and the Gameloft approach…...-171-

Figure 8.10:The statistics of working days for each phase………………………………………-171-

Figure 8.11: The top two level classes of the Gameloft ontology………………………………..-173-

List of Tables

Table 8.1: Experience level of testers……………………………………………………………- 143 -

Table 8.2: professional background of testers…………….…………………………………….- 143 -
Table 8.3: Example of component specification document…………………………………….- 151 -

- 1 -

1. Introduction

1.1 Problem Statement

Component-Based Development (CBD) has been widely used to develop software

systems by assembling and composing already built software components. Numerous

advantages of CBD have been identified such as shortened development life cycle

[36], reduced time-to-market [119][146], and reduced development costs [36][146].

However, at present CBD still fails to reach its full potential and has not been as

widely accepted as it should be due to a few unsolved major hurdles, one of which is

the lack of effective and automated methods for holistically and semantically

specifying and retrieving existing components that precisely match user reuse

requirements [126].

The above problem is basically caused by the lack of semantic-based component

specification/repository and retrieval technologies. In order to solve the problem, four

research questions need to be further investigated.

 Is it possible to construct an ontology to cover all component

specification?

- 2 -

First of all, in the semantic-based approach, the ontology plays a key role in

supporting the component specification and retrieval. Up to now, there is still

no suitably defined ontology that is able to cover the complete characteristics

of component specification
1
.

 How to design the architecture of an ontology so that it can organise all

characteristics via various relationships?

Secondly, although a few approaches have started to use an ontological

domain model in the component retrieval process, to date it is clear that the

ontology in these approaches has a too simple and monolithic structure and

few relationships to deal with the specification and retrieval of modern

components [171][190][191].

 How to link component specification ontology with domain ontology?

Thirdly, even if a hypothetical component specification ontology exists, the

range of application is limited by the lack of a method to link the

specification ontology to different domain specification ontologies.

 How to design a technique based on component specification ontology to

calculate the search precision?

1

 According to the development of component based software engineering, the characteristics mentioned here update dynamically

- 3 -

Moreover and as part of the consequence, the existing approaches also failed

to rank the components found (result components) with accurate relevance

rating and clear unsatisfied discrepancy to reuse requirements.

To summarise the research hypothesis, is it possible to develop an effective and

automated technique for semantically specifying and retrieving existing components

that precisely match user reuse requirements by solving the four research questions.

1.2 Objectives of the Proposed PhD Research

To overcome the limitations in semantic-based component specification and retrieval

mentioned in section 1.1, a novel ontology-based approach is proposed to achieve

holistic and semantic-based component specification and automatic and precise

component retrieval.

The objectives of the research include:

 To develop a holistic ontology-based approach

“Holistic” means that the ontology-based approach has been systematically

structured as a spectrum of different aspects in component specification and

retrieval, such as domain specific component information, adaptive assets

information and the way to present result components comprehensively.

- 4 -

“Ontology-based” means that the component specification and retrieval

approach is based on a component specification ontology model suitably

defined with ontology languages.

With the help of this model, the characteristics of the component may be

specified from multiple perspectives with semantic expression in the

repository. The scope of the specification ontology may thus be extended by

links between many specific domains in a smooth manner.

 To assess the search precision of the result components

Whereas the existing component specification and retrieval methods only

generally differentiate the similar components, a method of search precision

calculation algorithm that can assess the search precision numerically may

reflect more accurately how the search results match with the user

requirements.

 To build a prototype tool to illustrate and scale up the approach.

A prototype tool with an example component repository may help verify and

automate the approach, particularly if it can implement the complete process

of component search, starting from filling the initial query and ending up

with receiving the search results (i.e. to list in the result component profiles).

- 5 -

 To do case studies to evaluate the approach.

Properly designed case studies may help evaluate the practibility and

efficiency of the approach in both theoretical and practical level, if the

participants do use our prototype tool or put the approach into their own

practices.

1.3 Contributions to Knowledge

The proposed ontology-based approach has benefits over existing work in component

specification and retrieval, in terms of i) the Multiple-Viewed Interrelated Component

Specification(MVICS) ontology model; ii) the method of linking domain ontology

with the MVICS; iii) the improved component retrieval method; v) the result

component profile. The project originally contributes to the current state of the art by

producing the following key technologies, which are integrally linked in a holistic and

semantic-based specification and retrieval framework:

 In correction of Multiple-Viewed and Interrelated Component

Specification ontology model (MVICS)

The MVICS model provides an ontology-based architecture to specify

components from a range of perspectives, it accommodates domain

knowledge of CBSE and application domains, and supports ontology

evolution to reflect the continuous developments in CBD and components.

- 6 -

Another unique feature is that the effect of possible component adaptation

assets/methods are also described under the MVICS model, which enables a

more systematic and holistic view in component specification and selection.

OWL-DL is adopted to define the classes, individuals, relationships and

constraints of the MVICS. Via these formal definitions in OWL-DL, the

automatic semantic-based component search and validation are achieved with

the support of an ontology reasoner.

 To take into account domain ontology linkage method

To extend the scope of the component specification ontology into specific

domains, a domain ontology linkage method is developed. The method links

the domain specific ontology with the MVICS by two mechanisms:

Association Link (AssL) and Aggregation Link (AggL). These two links can

be used to connect all the classes of the required domain ontology with their

related classes in the MVICS, which enhances the function and application

scope of the MVICS-based component specification and retrieval.

 To improve semantic-based component retrieval method

The existing semantic-based component retrieval method is improved based

on the MVICS model in the following aspects: 1) the relevance rating for the

result component is calculated on the basis of the search paths. The rating is

- 7 -

more accurate than the existing approaches as it is produced with the help of

the tree structure of the MVICS. The result component are obtained by

matching with the lower level classes, with higher precision; 2) the relevance

rating method is updated dynamically by changing the factors of the search

precision calculation algorithm, according to user feedback; 3) the domain

specific components are gained through the domain linkage paths (AggL and

AssL); 4) the adaptive components assets/methods can be retrieved through

the adaptive search paths, which provide more choices for the user.

 Find comprehensive result component profile

A result component profile is designed to present the comprehensive search

result of each result component. In addition to the usual contents of the result,

such as the component name and search precision, the profile also presents

the new features offered by the MVICS-based approach, such as the

percentage of matched keywords, search paths, optional adaptive

assets/methods and QAs suggestions. All the above search results are

classified and shown in a specially designed display panel, including

summary, result representation by facet of the MVICS and result

representation by search path.

- 8 -

1.4 The Structure of the Thesis

This thesis is organised as follows:

Chapter 1 gives the background, motivation, scope and original contribution of the

thesis.

Chapter 2 provides an overview of the current state of software reuse,

component-based development and ontology.

Chapter 3 presents a critical evaluation of existing representative related work in

semantic-based component specification and retrieval, which triggers the motivation

of the research.

Chapter 4 proposes a framework for the holistic, semantic-based, adaptation-aware

component specification and retrieval approach.

Chapter 5 describes the Multiple-Viewed Interrelated Component Specification

ontology model, the domain specific ontology linkage method and their formal

definition.

Chapter 6 focuses on presenting the key parts of the holistic and precise component

retrieval method.

- 9 -

Chapter 7 explores the realisation of the proposed approach in the form of a prototype

tool. It describes the tool‟s system architecture, as well as the activities of each

function module.

Chapter 8 provides laboratorial and industrial experiments as the evidence for the

evaluation of the proposed approach and tool with four case studies according to a set

of criteria.

In chapter 9, conclusions are drawn based on the case studies and evaluation.

Potential future work is identified for further development of the proposed approach

and tool.

- 10 -

2. Literature Review

In the literature review, a broad survey was completed which investigates the current

state of the art of software reuse, component-based development and ontology. These

technologies are the foundations of the development of the proposed approach.

Through the range of the investigation from broad to detail, the merits of the existing

techniques are recognized as well as the demerits, which are then addressed as

research topics in the project.

2.1 Software Reuse

Software reuse is the use of existing software, or software knowledge, to build new

software. It is the process whereby an organization defines a set of systematic

operating procedures to specify, produce, classify, retrieve, and adapt reusable assets

for the purpose of using them in its development activities. Reusable assets can be

from any part of the software development life cycle including software components,

objects, software requirement analysis and design models, domain architectures,

database schemas, code documentation, test scenarios, and plans[54][111][156].

According to the survey from the ESDS Software Reuse Working Group [86] in 2006,

up to 92% of a new application can be developed by reusing existing software, about

68% that is domain specific and about 24% that is domain independent. And in recent

- 11 -

years, the proportion continued to expand. Software reuse is widely used, because it

has a lot of the expected benefits including: lower development costs, higher

productivity and better use of resources, reduced cycle time and quicker development,

lower training costs, easier maintenance, higher quality, lower risk, better

interoperability [167].

2.1.1 The Process of Software Reuse

Software reuse involves three steps: abstraction of the assets, storage of the assets and

recontextualisation of the assets [54]. Abstraction focuses on designing a reusable

asset. Software reuse advocates drawing a strong distinction between designing

reusable code as opposed to salvaging code from current systems [43]. The designed

reusable assets can be roughly classified into three groups of different sizes as follows

[167].

 Object and function reuse. Software components that implement single

functions, such as a database connection or a class, may be reused. This type

of reuse, based on function libraries or class libraries, has been commonly

used for the past 40 years. Many libraries of functions and classes for

different types of application and platform are available. These can be easily

used by invoking them with other application code.

 Component reuse. All components of an application may be reused. For

- 12 -

example, GUI components developed as part of a word-processing system

may be reused in a spreadsheet system.

 Application system reuse. The whole of an application system may be reused

by customizing the application for different users or by developing

application families that have the same architecture but are tailored for

specific users.

The second step of software reuse is to make these assets available for others to use.

Software developers often encounter this problem in the process of storing and

retrieving components. Even in simple cases, storing and retrieving assets proves to

be difficult due to the multiple ways that software can be indexed [52]. Particularly

for larger software development, many reusable assets and their related diverse

software, design diagrams, software processes, or associated development tools are

needed; a simple storage and retrieval mechanism is not possible.

The final challenge for software reuse is recontextualisation. This involves making

what is reused understandable to those who will incorporate it into their systems [54].

At this point, software reuse advocates it is necessary to motivate others to use

reusable assets and ensure that the assets are technically compatible. Reuse of

software components raises not only cognitive issues of understanding but also raises

issues of incentives that managers often need to address along with the technical

issues of compatibility[159][175].

- 13 -

2.1.2 Software Reuse Approaches

To meet the challenges in the process, many approaches have been developed to

support software reuse over the past 20 years. The question which is the most

appropriate approach in the development depends on the requirements of the system.

The key factors that should be considered include: the development schedule, the

expected software lifetime, the background, skills and expertise of the development

team, the criticality of the software and its non-functional requirements, the

application domain and the platform [167]. The representative approaches of software

reuse are introduced as follows.

2.1.2.1 Design Patterns

When executable components are reused, they are inevitably constrained by detailed

design decisions that have been made by the implementers of these components [38].

These decisions range from the particular algorithms that have been used to

implement the components to the objects and types in the component interfaces [63].

If these design decisions conflict with the particular requirements then reusing the

component is either impossible or introduces significant inefficiencies into the

system.

One way around this is to reuse more abstract designs that do not include

implementation details. These are then implemented specifically to fit the application

- 14 -

requirements. This approach to reuse has been embodied in the notion of design

patterns [131][179][182]. A “pattern” is a description of the problem and the essence

of its solution so that it may be reused in a different setting. A pattern is not a detailed

specification. Rather, it can be thought of as a description of accumulated wisdom and

experience [13][28][64]. It is a well-tried solution to a common problem.

2.1.2.2 Generator-Based Reuse

The concept of reuse through patterns relies on describing the concept in an abstract

way and leaving it up to the software developer to create an implementation. It was

suggested that an alternative approach to this was generator-based reuse [154]. In the

approach, reusable knowledge is captured in a program generator system that can be

programmed by the domain experts using either a domain oriented language or an

interactive CASE tool.

Generator-based reuse takes advantage of the fact that applications in the same

domain, such as the business systems, have common architectures and carry out

comparable functions. Generator-based reuse is cost effective for applications such as

business data processing. Furthermore, it is much easier for end users to develop

programs. There are inefficiencies in generated programs. In other words, it may not

be possible to use this approach in systems with high performance or throughput

requirements. Moreover, generator-based reuse is limited to specific domains.

- 15 -

2.1.2.3 Application Framework

In the early stages of Object Oriented Programming (OOP), objects were regarded as

the most appropriate abstraction for reuse. However, experience has shown that

objects are often too fine-grained and too specialised to a particular requirement. The

larger-grain abstractions called Frameworks provide a better solution for

object-oriented reuse [167].

An Application Framework is a system built by a collection of various classes and

interfaces between them [39][137][187]. Applications developed using a framework

has the great potential for further reuse through software product line technologies.

Consequently, the maintenance of these systems such as modifying family members

to create new family members is simplified [167].

2.1.2.4 COTS Product Reuse

A commercial-off-the-shelf (COTS) product [6][7][17][100][167] is a software that

can be used directly by its buyer without any modifications. As COTS product is

developed for general purpose, such as word-processing, database management, etc.,

it usually has many features that can be reused in many different applications.

Although there can be problems with this approach to system construction [176],

COTS is widely used across government and enterprises because they offer

significant savings, in terms of costs and development time.

- 16 -

Some types of COTS products have been very popular for many years, such as

database management and GUI. Very few developers want to implement their own

database system. However, until the mid-1990s, integrating these large systems and

making them work together was a big challenge because most large systems were

designed as standalone systems [150][173].

At present, well-defined Application Programming Interfaces (APIs) that allow

program access to system functions is always available in COTS product.

Consequently, constructing a large system by integrating a range of COTS product is

a popular approach. In this way, the costs of development and delivery times are

reduced. Furthermore, risk may be reduced as the mature COTS products are already

available.

2.1.2.5 Software Product Line

A product line is a related set of applications that has a common domain-specific

architecture [11][172], which allows the implementation of planned reuse of

components within an organization.

Such architecture supports the structured assembly of product-line components,

whereby various components to be assembled following the implicit rules of planned

architecture. This approach has proven to be very successful for industry that

produces many variants of products with similar functionality. Based on the future

- 17 -

plans of product development, the components are developed according to guidelines

of product-line architecture and thus enables them to be reused (i.e. assembled) under

the same guidelines [172].

2.1.2.6 Component-Based Development

Component-Based Development (CBD) is a representative approach of software reuse.

It focuses on reduction of development time through technical facilities that enable

the easy assembly and upgrading of systems with the pre-defined components.

Because we propose to solve the existing problems in CBD by using the

semantic-based method, an intensive literature review was completed to find the

current state of art of Component-based Software Engineering (CBSE) and ontology

in the following sections.

2.2 Component-Based Software Engineering (CBSE)

Nowadays, software is widely used in daily life of almost every sector. To satisfy the

demand of various users in terms of efficiency, flexibility, reliability and security, to

name a few, software has become more powerful in function, and more complicated

in structure. As a result, software programs have become larger and more complex,

and thus more time-consuming for the programmers to deliver. Having been

perceived as a means to be able to help deliver a more user-friendly system within a

- 18 -

tight timeframe, Component-based Software Engineering began to develop in the late

1980s.

By using a component-based development approach, i.e. developing software systems

by assembling and composing components which have already been built, it is

apparent that component-based development has contributed tremendously to the

software industry in the following aspects [112][158][167]:

 Increase developer‟s productivity

 Reduce skills requirement

 Shorten development life cycle

 Reduce time to market

 Increase quality of the developed system

 Decrease development costs

In spite of these foregoing benefits, it carries the following restraints in software

development [167]:

 Time and effort required for development of components,

 Unclear and ambiguous requirements,

 Conflict between usability and reusability,

 Component maintenance costs.

- 19 -

Fig. 2.1. Process of CBSE

To understand these restraints in further detail, we need to have a closer look into the

basic process of CBSE. A very important characteristic that distinguishes

component-based development from other types of development is the separated

development processes for system development and component development, which

is illustrated in Figure 2.1. In system development, specialized products are built

through reuse. While in component development, general components are built for

reuse [2].

The focus to develop reusable components is stressed through the separate

component-development process, which ends with delivery to a common component

- 20 -

repository where reusable components are stored. Mili [137] provides an elegant

definition of reusability of a software components as the aggregation of the quality

attributes usability, and usefulness. These attributes must be first class goals for the

component-development in order to maximize reusability of the components.

In a component-based system development process, the development team focuses on

efficient development of a system dedicated for a certain purpose. The goal of the

system development process can thus be compared to the goal of a traditional

software systems development process, but the major difference is the method to

integrate the selected components (Component Composition).

The steps inside the red dotted lines are the core steps of CBD, including component

certification, component specification, component retrieval and component

composition, among which component specification and retrieval are the focus of this

research.

2.2.1 Component Certification

With the objective of evaluating the current necessity for software components,

Carnegie Mellon University‟s Software Engineering Institute (CMU/SEI) has studied

industry trends in the use of software components [9]. The study examined the

existing components from both technical and business perspectives. One of inhibitors

for adopting software component technology is the “Lack of certified components”.

- 21 -

To solve the above limitation, Trass and Hillegersberg [174] discuss the conditions

for the growth of component markets. Some of which are intrinsic characteristics of

certification processes, such as the documentation and component quality and

well-defined services. More evidence [25][66][67][183] also points to certification as

the key precondition for CBSE to be successfully adopted in the large. Moreover,

certified components used during development will have predetermined and

well-established criteria in order to reduce the risks of system failure. However, there

is no consensus of what component certification really means within the CBSE. In

[29], Councill established a satisfactory definition about what software component

certification is:

“Third-party certification is a method to ensure that software components conform to

well-defined standards; based on this certification, trusted assemblies of components

can be constructed.”

To show that a component conforms to well-defined standards, the certification

process must provide a certificate that evidences that it fulfils a given set of

requirements. Thus, trusted assembly, application development based on third-party

composition, may be performed based on previously established quality levels.

The existing component certification approaches can be divided into two stages: from

1993 to 2001, the approaches appearing in this stage were mainly focused on

mathematical and test-based models; and after 2001, the focus of the techniques and

- 22 -

models shifted gradually to predicted quality requirements. The representative

approaches in the early stage are listed in the order of appearance, including Poore et

al. [151], Wohlin & Runeson [188], Rohde et al. [155], TCI [134], Voas [180], Voas

& Payne [181] and Morris et al. [139]. The approaches focusing on reuse level degree,

reliability degree, among other properties in the second stage, include Stafford &

Wallnau [169], Councill [29], Hissam et al. [68], McGregor [133]. However,

component certification is still an open research area. The effort to develop a

component certification standard is still ongoing.

2.2.2 Component Specification

In CBSE research, much effort has gone into developing specification techniques for

software components. The component specification initially concentrated on syntactic

description of interfaces, and eventually moved to adding some semantic information,

namely as pre- and post-conditions on the operations defined in the interfaces. To date,

current research has extended the semantic information to include a little more

operational descriptions.

2.2.2.1 Characterisation of Components

As more and more systems are built from existing components, it has become

increasingly important to have a proper characterisation of components [16]. Without

- 23 -

such a characterisation, much effort is wasted on the comprehension and adaptation of

components each time they are used.

In a way, a characterisation of components is similar to but extends the

characterisation of object technology. It is used to provide a basis for the development,

management and use of components. Therefore, it can be referred to as

object-oriented characterisation of components [62].

The structural elements are essential aspects of a component in the sense that they

constitute the component. Following the general convention, these structural elements

are called “attributes”. Among these elements are those that are relevant to the

interface of the component i.e., the elements that form part of the component‟s

external view. These observable elements are particularly important from the

viewpoint of component management use and form the basis of other aspects of

component characterisation.

Another aspect of a component is the operations with which other system components

interact with it. These operations capture the dynamic behaviour of the component

and represent the service/functionality that the component provides.

As in the case of objects, attributes and operations are the most essential aspects of a

component. In addition, the structural composition of the component from attributes is

usually subject to further constraints i.e., compositions of attribute instances may not

- 24 -

be allowed. These constraints are called “structural constraints”. Some examples are

the constraints about the abstract state of the component.

In terms of the dynamic behaviour of a component, not all possible sequences of

operation invocation on the component are allowed. That is, there are operational

constraints that specify the permissible operation patterns. This aspect is similar to

that of an object captured by the state transition diagram.

Besides proactive control, which is usually in the form of explicit operation

invocation, another form of control used to capture system behaviour is reactive

control, which is usually in the form of an event-driven implicit operation invocation.

It is often the case that certain aspects of a system are better captured through

proactive control, while other aspects of the system are better captured in the form of

reactive control. To facilitate reactive control, a component may generate events from

time to time, which other components in the system may choose to respond to. The

Java component model i.e., JavaBeans, provides such support.

A component may interact with a number of other components from specific

perspectives (or playing specific roles). The interactions between the component

concerned and these other components may differ depending on the components and

their related perspectives. The port specification goes some way towards this direction.

In general, this suggests the need for defining perspective/role-oriented interaction

protocols for a given component i.e., multi interfaces. A component may be used, and

- 25 -

play different roles, in different circumstances. The circumstances provide the

contexts of use for the component.

Another aspect of a component is its non-functional properties such as reliability,

performance and deployability [8][26]. In the context of building systems from

existing components, the characterisation of the components‟ non-functional

properties and their impact on enclosing systems are particularly important. However,

not much work has been done in this area.

2.2.2.2 Component Specification Approaches

The mess of work are proposed in the area of component specification, the

representative approaches are categorized in terms of early approaches,

design-by-contract methods, formal methods, and framework-based approaches.

 Early Approaches

Object Management Groups‟ CORBA and Microsoft‟s COM/COM+ component

frameworks relied entirely on interface definition language (IDL) to specify a

component. The IDL specification contained a description of the operations and

types that the component used in its interfaces, including the exact signature of

the operation with its parameters.

- 26 -

With the introduction of the CORBA Component Model (CCM) by the Object

Management Group and the .NET framework by Microsoft, both groups moved

away from having IDL as the only method of specification. CCM is extended,

including provides and requires interfaces, event sources and sinks, and attributes.

The .NET framework went away from explicit specification of an IDL choosing

instead to rely on the components themselves to supply the necessary information

(extracted via .NET‟s Common Language Runtime).

Another popular method for writing specifications is free-text. This is a carryover

from more traditional programming methods, from the days of libraries of

procedures and, more recently, of standard template libraries. The Swing library

of GUI components available as part of Sun Microsystems JavaTM releases is

specified using JavaDoc, a web-based specification method that is the de facto

standard of learning about Java components (as well as the Java library itself).

Free-text-based specification is still popular because of two reasons. It is human

readable and understandable, and with the advent of web hyperlinks, even easy to

use. Free-text allows the component implementer to specify just about anything

they wish about the component, to any level of precision.

 Design-by-Contract

Another category of component specifications is the one made popular by the

Cheesman and Daniels component specification process [24] as well as by the

- 27 -

Catalysis Approach of D‟Souza et al. [34]. Both approaches employ

design-by-contract methods, which are characterized by the assertion that a

component can be precisely specified solely by the specification of operations in

the interfaces offered by that component. These methods define the contract as a

collection of assertions that describe what a component does and does not do. Not

only do these assertions precisely describe the behavior of the operations in the

component, they are also logical expressions of the entities in the information

model of the component. The key assertions of the contracts are invariants,

pre-conditions, and post-conditions.

Design by contract methods generally specifies the design of the component

using a graphical language, most often UML. UML can be used, because almost

all of the specification methods that fall in this category assume that the

component developer will use object-oriented methods to design and implement

component functionality. The processes described in [152] and [155] focus

almost entirely on the development of the component. The extension mechanism

of stereotypes in UML is used to build component specification architectures and

component interaction diagrams. These models describe using UML, the

interfaces provided by the components in the model, and in the case of [152], the

interfaces required by the component. Some design by contract methods may

develop behavioral diagrams, such as collaboration diagrams, interaction

diagrams, or even state machines that have been applied at the component, rather

- 28 -

than object level. The heart of this UML specification is a model containing a set

of class elements, stereotyped as components, each naming an interface, and each

containing a list of operation signatures. These are the provided interfaces of the

component.

The resultant component specification is specified in UML, with the contract

constraints specified in some formal language; typically, they are expressed in

OCL [185]. The results in a component specification using a graphical model

with textual attributes attached to specific operations in the model.

In the description of their specification method, Liu and Cunningham [128] state

that their method provides two complementary purposes: (1) to specify expected

functionality required by a component to fill a specific need; and (2) to specify

the actual functionality implemented in an available component. They, however,

provide no reason for this position.

The Catalysis Approach offered by D‟Souza et al. [34] employs an action

language to specify operational constraints instead of using OCL. The claim here

is that the action language offers fully operational specification capabilities.

Kim et al. [118] offers a methodology which, like D‟Souza‟s, also employs an

action system, instead of static OCL constraints. They state that the difference

between their approach and others in this category is that they use this action

- 29 -

system to express dynamic configuration properties of the component. In their

method, components are again modeled in UML, defining object relationships

within the component. Once interfaces are developed, the dynamic operational

specification of each operation in the interface is specified in simple statements in

an action language based on existence dependencies2. To obtain the rigor desired

by the authors, these statements are then translated into Petri nets [111] to take

advantage of formal analysis techniques. These Petri net specifications are then

used to build an execution model. They state that their method offers theoretical

means for describing and analyzing both structural and behavioral aspects of

components.

 Formal Methods

Unlike the design by contract approaches discussed previously, component

specification via formal methods tends to focus more on verification of the

specified model and component reuse. Formal specifications provide precise

descriptions of problem requirements, component function, and component

structure [147]. Formal inference defines a mechanism for reliably and

formally comparing problem requirements and component specifications.

However, most specification methods concentrate their efforts on the

structural and operational aspects of the interfaces of the component.

- 30 -

Penix and Alexander [148] concentrate on formal specification of the

component inputs and outputs using axiomatic expressions specifying the

pre-conditions and post-conditions on the inputs to and outputs of,

respectively, the component interface operations in terms of the components‟

modeled domain and range. They also allow for constraints to be specified

not only for specific operations, but for the component as a whole. Properties

describing the environment in which the component will execute are given

only cursory attention, and there is no discussion of the dependencies

between the specified component and other system elements.

Morel and Alexander [138] also offer an approach formalizing the pre- and

post-conditions of component interfaces. Their motivation is the

development of a component adaptation framework, stating that matches

found between components in the selection process will never likely meet all

the requirements. Thus, closely matching components will need to be adapted

in order to be assembled into the target component system. They have

extended the ideas in [168] to include system level properties. The

component specifications are written in Rosetta, which is a systems level

design language for modeling heterogeneous systems. A facet specifies a

particular aspect of a system or component. Facets can describe behaviors

and more general requirements. A facet operates in a declared domain

(system environment), which defines semantics available to the facet.

- 31 -

 Frameworks

Frameworks offer a foundation for methods of component specification.

They direct the contents and format of specifications, but do not dictate a

process or prescribe methods to obtain the information that makes up the

contents of the specifications. Frameworks are far more comprehensive in

defining the amount of information required for a component specification

because they focus on generalizing component operation in a specific

environment.

Three prominent commercially available frameworks (.NET, CCM, and EJB)

focus on implementation and development of components that are

constrained to the environment for which they were developed. Even though

they provide a good set of practical solutions to many of the issues facing

component development, there is a lack of support for component selection.

For specifically targeted components, the burden of selection should be

easier in these environments, by the reason of the environments share a

common set of environment and system assumptions, and configuration

properties. However, that since these component frameworks have been

implemented by different vendors (excepting COM/.NET), the burden of

selection was not apparent, as component “experts” were able to “select”

components based on experience and advice from others.

- 32 -

Within their own environments, reusability of components is fairly good, due

to the set of common assumptions on the environment. Even between

different implementations of the same framework (e.g., CORBA), component

reuse here is better than the general case.

Let us look at the following two frameworks to see what they offer in the

context of specifying components for selection and reuse.

Han [62] offers an approach to software component specification containing

four specific sets of information. First, the properties, operation, and events

of the component form the signature of the component interface. Second,

constraints further restrict and precisely define component interface. Han

states that the signature and the constraints together characterize the

component capability. The third set of information is component usage in

context. Configurations are defined based on the component usage scenarios.

A configuration identifies the roles and defines the role-based interfaces of

the component in a given use context. Lastly, the component‟s

non-functional properties are useful in assessing the component‟s usability in

given situations and in analyzing properties of the enclosing systems.

A framework whose primary focus is the architectural connectivity between

components, proposed by Tracz [175], is named SOFA, for SOFtware

Appliances. Self described as a platform for components, SOFA views

- 33 -

applications as hierarchies of nested components, wherein each component is

either primitive or composed of primitive components. As a result of

hierarchy, all functionality is in primitive components. There is no direct

mechanism for inheritance of components. The SOFA component model

specifies several framework-level features. First, SOFA specifies interfaces,

much in the way as has been done in other methods and approaches. It then

defines Frames, which are black-box views of the component, containing a

view of the provided and required interfaces plus some component

configuration parameters. Next is the Architectures, more of a gray-box view,

which define the ties between the subcomponents of the modeled component.

SOFA defines four types of ties: binding, wherein a requires-interface is

bound to a provides-interface; delegating, wherein a provides-interface of

component is bound to a subcomponent‟s provides-interface; subsuming,

wherein a subcomponent‟s requires-interface is bound to a requires interface

of component; and exempting, wherein the interface of a subcomponent is

exempted from any ties. Non-exempted ties are realized via a connector,

which models the interconnection between components, implements

interaction semantics, and takes account of the deployment details.

In addition to these structural specifications, SOFA utilizes behavior

protocols. These protocols represent the formal capture of communication

between components, modeled as events (specifically emit method call,

- 34 -

accept call, emit return, accept return). Sequences of events are called a trace.

SOFA then defines that the behavior of an entity (an interface, frame, or

architecture) is the set of all traces which can be produced by that entity. All

the information is captured using SOFA‟s Component Description Language,

or CDL. CDL is like the IDLs we have seen above, but has extensions to

support frames, architectures, and the behavior protocols. These extensions

make CDL a rather complex specification language.

2.2.3 Component Retrieval

A major limitation of software reuse is the lack of efficient means to search and

retrieve reusable artefacts from the repository. The same problem is even more severe

in the CBD.

There are several factors that impact the search and retrieval process including scope

of the repository, query representation, asset representation, storage structure,

navigation scheme, relevance and matching criteria [136]. Most retrieval methods

focus on one or two of these factors to suit the specific domain they are working in.

Consequently, these methods do not provide an effective overall retrieval solution.

As mentioned above, one of the big hurdles in component-based development is how

to retrieve suitable components. Among the bulk of solutions proposed so far, none of

- 35 -

them satisfactorily surpassed the known hurdles in searching and retrieving relevant

components from a repository.

The existing approaches can be classified into four different types:

a) Simple keyword and string search [137]

Simple keyword searching is most widely used by search engines, whereby a user

can locate the target object by specifying a set of keywords. The search engine

will compare them with the labels of the objects and retrieve those matched. This

is the most simplified approach without giving due consideration to any

additional information, such as relationships among objects or synonymous

labels.

b) Faceted classification and retrieval [143][153]

The faceted classification approach attempts to classify the objects in the

repository based on predefined taxonomies, e.g. subjects. Although this approach

is useful for objects that can clearly fall into such categories, it is less useful for

those without explicit classification.

c) Signature matching [192]

Signature matching focuses on matching of function types and argument types to

the query specified by the user. Signature matching could be one either at the

- 36 -

function level or module level. But sometimes it is difficult to map user

requirements with function and module signatures. And it does not work for

multiple components.

d) Behavioural matching [59][193]

Behavioural matching is the most involved approach with consideration of the

functional behaviour of objects, in which objects are provided with input vectors,

and the outputs generated are compared to the expected outputs. Objects that

exhibit certain behaviour are retrieved and presented to the user.

The last two approaches are considered cumbersome and inefficient without giving

due consideration to the domain and search context information. It is apparent that all

the search methods mentioned above are lacking accurate semantics of the component

and the user query.

2.2.4 Component Adaptation

Component adaptation refers to the process of changing the component for use in a

particular application. While the component may only partially satisfy the user

requirement, it is essential to modify the behaviors of the component [116], which

may create further difficulties for adaptation when the original components are not

suitable for additional requirements [56][64].

- 37 -

Since the early 1990s, a number of techniques have been developed for adapting

components. These component adaptation techniques can be categorised into

white-box and black-box adaptation techniques. White-box techniques (e.g.

inheritance) require the software engineer to adapt a reused component either by

changing its internal specification or by overriding and excluding parts of the internal

specification. Black-box techniques (e.g. wrapping) reuse the component as it is, but

adapt the interface of the component. Black-box adaptation only requires the software

engineer to understand the interface of the component, not the internals.

Many requirements for component adaptation have been identified in the prior

research [18][116]:

The adapted component should be used in the same way as the original component

would have been used, even when the adapted component may behave differently; No

additional effort should be required to integrate the adapted component to the target

system, as well as to maintain the client-side view; The original component should be

open to any future adaptation while maintaining its original identity.

This suggested that all phases of software engineering need to be considered during

the component adaptation [65][129][132], including:

 The design phase, when the component designer specifies the interfaces,

interoperability, and relationship between components;

- 38 -

 The implementation phase, when the components is constructed from design

specifications, including writing the code, obtaining the source code for all

the dependent components, implementations of interfaces and database tables,

compilation and linking of source files;

 The deployment phase, when the component is deployed into a component

infrastructure.

Four representative component adaptation techniques are presented as follows:

 Inheritance

Inheritance makes the state and behaviour of the reused component available

to the reusing component [116]. Depending on the language model, all or

part of the internal aspects become available to the reusing component.

One of the important advantages of inheritance is that the code remains in

just one location. However, it is disadvantaged by the fact that the software

engineer concerned must have detailed understanding of the internal

functionality of a superclass when overriding superclass methods and when

defining new behaviour using behaviour defined in the superclass.

- 39 -

 Wrapping

Wrapping is a process to encapsulate a component to forward the

functionality of the wrapped component with minor changes based on the

client's request [44].There is no clear boundary between wrapping and

aggregation. While wrapping is used to adapt the behaviour of the enclosed

component, aggregation is used to compose new functionality out of existing

components providing relevant functionality. A major disadvantage of

wrapping is that it may result in considerable implementation overhead since

the complete interface of the wrapped component needs to be handled by the

wrapper, including those interface elements that need not be adapted. In

addition, wrapping may lead to excessive amounts of adaptation code and

serious performance reductions [69].

