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A Probabilistic Design Reuse
Index for Engineering Designs
Many companies offer a range of related products that are constructed using similar com-
ponents and processes. This enables them to meet customer expectations of product variety
while minimizing the overheads (e.g., development and manufacturing costs). To support
the management of product variety several indices have been proposed in the literature
that measure the degree to which component use is standardized across products within
the same product family. However, the derivation of some of these statistics can be labori-
ous to calculate due to the effort required to assemble the necessary information. In this
paper, we develop an index more suited to the automated data-mining of a company’s
product portfolio, which is derived from the Kullback–Leibler divergence. The new
measure provides an easily computed probabilistic measure that can be used to character-
ize the degree of component reuse within a single product, across a family of products, and
at the individual component family level. To illustrate their applications, the indices and
several existing measures are calculated for two contrasting product types; using the
non-differentiating components of two flat-pack furniture ranges and the components of a
range of bicycles. [DOI: 10.1115/1.4046435]
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1 Introduction
Product design manufacturers experience efficiency gains

through the production of families of related products which
share many components and design processes but offer enough
variety to meet customer needs [1]. Instead of producing an inven-
tory of highly differentiated products, a collection of related yet dis-
tinct products are constructed using similar components [2]. The
benefits of creating a family of product variations is widely recog-
nized [3], with the technique leading to a more efficient design
process [2], lowering design complexity with reduced component
inventories, and with new products introduced more quickly
[4,5]. Various commonality indices have been proposed in the liter-
ature to quantify the extent to which companies share components

and processes across the product families. These indices provide a
measure of component reuse [6,7], and extend to including costs
[5], materials and processes [8,9], and the diversity in the end
product [1,4], however, they have not been widely adopted in the
industry [3]. There is a requirement for providing important, rele-
vant, and relatable information for effective reuse and metrics
usage [10], and details on stock inventory, material costs, and
inputs on manufacturing designs and processes all may be required
to calculate several of these indices. Additionally, there may be dif-
ficulties in leveraging the results—the value of an index can give an
indication that an improvement in design reuse is possible, but it
may not be specific on which facet of the design could be improved.
This paper extends the Probabilistic Design Reuse Index (PDRI)

that was introduced in Ref. [3], which provides a measure of reuse
within product designs. It can quantify the extent to which compo-
nent reuse across a family of engineering products diverges against
using a random design strategy, where it is assumed that equivalent
components are selected for use uniformly from each component
family. The further a product design configuration is from a
design created using randomly selected components, the better the
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degree of product reuse. The index provides a computationally
tractable measure of reuse, which is sensitive to design complexity,
and that can be used to quantify the amount of component reuse at
the individual component family level or aggregated over the com-
plete design. This supports the identification of the best and worst
designs in terms of component reuse within a product range, provid-
ing managerial utility for design process improvement, which is
illustrated via a case study.
In Sec. 2 we briefly review the literature describing existing com-

monality indices before we introduce the PDRI in Sec. 3. The PDRI
is then demonstrated and compared against other reuse measures
using a range of flat-pack furniture designs and bicycle ranges in
Sec. 4. Finally, the results and implications of the index on manage-
ment of the design process are discussed.

2 Related Research
The literature focuses on evaluating commonality within a

product family, for example, the percentage of components that
are common across a product family; greater commonality reflects
an increase in standardization of components and processes
across the different products. We adopt the definition of “Common-
ality” proposed by Boas et al. as the “sharing of components, man-
ufacturing processes, architectures, interfaces, and infrastructure
across the members of a product family” [11]. A commonality
index is a metric that is used to assess the degree of commonality
within a product family based on different parameters such as the
number of common components, the component costs, the manu-
facturing processes, and so on. Table 8 of the Appendix summarizes
the existing commonality measures proposed in the literature.

2.1 Existing Reuse Measures. The terminology used in the
literature varies significantly from paper to paper and creates diffi-
culties in the interpretation of the different contributions (see
Table 8 and references therein). We have adopted the following ter-
minology to enable a consistent presentation:

• Item: Any product, assembly or component.
• Component: An item that does not further divide into sub-

assemblies or components.
• Assembly: A collection of sub-assemblies and/or components.
• Product: An assembly usually for sale as a line item to a

customer.
• Type (component type, assembly type): An item “type” (e.g.,

M8 nut or USB port assembly) refers to all items of the
same type, with, for example, same geometry, material, toler-
ances, etc.

• Family (component family, assembly family, product family):
A group of functionally or structurally similar items.

• Presence: Records the presence of an item in a product (e.g.,
whether the product has that component?).

• Occurrence:An occurrence records the cumulative presence of
an item type in a product. This defines how many times the
product has that component (e.g., eight bolts, three USB ports).

• Product structure: A graph-like structure recording the pres-
ence of sub-assembly and/or component occurrences in
products.

• Option (component, assembly, product): Alternative items
available within each family.

2.2 Balancing Variety and Commonality. Researchers have
sought to understand how levels of reuse vary with different business
models and market strategies. For example, Simpson [12] proposes
the commonality-variety benchmarking chart generated by integrat-
ing commonality and variety indices to compare competing product
families and their platform elements, with an example as shown in
Fig. 1. The chart plots normalized Generational Variety Index
(GVI) [13] against Product Line Commonality Index (PCI) values
[8]. The GVI measures the amount of redesign effort required for

future designs of the product and assesses the necessary component
variety in customer needs and requirements through the quality func-
tion deployment approach. The PCI measures commonality at the
component/module level as well as at the product family level. The
GVI and PCI scores for each component can be associated with the
following classifications: costly components and unvalued unique-
ness, which indicate when variety is not required for the design but
components are not made common thus impacting costs, properly
platformed, when variety and commonality are appropriately
matched, and market mismatch and confusing commonality, where
there is a disparity on the desire for a unique product but a high
level of commonality between components.
Another tool used to visualize the relationship between common-

ality and variety is the commonality/variety trade-off angle [14]. The
angle value varies between 0 deg to 90 deg and is defined as a func-
tion of the weighted sum of the strategic factors’ quantitative impact
on commonality and variety in a product family. These factors cover
five categories—market, product characteristics, life-cycle pro-
cesses, government and industry regulations and/or standards, and
organizational capabilities. The angle factor in the product family
evaluation graph (PFEG) can be used to find best the product
family design option among sets of alternatives based on their perfor-
mance with respect to the ideal commonality/variety trade-off. So
whereas Kota et al. [8] suggest typical amounts of commonality
and variety, Ye et al. [14] support the benchmarking of ideal and
actual commonality and diversity measure. However, the measures
used are constructed using several subjective elements which could
lead to uncertainty and impact the decision-making process.

