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Abstract 
In this thesis, a variety of algorithms for synthesis and optimisation of combinational 
and sequential logic circuits are developed. These algorithms could be part of new 
commercial ECAD package for future VLSI digital designs. The results show that 
considerable saving in components can be achieved resulting in simpler designs that are 
smaller, cheaper, consume less power and easier to test. 

The purpose of generating different sets of coefficients related to Reed Muller (RM) is 
that they contain different number of terms; therefore the minimum one can be selected 
to design the circuits with reduced gate count. To widen the search space and achieve 
better synthesis tools, representations of Mixed Polarity Reed Muller (MPRM), Mixed 
Polarity Dual Reed Muller (MPDRM), and Pseduo Kronecker Reed Muller 
(PKRO _ RM) expansions are investigated. Efficient and fast combinatorial techniques 
and algorithms are developed for the following: 

~ Bidirectional conversion between MPRM/ MPDRM form and Fixed Polarity Reed 
Muller forms (FPRM)/Fixed Polarity Dual Reed Muller fOlms (FPDRM) form 
respectively. The main advantages for these techniques are their simplicity and 
suitability for single and multi output Boolean functions. 

~ Computing the coefficients of any polarity related to PKRO _ RM class starting from 
FPRM coefficients or Canonical Sum of Products (CSOP). 

~ Computing the coefficients of any polarity related to MPRM/or MPDRM directly 
from standard form of CSOP/Canonical Product of sums (CPOS) Boolean functions, 
respectively. The proposed algorithms are efficient in terms of CPU time and can be 
used for large functions. 

For optimisation of combinational circuits, new techniques and algorithms based on 
algebraic techniques are developed which can be used to generate reduced RM 
expressions to design circuits in RM/DRM domain starting from FPRMIFPDRM, 
respectively. The outcome for these techniques is expansion in Reed Muller domain 
with minimal terms. The search space is 3to Exclusive OR Sum of Product (ESOP)/or 
Exclusive NOR Product of Sums (ENPOS) expansions. 

Genetic Algorithms (GAs) are also developed to optimise combinational circuits to find 
optimal MPRM/MPDRM among 30 different polarities without the need to do 
exhaustive search. These algorithms are developed for completely and incompletely 
specified Boolean functions. The experimental results show that GA can find optimum 
solutions in a short time compared with long time required running exhaustive search in 
all the benchmarks tested. 

Multi Objective Genetic Algorithm (MOGA) is developed and implemented to 
determine the optimal state assignment which results in less area and power dissipation 
for completely and incompletely specified sequential circuits. The goal is to find the 
best assignments which reduce the component count and switching activity 
simultaneously. The experimental results show that saving in components and switching 
activity are achieved in most of the benchmarks tested compared with recently 
published research. All algorithms are implemented III C++. 
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Chapter One 

Introduction 

Computer aided synthesis and optimisation techniques for electronic logic 

circuits is the use of computer software for the process of converting the 

high level description of digital circuits into an optimised design 

implementation in telIDS of logic gates. 

Digital electronic circuits are used usually in digital television, mobile 

phones, digital computers and many other applications. These circuits are 

made of small electronic circuits known as logic gates such as AND, OR, 

and NOT which are implemented electronically using diodes or transistors 

and represented by different shape. Each logic gate perfOlIDs logical 

operation, based on Boolean algebra. Many other complex circuits can be 

created by connected these gates in different ways such as NAND, NOR, 

Exclusive-OR (ExOR), Exclusive-NOR (ExNOR), adders, registers, 

multiplexer and microprocessor. The main logical operations are AND, 

OR, and NOT, while all other operations which are performed by NAND, 

NOR, Ex OR and ExNOR can be derived from the main operations [1]. 

A logic gate has one or more inputs and produces a single output. Logic 

level can be represented by a voltage level. Each logic gate consumes 

power to be able to achieve the correct output voltage. Since the 1960s, 

gates have become available as standard integrated circuits (ICs) known as 

chips. Integrated circuits may contain only a few gates, which are called 

"Small-Scale Integration" (SSI), or up to hundreds of thousands, which are 

called "Very Large Scale Integration" (VLSI). Computer aided tools 

1 



Introduction 

provide an effective mean for designing VLSI digital circuits. Synthesis 

techniques which specify the gate level structure of the circuits are required 

to speed up the design cycle and to reduce the human efforts, while the 

optimisation techniques are crucial to enhance the quality of the design [2, 

3]. 

Logic circuits can be classified into the following two main categories: 

a. Combinational Logic Circuits 

b. Sequential Logic Circuits 

Combinational circuits use logic gates such as AND, OR, and NOT gates in 

which the outputs at any given time depends on the present input only at 

that time. In sequential circuits, the output at any given time is a function of 

both present and past inputs. Therefore, additional logic is necessary, which 

must be capable of storing the past inputs. Sequential circuits can be 

represented by a combinational circuit in conjunction with some form of 

memory elements such as flip flops as in Figure 1.1. There are many types 

of flip flops, which can be used such as SR, JK, T and D flip flop [1]. 

INPUTS 

PRESENT 
STATES 

{ Combinational Logic 

=l )-:=c:)~)_ 

~ ~ 

Storage 

l e
,: ~l 

K:~_~~' --

Device 

t 
CLOCK 

Figure 1.1: Sequential logic circuits 
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Introduction 

1.1 Combinational Circuits 

Logic synthesis is the process of conveliing a digital circuit from the 

functional description into gate level representation. Optimisation means 

finding an equivalent representation for the specified digital circuit with 

less hardware. In fact, synthesis without optimisation may result in a non 

competitive circuit at all [2, 3]. Circuit area is one of the most important 

quantities and is measured by the sum of the areas of the components 

required to design the circuit. In this research, for combinational circuits, 

hardware required to design the logic circuits has been considered to reflect 

the quality for the optimisation process. 

Combinational circuits can be represented using two different canonical 

standard forms [2]. These forms are known as Canonical Sum of Product 

(CSOP) and Canonical Product of Sum (CPOS). 

The CSOP expansions are based on AND/OR for two level logic networks 

as shown in equation (1.1) 

Zn-l 

F (xn-lJ xn- zl xo) = L aimi 
i=o 

(1.1) 

Where mi are the minterms; ai E { 0,1} , and it indicates the absence or 

presence of minterms, respectively. ° < i < 2n - 1 . 

(1.2) 

(1.3) 

Where; 0 < j < n - 1. 

The CPOS expansions are based on ORlAND as shown in equation (1.4). 

Zn-l 

F (Xn -ll Xn-ZI xo) = n di + Mi 
i=O 

(1.4) 

3 



Introduc'tion 

Where Mi are the maxterms; di E {0,1}, unlike ai, it indicates the 

presence or absence of maxterms, respectively. 

(1.5) 

(1.6) 

When the circuit doesn't use all the possible input combinations, it is 

known as an incompletely specified Boolean function and the unused 

combinations are called "don't-care" terms. An incompletely specified 

Boolean function is a function with one or more minterms/or maxterms 

with undefined values. These unspecified minterms/or maxterms are known 

as "don't care" terms/or sums respectively, and sometimes can help the 

process of minimisation. 

Any n _variable incompletely specified Boolean function may be 

represented in CSOP form as: 

Zn-l 

~ a-m­L L L 

i=o 

Zn-l 

+ ~ dc-m-L L L 
(1.7) 

i=o 

Where dCi E {O, 1} are "don't care" coefficients which may be used as ° or 

1, and dCi = 1 indicates the presence of don't care terms. 

Boolean functions can be represented using either tabular form which is 

also known as a truth table, logic expressions or binary decision diagrams. 

The designing of the combinational circuit starts with deriving the truth 

table from a statement which specifies the logical behaviour of the circuit. 

Boolean equations are derived, simplified if possible, and implemented 

using suitable devices. The simplification is carried out to minimise the 

hardware components. Boolean expressions can be minimised by either 

4 
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reducing the number of terms in the expreSSIOns and/or reducing the 

number of literals in the expressions [2]. 

Boolean algebra is commonly used to simplify the logic equations for small 

problems. In general, Karnaugh maps are used to simplify the functions 

with up to six variables. For functions with more than six variables, tabular 

techniques, Quine-McCluskey or Espresso [1, 4] are used to simplify the 

circuits. 

Furthermore; combinational circuits can be described in telIDS of Reed 

Muller (RM) expansions [5]. RM expansions make use of modulo-2 logic 

operations where Galois fields over binary numbers GF (2) are employed. 

Modulo-2 addition and multiplication are identical to ExOR & AND logic 

operations respectively. RM expression is another way to represent the 

standard CSOP Boolean function using AND/ExOR instead of AND/OR 

respectively. While Dual Reed Muller (DRM) expression is another way to 

represent the standard CPOS Boolean function using ORlExNOR instead 

of ORlAND respectively [2,4]. 

RM expressions have several advantages for functions that don't produce 

efficient solutions using CSOP/CPOS techniques. These advantages [4-9] 

are as follows: 

• Logic functions which can't minimise well in neither CSOP nor CPOS 

form can often be implemented in either RM or DRM domain with 

fewer gates and interconnections which leads to reduced size. 

• Circuits with Ex OR / ExNOR gates are more amenable to efficient 

testing strategies. 

• ExORlExNOR are classified as low speed and large area devices. But 

as the Field Programmable Gate Array (FPGA) made good progress in 

recent year, ExORlExNOR can easily be mapped to Look-up tables 

(LUTs), resulting in ExORlExNOR gates that are as fast as other gates. 

5 
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• ExORlExNOR IS linear and many techniques such as matrix and 

transform operation can be used with modulo-2 field. 

• The Boolean function based on CSOP can have up to 3 tn Exclusive-Or­

Sum- Of- Products (ESOP) expressions for n variables and t terms. Due 

to this large number of different expressions for the Boolean circuits, 

there is better chance to find economical circuits in RM domain. 

If all variables are present in every minterm in (1.1), then the OR gate can 

be replaced by Ex OR gate results in ExOR-SOP expression as follows: 

Zn-l 

F (xn-lJ Xn- ZI xo) = EE> L aimi 

i=O 

(1.8) 

Where EE> denotes the ExOR operator. It can also be expressed as in (1.9) 

which is known as the RM form as follows: 

Zn-l 

F(xn-lJ xn-z l xo) = EE> L bini 

i=o 

(1.9) 

Where Hi are the product terms of the RM function, bi E {O,l} and it 

indicates the absence or presence of coefficients, respectively. 

Further, if all variables exist in every maxterm in (1.4), then the AND gate 

can be replaced by ExNOR gate which results in ExNOR-POS expressions 

as follows: 

Zn-l 

o nd.+M. L l (1.10) 
i=o 

Where 0 denotes the ExNOR operator. It can also be expressed as in 

(1.11) which is known as the DRM form as follows: 

Zn-l 

F(xn-lJ Xn-Z I xo) = 0 n Ci + Qi 

i=o 
6 

(1.11) 
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Where Qi are the sum terms of the DRM, Ci E {O, I} , unlike bi , it 

indicates the presence or absence of coefficients, respectively. 

Any arbitrary functions f (Xn-l, xn-z, xo) can be expanded [10] with 

respect to any variable Xj using the Shannon theorem as follows: 

f = Xj f(xn - v ... , Xj+v 0, Xj-l, ''', xo) EB xjf(xn - v .. " Xj+v 1, Xj-V .. " xo) 

Shannon expansion (1.12) 

Substituting Xj = Xj EB 1 in equation (1.12), gives: 

t = t(xn-v .. , Xj+v 0, Xj-l,'" xo) EB 

Xj [f(xn-v .. , Xj+1, 0, Xj-v", xo)EB t(Xn-l,'" Xj+v 1, Xj-v··, xo)J 

Postive Davio expansion (1.13) 

Substituting Xj = Xj EB 1 in equation (1.12), gives: 

t = t(xn-v .. ,Xj+v 1,Xj-l,",XO) EB 

Xj [f(Xn-l"" Xj+v 0, Xj-v", xo)EB t(Xn-l,'" Xj+v 1, Xj-v··, xo)J 

Negative Davio expansion (1.14) 

Seven classes of AND/ExOR expressions have been developed by many 

researchers [10, 11]. This research focuses on four classes for the 

RMlDRM expansions shown in Figure 1.2. 

1.1.1 Fixed Polarity Reed Muller I Fixed Polarity Dual Reed Muller 

Equations (1.9) & (1.11) are known as Positive Polarity Reed Muller 

(PPRM)I Positive Polarity Dual Reed Muller (PPDRM) respectively, in 

case that all variables appear in their true form as in equation (1.13). If each 
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variable in equations (1.9) or (1.11) can appear in its true form as in 

equation (1.13) or complemented form as in equation (1.14) but not both, 

the expression is known as Fixed Polarity Reed Muller (FPRM) or Fixed 

Polarity Dual Reed Muller (FPDRM), respectively. Both of these types 

have 2ll different polarities or expansions. Each expression can be identified 

by a polarity number. The polarity of any FPRMlFPDRM expansion can be 

represented by replacing each variable by 0, or 1 depending on whether the 

variable is used in true or complement form, respectively. The polarity will 

be the decimal equivalent of the resulting binary number. A number of 

techniques have been developed to obtain any fixed polarity from the 

CSOP/CPOS [12 - 20]. 

Types of standard Boolean Function expansions 

Classes of RM 
expansions 

--------~~------~ ( '\ 

-----------­/Pseduo Kronecker RM -.......... 
(3 211

- 1 ) ----------
Mixed Polarity RM 

(3n
) 

-----------­/Pseduo Kronecker DR.M' 
(3 2n

- 1 ) 

----------

Figure 1.2: Classes of Reed Muller Expansions 
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In FPRM, Tri in (1.9) can be expressed as below: 

{
1 ,ij = 0 

XJ' = x· i- = 1 J ' J 

{
x' 
x, 

if polarity of Xj = 1 
if polarity of Xj = 0 

Further, In FPDRM, Qi in (1.11) can be expressed as below: 

Qi = xn - 1 + Xn -2 + .... xo 

{
o ,ij = 1 

xJ' = x· i- = 0 J ' J 

{

X, 

x, 
if polarity of Xj = 1 
if polarity of Xj = 0 

Example i.i:fex, y, z) = xy Ef) yz Ef) xz 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

x & z appear in its true form, while y appears in its complement form. 

Therefore this expression has fixed polarity (Oi Oh= (2)10 

1.1.2 Mixed Polarity Reed Muller / Mixed Polarity Dual Reed Muller 

Mixed Polarity Reed Muller (MPRM) is also called Kronecker expression 

(KRO). If each variable in equations (1.9), or (1.11) can appear in true, 

complement or both (mixed) form as in equation (1.12), then the expression 

is known as MPRM or Mixed Polarity Dual Reed Muller (MPDRM) 

respectively. Both of these two types have 3 n different polarities or 

expansions. Each expression may be identified by polarity number. The 

polarity of any mixed RMIDRM expansion can be represented by replacing 

each variable by 0, 1, or 2 depending on whether the variable is used in 

true, complement or mixed form, respectively. The polarity will be the 

decimal equivalent of the resulting telnary number. New techniques have 

9 



Introduction 

been presented to obtain any mixed polarity from the CSOP/CPOS [12,21-

26]. 

In MPRM, TCi in (1.9) can be expressed as in (1.21): 

x, 
x, 

Xj = x, 
1, 

if polarity of Xj = 1 &ij = 1 
if polarity of Xj = 0 & ij = 1 

if polarity of Xj = 2 
if polarity of Xj = 0 or 1 &ij = 0 

{
X ~f ~j = 1 
X If lj = 0 

In MPDRM, Qi in (1.11) can be expressed as below: 

X, 

X, 

x, 
0, 

if polarity of Xj = 1 & ij = 0 
if polarity of Xj = 0 &ij = 0 

if polarity of Xj = 2 
if polarity of Xj = 0 or 1 &ij = 1 

{
X .if .ij = 0 xi= 
X If lj = 1 

Example 1.2: f(x, y, z) = xy EEl yz EEl xy z 

(1.21 ) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

x appears in true form J y appears in complement form, and z appears in 

mixedform. Therefore this expression has mixed polarity (012h = (21ho. 

1.1.3 Pseudo Kronecker Reed Muller 

Each function or sub function can be represented by one of the three types 

represented by eq's (1.13), (1.14) or (1.12) resulting in expressions known 

as Pseudo Kronecker Reed Muller (PKRO-RM) expressions. In PKRO­

RM, same variables can appear in true and complement form within the 

expression. There are 3Zn
-

1 different pseudo Kronecker polarities within 

each of these classes including the 3 n KRO expansions. 

10 
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In general, to allow the numbering of all the 3Zn
- 1 polarities for PKRO­

RM forms, (Zn - 1) digits are needed to represent the polarity number of 

each expression in PKRO class of RM. 

The polarity of any PKRO-RM expansion can be represented using ternary 

numbers. The polarity will be the decimal equivalent of the resulting 

ternary number. 

Example 1.3: [(x, y, z) z EB Y z EB x Y EB xy z 
This expression represents PKRO-RM expansion. 

1.1.4 Exclusive or Sum of Products / Exclusive nor Products of Sums 

Different combinations of product terms combined by ExORs are called 

ESOP, while different combinations of sum terms combined by ExNORs 

are called Exclusive-Nor-Product-of-Sum (ENPOS). The ESOP and 

ENPOS are the most general classes. There are 3tn different expressions 

within each of these classes [11]. Each term within the expression can have 

its own polarity. 

In ESOP, 7ri in (1.9) can be expressed as below: 

(1.27) 

Where xi in each products can be 1, xi or xi independently of other terms 

In ENPOS, Qi in (1.11) can be expressed as in (1.28). 

(1.28) 

Where xi in each sums can be 0, Xi or xi independently of other sums. 

Example 1.4: [(x, y, z) = x EB Y EB xyz EB x Y 

ESOP expression where each term has its own polarity. 
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1.2 Sequential Circuits 

Optimisation of sequential circuits corresponds to searching for the best 

design considering all objectives like power, area, and speed. In this 

research, for sequential circuits, area and power have been considered to 

express the quality for the optimisation process. Sequential circuits can be 

classified into two categories; synchronous (clocked) and asynchronous 

(unclocked). This research is concerned with synchronous sequential 

circuits where the transition between states is controlled by a clock pulse 

[27]. 

A Finite State Machine (FSM) is a mathematical model of the sequential 

circuit with discrete inputs, discrete outputs, and internal states. 

State transition graph (STG) is another way to visualize FSM as directed 

graph where each node represents one state and the transitions between 

states represented by edges. Each edge in STG is labelled by the input 

causing this transition and the output asserted on the transition. Further, 

State Transition Table (STT) is a tabular form commonly used to represent 

FSM in which each row corresponds to an edge in STG. 

An incompletely specified sequential circuit is one in which at least one 

state transition edge from some state is not specified. These states are 

called don't-care (DC) conditions [28] and represented using "-" in the 

STT. 

The designing of sequential circuits starts with deriving the STG and the 

STT from the word description of the desired behaviour of the circuit. The 

resulting state table may contain more states than necessary. Therefore; it is 

desirable to reduce the number of internal states in order to reduce the 

complexity of the sequential circuit. The state minimisation starts by the 

means of generating the implication table [29, 30] depending on the 

equivalencies and compatibilities between each pair of states. This 
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procedure is essential for completely and incompletely specified sequential 

circuits. State table reduction issue can be defined by finding state table 

with less number of states without changing the functionality. 

Then synthesis tools are required to encode the internal symbolic states of 

FSM as binary code. The state assignment refers to the allocations of the 

binary codes to the states of the sequential circuits. The resulting logic of 

the sequential circuit depends on the codes assigned to the states. Different 

coding may lead to a different number of components giving the same 

functionality of the designed circuit. Therefore; it is vital to construct the 

circuit with less hardware through finding the optimal assignment of the 

designed circuit. 