 Superimposition

Superimposition is a technique based on the concept that the entire

functionality of a component (rather than that of a single method) should be

superimposed by certain behavior [18]. The superimposition of a behavior B

over a component C is the additional overriding behavior of B over the whole

component C. The principle underlying superimposition is that the

component C and the overriding behavior B are separate entities which may

- 40 -

be reused independently. This overriding behavior is encapsulated as an

adaptation entity.

Superimposition is implemented as a language construct in the layered object

model (LayOM) through the notion of layers. LayOM is an extended

component object model that, next to instance variables and methods,

contains parts such as states, categories and layers. The extended

expressiveness of LayOM furnishes the software developer with powerful

component adaptation types through superimposition.

Superimposition attempts to preserve the transparency of the composition of

components with adaptation types - a component and its clients should be

unaware of the presence of other adaptation entities that are active on the

component.

Superimposition uses nested component adaptation types to compose

multiple adaptation behaviours for a single component. However, lack of

component information, limits modification to a simple level, such as

conversion of parameters, and refinement of operations. Moreover, with

more layers of code imposed on original code, the overhead of the adapted

component increases heavily. This degrades system efficiency.

- 41 -

 SAGA

The Scenario-based dynamic component Adaptation and GenerAtion (SAGA)

[127][184] project has developed a component adaptation approach with

little code overhead through XML-based component specification,

interrelated adaptation scenarios and corresponding component adaptation

and generation. In this project, a Component Definition Language (CDL) is

used to record the design configuration of components to be reused in

specific applications. Scenarios are established to capture adaptation

requirements.

SAGA is more suitable for the development of traditional component-based

systems where developers have access to the internal design of components

and can impose intervention on the adaptation and integration process.

However, automation is still a challenge in SAGA due to the complexity in

generating blocks of code according to scenarios and the original component

code.

2.3 Ontology

Ontology attracts many attentions nowadays in computer science. Research fields,

like knowledge management, intelligent information integration, e-commerce,

cooperative information system, database integration, all claim that ontology will play

- 42 -

a major role in the foreseeable future. The reason of the popularity lies in its promise

of a shared and common understanding of some domain, which can be communicated

across people and computers. In general, the accepted industrial meaning of

"ontology" makes it synonymous with "conceptual model" and is clearly independent

of its philosophical antecedents [186]. The definitions are adopted here from

Uscholod [178]: “ontology is an explicit representation of a conceptualization. This

conceptualization includes a set of concepts, their definition and their

inter-relationships. Preferably this conceptualization is shared or agreed.” In spite of

varying interests in research and the use of ontologies, many available languages and

tools are proposed to construct good ontologies.

2.3.1 Ontology Language

The categorization of the existing ontology languages is adopted from the evaluation

of languages in [12], including traditional ontology languages, web standards and

web-based ontology languages. Figure 2.2 depicts the candidate languages and their

relations.

- 43 -

Fig. 2.2. Classification of ontology languages

2.3.1.1 Traditional Ontology Language

Traditional ontology languages are mostly rooted from AI or Knowledge engineering.

The languages can be further divided into four groups as shown in Figure 2.2.

The first group is enriched first-order predicate logic. KIF and CycL whose central

modeling primitive are predicates can be representative here. However KIF is

eliminated, since its general purpose is for interchange. CycL is a formal language

that focuses on proving a general ontology for commonsense knowledge. Its syntax

derives from first-order predicate calculus, and was first developed in the Cyc project

[125]. The Cyc has created and manages a large knowledge base for common-sense

knowledge created with this language. To express real-world concepts the language

has a vocabulary of terms (about 160 of them), which can be combined into

- 44 -

meaningful CycL expressions. Some of the main concepts of CycL are: constants,

variables, formulas, predicates and microtheories. Microtheories are sets of formulas,

but they can also participate in formulas, i.e. reification. The microtheories provide a

context for the truth of formulas.

The second group is frame-based languages, Ontolingua, F-logic, CML and OCML

fall into that group. Classes (frames) are the central modeling primitives.

 Ontolingua

The term Ontolingua is overloaded, referring both to the system and to the

language. The Ontolingua language is based on KIF (Knowledge Interchange

Format) [47] and the Frame Ontology [55]. KIF has a declarative semantic and is

based on first-order predicate calculus. It provides definitions for object, function,

relation and logical constants. KIF is a language for knowledge exchange, and is

tedious to use for the development of ontologies. Thus, the Frame Ontology is

built on top of KIF, and provides definitions for object-oriented and

frame-language terms, like class, subclass-of, and instance-of. One good thing

with the frame-based style is that it is intuitive to humans and thus can be easily

understood. But axioms can't be expressed in Frame Ontology.

Ontolingua lets the developer decide whether to use the full expressiveness of

KIF, where axioms can be expressed, or to be more restricted during the

- 45 -

specification by using only Frame ontology terms. An ontology developed with

Ontolingua is typically defined by: relations, classes (treated as unary relations),

functions (defined like a relation), individuals (distinguished objects) and axioms

(relate these terms).

 F-logic (Frame Logic)

F-logic [117] was developed in the late 80s. It is a logic language integrated with

object-oriented or frame-based paradigm. Some fundamental concepts from

object-oriented languages have a direct representation in F-logic, for example,

class, method, types and inheritance, and other secondary aspects, like

polymorphism, can be easily modeled as well. One of the main problems with

object oriented approach, lack of logic semantics, is overcome here by the logical

foundation of F-logic. There are many similarities between F-logic and

Ontolingua, since they both try to integrate frames into logical framework. But

the frame-based modeling primitives are explicitly defined in the semantics of

F-logic, while Ontolingua treats them as second-order terms defined with KIF

axioms. Another difference is that F-logic lacks the powerful reification

mechanism. Ontolingua inherits from KIF, which allows the use of formulas as

terms of meta-formulas.

- 46 -

 CML (Conceptual Modeling Language)

CML [160] was developed to support the CommonKADS framework, and is

basically an informal notation for knowledge modeling. CML offers privileges

for domain knowledge, inference knowledge and task knowledge. It has many

similarities with OCML, but lacks operability capabilities [140] and is more or

less dedicated to CommonKADS. CML provides more primitives than OCML in

the structural perspective, but the commitment restricts the general ontology

specification capabilities. CML will not be evaluated further in this paper because

OCML is similar, but more general.

 OCML (Operational Conceptual Modeling Language)

OCML was developed and is maintained by the Knowledge Media Institute (KMI)

in context of the VITAL project [163]. Its primary purpose is to provide

operational knowledge modelling facilities and to achieve this, it includes

interpreters for functional and control terms. OCML provides mechanisms for

defining relations, functions, classes, instances, rules and procedures. It can be

viewed to some extent as “operational ontolingua”, which provides theorem

proving and functional evaluation mechanisms for Ontolingua constructs. The

operational nature of OCML makes it possible to support quick prototyping,

which is important for model validation. OCML provides a set of base ontologies

that forms a rich modeling platform for building other ontologies: meta, functions,

- 47 -

relations, sets, numbers, lists, strings, mapping, frames, inferences, environment

and task-method. The functionality of the base ontologies is roughly analogous to

Java Foundation Class.

The third group is Description Logic (DL) language, only of which is Loom.

 LOOM

Loom [130] is a knowledge representation and reasoning system based on

description logic. A distinguished feature of DL is that classes (concepts) can be

defined in terms of descriptions that specify the properties or restrictions, which

objects must satisfy in order to belong to the concept. In other words, this means

that class membership relations can be determined by inference. One of the

primary tasks of Loom is to compute subsumption relationships between

descriptions, and organize them into taxonomies. To achieve automatic derivation

of taxonomies, Loom offers both a language for the description of objects and

relationships, and an assertion language for specifying constraints on the concepts

and relations. Loom provides powerful deductive reasoning with underlying

production and classification-based inference capabilities.

 Telos

Telos [141] was constructed to handle several modeling aspects, and brought in

ideas from knowledge representation, deductive databases and requirement

- 48 -

languages for constructing information systems. Basically it's a knowledge

representation language with an object-oriented focus. An object is either an

individual (entities, concepts, nodes) or an attribute (relationships, attribute links).

Telos has high expressive power, especially because individuals and attributes are

treated uniformly. Integrity, deductive and constraint rules can be specified

through an assertion sub-language, and constructs for temporal statements are

offered. The language has hardly been maintained in the last decade, and is

therefore not suitable in the interoperability and distribution sense.

2.3.1.2 Web Standards

In this part we review the works that investigate the possibility of using web standards

to specify ontologies.

 XML (Extensible Markup Language)

XML [21] is the universal format for structured documents and data on the Web,

proposed by the W3C. The main contribution of XML is that it provides a

common and communicable syntax for web documents. XML itself is not an

ontology language, but XML-Schemas, which define the structure, constraints

and the semantics of XML documents, be used to specify ontology. But since

XML-schema is created mainly for the verification of XML document and its

- 49 -

modeling primitives are more application oriented rather than concept oriented, it

will not be viewed as ontology language.

 RDF (Resource Description Framework)

RDF [124] is an infrastructure for encoding, exchange and reuse of structured

metadata, proposed also by W3C. RDF provides a standard form for representing

metadata in XML. The RDF data model consists of three object types: resources

(subjects; available or imaginable entity), properties (predicates; describing the

resources) and statements (objects; assigning a value for a property in a resource).

Principally, information is stored in the form of RDF statements, which are

machine understandable. Search engines, intelligent agents, information brokers,

browsers and human users can understand and use that semantic information.

 RDFS (Resource Description Framework Schema)

RDF Schema (RDFS) [107] enriches the basic RDF model, by providing a

vocabulary for RDF, which is assumed to have certain semantics. Predefined

properties can be used to model instance of and subclass of relationships as well

as domain restrictions and range restrictions of attributes. Indeed, the RDF

schema provides modeling primitives that can be used to capture basic semantics

in a domain neutral way. That is, RDFS specifies metadata that is applicable to

the entities and their properties in all domains. The metadata then serves as a

- 50 -

standard model by which RDF tools can operate on specific domain models, since

the RDFS meta model elements will have a fixed semantics in all domain models.

RDFS provides simple but powerful modeling primitives for structuring domain

knowledge into classes and sub classes, properties and sub properties, and can

impose restrictions on the domain and range of properties, and defines the

semantics of containers.

2.3.1.3 Web-based Ontology Language

 OIL (Ontology Inference Layer)

OIL [32] was developed in the On-To-Knowledge project, and is both a

representation and exchange language for ontologies. The language is combined

with primitives from frame-based languages, and formal semantics and reasoning

services from description logics. To enable the use of OIL on the Web it is

grounded on the W3C standards, XML and RDF(S). The ontology description is

divided into three layers: object level (concrete instances), first meta-level

(ontological definitions) and second meta-level (describing features of the

ontology). OIL provides definitions for classes and slots (relations), and a limited

set of axioms. Slots are treated like first-class citizens, and can be represented in

hierarchies. There are several limitations related to axioms, which also limits how

expressive the language is [40]. OIL has a accurate semantics that forms a

necessary foundation for effective reasoning support.

- 51 -

 DAML+OIL

DAML+OIL [71] is a semantic markup language for Web resources, and is a

proposed W3C standard for ontological and metadata representation. DAML

(DARPA Agent Modeling Language) was transformed to DAML+OIL by

including some OIL aspects in the language. DAML+OIL is built on RDF and

RDF Schema, but provides richer modeling primitives, commonly found in

description logics. Most of the frame-based ideals provided in OIL were removed,

and assertions are made in terms of a limited set of axioms. The result is a

language that works better as a delivery platform for ontologies than RDF and

XTM [12], but has limitations as a language for the development of ontologies,

because of the removal of the frame-based constructs.

 OWL (Web Ontology Language)

OWL is a family of knowledge representation languages for authoring ontologies.

The languages are characterised by formal semantics and RDF/XML-based

serializations for the Semantic Web. OWL is endorsed by the World Wide Web

Consortium (W3C) [106] and has attracted academic, medical and commercial

interest. Intuitively, OWL can represent information about categories of objects

and how objects are interrelated. It can also represent information about objects

themselves. More precisely, on the one side, OWL let describe classes by

specifying relevant properties of objects belonging to them. This can be achieved

http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Ontology_(computer_science)
http://en.wikipedia.org/wiki/Formal_semantics
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/Web_Ontology_Language#cite_note-0#cite_note-0
http://en.wikipedia.org/wiki/Web_Ontology_Language#cite_note-0#cite_note-0

- 52 -

by means of a partial (necessary) or a complete (necessary and sufficient)

definition of a class as a logical combination of other classes, or as an

enumeration of specified objects. OWL let also describe properties and provide

domains and ranges for them. Domains can be OWL classes, whereas ranges can

be either OWL classes or externally-defined datatypes (e.g. string or integer).

Moreover, OWL let provide restrictions on how properties behave that are local

to a class. Thus, it is possible to define classes where a particular property is

restricted so that i) all the values for the property in instances of the class must

belong to a certain class or datatype (universal restriction), ii) at least one value

must come from a certain class or datatype (existential restriction), and iii) there

must be at least or at most a certain number of distinct values (cardinality

restriction). On the other side, OWL can also be used to restrict the models to

meaningful ones by organizing classes in a subclass hierarchy, as well as

properties in a sub property hierarchy. Other features are the possibility to declare

properties as transitive, symmetric, functional or inverse of other properties, and

couple of classes or properties as disjoint or equivalent. Finally, OWL represents

information about individuals, providing axioms that state which objects belong

to which classes, what the property values are of specific objects and whether two

objects are the same or are distinguished.

OWL is quite a sophisticated language. Several different influences were

mandated on its design. The most important are DLs, the frames paradigm and

- 53 -

the Semantic Web vision of a stack of languages including XML and RDF. On

the one hand, OWL semantics is formalised by means of a DL style model theory.

In particular, OWL is based on the SH family of Description Logics (DL) [72],

which is equivalent to the ALC DL [5] extended with transitive roles and role

hierarchies. Such family of languages represents a suitable balance between

expressivity requirements and computational ones. Moreover, practical decision

procedures for reasoning on them are available, as well as implemented systems

such as FaCT [70] and RACER [98]. On the other hand, OWL formal

specification is given by an abstract syntax, which has been heavily influenced by

frames and constitutes the surface structure of the language. Class axioms consist

of the name of the class being described, a modality indicating whether the

definition of the class is partial or complete, and a sequence of property

restrictions and names of more general classes, whereas property axioms specify

the name of the property and its various features. Such a frame-like syntax makes

OWL easier to understand and to use.

Moreover, axioms can be directly translated into DL axioms and they can be

easily expressed by means of a set of RDF triples. This property is an essential

one, since OWL was also required to have RDF/XML exchange syntax, because

of its connections with the Semantic Web.

- 54 -

Given the huge number of requirements for OWL and the difficulty of satisfying

all of them in combination, three different versions of OWL have been designed:

 OWL-Lite is the simplest variant for building a basic frame system (or an

object oriented database) in terms of class, property, subclass relation, and

restrictions. OWL-Lite does not use the entire OWL vocabulary and some

OWL terms are used under certain restrictions.

 OWL-DL is grounded on DL, and focuses on common formal semantics and

inference decidability. Description logics offer additional ontology constructs

(such as conjunction, disjunction, and negation) besides class and relation,

and have two important inference mechanisms: subsumption and consistency.

Horrocks and Sattler [71] argued that basic inference in most variations of

DL is decidable with complexity between polynomial and exponential time.

The strong Set Theory background makes DL suitable for capturing

knowledge about a domain in which instances can be grouped into classes

and relationships among classes are binary. OWL-DL uses all OWL ontology

constructs with some restrictions.

 OWL-Full is the most expressive version of OWL but it does not guarantee

decidability. The biggest difference between OWL-DL and OWL-Full is that

class space and instance space are disjointed in OWL-DL but not in

OWL-Full. That is, a class can be interpreted simultaneously as a set of

- 55 -

individuals and as an individual belonging to another class in OWL-Full. The

entire OWL vocabulary can be used in without any restrictions in OWL-Full.

2.3.2 Ontology Tools

Ontology is constructed by suitable languages with the help of effective supporting

tools.

2.3.2.1 Ontology Editors

A good editor can save a significant amount of time when developing ontologies by

helping ontology engineers focus on the semantics without worrying much about

syntactic organization [33]. This section offers a brief introduction to some popular

ontology editors for collaborative (or independent) ontology development.

Protege [48] provides a standalone ontology development environment. It is

highlighted by its syntax grammar independent user interface and pluggable

infrastructure. It is suitable for independent ontology development and has a large

user community. SWOOP [114] takes advantage of both Protege and Ontolingua [42]

and provides a convenient web-based ontology browsing, editing, debugging [145]

and publishing interface.

- 56 -

2.3.2.2 Ontology Repositories

Although the Web improves the visibility of centralized ontology development, it is

hard to achieve a universal ontology for everything (e.g. Cyc) due to huge space

complexity. Hence, distributed ontology development is preferred in the Semantic

Web, i.e., small ontologies are authored by different sources in an incremental fashion.

To reuse existing ontologies, effective web-based tools are in great need to browse,

search and navigate distributed ontologies. The popular repositories for publishing

and searching ontologies on the Web are detailed below.

 DAML Ontology Library

DAML ontology library [91] indexes user submitted ontologies and provides

browse/search services. It organizes ontologies by their URI, users annotations

supplied during ontology submission (e.g. submission date, keyword, open

directory category, funding source and submission organization), the defined

class/property, or the used namespace. Users can run sub-string queries over a

defined class/property.

 SchemaWeb

SchemaWeb [99] provides services similar to DAML ontology library with better

human/machine user interface (i.e. both HTML and web service interface). It

adds more services: i) for human user - it provides full text search service for

- 57 -

indexed ontologies, and a customizable resource search interface by letting users

specify triple patterns; ii) for machine agents - it searches the “official” ontology

of a given namespace or the resource with the user specified triple patterns; it also

navigates RDF graph through RDFS properties (i.e. sub- ClassOf, subPropertyOf,

domain, range), and publishes RSS feeds about new ontology submissions.

 W3C’s Ontaria

W3C‟s Ontaria [105] stores RDF documents (including ontologies) and provides

search/navigation services in the repository. It allows a user to i) browse a RDF

file as a list of triples, a list of used properties, or a list of populated classes, and ii)

browse relations between RDF files.

 SemanticWeb Search

SemanticWeb Search [101] provides an object oriented view of the Semantic Web,

i.e. it indexes instances of well-known classes including rdfs:Class, rdf:Property,

foaf:Person, and rss:Item. It partially supports ontology search by finding

instances of rdfs:Class and rdf:Property; however, its search results are biased to

terms from the namespace of WordNet 1.6.

 Swoogle

Swoogle [88] indexes millions of Semantic Web documents (including tens of

- 58 -

thousands of ontologies). It enables users to search ontologies by specifying

constraints on document metadata such as document URLs, defined

classes/properties, used namespaces, and RDF encoding. Moreover, it provides

detailed metadata about ontologies and classes/properties in an object oriented

fashion. It has an ontology dictionary that enables users to browse the vocabulary

(i.e. over 150KB URIrefs of defined/used classes and properties) used by

Semantic Web documents, and to navigate the Semantic Web by following links

among classes/properties, namespace and RDF documents. In addition, it is

powered by automatic and incremental Semantic Web document discovery

mechanisms and updates statistics about the use of ontologies in the Semantic

Web on a daily basis.

2.3.2.3 Ontology Language Processors

An ontology construct expresses descriptive semantics, and its actionable semantics is

enforced by inference. Hence, effective tools, such as parsers, validators, and

inference engines, are needed to fulfill the reasoning capability. A detailed

developers‟ guide is available online [108], and experimental evaluation can be found

in W3C‟s OWL Test Cases report [104].

 OWLJessKB [73] is the descendent of DAMLJessKB [120] and is based on the

Jess Rete inference engine.

- 59 -

 Java Theorem Prover (JTP) [95], was developed by Stanford University. It

supports both forward and backward chaining reasoning by using RDF/RDFS and

OWL semantics [51].

 Jena [80] was developed by HP Labs at Bristol [22]. It is a popular open-source

project, which provides sound and almost complete (except for blank node types)

reasoning support for RDFS. The latest version of Jena also partially supports

OWL reasoning and allows users to create customized rule engines.

 F-OWL [79] was developed by UMBC [195]. It is an reasoning engine which is

based on Flora-218.

 FaCT++ [83] was developed by Manchester University [177]. It is the

descendent of FaCT [70] reasoning system, which provides full support for

OWL-Lite. And the latest version complete support for OWL-DL reasoning and

partially for OWL 2.

 Racer [102] is a DL-based reasoner [58]. It provides reasoning over

RDFS/DAML/OWL ontologies through rules explicitly specified by the user.

 Pellet [96] was developed by the University of Maryland. It is a „hybrid‟ DL

reasoner that can deal both TBox reasoning as well as non-empty ABox reasoning

[166]. It is used as the underlying OWL reasoned for SWOOP ontology editor

[114] and provides in-depth ontology consistency analysis.

- 60 -

 TRIPLE [89] was developed by Sintek and Decker [165]. It is a Horn Logic based

reasoning engine and employs the same features of F-logic. Different with

F-logic, it does not support fixed semantics expression for classes and objects.

This reasoner can be used by translating the DL-based OWL into a language

(named TRIPLE) handled by the reasoner. Extensions of DL that cannot be

handled by Horn logic can be supported by incorporating other reasoners, such as

FaCT, to create a hybrid reasoning system.

 SweetRules [87] is a rule toolkit for RuleML. RuleML has highly description

capability, which is based on courteous logic programs. It provides additional

built-in semantics to OWL, including prioritized conflict handling and procedural

attachments [87]. The SweetRules engine also provides semantics preserving

translation between different languages and ontologies (implicit axioms).

2.4 Analysis and Conclusion

The literature review is conducted in respect of the theories, the technologies, the

approaches and the tools that related to the semantic-based component specification

and retrieval. It starts from the software reuse in which the features of the mainstream

reuse approaches are introduced and are analyzed according to the criteria including

the development schedule, the expected software lifetime, the criticality of the

software and its non-functional requirements, the application domain and the platform.

The existing software reuse approaches have their own advantages and applicable

app:lj:%E7%90%86%E8%AE%BA?ljtype=blng&ljblngcont=0&ljtran=theory

- 61 -

conditions. In fact, among them there are no clear boundaries. Often there are two or

even many methods are used together during software reuse development.

And then, the review focuses on the component-based development in which the key

steps are expressed, including component certification, component specification and

retrieval, and component adaptation. Through the review, it was found that the

research of CBD is centred on finding appropriate formal approaches for describing

components, the architectures for composing them, and the methods for

component-based software construction. Through over 20 years of continuous

improvement, CBD approach has been increasingly used in the software development.

The main features are: 1) the basic CBD framework has been widely accepted, in

particular the emergence of a large number of component-based models; 2) according

to the increasing user requirements, many new methods continue to arise and improve

for each step of CBD; 3) a large number of components are provided from the

gradually mature open source or commercial component markets; 4) human

interaction during the CBD is decrease with the help of the development tools.

Currently, the CBD is still a key research area, one of the important reasons is the

component mismatch problem is still not well addressed, even many traditional

approaches are proposed for the component specification and retrieval (as mentioned

in section 2.2.2 and 2.2.3).

- 62 -

In the recent years, the ontology is applied to improve the precision of the component

specification and retrieval, which has become a new hotspot. In the third section, the

review introduces the ontology and its related issues, such as ontology languages,

ontology editors, ontology repositories and ontology language processors. Ontology

describes the aspects of the real world that can be used multiple times in different

applications. The description capability and reasoning capability can improve the

search effectiveness in the process of component specification and retrieval, and

reduce the impact of the human intervention by the following reasons: 1) ontology

provides a mechanism to represent and store domain specific knowledge, which can

be used to find the most related components; 2) the relationships of ontology can

exploit the additional knowledge embedded in domain ontology to augment and

correct the user requirements; 3) the formal definitions of the ontology can provide

the high degree of automation with the help of ontology tools in the component

specification and retrieval.

The completed literature review benefits the research in the thesis with the following

conclusions:

1) Software reuse is a widely-used comprehensive approach to improve the

efficiency and to reduce the costs of the development of various software

systems.

- 63 -

2) CBD is one of the most popular approaches of the software reuse by the reason of

components are the most suitable and widely used assets for software reuse.

3) The component mismatch is a persistent and difficult problem, which limits the

application and development of the CBD.

4) To solve the mismatch problem, ontology is introduced to help understand the

semantics of components. Ontology is useful because it provides a means of

understanding what the components mean in both the domain model and reuse

repository.

5) The OWL-DL has the potential to define the contents of the used ontology by the

reason of its appropriate description and reasoning capability.

6) Ontology is constructed conveniently by OWL-DL with the help of relevant

effective supporting tools.

- 64 -

3. Related Work

As mentioned in the literature review, the mismatch between requirements and

selected components has existed as a rather persistent problem in Component-Based

Development (CBD), and is getting increasingly severe with the emergence of

modern software systems and the evolution of CBD. At an early stage, software

developers modify the code of accessible components to satisfy the requirements.

This approach is known as white-box reuse, which is applicable to local repositories

and incurs much of the cost in making the changes. Thereafter, most local repositories

extend to external or even global markets, and components are usually reused “as is”,

i.e. without changes to the code. This type of reuse is known as black-box reuse. As

the investigation in [10][57][137] shows, more and more component venders put their

components on the Internet, which gradually forms numerous online component

agencies (component repositories). The representative websites [174] include

ComponentSource, Flashline, Buydirect, Brattbery, and Findcomponents. The

growing component markets raise thirteen conditions [176] which affect CBD. Three

of them play a crucial role in connection with overcoming the mismatch problem,

including user query formulation, standard specification of components and

component retrieval with search relevant rating. Because the user query formulation

- 65 -

refers to the research area of natural language processing and Artificial Intelligence

areas, etc. It is not the research topic.

Our research focuses on the last two issues, which are referred to as component

specification and retrieval. The existing approaches to component specification and

retrieval are classified into two types: traditional and ontology-based.

3.1 Traditional Component Specification and Retrieval

Projects

The traditional project is that one or more traditional component retrieval approaches

are used. The traditional approaches include keyword searching [135], faceted

classification [143], signature matching [192] and behavioral matching [193]. The

keyword searching approach is used to component retrieval first in the early 1990‟s.

The search engine compares users keywords to the names of the objects and retrieves

matches. It does not take into account additional information such as relationships

among objects or synonymous names. In order to improve the precise of the simple

keyword search, the other three approaches were developed. The faceted classification

approach makes an attempt to classify the objects in the repository based on

predefined taxonomies. It is useful for objects that can clearly fall into such categories.

Signature matching focuses on the type and number of arguments defined for methods

and in essence takes an indirect approach to identifying whether an object is relevant.

Behavioral matching is the most involved approach because it takes into consideration

- 66 -

the functional behavior of objects. In this approach, objects are provided with input

vectors and the outputs generated are compared to the expected outputs. Objects that

exhibit a certain behavior are retrieved and presented to the user. In the late 1990‟s,

the traditional approaches had been developed to mature, and widely used in the

process of component specification and retrieval.

Typical examples of component specification and retrieval projects using the

traditional approaches includes: Agora, Morebased, Maracatu, Zhuge and Zaremski.

 Agora

Agora [161] is component search research project at the Software Engineering

Institute of Carnegie Mellon University. It supports two basic processes: the

location and indexing of components and the search and retrieval of a component.

Agora uses a JavaBeans agent and a CORBA agent for locating and indexing

component information. Once a component has been identified, the interface

information is decomposed into a set of tokens and is saved in a document. Agora

combines introspection with Web search engines to look for components in the

software marketplace with the help of keyword search and faceted classification

approaches. The query keywords and options specifying the types of components,

are searched against the index collected by the search agents. Each result includes

meta-information e.g. the URL of the component. Moreover, application-specific

- 67 -

lexicons are integrated in Agora, which can be used to facilitate searches in

application domains such as manufacturing, healthcare, and finance.

 Merobase

Merobase [82] is a search and tagging engine that allows users to find, remember

and share components on the Internet. In contrast with first-generation code

search engines, Merobase treats source code modules first as class abstractions

rather than chunks of text, and is thereby able to offer a much wider range of

search options. In particular, Merobase specializes in finding components based

on their interface (or API) rather than the strings in their source code. Merobase

supports four basic kinds of searches. Using the Merobase Query Language

(MQL) users can look for components that have a particular name or contain a

given string in their source code. The user can search for components that

represent a particular logical abstraction - either a function-oriented abstraction or

an object-oriented abstraction. In addition, Merobase supports a wide range of

constraints which allow users to narrow down their search to components with a

particular set of properties.

 Maracatu

Maracatu [46] is developed jointly by Recife Center for Advanced Studies and

Systems (C.E.S.A.R) and institute of Mathematical and Computing Sciences of

- 68 -

San Paulo University. It is a search engine for retrieving source code components

from development repositories. The tool is structured in a client-sever

architecture: the client side is a plug-in for the Eclipse IDE, while the server side

is represented by a web application responsible for accessing the repositories in

the Internet or Intranets. Two versions of the engine were developed, with new

features being added for use in industrial practice. To demonstrate the tool, two

experiments are presented for comparing the text matching mechanism (first

version) with the facet mechanism implemented in the last version. The

experiment showed that the facet-based mechanism alone does not have good

performance but, when combined with text-based search, is a better overall

solution.

 Zhuge’s project

Zhuge [194] proposed a problem-oriented and rule-based component repository.

Based on the repository, a framework was designed to describe a component‟s

behavior by problem-solving mechanism, with which it is possible to assure that

the retrieved components will fulfil the requirements specified in the query. This

framework supports the component search tool in two aspects. Firstly, the reuse is

developed from the component level to the problem-solving level. Users are

encouraged to concentrate on the problem description and solve the problem

through top-down refinement rather than plunge into the technical details at the

- 69 -

beginning. Secondly, the environment evolution is during running. The candidate

components for composing an application are simulated through case-based rule

reasoning. The candidate components are dynamically checked before composing

an application system.

 Zaremski’s project

Zaremski [193] developed a component specification matching tool on the basis

of analyzing component foundational definitions. It is intended to use as much

information associated with the description of software components as possible

by describing their signatures, behaviours and so forth. With this tool, the

definitions were explored for applying specification matching to various

applications. Although the idea of specification match was originally initiated by

the software library retrieval application, it can also be applied in other areas of

software engineering.

3.2 Ontology-based Component Specification and Retrieval

Projects

Traditional component search is not effective for component selection, suffering from

lower recall and precision, i.e., poor completeness and accuracy of components

matching [171]. Traditional approaches are rather limited in accommodating

semantics of user queries and domain knowledge. To solve this problem, ontologies

- 70 -

have been introduced to help understand the semantics of components, from the early

2000‟s. Here some typical ontology-based approaches that specially focus on

component specification or involve the whole process of the component specification

and retrieval are analyzed as follows. The methods based only on component

specification are given first.

 Girardi’s

Girardi‟s [50] project first developed GRAMO, which is a technique for the

construction of domain and user models to be reused in the development of

multi-agent applications. To support the GRAMO, an ontology-based meta

domain model ONTODUM is built to represent the knowledge of techniques for

the specification of the requirements of a family of multi-agent systems in an

application domain. The goal of the project is the specification of a methodology

for Agent-based Domain Engineering, and a framework for ontology-based

specification of agent-based reusable artefacts, exploring both compositional and

generative approaches. In the approach, domain models are being used as the

main resources for the construction of Domain Specific Languages [49][162].

The advantages of using the ONTODUM for the representation of reusable

products have been shown in a software development environment for

Multi-agent Domain Engineering. However, it should be redesigned according to

the particular knowledge of those development techniques.

- 71 -

 Sugumaran’s

Sugumaran‟s approach [171] enables a user to execute more intelligent queries by

using domain knowledge and natural language parsing techniques. The approach

includes a natural language interface, a domain model and a reusable repository.

This approach introduces domain ontology to exploit the additional knowledge to

augment or revise a user‟s initial query. In this way, the ontology serves as a

surrogate for the meaning of terms so that a more complete response to a user

query will be produced. However, the domain ontology in this approach is too

simple, which only covers quite limited semantic information; the gauge of

relevance in component retrieval is not covered; No ontology-based component

description method is presented to specify the component; and the prototype tool

needs much manual work to operate, therefore further improvement in

automation is needed.

 Pahl’s

Pahl [144] investigates how ontology technologies can be utilised to support

software component development. A link between modal logic and description

logics proves that the provision of reasoning support for component behaviours,

which is essentially characterised by the component‟s interaction processes with

its environment and by the properties of the individual operations requested or

provided in these interactions. The objective of the project was to provide

- 72 -

reasoning support for semantically described components. Some shortcomings

limited the realization of their objective, e.g., the architecture of the software

development ontology is not as comprehensive as necessary to cover the

components‟ attributes; the relationships provided for the reasoning are not

adequate to implement the necessary reasoning; no component matching

architecture is proposed.

 Braga’s

Braga [19][20] addresses the interoperability problem between component

information repositories. In this approach, an integration layer is developed to

help search and identify suitable reusable components. This layer is based on

mediators and domain ontologies to provide the binding of different components

to their domain concepts. To assist the identification of related components and

their appropriate domain organization, each mediator encloses one domain

ontology and provides the mapping to their respective repository of components.

The mediation layer promotes domain information integration and provides

mechanisms to translate component requests across ontologies. The limitation of

this approach is that it only focuses on the business components, with no

consideration for other kinds of components, such as GUI components, controller

components and IT function components.

- 73 -

 Liu Quan’s

Liu Quan‟s approach [126] presents a component description scheme in the OWL

language. The schema illustrates the abstraction hierarchy of a component

specification, which consists of several facets [62][126], such as Basic

Information, Component Type, Component Function, Application Domain and

Interface information. Each facet represents a group of characteristics of the

component. Clearly the schema is not ontology-based and its semantics not

computer-recognizable. The component description information is associated

with an ontology to provide semantic meaning, which builds the foundation for

semantic reasoning in the component retrieval process. In Liu‟s work, the

component description schema has no rules or individuals in it, hence it is not a

component specific ontology yet. The gauge of relevance in component retrieval

is not covered and neither is there an implementation and evaluation to prove the

approach.