2.3 Observation on Commonality Measures. The review of
the reported commonality metrics in Table 8 in the Appendix gives
rise to the following observations. The emphasis of much of the
reported work has been to maintain metric consistency in the face
of increasing/decreasing product and component types. However,
the published measures are typically validated on small datasets
and consequently their behavior when applied at scale to a product
portfolio consisting of many hundreds or thousands of items is not
well understood. Given that high value products are typically assem-
blies of many sub-assemblies of specialist components, it is impor-
tant that measures are available to characterize commonality at
different levels of product structure (e.g., component, assembly,
function, within/between product platform, and product types)
(e.g., %C, PCI, CDI, CMC). Additionally, many of the reported
metrics are information intensive (e.g., CI(C ), CDI, CMC) and
require multiple factors to calculate the commonality (e.g., product
structures, component costs, materials, manufacturing processes,

Fig. 1 Commonality-variety benchmarking chart using GVI and
PCI indices [12]. All figures are best viewed on screen.
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assembly, end-item volumes, quantities per assembly, and so on). To
operate at scale, the data required for the calculation should be both
readily available and accurate. The commonality measure should be
informative; a normalized commonality measure that defines levels
of design reuse with a relative index between absolute boundaries
(i.e., scale of 0–1), rather than open or moving boundaries (e.g.,
Degree of Commonality Index (DCI) measure), simplifies the com-
parison of designs between product ranges and revisions. Ideally, a
reuse measure should highlight components whose redesign would
have a significant impact on the product’s commonality measure
(e.g., expensive, high volume, multi-functional, and components
used in important products). CI(C ) and CMCmeasures take a compo-
nent’s cost and volume information into account. For example, it
would be preferable to increase the use of high-volume components
across a number of products rather than low-volume components.
Given the above it is obvious that a commonality metric should
factor component quantities (e.g., production volume) even if the
usage of components is uniform across products. Metrics that distin-
guish between differentiating and non-differentiating components—
those components which provide additional product functionality or
variety and those which do not—can avoid penalizing commonality
score when designers deliberately incorporate differentiating factors
(e.g., PCI, CDI, TCI). Most of the metrics focused solely on identi-
fying commonality at the different levels of product family structure.
However, very few give insights into the implicit trade-offs that
exists between commonality and variety across a product type
(e.g., CDI). This line of research enquiry is important because com-
monalitymay have adverse impacts on design efficiency, for instance
when extreme standardization results in excessive functionality [15].
Another major limitation of the literature metrics is the lack of a

reference dataset to gauge results against. A relative scale of zero to
one provides a benchmark against an ideal scenario, but this may
not provide sufficient insights for increasing commonality. This
research develops a commonality index that incorporates a bench-
mark mechanism. The proposed index can be used to identify com-
ponent types that can be potentially reduced, and also highlight the
opportunity to increase occurrences of other components. Section 3
introduces the proposed reuse index that addresses many of the
issues discussed.

3 Probabilistic Design Reuse Index
The PDRI was introduced in Ref. [3] as a measure to quantify the

degree of component reuse within a product design process. It is
assumed that there are a number of component families that are
used within an product, and that each of these component families
can contain multiple non-differentiating component types, which
are substitutable with each other. That is, each of the substitutable
components serves the same function and does not impact the
quality of the final product. In practice, care is required at this
stage to ensure that the components are substitutable.
We can characterize the component reuse strategy by contrasting

an efficient process that demonstrates a higher concentration of use
on fewer components, against a purely random design mechanism
(PRDM), where each component family member is equally likely
to be selected for use. We can then model this difference in reuse
performance by comparing the probability distributions under
each strategy. The hypothesis motivating this comparison is that
the best performing organizations concentrate all reuse on one
member of each component family and the poorest makes equal
use of all family members.
We do not directly observe an organization’s probability distribu-

tion for component selection, only the frequency in which compo-
nents have been selected. Assuming that component selection is
independent of past product choices, and the probability of a com-
ponent being selected is the same for all products then we have a
multinomial distribution [16] to describe the randomness of the
data. An implication of this assumption is the number of selections
for each component is a sufficient summary statistic on performance

compared with the PRDM. Dependency on past product choices
could reflect a learning period and as such the analyst should care-
fully select the time horizon for the assessment of the comparison,
as recent observations may provide a better assessment of current
practice. Such a judgement should be based on shifts in product
technology or designer experience (Table 1). Specifically, we use
c to denote the number of component families within the compara-
tor set and the total number of products is denoted as m. For each
family of components i we denote with ni the number of options,
i.e., the number of members of the component family. We denote
with pij the conditional probability that component j from family i
is selected, given a component from component family i is selected
for a particular product. We denote the observed number of selec-
tions of component j from family i with xij. P represents the
matrix of probabilities pij and the likelihood function for the data,
i.e. the probability of observing the data as a function of the condi-
tional probabilities, is expressed in Eq. (1)

L(P) ∝
∏c
i=1

∏ni
j=1

p
xij
ij

s.t.:
∑ni
j=1

pij = 1, ∀i

(1)

While we do not directly observe P, we can make inferences. The
maximum likelihood estimate (MLE), i.e., the value of the condi-
tional probabilities that would most likely result in the observed
data, denoted by P̂ has elements expressed in Eq. (2)

P̂ij =
xij∑ni
j=1 xij

(2)

The PRDM has pPRDMij = 1/ni and as we increase the number of
products, i.e., m, the estimates p̂ij will converge with the true under-
lying probabilities for the organization, i.e., pij. We seek a measure
for the difference between p̂ij and pPRDMij ∀i, j. The Kullback–
Leibler divergence measure [17] provides a means to measure the
difference between distributions and is expressed in Eq. (3) for
family i