An FSM, M, is characterised by a six tuple vector (S, x, Z, fl, 0, qo), 

where S is a finite set of states, X is a finite input alphabet, ~ is the state 

transition function mapping S x X ~ S+, Z is the output alphabet, t5 is the 

output transition function and qo is the initial or starting state. There are 

two different types of FSM, depending on output transition function t5 

which are called the Moore and Mealy models. In the Moore model, the 

outputs depend on the states only while in the Mealy model, the outputs 

depend on the inputs as well as on the states. In the Moore FSM, output 

transition function t5 is a mapping S ~ Z, whereas in the Mealy FSM, t5 

is a mapping S x X ~z. 

A FSM having k distinct states and x inputs, requires s = [logz k] state 

variables and I = [logz x] input variables for the complete assignments, 

where [g] is defined as the smallest integer equal to or greater than g. The 

total number of the different possible encodings [28] is given by L (k) as 

defined by equation (1.29). 

2s ! 
L(k) = (2S - k)! (1.29) 
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While the total number of unique state assignments [28] is given by A(k) 

as defined by equation (1.30). 

(2 S - i)! 
A(k) = (2S - k)! s ! (1.30) 

Example 1.5: Consider the benchmark Lion (in KISS2 format) which has 4 

states as follows: 

. i 2 I I Primary inputs 

.0 1 I I Primary outputs 

.p 11 II Number of rows 

.s 4 I I Number of states 

-0 st0 st0 0 11 st1 st0 0 01 st2 st3 1 
11 st0 st0 0 10 st1 st2 1 0- st3 st3 1 
01 st0 st1 - 1- st2 st2 1 11 st3 st2 1 
0- st1 st1 1 00 st2 st1 1 

The STG for this example is shown in Fig. 1.3. 

01/-

0-/1 

0-/1 

01/1 00/1 

1-/1 

Figure 1.3: STG for Example 1.5 
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The FSM -STT for this example shown in Table 1.1 consists of four 

symbolically encoded states STO, ST1, ST2, and ST3. These states can be 

assigned unique codes using two state variables Yl and Yz. The inputs can 

be represented by Xl and X2 and the single output is represented by Z. The 

next states are represented by yt and yt. 

Table 1.1: FSM - STT representation of Example 1.5 

Present 
states 

YvYz 00 
STO STOIO 
STI STUI 
ST2 STUI 
ST3 ST311 

1.3 Literature Survey 
1.3.1 Combinational Circuits 

Next states (yt, yt) 
Inputs X IX2 / Output Z 
01 11 10 
STU- STOIO STOIO 
STUI STOIO ST2/1 
ST311 ST211 ST211 
ST311 ST211· -1-

There have been several techniques and algorithms developed for synthesis 

and optimisation of completely and incompletely specified Boolean 

function. 

In [13], the authors developed fast Tabular techniques for Boolean to fixed 

polarity RM conversion. The motivation behind this technique is using the 

inherent parallel processing by generating new terms and updating the 

index table concurrently without the need to wait for all new terms to be 

generated,. The experimental results show that this technique achieves 

results consuming less CPU time compared with Tabular technique. 

In [18] efficient techniques and algorithms for conversion between standard 

Boolean expressions and FPRM expansions are developed. The authors 
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also present new technique for optimisation of FPRM. These techniques are 

implemented using PASCAL language. 

In [19], the authors proposed serial Tabular technique (S_TT) and parallel 

Tabular technique (P _ TT) which may be used for conversion of Boolean 

function into FPDRM. S TT deals with one variable at a time and can be 

used for functions with large number of terms. While in P _TT, generating 

new terms in parallel may suit large functions with large number of 

variables. 

The authors of [20, 38] proposed a new technique for converting the 

standard CPOS Boolean functions into FPDRM form. They also proposed a 

non exhaustive technique to find the optimal polarity among 2n FPDRM 

without generating all the polarity set. These techniques are based on 

separating the truth vector of CPOS and the use of sparse technique. 

In [16,24], efficient algorithms are proposed to generate the minimal Reed 

Muller expansions with fixed and mixed polarity for any arbitrary, 

completely and incompletely specified switching functions. These 

techniques are based on removing independent variables £i'om the given 

function, generating the coefficients of PPRM expansion, and finally 

generating the minimal MPRM form. The authors also proposed new 

technique to generate all 2n polarities for FPRM forms starting from the 

truth vector of standard CSOP Boolean form. This technique is based on 

minterm separation around the truth vector of CSOP form. 

In [21, 22], new methods and algorithms are presented for deriving the 

KRO expansions either from disjoint reduced CSOP truth table or from the 

Boolean functions. This method is based on tabular technique and deals 

with completely and incompletely specified Boolean functions. They could 

be used to derive different KRO polarities from any other KRO polarity. 

These algorithms are implemented using PASCAL language. 
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In [31], the authors introduced the Tabular technique for bidirectional 

conversion between CSOP and Reed-Muller polynomials and for the 

derivation of all fixed polarities. This technique works with any number of 

variables. The proposed technique is simple, systematic, and suitable for 

hand as well as computer programming. Computer program was 

implemented using PASCAL language and tested with random functions 

up to 18 variables. The authors of [33] proposed new technique to generate 

minimal MPRM starting from an array of disjoint cube for multi-output 

incompletely specified Boolean functions. This technique is based on new 

operation called "xlinking" which is based on operations such as merger, 

exclusion and other logic operation. This technique is tested with examples 

up to 8 inputs, 8 outputs and 255 minterms. 

The authors of [34], investigate the properties of the transform matrices for 

both SOP and RM expansions. They also present technique to obtain the 

best polarity of FPRM expression for large multiple-output Boolean 

functions using gray code based on the properties of the RM matrix. 

In [35], decomposition technique has been presented to produce a 

simplified MPRM format from the conventional CSOP input based on top­

down strategy and lead to Reed-Muller programmable logic array 

implementations for Boolean functions The decomposition technique is 

implemented in the C language and tested with MCNC and IWLS '93 

Benchmarks. The experimental results show that the decomposition 

method can produce much better results than Espresso for many test cases. 

In [35] a non exhaustive technique is developed to determine the optimal 

FPRM for completely specified Boolean functions. They also proposed 

new technique to determine the allocation of don't care terms for 

incompletely specified Boolean functions resulting in reduced FPRM 

expansions. In [37], a new equation is derived which can be used to convert 
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any CPOS to any FPDRM polarity. A new algorithm is also proposed for 

finding the optimal FPDRM polarity for large functions. 

Mapping Transform techniques has been investigated in [39, 40] between 

CPOS form and PPDRM expansion. 

There are other interesting aspects of logic design such as multi-valued and 

multi-levels, especially the graphical approach based on Binary Decision 

Diagram (BDD) and RM_BDD as in [41-45]. These, however, are outside 

the scope of this research. 

Recently Evolutionary or Genetic Algorithms (GA) are also used in many 

application such as optimisation of digital circuits, logic synthesis, 

computer aided design, test pattern, and FPGA placement due to the high 

complexity of modem VLSI circuits. There have been several interesting 

techniques and algorithms introduced during the past few years which were 

GAs are used for synthesis and optimisation of completely and 

incompletely specified Boolean functions. 

In [46], the authors investigated a new class of 2-level RM expressions 

called Reduced Kronecker Expressions (RKROs) and a new method using 

Genetic Algorithm (GA) for their exact minimisation is developed for up to 

20 variables. The experimental results show that this technique can produce 

expansions with fewer terms compared with FPRM and PKRO-RM 

expanSIons. 

In [47], Hybrid GA is investigated to generate the minimal FPRM for large 

function. The authors combine GA with greedy heuristic to achieve better 

results. 

In [48], Simulated Annealing and Genetic Algorithm are combined to 

minimise MPRM expressions. This technique incorporate annealing 

process into genetic operations to obtain better performance compared with 

simulated annealing and genetic algorithm alone. This algorithm is 
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implemented III C language and achieved better results compared with 

Espresso, Simulated Annealing, and Genetic Algorithm. 

In [49], multilevel logic synthesis method has been developed which 

achieves 100% single stuck at fault testability. FPRM forms were used to 

build the initial design. 

Extensive research has focused on developing techniques for representing 

and minimising FPRMlFPDRM expansions but very little research has 

focused on representing and minimising of MPRM forms. Further, to the 

best of my knowledge, there is no research published on the deriving and 

optimisation of MPDRM, PKRO_RM, and ESOP expansion. Therefore; 

the main objective of this thesis is to concentrate on developing techniques 

for synthesis and optimisation of MPRM, MPDRM, PKRO _ RM, and 

ESOP expansions, which can be used to minimise the combinational 

circuits. The work done during this research is continuing and enhancing 

the previous work and should give the designer more flexibility for finding 

the ideal solution. 

1.3.2 Sequential Circuits 

State assignment is one of the most important problems which received a 

great deal of attention from researchers. One of the best lmown techniques 

which were used for state assignments issue is that of partitions and 

decomposition [27, 50], but not all state machines have useful closed 

partitions and may be minimised using these techniques. 

In [51], a new approach is proposed utilising GA with Evolvable Hardware 

(EHW) to design synchronous sequential circuits with minimal hardware. 

Firstly GA is used for state assignment problem to produce FSM with 

minimal number of logic gates. Secondly design the circuit to achieve the 

functionality. Thirdly EHW is used to evaluate the designed circuits. 
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Finally the final circuit is assembled. The proposed algorithm tested with 

different benchmark circuits and achieved good results compared with 

other automated design tools. 

In [52-55], the authors proposed the use of GA to generate state 

assignments which minimise the gate count and/or power dissipation. 

A new comprehensive method consisting of an efficient state minimisation 

and an efficient synthesis technique for state assignment problem is 

presented in [56]. The aim for these techniques is to optimise power, area, 

and delay for next state logic network design. Less area, power and 

delay is achieved through testing these techniques with different 

examples. 

The authors of [57] proposed a new approach to the synthesis problem for 

finite state machines with the reduction of power dissipation as a design 

objective. A finite state machine is decomposed into a number of coupled 

sub machines. Most of the time, only one of the sub machines will be 

activated which, consequently, could lead to savings in power 

consumption. Experimental results show that this approach achieved good 

results for functions with large number of states. 

In [58], the authors present heuristic algorithms for state minimisation of 

FSM's for a large class of practical examples. The authors discuss two 

steps of the minimisation procedure, called state mapping and solution 

shrinking, which play a significant role in delivering an optimally 

implemented reduced machine. 

In [59], the authors present a heuristic for state reduction of incompletely 

specified finite state machines (ISFSMs). The proposed heuristic is based 

on a branch-and-bound search technique and identification of sets of 

compatible states of a given ISFSM specification. 
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A new FSM partitioning approach for low power using GA is presented in 

[60] to search for an optimal partition. This technique is implemented using 

C language and achieved 80% less power dissipations. 

In [61], a new (m-block) partitioning technique for the state assignment is 

proposed to improve the testability's and power consumption. This 

technique achieved good improvement in power consumptions as well as 

testabilities. 

In [62], the usage of a stochastic search technique inspired by simulated 

annealing is explored to solve the state assignment problem. 

In [63], upper and lower bounds for the switching activity are calculated on 

the state lines of the FSM which depends on the bounds of the average 

Hamming Distance (HD). The knowledge of these bounds is quite useful in 

the early stage of the FSM design to indicate the largest and smallest 

possible power consumption. 

In the past, Genetic Algorithms have been applied to find optimal state 

assignments which minimise the gate count and/or power dissipation for 

sequential circuits. Genetic algorithm based approach are presented in [64] 

for finite state machine synthesis targeting to design the circuits with less 

power consumption. This technique is used to partition the states which 

result in a state encoding with less HD between them and that will reduce 

the power consumption of the designed circuit. 

In the second part of this research, Multi-Objective GA is used for the state 

assignment problem using alternative scheme. One of the main reasons for 

trying to find an optimal state assignment for sequential circuits is to 

improve the result produced by the recent research which could result in 

less power consumption. 
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1.4 Aims and Objectives 

The aim of this research is to develop a variety of efficient techniques, 

which can be used for synthesis and optimisation of combinational and 

sequential circuits. 

The objectives for the first part of this research are as follows: 

• Representations of the combinational circuits using MPRM and 

MPDRM, to widen the search space and achieve better synthesis tools. 

That's because, in some cases the circuit can be better simplified in 

DRM expansion using ORlExNOR forms, whereas for other circuits the 

reverse will be the case. 

• Determining efficient solutions amongst the 3ll polarities III 

MPRMlMPDRM domains without resorting to exhaustive search. 

• Designing the combinational circuit in RM domain using minimal 

number ofterms/or sums may result in smaller, faster or less power than 

those designed in standard forms of Boolean functions. 

The objective for the second part of this research is as follows: 

The objective here is regarding the state assignment issue for sequential 

circuits. There are a huge number of possible and unique state assignments 

as defined by (1.29) & (1.30) which can be used to design the sequential 

circuit. The problem is how to find an efficient state assignment among the 

very large number of different assignments without resorting to exhaustive 

search. It would require new technique to be developed to identify the good 

state assignments to design the circuit with fewer components and reduced 

switching activity simultaneously. 

All these synthesis and optimisation techniques could be part of new 

commercial Electronic Computer Aided Design (ECAD) tool for the future. 
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1.5 Structure of this thesis 

Chapter 2 presents new synthesis techniques for converSIOn between 

standard Boolean form and RM form which is categorised as follows: 

• Technique for bidirectional conversion between FPRM form and 

MPRM form for single and multi-output functions. It also can be used to 

derive any mixed polarity expressions from another mixed polarity 

expression [25]. 

• Technique for bidirectional converSIOn between FPDRM form and 

MPDRM form for single and multi-output functions. It also can be used 

to derive any dual mixed polarity expressions from another dual mixed 

polarity expression [26]. 

• Technique to generate the coefficients of PKRO-RM starting from 

PPRM. It can also be used to generate PKRO expansions from standard 

CSOP Boolean functions [65]. 

These techniques are based on Tabular technique [31] which was used for 

bidirectional conversion between CSOP and FPRM and can be used 

manually or programmed on computers for any number of variables. 

Chapter 3 develops new methods [26] to compute the coefficients of 

MPRM/MPDRM directly from truth vector of the CSOP/CPOS, 

respectively. Also it may be used to derive any mixed polarity from another 

MPRMlMPDRM expression. This method is based on separation around 

minterm/maxterm technique [16, 20] which was used to convert 

CSOP/CPOS expressions to FPRMlFPDRM. 

Chapter 4 investigates new efficient and fast techniques [25, 26] to 

generate reduced mixed polarity expressions starting from PPRMlPPDRM 
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respectively for single and multi -output Boolean functions with any 

number of variables. These new techniques are based on Tabular 

techniques [31]. 

Chapter 5 develops an efficient GA based approach [25, 26, and 66] to find 

the optimal polarity (with fewer terms) among the 3n expressions without 

the need to find all the 3 n polarities for the specified function. This 

technique is implemented for single and multi-output completely and 

incompletely specified Boolean functions. 

Chapter 6 presents a new approach usmg a Multi Obj ective Genetic 

Algorithm (MOGA) [67] to determine the optimal state assignment with 

less area and power dissipations for completely and incompletely specified 

sequential circuits. The goal is to find the best assignments which reduce 

both the component count and switching activity. 

Chapter 7 conclusions and future work. 
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Chapter Two 

Extended_Tabular techniques for Reed 
Muller forms Conversions 

2.1 Introduction 

The Tabular technique [31], which is derived from map folding technique, 

provides a means of converting standard canonical Sum of Product (CSOP) 

Boolean functions to any Fixed Polarity Reed Muller (FPRM) expansion 

and between different fixed polarities. It can also be used to generate 

CSOP minterms from the FPRM terms. In this Chapter, The Tabular 

technique is extended to provide new techniques for Mixed Polarity Reed 

Muller (MPRM) and Mixed Polarity Dual Reed Muller (MPDRM) 

conversions. The remainder of the Chapter is structured as follows: a 

review of Tabular technique is given in section 2.2. In section 2.3, the 

useful Boolean operations of ExORlExNOR logic gates are listed. Section 

2.4 shows the basic definitions and notations of Kronecker product 

operation, Pseudo-Kronecker product operation, and Continuous sum 

operation. New techniques developed for bidirectional conversions 

between MPRMlMPDRM and FPRMIFPDRM expansions, respectively are 

explained in section 2.5. Experimental results for optimum polarity among 

MPRM and MPDRM by running an exhaustive search are given in section 

2.6. Section 2.7 shows a new technique for computing the Pseudo­

Kronecker (PKRO-RM) expansions starting either from PPRM form or 

from CSOP form. 
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2.2 Review of Tabular technique 

The Tabular technique procedure for finding general PPRM expanSIOn 

from Boolean function is summarised bellow [31]: 

• Step 1,' list all minterms in binary form. 

• Step 2,' select any variable Xj . For every term containing a zero III 

position}, Xj ,generate additional term with a one in position} for Xj. 

• Step 3,' compare newly generated telms with the ones that already exist 

and cancel any identical pair. 

• Step 4,' repeat steps 2 and 3 for all other variables. The resulting 

uncancelled terms are the RM terms. 

Example 2.1: Given three-variable CSOP function: 

In order to obtain the PPRM terms from CSOP minterms using Tabular 

technique, new terms are generated and duplicated terms are cancelled as 

shown in Tables 2.1 & 2.2 as follows: 

Table 2.1: Terms generated by variable Xz for Example 2.1 

Minterms Terms generated by Xz 

Xz I X1 I Xo Xz I X1 1 Xo 

0 0 1 1 0 1 

0 1 1 1 1 1 

1 1 1 
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Table 2.2: Terms generated by variable Xl for Example 2.1 

Resulted terms Terms generated by X1 

Xzl X1 I Xo Xz I X1 I Xo 

0 0 1 Q I I 

Q I I 

1 0 1 1 1 1 

Note that no terms are generated by variable xo. The PPRM expression is 

shown below: 

The Tabular technique can also be used to convert the PPRM terms into 

CSOP minterms. Furthermore; it can be used to find any polarity as 

follows: 

Step 1; list all terms in binary form. 

Step 2; represent the desired polarity using n-bit binary number. 

Step 3; select variable Xj whose /h position in the polarity number is one. 

For every term containing logic one in position j, Xj' generate 

additional term with a logic zero in position j for Xj. 

Step 4; compare newly generated terms with the ones that already exist and 

cancel any identical pair. 

Step 5; repeat steps 3 and 4 for all other variables whose conesponding 

polarity digit is one. The resulting uncancelled terms are the RM 

terms for the desired polarity. 

Example 2.2: Consider the same Example 2.1, given PPRM expansion as 

follows: 
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Assume thatp <6>10= p <110>2 is required. Variable Xz and Xl must be 

changed from true form to complement form as shown in Tables 2.3 & 2.4. 