 Yao’s

Yao [190] treats a software component as a service described in semantic service

representation format and enhances the retrieval by semantically matching

between the semantic representation of a user query and component description

against domain ontology. A domain ontology-based matchmaker compares a user

query in a conceptual graph with the component service descriptions in other

- 74 -

conceptual graphs. In addition, the component search does not happen just in the

local repository, it extends to the World Wide Web. A conceptual graph method

is proposed to indicate the relevance between the user query and the result

components. Its main drawbacks include the fact that both the details of how to

analyze the user query and component specification based on semantics and the

translation of the query into WSDL/RDF are not available. Similar to Liu‟s

approach, the details of the domain ontology architecture and the linkage

technique are not given. Furthermore, there is no implementation to validate the

approach.

 Yen’s

Yen [45][191] proposed an On-line Repository for Embedded Software (ORES)

that uses an ontology-based approach to facilitate repository browsing and

effective search. It provides effective component retrieval and facilitates the

capture of component properties. An integrated mechanism was presented to

facilitate efficient and cost-effective embedded software development. However,

the architecture of the ontology used in this approach is monolithic, which means

too many classes with less relationships were enumerated in one single facet.

- 75 -

3.3 Limitations of Related Work and Conclusion

The existing approaches closely related to ontology-based component specification

and retrieval have been analysed in the previous sections. From this literature analysis,

we conclude that existing component specification and retrieval approaches failed to

have a sound semantic model as their foundation, preventing them reach an

adequately sufficient level of automation and comprehension of the semantics of

components. Consequently, these approaches have the following drawbacks in the

delivery of the desired aims:

1) the ontology models in existing approaches are all domain specific, therefore a

generic computing-oriented overview is missing, often leaving the component

retrieval in a unsystematic style and within too narrow a scope;

2) the architecture of the ontology in existing approaches is monolithic and has few

relationships, which limits their semantic expressiveness;

3) the existing ontology-based specification and retrieval approaches presume that

the domain ontology in use already exists; the method of domain ontology

retrieval is not mentioned. Furthermore, the evolution of the domain ontology is

not considered;

4) the search precision calculation method of the result components is missing or not

efficient in the existing approaches. Therefore, the existing approaches can not

- 76 -

further distinguish which one matches the user requirements more for very

similarity components.

5) the search of the possible adaptive assets/methods are not considered in the

existing approach. Lack of the semantic description, the possibility of using the

adaptive assets/methods is overlooked.

6) the display of the result components is ineffective. Existing approaches just show

the basic search result such as the name of the result component, the search

precision, and the text-based result component specification. However further

details of the search result are missing, such as the search paths of each user

query keywords, the percentage of the matched keywords and the adaptive

searching result. This information is also important for the users to make the final

decision.

- 77 -

4. The Approach

4.1 Overview

By investigating the literature review and the related work, one critical problem of

CBD is that the most suitable component in the repository can not be retrieved

automatically, in particular for large complex software applications and from a huge

collection of very diverse or sometimes very similar components. These problems not

only prevent CBD from reaching its full potential, but also hinder the acceptance of

many existing large component repositories. The repositories here refer to the

enterprise-grade local component repository, mature open source and commercial

component markets [10][137][174]. These repositories have the following features: 1)

large size, 2) great variety and 3) large number of similar components. For example,

the Componentsource commercial repository locates more than 10,000 components

which are classified into more 120 function type and other categories. In some

frequently-used function, it contains more 400 similar components.

To overcome the above problems, existing approaches have engaged a variety of

technologies to support better component specification and retrieval, among which

several recent research projects attempted to use domain models and ontologies in

component retrieval [20][144][171][190][191]. Although these approaches reduce the

- 78 -

severity of the problem to some extent, it is clear that the drawbacks mentioned in

chapter 3 still exist.

To improve the state of art, a novel and complete ontology-based approach is

developed and then fully realized for holistic and semantic-based component

specification and follow-on automatic and accurate component retrieval. As the

foundation of the proposed approach, a Multiple-Viewed and Interrelated Component

Specification ontology model (MVICS) is first developed for component specification

and repository building. The MVICS model provides an ontology-based architecture

to specify components from a spectrum of perspectives; it integrates the knowledge of

Component-Based Software Engineering (CBSE), and supports ontology evolution to

reflect the continuous developments in CBD and components. A formal definition of

the MVICS model is presented, which ensures the rigorousness of the model and

supports a high level of automation of retrieval. Furthermore, the MVICS model has a

smooth mechanism to integrate with a domain related software system ontology. Such

integration enhances the function and application scope of the MVICS model by

bringing more domain semantics into component specification and retrieval. Finally,

based on the MVICS model and the domain model integration, a MVICS-based

component repository and search tool has been developed. The MVICS approach

supports semantic-based component matching and adaptive component matching; it is

fully automated, and presents a comprehensive profile of the result components

instead of merely a value of relevance. The result of retrieval includes not only the

- 79 -

matching components but also accurate relevance rating and unsatisfied discrepancy,

which are presented to CBD engineers in the component matching profile.

4.2 The MVICS Framework

The framework of the MVICS approach is shown in Figure 4.1, which defines the

architecture of its key elements. It consists of four key parts, namely query

requirements collection, ontology construction, repository construction and

component retrieval.

Fig. 4.1. The framework of the MVICS approach

- 80 -

4.2.1 Query Requirement Collection

To retrieve a component with the ontology-based approach, the first step is to collect

the user requirements correctly and then to represent it with the ontology semantics.

This task can be accomplished in two steps: initial query generation and semantic

query refinement. The architecture of the query requirement collection is shown in

figure 4.2. After the two steps processing, the user requirements in natural language

are translated to OWL format.

Fig. 4.2. The architecture of the query requirement collection

 Initial Query Generation

The user specifies the requirements for the necessary components in a natural

language which employs imperative or nominal sentences. A heuristic-based

approach is used to identify keywords and concepts expressed by the user and to

- 81 -

generate an initial query. Subsequently, related terms (synonyms) of the

keywords and concepts are also identified for query expansion. The

heuristic-based approaches [30] have been researched for years, which focus on

the natural language processing and Artificial Intelligence areas. In

MVICS-based approach, we assume that the Initial Query Generation has been

completed, as it is not the focus for our research.

 Semantic Query Refinement

The keywords and concepts identified in the previous step are mapped against the

MVICS ontology model to ensure that correct terms (keywords and concepts) of

the requirements are used in the query. Then all the terms involved are expressed

in OWL, which is favoured here in terms of its capacity in the description of

semantics. In this query refinement step, query requirements in natural language

are translated into OWL format without misunderstanding.

4.2.2 Ontology Model Construction

In the ontology construction part, the MVICS ontology model has a key role in the

approach. It is the computer-recognisable ontological representation of the semantics

of component specification. The MVICS is developed on the basis of CBSE

knowledge and IT application domain knowledge. And it is managed by the ontology

evolution mechanism. The role of the MVICS model includes supporting the semantic

- 82 -

query refinement, conducting the component specification, connecting the domain

ontology and supporting the sub-functions in the component retrieval, such as search

precision calculation and adaptive component search and component QAs suggestion.

The structure of the ontology model construction is shown in the figure 4.3. The

domain ontology is retrieved from the ontology library and further connected to the

MVICS by the Association Link and Aggregation Link when searching the relevant

domain component. The details of the MVICS model and the domain ontology

linkage technique are described in the Chapter 5.

Fig. 4.3. The architecture of the query requirement collection

4.2.3 Component Repository

A component repository is built based on the MVICS model. Available components

were specified according to MVICS model and populated into the repository. A

component specification creation mechanism is developed to facilitate the

- 83 -

specification process. For the component retrieval, the MVICS model and component

specification is defined in OWL, corresponding with the OWL format user

requirements. The MVICS approach also accommodates the impact of component

adaptation with a new concept called “adaptive component search”. The available

adaptation assets, their related adaptation method information and their impact on the

targeted components are defined and stored in the component repository as an integral

part of MVICS. The structure of the repository construction part shows in the figure

4.4.

Fig. 4.4. The architecture of the repository construction

- 84 -

4.2.4 Component Retrieval

Having the above two phases in place, the component retrieval is thus regarded as the

matching between the users query description and the ontological component

specification in the retrieval (as shown in figure 4.1). Another unique feature of the

component retrieval is the component adaptation information considered. Some of the

discrepancies can be solved through the component adaptation. The available adaptive

assets are stored in the Adaptation assets repository and an adaptive methods or assets

suggestion mechanism is built to help the user to make the decision. With the help of

the adaptation classes in the MVICS model, the components whose specification

satisfies the user requirements after adaptation are indentified as part of the result as

well.

The retrieval returns detailed search results, including not only the matching

components but also accurate relevance rating (search precision) and unsatisfied

discrepancy in descending order. Components with the same search precision will be

presented in the descending order of the selected QAs. The precision indicates the

level of relevance of the result components with a precision calculation algorithm and

the QAs suggestion helps user avoid the neglect of the non-functional requirement.

All the results of the retrieval are presented to CBD engineers in a comprehensive

component matching profile, which gives the user a full understanding of each result

component and helps them to make a decision.

- 85 -

5. Multiple-Viewed Interrelated Component

Specification Ontology Model (MVICS)

A holistic ontology model of component specification provides the foundation for

effective semantic reasoning in the component retrieval and improves substantially

the precision of component retrieval. The MVICS ontology model has a pyramid

architecture, which contains four facets: function model, context model, intrinsic

model and meta-relationship model, as shown in Figure 5.1. The first three models

(function model, intrinsic model and context model) can be viewed as sub-ontology

models, each of which describes one facet of component specification (locates at the

three sides). The forth (meta-relationship model) is used to store four types of

inter-relationships among the classes of the first three models (locates on the bottom).

As a whole they construct a complete spectrum of semantic-based component

specification. All the four models are ontology-based, extracted from the analysis of

CBSE knowledge, and have extension slots for further upgrade according to the

evolution of CBSE and components.

- 86 -

Fig. 5.1. Multiple-Viewed and Interrelated Component Specification Ontology Model

OWL-DL is adopted to define the classes, individuals and relationships of the above

four sub-models. These formal definitions enable automatic ontology validation and

semantic-based component search with the support of ontology reasoner.

5.1 Function Model

The function model specifies the function, domain information and interface. As an

ontological model, the top level classes include Function Type, Component Domain

and Interface.

Functions are performed by components which represent fundamental characteristics

of software. The sub classes and sub sub-classes of Function Type are classified by

the Computer Technology. Due to the fact that classes may overlap, the subclasses of

class Function Type are defined in detail and are classified without any overlap (i.e.,

- 87 -

disjoint),e.g., Data Cleaning, Data Conversion, Data Entry, Data Validation, Data

Verification and so forth.

Specific application domain ontologies can be interfaced with the function model as

the subclasses of class Component Domain. These subclasses consist of two types

Association Link and Aggregation Link which are used to link the domain ontology

classes with related MVICS classes. The details of Association Link and Aggregation

Link will be introduced in chapter 5.5.

Class Interface includes two composite sub-classes Pre-conditions and

Post-conditions, each are then further composed of a set of method pre-condition and

method post-condition according to the methods/procedures in the component. Take

Pre-conditions as an example, its sub class “Pre-conditions of method n” has three

subclasses including Parameter Type, Parameter Range and Constraint, in which

class Parameter Range is to describe a range based on parameter type. To describe

the parameter range accurately, number restriction constructor (≤, ≥) in DL is

required.

Figure 5.1 a) shows the top three levels of classes in the function model. The details

of the function model (OWL format) list given in the appendix A.1.

- 88 -

 a) b) c)

Fig. 5.2. Top three level classes of a) function model, b) context model, c) intrinsic model

To define the model in OWL-DL, let represent the top class. n

iC ,
n

jC , n

kC

represent classes in the n
th

 level of the hierarchical architecture. The details are as

follows:

1

iC

 where i = Function Type, Application Domain or Interface

which defines that Component Function Type, Component Application Domain and

Component Interface are the top level classes of the function model.

n

i
C 1n

kC , which defines
n

i
C is a subclass of 1n

kC , for example,

- 89 -

2

DataConversionC
1

FunctionTypeC , which states class Data Conversion is a subclass of

class Function Type.

In the model, the subclasses of the same level of one class mutually disjoint.

If n

iC 1n

kC and
n

jC 1n

kC , then n

iC
n

jC = , which defines that

if n

iC

is subclass of 1n

kC and
n

jC is subclass of 1n

kC , then the intersection of n

iC

and
n

jC is null.

For example,

If 2

DataConversionC
1

FunctionTypeC and
2

DataEntryC
1

FunctionTypeC ,

then 2

DataConversionC
2

DataEntryC = ,

which defines class Data Conversion and class Data Entry are disjoint on

condition that they are the same level subclasses of class component type.

In the function model, all the top classes have a large tree type architecture of subclass,

sub subclass and so forth. In this sub model, isA is the only relationship to link the

classes and its subclass. In knowledge representation, isA is a relationship where one

class A is a subclass of another class B, and isA is of a transitivity. The way to define

the relationship with OWL-DL as follows:

http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Subclass

- 90 -

For isA relationship, we assert that the range of the relationship is the respective

class n

iC :

n

iC ≡ isA . 1n

iC , which defines n

iC

has an isA relationship with its subclass

1n

iC , for example,

1

FunctionTypeC ≡ isA . 2

DataConversionC , which states the relationship isA links the class

Data Conversion to the class Function Type.

5.2 Context Model

The context model is used to represent the reuse context information of the

components, including but not limited to the application environment, hardware and

software platform, required resources and possible dependency with other

components. The top level classes consist of Operating System, Component Container,

Hardware Requirement, Software Requirement. The context model is built in the

same way as above two models, i.e., using isA to build ontology hierarchies of class

operating system and class component container, and using isAttributeof to specify

the value set of the attributes of the classes. Figure 5.1 b) shows the top three levels of

classes in the context model. The details list in the appendix A.2.

The classes and relationships are defined in OWL-DL in the same way as that in the

intrinsic model. The details are as follows:

- 91 -

1

iC

where i = OS, Platform, CPU Requirements, Disk Requirements or Memory

Requirements.

which defines that Component OS, Component Platform, Component CPU

Requirements, Component Disk Requirements and Component Memory Requirements

are the top level classes of the context model.

n

i
C 1n

kC , which defines
n

i
C is a subclass of 1n

kC , for example,

2

WindowsC 1

OSC , which states class Windows is a subclass of classOS.

In the model, the subclasses of the same level of one class are mutually disjoint.

If n

iC 1n

kC and
n

jC 1n

kC , then n

iC
n

jC = , which defines that

if n

iC

is subclass of 1n

kC and
n

jC is subclass of 1n

kC , then the intersection of n

iC

and
n

jC is null.

For example,

If 2

WindowsC 1

OSC

and 2

LinuxC 1

OSC , then 2

WindowsC 2

LinuxC = ,

which defines class Windows and class Linux are disjoint on condition that they

are the same level subclasses of class component type.

- 92 -

Different from the function model, two types of relationships are used to show the

links between the classes in different layers. isA relationship is used to describe super-

and sub-class links between component type. isAttributeof defines the value set of an

attribute of a class in the ontology model, e.g., Memory Requirement class is linked

with a set of Memory Value classes under the “isAttributeof” relationship. The

relationships are defined as follows:

For isA relationship, we assert that the range of the relationship is the respective

class n

iC :

n

iC ≡∀isA . 1n

iC , which defines n

iC

has an isA relationship with its subclass

1n

iC , for example,

1

OSC ≡∀isA . 2

WindowsC , which states the relationship isA links the class Windows

to the class OS.

For the isAttributeof relationship, we assert that the range of the relationship is the

respective attribute class 1n

attributeC :

n

iC ≡∀isAttributeof . 1n

attributeC , which defines n

iC

has an isA relationship with

its subclass 1n

attributeC , for example,

1

eMemoryR qC ≡∀isattributeof .
2

MemoryValueC , which defines the relationship

isAttributeof links the class Memory Requirements to class Memory Value.

- 93 -

5.3 Intrinsic Model

The intrinsic model specifies the basic information of a component, including only its

name, vendor, price, version, date and type. In the proposed approach, such

information is defined as “intrinsic information” of the component. A taxonomy of

the intrinsic information is developed first, which includes top level attributes such as

Component Name, Component Vendor, Component Price, Component Version,

Component Date and Component Type. All the attributes in this taxonomy are finally

modelled as classes in the intrinsic ontology model of MVICS. Figure 5.1 c) shows

the top three levels of classes in the intrinsic model. The details of the intrinsic model

(OWL format) are listed in the appendix A.3.

The way to define the intrinsic model classes with OWL-DL is the same with the

function model.

1

iC

where i = Name, Vendor, Price, Version, Date or Type,

which defines that Component Name, Component Vendor, Component Price,

Component Version and Component Type are the top level classes of the context

model.

n

i
C 1n

kC , which defines
n

i
C is a subclass of 1n

kC , for example,

- 94 -

2

DLLC
1

typeC , which states class DLL is a subclass of class component type.

In the model, the subclasses of the same level of one class mutually disjoint.

If n

iC 1n

kC and
n

jC 1n

kC , then n

iC
n

jC = , which defines that if n

iC

is

subclass of 1n

kC and
n

jC is subclass of 1n

kC , then the intersection of n

iC and
n

jC is

null.

For example, If
2

javaC 1

typeC and 2

.NETC
1

typeC , then
2

javaC 2

.NETC = ,

which defines class java and class .NET are disjoint on condition that they are the

same level subclasses of class component type.

For isA relationship, we assert that the range of the relationship is the respective

class n

iC :

n

iC ≡ isA . 1n

iC , which defines n

iC

has an isA relationship with its

subclass 1n

iC

,
 for example,

1

typeC ≡ isA . 2

DLLC , which states the relationship isA links the class DLL to the

class component type.

For the isAttributeof relationship, we assert that the range of the relationship is the

respective attribute class 1n

attributeC :

- 95 -

n

iC ≡ isAttributeof . 1n

attributeC , which defines n

iC

has an isA relationship with

its subclass 1n

attributeC , for example,

1

venderC ≡ isattributeof . 2

vendernameC , which states the relationship isAttributeof

links the class vendor name to class component vendor.

5.4 Meta-relationship Model

The Meta-relationship model provides a semantic description of the relationships

among the classes in different facets (sub-models) of MVICS. Four types of

relationships are identified. Let‟s define a relationship as CA CB, where CA and

CB are classes in different facets of the MVCIS model. To define these relationships

in DL, we create a transitive rule Rmatch, which defines a matching relationship from

CA to CB. It means that if CA matches the requirement of a component search then CB

will match the requirement as well. The above four relationships are then defined as

follows.

5.4.1 Matching Propagation Relationship

Matching Propagation Relationship, CA
Pro CB, it means that if CA satisfies the

requirement of a component search then CB and all its subclasses will satisfy the

requirement as well. In component retrieval, such a relationship will enable all the

components under CB and its subclasses to be part of the result components for a user

query that is matched by CA. The impact on the search path of this relationship is

- 96 -

given in part a) of Figure 5.3. When the search engine identifies CA as a match with

the user search keyword K1, it will continue to search for result components in the

subclasses of CA, and at the same time also identify CB as a match. It would not

continue the search in subclasses of CB, because all the subclasses of CB are deemed

as matching.

For example, when users search for a component with keyword “IBM VisualAge”,

the search will find the class IBM VisualAge in the context model. The instances

linked (via its leafclass) to class IBM VisualAge will be recorded as result components.

In the MVICS, class IBM VisualAge has a Matching Propagation Relationship with

Java class and C++ class which are subclass of Component Type class in the intrinsic

model. With the semantic information provided by this relationship, the component

type can be run by IBM VisualAge are Java and C++. This indicates that the result

component obtained while the user query is matched class Java or class C++ are also

the result components when the user search keyword is “IBM VisualAge”. Therefore

component type class Java and class C++ in the intrinsic model can be seen as the

subset of platform class IBM VisualAge.

The DL definition of matching propagation relationship is then as follows:

Relationship definitions: CA ≡ ∀Rmatch . CB

Role assertions: < CA . CB > : ∀Rmatch

- 97 -

Fig. 5.3. The impact on search path: a) Matching Propagation Relationship; b) Conditional

Matching Propagation Relationship; and c) Supersedure Relationship

5.4.2 Conditional Matching Propagation Relationship

Conditional Matching Propagation Relationship, CA
PrC o CB (attri=V), in MVICS,

it means that if CA satisfies the requirement of a component search then CB and its

subclasses may satisfy the requirement if their attribute attri has value V. In

component retrieval, the relationship enables that the components under CB are part of

the result components for a user query that is matched by CA, if their attri has value V.

This relationship will impact on the search path as follows: when the search engine

identifies CA as a match with a user search keyword K1, it will continue to search for

result components in the subclasses of CA, and at the same time search CB and its

subclasses on the condition of attri=V, as shown in b) of Figure 5.3.

- 98 -

For instance, when a user searches for a Silverlight type component by keyword

“Silverlight”, the search will find the class Silverlight in the intrinsic model. The

instances linked (via its leafclass) to class Silverlight will be recorded as result

components. In the MVICS, class Silverlight has the Conditional Matching

Propagation Relationships with class Component Type in Context facet. With the

semantic meaning specified by Conditional Matching Propagation relationship, we

know that the compatible platform of Silverlight type component is Visual Studio

2008, Visual Studio 2005, Visual Basic 2008, Visual Basic 2005, Visual C# 2008 and

Visual C# 2005. The compatible platform adds to class B as an attribute provide by

the Conditional Matching Propagation Relationship. Then the search will continue to

search the result components by the platform keywords in the Context model.

Therefore the instances of class Visual Studio 2008, Visual Studio 2005, Visual Basic

2008, Visual Basic 2005, Visual C# 2008 and Visual C# 2005 in context model will

be found as the result components of keyword” Silverlight” as well.

The DL definition of conditional matching propagation relationship is then as follows:

Relationship definitions: CA ≡ ∃Rmatch . CB,

if CB CV , where CV defines the classes have value V

Role assertions: < CA . CB > : ∃Rmatch

- 99 -

5.4.3 Matching Negation Relationship

Matching Negation Relationship, CA
Neg CB, in MVICS, this relationship means

that if a result component is obtained by a keyword matching with CA, then the result

component cannot be obtained by another keyword matching with CB. This

relationship deals with problems caused by the incompatible requirements in a user

query. When users input several keywords, CA and CB, which are matched with two

different keywords respectively, they may have Matching Negation Relationship, i.e.,

a result component cannot belong to both classes simultaneously. To tackle this

problem, the user query can be treated as two groups of keywords. One group

consisting of the keyword matched with CA, the other group consisting of the keyword

matched with CB. The Matching Negation Relationship is usually used for the user

query refinement.

The matching negation relationship is defined in OWL-DL as follows:

Relationship definitions: CA ≡ ¬∀Rmatch . CB

Role assertions: < CA. CB > : ¬∀Rmatch

5.4.4 Supersedure Relationship

Supersedure Relationship, CA
Sup CB, in MVICS, Supersedure Relationship

means that if the content of class CB has higher priority to the content of class CA, then

- 100 -

the result components obtained by matching CA will be replaced by the result

components obtained by matching CB. This relationship provides the following impact

on the search path, as shown in c) of Figure 5.3: when the search engine identifies CA

as a match with the search keyword K1, it will stop searching for result components in

the subclasses of CA, but turn to searching from CB and its subclasses.

Up to now, this relationship is especially used to describe the relationship between

class Platform Hardware Requirements (including CPU and Memory) and

Component Hardware Requirements. The relationship shows the hardware

requirements for platform, which need to be considered by users. It means if class

Platform is matched with the user requirements, sometimes the relevant information

of the platform hardware requirements will precede the result component hardware

requirements. In this case, the component hardware requirements will be replaced by

platform hardware requirements which need to be presented to users. To illustrate the

Supersedure Relationship between class Platform and class Hardware Requirements,

we take Microsoft Visual Studio 2008 as an example. Microsoft Visual Studio 2008

requires 384MB memory. Its memory requirements are beyond the result

components‟. In this case, the memory requirements of result component will change

to 384MB.

The supersedure relationship is defined in OWL-DL as follows:

Relationship definitions: CA Rmatch . CB if and only if CA CB

- 101 -

Role assertions: < CA. CB > : Rmatch if and only if CA CB

All the above four sub component specification ontology models are defined in OWL.

These OWL documents can be seen as the paths that connect user queries and result

components.

5.5 Linkage between Domain Related Software System

Ontology and MVICS

The original MVICS model is a component specification ontology model based on the

IT specific functions, rather than the application domain related functions and other

features. Therefore this MVICS model does not support domain oriented component

specification and retrieval. To extend the MVICS-based component search into a

specific domain, two mechanisms, namely Association Link (AssL) and Aggregation

Link (AggL), are developed to integrate the domain related software system ontology

into MVICS. With such integration, the domain ontology is linked to MVICS

effectively and thus extends the application scope of MVICS without changing the

architecture of the model. Different from traditional ontology mediation, the

connection between MVICS and the domain related ontology neither uses the method

of ontology merging to create a new ontology, nor uses the method of ontology

mapping to make the same or similar ontologies to establish contacts. The two

mechanisms AssL and AggL are used to link two different kinds of classes of domain

- 102 -

ontology to the MVICS. And then, the AssL and AggL are defined formally and to

automate the component search and repository building. In the function model of

MVICS, the class Component Domain is set to interface domain ontology with

MVICS. The AssL and AggL generated from the integration will be stored under the

class Component Domain.

5.5.1 Association Class and Association Link

Those classes in the domain ontology which can be viewed as sub classes of a

MVICS class are named as “Association class”. The Association classes in the

domain ontology represent specific operations, as a specialization of their MVICS

super classes in the relevant domain. Association Link is used to link these classes

with their super class counterparts in MVICS.

Figure 5.4 shows an example of AssL. The class Document Log in financial domain

ontology can be viewed as a sub-class of the class Document Processing in MVICS,

because logging is a specific of document processing in the financial sector, therefore

the Document log link to Document Processing with AssL.

- 103 -

Fig. 5.4. An example of Association Link

5.5.2 Aggregation and Aggregation Link

Aggregations in MVICS are defined as a set of MVICS classes which work together

to implement a larger function. Apart from the classes in the specific domain that can

be linked in the way of AssL, other domain operation modules are more

comprehensive and multifunctional. In this case, a set of reusable Aggregations in

terms of the IT function in MVICS are first established, to represent the function of

the domain operations. These reusable Aggregations are the function units of MVICS

with minimum intersection of reusable MVICS functions. Each Aggregation is

viewed as a reusable unit oriented to different functional operations. To link a domain

model with MVICS, an Aggregation Link is defined as a link from a domain class to

an Aggregation in MVICS. Classes in the domain ontology are linked to MVICS

- 104 -

through AssL, where a counterpart super/subclass relation exists, and/or AggL, where

a domain class is composed of one or a set of Aggregations in MVICS.

Fig. 5.5. An example of Aggregation Link

An example of AggL is shown in Figure 5.5. In total, class Payment System in

financial domain ontology has the following ten functions which are already defined

in MVICS, including Data Security, Data Validation, Data Conversion, Data Editing,

Data Conversion, Database Management, User Administration, Reporting, Email and

system Encryption. The first nine functions are composed into an Aggregation

(Payment 3) in MVICS, and linked with AggL to class Payment System. In addition to

the above nine functions, the class Payment System has an extra function Encryption,

and this is expressed with an AssL from class Payment System to the MVICS class

Encryption. Thus, the whole function of class Payment System is expressed by a

combination of the AssL and AggL.

http://www.componentsource.com/features/data-validation/index.html
http://www.componentsource.com/features/data-conversion/index.html
http://www.componentsource.com/features/editing/index.html
http://www.componentsource.com/features/data-conversion/index.html
http://www.componentsource.com/features/database-management/index.html
http://www.componentsource.com/features/email/index.html

- 105 -

Classes in the domain ontology are therefore linked to MVICS, either through AssL

where a corresponding super/subclass relation exists, or through AggL where a

domain class is composed of one or one set of Aggregations in MVICS. Via these two

mechanisms, different domain ontologies can be integrated with MVICS by building

new links of AssL and AggL. To automate the integration between domain ontology

and MVICS, a domain ontology migration method was proposed. This method

supports the semi-automation of the integration through the following process: Step 1:

Association class identification; Step 2: operation module analysis; Step 3:

Aggregation update. With the aid of a domain expert, the domain ontology can be

integrated with MVICS more smoothly and effectively.

5.5.3 Linkage Definition

The linkage between the domain ontology and the MVICS are established by

Association Class, AssL, Aggregation and AggL. Because the Association Class is a

kind of domain ontology class, the definition of the Association Class is the same as

the domain ontology class.

To define AssL in OWL-DL, let n

iC represent a class in the n
th

 level of the

hierarchical architecture of the MVICS model. Let m

dC represent a class in the m
th

level of the hierarchical architecture in the domain ontology. Let‟s assume there is an

AssL relationship. The relationship is then defined as follows:

- 106 -

 we assert that the definition of the relationship is the respective class n

iC :

n

iC ≡∀isA . m

dC ,

 for example,

3

DTC ≡∀isA . 3

MTC , which defines the relationship AssL links the class Money

Transfer in the domain ontology to the class Data Transfer in the MVICS.

To define Aggregation in OWL-DL, let
n

iC represent a class in the n
th

 level of the

hierarchical architecture of the MVICS model. Let
AC represent an Aggregation in

the MVICS model. The Aggregation is then defined as follows:

AC ≡
1

m
n

i

i

C

To define AggL in OWL-DL, let m

dC represent a class in the m
th

 level of the

hierarchical architecture of the domain ontology. Let
AC represent an Aggregation in

the MVICS model, we define the AggL relationship as that the linked class in domain

ontology (m

dC) must have an IsA relationship with at least one linked Aggregation

(
AC) in MVICS.

m

dC ≡∀isA .
AC

- 107 -

6. Holistic and Precise Component

Retrieval Method

“Holistic” here refers to the fact that the MVICS is a comprehensive component

specification model, and the approach considers a spectrum of respects in component

specification and retrieval. As a core part, the MVICS-based component retrieval is

achieved through original component search, domain component search, and adaptive

component search. In addition, result component precision calculation and result

component profiles, make the approach more complete to help the user find the more

suitable components.

6.1 MVICS-based Component Retrieval

The MVICS component retrieval is based on the MVICS model and the linkage with

the domain ontology model. It focuses on retrieving the relevant components from the

repository according to the refined user keywords. For all components and their

related adaptive assets located in the repository, their specifications are represented by

the MVICS model and the related domain ontology in a semantic and logical way.

The component name links to the relevant classes, which belongs to the MVICS and

the linked domain ontology. The MVICS component retrieval will identify the

- 108 -

matched classes with the refined user keywords. And it will retrieve the result

components via the matched classes. As a unique feature of the MVICS-based

approach, the adaptive components can be matched by identifying the adaptive search

path. And the results provide not only the matched components with the relevant

adaptation assets/methods, but also their suggested effort. The adaptive search results

give users more options during the system development. Overall, four types of search

paths are identified according to the location of the matched classes in the ontologies.

6.1.1 MVICS Component Search Path

The first type is original MVICS search path, which is generated by analysing the

matched class in the function model, intrinsic model and context model of the MVICS.

It starts from the matched class located in the sub model of MVICS, and ends with its

top level class in the corresponding sub model. For example, the keywords “Windows

XP” is matched with the class Windows XP in context model. The search path is from

the beginning class Windows XP to the top class OS as shown in Figure 6.1.

Fig. 6.1. Example of the original search path

- 109 -

6.1.2 AssL and AggL Search Path

The second and third types of search path are called domain Association Link (AssL)

search path and domain Aggregation Link (AggL) search path, which are connected

with domain specific keywords. In the MVICS-based component retrieval, the AssL

and AggL are used to generate the domain related keywords search paths.

Fig. 6.2. Example of domain AssL search path

According to the definition, AssL is used to link the domain class (Association class)

with their super class counterparts in MVICS. When the user keyword is matched

with an Association class, a domain AssL search path is generated starting from this

- 110 -

Association class, linking with its super class in the MVICS by AssL, and ending with

the top class in the corresponding sub model. Here we cite keywords “Document

Log” as an example. As shown in Figure 6.2, the search path starts from the matched

class Document Log in the financial domain ontology, and then connects to the class

Document Processing by the AssL, finally it ends with the top level class Function

Type in the function of MVICS.

Fig. 6.3. Example of domain AggL search path

- 111 -

For the domain AggL search path, it is built in accordance with the definition of AggL,

in the event that the user keyword matched with a domain ontology class, which links

up with an Aggregation in MVICS model. The domain AggL search path can be

counted as the set of original MVICS search paths, which are obtained by the original

MVICS classes located in the Aggregation. For example, the class Payment System in

the financial domain ontology is matched with the user keyword, and it links with the

MVICS model through an Aggregation (Payment 3) as shown in 6.3. According to the

definition of Aggregation, each class in the Aggregation (Payment 3) has an original

MVICS search path in the MVICS model. Therefore, the search path of class Payment

System is the set of search paths of these MVICS classes.

6.1.3 Adaptive Search Path

The last type is the adaptive search path, which is achieved during the adaptive

component retrieval. In MVICS-based specification, we call those components whose

function and QAs may vary via the application of adaptation assets “adaptive

components”. The adaptive components are linked to a class via adaptation

methods/assets if the component becomes relevant to that class after adaptation with

that method or asset.

The retrieval path is then recorded as an adaptive path, in contrast to the direct path,

i.e. without adaptation. In addition, an adaptation suggestion will give every matched

methods/assets an effort suggestion. The effort suggestions are classified into three

- 112 -

levels, which indicate the effort to complete the adaptation as Strong, Medium and

Weak. The conclusion of method efforts comes from the analysis of the popular

component adaptation methods in the literature review chapter. The degree of effort is

given on basis of the two criteria: 1) whether software engineers need to have much

related knowledge, and 2) whether they need to do many preparations for the task.

 For each available adaptation methods/asset, the effort suggestion information is

defined as attributes of the relevant classes, which are stored in the MVICS model as

well.