Di =
∑ni
j=1

p̂ij ln

(
p̂ij

pPRDMij

)
(3)

If p̂ij = pPRDMij for all options j then Di= 0 and as the difference
grows so does Di. This measure can be re-expressed as a ratio of
likelihood functions, so the difference between the observed fre-
quencies and the PRDM is measured relative to the probability of
having generated the observed data. If the observed frequencies
are not consistent with PRDM, then this measure will be large.
This is derived in the following Eq. (4)

Di =
1∑ni
j=i xij

ln

(∏ni
j=1

(
p̂ij

pPRDMij

)xij
)

(4)

=
1∑ni
j=i xij

ln

(
L( p̂ij)

L(pPRDMij )

)
(5)

Table 1 Notation for PDRI derivation

c number of component families
m total number of products
ni the number of unique components within component family i
pij probability that component j from family i is selected given a

component from component family i is selected
xij observed occurrence of component j from family i
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Asymptotically, when there is a large number of products, the
value of this measure is characterized with the χ2 distribution
when the differences are due to sampling variation only, i.e.,
pij = pPRDMij . This result can be used to map the distance measure
to a scale between zero and one and can facilitate interpretation.
Specifically, as m tends to infinity, under the null hypothesis pij =
pPRDMij then

−2 ln
(
L(P)

L(̂P)

)
= −2

∑c
i=1

∑ni
j=1

xij

(
ln

(∑ni
j=1

xij

)
− ln (xij) − ln (ni)

)
(6)

has a χ2 distribution with
∑c

i=1 ni − c degrees of freedom [18]. As
such we can evaluate the cumulative distribution function (CDF)
of the χ2 distribution at the value of the statistic of Eq. (6) to
obtain a measure between zero and one; this PDRI measures the
probability that such a χ2 random variable would be less than
the observed statistic, which provides a measure of how extreme
the statistic is. When there is no difference between the PRDM
and the organization, then the measure would be zero and as the
observed difference grows, the measure approaches one.

3.1 Performance of PDRI With Few Designs. The use of the
measure χ2 distribution is justified using asymptotic theory for a
large number of products. For situations with few products, this dis-
tributional assumption would not be appropriate, and a simulation
exercise would be required. For small samples we would caution
using this for strict hypothesis testing as the actual significance
level attached to the test would be different from the value obtained
from the χ2 distribution. However, even with few products, the
measure with the χ2 distribution can still be used as a measure of
distance with the PRDM; it will be a monotonic transformation of
the true CDF value and as such if an organization were to score
higher than another using the χ2 distribution this ranking would
be maintained with the true CDF evaluation.
We conducted a simulation study using R statistical software [19].

The following three parameters were controlled for in the study: the
number of products, i.e., m = 3100, the number of component fam-
ilies, i.e., c = 310, and the number of component family members
(options), i.e., n = 310. For each set of parameters, 200 simulations
were realized and the empirical CDF (ECDF) was compared with
the corresponding χ2 CDF. That is, for one iteration of the simula-
tion, c random draws of sizemwere taken from the multinomial dis-
tribution with n classes, each sampled with uniform probability 1/n.
This was repeated 200 times, and the χ2 and ECDF calculated.
Figure 2 illustrates a sample of the results of this simulation. As
expected the χ2 statistic quickly tends to the ECDF as the number
of products increases, and additionally, it is clear that the perfor-
mance is also a function of the number of component families

and options; the χ2 statistic is typically greater than the empirical
CDF evaluated at the same value, particularly when there are
more component options but component use is low or the number
of products is sparse. The difference between the CDF’s (empirical
minus χ2) was assessed and the following summary measures were
produced: maximum difference, minimum difference, median dif-
ference, as well as Pearson’s correlation between the two CDF’s.
A sample of these results is provided in Table 9 in the Appendix.
From Table 9 it can again be observed that while the correlation
coefficient is high (typically above 0.9) there can be aspects
where the CDF’s are far apart, but the difference generally
decreases with more products.
We conducted a second simulation study to assess the 95th per-

centiles. Specifically, for situations where the χ2 CDF was below or
above its 95th percentile, we assessed whether the empirical distri-
bution was above or below its 95th percentile. The results are pro-
vided in Table 2 and for this simulation 100,000 runs were
performed for each parameter combination. It is observed that if
the χ2 CDF is below the 95th percentile, then the empirical was
also. However, even with designs of 100, agreement above the
95th percentile is questionable. This would be relevant if the
measure was to be used in the form of a hypothesis test, suggesting
the χ2 test is more accurate when accepting the null hypothesis than
when rejecting it. In sum, if the χ2 analysis show no significant dif-
ference then the true CDF evaluation which is more computation-
ally expensive would conclude similarly, however if the χ2

analysis suggests a significant difference, the true CDF evaluation
may differ. This is only a problem if the analysis is being used as
a strict hypothesis test rather than as a distance measure.

4 Application of PDRI to Case Study
In this section we introduce the datasets used in the case studies

followed by the application of the existing and new commonality
indices.

4.1 Description of Datasets. Several datasets describing
various product lines were created from the manual inspection of
either the assembly instructions of a flat-pack furniture company
or using the bike model specification sheets (BMSS) available
from a bike manufacturers’ website. The bicycles were categorized
as either road, mountain, or hybrid, consistent with the manufactur-
ers’ classifications and the furniture items by product use. We
assume that each dataset comprises of one product family, although
recognize that the products could be further categorized into sets of
related product families. Component occurrence for each product
was entered into a spreadsheet. Unique components were listed in
the rows, unique products along the columns, and the occurrence
for each component/product pairing entered into the relevant