Table 2.3: Terms generated by variable xz for Example 2.2 

PPRMterms Terms generated by Xz 

Xz I Xl I Xo Xz I Xl I Xo 

Q Q I 

1 0 1 Q Q I 

1 1 1 0 1 1 

Table 2.4: Terms generated by variable Xl for Example 2.2 

FPRM- polarity <100>2 Terms generated by Xl 

Xz I Xl I Xo Xz I Xl I Xo 

I 9 I 

0 1 1 0 0 1 

1 1 1 I Q I 

The remaining terms, which represent polarity-6 for the function, are given 

as follows: 

f(x zJ Xv xo) = 1T7EB 1T3 EB 7[1 = XZX1Xo EB x1XO EB Xo 

2.3 Boolean Operations of ExORlExNOR 

The RM/DRM expansions are based on ExORlExNOR binary operations 

respectively. These operations are displayed in Table 2.5. 
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Table 2.5: Boolean Operations 

A B A0B A B AEBB 
0 0 1 0 0 0 

0 1 0 0 1 1 

1 0 0 1 0 1 

1 1 1 1 1 0 

(a) ExNOR (b) ExOR 

The ExORlExNOR operations have the following propeliies: 

A EB 1 = A 

AEBO = A 

AEBA=O 

AEBA=l 

AOl = A 

AOO = A 

AOA=l 

AOA=O 

A EB B = AO B = A B + A B 

A 0 B = AEB B = A B + AB 

Associative: 

(A EB B) EB C = A EB (B EB C) = A EB B EB C 

(A 0 B)O C = A 0 (B 0 C) = A 0 B 0 C 
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Distributive: 

A(B EB C) = AB EB AC 

A + (B 0 C) = (A + B) 0 (A + C) 

Commutative: 

AEBB=BEBA 

AOB=BOA 

2.4 Basic Definitions and Notations 

2.4.1 Kronecker Product Operation 

The terms of the n-variable PPRM expansion expressed in equation (1.9) 

can also be written by Kronecker product symbolized by * on the basis 

vector [1 Xj] for 0 <j < n - lJ as in equation (2.1): 

In FPRM expansion, the variable can appear in either true or complement 

form through the RM expansions. Therefore, there are 2n different FPRM 

expansions each with different polarity numbers. Hence, any fixed polarity 

number is represented by (n) digits using a binary number. These different 

expansions can be expressed by Kronecker product on the following two 

basis vectors [68] in the form shown below: 

if Xj is in true form 

if Xj is in complement form 

The Kronecker product [68] of two vectors is defined as follows: 

[a b] * [e f] = [ae a f be b f] 
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For example, for n=3 and polarity <6>10, the terms of the FPRM expansion 

can be calculated by: 

P < 6 >10 = P < 110 >z = [1 xz] * [1 Xl] * [1 xo] 

P < 6 >10 = P < 110 >z = [1 x z] * [1 Xo Xl X1 XO] 

P < 6 >10= [1 Xo Xl X1 XO Xz XzXo XZXl XzX1Xo ] 
Thus, polarity <110>2, denotes that variable Xo appears in true form, while 

Xl & Xz appear in complement form. 

In MPRM expansion, the variable can appear in either true, complement, or 

both (mixed) forms, through the RM expansions. Therefore; there are 3n 

different MPRM expansions, each with different polarity numbers. Hence, 

an extra vector is needed to incorporate the mixed form as follows: 

if Xj is in mixed form (2.4) 

The terms of the n-variable MPRM expansion can also be expressed by 

Kronecker product [66] on the basis of the three basis vectors given by 

(2.2), (2.3), and (2.4). These MPRM expansions are identified by a polarity 

number < Pn-l1 ., 'I Po > and include the 2n FPRM expansions. Hence, 

any mixed polarity number is represented by n digits using telnary 

numbers, For example, for n=3 and polarity <7>10, the terms of the MPRM 

expansion can be calculated by: 

P < 7 >10 = P < 021 >3 = [ 1 xz] * [Xl Xl] * [1 xo] 

P < 7 >10 = P < 021 >3 = [ 1 xz] * [Xl X1Xo Xl X1 XO] 

P < 7 >10= [Xl X1Xo Xl X1 XO XZXl Xz X1Xo XZ Xl XZ X1XO ] 

Thus, polarity <021>3, denotes that variable Xo appears in complement 

form, Xl appears in mixed form, and Xz appears in true form. 
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2.4.2 Pseudo-Kronecker Product Operation 

In PKRO-RM expansion, the variable can appear III either true, 

complement or mixed form through each function or sub function of the 

RM expansions. Therefore; there are 3Zn
- l different PKRO-RM 

expansIOns each with different polarity numbers. These PKRO-RM 

expanSIOns are identified by a polarity number < pzn_z, "., Po > and 

include the 2ll FPRM expansions and the 3ll MPRM expansions. Hence, any 

pseudo polarity number represented by (2n - 1) digits uses a ternary 

number. The terms of the n-variable PKRO-RM expansion can be 

expressed by Pseudo-Kronecker product [67] symbolised by <) on the 

basis of the three vectors which are expressed in equations (2.2), (2.3), 

and ( 2.4) depending on the required polarity. 

The Pseudo-Kronecker product [69] of two vectors is defined as follows: 

[a b] <) {[e i], [g h]} = [a(g h), bee i)] = rag ah be bi] 

For example, for n=2 and polarity <14>10, the terms of the PKRO-RM 

expansion can be calculated by: 

p < 112 >3= [Xl (complement)]<) {[xo (complement)], [xo (mixed)]} 

p < 14 >10 = p < 112 >3 = [1 Xl] <) {[1 xoL [xo xo]} 

[xo Xo Xl X1XO] 

Further, polarity <112>3, denotes that variable Xl appears in complement 

form, while variable Xo appears in complement form within the true part of 

variable Xl' and in mixed form within the complement part of variable Xl' 

Thus, FPRM & MPRM terms for each polarity expansion can be produced 

by using Kronecker product while PKRO-RM terms for each polarity 
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expansion can be produced by using Pseudo-Kronecker product between 

three different vectors which are expressed in (2.2), (2.3), and (2.4) 

depending on the required polarity. 

2.4.3 Continuous Sum Operation 

The terms of the n-variable PPDRM expanSIOn expressed in equation 

(1.11) can also be written by performing Continuous sum operation [20] 

symbolised )( on the basis vector [Xj 0] as shown in equation (2.5). 

F(xn-lJ xn- 2J xo) = ([Xn-l 0])( [xn- 2 0])( .... )( [xo OJ} + Qi (2.5) 

Where Qi are the sum terms of the PPDRM. There are 3ll different 

MPDRM expansions including the 2ll different FPDRM expansions, each 

with different polarity numbers. These different 3ll expansions can be 

expressed by Continuous sum operation on the basis of the following three 

vectors [69] in the form shown below: 

[Xj 0] if Xj is in true form (2.6) 

[Xj 0] if Xj is in complement form (2.7) 

if Xj is in mixed form (2.8) 

The Continuous sum operation [20] of two vectors is defined as follows: 

[a b] )( [ e f] = [a + e a + f b + e b + f] 

For example, for n=3 and polarity < 7 >10, the terms of the MPDRM 

expansion can be calculated by: 

p < 7 >10 = P < 021 >3= [X2 0])( [Xl Xl])( [Xo 0] 

= [X2 0])( [Xl + Xo Xl Xl + Xo Xl ] 

p < 7 >10 = [X2 + Xl + Xo X2 + Xl X2 + Xl + Xo X2 + Xl 

Xl + Xo Xl Xl + Xo Xl] 
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Thus, mixed Dual polarity <021>3, denotes that variable Xo appears In 

complement form, Xl appears in mixed form, and X2 appears in true form. 

2.5 Bidirectional Conversions Techniques 

The Tabular technique [31] is extended here to generate MPRM/MPDRM 

expansions starting from PPRM/PPDRM expansion, respectively. The 

proposed techniques are suitable for manual computation as well as 

computer implementation and are applicable to single and multi-output 

Boolean functions. The polarity of any MPRM/MPDRM expansion can be 

represented by replacing each variable by 0, 1, or 2 depending on whether 

the variable is used in true, complement, or mixed form respectively. The 

polarity will be the decimal equivalent of the resulting ternary number. 

2.5.1 Between FPRM & MPRM for single output functions 

This method is explained as follows: 

1. List all the product terms of the zero polarity RM in binary. 

2. Represent mixed polarity by using ternary number 

< Pn-lJ .'" Po > as follows: 

{

O' 
< Pj > = 1, 

2, 

if Xj is in true form 
if Xj is in complement form 
if Xj is in mixed form 

3. Two new extensions are added; the first one is to convert from true 

fixed to mixed and reverse, and the second is to convert from 

complement fixed to mixed and reverse depending on the required 

polarity. The procedure is as follows: 

34 



Extended_Tabular Techniques for Reed Muller forms Conversions 

a) Select a variable Xj to be changed from fixed true to mixed or 

reverse. For every term containing a zero in position}, Xj' generate 

additional term with a one in position}, (Xj) (new). 

b) Select a variable Xj to be changed from fixed true to 

complement or reverse (same as Tabular technique), for every term 

containing a one in position}, Xj' generate additional term with a zero 

in position} ,(Xj). 

c) Select a variable Xj to be changed from fixed complement to 

mixed. Use the methods explained above to convert from 

complement to true form and then to convert from true to mixed 

form(new)' 

4. Compare the generated terms with original terms and cancel any 

identical pair of terms. Then add the uncancelled generated terms to 

the original terms. 

5. Repeat steps 3 and 4 for all other variables. The resulting uncancelled 

terms are the MPRM product terms. 

2.5.2 Between FPRM & MPRM for multi-output functions 

The Bidirectional conversion for multi-output Boolean functions from 

PPRM to MPRM is accomplished by adding an array which stores the 

outputs for each input. In order to calculate the outputs for the terms after 

generating new terms, step 4 in section 2.5.1 is changed as follows: 

- In case that the new generated term duplicates one of the original terms, 

perform Ex OR operation between the content of the array which contains 

the outputs for the original terms and the content of the array which 

contains the outputs for the generated terms. The output of the original 

terms must be replaced by the EX OR result. 
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Example 2.3: Consider multi-output PPRM functions as shown below: 

fl = 1 EB Xo EB Xl Xo f2 = Xl 

f3 = 1 EB Xo EB Xl EB Xl Xo f4 = Xo EB Xl EB Xl Xo 

The terms for multi-output PPRM functions are shown in Table 2.6. 

Table 2.6: PPRM terms for Example 2.3 

Inputs Outputs 
Xl Xo 14 h fi fi 
0 0 0 1 0 1 

0 1 1 1 0 1 

1 0 1 1 1 0 

1 1 1 1 0 1 

To find MPRM expansion withp <7>10= p < 21>3 ,the polarity of variable 

Xl must change from fixed to mixed form and the polarity of variable Xo 

must change from fixed to complement form. The details of changing the 

polarity of variable Xl from fixed true form to mixed form are shown in 

Table 2.7. 

Table 2.7: Terms generated by Xl for Example 2.3 

PPRM Terms generated by X1 
Inputs . Outputs New Terms Outputs 
Xl Xo 14 h fi fi Xl Xo 14 h fi fi 
0 0 0 1 0 1 1 0 0 1 0 1 

0 1 1 1 0 1 1 1 1 1 0 1 

1 0 1 1 1 0 

1 1 1 1 0 1 

Performing Ex OR operation for the outputs of each identical pair leads to 

p <20>3 = P <6>10 as shown in Table 2.8. 
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Table 2.8: Terms for Polarity 6 for Example 2.3 

Inputs Outputs 
Xl Xo 14 .f3 12 fi 
0 0 0 1 0 1 

0 1 1 1 0 1 

1 0 1 0 1 1 

1 1 0 0 0 0 
(This term is cancelled) 

The details of changing the polarity of variable Xo from fixed true form to 

complement form are shown in Table 2.9. 

Table 2.9: Terms generated by Xo for Example 2.3 

Polarity 6 Terms generated by Xo 
Inputs Outputs New Terms Outputs 
Xl Xo 14 13 12 .Ii Xl Xo J4 .f3 Ji .Ii-
0 0 0 1 0 1 

-. 

0 1 _I 1 0 1 0 0 1 1 0 1 -

I 0 1 0 1 1 

Performing Ex OR operation for the outputs of each identical pair leads to 

p <21>3 = P <7>10 as shown in Table 2.10. 

Table 2.10: Terms of Polarity 7 for Example 2.3 

Inputs Outputs 
Xl Xo 14 .f3 .12 fi 
0 0 1 0 0 0 

0 1 1 1 0 1 

1 0 1 0 1 1 

Hence, the MPRM form inp <7>10 are as follows: 

fl = XOXl EB Xl 

f3 = X1XO 

f2 = Xv 

f4 = XOXl EB Xl EB Xl 
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As a result, the designing of the multi-output MPRM functions; Polarity 7 

need three unique terms only. 

To prove that all the polarities derived represent the same function: 

1) In FPRM, P<O>lO 

fl = 1 EB Xo EB Xl Xo 

= 1 EB XOXl 

= 1 EB Xl EB Xl Xo 

= Xl EB XOXl which is the same expression for fl in MPRM for p <21>3' 

2) Note that f2 is same in FPRM & MPRM. 

3) f3 = 1 EB Xo EB Xl EB X1XO 

Xo EB XOXl 

X1XO which is the same as f3 in MPRM for p < 21 >3 

4) In FPRM , P<O>lO 

f4 = Xl EB Xo 89 X1XO 

In MPRM, p<21 >3 , 

f4 = XOXl EB Xl EB Xl 

= Xl (XoEB 1) EB Xl EB Xl 

X1XO EB Xl EB Xl EB Xl 

Xl EB XO(Xl EBl) 

Xl EB Xo EB Xl Xo which is the same as f4 in FPRM for p < 0 >10 

2.5.3 Demonstration of the Bidirectional Conversion for MPRM 

The standard CSOP Boolean function can be assembled into 3n mixed 

polarities including the 2n fixed polarities. Equations for the fixed and 
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mixed polarity RM expansions are listed below to compare terms between 

each of them. For a function with two variables the RM expansions will be 

as follows: 

The terms of fixed true polarity are given in equation (2.9), the terms of 

fixed complement polarity are given in equation (2.10), while the terms of 

mixed polarity are given in equation (2.11) 

[1 Xl] * [1 xo] = [1 Xo Xl Xl xo] 

[1 Xl] * [1 xo] = [1 Xo Xl Xl xo] 

(2.9) 

(2.10) 

(2.11 ) 

It can be seen that 0/1 in fixed means absent/present while 0/1 in mixed 

means complement/true. By comparing equations (2.9) and (2.10), it is 

evident that variable Xl in (2.11) has mixed polarity while it has fixed true 

in (2.9). The last two product terms for the two equations are the same 

while the first two tenns are different. 

Further, 

Term in (2.9) EB new term - Term in (2.11) 
1 EB Xl Xl 

Xo EB Xl Xo = Xo Xl 

It can be concluded that changing the polarity of variable Xl from fixed true 

to mixed can be achieved by looking for any zeros related to variable Xl to 

generate new terms with a one in the position of variable Xl' 
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2.5.4 Between FPDRM & MPDRM for single output functions 

This method is explained as follows: 

1. List all the sum terms of the PPDRM in binary 

2. Represent dual mixed polarity by using ternary number 

< Pn-V ... , Po > as shown in section 2.4.1. 

3. Two new extensions are added to the Tabular technique; the first one is 

to convert from true dual fixed to dual mixed and reverse, and the 

second is to convert from dual complement fixed to dual mixed and 

reverse depending on the required polarity. The procedure is as follows: 

a) Select a variable Xj to be changed from dual fixed true to dual 

complement or reverse (same as in Tabular Technique), for every 

term containing a zero in position j, Xj' generate additional term with 

a one in position}, Xj' 

b) Select a variable Xj to be changed from dual fixed true to dual mixed 

or reverse, for every term containing a one in position 

j, Xj, generate additional term with a zero in position j, Xj (new). 

c) Select a variable Xj to be changed from dual fixed complement to 

dual mixed. Use the methods explained in sections (a) and (b) to 

convert from dual complement to dual true and then to convert from 

dual true to dual mixed form(new)' 

4. Compare the generated terms with original terms and cancel any 

identical pair of terms. Then add the uncancelled generated terms to the 

original terms. 

5. Repeat steps 3 and 4 for all other variables. The resulting uncancelled 

terms are the MPDRM terms. 
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2.5.5 Between FPDRM & MPDRM for multi-output functions 

Bidirectional conversion for multi-output Boolean functions from FPDRM 

to MPDRM is accomplished by adding an array which stores the outputs 

for each input. In order to calculate the outputs for the terms after 

generation new terms, step 4 in section 2.5.4 was changed as follows: 

- In case that the new generated term duplicates one of the original terms, 

perform ExNOR operation between the content of the array which contains 

the outputs for the original telms and the content of the array which 

contains the outputs for the generated terms. The output of the original 

terms must be replaced by the EXOR result. Note that in CPOS, 0 means 

that this term is present. 

Example 2.4: Consider multi-output PPDRM functions (;is shown below: 

Ii = 0, 

[3 = (Xl + xo) 

[2 = (Xl + xo) 0 Xo 0 0 , 

[4 = (Xl + xo) 0 Xo 

The terms for multi-output PPDRM functions are shown in Table 2.11. 

Table 2.11: PPDRM Terms for Example 2.4 

Inputs Outputs 
Xl Xo 14 h fi .ft 

(This term doesn 't exist) 0 0 0 0 0 1 

0 1 1 1 1 1 
I 

1 0 0 1 . 0 1 

1 1 1 1. 0 0 

To find its MPDRM expansion with p <7>10 = P <21>3 , the polarity of 

variable Xl must change from dual fixed to dual mixed and the polarity of 
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variable Xo must change from dual fixed to dual complement form. The 

details of changing the polarity of variable Xl from dual fixed true form to 

dual mixed form are shown in Table 2.12. 

Table 2.12: Terms generated by xlfor Example 2.4 

PPDRM Terms generated by Xl 
Inputs Outputs New Terms Outputs 
Xl Xo 14 13 12 fi Xl Xo 14 .f3 h fi 

() () 0 0 0 1 
.. 

1 0 0 1 0 1 () () 0 1 0 1 

1 1 1 1 0 0 0 1 1 1 0 0 

Performing ExNOR operation for the outputs of each identical pair leads to 

p <6>10 = P <20>3 as shown in Table 2.13. 

Table 2.13: Terms for Polarity 6 for Example 2.4 

Inputs Outputs 
Xl Xo 14 13 12 it 
0 0 1 0 1 1 

0 1 1 1 0 0 

1 0 0 1 0 1 

1 1 1 1 0 10 

The details of changing the polarity of variable Xo from dual fixed true 

form to dual form are shown in Table 2.14. 
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Table 2.14: Terms generated by Xo for Example 2.4 

Polarity 6 Terms generated by Xo 

Inputs Outputs New terms Outputs 

Xl Xo 14 13 h /1 Xl Xo f4 h h it 
0 0 1 0 1 1 0 1 1 0 1 J 
0 1 1 1 0 0 

1 0 0 1 0 1 1 1 0 1 0 1 

1 1 1 1 0 0 
, 

Performing ExNOR operation for the outputs of each identical pair leads to 

p <7>10 = P <21>3 as shown in Table 2.15. 

Table 2.15: Terms for Polarity 7 for Example 2.4 

Inputs Outputs 

Xl Xo 14 h h fi 
0 0 1 . 0 it 1 

0 1 1 0 0 0 

1 0 0 1 0 1 

1 1 '0 1. 1 0 

Hence, the MPDRM form in p <7>10 have the following expressions: 

11 = Xl 0 Xl' 

13 = (Xl + xo)0 Xl 

12 = Xl 0 (Xl + Xo) 

14 = (Xl + xo) 0 Xl 

As a result, the designing of the multi-output MPDRM functions; Polarity 7 

need three unique terms only. 

To prove that all the polarities derived represent the same function: 

1) In MPDRM p < 7 >10' it = Xl 0 Xl = 0 same as 11 for FPDRM 
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2) In FPDRM J P < 0 >10 J f2 = (Xl + xo) 0 Xo 0 0 

= (Xl + xo) 0 Xo 

(Xl 0 Xo) + (Xo 0 Xo) 

xlO Xo 

In MPDRM J P < 7 >10 J f2 = xlO (Xl + Xo) 

= (Xl 0 Xl) + (Xl 0 Xo) 

= xlO Xo 

3) In FPDRM J P < 0 >10 J f3 = (Xl + xo) 

In MPDRM JP < 7 >10 J f3 = (Xl + xo)O Xl 

= Xl + Xo 
4) In FPDRM J P < 0 >10 J f4 = (Xl + xo) 0 Xo 

= Xl + Xo 

In MPDRM JP < 7 >10 J f4 = (Xl + xo) 0 Xl 

= Xl(Xl + xo) + Xl(Xl + xo) 

= Xl + X1XO + X1XO 

Xo + XOXl 

= Xl + Xo 

2.5.6 Demonstration of the Bidirectional Conversion for MPDRM 

The Boolean function can be assembled into 3n mixed dual polarities. 

These terms can be identified by performing Continuous sum operation )( 

on vectors of equations from (2.6) to (2.8) .. 