It may not be possible for an adaptation mechanism to satisfy each requirement, since

these criteria are drawn from disparate sources. Six popular methods are considered

including Active Interface, Binary Component Adaptation, Inheritance, SAGA,

Superimposition and Wrapping. By evaluating component adaptation mechanisms

against these requirements, we can determine which existing adaptation methods need

most effort. The following list presents the conclusions of method efforts:

Strong Effort: Active Interface, Inheritance, SAGA

Medium Effort: BCA, Superimposition

Weak Effort: Wrapping

In the component retrieval stage, the search path that connects the user keyword to the

matched class via the adaptation method/assets is recorded as an adaptive component

search path. An example is taken as shown in Figure 6.4, the Components 1, 2, 3 that

- 113 -

are located in the repository have no relationship with the class Data Security.

However the components 1, 2, 3 whose function varies to meet the user query “data

security” via the application of adaptation assets “Wrapper 1”. After the adaptive

search, the components 1, 2, 3 are identified as the result components for the query

“data security” and their search paths are recorded as the adaptive search path which

connected through the adaptive asset “Wrapper 1”.

Fig. 6.4. Example of adaptive component search path

6.2 Result Component Precision Calculation Method

In order to obtain the high component matching precision, a precision calculation

method is developed by analyzing the search paths of the result component. The

Weight of class (W) is defined first as the foundation of the method.

- 114 -

6.2.1 Weight of Class

In each sub-model of MVICS, every class is given a weight to calculate the relevance

of each search result. The rules of weight assignment are: i) In one facet, the lower a

layer is the heavier weight its classes have; ii) In different facets, classes at the same

depth in the function model are heavier than those in the intrinsic and context models.

The weight assignment method is defined as follows:

W = (1+X)
n
 (1)

where n is the level of the layer in which the class locates, X = 0.5 for class in the

function model, X = 0.3 for class in the intrinsic model, X = 0.2 for class in the

context model

The initial weights (X) of the classes in each model are given based on our experience

and subject to continuing adjustment. According to the test data collected from the

user, the initial weights will be updated dynamically after every 100 groups of user

keywords are obtained. Each group of the keywords will be recorded and classified by

the facets of the MVICS. The rules of dynamic original class weight assignment are:

the more frequently the keywords are used in a facet, the heavier is the original weight

of this facet. Let N represent the occurring times of the keywords in a facet, the

subscripts f, i, c indicate the related facet (function, intrinsic or context). The weight

assignment rules are defined as follows:

- 115 -

0.5
f

f

f i c

N
X

N N N

; 0.3 i

i

f i c

N
X

N N N

; 0.2 c

c

f i c

N
X

N N N

 (2)

Moreover, in order to further improve the accuracy of the original weights, the

MVICS approach takes into account the background of users. The users are classified

into three groups, including software engineering researchers, software engineers and

software engineering amateurs. Let the superscript of X and N represent the group of

the users. The superscripts R, E, A indicate which user group is related, namely

software engineering researchers, software engineers and software engineering

amateurs. Taking into account the impact of the user‟s background, the original

weight assignment rules are refined as follows:

0.5

R E A

f f f
R E A

R E A R E A R E A

f

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

0.3

R E A

i i i
R E A

R E A R E A R E A

i

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

(3)

0.2

R E A

c c c
R E A

R E A R E A R E A

c

N N N

N N N

N N N N N N N N NX
Nf Ni Nc

Some users may wish only to be influenced by the views of the users in their own user

group. Hence, the following rules are proposed to assign original class weight for this

- 116 -

purpose, i.e., in support of user group oriented component search, which can further

improve the precision of search results.

0.5

R

fR

f

f

N
X

N
 ; 0.3

R
R i
i

i

N
X

N
 ; 0.2

R
R c
c

c

N
X

N

0.5

E

fE

f

f

N
X

N
 ; 0.3

E
E i
i

i

N
X

N
 ; 0.2

E
E c
c

c

N
X

N

(4)

0.5

A

fA

f

f

N
X

N
 ; 0.3

A
A i

i

i

N
X

N
 ; 0.2

A
A c
c

c

N
X

N

6.2.2 Weight of Search Path

The weight of a search path (Wp) in the MVICS (original component search path) is

the sum of the weights of the classes included in it. The weight of a domain ontology

class is given on the basis of the MVICS class weights. As mentioned in the chapter 5,

the AssL and AggL were developed to link the domain ontology to the MVICS. In the

domain ontology, for the class linked with a MVICS class via AssL, its weight is the

same as the sub-class of the MVICS class it linked to. For a domain class linked with

MVICS through AggL, its weight is the sum of weights of classes contained in the

Aggregation. The Wp of the AggL is the sum of the weight of the classes and

aggregations included in it.

- 117 -

6.3 Precision Calculation Method

To correspond with the MVICS model in which component specifications are

classified into three facts, the keywords of a user query are also divided into three

groups: Function Keywords (FK, the domain keywords belong to FK), Intrinsic

Keywords (IK), and Context Keywords (CK).

The MVICS-based component search will then match the three groups of keywords

one by one in the OWL files of MVICS and the domain ontology. Meanwhile, it will

record the search path of each keyword and calculate the weight of the path. After

retrieval, a set of records is obtained for each keyword, which includes the result

component name, the search path and its weight. The match precision of a result

component (Pc) is calculated with the following unified formula:

1 1 1

1 11

a b d

r r r

r r r
f i ci j n

t tt
t tt

WpFK WpIK WpCK

Pc X X X

WpFK WpCKWpIK

 (5)

The numerators in the formula represent the path weight of the result components that

partially match with the keywords in each facet, and the denominator represents the

path weight of those perfectly matched. X is the original weight, X = 0.5 for a class in

the function model, X = 0.3 for one in the intrinsic model, X = 0.2 for class in the

context model. The yield value of the X for each sub model is given based on our

- 118 -

experience, and it will be updated dynamically by the dynamic original weight

assignment.

6.4 Result Component Profile

In contrast to most existing approaches, which present only the name and precision of

the result component, a holistic Result Component Profile is designed (as shown in

Figure 6.5) of the result component to help the user make the best decision in

component selection. The profile consists of: i) the result component name is shown

in the top middle; ii) search summary next, including the precision with component

adaptation, and the precision without adaptation; iii) the match results in sub models:

function model, intrinsic model, and context model; iv) the match results in the

domain ontology model; v) the associated adaptation method or asset and its incurred

effort.

The new structural result component profile shows the result from the whole to the

part. First of all, the summary helps the user to realize how close of the match

between the result component and the user query right away. It includes the result

component precision with adaptation and without adaptation by which the best several

components are selected for the further comparison. The next is the match results in

sub facets of the user query that are classified according to the sub-models of the

MVICS and the domain ontology. The search details in each facet help the user

- 119 -

further pick the most suitable component in the previous set of similar components by

considering the requirements. Finally, the details of the adaptive search result will be

considered as additional factors to help the user to make the decision.

Fig. 6.5. The Result Component Profile

- 120 -

7. Realisation of the MVICS-Based

Component Specification and Retrieval

To exert the power of the MVICS model in expressing semantics and process

automation in component specification and retrieval, a MVICS-based component

search tool and related component repository have been developed. The tool

implements the complete process of component search, starting from filling the initial

query and ending up with receiving the result component profile; the whole process is

accomplished automatically. The tool consists of a set of modules, which carry out

component search, including Dynamic Class Weight Assignment, Search Precision

Calculator, Search Time Recorder and QAs Suggestion Processer. A component

repository is built to store the components and their relevant adaptation

assets/methods under the structure of the MVICS model and linked domain ontology

model. Corresponding to the MVICS approach framework, the system architecture

contains four functional parts: Users Query Refinement, Ontologies and Component

Repository, Component Search and Result Display. The Ontologies and Component

Repository is identified as the core of the component search process and it controls or

supports the key subsystems in other parts of the tool. As the foundation of the search

tool, the MVICS OWL files and the corresponding component specification in the

- 121 -

Ontologies have been introduced in previous sections. Other functional parts of the

search tool will be described in the following subsections in the order of the workflow

of component search.

7.1 Realisation of MVICS-Based Component Repository

Different from the current ontology-based approaches, the MVICS model is more

versatile in terms of refining the user query, supporting component specification and

managing the repository. Being registered into a repository, a component will be

specified in a MVICS format form. The specification of this component will be linked,

with the help of the form, to the relevant classes of each sub-model in the MVICS.

Such a linkage reveals the semantic information of the originally syntax-based

component specification, through either the relationship between classes within one

facet, or the interrelationship between different facets. Furthermore, the domain

semantics are represented with the linkage of MVICS to domain models.

All the contents of the MVICS model, including classes (MVICS classes and domain

ontology classes), relationships, interrelationships, AssLs, AggLs, Aggregation, and

relevant adaptive component information, are saved into four types of OWL files.

When a user searches for components, the user‟s keywords will be searched in the

OWL file to locate the matched classes in the MVICS. All the components relevant to

the matched classes are identified as result components for this particular search.

- 122 -

Moreover, the components in the repository are managed with the support of the

MVICS as well. When a component is changed, added to, or deleted from the

repository, the repository manager can complete the operation by modify the OWL

file of the component specification related classes. The impact of this operation to

other classes will be realised through the automatic process by the reasoner.

7.1.1 OWL Files

During the component search process, the MVICS model plays a primary role, which

specifies components from a range of perspectives. The contents of the MVICS model

and domain ontology, including classes, individuals, relationships and constraints are

edited by the ontology-editing tool Protégé [84] and are saved in OWL files.

According to the facets of the MVICS and the domain ontology model, the OWL files

can be categorised into four types, including the Original MVICS OWL file, Linkage

OWL file, Adaptive OWL file and Domain Ontology OWL file.

The Original MVICS OWL file is generated by editing the contents of the function,

intrinsic, context and meta-relationship models of the MVICS model. The Association

Class, Aggregation, AssL and AggL are applied to integrate the domain ontology with

the MVICS. Such contents are saved in the linkage ontology OWL file. The adaptive

OWL file consists of the OWL format specification of the adaptive methods/assets,

the relationship between the adaptive methods/assets and the MVICS class, and the

adaptive suggestions (represented as the attributes). The connected domain ontology,

- 123 -

its classes and superior-subordinate relationships are saved in the domain ontology

OWL file.

7.1.2 Component Repository

Under the management of the MVICS and the domain ontology, 600 components

(actually component specifications) are stored in a Microsoft Access database. The

specifications of the components were selected from component sale websites, open

source websites and the MVICS project website. The component names are registered

with the related classes in the ontologies (MVICS and domain). The repository is

maintained via the MVICS project website (http://ceres.napier.ac.uk/staff/chengpu/ind

ex.asp).

7.2 Financial Domain Related Ontology

To implement the MVICS-based approach to a specific domain, a financial domain

related software system ontology was built as an example, by migrating existing

financial operation ontologies. Following the proposed domain ontology migration

method, financial operation ontology was retrieved from the protégé ontology library

[85] with help of Google filetype search [35]. The required financial operation

ontologies were then developed by migrating the financial operations from the

selected ontologies. Each class in the new ontology represents one software system or

module that carries out a financial operation. Superior-subordinate relationships have

http://ceres.napier.ac.uk/staff/chengpu/ind

- 124 -

been used to describe the affiliations of the functions of these systems or modules.

The top level classes include Asset Management Systems, Payments & Transfers

Systems and Risk Management Systems. Their subordinates and the subsequent

sub-subordinates constitute their sub classes and sub-sub-classes, till the most specific

function units at the bottom level. Finally, the relevant AssLs, Aggregations and

AggLs are developed by the domain expert. The full details of the financial domain

ontology are shown in Appendix B.

The method to define the domain ontology in OWL-DL is the same as the MVICS

ontology, except the classes locate at the same level are not disjoint in domain

ontology.

1

iC

n

i
C 1n

kC , which defines
n

i
C is a subclass of 1n

kC , for example,

2

FIC 1

PEC , which states class Fund Investment, is a subclass of Private Equity.

Among these classes, hasA relationship is used to describe super- and sub-class links

between classes in the adjacent levels. The relationship is defined as follows:

Relationship definitions:

n

iC ≡ ∀hasA . 1n

iC , for example,

1

PEC ≡ ∀hasA . 2

FIC , which defines the relationship hasA links the class Private

Equity to the class Fund Investment.

- 125 -

To transfer the component semantics between the MVICS and the financial domain

ontology, AssLs and AggLs were established to link the financial domain ontology

with the MVICS. All the Association classes, Aggregations and their related AssLs

and AggLs are stored as the subclasses of the financial domain class in the function

model of MVICS.

7.3 User Interface

Prior to the functional parts, a user-friendly interface is developed for users to fill in

the search keywords and to operate the search options. A sample user interface of the

tool is shown in Figure 7.1.

Fig. 7.1. The main interface of the prototype tool

- 126 -

On the top left, there is a text area for the user to fill in search keywords. On the

bottom left, these are three columns of option buttons: the first column lists the

available domain ontologies, which has Financial Domain as an example. The second

column spreads out user-oriented options which include Software Engineering

Researcher, Software Engineer and Software Engineering Amateur. The

user-oriented options can further improve the search precision by using different

parameters, which are obtained by analyzing the user queries and collecting the users

feedback. The last column lists the three available quality attributes. The result

components are presented based on selected QA from high to low, when they have a

similar search precision. The use of the option buttons will be introduced in the case

study. On the right hand side of the UI is a black panel showing the summary of

search results.

7.4 User Query Refinement

User query refinement has been developed in depth [30][170]; it focuses on

determining the nouns and verbs from natural language, and processing the keywords

based on the related domain model. According to the existing user query refinement

methods, the MVICS component search tool combines three sub systems including

Synonym Operator, Symbol Operator and Keywords Discriminator (as shown in

fugire 7.2). The Synonym Operator formats the synonyms into a uniform keyword

based on the classes of the MVICS model. The Symbol Operator identifies the

- 127 -

function of number restriction constructors (≤, ≥, <, >), and logic symbols (¬). With

the support from the MVICS model, the Keywords Discriminator recognizes

keywords which are suitable for database search, such as the keywords of exact

component name, component version and component vendor which are implemented

through database keyword search directly. This is because a database search on these

terms will obtain the same search result but with a faster speed than the MVICS based

ontological search.

Fig. 7.2. The structure of the user query refinement

7.5 MVICS Component Search

The MVICS component search is based on the MVICS model and the linkage with

the domain ontology model. It focuses on retrieving the relevant components from the

repository according to the refined user keywords by identifying the search paths. The

- 128 -

MVICS component search identifies the matched classes in the MVICS, AssL, AggL

and adaptive OWL files with the refined user keywords and it retrieves the result

components via the matched classes. The workflow of the MVICS component search

is shown in Figure 7.3, the details will be introduced in the following sub-sections.

Fig.7.3. The workflow of the MVICS component search

7.5.1 Refined User Keywords Parser

Prior to the component search, the refined user keywords will be further processed by

the Refined User Keywords Parser (RUK Parser). The parser first parses the

keywords based on the sub models of MVICS. It classifies the keywords into three

groups, including function keywords (domain related keywords belong to function

keywords), intrinsic keywords and context keywords. In the second step, the parser

generates several scratch storages for the component search according to the numbers

- 129 -

of the keywords. The scratch storages deposit the temporary search data generated

during the searching process.

7.5.2 MVICS Component Search Path

The MVICS component search tool searches the classified keywords in the function

model, intrinsic model and context model of the model and the domain ontology

model respectively. The components related to the matched classes in each model are

identified as the result components. The search also assigns a precision to illustrate

the relevance rating for each result component, which is calculated on the basis of

search paths obtained during the search. Four types of search paths are identified

according to the location of the matched classes in the ontologies as mentioned in the

previous chapter, including the original MVICS search path, the Association Link

(AssL) search path, the Aggregation Link (AggL) search path and the adaptive search

path.

7.5.3 Adaptive Component Search Scratch Storage and Adaptive

Suggestion Processing

The adaptive component search is actually part of the MVICS component search. The

search results are the components that match with the user query after the relevant

adaptation. For the MVICS component search tool, the same number of scratch

storages for the adaptive search paths will be created after the adaptive component

- 130 -

search. The searched keywords with their matched adaptation methods/assets are

saved in the corresponding storages as show in Figure 7.3. In addition, an adaptation

suggestion processing will give every matched method/asset an effort suggestion. The

effort suggestions are classified into three levels, which indicate as Strong, Medium

and Weak. For each available adaptation method/asset, the effort suggestion

information is defined as attributes of the relevant classes, which are stored in the

MVICS model. An adaptation suggestion process invokes these attributes and saves

them in the adaptive search result storage for displaying to the user.

7.5.4 Result Component Oriented Data Conversion

After the component search, the search results will be processed by the Result

Component Oriented Data Converter. The data converter will implement three tasks.

The first task is to map the four types of component search paths (the original MVICS

search path, the AssL search path, the AggL search path and the adaptive search path)

into Function Keyword search path (pFK), Intrinsic Keyword search path (pIK) and

Context Keyword search path (pCK), based on whether the matched classes in the

component search paths belong to the function model, the intrinsic model or the

context model of the MVICS. The second task is data conversion. The original search

results and the adaptive search results in the scratch storage are saved according to

users keywords. In order to calculate the precision of each result component, the

keyword oriented search results (original and adaptive) should be converted into

- 131 -

result component oriented by the data converter. The converted data includes the

result component names and related search paths (pFK, pIK and pCK), are stored in a

new scratch storage. The third task is that the data converter records the information

of matched keywords, unmatched keywords and adaptive information for each result

component.

7.5.5 Precision Calculation

Based on the converted data, the match precision of a result component (Pc) is

calculated with the unified formula (Formula (5)) as defined in Chapter 6.

7.5.6 Dynamic Weight Assignment

The MVICS component search tool is based on the tree structure of the MVICS

model, and calculates the precision of the result component by supplying the values of

the search path weights and the original weights (X) into the Formula (5). As

mentioned in section 6.2.The X of the classes in each model are updated dynamically

by the weight assignment Rules (2) after every 100 groups of user keywords are

obtained. Moreover, in order to further improve the accuracy of the original weights,

the dynamic X are further updated by taking into account the impact of the user

backgrounds with the weight assignment Rule (3) and Rule (4).

- 132 -

7.5.7 QAs-based Result Component Ordering

After the calculation of result components precision, the result components are listed

in the descending order of precision. If the user selects the option button of “QAs

suggestion”, the result components with the same search precision will be further

ranked in the descending order of the values of the selected QAs. A QAs-based result

component order processor will put the result components that have more QA related

factor (as mentioned in section 5.1) in front.

7.5.8 Result Component Profile

In the MVICS-based component search approach, a Result Component Profile is

proposed to present a comprehensive view of the search result to the user. This task is

fulfilled by the result component profile creator in the MVICS-based component

search tool. The creator collates and arranges the search result and the result

component precision, in accordance with the result component profile format. It

carries out three functions: firstly, the result component precision is formatted with

the accuracy of 2 decimal digits; secondly, for each result component, its relevant

search paths are arranged by the MVICS-based component search result, domain

related component search and adaptive component search; and thirdly, having gone

through the MVICS component search and the adaptive component search, the result

component profile creator will calculate the percentages of the matched keywords

amongst all searched keywords in every facet.

- 133 -

7.5.9 Search Time Recorder

To measure the speed, the tool has a Search Time Recorder device, which is used to

record the time consumed during component search. The device has two recording

points: the first point is used to measure the model search time, and it is set to the

completion of the MVICS-based search (includes adaptive component search). The

second point is used to measure the post-search processing time, and it is set to the

formation of the result component profile. The post-search processing time includes

the search precision calculation, the user query record, the QAs-based result

component order and the result component profile generation.

7.6 Result Display

In the MVICS component search tool, three panels are developed to show the results.

In the user-friendly UI (Figure 7.2), the black panel at the right hand side shows the

summary of search results, which comprises the result component names and their

precisions. The result components are arranged in the descending order of their

precision. If the QAs suggestion options (deployability and maintainability) are

selected, the result components that match the most QAs related factors will be listed

at the front of the list if the result components happen to have the same value of

precision. If the user clicks the result component name, the result component profile

will appear. In contrast to most existing component search tools, which only present

- 134 -

to the user the name and precision of the result component, the MVICS tool provides

a holistic profile of the result component to help the user make the best decision in

component selection. The profile shows the matching result in each sub-model of

MVICS, the result in domain ontology and the corresponding adaptation information.

By clicking the component name in the profile, the complete specification of the

component will be presented.

7.7 The MVICS Project Website

In order to facilitate the users to test the approach through the prototype tool, a project

website (http://ceres.napier.ac.uk/staff/chengpu/index.asp) was built as an

intermediary platform. The project website helps users find the relevant information

of the project (Appendix C.1) test the prototype tool online (Appendix C.2), and leave

comments and feedback. The website contains the following main information for the

users:

 The introduction of project. It details the project background, main contributions,

critical methods and the architecture of accessible ontologies (MVICS and

domain ontologies).

 The instruction of the MVICS component prototype search tool. It specifies the

applicable domain keywords, layout of the UI, the component search steps, the

functions of the tool and the specification of the result component profile.

http://ceres.napier.ac.uk/staff/chengpu/index.asp

- 135 -

 The specification of the sample components. The specifications of six hundred

sample components are represented and managed by the facets classification

methods on this website.

 The online prototype tool. This tool is transformed into a web application (Java

applet) and published on the website.

 Database keyword search. On the website, a traditional component search tool

was plugged in as well, which was supported by the basic keyword search and the

faceted classification approaches. This search tool is placed here for the

comparison test with MVICS component search tool. The comparative criteria

include search recall, precision and speed, etc.

 User registering and member interface. Prior to the test, users are requested to

register as a member first. Part of the registration information is the user

background, which will be recorded as the data for analysis in the user-oriented

search. A user-friendly member interface panel will pop up after log in.

 Own component register. Users can register their own components by filling out a

MVICS format registration form. With the consent from the administrator, the

component specifications are link to the related class with the ontologies. The

semantics will be generated and extended with the help of defined relationships.

The registered components are exhibited on the component list and can be used

- 136 -

for the approach evaluation.

 Feedback questionnaire. A questionnaire of the test result will be prompted to the

user for completion. It refers to search recall, search precision, result display, and

other related questions.

Moreover, the project website helps the administrator to manage the component

repository and summarise the feedback and comments.

 Component specification management. In the backend management of the

website, the registered components (including the component specification which

are added by the repository administer and the users) can be managed by the

administrator, e.g. add, amend, approve, reject and delete components.

 Data statistics of the questionnaires. The outcome of questionnaires will be

recorded and analysed at the backstage by generating an XML-based result

summary, which will be updated after every ten questionnaires.

- 137 -

8. Case Studies

8.1 Introduction

Three case studies have been undertaken to illustrate and validate the MVICS-based

approach, in terms of its capabilities of 1) supporting the accurate component

specification and retrieval, 2) seamless linkage with the domain ontology, 3) adaptive

component suggestion, 4) comprehensive result component profile and 5) Quality

Attributes suggestion. Each case study focuses on one or more of the above aspects.

Case studies are selected for the analyses, only when the relevant participants meet all

of the following 4 criteria: 1) They are specialised in one type of software, and

focused on component reuse for software development; 2) They possess large

quantity of components, with similar functions, and with independent intellectual

property rights; 3) They are interested in new semantic-based approach and willing to

feedback their comparison of the MVICS-based approach with their existing

techniques; 4) Their participation may help test one or more of the 5 capabilities of

the MVICS-based approaches. As the start point, the first case study is an essential

experiment which aims at checking the correctness and the capability of the

MVICS-based approach. The first four capabilities of the method can be validated by

this case study. As further extension of the evaluation, the other two case studies place

- 138 -

stress on exhibiting the advantages of the approach in real-life applications. The

large-scale two-stage Metadata Management Platform System (MMPS) project case

study focus on testing the capability 1), 3) and 4). And the Racing Games case study

focus on testing the capability 1), 2), 4) and 5). The user feedback has been collected

as the results of MVICS validation, and as the basis for further improvement.

8.2 Essential Validation and Evaluation of the MVICS

Prototype Tool

8.2.1 Background

The empirical method is used for the MVICS approach validation; user feedback is

collected after testing the use of the prototype tool. To exemplify the use of the

MVICS component search prototype tool, twelve search scenarios with corresponding

search results are offered on the project website. Users can opt to test some of these

given scenarios, or construct their own scenarios for the testing. In this case study, a

financial domain scenario of developing an encrypted Cash Management Systems

with user-friendly interface is taken as an example, to illustrate the function and

process of the MVICS repository and its linkage with a domain related software

system ontology. As mentioned in section 7.2, a financial domain related software

system ontology has been built, by migrating existing financial operation ontologies.

The relevant AssLs, Aggregations and AggLs have been developed with the support of

- 139 -

domain experts and saved under the sub-class Financial of class Component Domain

in the Function model.

8.2.2 The Process

The functional requirements of the required encrypted Cash Management Systems, as

its name implies, basically include encryption and cash management. Generally

speaking, the software system will be composed of a number of components and it

will manage liquidity, account balances, payments and other functions related to cash

management under an encryption environment. The required components are .NET

type, more specifically Silverlight or .NET Class. Correspondingly, they will be

deployed in a Windows environment with Visual Studio 2008 or above.

After the user query refinement, the scenario is specified as the following search

requirements:

Function: Cash Management, Encryption

Component Type: Silverlight, .NET Class

Component Platform: Windows

Component Container: Visual Studio 2008

The user may fill in the relevant keywords into the text area of the search UI and click

the financial domain option button to extend the search into financial specific

components. Next the deployability suggestion option button is selected to ensure the

result components which can be deployed in more platforms to be listed in the front of

http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html

- 140 -

the result list. Lastly, the user-oriented option buttons are left blank for original

precision calculation. Once the search starts, the search tool first identifies which

sub-model the keywords belong to in MVICS. Meanwhile, the information of the

keywords and their related models are recorded by the requirement recorder for future

refinement. The search engine searches the keywords one by one in the original

MVICS OWL file, the financial domain OWL file and the adaptive OWL file

respectively.

During the search process, the relationships between the sub-models provide more

semantics: for instance, the matched class silverlight in the intrinsic model has a

Matching Propagation Relationship with class multimedia, graphics and animations in

function model. With the semantics of the interrelationship, the silverlight type

components should have the function multimedia, graphics and animations. Therefore,

these functions are taken into account in the search as supplement. At the same time,

in the context model, the matched class visual studio 2008 specifies that the OS

requirements should be Windows XP or above by the Conditional Matching

Propagation Relationship. With the support of the Supersedure Relationship, the

search tool will identify the components as the result if the edition of their container is

beyond the 2008, e.g. visual studio 2010.

The keywords “Encryption, Silverlight, .NET Class, Windows and Visual Studio

2008” are matched with the classes of MVICS, and their relevant components are

http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html
http://www.componentsource.com/features/net-class/visual-studio-2008/index.html

- 141 -

identified as the result components first. Afterwards, the search tool continues to

search the unmatched keywords “Cash Management” in the financial domain OWL

files in the same way.

After searching the MVICS and the financial domain ontology OWL files, the tool

searches available adaptive methods/assets in the adaptive OWL files. All the

components relevant to the matched classes are identified as the result components of

the search, and the precision for each result component is calculated on the basis of

the retrieved search paths by the Precision Calculator. The findings offer the user

more options to develop the cash management software systems.

The names of the result components and their precision are displayed in the

descending order of precision; the more portable components are listed in front of

other components with the same precision on the right panel of the UI. When a result

component is highlighted, its result component profile will pop up, which provides

comprehensive search information for each result component, including the result

component name, overall precision of the component search, the match results in

function, intrinsic and context model, the match result in the financial domain

ontology and the available adaptation methods/assets with their efforts to apply.

To compare with the MVICS component search tool, an SQL database search tool and

a domain ontology-based component search tool are presented on the project website

for the comparison test. The SQL database search tool implements the traditional

- 142 -

keyword search approach with the support of the facet classification and behavior

matching approach. The domain ontology-based component search tool implements

the existing domain ontology-based approach. It uses the same financial domain

ontology for refining the user requirements and specifying the component without the

support of MVICS. Software engineers, researchers and amateurs are able to use the

applications with the same testing scenarios and to comment on the tool and the

search result via a questionnaire.

8.2.3 Analysis

As mentioned in chapter 7, to facilitate users understand the MVICS component

search prototype tool and to perform the comparison testing and leave comments, a

project website is built. To date, 125 users have tested the tool in practice, among

whom 43% from Europe, 33% from Asia, 17% from North America and 7% from the

rest of the world. In the self-appraisal to scale their own software engineering

experiences from level 1 to 5, 15% opt for scale 1, 7% for 2, 44% for 3, 23% for 4 and

11% for 5. The explanation of test participant‟s experiences level is shown in Table

8.1.

Users are classified into three groups:

 Software Researchers are those who pursue research careers in institute or

software companies;

- 143 -

 Software Engineers are those who engage themselves in software development in

the software companies;

 Amateurs cover the rest of the users.

Given such a classification, the different impacts of user‟s background and

occupations are tested. The differentiation of academic and industrial, professional

and amateur is to verify the impacts of different users‟ behaviour on the results of

MVICS-based approach in application. This classification can be used as the basis of

further improvement. It will also make it convenient to provide users of different

background with Precision calculations fitful for their own application scenarios.

Table 8.1. Level of Experience of Testers

Level of Experience Explanation Proportion

1
user has more than 10 years

software engineering experience
7%

2 user has more than 5 years 15%

3 user has more than 3 years 44%

4 user has more than 1 year 23%

5 user has no experience 11%

Table 8.2. Professional Background of Testers

Occupation Software

Researcher

Software

Engineer

Amateur

No. of respondents 59 39 27

Years of experience

(Average)

7 5 3

- 144 -

The information of test participant‟s professional background is shown in Table 8.2.

And the results of these component retrieval experiments are analyzed and given in

Figure 8.1.

Precision and recall [153][190] are two critical dimensions to evaluate the

effectiveness of the component search. The MVICS component search tool improves

the search precision and recall, particularly for the large repository as shown in Figure

8.1 a. and 8.1 b. Such improvements come from its semantic foundation, i.e., the

formalized MVICS ontology model and its linkage with the domain ontology, as well

as the successful automation in the repository and search tool. MVICS represents

component specification in a multi-faceted and hierarchical structure. In addition, the

interrelationships in the MVICS model and the linkages with the domain offer more

semantic meaning among the classes of the ontologies (MVICS and domain). In this

case, more search paths are retrieved during the search process. This should lead to

further improvement on recall and precision. Comparatively, with lower description

capability and less relationship in their ontology, other existing domain ontology

search tools offered lower satisfaction in precision and recall than the MVICS-based

tool. Without the support of ontology for the component specification and retrieval,

the traditional search tool offers even lower satisfaction when searching in a large

repository.

- 145 -

(a) Satisfaction of Precision (b) Satisfaction of Recall

(c) Satisfaction of Result Display (d) Satisfaction of Adaptation Suggestion

(e) Search Speed (f) Maintenance Effort

Fig. 8.1. The level of satisfaction of the MVICS component search tool, existing ontological

domain specific search tools and traditional search tools

The result display is to indicate the degree of user satisfaction with the display of the

result components in terms of the completeness, clearness and usefulness. Via the

- 146 -

proposed result component profile, the search results are shown more effectively in

the MVICS component search tool (Figure 8.1c).

The criteria adaptation suggestion is used to estimate the degree of usefulness and

user acceptance of the found adaptation suggestion. With the novel and unique feature

of the proposed adaptation component search among all component search tools, the

MVICS offers remarkably improved satisfaction in the aspect of adaptation

suggestion, as shown in Figure 8.1d.

Further to the improvement of search accuracy, the MVICS component search tool

also takes into account other related properties, such as search speed. As mentioned in

the section 7.5, the tool has a Search Time Recorder device to record the time

consumed of model search time and post-search processing time. Figure 8.1e shows

the comparison of the search speeds of the different search tools in repositories of

varying sizes. Ignoring the time consumed in the pre-preparation work, the existing

domain ontology search tools and the traditional search tools are faster than the

MVICS approach when the size of a repository is less than 500 components; however,

the MVICS component search tool becomes faster when the repository is large. This

is because the MVICS component search tool searches classes in the ontology along

its multi-faceted and hierarchical structure. The reason for the speed loss in the

MVICS component search tool is the additional semantic processing, i.e.,

- 147 -

semantic-based precision calculation, adaptive component search and data collection

for a whole profile of result components.

Regarding the effort of maintenance, it is observed that the ontology-based search

tools (MVICS and existing domain ontology-based approach) are easier to manage in

medium-sized repositories, as shown in Figure 8.1f. Again this advantage comes from

the fact that the MVICS component search tool uses an ontology formally defined in

OWL-DL, which makes it possible for automatic validation through ontology

reasoners. More effort in developing the AssLs, Aggregation and AggLs to integrate

domain ontology model into MVICS will ensure the domain viability of the MVICS

approach.

8.3 Large-scale Two-stage Metadata Management Software

System Case Study

This case study places more emphasis on demonstrating that the MVICS-based

approach is capable for industrial scale component-based development in real life.

The use of MVICS enhances component specification and the highly automated

capability that improves the efficiency of large-scale multi-functional software

development. In particular, the approach utilizes its unique adaptive component

suggestion to provide more appropriate choices for the developers.

- 148 -

8.3.1 Background

In this case study, we cooperated with Beijing Mysoft Technology Co., Ltd. [97] in

the development of metadata management software system for China State Grid

Beijing Branch. Beijing Mysoft Technology Co., Ltd. is a developer and service

provider that specializes in Enterprises Management Systems and Database

Management Systems. Its independently developed product “Smart Collaborative

Management Platform” passed the system evaluation by China National Software

Testing Centre (CSTC) [90]. Mysoft has successfully constructed a number of

Enterprise Integrated Service Management Platforms and Enterprise Portal

Management Platforms, which are applied to enterprise database management,

enterprise integrated office management, human resources management, asset

management, customer relationship management, procurement management, and

portal management.

The project of the large-scale two-stage metadata management software system was

done by the development group led by Mr. Jia Ding, which consisted of 10 members.

The MVICS-based approach is then applied to resolve the problems encountered in

the previous process. The problems are similar to those often occurring in CBD,

including inappropriate component specification, inaccurate component retrieval and

missing of adaptive components (a kind of low level of component search recall). The

- 149 -

MVICS approach is implemented with support of the Mr. Ding led four-person test

group. Their feedbacks are collected as the results of MVICS validation.