Fig. 2 Comparison of PDRI with empirical cumulative distribution function: the PDRI is on the y-axis, the ECDF on the x-axis, and
the black diagonal gives the line of perfect agreement; where the PDRI is equal to the ECDF. The number of products in each simu-
lation run is differentiated by color.
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field. This data format facilitates the calculation of the PDRI with
standard spreadsheet tools. Subsequently, structurally similar com-
ponents were organized into families (e.g., for the furniture set
hinges, dowels, etc., and for the bike set frames, saddles, etc.) to
allow application of the proposed PDRI measure. Although not
all structurally similar components will be substitutable in practice,
by assuming they could be, the PRDM can be used to focus design
reviews that require differences to be justified.
Table 3 summarizes the number of products within each product

family, the unique component families (e.g., hinges), how many of
these families have more than one component option, and the
average number of component options per family.2 While there
are many more wardrobe than chair products the number of compo-
nent types is similar, and both lines have multiple options and few
single component family choices indicating some potential for reuse
improvement. The number of component families is the same across
the bike models with all having multiple options; however, the
Mountain bikes have a greater number of component options
which reflect an increased use unique components; for example,
each mountain bike model has a different fork type.
Table 4 provides some descriptive statistics of components across

each of the datasets; the number of distinct components, and of
these the number of unique components that are only used in one
product, and the number of common components that are used in
more than one product. The total component presence gives the
sum of the parts present across the product range, and total occur-
rence gives the cumulative presence. The component range within
products summarizes the range of parts that are used within a
product (e.g., for presence, wardrobe-1 may have four different
components present, whereas wardrobe-2 has 68), and between
products summaries how the individual components are used
across the products (e.g., one component may only be used in
one wardrobe and another component in 194 different wardrobes).
There is a wide range of how components are used in the chairs and
wardrobes, with many components only used once, and others used
multiple times; a small nail to secure the back panel is used 12,150
times across the range of wardrobes. In comparison to the

wardrobes, the chairs have a greater number of component
options which in part may indicate a need for a greater variety in
these types of products but may also evidence that the chairs in
our dataset form a more heterogeneous set of products; the line
extends from plastic children’s highchairs to armchairs. Interest-
ingly the bike models have a similar proportion of components
that are only used in one product when compared to the furniture
items; a priori it may have been expected that the bike models
would have a greater number of unique components to increase
product variety. This can be seen in Fig. 3 which shows the distri-
bution of how often a specific component is used across the prod-
ucts; the x-axis gives the number of products that have a
component, and the y-axis the proportion of component types that
are used. So for example, with the mountain bike data, ∼65% of
components are used once while only 15% of components are
used in more than two bike designs. In both product lines compo-
nents are most frequently used only once or twice. A dataset and
an example of the PDRI calculation are available.3

4.2 Assessment of Existing Reuse Measures. The focus of
this case study is on the presence and occurrences of the component
types in each of the datasets. As only assembly components were
collected for the furniture datasets none were considered to be dif-
ferentiating, and so no product variety, such as material color, was
incorporated in the datasets. In contrast, different components
provide variety to the bike models and so while differentiating,
for the purpose of this study we assume that they are substitutable.
Again color and size were not included.
We compare a range of commonality measures and the PRDI on

the furniture datasets in Table 5; however, commonality measures
requiring non-geometric information (such as component costs,
materials, manufacturing processes, assembly, and quantities per
assembly) are not incorporated in this work (e.g. Component Part
Commonality Index CI(C ), Commonality versus Diversity Index
(CDI), Comprehensive Metric for Commonality (CMC) and Total
Commonality Index (TCI)). Correlation between component
usage: Spearman’s rank correlation was used to measure any asso-
ciation between component presence and occurrence within and
between products. To clarify, for “within product,” the correlation
between the distributions of component presence and component
occurrence in each of the products was measured; for chairs, the
component presence and occurrence are summed within each
model giving 137 values of each, and the correlation between
these measured. Similarly, ‘between products’ measures the corre-
lations between presence and occurrence, which are summed
across the products. These correlations demonstrate that the total
component occurrences in each product increase with the addition
of a new component, and together with Fig. 3 demonstrate that
each company does not reuse components effectively across its
products. Degree of Commonality Index (DCI) and Total Constant
Commonality Index (TCCI): The product structure of each of the
furniture datasets is flat as there are no sub-assemblies, and conse-
quently every component is assumed to have a single parent in the
product structure. As such, we calculate the DCI as a ratio between
the total component occurrences in a product type and the total
number of component types; it represents the average usage of a
component type in each product. However, comparison of the
DCI scores across the products is difficult as larger products are
likely to use more components, leading to an increase in the DCI.
The TCCI’s are calculated using similar assumptions as that of
the DCI. The TCCI scores across the products illustrate the scope
for commonality improvement; however, it is debatable whether
high TCCI values truly benchmark against the maximum level of
commonality possible; larger products again score higher. Given
the assumptions in our derivation, DCI and TCCI rank the products
similarly in terms of commonality. Commonality index (CI): The CI

Table 2 Simulation to compare difference between the 95th
percentile of the χ2 statistic and the ECDF

Options Families Products
P (ECDF <0.95| χ2

< 0.95)
P (ECDF >0.95| χ2

> 0.95)

3 3 50 1.00 0.96
5 5 50 1.00 0.84
7 7 50 1.00 0.70
10 10 50 1.00 0.49
3 3 100 1.00 1.00
5 5 100 1.00 0.92
7 7 100 1.00 0.87
10 10 100 1.00 0.74

Table 3 Product descriptive summary

Product Nproduct Nfamilies Noption>1 Mean options

Chair 137 26 22 18.3
Wardrobe 209 27 23 13.1
Hybrid 10 20 20 5.2
Mountain 10 20 20 6.1
Road 10 20 20 5.5