F or a function with two variables the PPDRM expanSIOns will be as 

follows: 

[Xl 0])( [Xo 0] = [xo + Xl Xl Xo 0] 
Dual Fixed Polarity (2.12) 
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If the variable Xl appears in mixed and variable Xo appears in true form, 

then the equation for MPDRM with Polarity <6>10 = <20>3 will be 

expressed as in equation (2.13). 

[Xl Xl ])( [Xo 0] = [xo + Xl Xl Xo + Xl Xl] 

Dual Mixed polarity (2.13) 

It can be seen that 0/1 in FPDRM denotes present /absent, while 0/1 in 

MPDRM denotes true/complement. Comparing equations (2.12) and 

(2.13), it is obvious that variable Xl in equation (2.13) has mixed polarity 

while it has fixed polarity in equation (2.12). The first two sum terms for 

the two equations are the same while the last two terms are different. 

Further, 

Term in (2.12) (:) New Term = Term in (2.13) 

0 (:) Xl Xl 

Xo (:) (xo + Xl) = Xo + Xl 

It can be concluded that changing the polarity of variable Xl from fixed to 

mixed form can be achieved by looking for any logic one related to 

variable Xl to generate a new terms with a logic zero in the position of 

variable Xl. 

If both variables appear in mixed form, then the equation for MPDRM with 

p < 8>10 = P <22>3 will be as in equation (2.14). 

[Xl Xl ])( [xo Xo] = [Xo +Xl Xo + Xl Xo +Xl Xo +Xl ] (2.14) 

Comparing equations (2.13) and (2.14), all the sum terms for the two 

equations are different. Therefore, for conversion between PPDRM as in 

equation (2.12) to MPDRM as in equation (2.14), can be done by looking 

for any logical one related to variable Xl to generate a new term with 
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a logical zero in the position of variable Xl and the same thing have to be 

done for variable Xo. 

2.6 Experimental Results 

These algorithms for MPRMlMPDRM were applied to several MCNC 

benchmark functions [70-72]. The results are given in column five of 

Tables 2.16 and 2.17. These algorithms were tested on a personal computer 

with Intel CPU running at 2.4 GHz and 2 GB RAM under Windows XP, 

professional. They were implemented using C++ and compiled using 

Bloodshed Dev C++. An 110 denotes the number of inputs/outputs 

respectively of benchmark name. 

PPRMIPPDRM Terms represent the number of fixed true/dual fixed true 

terms, respectively for the specified function. The number of terms for the 

optimum mixed/dual mixed polarity running exhaustive search are given in 

Terms for optimum MPRMIMPDRM, respectively. 

The CPU time required to run exhaustive search for all the benchmark 

examples are given in CPU Time. Saving MPRMIMPDRM represents the 

saving in mixed/dual mixed terms, respectively, compared with Espresso 

terms based on equation (2.15) 

Asolute(Espresso Terms - Optimal mixed terms) 
Saving = x 100% (2.15) 

Largest(Espresso Terms, Optimal mixed terms) 

Largest of (Espresso Terms, Optimal mixed terms): choose either Espresso 

terms or optimal mixed terms depending on which one is bigger. 
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Table 2.16: Benchmark results for MPRM 
Name I/O Espresso Terms Terms CPU Time Saving 

Terms for for for 
PPRM Optimum MPRM 

MPRM % 
Dc1 4/7 15 16 10 0.031 sec. 33 

Xor5 5/1 16 5 5 0.031 sec. 69 

bw 5/28 87 32 22 0.031 sec. 75 

Squar5 5/8 32 23 23 0.031 sec. 28 

ConI 7/2 9 19 14 0.125 sec. -35 

Inc 7/9 34 91 34 0.14 sec. 0 

newill 811 22 57 13 0.766 sec. 41 

Misex1 8/7 32 60 13 0.766 sec. 59 

Sqrt8 8/4 40 128 26 0.781 sec. 35 

Rd84 8/4 256 107 107 0.831 sec. 50 

Risc 8/31 74 89 30 0.922 sec. 59 

Clip 9/5 167 217 182 5.68 sec. -8 

Apex4 9119 438 445 444 7.04 sec. -1 

Sym10 1011 837 266 266 38.985 sec. 68 

Sa02 10/4 58 1022 76 38.703 sec. -24 

Ex1010 10110 284 1023 810 43.594 sec. -64 

Dk17 10111 31 996 30 39.42 sec. 6 

Table3 14114 162 5504 401 1 day & 2 h. -59 

Alu4 14/8 1028 4406 2438 1 day & 2 h. -57 

Misex3 14114 1848 6028 1421 1 day & 3 h. 23 

T481 1611 481 41 13 14 days 97 

B12 15/9 431 209 64 10 days & 4 85 
h. 

Table 5 15117 157 74500 551 14 days & 8 -72 
h. 
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Table 2.17: Benchmark results for MPDRM 

Name I/O Espresso Terms Terms CPU Saving 
Terms for for Time for 

PPDRM Optimum MPDRM 
MPDRM 010 

Dc1 4/7 15 10 2 0.02 sec 86 

root 5/8 57 136 83 0.75 sec. -31 

ConI 7/2 9 24 14 0.12 sec. -52 

Inc 7/9 34 56 34 0.12 sec. 0 

Misex1 8/7 32 5 5 0.75 sec. 84 

Sqrt8 8/4 40 11 11 0.75 sec. 73 

Rd84 8/4 256 256 108 0.75 sec. 58 

Risc 8/31 74 21 12 0.75 sec. 84 

clip 9/5 167 305 174 5.36 sec. -4 

Apex4 9119 438 512 407 5.34 sec. 7 

Ex1010 10110 284 1023 825 38.32 sec. -65 

Dk17 10111 32 8 8 38.18 sec. 75 

Table3 14/14 162 4553 421 1 day&6 h -61 

Alu4 14/8 1028 1091 496 1 day&4 h 52 

Misex3 14114 1848 6442 803 1 day&l h 57 

B12 15/9 431 10 10 12 days 98 
&2h. 

Table 5 15117 157 4421 554 14 days -72 
&5h. 

The experimental results for MCNC benchmark circuits, displayed in 

Tables 2.16 and 2.17 demonstrate that, in some cases, the circuit can be 

better minimised in DRM expansion using ORlExNOR forms such as Dc 1, 

Risc and Clip benchmarks, whereas for other circuits, the reverse is the 

case such as Table3 and Table5 benchmarks. Further, in other cases, the 

circuit can be better simplified in the standard CSOP Boolean function 
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using Espresso tools [73] such as ConI benchmark. The reason for that is 

some circuits can be simplified in Boolean domain, while others can be 

simplified either in MPRM or MPDRM domain depending on the structure 

of the circuits. 

2.7 Computing the Pseudo-Kronecker RM expansions 

A new fast and efficient technique is proposed to generate the coefficients 

of PKRO-RM expansion from PPRM. It can also be used to generate 

PKRO-RM expansions from standard CSOP Boolean functions. This 

technique can be easily programmed on computers. 

The purpose of generating different sets of coefficients related to RM is 

that they contain different number of terms. Therefore, the minimum one 

can be selected to design the circuits with reduced gate count. To widen the 

search space and achieve better synthesis tools, representations of PKRO­

RM expansions are investigated. 

2.7.1 PKRO-RM expansion from PPRM expansion 

This new technique is based on the technique described in section 2.5. The 

explanations in detail (for n=3) are as described below: 

1. List all the product terms of the zero polarity RM in binary 

2. Represent pseudo polarity number using ternary codes, for 3-variables 

f(x z} Xv Xo), 23-1 = 7 digits to represent the polarity number as shown: 

< P3zn_z >10 = < P6} PS,P4} P3} PZ} Pv Po >3 

3. If the required polarity for variable Xz represented by (P6) IS 

complement or mixed, follow the Extended_Tabular technique to 

change its polarity as required. If (P6) is true, no action is required. 

4. Change the polarity for variable Xl which is represented by two polarity 

digits (ps & pz) , Ps to represent the polarity of Xl within the true part 
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of variable Xz (i.e for all terms with Xz = 1) , while pz to represent the 

polarity of Xl within the complement part of variable Xz (i.e for all 

terms with Xz = 0). Therefore, depending on the requirements, follow 

the Extended_Tabular steps to change the polarity of variable Xl in both 

parts. 

5. Follow the same procedure with the polarity for variable Xo which is 

represented by four digits (P4) P3} Pi & Po) , P4 represents the polarity of 

Xo within the true part of both variables Xz & Xl (i.e for all terms with 

Xz = Xl = 1) ,while P3 represent the polarity of Xl within the true 

part of Xz and complement part of variable Xl' Similarly, Pi represents 

the polarity of Xo within the complement part of variable Xz and true 

part of variable Xl , while Po represents the polarity of variable Xo 

within the complement part of both variables Xz & Xl' Therefore 

depending on the requirement, follow the Extended_Tabular steps to 

change the polarity of variable Xo in both parts. 

This technique could also be used to calculate the coefficients of PKRO­

RM from CSOP terms. If all variables exist within the minterm, as in (1.8), 

follow the Extended_Tabular method [25] and this technique to change the 

polarity of all variables from mixed form to the required polarity. 

Example 2.5: Given 3-variable PPRM function: 

f(x z} Xv xo) = EB L(7}2}1}0) = XZxlxo EB Xl EB xoEB 1 

To find its PKRO-RM expansion with polarity 318 = <1211012>3, using 

the Extended_Tabular technique [25], the following steps are necessary: 

• <1211012> represent the polarity digits as in <P6,PS,P4} P3'pZ} Pi} Po > 
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• Since P6= 1, change the polarity of variable Xz from true form to 

complement form by changing every terms with logic one related to 

variable Xz to logic zero as explained by the Extended Tabular 

technique [25] as shown in Table 2.18. 

Table 2.18: Polarity changing of variable Xz for Example 2.5 

PPRMterms Generated terms 

Xz I Xl I Xo Xz I Xl I Xo 

0 0 0 

0 0 1 

0 1 0 

1 1 1 0 1 1 

• Since Ps = 2, the polarity of variable Xl within the true part ofvaraible 

Xz has to be changed to mixed polarity. Therefore, change the polarity 

of variable Xl from true form to mixed form for all terms with Xz = 1 , 

by changing every terms with logic zero related to variable Xl to logic 

one. Since pz = 0 which is related to variable Xl in the complement 

part of variable Xz ,no action is required as shown in Table 2.19. 

Complemen 
t part of X2 

True part 
OfX2 

Table 2.19: Polarity changing of variable Xl for Example 2.5 

Polarity <1200000> Generated terms 

Xz I Xl I Xo Xz I Xl I Xo 
0 0 0 

0 0 1 

0 1 0 

0 1 1 

:> 1 1 1 

51 



--------- --------------~~~~ --~~- -----

Extended Tabular Techniques for Reed Muller forms Conversions 

• Since P4& P3 = 1, change the polarity for variable Xo of both true and 

complement parts of variable Xl within the true part of variable X z from 

true to complement form as shown in Table 2.20. 

ent Complem 
parts OfX2 

Xl 

True parts 
OfX2&Xl 

& 

Table 2.20: Polarity changing of Xo within the true part of Xz 

for Example 2.5 

Polarity <1200000> Generated terms 

Xz I Xl I Xo Xz I Xl I Xo 

{ 0 0 0 

0 0 1 

0 1 0 

0 1 1 

?- 1 1 1 1 1 0 

• Since Pi = 1, change the polarity for variable Xo within the true part of 

variable Xl and complement part of variable xz, from true form to 

complement form as shown in Table 2.21. 

• Since Po = 2, change the polarity for variable Xo in the complement 

parts of variables Xl and X z from true form to mixed form as shown in 

Table 2.22. 

• The resulting PKRO-RM terms are shown in Table 2.23 

Table 2.21: Polarity changing of Xo within the complement part 
of Xz & true part of Xl for Example 2.5 

Polarity <1211000> Generated terms 

Xz I Xl I Xo Xz 1 Xl J Xo 

0 0 0 
0 0 1 
g 1 g 

0 1 1 Q 1 Q 
I 1 1 
1 I 0 
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Table 2.22: Polarity changing of Xo within the complement part 
of Xz & Xl for Example 2.5 

Polarity <1211010> Generated terms 

Xz I Xl I Xo Xz I Xl I Xo 

0 0 0 Q Q I 
0 0 1 
0 1 1 
1 1 1 
1 1 0 

Table 2.23: Resulting PKRO-RM terms, polarity 318 
for Example 2.5 

PKRO terms - Polarity <1211012>3 

Xz I Xl I Xo 

0 0 0 
0 1 1 
1 1 1 
1 1 0 

The terms ofPKRO-RM expansion-polarity <318>10 can be obtained using 

Pseudo-Kronecker product as follows: 

[1 xz ] <> ([Xl Xl] <> {[1 xo], [1 xo]}, [1 Xl] <> {[1 Xo], [Xo Xo]}) 

= [1 Xz] <> ([ Xl X1Xo Xl Xl Xo], [xo Xo Xl X1X O]) 

= [xo Xo 

P <1211012>3~ f(xz, Xv Xo) = 1ToEf) 1f3Ef) 1f7Ef) 1f6 

= Xo Ef) Xl Xo Ef) XZXl Ef) XZXl Xo 

Xo Ef) 1 Ef) X1XO (-]) Xl Ef) XZXl Ef) Xl Ef) XZX1XO Ef) X1XO Ef) XZXl Ef) Xl 

XZXl Xo Ef) Xl Ef) xoEf) 1 = Polarity 0 
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2.7.2 PKRO-RM expansion from standard CSOP form 

This technique could also be used to calculate the coefficients of PKRO­

RM from CSOP terms. Therefore, it is possible to find any polarity related 

to PKRO-RM form directly from the CSOP form. 

Example 2.6: Given 2-variable, CSOP Boolean function: 

t(Xl' xo) = L m(3,1,0) = X1 X O + X1 XO + X1 X O 

If all variables exist within minterm, OR gate (+) can be replaced by 

ExOR gate (EB), then the function can be rewritten as shown below: 

t(Xl' xo) = xl xo EB X1 X O EB X1 X O 

This expression represents ExOR CSOP with p <8>10= p<22>3, with both 

variables in mixed form. To find its PKRO-RM expansion with polarity 

<11>10 = <102>3, using the Extended Tabular technique [25], the 

following steps are followed: 

• The polarity of variable Xl must change from mixed form to 

complement form using the Extended_Tabular technique described in 

section 2.4, changing the polarity of variable Xl from mixed to fixed 

true as shown in Table 2.24 , and then change it from fixed true form to 

complement form as shown in Table 2.25. 

Table 2.24: Changing Polarity of 
Xl from mixed to true for Example 2.6 

MPRM terms-polarity <22>3 Generated terms 

Xl I Xo Xl 1 Xo 

0 0 1 0 

0 1 I I 

I I 
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Table 2.25: Changing Polarity of 
Xl from true to complement for Example 2.6 

MPRM terms-polarity <02>3 Generated terms 
X1 I Xo X1 I Xo 

Q Q 

0 1 

1 0 Q Q 

• The polarity of variable Xo is already mixed in complement and true 

part of variable Xl, therefore no action is required to change its 

polarity in the complement part of variable Xl , while the polarity of 

variable Xo in the true part of variable Xl should be changed to true 

as shown in Table 2.26. 

Table 2.26: Changing Polarity of 
Xo from mixed to true in the true part of Xl for Example 2.6 

MPRM terms-polarity <12>3 Generated terms 

X1 1 Xo X1 I Xo 

0 1 

1 0 1 1 

• Finally the resulting PKRO-RM terms are shown in Table 2.27. 

Table 2.27: PKRO-RM terms, Polarity 11 
for Example 2.6 

PKRO-RM, Polarity <102>3 

Xl I Xo 

0 1 

1 0 

1 1 
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Using Pseudo-Kronecker product: 

p<l 02>3=P< 11 >10 ~ [(xv Xo) = 1fl EB 1fzEB 1f3 

= Xo EB Xl EB X1XO 

P < 8 >10 ~ [(xv XO) = (f) L m(3,1,O) = X1XO EB X1XO EB X1XO 

= X1XO EB Xl EB X1XO EB X1XO EB Xo 

= Xo EB Xl EB Xl Xo = p<ll>l0 

2.8 Summary 

The definitions and notations for the Kronecker product [68], Pseudo­

Kronecker product [69] and Continuous sum operation [20] are given 

through this Chapter. These operations can be used to find the terms related 

to any polarity for MPRM, PKRO-RM, and MPDRM expansions, 

respectively. 

This Chapter presents new techniques and algorithms for bidirectional 

conversion between FPRM/FPDRM logic functions and MPRM/MPDRM, 

respectively [25, 26]. It can also be used to derive any mixed polarity from 

another mixed polarity for any number of variables for single and multi 

output functions. These techniques are implemented using C++ language 

and fully tested using standard benchmark examples. 

Further, a new and efficient technique is presented to generate the 

coefficients of PKRO-RM starting from PPRM [65]. It can also be used to 

generate PKRO-RM expansions from standard CSOP Boolean functions. 

All these techniques are based on Tabular technique [31] and can be used 

manually or programmed on computers. 
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Chapter Three 

Minterm/Maxterm Separation 
Techniques for RM forms Conversion 

3.1 Introduction 

Techniques presented in [16, 20] were developed to convert CSOP/CPOS 

expressions to FPRMIFPDRM forms respectively. These are extended in 

this Chapter to Minterm/Maxterm separation techniques which are 

straightforward techniques to compute the coefficients of MPRMlMPDRM 

directly from truth vector of the CSOP/CPOS form respectively. Also it can 

be used to derive any mixed polarity from another MPRMlMPDRM 

expresslOn. 

The significant advantages for this approach are its suitability for computer 

implementation and its ability to deal for any number of variables. 

The rest of the Chapter is organised as follows. Boolean matrix 

representation is given in section 3.2. In section 3.3, Minterm separation 

method is explained in details. Section 3.4 demonstrates the Maxterm 

separation method. Experimental Results for optimum polarity using 

Minterm/Maxterm separation technique through doing exhaustive search 

for benchmarks with up to 16 inputs and 28 outputs are given in section 

3.5. 

3.2 Boolean matrix representation 

The proposed synthesis techniques are based on the Boolean matrix 

representation. The following principles and derivations are essential to be 

used for computing the coefficients of the MPRMlMPDRM from the 

standard form of CSOP/CPOS Boolean function, respectively. 
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For n-variable Boolean function, CSOP equation given in equation (1.1) & 

CPOS equation given in equation (1.4) can be re-written in expanded form 

using ExORlExNOR logic gates as in equation (3.1) & (3.2) as shown: 

F(Xn-l, x n - Z, xo) = a Ox n-l'" X1 XO E9 alxn-lxn-Z'" x l xo E9 .... 

E9 aCZn -l)Xn-l .... X1XO (3.1) 

F(xn - lJ xn-z, xo) = (d o+Xn-l + ... Xl + Xo) 0 (dl + Xn- l + ... Xl + Xo) 

o .... 0 (dCZn _ l ) + Xn-l + .. +Xl + Xo) (3.2) 

Definition 3.1: The Boolean functions of equations (3.1) and (3.2) can be 

represented in terms of a coefficient matrix, using the Boolean matrix 

representation [74] by one column 2n row matrix containing the coefficient 

of product/or sum terms . The coefficient matrix is the same as the truth 

vector of the Boolean function. Accordingly, the coefficients matrix for an 

n _variable Boolean function is represented as: 

• In CSOP, the coefficient matrix can be represented as 

(3.3) 

• In CPOS, the coefficient matrix can be represented as 

(3.4) 

The elements of matrix [CM] are placed in the order of decimal equivalent 

to the binary coding of the product/or sum terms. 

Definition 3.2: In equations (3.1) and (3.2), half of the product or sum 

terms contains the variables Xj, j = 0,1,2 .. n - 1, in complement form, 

while the other half contains the same variables Xj in un-complemented 

(true) form. The complemented and the true forms of each variable in 

equations (3.1) and (3.2) are organised in blocks. These blocks are 

classified as odd and even blocks [16,20]. 
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• In case of CSOP form, the odd blocks contain the coefficients of the 

product terms related to complement part of the variable and the 

even blocks contain the coefficients of the product terms related to 

true part of the same variable. 