8.3.2 Mysoft’s Existing Component Specification and Retrieval

8.3.2.1 Introduction

Mysoft has about 500 components, including 58 metadata management components,

in their in-house repository. The components are obtained from foregoing projects

related to metadata management system development. The component developers

produce the components, which can implement one or more functions of metadata

management. Because the components come from different projects, the diversity of

their characteristics is large, such as size, functions type, container and platform. In

order to specify the components accurately and clearly, a popular business component

specification method was selected [41]. The method divides the specification of a

component into seven levels, including interface, behaviour, interaction, quality,

terminology, task and marketing. The specification aspects of each level are shown in

Figure 8.2.

After the specification, the components are saved in Mysoft‟s in-house repository

with the specification documents (an example is given in Table 8.3) searchable

through keywords. An SQL database search tool is proposed to facilitate the

component retrieval. In order to further support narrowing the search space and still

- 150 -

retrieve relevant components, three facets of the search parameters are classified for

the developers. The details of function type facet, component type facet and platform

facet are shown in Figure 8.3.

Fig. 8.2. Specification levels and specification aspects

- 151 -

Table 8.3 Example of component specification document

Mysoft Data Analysis ASP 025

Function Summary:

Add data mining and multi-dimensional analysis to ASP.NET applications.

Mysoft Data Analysis ASP 025 is a comprehensive data analysis, data mining,

and visual reporting solution for ASP.NET 2. With Mysoft Data Analysis ASP

025, your users can break down raw data in any manner they require using

easy-to-understand Windows commands. By incorporating the Mysoft Data

Analysis ASP 025 in your application, you can deliver an almost endless array of

reports. Mysoft Data Analysis ASP 025 is able to slice and dice information

efficiently and provide customers with an intuitive end-user experience. Mysoft

Data Analysis ASP 025 delivers numerous layout customization options with

total end-user control over each individual on-screen report. Mysoft Data

Analysis ASP 025 Subscription with Source code Licenses available. Data

Source Support, Display Table Data into Fully Customizable Visual Reports,

Control the Level of Detail, Arrange Values Hierarchically, Automatic and

Manually Specified Totals, Sort Data and Display Top Rows, Filter Data, Hide

unnecessary values in the axes and Filter the data against which calculations

are based.

Component No.: DA-03-025

Version: 1.0

Component Type: ASP.NET WebForms, ASP.NET AJAX, .NET Class, AJAX

Built Using: Visual C# .NET

Product Class: User Interface Components

OS Windows 7, Windows Vista, Windows XP, Windows 2000

Compatible

Containers:

Microsoft Visual Studio 2010, Microsoft Visual Studio 2008, Microsoft Visual

Studio 2005, Microsoft Visual Basic 2010, Microsoft Visual Basic 2008,

Microsoft Visual Basic 2005, Microsoft Visual C++ 2010, Microsoft Visual C++

2008, Microsoft Visual C++ 2005, Microsoft Visual C# 2010, Microsoft Visual C#

2008, Microsoft Visual C# 2005

Prerequisites: Disk Space Required: 10MB

Memory Required: 64MB

Behaviors: TypeCodes

Self. ListOfTypes->forall (b:Types) | (b. TypesCode > 00)

TypeCodes::convertTypeCode(name : Typename): TypeCode

pre : self.ListOfTypes->exists(b: Type | b. TypeName = Typename)

Throughput: 2.3s

Response time: 23ms

Time

distribution

0.0425ms

- 152 -

Fig. 8.3. Facets of search parameters

8.3.2.2 Search Scenario

To test the Mysoft component specification and retrieval method, a scenario of

developing a two-stage Metadata Management Software system (MMS) was adopted.

The function requirements of the MMS are divided into two stages. In the first stage,

the five basic metadata management functional modules are built, including metadata

survey, metadata analysis, metadata management and metadata mining. The last three

modules can be further divided into several sub-modules. In the second stage, an

operation metadata browser and analysis module is developed by holding, improving

or optimizing the basic modules in first stage and creating new function modules; two

- 153 -

new second stage modules, namely metadata management and metadata mining are

created; the modules of metadata management and metadata are kept. Figure 8.4

shows the details of the function requirements of the two stages. The modules with

light grey are created in the first stage; the modules with dark light are added in the

second stage; the black modules in the second stage are improved or optimized on the

basis of the first stage modules. The solid arrow indicates the process of improvement

and the dotted arrow shows the optimization.

- 154 -

Fig. 8.4. Two-stage functional requirements

- 155 -

8.3.2.3 Process

For the first stage requirements, system developers search for components by adding

the function keywords into the text area of the tool. The function keywords comprise

from the top level system functions to the bottom level specific functions. More

accurate keywords are added, more precise the result components are obtained.

SQL-based search tool retrieve the components by matching with the contents of the

component specification documents. The result components are listed in the order of

the matched keywords from the most to the least.

Before the developers use the “most accurate” components for the further

development, they still need considerable effort to read the component documents for

the following reasons: 1) the keyword-based search is not efficient. It often results in

too many or too few hits, or it may retrieve components that are completely unrelated.

The search precision depends on the regulation and quality of component description.

However, the component descriptions are written by different component developers

textually in natural language. It is difficult to improve the search efficiency. For

example, when you search for the keyword “order processing”, the text “in order to”,

“reorder”, and “can not order” are also matched with the keyword; 2) the sizes of the

result components vary from single specific function module to large multi-functions

module. Predictably, the three sizes of result components will be retrieved in

comparison with the function scope of the requirement, as shown in Figure 8.5. The

- 156 -

first size of the result component (component 1) contains one or more Required

Functions (RF), which is in the boundary of the required system functions scope. The

second size, like component 2, part of its functions belongs to the required functions.

Last, all the required functions are included in the component 3. The decisions of

which components will be used need further analysis by considering other factors,

such as effort for the composition, capability of the developer, further development

for the second stage. After the component search, the developers still need much

effort to select the components. Furthermore, the final decision depends largely on the

background of the developers.

Fig. 8.5. Three sizes of result components compares with required system functions scope

For the second stage, the component search process and the problem encountered will

be the same as the first stage. Furthermore, a new problem emerges in the process of

function improvement or optimization: although the component adaptation is an easy

- 157 -

way to reach the goal, the Mysoft method does not support the adaptation for the

reason of lacking adaptive assets and poor support of the adaptation methods.

Although a large number of adaptation assets in similar projects are preserved, most

of them are neither specified in the component repository nor linked to their related

components. Therefore, adaptation assets/methods cannot be effectively used let

along reused; this drawback reduces the efficiency of the CBD. The problems will be

solved by the MVICS-based approach.

8.3.3 MVICS Component Specification and Retrieval

8.3.3.1 Introduction

The MVICS ontology model contains a large amount classes about the data

management, which are organized into tree type architecture. Each class is formal

defined to present one data management function and is not disjoint with others. The

relationship between the super- and sub-classes and the inter-relationship among the

different facets of the MVICS are investigated with the help of domain experts.

Although the MVICS covers most data management functions classes, new functions

may emerge which were missed during the rapid development of applications. In the

MVICS-based component specification, the missing functions will be generated as

new classes in the MVICS structure. The component information, related adaptive

assets description and QAs-oriented factors are specified by completing a component

- 158 -

specification registration form in the MVICS prototype tool (as shown in the

Appendix C.3). After the registration, the data management components, their

component adaptation assets and suggestion information are connected to the related

classes in the MVICS.

8.3.3.2 Process

In the first stage, the same scenario is used to examine the MVICS approach in the

component specification and retrieval. The keywords are first processed by the

Synonym Operator to ensure that correct terms are used in the query. And then the

refined keywords map against the MVICS component OWL file to find the matched

classes automatically. At the same time, the relationships between the classes provide

more semantics information to retrieve more related classes. In addition to the original

component search, the adaptation component search occurs by matching the keywords

with the adaptation OWL file. The search paths (original and adaptive) of each

function are recorded for calculating the search precision. Finally, all the components

related to the matched classes are identified as the result components for development.

After the retrieval, the result components are listed in descending order of precision.

For each result component, a comprehensive result profile of each component shows

information from the summary to the details including: the result component name,

overall precision of the component search, the match results in function, intrinsic and

- 159 -

context model and the available adaptation method(s) or asset(s) with their efforts to

apply.

8.3.3.3 Analysis

The use of the MIVCS-based approach eliminates or relieved the problems which

occurred in the Mysoft method in the first stage. The problem of the wrong or

unrelated results disappears due to the semantic matching between the refined query

and the OWL format specification. The result component precision and the profile

will help the developers to make a better decision with less effort and limited lower

background. For the second stage, the component search process will be same as the

first stage. The MVICS-based approach surpasses the Mysoft method in function

improvement, and the implementation of optimization is easier with the help of

adaptation matching result. The related adaptation assets/methods will be

recommended, which offer more development options to the developer.

After the comparative test, the developers gave their feedback according to four

criteria through the questionnaires, including user satisfaction of search precision and

recall, required time, users satisfaction of adaptive assets/methods and human

intervention.

- 160 -

Fig. 8.6. Feedback analysis of the MVIVS-based approach and the Mysoft approach

Firstly, the MVICS-based approach improves search recall and precision to some

extent. The results (Figure 8.6 a) are similar to the prototype experiment, which

demonstrates the MVICS-based approach is suitable for industrial applications.

Secondly, for large CBD development, the MVICS approach can shorten the

development cycle (as shown in Figure 8.6 b) by its powerful description capability

and logical definition, which can bring highly effective and fast component

specification. In addition, the use of MVICS-based component registration is also an

influential factor. Thirdly, the ignored adaptive methods/assets in the Mysoft

approach are now suggested to the developers, and the resulting improvement is

- 161 -

shown in Figure 8.6 c). In particular, from the first to the second stage, part of the

components used in the first stage are adapted with the help of the adaptive suggestion,

rather than finding new components; this is another reason for the shortened

development time. Finally, because the MVICS method improves the search recall

and precision, provides the adaptive assets/methods and corresponding adaptive

suggestion, the development experience requirements for the developers and the

efforts for the following system development are reduced. Finally, the effects are

expressed in the reduction of the human intervention, as shown in Figure 8.6 d).

8.4 Racing Game Case Study

Unlike the second case study, this case study focuses on illustrating the ability of the

MVICS-based approach to develop a domain specific system. Firstly, the aim of the

case study is to examine the strength of the linkage with domain ontology mechanism

in real component-based development. In addition to of the improvement of the

search efficiency and the automated capability in development of component-based

applications, the benefits can be delivered into specific domain software development

by using the linkages (AssL and AggL) of the MVICS. Furthermore, the efficiency of

Quality Attribute suggestion will be reflected in the further game platform

deployment.

- 162 -

8.4.1 Background

This case study is in collaboration with the Mobile Game Development Department of

Gameloft Co., Ltd in Beijing [93][103]. Gameloft (Euronext: GFT) ,a French

publisher, primarily creates games for mobile phone handsets equipped with

platforms including iOS [76], Android [74], Window Phone [78], BlackBerry OS [75],

Symbian OS [77] etc. There are various types of classic mobile games which have

been published in recent years, such as Asphalt series, Block Breaker series, Platinum

Solitaire series, Guitar Rock Tour series and Uno.

The Mobile Game Development Department Beijing branch mainly focuses on

developing Sports Games (SPG), for example, more than 8 types, 12 patterns and 45

editions of Racing Games (RAG) have been developed. There are large numbers of

racing background components, racing car model components, racing control

components, database management components and sound processing components

that can be reused in the future development of similar games. However, the reuse

oriented game development is still at white-box level, which restricts their efficiency.

The current situation of component specification and retrieval is the same as the

MysSoft in the last case study. The code, software packages, or modules obtained in

the previous projects, which implement one or more functions, are encapsulated as

components and are described by their specified interface. A local department

repository was built to store the components and help the developers reuse by

http://en.wikipedia.org/wiki/Euronext
http://www.euronext.com/quicksearch/resultquicksearch-2986-EN.html?matchpattern=GFT&entryType=symbol
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/IOS_(Apple)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Windows_Phone_7
http://en.wikipedia.org/wiki/BlackBerry_OS
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/Guitar_Rock_Tour
http://en.wikipedia.org/wiki/Modular_programming

- 163 -

traditional component retrieval methods. The existing Gameloft component

specification of retrieval provides a way to improve the development efficiency,

however, it is still not nearly as satisfying as developers expected, due to the low

precision and recall of the component search. In particular, the existing methods do

not consider the influence of component QAs, which will affect the process of

platform transplantation and even cause redevelopment. As a starting point, a case of

City Racing Game is selected to test the improvement of the MVICS-based approach

in the component-based development.

8.4.2 MVICS-Based Gameloft Component Specification and

Retrieval

The application of the MVICS-based approach to the City RAG consists of the

following steps: i) Development of RAG domain ontology; ii) linkage between

MVICS and RAG domain ontology; iii) MVICS-based component specification and

retrieval; iv) MVICS-based QAs suggestion. The last step is actually realized in the

process of the MVICS-based component specification and retrieval.

8.4.2.1 RAG Domain Ontology

The use of an accurate RAG Domain Ontology is a key part of the application of the

MVICS-based approach in this case study. However, it is difficult to retrieve an

exiting domain ontology that fully meets the requirements in practice. Usually the

- 164 -

structure and contents of the selected ontology need to be modified, added and even

rebuilt.

Fig. 8.7. The top level classes of RAG domain ontology

The basic RAG domain ontology used in the case study was retrieved from the game

ontology library [92]. According to the requirements of RAG, the framework of the

RAG domain ontology was updated, which consists of seven parts, including the

Background, Car Model, Game Control, Physical Data Control, Database

Management, Security Affair Administration and Sound, as shown in Figure 8.7. The

seven parts are recorded as the top level classes, and their sub-classes, sub sub-classes

are built by migrating other existing RAG related ontologies, such as Game Database

Management ontologies and Game Security Affair Administration ontologies.

The RAG related ontologies were retrieved from the protégé ontology library [85],

with help of Google filetype search [35]. The relevance specific classes in the selected

RAG related ontologies were rearranged under the class Background, class Car Model,

class Game Control, class Physical Data Control and class Sound of the new RAG

domain ontology.

- 165 -

Fig. 8.8. RAG domain ontology

The method to construct the class Game Database Management and the class Game

Security Affair Administration is the same: their sub-classes migrate from the

- 166 -

relevance existing ontologies. Finally, the new RAG related ontology is updated by

recording and adding the new features of Gameloft City Racing Game, which cannot

be obtained from the existing ontologies. Each class in this ontology represents one

module that carries out a functional requirement in the development of the City RAG.

Superior-subordinate relationships have been used to describe the affiliations of the

related modules. The classes of RAG domain ontology is shown in Figure 8.8 and its

detail list in Appendix D.

8.4.2.2 Linkage Construction

To extend the semantic-based component search into the RAG domain, classes of the

RAG domain ontology are linked to MVICS, either through AssL where a

corresponding super/sub-class relation exists, or through AggL where a domain class

is composed of one or one set of Aggregations in MVICS. To automate the

integration between domain ontology and MVICS, the following steps are taken to

support the semi-automation of the integration: i) Association class identification; ii)

Operation module analysis; iii) Aggregation update.

 Association Class Identification

Except for the existing class Database Management and class Sound in the

MVICS, the class Background, class Car Model and class Game Control

represent specific operations, as a specialization of relevant MVICS classes

- 167 -

in the RAC domain. These classes and their sub-classes, sub sub-classes can

be viewed as sub-classes of their relevant MVICS classes. Therefore, the

above four classes are identified as the Association Classes, and AssL is used

to link these classes with their super class counterparts in MVICS. The class

Background and class Car Model are viewed as the sub-classes of Class

Rendering Model of the MVICS; the sub-classes of class Game Control,

including Move, Turn, Stop, Acceleration can be seen as the sub-class of

class Physical Engine of the MVICS; and these RAG ontology classes are

linked with MVICS by AssL.

 Aggregation Analysis

Differing from the classes in RAG domain ontology that can be linked via

AssL, the sub-classes of class Physical Data Control and class Security Affair

Administration are more comprehensive and multifunctional. In this case, we

first analyze the Aggregations in terms of the IT function in MVICS, which

represent the group functions of the Data Control and Security

Administration operations. These Aggregations are viewed as reusable units

oriented to different Physical Data Control and Game Security

Administration operations in the RAG domain. The AggL is used to link

RAG domain classes to the relevant Aggregations in MVICS. For example,

the Aggregation (Data management 2) in the MVICS model comprises the

- 168 -

sub-function classes Data Acquisition, Data Processing, Data Validation,

Data Conversion and Data Output, which can cooperate to implement the

Physical Data Control for the RAG. Thus, the class Physical Data Control is

linked to the Aggregation (Data management 2) through the AggL.

 Aggregation Update

In the context of linkage with class Security Affair Administration, a

problem encountered is that Security Affair Administration for the RAG

involves issues of interaction with the server. It means that the Class Security

Affair Administration not only links to Aggregation (Security 1) but also the

Server Speed related Aggregation. However, there is no such kind of

Aggregations in MVICS. In this case, the Aggregation of Server Speed,

namely Aggregation (Server Speed Management), should be added into the

MVICS. After the new Aggregation update, the class Security Affair

Administration in RAG domain ontology is linked to the MVICS by

Aggregation (Security 1) and Aggregation (Server Speed Management).

8.4.2.3 MVICS-Based RAG Component Specification and Retrieval

As the linkages were defined formally, the MVICS-based RAG component

specification and retrieval work is the same as the financial domain example. The

already built components and related adaptation assets are specified with help of the

- 169 -

MVICS and the RAG domain ontology. The QAs related factors of each component

are identified at the same time as the preparation work for the QAs suggestion. During

the search, the selected deployability and maintainability of the result components are

considered. The advantages of search precision and recall, adaptation suggestion and

result display are also presented. In addition, the use of MVICS-based method

relieves the problem that occurred in the process of racing game transplantation.

After its initial development, the racing game is adapted to many editions in

accordance with mobile devices by the Game Transplantation Group. The

implementation of the racing Game is restricted by CPU, RAM, OS and size of

display screen of mobile device. Usually the transplantation Group needs to modify or

delete some non-requisite components to meet the hardware requirements, and

sometimes redevelop some functions of the game, such as change some requisite

components.

Because the MVICS-based approach provides the QAs suggestions, it can solve the

above problems in transplantation at a certain level. The features of a component

which affect their deployrability and maintainability are stored as forms in the class

Quality Attribute of the function model. Deployability [37][60][109] is defined as the

ability of a component to run in different computing environments. It does not imply

that the application will simply require to be recompiled for the new platform. Neither

does it allow for major re-engineering projects. Deployability is the ability to provide

- 170 -

the application on another system with known and economically reasonable cost and

effort [14]. Maintainability [3][115][142]is defined as a capacity to undergo repairs

and modifications. Maintenance is of three different types, corrective, adaptive and

perfective maintenance [4]. Corrective maintenance is the removal of faults, thereby

improving the reliability of components under the condition that no new faults are

introduced. Adaptive maintenance is performed when a component is modified to

meet modifications in the target environment. Perfective or preventive maintenance

addresses improvements of the components in response to users or designers‟ input

[123]. The result components that support multiple platforms, convenient

modification and easy deployment, are recommended in priority to the user.

8.4.2.4 Analysis

The implementation of the MVICS approach in this case study is led by Mr. Xikun

Yang. Other two developers give assistance to developing the ontology, specifying

and retrieving the components, and developing the RAG game. Their feedbacks

proved again that the MVICS-based approach improves the search recall and

precision in practical applications. At the same time, it reduced the problems cause by

the human intervention to some extent. Because the MVICS-based approach avoids

the situations that the manual component specification and retrieval, inexperienced

component adaptation and software transplantation without component QAs

- 171 -

suggestion. Users satisfaction of the MVICS-based approach and the Gameloft

approach as shown in figure 8.9.

Fig. 8.9. User satisfaction of the MVICS-based approach and the Gameloft approach

Fig. 8.10. The statistics of working days for each phase

However, a noteworthy circumstance is both approaches took about seven weeks on

the condition that the MVICS-based approach saves time for the game development

obviously. The MVICS approach saved eight working days in the phases of

development and transplantation, whereas there time was almost wasted in the

- 172 -

component specification and retrieval phase. The statistics of working days for each

phase is shown in Figure 8.10.

The MVICS-based approach took more than eight working days to build the RAG

ontology and the linkage with MVICS ontology. For the Gameloft Beijing branch, the

MVICS-based approach can only save the time for the next Racing Game

development. If the next project is another type of game development, such as Role

Playing Game (RPG) or Action Game (ACT) Puzzle Game (PUZ), part of the class

Physical Data Control, class Database Management, class Security Affair

Administration and class Sound of RAG ontology can be reused after minor changes.

Mostly the MVICS-based approach needs to re-establish the corresponding game

domain ontology and its linkage with MVICS, which undoubtedly reduces the

attraction of MVICS in actual applications.

8.4.3 Extended Game Domain Ontology Model

To make the MVICS-based approach fully deployed in the Gameloft game

development, and to avoid extra time and resource consumption of establishment of

the appropriate ontology and its linkage, the RAG ontology needs to be updated to a

generic game development ontology for the Gameloft.

According to the common features of game development for various game types, the

top level classes of RAG domain ontology needs to be redefined in order to improve

- 173 -

its description capability, which can cover all types of games in the Gameloft. The top

level classes of the updated Gameloft game ontology comprise class Graphics

Rendering, class Game Control, class Physical Data Control, class Database

Management, class Security Affair Administration and class Sound, as shown in

Figure 8.11 (the details of the Gameloft ontology is given in Appendix E). The

changes are mainly manifested in the class Graphics Rendering and class Game

Control compared with the RAG ontology.

Fig. 8.11. The top two level classes of the Gameloft ontology

The class Graphics Rendering refers to coverings all types of the graphics in the game,

which includes the Background, Character, Visual Effects and Data Display. The

sub-class Background here is the same as the homonymous class in the RAG ontology.

The contents of the new Background are more comprehensive. It includes not only the

Race game, but also the background of the game RPG, ACT and PUZ. The class

Character extends the class Ccar Model of the RAG ontology. It describes the all the

types of the Characters occurring in the developed game. The class Visual Effects and

class Data Display are new in the Gameloft ontology. The Visual Effects mainly affect

app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display

- 174 -

the large 3D RPG and ACT games which are not used in the existing RAG games.

The Data Display is listed separately from the class Physical Data Control in the

RAG ontology, because the Data Display is more important in the other types of

games.

The content of the class Game Control is improved that mainly embedded in the new

sub-classes Plot Control and Regulation control. The Game Control here is not only

the simple movement of a Character and the change of the background. It refers to the

change and progress of plot for the games, such as the RAG mission and ACT. The

Regulation Control focuses on the PUZ type game that should follow the PUZ

regulations. The rest of the top-level classes are similar to the RAG ontology, and

needed an update to some new classes according to the new requirements.

Through the establishment of the Gameloft ontology, the MVICS approach can be

used in all types of the game development in the Gameloft with less time consumed in

re-building the new ontology. The pre-preparation work only refers to update some

classes according to the new specification of the components which greatly saves time

of MVICS approach deployment.

8.5 Summary

The feedbacks from the three case study shows that the MVICS-based approach has

the five capabilities in the prototype text and practical use.

app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display
app:lj:%E6%95%B0%E6%8D%AE%E6%98%BE%E7%A4%BA?ljtype=blng&ljblngcont=0&ljtran=data%20display

- 175 -

The test results from the first case study shows that the MVICS-based approach

improves recall, precision, result display, and adaptation suggestion effectively, in

particular, on the criteria of result display and adaptation suggestion. The result

profile and adaptation suggestion are new mechanisms that developed in MVICS in

contrast to other existing component search approaches. For the criteria search speed

and maintenance effort, the MVICS and traditional approaches cut both ways under

different conditions, but all within a reasonable range. By testing the prototype tool

for a large number of scenarios, the initial validation results confirm the improvement

of the component specification and retrieval in these five aspects has been achieved

by the MVICS approach.

On the basis the prototype test, the second case study validates the MVICS approach

in real applications. The implementation of the two-stage large Metadata Management

system demonstrates that the MVICS-based approach can be deployed in real life

industrial development. The benefits of MVICS include not only the improvement of

the component search precision, reducing the development time, but also the decrease

of the human intervention on CBD.

The last case study validates the advantages of the MVICS-based approach, including

the improvement of search precision and recall, availability in specific domain,

suggestion of adaptive assets/methods and reduction of human intervention.

Especially, the QAs suggestion in the MVICS-based approach can play a

- 176 -

supplementary role in the later game transplantation phase. However, due to the

dependency of the MVICS approach on the domain ontology and the RAG domain

ontology established in this case study only applicable to racing game, the MVICS

approach may be limited to wider practical applications. The updated Gameloft

ontology makes the MVICS approach applicable for all types of game development in

the Gameloft, which solves the above-mentioned application problem.

- 177 -

9. Conclusions and Future Work

The objectives of the research have been achieved by developing the MVICS

ontology-based approach to solve the component mismatch problem via holistic,

semantic-based, adaptation-aware and QAs oriented component specification and

retrieval, and extending the search scope to domain ontology via the developed

semantic links. The literature investigation has shown that the proposed approach has

novel contributions to the research area. This chapter first concludes the contributions

of the MVICS-based approach according to the proposed objectives in the Chapter 1

and then discusses the possible future directions of the research.

9.1 Conclusions and Novel Contributions

9.1.1 Conclusions

With the continuous expansion of software applications and the increase in

component varieties and size, it is becoming more imperative in component-based

development to solve the problem of component mismatch. A major hurdle for wider

and smoother component reuse is the lack of automated and effective approaches to

component specification and retrieval. Although domain model and ontologies have

been attempted in component specification and retrieval, producing improved results,

- 178 -

it is clear that the ontologies in existing approaches have too simple and/or monolithic

a structure and too few relationships to deal with the specification and retrieval of

modern components. To correct the limitations of existing work, an approach based

on a multiple-viewed interrelated component specification ontology model has been

built and evaluated. The following work has been undertaken during the development

of the approach:

1) A holistic ontology-based component specification and retrieval approach

A MVICS-based approach is developed to achieve holistic and

semantic-based component specification and automatic and precise

component retrieval (Chapter 5 and 6). The approach has two characteristics,

namely “holistic” and “semantic-based”. “semantic-based” here refers to that

the component specification ontology and the domain specific ontology

cooperates to provide the semantics foundation of the component

specification. And “Holistic” here refers to that the MVICS is a

comprehensive component specification model, and the approach considers a

spectrum of perspectives in component specification and retrieval. The

approach effectively supports: the original component search, the domain

component search, the adaptive component search, the result component

precision calculation and the result component profiles, all of which together

enable the user to find more suitable components effectively and

- 179 -

automatically.

2) A prototype tool

As the implementation of the MVICS-based approach, a prototype tool

(chapter 7) has been developed to exert the power of the MVICS model in

expressing semantics and process automation in component specification and

retrieval. The tool implements the complete process of component search,

starting from filling the initial query and ending up with receiving the result

component profile. The tool consists of a set of modules, which impact on

component search, including Dynamic Class Weight Assignment, Search

Precision Calculator, Search Time Recorder, and QAs Suggestion Processer.

3) Case studies and evaluation

Three case studies (chapter 8) have been undertaken to illustrate and evaluate

the usability and correctness of the approach, in terms of supporting the

precise component specification and retrieval, seamless linkage with domain

ontology, adaptive component suggestion and comprehensive result

component profile.

- 180 -

9.1.2 Contributions

As a solution for the identified problems, the MVICS-based approach originally

contributes to the current state of art by producing the following key technologies,

which are integrally linked in a holistic and semantic-based specification and retrieval

framework:

1) Multiple-viewed and interrelated component specification ontology

model (Section 5.1- Section 5.4)

The MVICS ontology model has a novel architecture, which contains four

facets: function model, intrinsic model, context model and meta-relationship

model. Each of the four models specifies one perspective of a component and

as a whole they construct a complete spectrum of semantic-based component

specification. It removes the over-complication problem in traditional

monolithic ontologies because it has a set of highly coherent and relatively

loosely coupled sub-models. The inter-relationships among the classes in

different sub-models ensure a holistic view in component specification and

retrieval. A formal definition of the classes, relationships and constraints of

MVICS is given in OWL-DL. Via these formal definitions, the automatic

semantic-based component search and validation are achieved with the

support of an ontology reasoner. Overall, the role of the MVICS model

includes supporting semantic query refinement, conducting the component

- 181 -

specification, connecting the domain ontology and supporting the

sub-functions in the component retrieval, such as search precision calculation,

adaptive component search and component QAs suggestion.

2) Domain ontology linkage technique (Section 5.5)

To extend the MVICS-based component search into a specific domain, two

mechanisms, namely Association Link (AssL) and Aggregation Link (AggL),

are developed to integrate the domain related software system ontology into

MVICS. The AssL and AggL are used to link two different kinds of classes of

domain ontology to the MVICS. Furthermore, the AssL and AggL are defined

formally and to automate the component search and repository building. With

such integration, the domain ontology is linked to MVICS effectively and

thus extends the application scope of MVICS without changing the

architecture of the model.

3) MVICS-based component retrieval method (Section 6.1- section 6.3)

The MVICS-based component retrieval is based on the MVICS model and the

linkage with the domain ontology model. It focuses on retrieving the relevant

components from the repository according to the refined user keywords and

providing an accurate search precision. As a unique feature of the

MVICS-based component retrieval, the adaptive component can be matched

- 182 -

by identifying the adaptive search path. And the results provide not only the

matched components with the relevant adaptation assets/methods, but also

their suggested effort. Finally, as the focus of the MVICS-based component

retrieval method, a result component precision calculation method is

developed to indicate the matching degree between a result component and

the user requirement. The precision values of the outcome are accurate,

because it is obtained through a search precision calculation algorithm, which

is established on the basis of the MVICS.

4) Comprehensive result component profile (Section 6.4)

A holistic Result Component Profile is designed for the result component to

help the user make the best decision in component selection. The profile

shows the result from the whole to the part, which consists of: i) the result

component name; ii) search summary, including the precision with

component adaptation, and the precision without adaptation; iii) the match

results in sub-models: function model, intrinsic model, and context model; iv)

the match results in a domain ontology model; v) the associated adaptation

method or asset and its incurred effort.

- 183 -

9.2 Limitations and Future Work

Based on the discussions in former sections, it is concluded that the approach has

novel contributions and is successful in component specification and retrieval. The

resulting tool automates the approach and is consistent with the approach. However,

the MVICS-based approach still has some limitations:

To face a torrent of new emerging characteristics of components, the structure,

classes, attributes and relationships, the MVICS model need to keep

expanding and/or fine-tuned accordingly. The new relationships among the

classes in the different facets need to keep expanding and being refined to

accommodate the new component characteristics.

The MVICS model connects to the domain specific ontology by the AssLs

and the AggLs. However the linkages are established through the cooperation

of domain experts and software developer, which involves much human

intervention.

The formulas proposed in the chapter 6 lack of the support from the

mathematics theory. The dynamic class weight calculation, formulae of

search path weight calculation and the formulae of precision calculation need

justification and further refinement.

- 184 -

The level of the adaptation suggestions at this stage is proposed on the basis

of our background, It is still weak and lack of widely acceptance.

In the future, the following sections have explored some possible extensions

of the present work.

1) To increase the automation of the establishment of domain ontology

linkage

New techniques or mechanisms will be explored to automate the linkage

establishment by using more rigorous formal definition. The human

intervention of the process will thus be reduced with the help of relevant

reasoners.

2) To refine of the precision calculation

With wider and more user feedbacks and industrial test results, it is possible

to achieve further refinement of the formulae of dynamic class weight

calculation, formulae of search path weight calculation and the formulae of

precision calculation.

3) To establish adaptation ontology model

In the MVICS-based approach, the adaptive component search is taken as an

integral part of the MVICS-based approach. The component can be identified

- 185 -

as a result component, if matched with the requirement after adaptation with

the relevant methods or assets. Therefore a new facet namely “adaptation

facet” may be considered in the MVICS. to extend the functionality of the

existing adaptive component search.

4) To improve of the quality attributes suggestion

In the MVICS case study, the impacts of the quality attributes are introduced

in the component specification and retrieval. The functionality of the QAs

suggestion can be subjected to further testing and expansion, with the help of

the feedback from the industrial software development. Along with these

practices, more QAs will be analyzed which may help build a QAs facet into

the MVICS model.

5) To validate the feedbacks from the case studies

The outcome of the present experimental case study obtained via

questionnaires can be validated through future practical case studies.

Drawbacks of MVICS-based approach will then be identified and overcome

along with more scenarios of MVICS-based approach applied in practice.

- 186 -

Reference

[1] Aggarwal, K. K., Singh, Y. and Chhabra, J. K. (2002). An Integrated Measure of Software

Maintainability. Proceedings of Annual Reliability and Maintainability Symposium, IEEE.

[2] Åkerholm, M. (2008). Reusability of Software Components in Vehicular Applications. PhD

Thesis, Mälardalen University.

[3] Ash, D., Alderete, J., Yao, L., Oman, P. W. and Lowther, B. (1994). Using Software

Maintainability Models to Track Code Health, Proceedings of International Conference on

Software Maintenance, IEEE.

[4] Avizienis, A., Laprie, J. C., Randell, B. and Landwehr, C. (2004). Basic Concepts and

Taxonomy of Dependable and Secure Computing, IEEE Transactions on Dependable and

Secure Computing, Volume 1, No. 1, Pages 11-33.

[5] Baader, F., Horrocks, I. and Sattler, U. (2004). Description Logics. Handbook on Ontologies.

International Handbooks on Information Systems, Pages 3-28. Springer.

[6] Baker, T. (2002). Lessons Learned Integrating COTS into Systems. Proceeding of

International Conference on COTS-based Software Systems, Orlando, FL: Springer-Verlag.

[7] Balk, L. D., and Kedia, A. (2000). A COTS Integration Case Study. Proceedings of

International Conference on Software Engineering, Limerick, Ireland: ACM Press.

[8] Barbacci, M., Klein M., Longstaff, T. and Weinstock, B. (1995). Quality Attributes.

Technical Report, CMU/SEI-95-TR-021, ESC-TR-95-021.

[9] Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R. and Wallnau, K.

(2000). Market Assessment of Component-based Software Engineering. Technical Report,

Volume I, 2000, CMU/SEI - Carnegie Mellon University/Software Engineering Institute.

[10] Bass, L., Clements, P. and Kazman, R. (1998). Software Architecture in Practice,

Addison-Wesley.