2It should be noted that only families with more than one option are considered in
this reuse calculation; the reuse is already optimal if there is only one component type
being used across the product family. 3https://doi.org/10.15129/f931bfd7-1090-408e-8823-e4604b485713
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represents the ratio between the total number of component types to
the component’s presence; the higher the CI value, the lower this
ratio, signifying greater commonality. The bike models are again
similarly ranked, as are the furniture products, however in this
case the chairs are scored similar to the bicycles due to a comparable
ratio between the number of component types and the total number
of component presence. Percent Commonality (%C): In this study,
only the component commonality percentage is used within the
Percent Commonality score (i.e., connection commonality and
assembly commonality are not considered). The %C score provides
a measure of how often components are used across product, and so
whether an increase in common component use is indicated. The %
C score is lower for the chairs compared to wardrobes confirming
the previous summaries, that the chair product range uses more
unique components. Product Line Commonality Index (PCI):
Since size/shapes for each component type are considered identical
in this study, the f1 factor is considered to be one. The other f factors
(e.g., materials/manufacturing processes and assembly processes)
are removed since they are out of scope for this work. The
revised PCI formula used in this study is provided in Eq. (7)∑P

i=1 ni −
∑P

i=1 1/n
2
i

P × N ×
∑P

i=1 1/n
2
i

× 100 (7)

where P denotes the number of component types that can poten-
tially be standardized in a product type, N the number of products
in a family, and ni the number of products in a family that have com-
ponent i. The PCI percentage for a product type quantifies the com-
ponent types’ presence across products with reference to the
maximum possible component commonality index (i.e., P*N).
There is a lot of variation in the PCI between the furniture types,
and the low PCI percentages indicate the scope for improvement
of the level of component presence across products. Particularly,
reducing the component types used only once in a product will

increase the PCI percentages. Relative commonality (RC):
Figure 4 presents a plot of the RC score versus the cumulative per-
centage of component types. The RC of each component is ranked
by magnitude, and plot after scaling the number of components
within each dataset to the (0,100) range. The x-axis plots the RC
and the y-axis gives proportion of component types. On average
60% of the component types received a zero RC score across the
bike products providing another indicator of when a component is
only present in one model. It is again seen that chair designs use
many more unique components compared to wardrobes. RC has a
strong linear association with log-transformed component presence,
and a more dispersed linear association with log-transformed com-
ponent occurrence. This indicates that the RC score gives some
measure of priority to components used across multiple products
rather than increasing component occurrences.

4.3 Assessment of PDRI. The χ2 distribution value for both
the furniture products is one.4 The high score demonstrates the
degree of differentiation in component usage between the furniture
company and if the components were selected using a PRDM; the
furniture company, at the aggregated level, used a higher concentra-
tion of fewer component options within the families. This also indi-
cates one of the shortcomings of using the probability measure as a
strict hypothesis test. Asm increases, the test has increased power to
identify any differences from the null hypothesis, and so the PDRI
tends to, but never reaches one; it is through each independent
choice that designers distinguish themselves from a purely
random designer, which is measured in the χ2 statistic. As such
the χ2 converges to one as the number of independent design
choices increases. Thus, the test may return a high value even if
there is little practical difference between a companies component
selection and the PRDM. While we can evaluate the measure to
more decimal places to make a rank comparison between design
practices, the intention with this measure is not to discriminate
between the performances of such high-performing designers;
company databases of products will grow with time, the value of
such a measure is in assessing current practice and as such only
data that are representative of recent practice should be used
within the study. Results for the bike models are a bit more interest-
ing; the PDRI ranks the bike models similar to the previously cal-
culated indices but additionally provides an indication that the
levels of reuse within these products are low. If the bikes are
grouped into one product family, so that there are 30 products,
the PDRI tends to one, again illustrating a sensitivity to the
number of products.
We further examined the PDRI at the component family level; the

χ2 value was calculated for each family to understand the variation
individually with reference to PRDM, and Fig. 5 plots the results at
the component type level for a sample of products. In terms of effi-
cient reuse we would want component families to have few options

Table 4 Product component summary

Product Ncomp Nuniq Ncomm

Total component
presence

Total component
occurrence

Component range within
products

Component range
between products

Presence Occurrence Presence Occurrence

Chair 406 284 122 790 3118 1–24 1–137 1–36 1–216
Wardrobe 306 112 194 7274 48,769 4–68 19–1094 1–194 1–12,150
Hybrid 104 55 49 192 246 17–20 21–26 1–6 1–8
Mountain 122 79 43 186 232 17–20 20–26 1–5 1–6
Road 111 65 46 192 246 19–20 24–26 1–7 1–8

Component presence and occurrence are described and the range of components within and across products is reported. There is a wide range in the
proportions of unique components between the related properties which is suggestive of contrasting requirements on the component variety.

Fig. 3 Distribution of components across products: figures
indicate that many components are only used once or twice

4These results was replicated through a simulation exercise.
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and have a high PDRI score, which places them in the top left of the
plot. The borders around the points represent groups of the compo-
nent family within which it is most likely that component reuse
improvements can be made: The blue border identifies emerging
or rare families with very low χ2 values. This zone has few
options and occurrences in a family. Consider for example, a com-
ponent type that is rarely used; it will not find itself with a high score
as it has not demonstrated itself as being significantly different from
the PRDM; therefore, this zone contains a significant number of
families that behave similar to that of the PRDM. The red border
identifies matured families with many available options. All fami-
lies with a high number of options have greater than 0.95 χ2

values. However, the families in this zone should be the focus of ini-
tiatives to reduce/eliminate the available options. The orange border
identifies the high component occurrence families. Again all fami-
lies with high component occurrences have greater than 0.95 χ2

values. The focus in this region is to reduce the spread of compo-
nent occurrences across available options. The grey border indicates
component families that have reasonable reuse performance; with
fewer component options and high PDRI.