• In case of CPOS fmID, the odd blocks contain the coefficients of the 

sum terms related to true part of the variable and the even blocks 

contain the coefficients of the sum terms related to complement part 

of the selected variable. 

Definition 3.3: Each variable Xj , divides the coefficients matrix [CM] into 

B blocks. The number of blocks within the coefficient matrix [CM] can be 

computed as B = in-j) , denoted by aI, a2, a3 .... aB and the size of each 

block Sa=2n/B [16,20]. 

Definition 3.4: For any Boolean function in equations (3.1) and (3.2), the 

coefficients matrix [CM] can be separated into two rows for each variable Xj 

and the result stored in a partitioned matrix R (Xj). The first row of the 

partitioned matrix R(xj) will contain the functional values of the 

minterm/maxterm that include the odd blocks of variable (Xj) while the 

second row of this matrix will contain the functional values of the 

minterm/maxterm for the even blocks of the same variable [16,20]. 

~] (3.5) 

Where q=r-l, r=2(n-j) 
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Definition 3.5: 

• In case of CSOP form, perform ExOR operation between the 

elements in the first and second rows of R (Xj) matrix and store the 

result vector in T(xj). This operation is known as "Minterm 

separation around variable Xj". This operation is illustrated by 

Example 3 .1. 

• In case of CPOS form, perform ExNOR operation between the 

elements in the first and second rows of R (Xj) matrix and store the 

resulting vector in T(xj). This operation is known as "Maxterm 

separation around variable xl'. This operation is illustrated by 

Example 3.2. 

Example 3.1: For 3-variables, the coefficient matrix [CM] for 

f(xz, Xv xo) = LC7,6,2,O) has = 23 elements = 8 elements. Each product 

term corresponds to '1' in the coefficient matrix. Hence, [CM] can be 

represented by 

CM= [aD a] a2 a3 a4 a5 a6 a7] 

= [1 0 1 o 0 0 1 1] 

Each variable Xj divides the CM into a Blocks, Number of Blocks B= 2(n-j) 

as explained in Definition 3.3. Accordingly, 

• For variable xz , Number of Blocks B= 2(3-2) = 2 , and size of each 

block Sa= 23/2 = 4 elements in length. Therefore; there are 2 blocks , 

each with 4 elements, CM=[1010 0011] 
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• For variable Xl, Number of Blocks B= i 3
-
1
) = 4 , and size of each 

block Sa= 23/4 = 2 elements in length. Therefore; there are 4 blocks , 

each with 2 elements, CM=[ 10 10 00 11 ] 

• F or variable xo , Number of Blocks B= 2(3-0) = 8 , and size of each 

block Sa= 23/8 = 1 element in length . Therefore; there are 8 blocks , 

each with one element, CM=[ 1 0 1 0 0 0 1 1] 

Each variable Xj appears complement in half of the terms and divides the 

[CM] into Blocks B= in-j) as explained in Definition 3.3. Accordingly, 

• For variable Xz , The partitioned matrix R(xz) can be represented by 

[~:] 
[1010] 
0011 

al represents the complement part (odd block) for variable xz , while 

az represents the un-complementeded part (even block) for variable Xz . 

• For variable Xl , The partitioned matrix R(Xl) can be represented by 

[
10 00] 
10 11 

al & a3 represent the complement parts (odd blocks) for variable Xl, while 

az & a4 represent the un-complemented parts (even blocks) for variable Xl' 

• For variable Xo , The partitioned matrix R(xo) can be represented by 

[
1 1 0 1] 
000 1 
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av a3J as & a7 represent the complement parts (odd blocks) for variable 

xo, while a2J a4J a6 & as represent the un-complemented parts (even 

blocks) for variable Xo. 

Example 3.2: for 4-variables CPOS Boolean function 

f(x3J X2J Xv xo)= TI (15, 11, 7, 6, 5,0) 

The coefficient matrix [CM] has 24 = 16 elements. Each sum term 

corresponds to '0' in the coefficient matrix. Hence, [CM] can be represented 

by: 

CM= [do d1 d2 d3 d4 ds d6 d7 d8 d9 dlO dll dJ2 dJ3 d14 d15 ] 

= [0111 1000 1110 1110] 

Each variable Xj divides the [CM] into Blocks B= 2(n-j) as explained in 

definition 3.3. Accordingly, 

• For variable X3 , Number of Blocks B= 2(4-3) = 2, and size of each block 

Sa= 24/2 = 8 elements in length. 

• For variable X2 , Number of Blocks B= 2(4-2) = 4, and size of each block 

Sa= 24/4 = 4 elements in length. 

• For variable Xl , Number of Blocks B= 2(4-1) = 8, and size of each block 

Sa= 24/8 = 2 elements in length. 

• For variable xo , Number of Blocks B= 2(4-0) = 16, and size of each 

block Sa= 24/16 = 1 element in length. 

Each variable Xj appears complement in half of the terms and divides the 

CM into blocks B= 2(n-jJ as explained in Definition 3.3. Accordingly, 

• For variable X3 , The partitioned matrix R(X3) can be represented by 

R(X3) = [~:] 
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al represents the un_complemented part (odd block) for variable X3 which 

is = [0111 1000], while az represents the complemented part (even block) 

for variable X3 which is = [1110 1110]. 

• For variable Xz , The partitioned matrix R(xz) can be represented by 

[
0111 1110] 
1000 1110 

al & a3 represent the true parts (odd blocks) for variable xz, while 

az & a4 represent the complement parts (even blocks) for variable Xz. 

• For variable Xl , The partitioned matrix R(xl ) can be represented by 

R(xl ) [al a3 as a 7] 
az a4 a6 a8 

R(xl ) [01 10 11 11] 
11 00 10 10 

al} a3} as & a7 represent the un-complemented parts (odd blocks) for 

variable Xv while az} a4} a 6 & a8 represent the complement parts (even 

blocks) for variable Xl' 

• For variable Xo , The partitioned matrix R(xo) can be represented by 

R(xo) [al a3 as a7 a9 a l1 al3 a lS ] 
az a4 a6 a8 alO alZ al4 al6 

R(xo) [~ 1 1 0 1 1 1 ~] 1 0 0 1 0 1 

ail a3} as .. , &alS represent the un-complemented parts (odd blocks) for 

variable Xo, while az} a4} a6 ... & al6 represent the complement parts (even 

blocks) for variable Xo. 

3.3 Minterm Separation Method 

In this section, new method is presented which can be used to compute the 

coefficients of MPRM expansions directly from truth vector of the standard 
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CSOP Boolean function or from FPRM form. Also it can be used to derive 

any mixed polarity from another. Further; these methods could be used to 

calculate the coefficients of standard CSOP Boolean function from any 

mixed polarity. 

3.3.1 Demonstration for the Minterm Separation technique 

In this section , fast, and efficient, method has been invented based on 

separation of minterms within CSOP expression to compute the bi 

coefficients (equation (1.9)) of MPRM expansion from ai coefficients 

(equation (1.1)) ofCSOP expression, where i = 0,1,2 .... (2n -1). Each 

MPRM expansion has 3ll coefficients set of bi , which is associated with 

product terms of RM expansion as given in equation (1.9). If all variables 

are present in every term in CSOP function as in (1.1), then the OR can be 

replaced by ExOR giving equation (3.1). This expression represents 

MPRM with all variables in mixed form. 

For n-variable functions (equation (3.1)), the minterm separation around 

the variable Xj is shown in equation (3.5) as partitioned matrix R(xj). The 

odd blocks which include the terms where the variable Xj appears in 

complement form only are allocated in the upper row, while the even 

blocks which include the terms where the variable Xj appears in true form 

only are allocated in the lower row. 

In order to change the variable from standard CSOP form to true form, the 

complement part has to be eliminated from equation (3.1). To eliminate the 

complement part for any variable Xj , the following formulas can be 

applied: 

a Xj ffi b Xj = a (lffixj) ffi b Xj = a ffi (a ffi b)xj (3.6) 
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where a & b E {O, I}. It is clear that the coefficient associated with the 

complement part will stay unchanged while the coefficient associated with 

true part has to be ExORed with the coefficient of the complement part. 

This can be achieved by having the ExOR operation between the upper and 

lower rows of the partitioned matrix R (x}) , and the elimination of the 

complement pmi can be done by replacing the coefficients of the 

corresponding even blocks of the [CM] by the ExOR results. 

In order to change the variable from standard CSOP form to complement 

form, the true pmi has to be eliminated from equation (3.1) as shown 

below:. 

(3.7) 

It is obvious that in the elimination of the true part of variable Xj, the 

coefficients associated with the true part will stay unchanged while the 

coefficients associated with complement part have to be ExORed with the 

coefficients of the true part. 

This can be achieved by also having the ExOR operation between the upper 

and lower rows of the partitioned matrix R(x), and the elimination of the 

true pmi can be done by replacing the coefficients of the corresponding 

odd blocks of the [CM] by the ExOR results. 

The variable Xj in the standard CSOP represents also the mixed form for 

the given variable. Therefore; in order to change the variable from standard 

CSOP form to mixed form, no action is required. 

3.3.2 Minterm Separation Method from CSOP 

Step 1: Store the coefficients of the CSOP in the truth vector [CM] . 

Step 2: Create partitioned matrix R (Xj) from [CM] vector for each variable 

Xj as defined in definition 3.4. 
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Step 3: For each variable Xj' perform ExOR operation between the 

elements in the first and second rows of partitioned matrix R (Xj) 

matrix and store the result vector in T(xj). 

Step 4: If the required polarity for the Xj variable is true, replace the content 

of each true variable Xj (even blocks) in the vector [eM] by the 

content of vector T(xj). 

Step 5:If the required polarity for the Xj variable is complement form, 

replace the content of each complement variable Xj (odd block) in 

the truth vector [eM] by the content of vector T(xj)' 

Step 6: If the required polarity for the Xj variable is mixed form, no action IS 

required. 

Step 7: Repeat the previous steps for the rest of the variables by using the 

new vector from steps 2,3,4,5, or 6 depending on the polarity. 

Step 8: The one element stored in the coefficient matrix [eM] represent the 

number of coefficients for the particular polarity for the MPRM 

expansIOn. 

Step 9:To derive the equations for the designed circuit, re-arrange the 

coefficients of eM matrix. The re-arrangement can be done by 

replacing all polarity digits with mixed form (pj =2) by true form 

(p) -0). Then perfOlID ExOR operation of the extension for each 

coefficient stored in the resulting matrix [eM] with the polarity 

number calculated after doing replacement. This step is explained in 

details in Example 3.3. Figure 3.1 shows the pseudo code for this 

algorithm. 
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Procedure Minterm Separation ( ) 
{ 
Generate the truth Vector CM for the given Boolean Function 

(as in Definition 3,1), 
Represent mixed polarity by using ternary numbers <Pi>=<pn-l pn-Z ",po> 
For each variable xi 

{ 
Generate partitioned matrix R(Xi) (as in Definition 3,4) 
Generate T (Xi) = Upper row of R (Xi) E9 Lower row ofR(xil 

If (Pi = 0 (True polarity) ) 
MPRM_ TRUE( ) 

If (Pi = 1 (Complement polarity) ) 
MRRM_COMPLEMENT( ) 

If (Pi = 2 (Mixed polarity) ) 
Leave the CM vector without any change 

} End for 

Re-arrange the coefficients of CM matrix, replace any 2 ( if exist) in the 
polarity number calculated by 0 and perform ExOR operation of the 
extension for each coefficient with the polarity number calculated, 
} End Minterm Separation ( ) 

Procedure MPRM_ TRUE( ) 
Replace the even blocks of CM matrix (true form of variable (Xi)) by the T 
(Xi), odd blocks of CM remain unchanged, 
End MPRM_ TRUE( ) 

Procedure MPRM_COMPLMENT( ) 
Replace the odd blocks of CM matrix (complement form of variable (xi)) by 
the T (Xi), even blocks of CM remain unchanged 
End MPRM_COMPLEMENT() 

Figure 3.1: Pseudo Code for the Minterm separation technique 

Example 3.3: Convert 3-variables Boolean function from CSOP form to 

MPRM-Polarity <7>10= <021>3 

f(xz, Xl' xo) = I m(7,6,2,0) 

f(xz, Xl, xo) = xzxlXo + XZX1Xo + XZX1XO + XZX1XO 
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1) Store the coefficient of the product terms in the truth vector 

eM = [10 10 00 11] 

2) Separate eM matrix around variable (xz). The number of blocks for the 

variable (xz) = 2(3-2) = 2 and the size of each block= 23/2 = 4, this 

means that eM is divided into two blocks and each block contains 4 

elements. (note that the upper row of R(xz) contains the bold letters of 

eM matrix) 

~pper Ro~ 
eM = [ 1010 

~owelRo~ 
0011 ] 

R(xz) = (1 0 1 
001 ~) ffi 

T(xz) = (1 0 0 1) 

3) Since the required polarity is '0' for variable (xz), replace the true part 

of (xz) in eM vector by T(xz) 

eM = [1010 1001] 

4) Since the polarity is '2' for variable (Xl), leave the vector eM without 

any change. 

eM = [1010 1001] 

5) Separate eM matrix around variable (xo),. The number of blocks for 

the variable (xo) = 2(3-0) = 8 and the size of each block= 23/8= 1 , this 

means that eM is divided into eight blocks and each block contains 1 

element. 

eM = [1010 1001] 

_ (1 1 1 O):t: R(xo) - 0 0 0 1 ffi 

T (xo) = (1 1 1 1) 

68 



Minterm/Maxterm Separation Techniques for RM forms Conversions 

6) Since the polarity is '1' for variable (xo), replace the complement part 

of (xo) in CM vector by T (z). 

c::==:> CM = [1010 1011] 

7) Re-anange the coefficients of CM . First, replace any 2 in the polarity 

number by 0 (i.e Polarity will be changed from (021) to (001)) and 

perform EXOR operation of all the coefficients with the (001) as 

follows: 

booo Ef> boo I = boo I 

bOlO Ef> boO! = ball 

b lOo Ef> boO! = bIOI 

b llo Ef> boO! = b lll 

, boo I Ef> boo I = booo 

, ball Ef> bool = bOlO 

, bIOI Ef> bool = b lOo 

, bill Ef> boO! = b llo 

This means that the resulting coefficients of CM are arranged as 

[b l bo b3 b2 bs b4 b7 b6]. These should be re ananged as follow: 

[bo b l b2 b3 b4 bs b6 b7]. 

Therefore; 

r\- r\- n "-
CM = [1 0 1 0 1 0 1 1] c::==:> CM = [0 1 0 1 0 1 1 1] 

CM (021) = [1 xz] * [Xl Xl] * [1 xo] 

= [Xl X1 X O Xl X1 X O XZXl Xz X1 X O XZ X l XZ X 1 X O] 

CM (021) = [0 1 0 1 o 1 1 1 ] 

It is obvious from the resulting coefficient matrix CM(021) that the second, 

fourth, sixth, seventh and eighth product terms exist. Therefore; 

f (XZI Xv xo) = Xl Xo EB X1Xo EB Xz Xl Xo EB XZXl EB XZX1XO 
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To prove that the polarity derived represents the same function, Boolean 

algebra can be used as follows: 

f(x zI XlI Xo) = XZX1XO + XZX1XO + XZX1XO + XZX1XO 

= XzXo + XZXl 

f (Xz I Xv Xo) = Xl Xo EB Xl Xo EB Xz X1XO EB XZXl EB XZXl Xo 

= XO(Xl EB Xl) EB Xz X1XO EB XZXl EB XZX1XO EB XzXo 

= Xo EB XZXl EB XzXo 

= XzXo EB XZXl 

= (xzXo) (XZX1) + (XzXo) (XZX1) 

= (xzXo) (xz + Xl) + (xz + Xo) (XZX1) 

= XzXo + XzX1XO + XZXl + XZX1Xo 

=XzXo (Xl + 1) + XZXl (xo + 1) 

which represent the same function in CSOP form. 

Example 3.4: Re- convert the previous example from MPRM-Polarity 

<7>10 to CSOP form. 

1) Take the CM vector before re-anangement (or do step 7 of previous 

Example to get CM before rearrangement) as shown below: 

Upper Row Lower Row 
~ ~ 

CM(021) = [ 1010 1011] 

2) Create R(xz) as follows: 

_ (1 0 1 0) :t: 
R(xz) - 1 0 1 1 EB 

T(xz) = (0 0 0 1) 
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3) For the requirement of changing the polarity from true form to CSOP 

form for variable xz, replace the true part of Xz in eM vector by T(xz) 

CM = [1010 0001] 

4) For the requirement of changing the polarity from mixed form to CSOP 

form for variable xl, leave the vector CM without any change. 

CM = [1010 0001] 

5) Create R(xo) as follows: 

_ (1 1 0 O):t: 
R(xo)- 0 0 0 1 EB 

T(xo)= (1 1 0 1) 

6) For the requirement of changing the polarity from complement form to 

CSOP form for variable xo" replace the complement part (odd blocks) 

of Xo in CM vector by T(xo). 

CM= [1010 gOgl] c::=::::::> CM = [1010 0011] 

7) The resulted CM vector = [1010 0011] which is same vector related to 

the original function f(x z, Xii xo) = L m(7,6,2,O). 

3.3.3 Minterm Separation method from FPRM 

It is possible to use Minterm separation method to derive any polarity 

directly from other FPRM avoiding the time-consuming CSOP to FPRM 

conversion for each polarity. Time efficiency is achieved in this technique 

because the information utilised in finding mixed polarity expansion of one 

polarity is utilised by others. 

• To change polarity from mixed form to true form or opposite, follow 

the procedures MPRM _ TRUEO as detailed in Fig. 3.1. 
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• To change polarity from mixed form to complement form, follow the 

procedures MPRM_TRUE(), then MPRM_COMPLEMENT()" as 

detailed in Fig. 3.1. 

• To change polarity from complement form to mixed form, follow the 

procedures MPRM _ COMPLEMENT( ), then MPRM _ TRUE(), as 

detailed in Fig. 3.1 

• To change polarity from true form to complement form or opposite, 

follow the procedure MPRM _ COMPLEMENT( ), as detailed in Fig. 

3.1 

Example 3.5: Convert a 3-variable FPRM- Polarity <3>10 = <010>3 to 

MPRM - Polarity <25>10 = <221>3 

f(xz I XlI xo) = Xl EB X1XOEB xzxl 

1) The truth table for the giving function is as shown in Table 3.1 

2) Each product term corresponds to '1' in the coefficient matrix. Hence, 

[CM ] can be represented by : 

CM(OlO) = [0011 0010] 

Table 3.1: FPRM Terms for Example 3.5 

3) Create R(xz) as follows: 

_ (0 0 1 1) :f 
R(xz) - 0 0 lOEB 

T(xz) = (0 0 0 1) 

FPRM-Polarity 3 

Xz I Xl I 
0 1 

0 1 
1 1 
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4) Changing the polarity from p<O 1 0>3 to p<221 >3 , can be done by 

changing the polarity for variable Xz from true form to mixed form. This 

can be done by replacing the true part of Xz in CM vector by T(xz). 

CM(OIO) = [0011 ()Q.W] CM(21O) = [0011 0001] 

5) Changing the polarity from p<210>3 to p<221>3 , can be done by 

changing the polarity for variable Xl from complement form to mixed 

form. This can be done by 2 steps : 

• Replacing the complement part of Xl in CM vector by T(Xl)' 

Create R(Xl) as follows: 

_ (0 0 0 0) :t: R(Xl) - 1 1 0 1 EB 

CM(210) = [00 11 00 01] ~ CM(200) = [11 11 01 01] 

• Replacing the true pmi of Xl in CM vector by T(Xl)' 

Create R(Xl) as follows: 

_ (1 1 0 1) :t: R(Xl) - 1 1 0 1 EB 

6) Changing the polarity from p<220>3 to p<221>3 , can be done by 

changing the polarity for variable Xo from true form to complement 

form . This can be done by creating R(xo) and replacing the 

complement pmi of Xo in CM vector by T(xo) as follows: 

_ (1 0 0 O):t: 
R(xo)- 1 0 lOEB 

T(xo)= (0 0 1 0) 
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CM(220) = [-l-1(}0 (}1(}0] c::=:=:> CM(221) = [01 00 11 00] 

7) The resulted CM(221) vector = [01 00 11 00] which has four 

coefficients for polarity <25>10. 