[11] Batory, D. (1998). Product-Line Architectures. Smalltalk & Java in Industry and practical

Training, Erfurt, Germany.

[12] Bechhofer, S., Goble, C. and Horrocks, I. (2001). Daml+oil Is Not Enough. Proceedings of

the First Semantic Web Working Symposium (SWWS'01), Pages 151-159.

[13] Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien, J. O., Dominick, L. and Paulisch,

F. (1996). Industrial Experience with Design Patterns. Proceedings of the 18th International

http://www.idt.mdh.se/personal/icc/phd/MikaelAkerholm/phd-thesis-V3.pdf

- 187 -

Conference on Software Engineering, Berlin, Germany, IEEE Computer Society Washington,

DC, USA.

[14] Bell, A. (2003). Portable GUI Development. Tessella Support Services plc. Issue V1.R4.M0.

[15] Bertoa, M. and Vallecillo, A. (2002). Quality Attributes for COTS Components. Proceedings

of the 6th International ECOOP Workshop on Quantitative Approaches in Object-Oriented

Software Engineering.

[16] Birngruber, D. (2001). A Software Composition Language and Its Implementation,

Perspectives of system informatics. Proceedings of the 4th International Andrei Ershov

Memorial Conference, Akademgorodok, Novosibirsk, Russia.

[17] Bondavalli, A., Chiaradonna, S., Cotroneo, D. and Romano, L. (2004). Effective Fault

Treatment for Improving the Dependability of COTS and Legacy-based Applications. IEEE

Transactions on Dependable and Secure Computing, Volume 1(4), Pages223-237, 2004.

[18] Bosch, J. (1999). Superimposition: A Component Adaptation Technique. Information and

Software Technology, Volume 41(5), March 1999.

[19] Braga, R., Mattoso, M. and Werner, C. (2001). The Use of Mediation and Ontology

Technologies for Software Component Information Retrieval. Proceedings of the 2001

symposium on Software Reusability, Page. 19-28.

[20] Braga, R., Werner, C. and Mattoso, M. (2006). Odyssey-Search: A Multi-agent System for

Component Information Search and Retrieval. Journal of Systems and Software, Volume

79(2), Pages. 204-215.

[21] Bray, T. J., Paoli, C., Sperberg-McQueen, M. and Maler, E. (2000). Extensible Markup

Language (xml) 1.0 (second edition).w3c recommendation, 6 October 2000.

[22] Carroll, J., Bizer, C., Hayes, P. and Stickler, P. (2004). Named Graphs, Provenance and Trust.

Proceedings of the 14th International World Wide Web Conference.

[23] Ceria, S., Nobili, P. and Sassano, A. (2005). A Lagrangian-based Heuristic for Large-scale Set

Covering Problems. Mathematical Programming, Volume 81, No 2.

[24] Cheesman, J. and Daniels, J. (2001). UML Components, A Simple Process for Specifying

Component-Based Software, Addison-Wesley, 2001.

[25] Crnkovic, I. (2001). Component-based Software Engineering – New Challenges in Software

Development. Software Focus, Volume 02, No. 04, 2001, Pages. 27-33.

[26] Crnkovic, I., larsson, M. and Preiss, O. (2005). Concerning Predictability in Dependable

Component-Based Systems: Classification of Quality Attributes. Architecting Dependable

Systems III, LNCS 3549, Pages 257-278. 2005.

[27] Coleman, D., Ash, D., Lowther, B. and Oman, P. (1994).Using Metrics to Evaluate Software

System Maintainability. IEEE Computer, Volume 27, Issue 8, 1994.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mattoso:Marta.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Werner:Cl=aacute=udia_Maria_Lima.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Werner:Cl=aacute=udia_Maria_Lima.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mattoso:Marta.html
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss79.html#BragaWM06
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss79.html#BragaWM06

- 188 -

[28] Coplien, J. O. and Schmidt, D. C. (1995). Pattern Language of Program Design.

Addison-Wesley Professional.

[29] Councill, B. (2001). Third-Party Certification and Its Required Elements, Proceedings of the

4th Workshop on Component-Based Software Engineering (CBSE), Canada, May, 2001.

[30] Dale, R., Somers, L. and Moisl, H. (2000). Handbook of Natural Language Processing.

Marcel Dekker, 2000.

[31] Davis, L., Gamble, R. and Payton, J. (2002). The Impact of Component Architectures on

Interoperability. Journal of Systems and Software, 61:31–45, 2002.

[32] Decker, S., Erdmann, M., Fensel, D., Horrocks, I., Klein, M. and Van Harmelen, F. (2000).

Oil in A Nutshell. Proceedings of the 12th International Conference in Knowledge

Engineering and Knowledge Managemen (EKAW'00), France, 2000.

[33] Denny, M. (2004). Ontology Tools Survey, Revisited. http://www.xml.com/

pub/a/2004/07/14/onto.html, 2004.

[34] D'Souza, D. and A. Wills. (1999). Objects Components, and Frameworks: The Catalysis

Approach. Addison-Wesley.

[35] DuCharme, B. (2004). Googling for XML. http://www.xml.com/pub/a/2004/02/11/

googlexml.html.

[36] Due, R. (2000). The Economics of Component-Based Development. Information Systems

Management, Volume 17 (1), 2000.

[37] Egyed, A. and Gacek, C. (1999). Automatically Detecting Mismatches During

Component-based and Model-based Development, Proceeding of the 14th IEEE

International Conference on Automated Software Engineering, Florida, USA, Pages

191–198.

[38] Feldmann, R., Geppert, B., Mahnke, W., Ritter, N. and Roessler, F. (2000). An

ORDBMS-based Reuse Repository Supporting the Quality Improvement Paradigm --

Exemplified by the SDL-Pattern Approach. Proceedings of the 34th International Conference

on Technology of Object-Oriented Languages and Systems - TOOLS. Pages 125-136.

[39] Fayad, M. E. and Schmidt, D. C. (1997). Object-oriented Application Frameworks.

Communications of ACM. Volume 40(10), Pages. 32-38.

[40] Fensel, D., Crubezy, M., Van Harmelen, F. and Horrocks, I. (2000). Oil & Upml: A Unifying

Framework for the Knowledge Web, Proceedings of the 14th European Conference on

Artificial Intelligence (ECAI 2000), Berlin, Germany, 2000.

[41] Fettke, P. and Loos, P. (2002). Specification of Business Components International

Conference NetObjectDays on Objects. Components, Architectures, Services, and

Applications for a Networked World, Springer-Verlag.

http://www.xml.com/pub/a/2004/02/11/%20googlexml.html
http://www.xml.com/pub/a/2004/02/11/%20googlexml.html
http://portal.acm.org/citation.cfm?id=648033.744224&coll=DL&dl=GUIDE&CFID=596781&CFTOKEN=53159631

- 189 -

[42] Fikes, R. and Farquhar, A. (1999). Large-Scale Repositories of Highly Expressive Reusable

Knowledge, IEEE Intelligent Systems, Volume 14(2), 1999.

[43] Francalanci, C. and Fuggetta, A. (1997). Integrating Conflicting Requirements in Process

Modelling: A Survey and Research Directions. Information and Software Technology,

Volume 39 (March 1997), Pages. 205-216.

[44] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-oriented Software. 1st edition, Addison Wesley Professional.

[45] Gao, T., MA, H., Yen, I-Ling., Khan, L. and Bastani, F. (2006). A Repository for

Component-Based Embedded Software Development. International Journal of Software

Engineering and Knowledge Engineering, Volume. 16 (4), Pages. 523-552.

[46] Garcia, V., Lucrédio, D., Durão, F, et al. (2006). From Specification to Experimentation: A

Software Component Search Engine Architecture. Proceedings of the 9th International

Symposium on ComponentBased Software Engineering (CBSE 2006), Volume 4063,

Springer-Verlag, Pages 82-97, 2006.

[47] Genesereth, M and Fikes, R. E. (1992). Knowledge Interchange Format (Version 3.0).

Reference Manual. Computer Science Dept., Stanford University, Stanford, CA.

[48] Gennari, H., Musen, A., Fergerson, W., Grosso, E., Crubezy, M., Eriksson, H., et al. (2003).

The Evolution of Protege: An Environment for Knowledge-based Systems Development.

Human-Computer Study, 2003, Volume 58(1), Page 89–123.

[49] Girardi, R., Faria, D. (2004). An Ontology-based Technique for the Specification of Domain

and User Models in Multi-agent Domain. CLEI Electronic, 2004.

[50] Girardi, R. and Serra, I. (2004). Using Ontologies for the Specification of Domain-Specific

Languages in Multi-Agent Domain Engineering. Proceedings of the 2004 Agent_Oriented

Information Systems Workshop (AOIS 2004), 2004 Conference on Computer Aided Software

Engineering, Riga, 2004.

[51] Golbeck, J., Parsia, B. and Hendler, J. (2003). Trust Networks on the Semantic Web.

Proceedings of Cooperative Intelligent Agents (CIA03).

[52] Goldberg, A. and Rubin, K. S. (1995). Succeeding with Objects: Decision Frameworks for

Project Management, 1st edition (May 1, 1995), Addison-Wesley Professional.

[53] Goulao, M. and Brito, F. (2002). The Quest for Software Components Quality. Proceedings

of the 26th IEEE Annual International Computer Software and Applications Conference

(COMPSAC), England, Pages 313-318.

[54] Grinter, R. E. (2001). From Local to Global Coordination: Lessons from Software Reuse.

Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting Group

Work, Boulder, Colorado, USA, 2001, Pages 144-153.

[55] Gruber, T. (1993). A Translation Approach to Portable Ontology Specications. Knowledge

http://www.mendeley.com/profiles/vinicius-garcia/

- 190 -

Acquisition, Volume 5, Pages 199 220, 1993.

[56] Gschwind, T., Oberleitner, J. and Pinzger, M. (2003). Using Run-Time Data for Program

Comprehension. Proceedings of the 11th IEEE International Workshop on Program

Comprehension (IWPC’03), Oregon, USA on May 10-11 2003, IEEE Computer Society.

[57] Guo, J. and Lu, Q. (2000). A Survey of Software Reuse Repositories. Proceedings of the

IEEE International Conference and Workshop on the Engineering of Computer Based

Systems, 2000, Edinburgh, Scotland.

[58] Haarslev, V. and Moller, R. (2001). Description of the RACER System and Its Applications.

Proceedings of the International Workshop in Description Logics 2001 (DL2001).

[59] Hall, J. (1993). Generalized Behavior-Based Retrieval, Proceedings of the 15
th

 International

Conference on Software.

[60] Hakuta, M. and Ohminami, M. (1997). A Study of Software Portability Evaluation. Journal

of SYSTEMS SOFTWAREI, 1997, 38:145-154.

[61] Han, J. (1998). A Comprehensive Interface Definition Framework for Software Components.

Proceedings of Asia-Pacific Software Engineering Conference (APSEC'98).

[62] Han, J. (1999). An Approach to Software Component Specification. Proceedings of 1999

International Workshop on Component Based Software Engineering, Los Angeles, USA, May

1999.

[63] Hancock, J. (2000) Application Frameworks before system frameworks. Proceedings of the

Conference on Object-Oriented Programming, Systems, Languages, and Applications, 2000.

[64] Harrison, N., Foote, B. and Rohnert, H. (1997). Pattern Language of Program Design 4.

Addison Wesley Publishing Company, 1st Edition (December 17, 1999).

[65] Heineman, G. T. and Councill, W. T. (2001). Component-Based Software Engineering Putting

the Pieces Together., Addison Wesley Longman, Inc., California, Menlo Park, USA.

[66] Heineman, G. T., Councill, T., et al. (2000). Component-Based Software Engineering and the

Issue of Trust. Proceedings of the 22nd International Conference on Software Engineering

(ICSE), Canada, 2000, Pages. 661-664.

[67] Heineman, T. and Councill, T. (2001). Component Technology and QoS Management.

Proceedings of the 7
th

 Component-Based Software Engineering (CBSE’04).

[68] Hissam, S., Moreno, G., Stafford, J. and Wallnau, K. (2003). Enabling Predictable Assembly.

Journal of Systems and Software, Volume 65, No. 03, 2003, Pages 185-198.

[69] Hölzle, U. (1993). Integrating Independently-Developed Components in Object-Oriented

Languages. Proceedings of the 7th European Conference on Object-Oriented Programming

(ECOOP '93), July 26-30 1993, Pages 36-56.

[70] Horrocks, I. (1998). The FaCT System. Proceedings of the 2nd International Conference on

- 191 -

Analytic Tableaux and Related Methods (TABLEAUX'98), Volume 1397 of Lecture Notes in

Artificial Intelligence, Pages 307-312. Springer.

[71] Horrocks, I. and Sattler, U. (2002). Description Logics Basics, Applications, and More.

Tutorial at ECAI-2002, http://www.cs.man.ac.uk/horrocks/Slides/ecai-handout.pdf; 2002.

[72] http://dl.kr.org/

[73] http://edge.cs.drexel.edu/assemblies/software/owljesskb/

[74] http://en.wikipedia.org/wiki/Android_(operating_system)

[75] http://en.wikipedia.org/wiki/BlackBerry_OS

[76] http://en.wikipedia.org/wiki/IOS_(Apple)

[77] http://en.wikipedia.org/wiki/Symbian_OS

[78] http://en.wikipedia.org/wiki/Windows_Phone_7

[79] http://fowl.sourceforge.net

[80] http://jena.sourceforge.net

[81] http://logic.stanford.edu/kif/Hypertext/kif-manual.html.

[82] http://merobase.com/?cid=2899

[83] http://owl.man.ac.uk/factplusplus/

[84] http://protegewiki.stanford.edu/wiki/Protege

[85] http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

[86] http://softwarereuse.nasa.gov

[87] http://sweetrules.projects.semwebcentral.org

[88] http://swoogle.umbc.edu

[89] http://triple.semanticweb.org/

[90] http://www.cstc.org.cn/

[91] http://www.daml.org/ontologies/

[92] http://www.gameontology.org/

[93] http://www.gameloft.com

[94] http://www.kingdee.com/en/index.jsp

[95] http://www.ksl.stanford.edu/software/JTP/

[96] http://www.mindswap.org/2003/pellet

http://dl.kr.org/
http://edge.cs.drexel.edu/assemblies/software/owljesskb/
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/BlackBerry_OS
http://en.wikipedia.org/wiki/IOS_(Apple)
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/Windows_Phone_7
http://logic.stanford.edu/kif/Hypertext/kif-manual.html
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://swoogle.umbc.edu/
http://www.cstc.org.cn/
http://www.gameontology.org/
http://www.kingdee.com/en/index.jsp
http://www.ksl.stanford.edu/software/JTP/

- 192 -

[97] http://www.myally.com.cn/index.aspx

[98] http://www.racer.org.com

[99] http://www.schemaweb.info

[100] http://www.sei.cmu.edu/cbs/

[101] http://www.semwebcentral.org/

[102] http://www.sts.tu-harburg.de/r.f.moeller/racer/

[103] http://www.ubi.com/UK/default.aspx/

[104] http://www.w3.org/2003/08/owl-systems/test-results-out/

[105] http://www.w3.org/2004/ontaria/

[106] http://www.w3.org/TR/owl-features/

[107] http://www.w3.org/TR/rdf-schema/

[108] http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits/

[109] Immonen, A. (2008). Antti Validation of the Reliability Analysis Method and Tool.

Proceedings of the 12
th

 International Software Product Line Conference, Second Volume,

Pages 163 – 168, 2008.

[110] ISO 9126. http://en.wikipedia.org/wiki/ISO_9126

[111] Jacobsen, I., Griss, M., et al. (1997), Software Reuse, Reading, MA: Addison-Wesley.

[112] Jensen, K. (1997). Coloured Petri Nets, Basic Concepts, Analysis methods, and Practical.

Second Edition, Springer-Verlag, Volume 1, 1997.

[113] Jhumka, A., Hiller, M., and Suri, N. (2002). Component-based Synthesis of Dependable

Embedded Software, Formal Techniques in Real-Time and Fault-Tolerant Systems.

Proceedings of the 7th International Conference on Formal Techniques in Real-Time and

Fault Tolerant Systems (FTRTFT 2002), Pages 111–128, 2002.

[114] Kalyanpur, A., Parsia, B. and Hendler, J. (2005). A Tool for Working with Web Ontologies.

International Journal on Semantic Web and Information Systems, Volume 1, 2005.

[115] Kanai, A., Furuyama, T. and Takahashi, M. (1992). A Cost Model for Software Conversion

Based on Program Characteristics and A Converter Effect. Proceedings of International

Computer Sojiwanz and Application Conference, Pages 63-68.1992.

[116] Keller, R. and Hölzle, U. (1998). Binary Component Adaptation. Proceedings of the 12th

European Conference on Object-Oriented Programming, July 1998.

[117] Kifer, M., Lausen, G. and Wu, J. (1995). Logical Foundations of Object-oriented and

Frame-based Languages. Journal of the ACM, 1995.

http://www.myally.com.cn/index.aspx
http://www.racer.org.com/
http://www.sei.cmu.edu/cbs/
http://www.semwebcentral.org/
http://www.ubi.com/UK/default.aspx
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/
http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits/
http://en.scientificcommons.org/anne_immonen
http://en.scientificcommons.org/anne_immonen
http://en.scientificcommons.org/38914343

- 193 -

[118] Kim, D. K., Ghosh, S., France, R. B. and Song, E. (2002). Software Component Specification

Using Role-Based Modelling Language. Proceedings of the 11th OOPSLA Workshop on

Behavioral Semantics: Serving the Customer, November 4, 2002.

[119] Kim, R. and Edward, A. (1998). Software Reuse: Survey and Research Directions. Journal of

Management Information Systems, Volume 14, No. 4, Springer 1998, Pages 113 – 149.

[120] Kopena, J. and Regli, W. (2003). DAMLJessKB: A Tool for Reasoning with the Semantic

Web, IEEE Intelligent Systems, 2003, 18(3):74–77.

[121] Laddad, R. (2003). AspectJ in Action, Practical Aspect-Oriented Programming. Manning

Publications Co.

[122] Larsson, M. (2000). Applying Configuration Management Techniques to Component-Based

Systems. Licentiate Thesis, Dissertation 2000-2007, Department of Information Technology

Uppsala University. 2000.

[123] Larsson, M. (2004). Predicting Quality Attributes in Component-based Software Systems, Ph

D Thesis, Mälardalen University.

[124] Lassila, O. and Swick, R. R. (1999). Resource Description Framework (rdf) Model and

Syntax Speciation. w3c recommendation 22, February 19.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, 1999.

[125] Lenat, D. and Guha, R. (1990). Building Large Knowledge-based Systems, Representation

and Inference in the Cyc Project. 1990, Addison-Wesley, Reading, Massachusetts.

[126] Liu, Q., Jin, X. and Long, Y. (2007). Research on Ontology-based Representation and

Retrieval of Components, Proceedings of the 8th ACIS International Conference, Volume 1,

Pages 494 – 499, 2007.

[127] Liu, X., Wang, B. and Kerridge, J. (2005). Achieving Seamless Component Composition

through Scenario-Based Deep Adaptation and Generation. Journal of Science of Computer

Programming (Elsevier), Special Issue on New Software Composition Concepts, 56, 2.

[128] Liu, Y. and Cunningham, H. C. (2002). Software Component Specification Using Design by

Contract. Proceedings of the SouthEast Software Engineering Conference, Tennessee Valley

Chapter, National Defense Industry Association. Huntsville, AL, April 2002.

[129] Lorenz, D. H. and Vlissides, J. (2003). Pluggable Reflection: Decoupling Meta-interface and

Implementation, Proceedings of the 25th International Conference on Software Engineering

(ICSE 2003), Pages 3-13, Portland, Oregon, May 1-10 2003, IEEE Computer Society.

[130] MacGregor, R. (1991). Using a description classier to Enhance Deductive Inference.

Proceedings of the 7
th

 IEEE Conference on AI Application, Florida, Pages. 93-97, 1991.

[131] Martin, R. C., Riehle, D. and Buschmann, F. (1997). Pattern Language of Program Design 3.

Addison-Wesley Professional, 1st edition (October 7, 1997).

http://www.jmis-web.org/cgi-bin/gencontrib.pl?Yeong+R.+Kim+57
http://www.jmis-web.org/cgi-bin/gencontrib.pl?Edward+A.+Stohr+475
http://www.jmis-web.org/toppage/index.html
http://www.jmis-web.org/toppage/index.html
http://www.jmis-web.org/toppage/index.html

- 194 -

[132] Matzel, K. U. and Schnorf, P. (1997). Dynamic Component Adaptation. Technical Report

97-6-1, Union Bank of Swizerland, June 1997.

[133] McGregor, J., Stafford, J. and Cho, I. (2003). Measuring Component Reliability, Proceedings

of the 6
th

 Workshop on Component-Based Software Engineering (CBSE), USA, 2003, Pages

13-24.

[134] Meyer, B. (1997). Object-Oriented Software Construction, 2
nd

 Edition, Prentice Hall, London,

1997.

[135] Mili, A., Mili, R. and Mittermeir, R. (1997). Storing and Retrieving Software Components: A

Refinement-Based System, Proceedings of the IEEE Transactions on Software Engineering,

1997, Volume 23, No. 7, Pages 445 – 460.

[136] Mili, A., Mili, R. and Mittermeir, T. (1998). A survey of Software Reuse Libraries, Annals of

Software Engineering, 1998, Pages 349-414.

[137] Mili, H., Mili, A., Yacoub, S. and Addy, E. (2002). Reuse-Based Software Engineering,

Techniques, Organization, and Controls. Wiley Inter-Science, ISBN: 0-471-39819-5.

[138] Morel, B. and Alexander, P. (2002). A Slicing Approach for Parallel Component Adaptation.

Technical Report, the University of Kansas Center for Research.

[139] Morris, J., Lee, G., Parker, K., Bundell, G. and Lam, C. (2001). Software Component

Certification. IEEE Computer, Volume 34, No 09, 2001.

[140] Motta, E. (1998). An Overview of the Ocml Modeling Language. Knowledge Engineering

Methods and Languages, 1998.

[141] Mylopoulos, J., Borgida, A., Jarke, M. and Koubarakis, M. (1990). Telos: Representing

Knowledge about Information Systems. Information Systems, 8(4):325-362, 1990.

[142] Oman, P. and Hagemeister, J. (1992). Metrics for Assessing a Software System's

Maintainability. Proceedings of Conference on Software Maintenance, IEEE, 1992.

[143] Ostertag, E., Hendler, J., Prieto-Diaz, R., and Braum, C. (1992). Computing Similarity in A

Reuse Library System: An AI-based Approach. ACM Transactions on Software Engineering

and Methodology, 1992, Volume 1, No. 3, Pages 205 – 228.

[144] Pahl, C. (2007). An Ontology for Software Component Matching. International Software

Tools Technology Transfer, 2007, Pages 169–178.

[145] Parsia, B., Sirin, E. and Kalyanpu, A. (2005). Debugging OWL Ontologies. Proceedings of

the 14
th

 International World Wide Web Conference (WWW-05), 2005.

[146] Patrizio, A. (2000). The New Developer Portals. Information Week, No. 799, Aug 2000,

Pages 81-86.

- 195 -

[147] Penix, J. (1997). Automated Component Retrieval and Adaptation Using Formal

Specifications. Proceeding in the 17th International Conference on Software Engineering,

Doctoral Consortium, May 1997, Boston, Massachusetts.

[148] Penix, J. and Alexander, P. (1995). Design Representation for Automating Software

Component Reuse. Proceedings of the 1
st
 international workshop on Knowledge-Based

systems for (re)Use of Program libraries, November 23-24, 1995 Sophia Antipolis France.

[149] Pentti, T. (2007). Adaptability Evaluation of Software Architectures; A Case Study.

Proceedings of the 31
st
 Annual International Computer Software and Applications

Conference, Volume 2, Pages 579-586, 2007.

[150] Pfarr, T. and Reis, J. E. (2002). The integration of COTS/GOTS within NASA‟s HST

Command and Control System. Proceedings of 1
st
 International Conference on COTS-based

Software Systems, Orlando, FL: Springer-Verlag.

[151] Poore, J., Mills, H. and Mutchler, D. (1993). Planning and Certifying Software System

Reliability. IEEE Computer, Volume 10, No. 01, 1993, Pages 88-99.

[152] Presso, M. J. (2000). Declarative Descriptions of Component Models as a Generic Support

for Software Composition, Proceedings of the 5
th

 International Workshop on

Component-Oriented Programming, Blekinge Institute of Technology.

[153] Prieto-Diaz, R. and Freeman, P. (1987). Classifying Software for Reuse, IEEE Software, 1987,

Volume 4(1), Pages 6–16.

[154] Rainsford, C. (2001). Towards Automated Software Component Assembly Systems. Evolve

Conference, 2001.

[155] Riehle, A. and Züllighoven, H. (1996). Understanding and Using Patterns in Software

Development. Theory and Practice of Object Systems, Volume 2 (1), Pages 3-13, 1996.

[156] Rierson, L. (2000). Software Reuse in Safety-Critical Systems, Master’s Thesis, Rochester

Institute of Technology, May 2000.

[157] Rohde, L., Dyson, K., Geriner, P. and Cerino, D. (1996). Certification of Reusable Software

Components: Summary of Work in Progress. Proceedings of the 2nd IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS), Canada, 1996, Pages

120-123.

[158] Samentinger, J. (1997). Software Engineering with Reusable Components. Springer Verlag.

[159] Schmidt, D.C. (1999). Why Software Reuse has Failed and How to Make It Work for You.

C++ Report, 11 (1), 1999, 46-52.

[160] Schreibe, B., Wielinga, J., Akkermans, H., Van de Velde, W. and Anjewierden, A. Cml:the

Commonkads Conceptual Modeling Language. Proceedings of the International Conference

on Knowledge Engineering and Knowledge Management (EKAW'94), Pages 283-300, 1994.

- 196 -

[161] Seacord, R., Hissam, S. and Wallnau, K. (1998). Agora: A Search Engine for Software

Components. Technical Report, CMU/SEI - Carnegie Mellon University/Software

Engineering Institute, 1998.

[162] Serra, I. (2004). A Technique for the Development of Domain Specific Languages. Master

Degree Dissertation, Federal University of Maranhão – CPGEE, 2004.

[163] Shadbolt, N., Motta, E and Rouge, A. (1993). Constructing Knowledge Based Systems, IEEE

Software, 10(6):34-38, 1993.

[164] Shukla, D., Fell, S. and Sells, C. (2002). Aspect-Oriented Programming Enables Better Code

Encapsulation and Reuse, MSDN Magazine.

[165] Sintek, M. and Decker, S. (2002). TRIPLE - A Query, Inference, and Transformation

Language for the Semantic Web. Proceedings of the 1
st

International Semantic Web

Conference (ISWC-02), Springer-Verlag, 2002, Pages 364–378.

[166] Sirin, E.and Parsia, B. (2004). Pellet: An OWL DL Reasoner. Description Logics, 2004.

[167] Sommerville, I. (2007). Software Engineering, 8
th
 Edition. Addison-Wesley, ISBN:

978-0-321-31379-9.

[168] Speck, A., Pulvermuller, F. and Mezini, M. (2000). Reusability of Concerns. Proceedings of

the Aspects and Dimensions of Concerns Workshop (ECOOP2000). France, June 2000.

[169] Stafford, J. and Wallnau, K. (2001). Is Third Party Certification Necessary?. Proceedings of

the 4
th

 Workshop on Component-Based Software Engineering (CBSE), Canada, May, 2001.

[170] Stojanovic, N. (2005). On the Query Refinement in the Ontology-based Searching for

Information. Information Systems, Volume 30, Issue 7, November 2005, Pages 543-563.

[171] Sugumaran, V.and Storey, V. (2003). A Semantic-Based Approach to Component Retrieval.

The Database for Advances in Information Systems, Volume 34(3) (2003).

[172] Swe, S. M., Zhang, H. and Jarzabek, S. (2002), XVCL: A Tutorial. Proceedings of the 14
th

International Conference on Software Engineering and Knowledge Engineering, Volume 27,

Pages 341-349, Ischia, Italy.

[173] Torchiano, M. and Morisio, M. (2004), Overlooked Facts on COTS-based Development.

IEEE Software, Volume 21, Pages 88-93.

[174] Traas, V. and Hillegersberg, J. (2000). The Software Component Market on the Internet

Current Status and Conditions for Growth. Software Engineering Notes, Volume 25, No. 1.

2000.

[175] Tracz, W. (1995). Confessions of a Used Program Salesman: Institutionalizing Software

Reuse. Addison-Wesley, Reading, MA, 1995.

[176] Tracz, W. (2001). COTS Myths and Other Lessons Learned in Component-based Software

Development. Component-Based Software Engineering, Addison-Wesley, Pages 99-112.

http://www.sciencedirect.com/science/journal/03064379
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235646%232005%23999699992%23600620%23FLA%23&_cdi=5646&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d82b894653a4e6c7bcd76ae80059df57

- 197 -

[177] Tsarkov, D., Horrocks, Ian. (2003). Implementing New Reasoner with Data types support.

Wonder Web Ontology Infrastructure for the Semantic Web Deliverable, 2003.

[178] Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, Methods and Applications.

Knowledge Engineering Review, 11(2), 1996.

[179] Vlissides, M., Coplien, J. O., Kerth, N.L. and Coplien, J. (1996). Pattern Language of

Program Design 2. 1st edition (June 14, 1996), Addison-Wesley Professional.

[180] Voas, J. (1998). Certifying Off-the-Shelf Software Components. IEEE Computer, Volume 31,

No. 06, 1998, Pages 53-59.

[181] Voas, J., Payne, J. (2000). Dependability Certification of Software Components. Journal of

Systems and Software, Volume 52, No. 2-3, 2000, Pages 165-172.

[182] Walker, R. J. and Clarke, S. (2001). Composition patterns: An Approach to Designing

Reusable Aspects. Proceedings of 23
rd

 International Conference on Software Engineering

(Toronto, Ontario, Canada; 12--19 May), Pages 5--14, 2001.

[183] Wallnau, C. (2003). Volume III: A Technology for Predictable Assembly from Certifiable

Components. Software Engineering Institute (SEI), Technical Report, Volume 03, April,

2003.

[184] Wang, B., Liu, X., and Kerridge, J. (November, 2004). Scenario-based Generative

Component Adaptation in .NET Framework. Proceedings of the IEEE International

Conference on Information Reuse and Integration, Las Vegas, USA.

[185] Warmer, J. B. and Kleppe, A. G. (1998). The Object Constraint Language: Precise Modeling

with Uml. Addison Wesley Publishing Company, ISBN: 0201379406, October 1998.

[186] Welty, C. and Guarino, N. (2001). Supporting Ontological Analysis of Taxonomic

Relationships. Data & Knowledge Engineering, 39:51-74, 2001.

[187] Wirfs-Brock, R.J. and Johnson, R.E. (1990). Surveying Current Research in Object-oriented

Design. Communications of ACM, Volume 33(9), Pages 104-124.

[188] Wohlin, C. and Runeson, P. (1994). Certification of Software Components. IEEE

Transactions on Software Engineering, Volume 20, No. 06, 1994, Pages 494-499.

[189] Wolberg, J. R. (1981). Comparing the Cost of Software Conversion to the Cost of

Reprogramming. SIGPLAN Notices, 16(4), 104-l 10.

[190] Yao, H. and Letha, E. (2004). Towards A Semantic-based Approach for Software Reusable

Component Classification and Retrieval. ACM Southeast Conference, 2004.

[191] Yen, I., Goluguri, J. et. al. (2002). A Component-based Approach for Embedded Software

Development. Proceedings of the 5
th

 IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC’02), Pages 0402 (2002).

[192] Zaremski, M. and Wing, M. (1993). Signature Matching: A Key to Reuse. Software

- 198 -

Engineering Notes, 1993, Volume 18, No. 5, Pages 182–190.

[193] Zaremski, M. and Wing, M. (1995). Specification Matching of Software Components.

Software Engineering Notes, 1995, Volume 20, No. 4, Pages 6–17.

[194] Zhuge, H. (2000). A Problem-oriented and Rule-based Component Repository. The Journal

of Systems and Software, 50:201– 208, 2000.

[195] Zou, Y., Finin, T., and Chen, H. (2004). F-OWL: an Inference Engine for the Semantic Web.

Formal Approaches to Agent-Based Systems, Volume 3228 of Lecture Notes in Computer

Science, Springer-verlag, 2004.