4.4 Comparison of PDRI to Degree of Commonality
Index. Given our assumptions, the PDRI, DCI, and TCCI are
more sensitive to increasing product quantity and component occur-
rence compared to the other measures which are calculated using
component presence; however, Sec. 4.2 illustrated that in ranking
the different product families by the indices the measures produced
similar results. Motivated by this we compared how PDRI ranks
component families against the other measures; Fig. 6 plots the
rank DCI against the rank PDRI for each component type. For
both the chairs’ dataset and the bikes, which were combined into

one product family, the PDRI is strongly correlated; however,
there are several outliers. The PDRI identifies the chair “support”
components as being efficiently reused, whereas the DCI returns
a moderate finding; the high PDRI is due to one component being
used several times in multiple chairs compared to most of the
other support components which are only used in one product,
whereas the DCI is lower as it averages the high occurrence over
the many support component options. Similarly, there is one
“fork” component that is used in 12 out of the 30 bikes which gen-
erates the high PDRI, whereas the DCI captures that there are many
other options that were only used once. Both of these cases again

Table 5 Commonality statistics: calculation of standard commonality measures and PDRI for a range of products (see text for
details)

Product

Correlation

DCI TCCI CI %C PCI

PDRI

Within products Between products Stat χ2

Chair 0.85 0.60 7.68 0.87 0.50 30.00 0.88 3056.90 1.00
Wardrobe 0.90 0.85 159.40 0.99 0.97 63.40 11.20 13,7138.70 1.00
Hybrid 0.96 0.82 2.37 0.58 0.51 47.10 13.10 63.10 0.04
Mountain 0.94 0.80 1.90 0.48 0.39 35.20 8.72 46.90 <0.001
Road 0.79 0.80 2.22 0.55 0.47 41.40 11.40 65.60 0.02

Bikes Furniture
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Fig. 4 Relative commonality score and cumulative percentage
of component types: low RC values indicate more differentiable
components and high RC values indicate components that are
more frequently used

Fig. 5 Probability Design Reuse Index for chair component fam-
ilies: the points give the PDRI for each component family. The
total number of occurrences is represented by the size of the
points, and is the sum of all occurrences aggregated by compo-
nent family, the y-axis represents the test statistic and the x-axis
gives the number of different component types within a family.
The colors indicate the varied scope for reuse improvement
(details in text).

Fig. 6 Comparison of DCI against PDRI scores: ranked indices
for each component type are plot with disparity for some compo-
nents indicated
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illustrate how the PDRI is sensitive to an increasing number of
products. For “tires’ the direction is reversed, with a low PDRI
against a moderate DCI. The low PDRI is explained by the
options being fairly evenly spread across the bike models;
however, the DCI is larger compared to other component families
as each bike model has two tires compared to many other compo-
nents that occur only once. This draws the attention to the
moving upper boundary of the DCI.

4.5 Comparison of PDRI to Expert View. Calculation of the
component level PDRI for each bikes class gives rise to the obser-
vation that the levels of reuse in the component families can be cat-
egorized as either low (red), medium (blue), or high (green) in
Fig. 7, although it is harder to distinguish between commonality
levels for the mountain bike model, illustrated in the central panel
of Fig. 7. We compared this reuse categorization to a subjective
grouping performed by a product manager from the bike manufac-
turer who ranked the components reuse into the same three catego-
ries. A description of each level was communicated to the manager.
We contrast the results from the PDRI against the bike manufactur-
ers in Table 6. Twenty-seven of the classifications were in agree-
ment with a further 30 one level different, which was somewhat
anticipated due to the subjective classification boundaries. Interest-
ingly, three components that the expert considered to have high
reuse were classified as low by the PDRI; each of these components
had six options across the ten bikes, and were fairly uniformly dis-
tributed. Identification of such items provides a system for a
manager to evaluate component reuse.

5 Best and No Reuse Mechanisms
The PRDM is a concept developed to provide a benchmark for

assessing the concentration with which components are reused
within families. The PRDM selects components from a defined
list and does so at random with components being equally likely
to be selected. The χ2 value provides a measure of the distance an
organization is from the PRDM. However, the PRDM is not the
most inefficient mechanism. The no-reuse mechanism (NRM) char-
acterizes a designer that never visits the catalogue of historical prod-
ucts and consequently every new product they create is entirely
original with no reuse.
Figure 8 illustrates the relationship between an organization

(labeled X), the number of component types, and the total compo-
nent presence in a product type. An efficient organization generates
many products from few components and as such the steeper the
slope, the more efficient the organization. There is a lower limit

on the slope of this relationship; as NRM (labeled L) always
creates new components for each new product then the NRM will
always be on the 45 deg line. The angle α (known as the “healthier”
angle) between the NRM line (L) and an organization’s line (X) pro-
vides a measure of re-use (i.e., larger the value of α, the healthier to
levels of reuse). To calculate the slope of the NRM line, the number
of component types was calculated by multiplying an average
number of component types in a product and the number of prod-
ucts in a product family. Whereas for the best reuse mechanism
(BRM), the number of component types is equal to an average
number of component types in a product. The improvement angle
β is the difference between best the BRM line (B) and the current
organization line (X). These reference angles for a single product
type are illustrated in Fig. 8. The avoidance of subjective informa-
tion in calculating is the primary advantage of these angles. The
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Fig. 7 Distribution of PDRI across bike range: the PDRI was calculated for each component type, and the sub-
jective classification of low, medium, or high reuse levels is indicated by red, blue, and green colors, respectively

Table 6 Comparison of PDRI to expert judgement: categorized
PDRI contrasted against the subjective assessment of
component reuse by the bicycle manufacturers’ product
manager

Component Road Mountain Hybrid

Frame High Medium High
Forks High Low High
Handle Bar Low Medium Medium
Stem High Medium High
Seatpost Low High Medium
Saddle High Medium High
Pedals Low Low Medium
Shifters Medium Medium High
Front Derailleur Low Low Medium
Rear Derailleur Low Medium Medium
Brake Low Low Low
Brake Levers Low Medium Low
Cassette Low Low Medium
Chain Medium Low High
Crankset Low Medium Low
Bottom Bracket Medium Medium Low
Rims Medium Low Medium
Hubs High Medium Medium
Spokes Medium Low Medium
Tyres High Medium Low

The PDRI category is given in the text, and the different fonts represent the
level of difference between the PDRI value and the expert. Italics indicates if
the levels were the same, bold italics indicates if the PDRI level was one
level greater than the expert, bold roman if the PDRI was one level lower,
and roman indicates two levels of difference.
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PDRI values provide a method to benchmark component usage
among each family. To benchmark an organization’s reuse perfor-
mance, the NRM and BRM were generated. Table 7 summarizes
the so-called, healthier angle, (α) and the improvement angle (β)
along with the calculated parameters for all products. The ward-
robes have a better healthier angle (α) and low improvement
angle (β) compared to the chairs, confirming the earlier findings
of the commonality indices, and mountain bikes have the most
scope for improvement which reflects the greater use of unique
components.