CM (221) = [Xz Xz ] * [Xl Xl] * [1 xo] 

=[0 1 o o 1 1 o 

To prove that all polarities derived represent the same function: 

p < 221 >31!(XZ1xvxo) = XZX1XO EB XzX1EB XZX1XO 

= X1XO(XZ EB xz) EB XZXl 

Xl (xo EB 1) EB XZXl 

Xl EB Xl XoEB XZXl 

3.4 Maxterm Separation Method 

0] 

In this section, new fast method is presented which can be used to compute 

the coefficients of MPDRM expansions directly from truth vector of the 

standard CPOS Boolean function or from FPDRM form. Also it can be 

used to derive any mixed dual polarity from another. Further; these 

methods could be used to calculate the coefficients of standard CPOS 

Boolean function from any mixed dual polarity. 

3.4.1 Demonstration for the Maxterm Separation technique 

In this section, fast, efficient, and straightforward method has been 

invented based on separation of maxterms within CPOS expression to 

compute the d i coefficients (equation (1.11)) of MPDRM expansion from 
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Ci coefficients (equation (1.4)) of CPOS expression, where i = 
O,l,Z .. (zn - 1). Each MPDRM expansion has 3n coefficients set 

of di , which is associated with sum terms of DRM expansion as given in 

equation (1.11). If all variables are present in every term in CPOS function 

as in (1.4), then the AND can be replaced by ExNOR giving equation 

(3.2). This expression represents MPDRM with all variables in mixed form. 

For n-variable functions(equation (3.2)), the Maxterm separation around 

the variable Xj is shown in equation (3.5) as partitioned matrix R(xj). 

Unlike Minterm separation, the odd blocks which include the terms where 

the variable Xj appears in true form only are allocated in the upper row, 

while the even blocks which include the terms where the variable 

Xj appears in complement form only are allocated in the lower row. 

In order to change the variable from standard CPOS form to dual true 

form, the complement part has to be eliminated from equation (3.2). To 

eliminate the complement part for any variable Xj , the following formulas 

can be applied: 

However 

Therefore; 

Xj = Xj 0 0 

( a + Xj) 0 (b + Xj) = [a + (0 + Xj ) ] 0 (b + Xj) 

= [(a + 0)0 (a + xJ]0 (b + Xj) 

= a 0 [(a + Xj) 0 (b + Xj)] 

(a + xj)0 (b + Xj) = a 0 [(a 0 b) + Xj] 
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As a result, it is clear that the coefficients associated with the complement 

part will stay unchanged while the coefficients associated with true part 

have to be ExNORed with the coefficients of the complement part. 

This can be achieved by having the ExNOR operation between the upper 

and lower rows of the partitioned matrix R(xj), and the elimination of the 

complement part can be done by replacing the coefficients of the 

conesponding true part (odd blocks) of the [CM] by the ExNOR results. 

In order to change the variable from standard CPOS form to complement 

form, the true part has to be eliminated from equation (3.2) as shown 

below: 

(a + Xj)O (b + Xj) = (a + xj)O[b + (0 OXj)] 

= (a+xJO[(b+O)O(b+xj)] 

= [(a + Xj) 0 (b + Xj)] 0 b 

Taking the complement of the following equation: 

Taking the complement of the last equation gives the following equation: 

Therefore; 

(3.9) 

According to equation (3.9), the coefficients associated with true part stays 

as it is while the coefficients associated with complement part is replaced 

by the coefficients of complement pati ExNORed with the coefficients of 

the true patio 
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The variable Xj in the standard CPOS also represents the mixed form for 

the given variable. Therefore; in order to change the variable from standard 

CPOS form to mixed form, no action is required. 

3.4.2 Maxterm Separation Method from CPOS 

Step 1: Store the coefficients of the CPOS in the truth vector CM . 

Step 2: Create R (Xj) matrix from CMvector for each variable Xj as defined 

in Definition 3.5. 

Step 3: For each variable Xj, perform ExNOR operation between the 

elements in the first and second rows ofR (Xj) matrix and store 

the result vector in T (Xj). 

Step 4: If the required polarity for the Xj variable is true, or if you want to 

change polarity for the given variable from true to CPOS form, 

then replace the content of each true variable Xj (odd blocks) in the 

truth vector CM by the content of vector T(xj). 

Step 5: If the required polarity for the Xj variable is complement form, or if 

you want to change polarity for the given variable from 

complement form to CPOS form , then swap between the 

complement part and the true part of the CM matrix for the selected 

Xj , then replace the odd blocks of CM matrix, by the T (Xj) . 

Step 6: If the required polarity for the Xj variable is mixed form, no action 

is required. 

Step 7: Repeat the previous steps for the rest of the variables by using the 

new vectors from steps 2,3,4,5, and 6 depending on the polarity. 

Step 8: The logic zero elements stored in the coefficient matrix CM 

represent the number of coefficients for the particular polarity for 

the MPDRM. Figure 3.2 shows the pseudo code for this algorithm. 
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Procedure Maxterm Separation( ) 
{ 
Generate the truth Vector CM for the given Boolean Function 

(as in Definition 3.1). 
Represent mixed polarity by using ternary numbers <pj>=<pn-1 pn-1 ... po> 

For each variable Xj 

} 

{ 
Generate partitioned matrix R(xil (as in Definition 3.5) 
Generate T (xi) = Upper row of R (Xi) 0 Lower row of R(xj) 

If (pj = 0 (True polarity) ) 
MPDRM_ TRUE( ) 

If (pj = 1 (Complement polarity) ) 
MRDRM_COMPLEMENT( ) 

If (Pi = 2 (Mixed polarity) ) 
Leave the CM vector without any change 

} End for 

End Maxterm Separation ( ) 

Procedure MPDRM_ TRUE( ) 
Replace the odd blocks of CM matrix (true form of variable (xil) by the T 
(xil, even blocks of CM remain unchanged. 
End MPDRM_TRUE () 

Procedure MPDRM_COMPLMENT() 
Swap between the complement part and the true part of the CM matrix for 
the selected xi I then replace the odd blocks of CM matrix by the T (Xi)' 
End MPDRM_ COMPLMENT () 

Figure 3.2: Pseudo Code for the Maxterm separation technique 

Example 3.6: Convert a 3-variable function from CPOS form to MPDRM 

with polarity <7>10 = p<021>3. 

f(xZ I Xli xo)= n (5, 4, 3, 1) 

1) Store the coefficient of the maxterms in the truth vector CM : 

CM = [1010 0011] 
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2) Separate the CM matrix around variable (xz). The number of blocks for 

the variable (xz) = 23-2 = 2 and the size of each block= 23/2 = 4 , this 

means that CM is divided into two blocks and each block contains 4 

elements. 

,tJpger ~ow 

CM = [1010 

~o'Xer~ow 

0011] 

( 1 0 1 0) 
R(xz)= 0 0 1 1 0 

T(xz)= (0 1 1 0) 

3) Since the polarity is '0' for variable x z, replace the true part of Xz III 

CM by T(xz) 

CM = [t-M() 0011] r====> CM = [0110 0011] 

4) Since the polarity is '2' for variable XL leave the Matrix CM without any 

change. 

CM = [0110 0011] 

5) Separate CM matrix around variable (xo). The number of blocks for the 

variable (xo) = 2(3-0) = 8 and the size of each block= 23/8 = 1 , this 

means that CM is divided into eight blocks and each block contains 1 

element. 

CM =[0110 0011] 

R(xo)= (~ ~ ~ i) 0 

T(xo) = (0 0 1 1) 

6) Since the polarity is '1' for variable xo, replace the content of each true 

part related to the variable by the content of the complement part for the 

same variable in the matrix CM. 
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Then replace the true part of Xo in CM by T(xo) 

CM=[1- 0 () 1 () 0 1- 1] c::::::> CM=[O 0 0 11 011] 

The resulted CM indicates that the p<021>3 has four sum terms, that's 

mean: 

CM (021) = [Xz 0])( [Xl Xl] )( [Xo 0] 

= [ Xz + Xl + Xo Xz + Xl Xz + Xl + Xo Xz + Xl 

Xl + Xo Xl Xl + Xo Xl] 

CM(021) = [0001 1011] 

The matrix CM(021) shows that the first, second, third and sixth sum terms 

exist. Therefore; 

!(xz,xvxo) = (xz + Xl + xo)O (xz + Xl) 0 (xz + Xl + Xo ) 0 Xl 

To prove that the polarity derived represents the same function using 

Boolean algebra: 

In CPOS: 

!(Xz, Xi, Xo) = (Xz + Xi + Xo)(Xz + Xi + Xo)(Xz + Xi + Xo)(Xz + Xi + Xo) 

= (Xz + Xi + (XoOXo))O(Xz + Xi + Xo)O(Xz + Xi + Xo) 

= ((XzOO) + Xi)O(XZ + Xi + Xo)O(Xz + Xi + Xo) 

= Xi ° (XZ + Xi)O(XZ + Xi + Xo)O(Xz + Xi + Xo) , 

this represents the same function in MPRM-Polarity <021>3 form. 

3.4.3 Maxterm Separation method from FPDRM 

It is also possible to use Maxterm separation method to derive any dual 

polarity directly from other FPDRM avoiding the time-consuming CPOS to 

FPDRM conversion for each polarity. 
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• To change polarity from dual mixed form to dual true form or 

opposite, follow the procedure MPDRM _ TRUEO as detailed in 

Fig. 3.2. 

• To change polarity from dual true form to dual complement form, 

follow the procedures ), then 

MPDRM_COMPLEMENT(), as detailed in Fig. 3.2. 

• To change polarity from dual complement form to dual true form, 

follow the procedures MPDRM _ COMPLEMENT ( ), then 

MPDRM _ TRUE(), as detailed in Fig. 3.2. 

• To change polarity from dual mixed form to dual complement form 

or opposite, follow this procedure: 

MPDRM_MIX_COMP( ): 

Swap between the complement part and the true part of the CM 

matrix for the selected x} ,then replace the odd blocks of CM 

matrix (complement form of variable (x})) , by the T (x}) 

End MPDRM MIX COMP - -

Example 3.7: Convert a 3-variable FPDRM- Polarity <3>\0 = <010>3 to 

MPDRM - Polarity <25>\0 = <221>3 

f(xz J Xv xo) = Xl 0 (Xl +xo)O (xz + Xl) 

The truth table for the giving function is as shown in Table 3.2 

Table 3.2: FPDRM Terms for Example 3.7 

FPDRM-Polarity 3 

xzl Xl I Xo 

1 0 1 

1 0 0 

0 0 1 
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1) Each sum term conesponds to '0' in the coefficient matrix. Hence, 

[CM] can be represented by 

CM(OlO) = [10 11 00 11] 

2) Changing the polarity from p<010>3 to p<221>3 , can be done by 

changing the polarity for variable Xz from dual true form to dual mixed 

form for. This can be done by creating R(xz) and then replacing the true 

part (odd blocks) of Xz in CM vector by T(xz) as shown below: 

( 1 0 1 1) 
R(xz) = 0 0 1 1 0 

T(xz) = (0 1 1 1) 

CM(OlO) = [10 11 0011] c::::=:> CM(21O) = [0111 0011] 

3) Changing the polarity from p<210>3 to p<221 >3 , can be done by 

changing the polarity for variable Xl from dual complement form to 

dual mixed form. This can be done by creating R(Xl) and then swap 

between the complement part and the true part of the CM matrix for the 

selected variable ,and finally replace the even blocks of CM matrix 

(complement form of variable (Xl)) , by the T (Xl) as shown below: 

(
0 1 0 0) 

R(Xl) = 1 1 1 1 0 

T(xl ) = (0 1 0 0) 

CM(210)= [0111 0011] ~ [1101 1100] 

CM(21O) = [1101 1100] CM (220) = [1101 1100] 
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4) Changing the polarity from p<220>3 to p<221>3 , can be done by 

changing the polarity for variable Xo from dual true form to dual 

complement form. This can be done by 2 steps : 

• Replacing the true part of Xo in CM vector by T(xo). 

( 1 0 1 0) 
R(xo) = 1 1 1 0 0 

T(xo) = (1 0 1 1) 

CM(220) = [11 0 1 11 00] c:=::::::> [1101 1110] 

• Swap between the true part and complement part and replace the true 

part (odd blocks) ofxo in CM vector by T(xo). 

( 1 0 1 1) 
R(xo) = 1 1 1 0 0 

T(xo) = (1 0 1 0) 

CM (220) = [1101 1110] 

CM(220) = [1110 11 01] 

~[\110 \10\] 

c:=::::::> CM (221) = [1100 1101] 

5) The resulted CM(221) vector = [11 00 11 01] which has three 

coefficients for polarity <25>10' 

CM (221) = [X2 X2])( [Xl Xl] )( [Xo 0] 

= [ X2 + Xl + Xo X2 + Xl X2 + Xl + Xo X2 + Xl 

X2+~+XO X2+~ X2+~+~ X2+ Xl] 

CM(221) = [1100 1101] 
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It is obvious from the resulting coefficient matrix CM(221) that coefficients 

(2,3,& 6) are exist. Therefore; 

f(xz I XlI xo) = (xz + Xl + xo)O(xz + Xl) 0 (xz + Xl + xo) 

To prove that all polarities derived represent the same function: 

p < 010 >3,[(XZ,xvxo) = xlO (Xl+Xo)O (Xz + Xl) 

p < 221 >3' [(XZ, Xl, Xo) = (XZ + Xl + Xo) 0 (XZ + Xl) 0 (XZ + Xl + Xo) 

= (xo + Xl + (XzO Xz)) 0 (XZ + Xl) 

= (Xl + (XoO 0)) 0 (XZ + Xl) 

= Xl 0 (Xl +Xo) 0 (XZ + Xl) 

3.5 Experimental Results 

Mintelln1Maxterm separation techniques are implemented and applied to 

several MCNC benchmark functions [70 -72]. The results are given in 

Tables 3.3 & 3.4. These algorithms are tested on a personal computer with 

Intel CPU running at 2.4 GHz and 2 GB RAM under Window XP, 

professional. They are implemented using C++ and compiled using 

Bloodshed Dev C++. An I/O denotes the number of inputs/outputs 

respectively of benchmark name. The number of terms for the optimum 

mixed/dual mixed polarity doing exhaustive search are given in Terms for 

optimum MPRMlMPDRM respectively. 

The CPU time required to do exhaustive search using Minterm/Maxterm 

separation methods are given in CPU Time. 

From the results, it is obvious that the same optimum polarities are 

obtained as in Tables 2.16 & 2.17 and that's because both of 

Minterm/Maxterm separation techniques and Extended_Tabular algorithms 

are doing exhaustive search. Experimental results show that the difference 

is in the time consumed to find these results. It was found that the time 

required using Minterm/Maxterm methods are much less than the time 
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required using Extended_Tabular techniques especially for the large 

functions. That's because Extended_tabular techniques convert the Boolean 

functions to MPRM starting from PPRM. Hence, the Extended_Tabular 

techniques implemented in Chapter 2 convert the function from Boolean 

domain to PPRM using Tabular technique [31] and then convert the 

function from PPRM domain to MPRM domain using the proposed 

techniques explained in Chapter 2. While the Minterm/Maxterm, separation 

techniques convert the Boolean functions to MPRM starting directly from 

CSOP form, thus saving the time required to change the function from 

Boolean domain to PPRM. The other thing, time required to produce 

results using Extended tabular techniques increase with number of terms, 

while MintermlMaxterm separation techniques do not depend on number of 

terms, because these techniques start from the truth vector of Boolean 

functions. 
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Table 3.3: Benchmark results of Min term separation technique 
(doing exhaustive search) 

Name I/O PPRM Terms for CPU Time 
Terms Optimum 

MPRM 

Dc1 4/7 16 10 0.015 sec. 

Xor5 5/1 5 5 0.031 sec. 

bw 5/28 32 22 0.328 sec. 

Squar5 5/8 23 23 0.016 sec. 

ConI 7/2 19 14 0.031 sec. 

Inc 7/9 91 34 0.062 sec. 

newill 8/1 57 13 0.062 sec 

Misex1 8/7 60 13 0.219 sec 

Sqrt8 8/4 28 26 0.141 sec 

Rd84 8/4 107 107 0.156 sec. 

clip 9/5 217 182 0.98 sec. 

fISC 8/31 89 30 0.75 sec. 

Apex4 9/19 445 444 3.625 sec. 

Sym10 10/1 266 266 1.922 sec. 

Sao2 10/4 1022 76 4.078 sec. 

Ex1010 10/10 1023 810 12.716 sec. 

Dk17 10/11 996 30 9.25 sec. 

Table3 14/14 5504 401 4 h. & 14 min. 

Alu4 14/8 4406 2438 2 h. & 35 min. 

Misex3 14/14 6028 1421 4 h. & 20 min. 

T481 16/1 41 13 15 h. & 12 min. 

b12 15/9 209 64 15 h. & 32 min. 

Table5 15/17 74500 551 5 days & 4 h. 
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Table 3.4: Benchmark results of Max term separation technique 
(doing exhaustive search) 

Name I/O PPDRM Terms for CPU Time 
Terms Optimum 

MPDRM 
Dc1 4/7 3 2 0.031 sec. 

root 5/8 136 83 0.188 sec. 

ConI 7/2 24 14 0.047 sec. 

Inc 7/9 56 34 0.078 sec. 

Misex1 8/7 5 5 0.203 sec. 

Sqrt8 8/4 11 11 0.14 sec. 

Rd84 8/4 256 108 0.156 sec. 

Risc 8/31 21 12 0.75 sec. 

clip 9/5 305 174 1.016 sec. 

Apex4 9/19 512 407 3.656 sec. 

Ex1010 10/10 1023 825 12.453 sec. 

DId 7 10/11 8 8 9.28 sec. 

Table3 14/14 4553 421 6h. 

Alu4 14/8 1091 496 3 h. & 12 min. 

Misex3 14/14 6442 803 5 h. & 32 min. 

b12 15/9 10 10 20 h. & 25 min. 

Table5 15/17 4421 554 6 days & 8 h. 

3.6 Summary 

In this Chapter, new fast and straightforward techniques and algorithms are 

presented which can be used to compute the coefficients of 

MPRMIMPDRM expansions directly from truth vector of the standard 

CSOP/CPOS Boolean functions respectively. Also they can be used to 

87 



Minterm/Maxterm Separation Techniques for RM forms Conversions 

derive any mixed polarity from another MPRM/MPDRM expreSSIOn 

without any constraints on the number of variables for the given function. 

These new techniques [26] are called MintermIMaxterm separation 

techniques and implemented using c++ language and fully tested using 

standard benchmark examples. They also can be used to convert any mixed 

polarity to standard CSOP/CPOS Boolean function. 

Furthermore; they can also be used to generate MPRMIMPDRM 

expansions from FPRMIFPDRM expansions, respectively. The proposed 

techniques are based on separating the truth vector of CSOP/CPOS. They 

are also based on methods proposed in [16, 20] which were used to convert 

CSOP/CPOS expressions to FPRMlFPDRM expansions respectively. 

These new techniques can be used manually or programmed on computers. 
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Chapter Four 

Minimisation Techniques of RMIDRM 
• expansIons 

4.1 Introduction 

RM expressions have several advantages for functions that don't produce 

efficient solutions using CSOP, or CPOS techniques. Logic functions 

which can't minimise well in SOP form can often be implemented in the 

RM domain with fewer product terms which leads to reduced size and 

power consumption, and improved testability [6-8]. Additionally, circuits 

with ExORJExNOR gates are more amenable to efficient testing strategies 

[9]. The rest of this Chapter is organised as follows: New minimisation 

technique and algorithm for RM expansion for single and multi-output 

Boolean functions is given in section 4.2. In section 4.3, new minimisation 

technique and algorithm for DRM for single and multi-output Boolean 

function are given. All algorithms are implemented in C++ and fully tested 

using standard benchmark examples. 