- 199 -

Appendix A: The OWL Doc of the MVICS

Model

A.1 Function Model

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >
 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >
 <!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >
 <!ENTITY Ontology1228882645 "http://www.owl-ontologies.com/Ontology1228882645.owl#" >
 <!ENTITY Time_ "http://www.owl-ontologies.com/Ontology1228882645.owl#Time_/" >
 <!ENTITY Calendar_ "http://www.owl-ontologies.com/Ontology1228882645.owl#Calendar_/" >
]>
<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1228882645.owl#"
 xml:base="http://www.owl-ontologies.com/Ontology1228882645.owl"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:Calendar_="&Ontology1228882645;Calendar_/"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:Ontology1228882645="http://www.owl-ontologies.com/Ontology1228882645.owl#"
 xmlns:Time_="&Ontology1228882645;Time_/">
 <owl:Ontology rdf:about="http://www.owl-ontologies.com/Ontology1228882645.owl"/>
 <!--
 ///
 //
 // Object Properties
 //
 ///
 -->
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#hasApplicationDomain -->
 <owl:ObjectProperty rdf:about="&Ontology1228882645;hasApplicationDomain">
 <rdfs:domain rdf:resource="&Ontology1228882645;Component_Application_Domain"/>
 <owl:inverseOf rdf:resource="&Ontology1228882645;isApplicationDomainOf"/>
 </owl:ObjectProperty>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#hasFunctionType -->
 <owl:ObjectProperty rdf:about="&Ontology1228882645;hasFunctionType">
 <rdfs:domain rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

- 200 -

 <rdf:Description rdf:about="&Ontology1228882645;Component_Barcode"/>
 <rdf:Description
rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Data_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Encryption"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_File_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Image_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Reporting"/>
 <rdf:Description
rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 </owl:ObjectProperty>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#isApplicationDomainOf -->
 <owl:ObjectProperty rdf:about="&Ontology1228882645;isApplicationDomainOf">
 <rdfs:range rdf:resource="&Ontology1228882645;Component_Application_Domain"/>
 </owl:ObjectProperty>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#isFunctionTypeOf -->
 <owl:ObjectProperty rdf:about="&Ontology1228882645;isFunctionTypeOf">
 <rdfs:range rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 <owl:inverseOf rdf:resource="&Ontology1228882645;hasFunctionType"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="&Ontology1228882645;Component_Barcode"/>
 <rdf:Description
rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Data_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Encryption"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_File_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Image_Processing"/>
 <rdf:Description rdf:about="&Ontology1228882645;Component_Reporting"/>
 <rdf:Description
rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:ObjectProperty>
 <!-- ///
 //
 // Classes
 // ///
 -->
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Account -->
 <owl:Class rdf:about="&Ontology1228882645;Account">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Adaptation_Assets -->
 <owl:Class rdf:about="&Ontology1228882645;Adaptation_Assets">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Maintainability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Adaptation_Methods -->
 <owl:Class rdf:about="&Ontology1228882645;Adaptation_Methods">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Maintainability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Aggregation_(Financial) -->
 <owl:Class rdf:about="&Ontology1228882645;Aggregation_(Financial)">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Financial"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Aggregation_(Game) -->
 <owl:Class rdf:about="&Ontology1228882645;Aggregation_(Game)">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Game"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Analytics -->
 <owl:Class rdf:about="&Ontology1228882645;Analytics">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Association_Class_(Financial) -->

- 201 -

 <owl:Class rdf:about="&Ontology1228882645;Association_Class_(Financial)">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Financial"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Association_Class_(Game) -->
 <owl:Class rdf:about="&Ontology1228882645;Association_Class_(Game)">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Game"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Calculation -->
 <owl:Class rdf:about="&Ontology1228882645;Calculation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Calendar_/_Schedule -->
 <owl:Class rdf:about="&Ontology1228882645;Calendar_/_Schedule">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Card_Authorisation -->
 <owl:Class rdf:about="&Ontology1228882645;Card_Authorisation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Charting_and_Graphing -->
 <owl:Class rdf:about="&Ontology1228882645;Charting_and_Graphing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Communication -->
 <owl:Class rdf:about="&Ontology1228882645;Communication">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Compiler -->
 <owl:Class rdf:about="&Ontology1228882645;Compiler">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Account -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Account">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Administration -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Administration">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Analytics -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Analytics">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Application_Domain -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Application_Domain"/>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Barcode -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Barcode">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Calculation -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Calculation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Calendar_and_Schedule -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Calendar_and_Schedule">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Category -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Category">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Charting_and_Graphing -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Charting_and_Graphing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Cleaning -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Cleaning">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>

- 202 -

 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Conversion -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Conversion">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Entry -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Entry">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Processing -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Processing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Security -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Security">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Transfer -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Transfer">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Validation -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Validation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Data_Verification -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Data_Verification">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Data_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Database_Management -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Database_Management">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Education -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Education">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Email -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Email">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Encryption -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Encryption">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Handling -->
 <owl:Class rdf:about="&Ontology1228882645;Component_File_Handling">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Processing -->
 <owl:Class rdf:about="&Ontology1228882645;Component_File_Processing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Transfer -->
 <owl:Class rdf:about="&Ontology1228882645;Component_File_Transfer">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_File_Upload_and_Download
-->
 <owl:Class rdf:about="&Ontology1228882645;Component_File_Upload_and_Download">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_File_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Financial -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Financial">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Function_Type -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Function_Type"/>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Game -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Game">

- 203 -

 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Application_Domain"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Compression -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Image_Compression">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Conversion -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Image_Conversion">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Image_Processing -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Image_Processing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Imaging -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Imaging">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Image_Processing"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_ Integratability -->
 <owl:Class rdf:about="&Ontology1228882645;Component_ Integratability ">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Interface -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Interface"/>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Maintainability -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Maintainability">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Model -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Model">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_ Integratability "/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Modeling -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Modeling">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Monitoring -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Monitoring">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Navigation -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Navigation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_PDF -->
 <owl:Class rdf:about="&Ontology1228882645;Component_PDF">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Planning -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Planning">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Portability -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Portability">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Quality_Attributes"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Portfolio_Management -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Portfolio_Management">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Post-conditions -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Post-conditions">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Interface"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Pre-conditions -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Pre-conditions">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Interface"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Presentation -->

- 204 -

 <owl:Class rdf:about="&Ontology1228882645;Component_Presentation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Quality_Attributes -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Quality_Attributes"/>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Reporting -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Reporting">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Search -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Search">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_System_Administration -->
 <owl:Class rdf:about="&Ontology1228882645;Component_System_Administration">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Administration"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Text_and_Word_Processing -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Text_and_Word_Processing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Time_and_Date -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Time_and_Date">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Toolbar_and_Menu -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Toolbar_and_Menu">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Tracking -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Tracking">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Type -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Type">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_ Integratability "/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_User_Administration -->
 <owl:Class rdf:about="&Ontology1228882645;Component_User_Administration">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Administration"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Version_Control -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Version_Control">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Component_Workflow -->
 <owl:Class rdf:about="&Ontology1228882645;Component_Workflow">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Function_Type"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Constraint -->
 <owl:Class rdf:about="&Ontology1228882645;Constraint">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Container -->
 <owl:Class rdf:about="&Ontology1228882645;Container">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Dashboard -->
 <owl:Class rdf:about="&Ontology1228882645;Dashboard">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Data_Management -->
 <owl:Class rdf:about="&Ontology1228882645;Data_Management">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Data_Transfer -->
 <owl:Class rdf:about="&Ontology1228882645;Data_Transfer">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>

- 205 -

 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database -->
 <owl:Class rdf:about="&Ontology1228882645;Database">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Database_Management_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_2 -->
 <owl:Class rdf:about="&Ontology1228882645;Database_Management_2">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Management_3 -->
 <owl:Class rdf:about="&Ontology1228882645;Database_Management_3">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Security_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Database_Security_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Database_Security_2 -->
 <owl:Class rdf:about="&Ontology1228882645;Database_Security_2">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Distributions_Processing_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Distributions_Processing_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Distributions_Processing_2 -->
 <owl:Class rdf:about="&Ontology1228882645;Distributions_Processing_2">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Document_Management -->
 <owl:Class rdf:about="&Ontology1228882645;Document_Management">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Email -->
 <owl:Class rdf:about="&Ontology1228882645;Email">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Management_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Management_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Management_2 -->
 <owl:Class rdf:about="&Ontology1228882645;Management_2">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Marketing -->
 <owl:Class rdf:about="&Ontology1228882645;Marketing">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Modelling -->
 <owl:Class rdf:about="&Ontology1228882645;Modelling">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Monitoring -->
 <owl:Class rdf:about="&Ontology1228882645;Monitoring">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Navigation -->
 <owl:Class rdf:about="&Ontology1228882645;Navigation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Navigation_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Navigation_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Notifications_and_Approvals -->

- 206 -

 <owl:Class rdf:about="&Ontology1228882645;Notifications_and_Approvals">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Operating_System -->
 <owl:Class rdf:about="&Ontology1228882645;Operating_System">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Portability"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#PDF_Creation -->
 <owl:Class rdf:about="&Ontology1228882645;PDF_Creation">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Parameter_Range -->
 <owl:Class rdf:about="&Ontology1228882645;Parameter_Range">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Parameter_Type -->
 <owl:Class rdf:about="&Ontology1228882645;Parameter_Type">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Pre-conditions_of_method_n"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Payment_System_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_2 -->
 <owl:Class rdf:about="&Ontology1228882645;Payment_System_2">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Payment_System_3 -->
 <owl:Class rdf:about="&Ontology1228882645;Payment_System_3">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Planning -->
 <owl:Class rdf:about="&Ontology1228882645;Planning">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Portfolio_Management_1 -->
 <owl:Class rdf:about="&Ontology1228882645;Portfolio_Management_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Pre-conditions_of_method_n -->
 <owl:Class rdf:about="&Ontology1228882645;Pre-conditions_of_method_n">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Component_Pre-conditions"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Profile -->
 <owl:Class rdf:about="&Ontology1228882645;Profile">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Reporting -->
 <owl:Class rdf:about="&Ontology1228882645;Reporting">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Search -->
 <owl:Class rdf:about="&Ontology1228882645;Search">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Settlement -->
 <owl:Class rdf:about="&Ontology1228882645;Settlement">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Statement -->
 <owl:Class rdf:about="&Ontology1228882645;Statement">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Switching -->
 <owl:Class rdf:about="&Ontology1228882645;Switching">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Text_and_Word_Processing -->
 <owl:Class rdf:about="&Ontology1228882645;Text_and_Word_Processing">

- 207 -

 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Time_/_Date -->
 <owl:Class rdf:about="&Ontology1228882645;Time_/_Date">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Tracking -->
 <owl:Class rdf:about="&Ontology1228882645;Tracking">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Transfer -->
 <owl:Class rdf:about="&Ontology1228882645;Transfer">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#User_Administration -->
 <owl:Class rdf:about="&Ontology1228882645;User_Administration">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#User_Administration_1 -->
 <owl:Class rdf:about="&Ontology1228882645;User_Administration_1">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Aggregation_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Version_Control -->
 <owl:Class rdf:about="&Ontology1228882645;Version_Control">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Workflow -->
 <owl:Class rdf:about="&Ontology1228882645;Workflow">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Workflow_Management -->
 <owl:Class rdf:about="&Ontology1228882645;Workflow_Management">
 <rdfs:subClassOf rdf:resource="&Ontology1228882645;Association_Class_(Financial)"/>
 </owl:Class>
 <!-- http://www.w3.org/2002/07/owl#Thing -->
 <owl:Class rdf:about="&owl;Thing"/>
 <!-- ///
 //
 // Individuals
 // ///
 -->
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#ImagXpress_View -->
 <owl:Thing rdf:about="&Ontology1228882645;ImagXpress_View">
 <rdf:type rdf:resource="&Ontology1228882645;Component_Imaging"/>
 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Netrix_DOM_Handing -->
 <owl:Thing rdf:about="&Ontology1228882645;Netrix_DOM_Handing">
 <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/>
 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#PowerTCP_FTP_for_.NET -->
 <owl:Thing rdf:about="&Ontology1228882645;PowerTCP_FTP_for_.NET">
 <rdf:type rdf:resource="&Ontology1228882645;Component_File_Transfer"/>
 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Rainbow_PDF_Server_Based_Converter -->
 <owl:Thing rdf:about="&Ontology1228882645;Rainbow_PDF_Server_Based_Converter">
 <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/>
 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#Xceed_Ultimate_Suite_2008 -->
 <owl:Thing rdf:about="&Ontology1228882645;Xceed_Ultimate_Suite_2008">
 <rdf:type rdf:resource="&Ontology1228882645;Component_File_Handling"/>
 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
 <!-- http://www.owl-ontologies.com/Ontology1228882645.owl#ezCrypto_.NET -->
 <owl:Thing rdf:about="&Ontology1228882645;ezCrypto_.NET">
 <rdf:type rdf:resource="&Ontology1228882645;Component_Encryption"/>

- 208 -

 <rdf:type rdf:resource="&owl;NamedIndividual"/>
 </owl:Thing>
</rdf:RDF>
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net -->

A.2 Context Model

<?xml version="1.0"?>
<rdf:RDF
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-ontologies.com/Ontology1226373901.owl#"
 xml:base="http://www.owl-ontologies.com/Ontology1226373901.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Component_Oracle_JDeveloper">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Oracle"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Tuxedo"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebLogic_Workshop"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebLogic_Portal"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebLogic_Server"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Oracle_Database"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_OSGI_Model">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Model"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_.NET_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_CCM_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_COM_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_JavaBean_Model"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Cplusplus_2005">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>

- 209 -

 <owl:Class rdf:ID="Component_Visual_Cplusplus_2008">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_JavaBean_Model">
 <owl:disjointWith rdf:resource="#Component_OSGI_Model"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_CCM_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_COM_Model"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Model"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_FoxPro">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_SharePoint">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_MySQL">
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Sun"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Oracle"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Eclipse"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_CodeGear"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Platform"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_OS"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_CodeGear">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Platform"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith>

- 210 -

 <owl:Class rdf:about="#Component_Sun"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Oracle"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Eclipse"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Component_Tuxedo">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Oracle"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Workshop"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Portal"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Server"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Oracle_Database"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Unix">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_OS"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_9X">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Eclipse">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Platform"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sun"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Oracle"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_VisualAge_for_Java">
 <rdfs:subClassOf>

- 211 -

 <owl:Class rdf:about="#Component_IBM"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_VisualAge_Cplusplus"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebSphere_Studio"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WebSphere"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_SUSE">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Linux"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_RedHat"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Kernel"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Disk_Requirements">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_RedHat">
 <owl:disjointWith rdf:resource="#Component_SUSE"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Kernel"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Linux"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_PowerJ">
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_PowerBuilder"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Sybase"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_XP">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Studio_2008">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Kernel">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Linux"/>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Component_SUSE"/>
 <owl:disjointWith rdf:resource="#Component_RedHat"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebSphere">
 <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VisualAge_Cplusplus"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebSphere_Studio"/>
 </owl:disjointWith>
 <rdfs:subClassOf>

- 212 -

 <owl:Class rdf:about="#Component_IBM"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Csharp_.NET">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Cplusplus">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_JBuilder">
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Visual_Caf茅"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Kylix"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Delphi"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_CplusplusBuilder"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Component_CodeGear"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebSphere_Studio">
 <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VisualAge_Cplusplus"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_WebSphere"/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_IBM"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_Vista">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Linux">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_OS"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Memory_Requirements">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Studio_.NET">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_ME">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Csharp_2005">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Access">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_CPU_Requirements">
 <rdfs:subClassOf rdf:resource="#Component"/>

- 213 -

 </owl:Class>
 <owl:Class rdf:about="#Component_Delphi">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Visual_Caf茅"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Kylix"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_JBuilder"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_CplusplusBuilder"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Component_CodeGear"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebLogic_Workshop">
 <owl:disjointWith rdf:resource="#Component_Tuxedo"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Portal"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Server"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Oracle_Database"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Oracle"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Visual_Caf茅">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Kylix"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_JBuilder"/>
 <owl:disjointWith rdf:resource="#Component_Delphi"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_CplusplusBuilder"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Component_CodeGear"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Sun_ONE_Studio">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Sun"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Sun_ONE"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Studio_2005">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_CCM_Model">
 <owl:disjointWith rdf:resource="#Component_OSGI_Model"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Model"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_COM_Model"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Model"/>
 </rdfs:subClassOf>

- 214 -

 </owl:Class>
 <owl:Class rdf:about="#Component_Oracle">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sun"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Eclipse"/>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Platform"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Model">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Basic">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Platform">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Internet_Explorer">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Sun_ONE">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Sun"/>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Component_Sun_ONE_Studio"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Basic_.NET">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Oracle_Database">
 <owl:disjointWith rdf:resource="#Component_Tuxedo"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Portal"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Server"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <rdfs:subClassOf rdf:resource="#Component_Oracle"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Basic_2005">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Microsoft"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_Microsoft">

- 215 -

 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sun"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Eclipse"/>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <rdfs:subClassOf rdf:resource="#Component_Platform"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Sun">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Sybase"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Eclipse"/>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <owl:disjointWith rdf:resource="#Component_Microsoft"/>
 <rdfs:subClassOf rdf:resource="#Component_Platform"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_IBM_AIX">
 <rdfs:subClassOf rdf:resource="#Component_Unix"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Studio">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_FrontPage">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Sybase">
 <rdfs:subClassOf rdf:resource="#Component_Platform"/>
 <owl:disjointWith rdf:resource="#Component_Sun"/>
 <owl:disjointWith rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_IBM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Eclipse"/>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <owl:disjointWith rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_NT">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_CplusplusBuilder">
 <owl:disjointWith rdf:resource="#Component_Visual_Caf茅"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Kylix"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_JBuilder"/>
 <owl:disjointWith rdf:resource="#Component_Delphi"/>
 <rdfs:subClassOf rdf:resource="#Component_CodeGear"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_OS">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_IBM">
 <rdfs:subClassOf rdf:resource="#Component_Platform"/>
 <owl:disjointWith rdf:resource="#Component_Sybase"/>
 <owl:disjointWith rdf:resource="#Component_Sun"/>

- 216 -

 <owl:disjointWith rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_MySQL"/>
 <owl:disjointWith rdf:resource="#Component_Eclipse"/>
 <owl:disjointWith rdf:resource="#Component_CodeGear"/>
 <owl:disjointWith rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebLogic_Server">
 <rdfs:subClassOf rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_Tuxedo"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Portal"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <owl:disjointWith rdf:resource="#Component_Oracle_Database"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_PowerBuilder">
 <owl:disjointWith rdf:resource="#Component_PowerJ"/>
 <rdfs:subClassOf rdf:resource="#Component_Sybase"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebLogic_Portal">
 <owl:disjointWith rdf:resource="#Component_Tuxedo"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WebLogic_Express"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Server"/>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <owl:disjointWith rdf:resource="#Component_Oracle_Database"/>
 <rdfs:subClassOf rdf:resource="#Component_Oracle"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_VisualAge_Cplusplus">
 <rdfs:subClassOf rdf:resource="#Component_IBM"/>
 <owl:disjointWith rdf:resource="#Component_VisualAge_for_Java"/>
 <owl:disjointWith rdf:resource="#Component_WebSphere_Studio"/>
 <owl:disjointWith rdf:resource="#Component_WebSphere"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Csharp_2008">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Office">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WebLogic_Express">
 <rdfs:subClassOf rdf:resource="#Component_Oracle"/>
 <owl:disjointWith rdf:resource="#Component_Tuxedo"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Workshop"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Portal"/>
 <owl:disjointWith rdf:resource="#Component_WebLogic_Server"/>
 <owl:disjointWith rdf:resource="#Component_Oracle_JDeveloper"/>
 <owl:disjointWith rdf:resource="#Component_Oracle_Database"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_HP-UX">
 <rdfs:subClassOf rdf:resource="#Component_Unix"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_SQL_Server">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_COM_Model">
 <rdfs:subClassOf rdf:resource="#Component_Model"/>
 <owl:disjointWith rdf:resource="#Component_OSGI_Model"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Model"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_CCM_Model"/>
 <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/>

- 217 -

 </owl:Class>
 <owl:Class rdf:about="#Component_.NET_Model">
 <owl:disjointWith rdf:resource="#Component_OSGI_Model"/>
 <owl:disjointWith rdf:resource="#Component_CCM_Model"/>
 <owl:disjointWith rdf:resource="#Component_COM_Model"/>
 <owl:disjointWith rdf:resource="#Component_JavaBean_Model"/>
 <rdfs:subClassOf rdf:resource="#Component_Model"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Basic_2008">
 <rdfs:subClassOf rdf:resource="#Component_Microsoft"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Sun_Solaris">
 <rdfs:subClassOf rdf:resource="#Component_Unix"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_2000">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Visual_Cplusplus_.NET">
 <rdfs:subClassOf rdf:resource="#Component_Visual_Cplusplus_2008"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Windows_3.X">
 <rdfs:subClassOf rdf:resource="#Component_Windows"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_FreeBSD">
 <rdfs:subClassOf rdf:resource="#Component_Unix"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Kylix">
 <owl:disjointWith rdf:resource="#Component_Visual_Caf茅"/>
 <owl:disjointWith rdf:resource="#Component_JBuilder"/>
 <owl:disjointWith rdf:resource="#Component_Delphi"/>
 <owl:disjointWith rdf:resource="#Component_CplusplusBuilder"/>
 <rdfs:subClassOf rdf:resource="#Component_CodeGear"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasPlatform">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isPlatformOf"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Platform"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasOS">
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_OS"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isOsOf"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isComponentModelOf">
 <rdfs:domain rdf:resource="#Component_Model"/>
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasComponentModel"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isCPURequirementOf">
 <rdfs:domain rdf:resource="#Component_CPU_Requirements"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasCPURequirement"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#Component"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isPlatformOf">
 <rdfs:range rdf:resource="#Component"/>
 <rdfs:domain rdf:resource="#Component_Platform"/>
 <owl:inverseOf rdf:resource="#hasPlatform"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasComponentModel">
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Model"/>

- 218 -

 <owl:inverseOf rdf:resource="#isComponentModelOf"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isOsOf">
 <rdfs:domain rdf:resource="#Component_OS"/>
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf rdf:resource="#hasOS"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasCPURequirement">
 <owl:inverseOf rdf:resource="#isCPURequirementOf"/>
 <rdfs:range rdf:resource="#Component_CPU_Requirements"/>
 <rdfs:domain rdf:resource="#Component"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasMemoryRequirement">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isMemoryRequirementOf"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Memory_Requirements"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isDiskRequirementOf">
 <rdfs:range rdf:resource="#Component"/>
 <rdfs:domain rdf:resource="#Component_Disk_Requirements"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasDiskRequirement"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isMemoryRequirementOf">
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf rdf:resource="#hasMemoryRequirement"/>
 <rdfs:domain rdf:resource="#Component_Memory_Requirements"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasDiskRequirement">
 <rdfs:range rdf:resource="#Component_Disk_Requirements"/>
 <owl:inverseOf rdf:resource="#isDiskRequirementOf"/>
 <rdfs:domain rdf:resource="#Component"/>
 </owl:ObjectProperty>
 <Component_Visual_Basic_2008 rdf:ID="ezCryto_.NET"/>
 <Component rdf:ID="Component_6"/>
 <Component_Visual_Basic_2008 rdf:ID="PowerTCP_FTP_for_.NET">
 <hasDiskRequirement>
 <Component_Disk_Requirements rdf:ID="Disk_2MB">
 <isDiskRequirementOf rdf:resource="#PowerTCP_FTP_for_.NET"/>
 </Component_Disk_Requirements>
 </hasDiskRequirement>
 <hasOS>
 <Component_Windows_2000 rdf:ID="Windows_2000">
 <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/>
 </Component_Windows_2000>
 </hasOS>
 <hasOS>
 <Component_Windows_ME rdf:ID="Windows_ME">
 <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/>
 </Component_Windows_ME>
 </hasOS>
 <hasOS>
 <Component_Windows_NT rdf:ID="Windows_NT">
 <isOsOf rdf:resource="#PowerTCP_FTP_for_.NET"/>
 </Component_Windows_NT>
 </hasOS>
 </Component_Visual_Basic_2008>
 <Component_Visual_Basic_2008 rdf:ID="Netrix_DOM_Editor">
 <hasOS>
 <Component_Windows_XP rdf:ID="Windows_XP">
 <isOsOf rdf:resource="#Netrix_DOM_Editor"/>
 </Component_Windows_XP>
 </hasOS>
 <hasOS>
 <Component_Windows_Vista rdf:ID="Windows_Vista">
 <isOsOf rdf:resource="#Netrix_DOM_Editor"/>

- 219 -

 </Component_Windows_Vista>
 </hasOS>
 <hasDiskRequirement>
 <Component_Disk_Requirements rdf:ID="Disk_7MB">
 <isDiskRequirementOf rdf:resource="#Netrix_DOM_Editor"/>
 </Component_Disk_Requirements>
 </hasDiskRequirement>
 </Component_Visual_Basic_2008>
 <Component_Visual_Basic_2005 rdf:ID="Rainbow_PDF_Server_Based_Converter">
 <hasCPURequirement>
 <Component_CPU_Requirements rdf:ID="Pentium_42.3GHz">
 <isCPURequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_CPU_Requirements>
 </hasCPURequirement>
 <hasDiskRequirement>
 <Component_Disk_Requirements rdf:ID="Disk_1GB">
 <isDiskRequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Disk_Requirements>
 </hasDiskRequirement>
 <hasMemoryRequirement>
 <Component_Memory_Requirements rdf:ID="Memory_1GB">
 <isMemoryRequirementOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Memory_Requirements>
 </hasMemoryRequirement>
 <hasOS>
 <Component_Sun_Solaris rdf:ID="Sun_Solaris">
 <isOsOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Sun_Solaris>
 </hasOS>
 <hasOS>
 <Component_RedHat rdf:ID="RedHat">
 <isOsOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_RedHat>
 </hasOS>
 </Component_Visual_Basic_2005>
 <Component_Delphi rdf:ID="Xceed_Ultimate_Suite_2008">
 <hasMemoryRequirement>
 <Component_Memory_Requirements rdf:ID="Memory_32MB">
 <isMemoryRequirementOf rdf:resource="#Xceed_Ultimate_Suite_2008"/>
 </Component_Memory_Requirements>
 </hasMemoryRequirement>
 <hasDiskRequirement>
 <Component_Disk_Requirements rdf:ID="Disk_28MB">
 <isDiskRequirementOf rdf:resource="#Xceed_Ultimate_Suite_2008"/>
 </Component_Disk_Requirements>
 </hasDiskRequirement>
 </Component_Delphi>
</rdf:RDF>
<!-- Created with Protege (with OWL Plugin 3.4, Build 533) http://protege.stanford.edu -->

A.3 Intrinsic Model

<?xml version="1.0"?>
<rdf:RDF
 xmlns:p2="http://www.owl-ontologies.com/Ontology1226299693.owl#520.00"
 xmlns:p1="http://www.owl-ontologies.com/Ontology1226299693.owl#194.00"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-ontologies.com/Ontology1226299693.owl#"
 xmlns:p4="http://www.owl-ontologies.com/Ontology1226299693.owl#877.00"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:p3="http://www.owl-ontologies.com/Ontology1226299693.owl#1301.00"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

- 220 -

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xml:base="http://www.owl-ontologies.com/Ontology1226299693.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Component_Java">
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Cplusplus"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_.NET"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component_Type"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_VBX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Componen_VCL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ActiveX_COM"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_ActiveX_EXE">
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ActiveX_OCX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ActiveX_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ActiveX_.NET_Ready"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_ActiveX_COM"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_.NET_Class">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_.NET"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_.NET_WinForm"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_ASP_.NET_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_.NET_Web_Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_.NET_Compact_Framework"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Component_WPF"/>
 </owl:disjointWith>

- 221 -

 <owl:disjointWith>
 <owl:Class rdf:ID="Component_Silverlight"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Price">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Component"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_ASP_.NET_AJAX">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_.NET"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_WinForm"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Web_Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Compact_Framework"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Silverlight"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Component_Cplusplus">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Type"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ActiveX_COM"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Componen_VCL"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Component_.NET_Compact_Framework">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_WinForm"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>

- 222 -

 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Web_Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Silverlight"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_.NET"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Component_Vender">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_ActiveX_.NET_Ready">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_ActiveX_COM"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ActiveX_OCX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ActiveX_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_.NET">
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ActiveX_COM"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Componen_VCL"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_Type"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Component_ActiveX_DLL">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Component_ActiveX_COM"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ActiveX_OCX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_.NET_Ready"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Type">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Enterprise_JavaBean">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>

- 223 -

 <owl:Class rdf:about="#Component_Silverlight">
 <rdfs:subClassOf rdf:resource="#Component_.NET"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_WinForm"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Web_Service"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_WebLogic_Workshop_JWS_Control">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_ActiveX_COM">
 <owl:disjointWith>
 <owl:Class rdf:about="#Componen_VCL"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_DLL"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Component_.NET_WinForm">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_.NET_Web_Service"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Silverlight"/>
 <rdfs:subClassOf rdf:resource="#Component_.NET"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Version">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_JavaBean">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Name">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_.NET_Web_Service">
 <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/>

- 224 -

 <owl:disjointWith>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Silverlight"/>
 <rdfs:subClassOf rdf:resource="#Component_.NET"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_DLL">
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Componen_VCL"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="Component_Java_Class">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:about="#Componen_VCL">
 <owl:disjointWith rdf:resource="#Component_DLL"/>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_Flash_Flex"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_Flash_Flex">
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_JavaScript_AJAX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/>
 <owl:disjointWith rdf:resource="#Component_DLL"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith rdf:resource="#Componen_VCL"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_ActiveX_OCX">
 <owl:disjointWith rdf:resource="#Component_ActiveX_DLL"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_EXE"/>

- 225 -

 <owl:disjointWith rdf:resource="#Component_ActiveX_.NET_Ready"/>
 <rdfs:subClassOf rdf:resource="#Component_ActiveX_COM"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Java_Servlet">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Date">
 <rdfs:subClassOf rdf:resource="#Component"/>
 </owl:Class>
 <owl:Class rdf:ID="Component_Java_Applet">
 <rdfs:subClassOf rdf:resource="#Component_Java"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_ASP_.NET_WebForm">
 <rdfs:subClassOf rdf:resource="#Component_.NET"/>
 <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Web_Service"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_WPF"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_Silverlight"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_JavaScript_AJAX">
 <owl:disjointWith rdf:resource="#Componen_VCL"/>
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith rdf:resource="#Component_Flash_Flex"/>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Component_VBX"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Component_DLL"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_WPF">
 <owl:disjointWith rdf:resource="#Component_.NET_WinForm"/>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_WebForm"/>
 <owl:disjointWith rdf:resource="#Component_ASP_.NET_AJAX"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Class"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Web_Service"/>
 <owl:disjointWith rdf:resource="#Component_.NET_Compact_Framework"/>
 <owl:disjointWith rdf:resource="#Component_Silverlight"/>
 <rdfs:subClassOf rdf:resource="#Component_.NET"/>
 </owl:Class>
 <owl:Class rdf:about="#Component_VBX">
 <owl:disjointWith rdf:resource="#Component_DLL"/>
 <owl:disjointWith rdf:resource="#Component_.NET"/>
 <owl:disjointWith rdf:resource="#Component_Java"/>
 <owl:disjointWith rdf:resource="#Component_ActiveX_COM"/>
 <owl:disjointWith rdf:resource="#Component_Cplusplus"/>
 <owl:disjointWith rdf:resource="#Component_Flash_Flex"/>
 <owl:disjointWith rdf:resource="#Component_JavaScript_AJAX"/>
 <rdfs:subClassOf rdf:resource="#Component_Type"/>
 <owl:disjointWith rdf:resource="#Componen_VCL"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasName">
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Name"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isNameOf"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasPrice">
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Price"/>
 <owl:inverseOf>

- 226 -

 <owl:ObjectProperty rdf:ID="isPriceOf"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasVender">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isVenderOf"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#Component_Vender"/>
 <rdfs:domain rdf:resource="#Component"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasVersion">
 <rdfs:domain rdf:resource="#Component"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isVersionOf"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#Component_Version"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isVersionOf">
 <rdfs:domain rdf:resource="#Component_Version"/>
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf rdf:resource="#hasVersion"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isVenderOf">
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf rdf:resource="#hasVender"/>
 <rdfs:domain rdf:resource="#Component_Vender"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isPriceOf">
 <rdfs:domain rdf:resource="#Component_Price"/>
 <owl:inverseOf rdf:resource="#hasPrice"/>
 <rdfs:range rdf:resource="#Component"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isNameOf">
 <rdfs:range rdf:resource="#Component"/>
 <rdfs:domain rdf:resource="#Component_Name"/>
 <owl:inverseOf rdf:resource="#hasName"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasDate">
 <rdfs:domain rdf:resource="#Component"/>
 <rdfs:range rdf:resource="#Component_Date"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isDateOf"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isDateOf">
 <rdfs:domain rdf:resource="#Component_Date"/>
 <rdfs:range rdf:resource="#Component"/>
 <owl:inverseOf rdf:resource="#hasDate"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasA"/>
 <owl:AllDifferent/>
 <Component_.NET_Class rdf:ID="Netrix_DOM_Editor">
 <hasVender>
 <Component_Vender rdf:ID="Guru_Components">
 <isVenderOf rdf:resource="#Netrix_DOM_Editor"/>
 </Component_Vender>
 </hasVender>
 <hasVersion>
 <Component_Version rdf:ID="V1.6">
 <isVersionOf rdf:resource="#Netrix_DOM_Editor"/>
 </Component_Version>
 </hasVersion>
 <hasPrice>
 <Component_Price rdf:about="# 877.00">
 <isPriceOf rdf:resource="#Netrix_DOM_Editor"/>
 </Component_Price>
 </hasPrice>
 </Component_.NET_Class>
 <Component_WPF rdf:ID="Xceed_Ultimate_Suite_2008">

- 227 -

 <hasPrice>
 <Component_Price rdf:about="# 520.00">
 <isPriceOf rdf:resource="#Xceed_Ultimate_Suite_2008"/>
 </Component_Price>
 </hasPrice>
 <hasVender>
 <Component_Vender rdf:ID="Xceed_Software">
 <isVenderOf rdf:resource="#Xceed_Ultimate_Suite_2008"/>
 </Component_Vender>
 </hasVender>
 <hasVersion>
 <Component_Version rdf:ID="V5">
 <isVersionOf rdf:resource="#Xceed_Ultimate_Suite_2008"/>
 </Component_Version>
 </hasVersion>
 </Component_WPF>
 <Component_Java_Class rdf:ID="Rainbow_PDF_Server_Based_Converter">
 <hasVersion>
 <Component_Version rdf:ID="V2.0">
 <isVersionOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Version>
 </hasVersion>
 <hasPrice>
 <Component_Price rdf:about="#1301.00">
 <isPriceOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Price>
 </hasPrice>
 <hasVender>
 <Component_Vender rdf:ID="Antenna_House">
 <isVenderOf rdf:resource="#Rainbow_PDF_Server_Based_Converter"/>
 </Component_Vender>
 </hasVender>
 </Component_Java_Class>
 <Component_.NET_Class rdf:ID="ezCrypto_.NET">
 <hasPrice>
 <Component_Price rdf:about="#拢65.00">
 <isPriceOf rdf:resource="#ezCrypto_.NET"/>
 </Component_Price>
 </hasPrice>
 <hasVersion>
 <Component_Version rdf:ID="V2.0.2">
 <isVersionOf rdf:resource="#ezCrypto_.NET"/>
 </Component_Version>
 </hasVersion>
 <hasVender>
 <Component_Vender rdf:ID="Component_Designs">
 <isVenderOf rdf:resource="#ezCrypto_.NET"/>
 </Component_Vender>
 </hasVender>
 </Component_.NET_Class>
 <Component_.NET_Class rdf:ID="Power_TCP_FTP_for_.NET">
 <hasVersion>
 <Component_Version rdf:ID="V3.0.4">
 <isVersionOf rdf:resource="#Power_TCP_FTP_for_.NET"/>
 </Component_Version>
 </hasVersion>
 <hasVender>
 <Component_Vender rdf:ID="Dart_Communications">
 <isVenderOf rdf:resource="#Power_TCP_FTP_for_.NET"/>
 </Component_Vender>
 </hasVender>
 <hasPrice>
 <Component_Price rdf:about="#194.00">
 <isPriceOf rdf:resource="#Power_TCP_FTP_for_.NET"/>
 </Component_Price>
 </hasPrice>
 </Component_.NET_Class>
</rdf:RDF>