6 Discussion
This paper describes the probabilistic design reuse index that can

be used to benchmark reuse in an organization by comparing the
distribution of usage within component families to that of a
purely random design mechanism. The measure can support the
design and development of both new and established families of
products by providing a method of quantifying overall levels of
reuse. Such a value will allow the impact of any proposed design
changes to be easily assessed in a much broader context than
would normally be the case. This motivation is similar to many
of the proposed reuse measures documented in Sec. 2 of the
paper. Its use, together with existing commonality indices, has
been demonstrated across a range of flat-pack furniture designs.

The existing measures provide information on which component
type has a high probability of presence across products (RC), on
average how many times has a component been used (DCI and
TCCI), the ratio between component types and the total number
of component presence in a product type (CI), and the percentage
of common and unique components in a product (%C). Other
than the RC score, these other measures provide different, aggre-
gated interpretations of commonality score. In contrast, the new
PDRI commonality measure presented here provides details on
which component families deviate most from a PRDM, which are
the best and worst performing component families in terms reuse,
and it facilitates the categorization of component families into dif-
ferent reuse zones, which can be used to focus initiatives on
design decisions; to prioritize an enterprise’s engineering effort
on individual component families for reuse improvements, rather
than providing aggregated reuse value. The proposed measures
objectively quantify levels of reuse and so aid understanding of
component frequency distribution within a family. In a more
recent work, Takai [20] has proposed an optimization routine that
seeks to integrate commonality with both product design and
costs. The results highlight that optimum commonality and
product family design significantly differed when inventory deci-
sions are incorporated in the design problem. Another recent com-
monality index reported in Ref. [21] again also seeks to integrate
incorporate costs, from the design stage through to manufacturing.
The proposed Probabilistic Design Reuse Index proposed here
could be further developed to incorporate commercial data such
as cost or other measures of value.
While it is clear that some variations in component type is both

expected and necessary to meet customers’ requirement, it is also
apparent that a uniform distribution would suggest poor practice
in component selection. The major advantage of this measure is
that it helps to prioritize component families for review that offer
the most scope for reduction in the number of component options
and occurrences. It differs from the other commonality indices in
that it does not explicitly measure the commonality across the prod-
ucts. Indeed, it is possible that the PDRI could return high values,
indicating efficient reuse, even when each product uses its own
unique set of components. Thus, it is more a index of component
reuse rather than commonality. However, a measure for the com-
monality across the products can similarly be derived using the
approach described for the PDRI, but making use of component
presence instead of component occurrence in the calculation.
Additionally, the concepts of the healthier and improvement

angles do not rely on subjective information and significantly
reduce the calculation effort required to generate an informative
measure of reuse. These probability measures along with the
no-reuse and the best-reuse mechanisms provide clear benchmark
references for organization to track improvement progression of
component reuse.
Ultimately, the practicality and validation of the proposed reuse

metrics will require their application in an industrial environment
where the time and cost of the labor involved can be accurately
quantified. Such an assessment in a commercial environment
would also allow other quantities such as component costs, materi-
als, and volumes to be incorporated into the metric and allow it to
better reflect the context and implications of reuse levels in specific
products.
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Fig. 8 Comparison of actual, minimal, and best reuse: compo-
nent reuse is indicated by the number of component present
against the number of product component types used. An orga-
nizations reuse within a product is labeled X, the potential best
reuse mechanism labeled B, and the no-reuse mechanism
labeled L. The angle α indicates current reuse levels and the
angle β the scope for improvement.

Table 7 Best and no-reuse mechanisms angle calculation:
lower values of the healthier angle α indicate more scope for
reuse improvement

Chair Wardrobe Road Mountain Hybrid

Number of products 137 209 10 10 10
Number of component types 406 190 111 123 104
Total component presence 790 5317 192 186 192
Organization reuse degree 63 88 60 57 62
Average number of
component types

6 25 19 19 19

BRM reuse degree 90 90 84 84 84
Healthier angle (α) 18 43 15 12 17
Improvement angle (β) 27 2 24 27 22

5https://doi.org/10.15129/f931bfd7-1090-408e-8823-e4604b485713
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Appendix

Table 8 Reported commonality measures

Commonality indices and description Formula

Relative commonality (R.C.) assesses the commonality of each component using an entropy-based measure
[22]. pij denotes the quantity of component i required for product j divided by the sum of the quantities of i
required for all products of the firm’s line, ni the number of products that use component i, N the number of
products in the firm’s line.

−
∑ni

j=1 pij log2 pij
log2 N

Degree of Commonality Index (DCI) is a cardinal measure indicating the average number of parent items per
average distinct component. It assigns a commonality level to the entire product family [6]. Φ denotes the
number of immediate parents component j has over a set of end items or product structure level(s), d the total
number of distinct components in the set of end items or product structure level(s), and i the total number of end
items or the total number of highest level parent items for the product structure level(s).

∑i+d
j=i+1 Φ j

d

Total Constant Commonality Index (TCCI) normalizes the DCI value to allow comparison of commonality at
any level of the product structure. The authors also introduce measures for within-product constant
commonality index, between-product constant commonality index, and incremental constant commonality
index [7].

1 −
d − 1∑d
j=1 Φ j − 1

Commonality index (CI) indicates the ratio between the number of component types in a product family and the
total number of component in the family [23]. u denotes the number of component types, pj the number of
components in model j, and vn the final number of products offered

1 −
u − maxp j∑vn
j=1 p j − maxp j

Percent Commonality (%C) provides an overall measurement of commonality by weighting each index
separately for measuring component commonality, connection commonality, and assembly commonality [9]. Ii

denotes the Importance (weighting factors),
∑

Ii = 1, Ci =
100 × common components

common + unique components
,

Cn =
100 × common connections

common + unique connections
, Cl =

100 × common assembly component loading

common + unique assembly component loading
, and

Ca =
100 × commonassembly workstation

common + unique assembly workstation

∑4
i=1

Ii × ci

Product Line Commonality Index (PCI) illustrates the percentage of non-differentiating components that are
shared across products in terms of their size/shapes, materials/ manufacturing processes, and assembly
processes [8]. Nomenclature from Ref. [8].