4.2 Technique for Minimisation of RM Expansions 

In this section, new technique and algorithm is presented to generate 

minimal RM expansions from PPRM for any number of variables for 

completely specified single and multi-output Boolean functions. This 

technique is based on Tabular technique [31], which was developed to 

generate FPRM expression from CSOP Boolean function and described in 

details in Chapter two. The aim of this technique is to minimise the number 
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of terms. This is achieved by deriving the polarity for each term instead of 

each variable as in Tabular technique. 

The main advantage of this algorithm is providing an optimal expansion 

with a minimal number of terms among ESOP expressions. The ESOP 

class [10] as in equation (1.27) is the most general class of AND-ExOR 

expressions and has 3 tn different expressions where tin is the number of 

products/ number of inputs respectively. In ESOP class of RM expansions, 

each term may has its own polarity. 

Other advantage of this technique IS to avoid the time-consuming 

exhaustive search for large functions, although it can't be guaranteed that 

all circuits can be minimised well using this technique. 

This technique can be summarised by; initially creating two dimensional 

(mxn) table which is called Polarity table to store the polarity for each 

variable within all terms, where m is the number of minterm for the given 

function. After that, starting from PPRM, the algorithm will change the 

polarity of a variable if and only if it results in a term which is identical to 

another term. The algorithm will generate new term and cancel the 

identical pair and set/reset the bit related to the variable of the specified 

term in the Polarity table to indicate that the polarity of this variable is 

changed from true to complement or vice versa. The algorithm will test all 

the variables in all the terms. 

It is obvious that each term will have a different polarity. In other words the 

polarity of the term will be changed if this change will be useful to cancel 

another term. This technique is best illustrated by means of an example. 

Consider Example 4.1. 

Example 4.1 Given 3_ variable PPRM Function as follows: 

f(xz, Xl, xo) = EB L n(7,5,4,3,l,O) = XzX1XOEB xzxoEB xzEB X1XO EB xoEB 1 
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1. List all terms in a binary form and create two dimension (3x6) Polarity 

Table which will store the polarity for each variable within each term. 

Initially, reset Polarity table 

Table 4.1: Truth table for Example 4.1 

PPRMterms Polarity Table 

Xz I Xl I Xo Xz Xl Xo 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 1 1 0 0 0 

1 0 0 0 0 0 

1 0 1 0 0 0 

1 1 1 0 0 0 

2. For variable Xo within all terms, generate new term if and only if 

changing the polarity of this variable from true form to complement 

form can generate identical pair. Then cancel the identical pair and 

toggle (set or reset) the bit that denotes to the variable of the specified 

term within the Polarity table to indicate that the polarity of this 

variable is changed from true to complement or vice versa. The terms 

generated by variable Xo are shown in Table 4.2. 

3. For variable Xl , no terms are generated by this variable. This is because 

the new terms will not be identical to any other term. 

4. For variable Xz , the terms generated by variable Xz are shown in Table 

4.3 and the final resulting terms after minimisation are shown in Table 

4.4. 
91 



Minimisation Techniques for RMlDRM expansions 

Table 4.2: Terms generated by variable Xo for Example 4.1 

PPRMterms Terms generated by Polarity table 
Xo 

Xz I Xi I Xo Xz I Xi I Xo Xz Xi Xo 

Q Q Q 0 0 0 

0 0 1 Q Q Q 0 0 1 

0 1 1 0 0 0 

I Q Q 0 0 0 

1 0 1 I Q Q 0 0 1 

1 1 1 0 0 0 

Table 4.3: Terms generated by variable Xz for Example 4.1 

Truth table Terms generated by Polarity table 
Xz 

Xz I Xi I Xo Xz I Xi I Xo X2 Xi Xo 

Q Q I 0 0 1 

Q I I 0 0 0 

1 0 1 Q Q I 1 0 1 

1 1 1 Q I I 1 0 0 

Table 4.4: Resulted terms for Example 4.1 

Final Uncancelled Polarity table 

Terms 

Xz I Xi I Xo Xz Xi Xo 

1 0 1 1 0 1 

1 1 1 1 0 0 
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Note 

• In order to cancel any identical terms in the truth table; they should 

have the same polarity in the Polarity table. 

• Changing logic 1 to logic 0 for any variable means changing the 

polarity for this variable within the selected term from true form to 

complement form. 

• 1/0 in the Polarity table means that the polarity of the variable is 

complement/true respectively. 

To prove that the resulted expression represent the same function 

p < 0 >, f(xz l xl! xo) = = xzxlxoEB xzxoEB xzEB xlxo EB xoEB 1 

After minimisation, 

f(xz l Xli Xo) = xzxlxoEB XzXo 

xzxlXOEB XzXo EB Xz 

XzXo (Xl EB 1) EB (xz EB 1) 

xzX1XOEB xzxoEB xzEB X1XO EB xoEB 1 

It is clear in this technique; different polarity for the each variable within 

each term was derived depending on the usefulness for this action to the 

minimisation process for the circuit. The algorithm described in the 

following section may be employed to derive an expansion with minimal 

number of terms among 3 tn ESOP different expansions. 

4.2.1 The proposed algorithm for single output Boolean functions 

The pseudo code for the proposed algorithm which is called 

RM_Minimisation ( ) is shown in Figure 4.1, and can be summarised as 

follows: 

1. List all the product terms in binary 
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2. Generate Polarity table to indicate the polarity of each variable for all 

terms. 

3. Select a variable Xj ,for every term containing a one in position j, test if 

the generation of new term with a zero in position j, Xj will result in a 

duplicate term, delete duplicate pairs and toggle position j of the 

Polarity table to indicate the changed polarity of the variable for this 

product from true to complement or vice versa. 

4. Repeat step 3 for all other products and for all variables. 

5. The resulting uncancelled products will be the product terms of the 

resulted RM expressions. Further; (1/0) in the Polarity table indicates 

the polarity (complement/true) of each variable in each term. 

Procedure RM_Minimisation( ) 
{ 

Read file and store the minterm/or maxterms in array 
Convert the function from Boolean domain into FPRM/or FPDRM 

Loop for (j=O to j=number of variables-1) 
{ 
Loop for (;= 0 to;= 2n-1) 

{ 

Flag = check_bit U,; ) / / Flag = 1 if changing the jth bit of a 

If (Flag = 1) 
{ 

/ / term generates duplicate term. 

Delete_duplicated_term U,O 
Toggle_Polarity_table U,O 

} 
} end Loop; 

} end Loop j 

Output Results () 
} End RM_Minimisation 

Figure 4.1: Pseudo Code for RM _Minimisation technique 
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4.2.2 The proposed algorithm for multi output Boolean functions 

The algorithm in section 4.2.1 can be extended to multi-outputs by adding 

an array to store the outputs. In order to decide whether the generation of 

new terms is useful for the minimisation process or not, step 3 in section 

4.2.1 will be replaced by the following: 

- Generate a new term if and only if {number of one's in the output 

for the generated term < number of one's in the output for the 

original term} 

Example 4.2: Consider multi-output PPRM functions shown in Table 4.5. 

Table 4.5: PPRM terms for Example 4.2 

Inputs Outputs 
X1 Xo h h fi 

0 0 1 1 0 

1 0 1 1 0 

1 1 
' . 

0 1 1 

For optimisation of multi-output CSOP Boolean function, the proposed 

algorithm starts by generating a new term for each variable. Therefore; the 

generated terms will have the same outputs as the original terms. For each 

generated term, the algorithm checks whether this action is useful for 

minimisation or not. These steps for minimisation of this example are as 

follows: 

1. Find the terms generated by variable Xl as shown in Table 4.6. 
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2. Two terms can be generated by changing the polarity of variable Xl 

from true form to complement form. These terms are as follows : 

• Term (0 1), this generation is not useful because it doesn't result in 

duplicate term. 

• Term (0 0), this generation is useful because it results in identical 

terms, Therefore; term (0 0) can be cancelled because the result of the 

(110 EB 11 0=000) which means that this term doesn't exist. The 

resulting terms are shown in Table 4.7. 

Table 4.6: Terms generated by variable Xl for Example 4.2 

PPRMterms Terms generated by Xl Polarity 
Inputs Outputs New Term Outputs table 

Xl I Xo h h Ii Xl I Xo 13 Ji Ii Xl Xo 

Q Q 1 r 0 0 0 

1 0 1 1 0 Q Q 1 1 0> 1 0 

1 1 0 1 1 0 0 

Table 4.7: Resulted Terms for Example 4.2 

Inputs Outputs Polarity table 

Xl Xo 13 h Ii Xl Xo 

1 0 1 1 0 1 0 

1 1 0 1 1 0 0 
, 

3. No terms are generated by variable xo. This is because the new terms 

will not be able to cancel identical pair and the reason for that is the 

identical pair doesn't have identical polarity as in Polarity table. 
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Therefore; the cancellation will not be acceptable in this occasion. Table 

4.7 shows the resulting terms. 

4. The final equations after minimisation are as shown below: 

fl = Xl Xo , f2 = Xl EB Xl Xo ,f3 = Xl 

To prove that, it is clear that the resulting equations represent the same 

functions before minimisation as explained below: 

fl is same before and after minimisation 

f2 = Xl EB Xl Xo 

= 1 EB Xl EB Xl Xo , 

f3 = Xl 

1 EB Xl 

4.2.3 Experimental Results 

This algorithm was applied to several MCNC benchmark functions [70-

72]. The results are given in column six of Table 4.8. Terms for Optimum 

MP RM among 3n expressions denotes the optimum MPRM terms doing 

exhaustive search using one of the new techniques described in Chapters 2 

& 3. The minimal number of terms results using this algorithm are given in 

minimal Terms. The algorithm is tested on a personal computer with Intel 

CPU running at 2.4 GHz and 2 GB RAM under Window XP, professional. 

It is implemented using C++. The CPU times for all the examples were less 

than one second. The experimental results obtained within very short time 

compared with the size of the tested circuits reflecting the efficiency of the 

algorithm. 

The RM _Minimisation technique as in Fig. 4.1 produced good results in 

very short time searching a field of3tn ESOP expressions. 
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Table 4.8: Benchmark results for RM_Minimisation technique 

Benchmark CSOP/PPRM Terms for Minimal Saving 
Number as Name I/O Terms Optimum Terms 0/0 
in Fig. (4.2) MPRM 

1 Dc1 4/7 10/16 10 16 
-37.5 

2 Xor5 5/1 16/5 5 5 
0 

3 Bw 5/28 22/32 22 31 
-29.3 

4 Squar5 5/8 29/23 23 23 
0 

5 ConI 712 118/19 14 11 
21.48 

6 Inc 7/9 104/91 34 69 
-50.7 

7 new ill 8/1 142/57 13 12 
7.6 

8 Misex1 8/7 128/60 13 37 
-64.8 

9 Sqrt8 8/4 255/128 26 47 
-44.6 

10 Rd84 8/4 256/107 107 107 
0 

11 9sym 9/1 420/210 173 154 
10.98 

12 Risc 8/31 256/89 30 85 
-64.7 

13 clip 9/5 496/217 182 155 
14.8 

14 Apex4 9/19 512/445 444 444 
0 

15 Sym10 10/1 837/266 266 255 
4.1 

16 Sa02 10/4 511/1022 76 65 
14.4 

17 Ex1010 10/10 1024/1023 810 1007 
19.5 

18 Table3 14/14 3176/5504 401 1067 
-62.4 

19 Alu4 14/8 16384/4406 2438 1790 
26.5 

20 Misex3 14/14 12281/6028 1421 1233 
13.23 

21 T481 16/1 42016/41 13 13 
0 

22 B12 15/9 32768/209 64 54 
15.6 

23 TableS 15/17 24572/74500 551 2956 
-81.3 
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Table 4.8 shows that for 12 out of 18 tested benchmark circuit, the results 

produced are better or same as results doing exhaustive search among 3n 

MPRM expressions consuming less than one second to provide these 

results. Saving in telIDS is calculated using equation (4.1) is shown in Fig. 

4.2. 

The proposed technique provides expression with minimal terms among 

ESOP expressions in which each term has its own polarity, while in the 

exhaustive search of chapters 2 & 3 , the proposed techniques provide 

optimum polarity among MPRMlor MPDRM with minimum terms. 

Moreover; the search space for the proposed technique is 3 tn which is larger 

than the search space 3n for the exhaustive search for MPRMlMPDRM. 

Therefore; there is a chance to find solutions with less terms than optimum 

terms in previous chapters and this is the reason why in some cases the 

results produced using this technique are better than optimum MPRM as 

shown in Table 4.8. 

Furthermore; note that zero savmg means that usmg RM _Minimising 

technique, the result is as good as optimum terms among 3n expression 

consuming less or equal to one second for all cases. While positive saving 

means that the result for the proposed technique is better than optimum 

polarity among 3 n polarities. Negative saving means the results is worse 

than the optimum MPRM but that doesn't means worse than CSOP terms. 

Asolute(Optimum MPRM - Minimal terms) 
Saving = x100% 

Largest of (Optimum MPRM, Minimal terms) 
( 4.1) 

Largest of (Optimum MPRM, Minimal terms): choose either Optimum 

MPRM or Minimal terms depending on which one is bigger. 
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Figure 4.2: Chart for saving of terms for all tested Benchmarks 
Shown in Table 4.8 

4.3 Technique for Minimisation of DRM Expansions 

Any n-variable Boolean function can be represented using either CSOP or 

CPOS standard form of Boolean functions. Boolean expansions can also be 

represented using either RM or DRM form. DRM is introduced by [75] and 

based on using of ExNORIOR gates instead of AND/OR gates in CPOS 

form. To achieve better minimisation, new technique and algorithm for 

DRM form as well as RM form in previous section are investigated. It is 

known that in some cases, the circuits can be better simplified in dual 

forms of RM expansions, whereas for other circuits the reverse will be the 

case. 

In this section, an efficient technique based on Tabular technique is 

developed to generate minimal DRM expansion starting from PPDRM for 

any number of variables of Boolean functions. The aim here is to minimize 
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the number of sum terms. This is achieved by deriving the polarity for each 

term instead of each variable as in Tabular technique. This algorithm will 

find the polarity with minimal number of terms among ENPOS 

expressions. The ENPOS class is the most general class of OR-ExNOR 

expressions and has 3tn different expressions where tin is the number of 

sums/number of inputs respectively. In this class of DRM expansions, each 

term may have its own polarity. This technique can be illustrated by means 

of an example. Consider this example below 

Example 4.3: Given 3-variable PPDRM function as follows: 

f(xz l XlI Xo)= OIl Q(6,4,2,O) 

= Xo 0 (Xl +xo) 0 (xz+xo) 0 (XZ+Xl +xo) 

1. List all sum terms in a binary form and create two dimensions (3 x4) 

Polarity table which will store the polarity for each variable within each 

sum term. Initially, reset the Polarity table as shown in Table 4.9. 

Table 4.9: Truth table for Example 4.3 

PPDRM terms Polarity table 

Xz I Xl I Xo Xz Xl Xo 

0 0 0 0 0 0 

0 1 0 0 0 0 

1 0 0 0 0 0 

1 1 0 0 0 0 

2. For variable Xo within all terms, generate new term if and only if 

changing the polarity of this variable from true form to complement 

form can generate identical pair. Then cancel the identical pair and 
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toggle (set or reset) the bit that denotes the variable of the specified term 

in the Polarity table to indicate that the polarity of this variable is 

changed from true to complement or vice versa. No terms are generated 

by the variable xo. This is because the new terms are not identical to 

any other terms. 

3. The terms generated by the variable Xl are shown in Table 4.10. 

Table 4.10: Terms generated by variable Xl for Example 4.3 

PPDRMterms Terms generated by Polarity table 
Xo 

Xz 
I 

Xl 
I 

Xo Xz 
I 

Xl 
I 

Xo Xz Xl Xo 

0 0 0 Q 1 Q 0 1 0 

Q 1 Q 0 0 0 

1 0 0 1 1 Q 0 1 0 

1 1 Q 0 0 0 

4. The terms generated by variable Xz are shown in Table 4.11 and the 

final resulting terms after minimisation are shown in Table 4.12. 

Table 4.11: Terms generated by variable Xz for Example 4.3 

Truth table Terms generated by Polarity table 
Xz 

Xz I Xl I Xo Xz I Xl I Xo Xz Xl Xo 

0 0 0 1 Q Q 1 1 0 

1 Q Q 0 1 0 
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Table 4.12: Resulting terms for Example 4.3 

Final Un cancelled 

Terms 

Xz 1 Xl 1 Xo 

0 0 

f(x z, Xl' xo) = (xz + Xl + xo) 

Note: 

0 

Polarity table 

Xz Xl Xo 

1 1 0 

• In order to cancel any identical terms in the truth table; they should 

have the same polarity in the Polarity table. 

• Unlike RM, in DRM, changing logic 1 to logic 0 for any variable 

means changing the polarity for this variable within the determined 

term from true form to complement form. 

• 1/0 in the Polarity table means that the polarity of the variable is 

complement/true respectively. 

To prove that the resulting expression represents the same function 

p < 0 >, f(xz, Xv xo) = Xo 0 (Xl +xo) 0 (xz+xo) 0 (XZ+Xl +xo) 

After minimisation, 

f(x z, Xv xo) = (xz + Xl + xo) 

p < 0 >,f(xz,Xv xo) = xoO (Xl+XO) 0 (xz+xo) 0 (XZ+Xl+XO) 

= (Xl +XO) 0 (XZ+Xl +Xo) 

= (xz + Xl + Xo) 

4.3.1 The proposed algorithm for single output Boolean functions 

1. List all the sum terms for PPDRM in binary 
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2. Generate Polarity table to indicate the polarity of each variable for all 

sums. 

3. For PPDRM, select a variable Xj' for every term containing a zero in 

position,j test if the generation of new term with a one in position j, 

(Xj) will result in a duplicate term ( check_bit U,i ) in Fig. 4.1). Delete 

duplicate pairs (Delete_duplicated_term U,i) in Fig. 4.1) and set/reset 

position j of the polarity table to indicate the changed polarity of the 

variable for this sum term from true to complement or vice versa 

(Toggle_Polarity_table U,i) in Fig. 4.1). 

4. Repeat step 3 for all other sums and for all variables. 

5. The resulting uncancelled sums will be the sum terms of the MPDRM. 

Further; (1/0) in the Polarity table indicates to the polarity 

(complement/true) of each variable in each term. The pseudo code for 

this algorithm is detailed in Fig. 4.1. 

4.3.2 The proposed algorithm for multi-output Boolean functions 

The algorithm in section 4.3.1 can be extended to multi-outputs by adding 

an array to store the outputs. In order to decide whether the generation of 

new terms is useful for the minimisation process or not, step 3 in section 

4.3.1 will be replaced by the following: 

Generate a new term if and only if {number of zero's in the resulted 

output < number of zero's of the output for the original term } to 

know whether the generation of the new term is useful for the 

minimization or not. 
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Example 4.4: Consider multi-output PPDRM functions shown in Table 

4.13. 

Table 4.13: PPDRM terms for Example 4.4 
Inputs Outputs 
Xl Xo f3 .Ii /i 
0 0 1 0 1 
0 1 1 1 0 

1 0 0 1 1 
1 1 1 1 0 

it = Xl 0 0 J [2 = (Xo + Xl), [3 = Xo 

F or optimisation of multi-output CPOS Boolean functions, The proposed 

algorithm starts by generating a new term for each variable. The generated 

terms will have the same outputs as the original terms. For each generated 

term, the algorithm checks whether this action is useful for minimisation or 

not. These steps for minimisation of this example are as follows: 

1. The terms generated by variable Xl are as shown in Table 4.14. 

Table 4.14: Terms generated by variable Xl for Example 4.4 

Terms generated by Xi Polarity 
Inputs Outputs New Term OutQuts table 

Xllxo f3 J2 It Xl I Xo f3 .Ii It Xl Xo 
0 0 1 0 1 0 0 

0 1 1 1 0 I I 1 1 0 1 0 

1 0 0 1 1 0 0 

I I 1 1 0 0 0 

2. Two terms can be generated by the variable Xl to change its polarity 

from true form to complement form. These terms are as follows : 
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- Term (1 0), with output 101, but (101 <::) 011 = 001), Therefore; the 

term generated exists for two outputs, while the initial one exists for 

one outputs, That means this generation is not useful for the 

minimisation. 