- 228 -

<!-- Created with Protege (with OWL Plugin 3.4, Build 533) http://protege.stanford.edu -->

- 229 -

Appendix B: The OWL Doc of the Financial

Domain Ontology

<?xml version="1.0"?>
<!DOCTYPE Ontology [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<Ontology xmlns="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310633460953.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310633460953.owl">
 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/>
 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>
 <Declaration>
 <Class IRI="#Account"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Accounting_Integration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Accounts_Receivables_&_Payables"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Accounts_Receivables_and_Payables"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Adobe_Acrobat_Integration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Advanced_Analytics"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Aggregation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Allocations"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Alternative_Investment_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Analytics"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Asset_Management_Systems"/>
 </Declaration>
 <Declaration>

- 230 -

 <Class IRI="#Association_Class"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Authorisation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Authorising"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Automated_Document_Mailings"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Automated_PDF_Creation_and_Collation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Automated_Price_Updates"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Automated_Workflow"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Business_Intelligence"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Calculation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Calendar_/_Schedule_"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Capital_Markets_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Capturing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Card_Authorisation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Card_Processing_/_Payments"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cash_Flow_Forecasting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cash_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Charting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Charting_and_Graphing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Check-in_&_Check-out"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Chip_&_PIN"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Clearing_and_Settlement_Processes"/>
 </Declaration>
 <Declaration>

- 231 -

 <Class IRI="#Client_Acquisition"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Client_Wealth_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Collaborating"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Communication"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Communication_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Consultancy"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Contact_&_Document_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Contributions_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Correspondence_Tracking"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Credit_Administration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Customer_Relationship_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Customized_User_Dashboards"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dashboard"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dashboards_and_Visualization"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Conversion"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Conversion_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Distribution_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Editing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Management_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Management_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Security"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Security_MVICS"/>
 </Declaration>
 <Declaration>

- 232 -

 <Class IRI="#Data_Solutions"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Transfer"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Transfer_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Validation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Validation_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_2"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_3"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Security_1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Security_2"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Deal_Flow"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dealing_and_Order_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Deliver"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Distributions_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Distributions_Processing_2"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Distributions_Processing_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Document_Importing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Document_Log"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Document_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Document_Profiling"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Document_Scanning"/>
 </Declaration>
 <Declaration>

- 233 -

 <Class IRI="#E-mail"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Electronic_Commerce"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Email"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Email_Archive"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Email_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Email_Rules"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Employee_Profile"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Employee_Transfer,_Promotions_&_Increments"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Fees_and_Commissions"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Financial_Accounting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Fund_Investment_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Hedge_Funds"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Import_Transaction_History"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Information_Search"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Investment_Records_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Investor_Registration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Investor_Reporting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Knowledge_Delivery"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Leave_Management_System"/>
 </Declaration>
 <Declaration>
 <Class IRI="#MS_Word_Integration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Management_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Management_Fees"/>
 </Declaration>
 <Declaration>

- 234 -

 <Class IRI="#Management_Reporting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mangement_2"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Markers_and_Trend_Lines"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Market_Surveillance_and_Monitoring"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Marketing_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Marketing_Tools"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Menu"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Microfinance_/_Microbanking"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Modelling"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Modelling_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Modelling_Software"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Monitoring"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mutual_Funds_/_Unit_trusts"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Navigation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Navigation_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Notifications_&_Approvals"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Notifications_&_Approvals_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Outlook_and_Email_Integration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#PDF"/>
 </Declaration>
 <Declaration>
 <Class IRI="#PDF_Creation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#PDF_Creator"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Payment_System"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Payment_System_3"/>
 </Declaration>
 <Declaration>

- 235 -

 <Class IRI="#Payment_system_1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Payment_system_2"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Payroll"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Payroll_Management_System"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Performance_Analytics"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Planning"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Portfolio_/_Fund_Management_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Portfolio_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Portfolio_Management_1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Price_Alerts"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Private_Equity"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Product_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Profile"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Purchasing_and_Transaction"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Query_and_Analysis"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Real_Estate_Investment_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Records_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Redemptions"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Reference_Data_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Reimbursement_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Reporting"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Reporting_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Reporting_MVICS_Association_Class"/>
 </Declaration>
 <Declaration>

- 236 -

 <Class IRI="#Retrieve_Transactions"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Revenue_Analytics"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Risk_Analytics"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Scheduling_and_Calendaring"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Search"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Search_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Search_and_navigation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Settlement"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Settlement_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Site_Navigation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Statement"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Subscriptions"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Switching"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Switching_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#System_Administration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Task_Manager"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Text_and_Word_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Text_and_Word_Processing_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Time_/_Date"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Time_Management_System"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Toolbar"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Tracking"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Trade_Order_and_Risk_Management"/>
 </Declaration>
 <Declaration>

- 237 -

 <Class IRI="#Transfer"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Transfers_and_Defaults"/>
 </Declaration>
 <Declaration>
 <Class IRI="#UserAdministration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#User_Administration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#User_Administration_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#User_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Validating"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Version_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Version_Control_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Wealth_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Wealth_Planning"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Web_Interface"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Workflow"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Workflow-Based_Task_Routing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Workflow_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Yield_Calculations"/>
 </Declaration>
 <Declaration>
 <ObjectProperty IRI="#IsA"/>
 </Declaration>
 <EquivalentClasses>
 <Class IRI="#Account"/>
 <Class IRI="#Accounting_Integration"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Accounts_Receivables_and_Payables"/>
 <Class IRI="#Payment_system_1"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Advanced_Analytics"/>
 <Class IRI="#Analytics"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Allocations"/>
 <Class IRI="#Data_Management_MVICS"/>
 </EquivalentClasses>

- 238 -

 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Cash_Flow_Forecasting"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Client_Acquisition"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Customer_Relationship_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Performance_Analytics"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Query_and_Analysis"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Revenue_Analytics"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Analytics"/>
 <Class IRI="#Risk_Analytics"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Authorising"/>
 <Class IRI="#Card_Authorisation"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Automated_PDF_Creation_and_Collation"/>
 <Class IRI="#PDF_Creation"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Automated_Price_Updates"/>
 <Class IRI="#Distributions_Processing_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Automated_Price_Updates"/>
 <Class IRI="#Transfer"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Automated_Workflow"/>
 <Class IRI="#Workflow_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Calculation"/>
 <Class IRI="#Yield_Calculations"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Calendar_/_Schedule_"/>
 <Class IRI="#Scheduling_and_Calendaring"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Cash_Management"/>
 <Class IRI="#Management_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Charting"/>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 <Class IRI="#Dashboards_and_Visualization"/>
 </EquivalentClasses>
 <EquivalentClasses>

- 239 -

 <Class IRI="#Charting_and_Graphing_MVICS"/>
 <Class IRI="#Markers_and_Trend_Lines"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Check-in_&_Check-out"/>
 <Class IRI="#UserAdministration"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Chip_&_PIN"/>
 <Class IRI="#Database_Security_2"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Clearing_and_Settlement_Processes"/>
 <Class IRI="#Settlement_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Client_Acquisition"/>
 <Class IRI="#Profile"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Client_Wealth_Management"/>
 <Class IRI="#Management_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Communication"/>
 <Class IRI="#Communication_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Consultancy"/>
 <Class IRI="#Database_Management_1"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Contributions_Processing"/>
 <Class IRI="#Payment_System_3"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Correspondence_Tracking"/>
 <Class IRI="#Tracking"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Email_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Planning"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Search_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Tracking"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#UserAdministration"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Workflow"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Customized_User_Dashboards"/>
 <Class IRI="#User_Administration_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Dashboard"/>

- 240 -

 <Class IRI="#Dashboards_and_Visualization"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Data_Management_Systems"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Dealing_and_Order_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Employee_Transfer,_Promotions_&_Increments"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Import_Transaction_History"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Investment_Records_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Management_Fees"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Price_Alerts"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Records_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Wealth_Planning"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Transfer_MVICS"/>
 <Class IRI="#Knowledge_Delivery"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Validation_MVICS"/>
 <Class IRI="#Validating"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Database_Security_1"/>
 <Class IRI="#Settlement"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Distributions_Processing"/>
 <Class IRI="#Distributions_Processing_2"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Document_Importing"/>
 <Class IRI="#Document_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Document_Log"/>
 <Class IRI="#Document_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Document_Management"/>
 <Class IRI="#Document_Scanning"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Document_Profiling"/>
 <Class IRI="#Profile"/>

- 241 -

 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Email_Archive"/>
 <Class IRI="#Email_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Email_MVICS"/>
 <Class IRI="#Email_Rules"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Email_MVICS"/>
 <Class IRI="#Outlook_and_Email_Integration"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Employee_Profile"/>
 <Class IRI="#Profile"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Fees_and_Commissions"/>
 <Class IRI="#Payment_system_1"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Information_Search"/>
 <Class IRI="#Search_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Investor_Reporting"/>
 <Class IRI="#Reporting_MVICS_Association_Class"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Leave_Management_System"/>
 <Class IRI="#Management_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#MS_Word_Integration"/>
 <Class IRI="#Text_and_Word_Processing_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Management_Agg"/>
 <Class IRI="#Payroll_Management_System"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Management_Agg"/>
 <Class IRI="#Reimbursement_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Management_Agg"/>
 <Class IRI="#Task_Manager"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Management_Agg"/>
 <Class IRI="#User_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Management_Reporting"/>
 <Class IRI="#Reporting_MVICS_Association_Class"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Mangement_2"/>
 <Class IRI="#Product_Management"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Market_Surveillance_and_Monitoring"/>
 <Class IRI="#Monitoring"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Marketing_Agg"/>
 <Class IRI="#Marketing_Tools"/>
 </EquivalentClasses>

- 242 -

 <EquivalentClasses>
 <Class IRI="#Modelling"/>
 <Class IRI="#Modelling_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Modelling_MVICS"/>
 <Class IRI="#Modelling_Software"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Navigation"/>
 <Class IRI="#Search_and_navigation"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Navigation_Agg"/>
 <Class IRI="#Site_Navigation"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Notifications_&_Approvals"/>
 <Class IRI="#Notifications_&_Approvals_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Payment_System"/>
 <Class IRI="#Payment_System_3"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Payment_system_1"/>
 <Class IRI="#Reference_Data_Systems"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Payment_system_1"/>
 <Class IRI="#Subscriptions"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Payment_system_2"/>
 <Class IRI="#Redemptions"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Planning"/>
 <Class IRI="#Wealth_Planning"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Portfolio_Management"/>
 <Class IRI="#Portfolio_Management_1"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Query_and_Analysis"/>
 <Class IRI="#Search_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Retrieve_Transactions"/>
 <Class IRI="#Search_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Search"/>
 <Class IRI="#Search_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Search_MVICS"/>
 <Class IRI="#Search_and_navigation"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Statement"/>
 <Class IRI="#Wealth_Planning"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Switching"/>
 <Class IRI="#Switching_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>

- 243 -

 <Class IRI="#Time_/_Date"/>
 <Class IRI="#Time_Management_System"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Transfer"/>
 <Class IRI="#Transfers_and_Defaults"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Version_Control"/>
 <Class IRI="#Version_Control_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Workflow"/>
 <Class IRI="#Workflow-Based_Task_Routing"/>
 </EquivalentClasses>
 <SubClassOf>
 <Class IRI="#Account"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Accounting_Integration"/>
 <Class IRI="#Financial_Accounting"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Accounts_Receivables_&_Payables"/>
 <Class IRI="#Financial_Accounting"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Accounts_Receivables_and_Payables"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Adobe_Acrobat_Integration"/>
 <Class IRI="#Deliver"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Advanced_Analytics"/>
 <Class IRI="#Business_Intelligence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Aggregation"/>
 <Class abbreviatedIRI=":Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Allocations"/>
 <Class IRI="#Hedge_Funds"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Alternative_Investment_Systems"/>
 <Class IRI="#Asset_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Analytics"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Authorisation"/>
 <Class IRI="#Card_Processing_/_Payments"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Authorising"/>
 <Class IRI="#Authorisation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Automated_Document_Mailings"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Automated_PDF_Creation_and_Collation"/>

- 244 -

 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Automated_Price_Updates"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Automated_Workflow"/>
 <Class IRI="#Collaborating"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Basic_Portfolio_Management_"/>
 <Class IRI="#Portfolio_/_Fund_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Business_Intelligence"/>
 <Class IRI="#Data_Solutions"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Calculation"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Calendar_/_Schedule_"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Capital_Markets_Systems"/>
 <Class IRI="#Asset_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Capturing"/>
 <Class IRI="#Contact_&_Document_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Card_Authorisation"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Card_Processing_/_Payments"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cash_Flow_Forecasting"/>
 <Class IRI="#Alternative_Investment_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cash_Management"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Charting"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Charting_and_Graphing"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Check-in_&_Check-out"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Chip_&_PIN"/>
 <Class IRI="#Card_Processing_/_Payments"/>

- 245 -

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Clearing_and_Settlement_Processes"/>
 <Class IRI="#Capital_Markets_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Client_Acquisition"/>
 <Class IRI="#Wealth_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Client_Wealth_Management"/>
 <Class IRI="#Wealth_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Collaborating"/>
 <Class IRI="#Contact_&_Document_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Communication"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Communication_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Consultancy"/>
 <Class IRI="#Card_Processing_/_Payments"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Contact_&_Document_Management"/>
 <Class IRI="#Alternative_Investment_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Contributions_Processing"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Correspondence_Tracking"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Credit_Administration"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Customer_Relationship_Management"/>
 <Class IRI="#Data_Solutions"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Customized_User_Dashboards"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dashboard"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dashboards_and_Visualization"/>
 <Class IRI="#Business_Intelligence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Conversion"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Conversion_MVICS"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>

- 246 -

 <SubClassOf>
 <Class IRI="#Data_Distribution_Systems"/>
 <Class IRI="#Data_Solutions"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Editing"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Management"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Management_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Management_Systems"/>
 <Class IRI="#Data_Distribution_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Security"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Security_MVICS"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Solutions"/>
 <Class abbreviatedIRI=":Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Transfer"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Transfer_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Validation"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Validation_MVICS"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_1"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_2"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_3"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_MVICS"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>

- 247 -

 <Class IRI="#Database_Security_1"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Security_2"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Deal_Flow"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dealing_and_Order_Management"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Deliver"/>
 <Class IRI="#Contact_&_Document_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Distributions_Processing"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Distributions_Processing_2"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Distributions_Processing_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Document_Importing"/>
 <Class IRI="#Capturing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Document_Log"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Document_Management"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Document_Profiling"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Document_Scanning"/>
 <Class IRI="#Capturing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#E-mail"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Electronic_Commerce"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Email"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Email_Archive"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Email_MVICS"/>

- 248 -

 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Email_Rules"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Employee_Profile"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Employee_Transfer,_Promotions_&_Increments"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Fees_and_Commissions"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Financial_Accounting"/>
 <Class IRI="#Alternative_Investment_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Fund_Investment_Management"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Hedge_Funds"/>
 <Class IRI="#Portfolio_/_Fund_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Import_Transaction_History"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Information_Search"/>
 <Class IRI="#Data_Distribution_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Investment_Records_Management"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Investor_Registration"/>
 <Class IRI="#Hedge_Funds"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Investor_Reporting"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Knowledge_Delivery"/>
 <Class IRI="#Data_Distribution_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Leave_Management_System"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#MS_Word_Integration"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Management"/>
 <Class IRI="#Contact_&_Document_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Management_Agg"/>
 <Class IRI="#Aggregation"/>

- 249 -

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Management_Fees"/>
 <Class IRI="#Hedge_Funds"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Management_Reporting"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mangement_2"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Markers_and_Trend_Lines"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Market_Surveillance_and_Monitoring"/>
 <Class IRI="#Capital_Markets_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Marketing_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Marketing_Tools"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Menu"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Microfinance_/_Microbanking"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Modelling"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Modelling_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Modelling_Software"/>
 <Class IRI="#Data_Distribution_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Monitoring"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mutual_Funds_/_Unit_trusts"/>
 <Class IRI="#Asset_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Navigation"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Navigation_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Notifications_&_Approvals"/>
 <Class IRI="#Collaborating"/>
 </SubClassOf>

- 250 -

 <SubClassOf>
 <Class IRI="#Notifications_&_Approvals_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Outlook_and_Email_Integration"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#PDF"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#PDF_Creation"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#PDF_Creator"/>
 <Class IRI="#Deliver"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payment_System"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payment_System_3"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payment_system_1"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payment_system_2"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payroll"/>
 <Class IRI="#Financial_Accounting"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Payroll_Management_System"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Performance_Analytics"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Planning"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Portfolio_/_Fund_Management_Systems"/>
 <Class IRI="#Asset_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Portfolio_Management"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Portfolio_Management_1"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Price_Alerts"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>

- 251 -

 <Class IRI="#Private_Equity"/>
 <Class IRI="#Alternative_Investment_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Product_Management"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Profile"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Purchasing_and_Transaction"/>
 <Class IRI="#Authorisation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Query_and_Analysis"/>
 <Class IRI="#Business_Intelligence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Real_Estate_Investment_Management"/>
 <Class IRI="#Alternative_Investment_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Records_Management"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Redemptions"/>
 <Class IRI="#Hedge_Funds"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Reference_Data_Systems"/>
 <Class IRI="#Data_Distribution_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Reimbursement_Management"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Reporting"/>
 <Class IRI="#Transfer"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Reporting_MVICS"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Reporting_MVICS_Association_Class"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Retrieve_Transactions"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Revenue_Analytics"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Risk_Analytics"/>
 <Class IRI="#Fund_Investment_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Scheduling_and_Calendaring"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Search"/>

- 252 -

 <Class IRI="#Contact_&_Document_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Search_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Search_and_navigation"/>
 <Class IRI="#Business_Intelligence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Settlement"/>
 <Class IRI="#Card_Processing_/_Payments"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Settlement_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Site_Navigation"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Statement"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Subscriptions"/>
 <Class IRI="#Hedge_Funds"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Switching"/>
 <Class IRI="#Authorisation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Switching_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#System_Administration"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Task_Manager"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Text_and_Word_Processing"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Text_and_Word_Processing_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Time_/_Date"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Time_Management_System"/>
 <Class IRI="#Payroll"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Toolbar"/>
 <Class IRI="#Distributions_Processing_2"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Tracking"/>
 <Class IRI="#Association_Class"/>

- 253 -

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Trade_Order_and_Risk_Management"/>
 <Class IRI="#Capital_Markets_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Transfer"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Transfers_and_Defaults"/>
 <Class IRI="#Private_Equity"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#UserAdministration"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#User_Administration"/>
 <Class IRI="#Payment_System_3"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#User_Administration_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#User_Management"/>
 <Class IRI="#Electronic_Commerce"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Validating"/>
 <Class IRI="#Authorisation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Version_Control"/>
 <Class IRI="#Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Version_Control_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Wealth_Management"/>
 <Class IRI="#Asset_Management_Systems"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Wealth_Planning"/>
 <Class IRI="#Wealth_Management"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Web_Interface"/>
 <Class IRI="#Collaborating"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 <Class abbreviatedIRI=":Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Workflow"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Workflow-Based_Task_Routing"/>
 <Class IRI="#Deal_Flow"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Workflow_Management"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>

- 254 -

 <SubClassOf>
 <Class IRI="#Yield_Calculations"/>
 <Class IRI="#Basic_Portfolio_Management_"/>
 </SubClassOf>
 <DisjointClasses>
 <Class IRI="#Asset_Management_Systems"/>
 <Class IRI="#Data_Solutions"/>
 </DisjointClasses>
 <DisjointClasses>
 <Class IRI="#Asset_Management_Systems"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </DisjointClasses>
 <DisjointClasses>
 <Class IRI="#Card_Processing_/_Payments"/>
 <Class IRI="#Microfinance_/_Microbanking"/>
 </DisjointClasses>
 <DisjointClasses>
 <Class IRI="#Credit_Administration"/>
 <Class IRI="#Microfinance_/_Microbanking"/>
 </DisjointClasses>
 <DisjointClasses>
 <Class IRI="#Data_Solutions"/>
 <Class IRI="#Wholesale_/_Commercial_Banking_Systems"/>
 </DisjointClasses>
 <DisjointClasses>
 <Class IRI="#Electronic_Commerce"/>
 <Class IRI="#Microfinance_/_Microbanking"/>
 </DisjointClasses>
 <FunctionalObjectProperty>
 <ObjectProperty IRI="#IsA"/>
 </FunctionalObjectProperty>
 <TransitiveObjectProperty>
 <ObjectProperty IRI="#IsA"/>
 </TransitiveObjectProperty>
</Ontology>
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net -->

- 255 -

Appendix C: The MVICS Project

Homepage

C.1 The Homepage

- 256 -

C.2 The Online Prototype Tool

- 257 -

C.3 The MVICS-based Component Specification Form

- 258 -

Appendix D: The OWL Doc of the RAG

Ontology

<?xml version="1.0"?>
<!DOCTYPE Ontology [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<Ontology xmlns="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl">
 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>
 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Declaration>
 <Class IRI="#Acceleration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Action"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Action_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#All-Terrain_Vehicle"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-decompilation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-modification"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-plug_in"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Asphalt"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Ass"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Back"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Background"/>

- 259 -

 </Declaration>
 <Declaration>
 <Class IRI="#Background_Data_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Background_Music"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Building"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Button_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Car_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Car_Model"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cinema"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Citizen"/>
 </Declaration>
 <Declaration>
 <Class IRI="#City"/>
 </Declaration>
 <Declaration>
 <Class IRI="#City_Nature"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cloudy"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Country_Nature"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Countryside"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Processing_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Day_Time"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Day_and_Night"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert_Plant_"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert_Road"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dirt"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dubbing"/>

- 260 -

 </Declaration>
 <Declaration>
 <Class IRI="#F1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Farm"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Farmhouse"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Flat"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Forward"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Game_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Gymnasium"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Hard_Court"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Highway"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Jungle_ATV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Left"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Main_Road"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mall"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Material"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Motor_Home"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Motorcycle"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mountain_ATV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Move"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Night_Time"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Path"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Physical_Data_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Public_Facilities"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Racing_Car"/>

- 261 -

 </Declaration>
 <Declaration>
 <Class IRI="#Racing_Field"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Racing_Track"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Rain"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Right"/>
 </Declaration>
 <Declaration>
 <Class IRI="#SUV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Security"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Security_Affair_Administration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sence"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Server_Speed_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Server_Speed_Optimization"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Skyscraper"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Snow"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sound"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Special_Effects_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Speed"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Stock_Car"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Stop"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Street"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sunny"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Truck"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Ture"/>
 </Declaration>
 <Declaration>
 <Class IRI="#UI_Data_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Villa"/>

- 262 -

 </Declaration>
 <Declaration>
 <Class IRI="#Weather"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Width"/>
 </Declaration>
 <EquivalentClasses>
 <Class IRI="#Anti-decompilation"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Anti-modification"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Anti-plug_in"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Background_Data_Processing"/>
 <Class IRI="#Data_Processing_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Processing_Agg"/>
 <Class IRI="#UI_Data_Processing"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Database_Management"/>
 <Class IRI="#Database_Management_1"/>
 </EquivalentClasses>
 <SubClassOf>
 <Class IRI="#Acceleration"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Action"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Action_Control"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Agg"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#All-Terrain_Vehicle"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-decompilation"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-modification"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-plug_in"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Asphalt"/>
 <Class IRI="#Material"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Ass"/>

- 263 -

 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Back"/>
 <Class IRI="#Move"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Background_Data_Processing"/>
 <Class IRI="#Physical_Data_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Background_Music"/>
 <Class IRI="#Sound"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Building"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Button_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Car_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Car_Model"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cinema"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Citizen"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#City"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#City_Nature"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cloudy"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Country_Nature"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Countryside"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Processing_Agg"/>
 <Class IRI="#Agg"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_1"/>
 <Class IRI="#Agg"/>

- 264 -

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Day_Time"/>
 <Class IRI="#Day_and_Night"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Day_and_Night"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert_Plant_"/>
 <Class IRI="#Desert"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert_Road"/>
 <Class IRI="#Desert"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dirt"/>
 <Class IRI="#Material"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dubbing"/>
 <Class IRI="#Sound"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#F1"/>
 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Farm"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Farmhouse"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Flat"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Forward"/>
 <Class IRI="#Move"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Game_Control"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Gymnasium"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Hard_Court"/>
 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Highway"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Jungle_ATV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>

- 265 -

 <SubClassOf>
 <Class IRI="#Left"/>
 <Class IRI="#Ture"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Main_Road"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mall"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Material"/>
 <Class IRI="#Racing_Track"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Motor_Home"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Motorcycle"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mountain_ATV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Move"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Night_Time"/>
 <Class IRI="#Day_and_Night"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Path"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Physical_Data_Control"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Public_Facilities"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Car"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Field"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Track"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Rain"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Right"/>
 <Class IRI="#Ture"/>
 </SubClassOf>
 <SubClassOf>

- 266 -

 <Class IRI="#SUV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Security"/>
 <Class IRI="#Ass"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Security_Affair_Administration"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sence"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Server_Speed_Control"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Server_Speed_Optimization"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Skyscraper"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Snow"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sound"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Special_Effects_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Speed"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Stock_Car"/>
 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Stop"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Street"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sunny"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Truck"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Ture"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#UI_Data_Processing"/>

- 267 -

 <Class IRI="#Physical_Data_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Villa"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Weather"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Width"/>
 <Class IRI="#Racing_Track"/>
 </SubClassOf>
</Ontology>
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net -->

268

Appendix E: The OWL Doc of the Gameloft

Ontology

<?xml version="1.0"?>
<!DOCTYPE Ontology [
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<Ontology xmlns="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 ontologyIRI="http://www.semanticweb.org/ontologies/2011/6/Ontology1310792126375.owl">
 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>
 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>
 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
 <Declaration>
 <Class IRI="#Acceleration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Action"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Action_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Aggregation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#All-Terrain_Vehicle"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Animal"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-decompilation"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-modification"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Anti-plug_in"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Asphalt"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Association_Class"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Back"/>
 </Declaration>

269

 <Declaration>
 <Class IRI="#Background"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Background_Data_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Background_Music"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Building"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Button_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Car_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Car_Model"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cartoon_Character"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Character"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Chart"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Chess"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cinema"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Citizen"/>
 </Declaration>
 <Declaration>
 <Class IRI="#City"/>
 </Declaration>
 <Declaration>
 <Class IRI="#City_Nature"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Cloudy"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Country_Nature"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Countryside"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Display"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Data_Processing_Agg"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Database_Management_1"/>
 </Declaration>

270

 <Declaration>
 <Class IRI="#Day_Time"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Day_and_Night"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert_Plant_"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Desert_Road"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Diagram"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Diagram_MVICS"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Digit"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dirt"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Else_Ethnic"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Ethnic"/>
 </Declaration>
 <Declaration>
 <Class IRI="#F1"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Farm"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Farmhouse"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Female"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Flat"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Forward"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Game_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Gender"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Graphic_Rendering"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Gymnasium"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Hard_Court"/>
 </Declaration>

271

 <Declaration>
 <Class IRI="#Highway"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Human"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Jungle_ATV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Left"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Main_Road"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Male"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mall"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Material"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Melanoderm"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Meter"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Motor_Home"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Motorcycle"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Mountain_ATV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Move"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Night_Time"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Path"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Physical_Data_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Plot_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Poker"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Public_Facilities"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Puzzle_Character"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Racing_Car"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Racing_Field"/>
 </Declaration>

272

 <Declaration>
 <Class IRI="#Racing_Track"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Rain"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Regulation_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Right"/>
 </Declaration>
 <Declaration>
 <Class IRI="#SUV"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Security"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Security_Affair_Administration"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sence"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Server_Speed_Control"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Server_Speed_Optimization"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Skyscraper"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Snow"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sound"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Special_Effects_Dubbing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Speed"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Stock_Car"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Stop"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Street"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Sunny"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Truck"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Ture"/>
 </Declaration>
 <Declaration>
 <Class IRI="#UI_Data_Processing"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Uno"/>
 </Declaration>

273

 <Declaration>
 <Class IRI="#Villa"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Visual_Effects"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Weather"/>
 </Declaration>
 <Declaration>
 <Class IRI="#White_Race"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Width"/>
 </Declaration>
 <Declaration>
 <Class IRI="#Yellow_Race"/>
 </Declaration>
 <EquivalentClasses>
 <Class IRI="#Anti-decompilation"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Anti-modification"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Anti-plug_in"/>
 <Class IRI="#Security"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Background_Data_Processing"/>
 <Class IRI="#Data_Processing_Agg"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Chart"/>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Data_Processing_Agg"/>
 <Class IRI="#UI_Data_Processing"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Database_Management"/>
 <Class IRI="#Database_Management_1"/>
 </EquivalentClasses>
 <EquivalentClasses>
 <Class IRI="#Diagram"/>
 <Class IRI="#Diagram_MVICS"/>
 </EquivalentClasses>
 <SubClassOf>
 <Class IRI="#Acceleration"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Action"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Action_Control"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Aggregation"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#All-Terrain_Vehicle"/>
 <Class IRI="#Car_Model"/>

274

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Animal"/>
 <Class IRI="#Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-decompilation"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-modification"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Anti-plug_in"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Asphalt"/>
 <Class IRI="#Material"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Back"/>
 <Class IRI="#Move"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Background"/>
 <Class IRI="#Graphic_Rendering"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Background_Data_Processing"/>
 <Class IRI="#Physical_Data_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Background_Music"/>
 <Class IRI="#Sound"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Building"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Button_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Car_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Car_Model"/>
 <Class IRI="#Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cartoon_Character"/>
 <Class IRI="#Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Character"/>
 <Class IRI="#Graphic_Rendering"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Chart"/>
 <Class IRI="#Data_Display"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Charting_and_Graphing_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>

275

 <SubClassOf>
 <Class IRI="#Chess"/>
 <Class IRI="#Puzzle_Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cinema"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Citizen"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#City"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#City_Nature"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Cloudy"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Country_Nature"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Countryside"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Display"/>
 <Class IRI="#Graphic_Rendering"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Data_Processing_Agg"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Database_Management_1"/>
 <Class IRI="#Aggregation"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Day_Time"/>
 <Class IRI="#Day_and_Night"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Day_and_Night"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert_Plant_"/>
 <Class IRI="#Desert"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Desert_Road"/>
 <Class IRI="#Desert"/>
 </SubClassOf>
 <SubClassOf>

276

 <Class IRI="#Diagram"/>
 <Class IRI="#Data_Display"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Diagram_MVICS"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Digit"/>
 <Class IRI="#Data_Display"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dirt"/>
 <Class IRI="#Material"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Dubbing"/>
 <Class IRI="#Sound"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Else_Ethnic"/>
 <Class IRI="#Ethnic"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Ethnic"/>
 <Class IRI="#Human"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#F1"/>
 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Farm"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Farmhouse"/>
 <Class IRI="#Countryside"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Female"/>
 <Class IRI="#Gender"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Flat"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Forward"/>
 <Class IRI="#Move"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Game_Control"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Gender"/>
 <Class IRI="#Human"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Graphic_Rendering"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Gymnasium"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Hard_Court"/>

277

 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Highway"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Human"/>
 <Class IRI="#Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Jungle_ATV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Left"/>
 <Class IRI="#Ture"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Main_Road"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Male"/>
 <Class IRI="#Gender"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mall"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Material"/>
 <Class IRI="#Racing_Track"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Melanoderm"/>
 <Class IRI="#Ethnic"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Meter"/>
 <Class IRI="#Data_Display"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Motor_Home"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Motorcycle"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Mountain_ATV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Move"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Night_Time"/>
 <Class IRI="#Day_and_Night"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Path"/>
 <Class IRI="#Street"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Physical_Data_Control"/>
 <Class abbreviatedIRI="owl:Thing"/>

278

 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Plot_Control"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Poker"/>
 <Class IRI="#Puzzle_Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Public_Facilities"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Puzzle_Character"/>
 <Class IRI="#Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Car"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Field"/>
 <Class IRI="#Sence"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Racing_Track"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Rain"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Regulation_Control"/>
 <Class IRI="#Game_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Right"/>
 <Class IRI="#Ture"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#SUV"/>
 <Class IRI="#All-Terrain_Vehicle"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Security"/>
 <Class IRI="#Association_Class"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Security_Affair_Administration"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sence"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Server_Speed_Control"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Server_Speed_Optimization"/>
 <Class IRI="#Security_Affair_Administration"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Skyscraper"/>
 <Class IRI="#Building"/>
 </SubClassOf>

279

 <SubClassOf>
 <Class IRI="#Snow"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sound"/>
 <Class abbreviatedIRI="owl:Thing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Special_Effects_Dubbing"/>
 <Class IRI="#Dubbing"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Speed"/>
 <Class IRI="#Action_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Stock_Car"/>
 <Class IRI="#Racing_Car"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Stop"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Street"/>
 <Class IRI="#City"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Sunny"/>
 <Class IRI="#Weather"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Truck"/>
 <Class IRI="#Car_Model"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Ture"/>
 <Class IRI="#Action"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#UI_Data_Processing"/>
 <Class IRI="#Physical_Data_Control"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Uno"/>
 <Class IRI="#Puzzle_Character"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Villa"/>
 <Class IRI="#Building"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Visual_Effects"/>
 <Class IRI="#Graphic_Rendering"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Weather"/>
 <Class IRI="#Background"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#White_Race"/>
 <Class IRI="#Ethnic"/>
 </SubClassOf>
 <SubClassOf>
 <Class IRI="#Width"/>
 <Class IRI="#Racing_Track"/>
 </SubClassOf>
 <SubClassOf>

280

 <Class IRI="#Yellow_Race"/>
 <Class IRI="#Ethnic"/>
 </SubClassOf>
</Ontology>
<!-- Generated by the OWL API (version 3.2.3.22702) http://owlapi.sourceforge.net -->