∑P
i=1 nif1if2if3i −

∑P
i=1 1/n

2
i

PN −
∑P

i=1 1/n
2
i

Component Part Commonality Index (CI(C )) takes into account product volume, quantity per operation, and the
cost of the component in addition to DCI parameters to find the commonality index [5]. Nomenclature from
Ref. [5].

∑d
j=1 (Pj

∑m
i=1 Φij

∑m
i=1 ViQij)∑d

j=1 (Pj
∑m

i=1 ViQij)

Commonality versus Diversity Index (CDI) assesses the commonality and diversity within a family of products
or across families. The CDI score for a function computed by aggregating the CDI score for each sub-group of
products that include all the components for that function. The CDI score of all the functions is aggregated to
obtain the CDI score for the family [4]. Nomenclature from Ref. [4].

1
F

∑F
i=1

1
Kij

∑Kij

k=1

1
Gik

∑Gik

m=1

(1 −
non allowed com divikgm

max ÷ ikgm
)

Comprehensive Metric for Commonality (CMC) takes into account size, geometry, material, manufacturing
process, assembly, cost, and production volume of components to generate a commonality metric [1].
Nomenclature from Ref. [1].

∑P
i=1 ni(C

max
i − Ci)

∏4
x=1 fxi∑P

i=1 ni(C
max
i − Cmin

i )
∏4

x=1 fxi

Total Commonalty Index (TCI) enables the evaluation of the overall commonality of a product family from the
intermediate commonality metrics with respect to common components, must-generic items, and options. The
TCI is the sum of two quantities: the commonality level with respect to common components and must-generic
items, and commonality of the product family with respect to options [2].

1
n

∑n
i=1

∏nhi
k=1

(Nk)hi
∑ni
j=1

w2
ij

ni

{ }
+

A

m

∑n
i=1

αi
∏nhi
k=1

(Nk)hi
∑mi

j=1

w2
ij

mi

{ }

Composite standardization index is calculated using the standardization index for each component and/or
assembly and the commonality index for each assembly (TCCI), which are calculated using the absolute
attribute-based standardization of each component of the system [24].

Ic(a)@
wm × Im(a) + ws × Is(a)

wm + ws
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Table 9 Simulation to compare χ2 and ECDF

Options Families Products Max Min Median Correlation

3 3 3 0.02 −0.39 −0.12 0.94
3 3 4 0.05 −0.37 −0.19 0.93
3 3 5 0.02 −0.28 −0.15 0.96
3 3 6 0.01 −0.27 −0.12 0.97
3 3 7 0.05 −0.11 −0.03 0.99
3 3 8 0.01 −0.15 −0.08 0.99
3 3 9 0.02 −0.08 −0.04 1.00
3 3 10 0.03 −0.09 −0.04 1.00
5 5 3 0.04 −0.46 −0.23 0.96
5 5 4 0.01 −0.45 −0.26 0.93
5 5 5 0.01 −0.38 −0.25 0.95
5 5 6 0.00 −0.31 −0.23 0.97
5 5 7 0.00 −0.28 −0.19 0.97
5 5 8 0.00 −0.26 −0.20 0.97
5 5 9 0.00 −0.25 −0.16 0.98
5 5 10 0.01 −0.25 −0.15 0.97
7 7 3 0.14 −0.33 −0.09 0.97
7 7 4 0.05 −0.36 −0.16 0.98
7 7 5 0.02 −0.41 −0.23 0.96
7 7 6 0.00 −0.44 −0.30 0.94
7 7 7 0.00 −0.43 −0.28 0.94
7 7 8 0.00 −0.37 −0.27 0.96
7 7 9 0.00 −0.41 −0.31 0.94
7 7 10 0.01 −0.41 −0.28 0.92
10 10 3 0.52 −0.09 0.25 0.94
10 10 4 0.21 −0.22 0.03 0.98
10 10 5 0.07 −0.36 −0.16 0.99
10 10 6 0.02 −0.46 −0.28 0.95
10 10 7 0.00 −0.48 −0.30 0.94
10 10 8 0.00 −0.48 −0.32 0.95
10 10 9 0.00 −0.53 −0.34 0.90
10 10 10 0.00 −0.53 −0.38 0.92

Journal of Mechanical Design OCTOBER 2020, Vol. 142 / 101401-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/10/101401/6579262/m
d_142_10_101401.pdf by guest on 15 August 2023

http://dx.doi.org/10.1080/09544820601020014
http://dx.doi.org/10.1109/TEM.2006.889068
http://dx.doi.org/10.1007/s00163-009-0066-5
http://dx.doi.org/10.1080/095448200750021003
http://dx.doi.org/10.1111/j.1540-5915.1981.tb00063.x
http://dx.doi.org/10.1016/0272-6963(86)90026-4
http://dx.doi.org/10.1115/1.1320820
http://dx.doi.org/10.1002/sys.21223
http://dx.doi.org/10.1007/s00163-002-0020-2
http://dx.doi.org/10.1080/00207540802183646
http://dx.doi.org/10.1109/21.155954
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1115/1.4042340
http://dx.doi.org/10.1016/j.cja.2019.05.005
http://dx.doi.org/10.1016/j.cja.2019.05.005
http://dx.doi.org/10.1080/00207547608956613

	1  Introduction
	2  Related Research
	2.1  Existing Reuse Measures
	2.2  Balancing Variety and Commonality
	2.3  Observation on Commonality Measures

	3  Probabilistic Design Reuse Index
	3.1  Performance of PDRI With Few Designs

	4  Application of PDRI to Case Study
	4.1  Description of Datasets
	4.2  Assessment of Existing Reuse Measures
	4.3  Assessment of PDRI
	4.4  Comparison of PDRI to Degree of Commonality Index
	4.5  Comparison of PDRI to Expert View

	5  Best and No Reuse Mechanisms
	6  Discussion
	 Acknowledgment
	 Appendix
	 References