- Term (1 1) with output 110, but (110 <::) 110= 111), ) which means 

that this term doesn't exist for all outputs. Cancellation of the 

identical pair can be done. That means this generation is very useful 

for the minimisation. 

Table 4.15: Resulted Terms for Example 4.4 

Inputs Outputs Polarity table 
Xl Xo h fi fi Xl Xo 

0 0 1 0 1 0 0 

0 1 1 1 0 1 0 
1 0 0 1 1 0 0 

3. Two terms can be generated by the variable Xo to change its polarity 

from true form to complement form. These terms are as follows: 

- Term (0 1), with output 101, but (101 <::) 110 = 100), Therefore; the 

term generated exists for two outputs, while the initial one exists for 

one outputs, That means this generation is not useful for the 

minimisation. 

- Term (1 1) which is not identical to any terms, That means this 

generation is not useful for the minimisation. Therefore No term 

generated by changing the polarity of variable 

Xo. The resulting terms after minimisation are shown in Table 4.15. 

4. The result for this optimisation has 3 terms. 

fl = XlI f2 = (xo + Xl), f3 = Xo 

106 



Minimisation Techniques for RMlDRM expansions 

As proof, it is clear that the resulting equations represent the same 

functions before minimisation as shown below: 

f3 & f2 are same before and after minimisation 

fl = Xl 

00 Xl 

4.3.3 Experimental Results 

This algorithm was applied to several MCNC benchmark functions [70-72] 

to minimise the circuit finding the optimal expression with minimal terms 

among the ENPOS expressions. The results are given in column six of 

Table 4.16. Terms for Optimum MPDRM among 3n expressions denotes to 

the optimum MPDRM terms doing exhaustive search using one of the new 

techniques described in Chapters 2 or 3. The minimal number of terms 

results using this algorithm are given in minimal Terms. The algorithm is 

tested on the same personal computer in section 4.1.3. The CPU times for 

all the examples were less than one second. 

From the results, it is clear that some, but not all circuits can be minimised 

very well using this technique. 

Table 4.16 shows that in 7 benchmark circuit tested from a total of 14 

benchmarks, the results produced are better or same as results obtained 

using exhaustive search among 3n MPDRM expressions. Saving in terms is 

calculated using equation (4.2) and shown in Fig. 4.3. 
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Table 4.16: Benchmark results for RM_Minimisation technique for DRM 

Benchmark Terms for 
Number as Name I/O CPOSIPPDRM Optimum Minimal Saving 
in Fig. (4.3) Terms MPDRM Terms % 

1 Dc1 4/7 10/3 2 2 
0 

2 root 5/8 256/136 83 86 
-3.4 

3 ConI 7/2 118/24 14 12 
14 

4 Inc 7/9 104/56 34 40 
-15 

5 Misex1 8/7 128/5 5 4 
20 

6 Sqrt8 8/4 255/11 11 9 
18 

7 Rd84 8/4 256/256 108 108 
0 

8 Risc 8/31 256/21 12 11 
8.3 

9 Clip 9/5 496/305 174 186 
-6.4 

10 Apex4 9/19 512/512 407 504 
-19.2 

11 Life 10/1 372/121 101 93 
7.9 

12 Ex1010 10/10 825/1023 825 1013 
-18.5 

13 Table3 14/14 3176/4553 421 1687 
-75 

14 Alu4 14/8 16384/1091 496 391 
21.1 

15 Misex3 14/14 1228116442 803 1523 
-47.2 

16 Table5 15/17 24572/4421 554 835 
-33.6 

17 B12 15/9 32768/10 10 10 
0 

Asolute(Optimum MPDRM - Minimal terms) 
Saving = xl000/0 (42) 

Largest o/(Optimum MPDRM, Minimal terms) . 

Largest of (Optimum MPDRM, Minimal terms):chooses either 

Optimum MPDRM or Minimal terms depending on which one is bigger. 
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Figure 4.3: Chart for saving of terms for all tested Benchmarks 
shown in Table 4.16 

4.4 Summary 

In this Chapter, new techniques and algorithms are presented which can be 

used to generate reduced RM expressions among ESOP/or ENPOS 

expressions stmiing from PPRM/PPDRM, respectively for any number of 

variables for single and multi-output functions. All algorithms are 

implemented in C++ and fully tested using standard benchmark examples. 

These techniques are based on Tabular technique [31] and can be used 

manually or programmed on computers. 

109 



Chapter Five 

Genetic Algorithms for Optimisation of 
Combinational Circuits 

5.1 Introduction 

Chapters 2 and 3 results show that the CPU time required to find an 

optimum polarity with minimum terms for Boolean functions, using 

exhaustive search, increases with the number of inputs. Table 5.1 shows the 

total number of expansions for MPRMlor MPDRM, also increases with the 

number of inputs. Therefore, to optimise digital circuits in RM domain with 

a large number of inputs, running an exhaustive search may take long time 

to find the optimum polarity among 3n expressions. The aim for 

implementing a Genetic Algorithm (GA) based technique is to identify 

which of the MPRMlor MPDRM expansions contains the fewest product 

lor sum terms thus avoiding the time consuming exhaustive search. 

GA techniques have been applied to a variety of optimisation problems; 

they can produce good results within a short computation time, when 

compared to exhaustive search. 

Table 5.1: Total number of MPRMlor MPDRM expressions 

Number Total number of MPRM/or 
Of Inputs MPDRM expansions 

5 243 

7 2187 

10 59049 

20 3486784401 

25 847,288,609,443 
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Hill Climbing, Simulated Annealing, and GA were considered for the task 

of optimisation. Then it is decided to adopt GA in this Chapter as it is more 

suitable for NP-Hard problems. 

For completely specified Boolean functions ofn-input variables, there exist 

3ll MPRMlor MPDRM expansions with different numbers of terms. For 

incompletely specified functions, the numbers of MPRMsIMPDRMs 

increases exponentially with the number of "don't care" terms. There are 

(3 11 
x 2f.l) distinct MPRMs/or MPDRMs for n-variable functions with /-l 

"don't care" terms. The expression with the fewest products/or sums is the 

optimum expression. 

The rest of this Chapter is organised as follows; Section 5.2 gives an 

introduction to GAs. The definitions for GA parameters are explained in 

Section 5.3. Section 5.4 describes the proposed GA to find the optimal 

MPRM expansion among 3ll different polarities for single output Boolean 

functions. A GA to find the optimal MPRM/and MPDRM expansion 

among 3ll different polarities for multi output Boolean functions is given in 

Section 5.5.The proposed GA to find the optimal MPRM expansion among 

of 3 II different polarities for incompletely specified Boolean functions is 

given in Section 5.6. 

5.2 Genetic Algorithm 

Genetic or Evolutionary Algorithms are applied to solve a variety of 

problems based on the principle of natural selection and genetic 

inheritance. These problems range from practical applications in industry to 

leading-edge scientific research [76]. However; evolutionary computation 

requires studying each problem in depth and expressing it in mathematical 

form. The proposed GA does not solve the problem directly; rather it 
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develops strategies for solving the problem, which is Imown as indirect 

representation. 

Within genetic algorithm, the problem is encoded as a series of bit strings 

that are manipulated by the algorithm. The genetic algorithm is a stochastic 

algorithm which maintains a population of individuals that are usually 

represented as codes. Each individual represents one possible solution to 

the problem at hand; the solution may be evaluated to give some measure 

of its fitness. Some members of the population undergo transfOlmation by 

means of genetic operators to produce new individuals. After a number of 

generations the algorithm converges, and the best individual is taken as a 

near-optimum solution. A GA for a particular problem must have the 

following five components [77] 

• Representation for a potential solution to the problem 

• A method to create an initial population of solutions 

• An evaluation function (fitness) that evaluates the solution which is 

represented by a chromosome. 

• Genetic operators that change the composition of individual such as 

mutation and crossover to produce new individuals. 

• Values for various parameters that the GA uses such as population 

size, generation number, and tOUlnament size. 

The flow chart for simple GA is as shown in Figure 5.1 

5.3 Definitions 

Population: represents set of possible individuals (solutions) within the 

search space for the given problem. Normally, the population is initialised 

randomly. 
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Input the parameters of GA (population 
size, tournament size and evaluations 

number) 

Initialize Population 

Evaluation 
(Fitness score) 

Select parents 

Recombination 
(Crossover and Mutation) 

Evaluate (New Child) 

Replacement 
NO 

Termination? 

Figure 5.1; Basic flowchart of GA 

Initialisation: the process of creation of a population of chromosomes 

randomly. 
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Individual: represent one possible solution to the problem. It is also known 

as chromosome. Individual which represent one member of the population 

can be coded using real numbers, binary code, bit string or any data 

structure. Each individual contains a number of genes as shown in Figure 

5.2. 

Population size: the number of chromosomes within the population which 

is initialised by the user before running the algorithm. 

Search space: the set of all possible solutions for the given function. Each 

individual denotes a point in a search space. 

Evaluation: A fitness function that assess an individual. It is an objective 

function which prescribes the optimality of the solution (individual) in GA. 

Selection: the selection criterion aids the survival of the chromosome. In 

this stage of a GA, individuals are selected from a population for 

recombination. Methods of selection include tOUlnament selection, random 

selection, roulette wheel selection, and ranking selection. 

441 ~I 
~ Gene Gene 0 ...... 
~ 
.-< 

Chromosome ~ 
0.. 
0 

0.. r -..." 

I I I I I I I 

I I I I I I I 

Figure 5.2: Chromosome representation of GA 
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Genetic Operators: two genetic operators are used to reproduce new 

individuals (offspring) from selected parents. These operators are 

recombination and mutation. 

Recombination (or Crossover): corresponds to the mating between parents. 

Methods of crossover include single-site crossover, multi points, and 

uniform crossover. 

Mutation: introduces random variation. Methods of mutation include flip 

mutation, invert mutation, and swap mutation. 

Replacement: It replaces the offspring with one of the individuals within 

the population. Methods of replacement include tournament replacement, 

worst chromosome replacement, random chromosome replacement, and 

parent chromosome replacement. 

Termination criteria: it represents the process of deciding whether to 

continue searching the search space or quit the search. Types of termination 

are generation number, evolution time, and fitness converges. 

5.4 A GA for single output Boolean functions 

In this section, a new algorithm is proposed to optimise RM expansions 

with mixed polarity, using a GA for a single output completely specified 

Boolean functions, thus avoiding the time consuming exhaustive search. 

The aim is to find the optimal polarity among MPRMlor MPDRM 

expansions which contain less terms without need to calculated all the 3n 

polarities for n variables. Figure 5.3 gives the pseudo code of the proposed 

GA. 

5.4.1 Population Initialisation 

The population is randomly initialised. The chromosome is represented b~ 

the use of ternary code to represent the polarity number for MPRMlor 
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MPDRM expression. The size of the population is equal to the number of 

variables for the given function. Figure 5.4 shows the representation of 

one chromosome for six variables Boolean functions. 

Procedure GA 
{ 
Input Parameters of GA (population size, tournament size, number 

of evaluations) 
Read_Terms ( benchmark) 
Initialize Population( randomly) 
Fitness(all populations) 

Loop until (number of evaluations = 0) 
{ 

} 

Tournament Select ( ) 
Crossover ( ) 

II select two parents randomly 
II recombine the two parents to produce 
II the Child 

Mutation( ) II change one bit randomly in the Child 
Fitness( new Child ) 
If (Child Fitness!=any existing Fitness) 

II != indicates not equal 
Replacement ( ) 

Decrease number of evaluations 

Output Results ( ) 
} End GA 

Figure 5.3: Pseudo Code for the proposed GA 

GeneS 

Chromosome 
1 1 

Gene 0-5 contain telnary number to indicate Polarity number 
(1211121)3= (1339)10 

Figure 5.4: Chromosome representation for 6-variables Boolean function 
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5.4.2 Evaluation and Fitness score 

The fitness function assesses the quality of new individuals. Initially, it 

computes the fitness of all the chromosomes after initialisation. 

Subsequently; it computes the fitness for the new offspring produced at 

each generation. The fitness function is implemented by either using 

Extended_Tabular techniques (Chapter 2) or using Minterm/Maxterm 

separation techniques (Chapter 3) to calculate the number of terms for the 

polarity determined in the selected individual. 

5.4.3 Selection 

The proposed GA uses a tournament selection method where the mam 

parameter of selection is the tournament size (T) which can be changed by 

the operator. It is possible to control the selection pressure by adjusting the 

tournament size. The algorithm randomly chooses T individuals 

(independently to their fitness values) from the population and selects the 

one with the best fitness. If the tOUlnament size is large, weak individuals 

have a less chance to be selected. The main advantages of using this 

method of selection are the simplicity to code and ability to adjust the 

selection pressure. 

5.4.4 Reproduction (Crossover and Mutation) 

Reproduction for the proposed algorithm produces one child at each 

evaluation. The two main variation operators are crossover (or 

recombination) which combines the genes of parents, and mutation, which 

slightly peliurbs the child. 

Crossover is the main genetic operator. It operates by selecting two 

individuals randomly (tournament selection) and generates one child. The 

child inherits some of the chromosomes from one parent and the rest from 

the other parent. The crossover operator chooses a random crossover point 
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and combines parts from the two parents to form a new child. This method 

of crossover is called a single point crossover as shown in Figure 5.5. 

The mutation operator alters a single gene of the individual randomly. It is 

carried out by selecting gene at random and changing the selected gene 

with random ternary number as shown in Figure 5.6. This type of mutation 

is called Uniform mutation. 

ParentI 

Parent2 

Offspring 

Figure 5.5: Single point Crossover used in the proposed GA 

Before Mutation 
L--I_2_2_0_1_2_2-----'O I ~ 

I After Mutation 122 ° 1 120 

Figure 5.6: Uniform Mutation used in the proposed GA 

5.4.5 Replacement 

The replacement mechanism controls the composition of the new 

generation within each evolutionary loop. The algorithm randomly chooses 

( T ) individuals (independently to their fitness values) from the population 
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and replaces the loser with the new offspring generated. The loser 

individual is one solution within population which has the worse fitness. 

One of the biggest problems encountered when using GAs is that of 

Premature Convergence. After number of generations, the GA converges to 

sub optimal, resulting in all the individuals within the population having 

the same fitness. In the proposed GA, to prevent Premature Convergence 

and avoid the loss of the diversity of the population, the algorithm will not 

replace the new chromosome if there is another individual with the same 

fitness in the CUlTent population. 

5.4.6 Halting Criterion 

A common strategy is to stop evolution after a fixed number of evaluations. 

The number of evaluations is one of the parameters determined by the 

operator prior to running the algorithm. It may be different for each 

example depending on the size of the given function. A good control of the 

halting criterion obviously influences the efficiency of the algorithm, and is 

as important as a good setting of evolution parameters (population size, 

crossover and mutation types, and tournament size). 

5.4.7 Experimental Results for single output functions 

The algorithm was applied to several MCNC [70-72] benchmarks 

completely specified CSOP Boolean functions to produce optimal MPRM 

expansion. It is implemented using C++ and is tested using a PC with 

INTEL CPU, 2.4 GHz clock and 2GB RAM. The results are given in 

column four of Table 5.2. 

I/O denotes the number of inputs/number of outputs of the benchmark. 

CSOP Term denotes the number of sum of products of the benchmark 

function. The Optimal MPRM terms results using a GA are given in GA 
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MPRM Terms. GA Evaluationsl3 n shows how many times the GA is 

required to evaluate the number of terms for the specified polarity with 

respect to number of all polarities. 

Table 5.2: Benchmark results of GA for single output Boolean functions. 

Name I/O CSOP GA GA MPRM STDI CPU Time 
Terms MPRM Evaluations/3" . Terms Av. 

Terms (Exhaustive) 

Xor5 511 16 5 20 I 243 5 0/5 0.015 sec. 

Newill 811 142 13 300/6561 13 0113 0.047 sec. 

newtag 8/1 234 6 300/6561 6 0/6 0.047 sec. 

9sym 911 420 173 120119683 173 01173 0.055 sec. 

Life 911 140 84 200119638 84 0/84 0.11 sec. 

Sym10 lOll 837 266 200/59049 266 0/266 0.266 sec. 

T481 16/1 42016 13 550/ 13 1.13/ 2.37 min. 
43046721 13.7 

Ryy6 16/1 19710 48 550/ 48 0/48 6.35 min. 
43046721 

The algorithm was implemented in order to evaluate the efficiency of GA 

for optimisation. All results from the proposed GA are taken after running 

the algorithm ten times in order to find the Standard deviation and average 

of these results which are given in STD / A V CP U Time gives the average 

CPU time required to find the optimal terms by running GA ten times. 

Exhaustive search was undertaken for each of the examples in Table 5.2 

(column six) to identify the optimum solution. When these results were 

compared with the GA solutions, it was found that the GA found the 

optimum solutions for all the benchmark examples attempted. This 
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however cannot be guaranteed in all cases as this depends on the nature of 

the function and number of generations. 

Population size indicates the quantity of chromosomes in the population. If 

there are too few chromosomes, only a small part of the search space is 

explored. Consequently, if there are too many chromosomes, the GA slows 

down. It was found that after a given size, it is not useful to increase the 

population size, because it does not make solving the problem faster. A 

good population size was found to be about 20-30 as shown in the 

following example. 

For examples T481 & Ryy6 (MCNC benchmark) which both have 16 

variables (i.e. each individual has 16 bits), Figure 5.7 shows that the best 

population size is around 20. 

180 
00 

;::: 160 -
= 
~ 140 

~ 120 

~ 100 

~ 80 
o 
QJ 60 
eJ) 
~ 40-
j., 
QJ 

~ 20 
o 

10 

,,---

- - T481 Benchmark 

- Ryy6 Benchmark 

20 30 40 50 

Population Size 

Figure 5.7 : Average of GA results with respect to population 
size for the Benchmarks T481& Ryy6 

Figure 5.8 shows that the best result was produced when the tournament 

size was between (3-7). Therefore the tournament size was chosen in this 

range for all benchmark examples. 
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Figure 5.8: Average of GA result with respect to the Tournament 
size for Benchmarks T481 & Ryy6 

The results show the efficiency of the GA (equation (5.1)) in the 

optimisation which reflects how the number of evaluations (column five of 

Table 5.2) using GA is much less than the number of evaluations to find all 

polarities which equals 3ll for n number of variable. From Figure 5.9, it can 

be seen that the efficiency of GA increase with the number of variables of 

the specified function. For example Newill benchmark needs to calculate 

the number of terms for only 300 random polarities using GA to find the 

optimal one, while it needs to calculate the number of terms for 6561 

polarities using exhaustive search. 

Effeciency = 
3n - GA evaluations 

3n 
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Figure 5.9: Efficiency ofGA, calculated as eq. (5.1) 

The time required to optimise the function depends on number of variables 

and minterms. It can be seen from the results shown in Table 5.2, that when 

the function becomes larger, the algorithm needs more time to find the 

optimal solution. Therefore when the algorithm was running less than the 

time required to find the optimal polarity, the result will be sub optimal. 

Figure 5.10 shows the difference in the average of results for the 

benchmarks T481 & Ryy6 with respect to the number of GA evaluations as 

in Table 5.2. 
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Figure 5.10: Average ofGA results with respect to evaluations for 
the Benchmarks T481& Ryy6 

By testing the proposed algorithm with more than one type of crossover 

and mutation, it was found that the single point crossover and uniform 

mutation used in the proposed algorithm produce good results compared to 

other types of crossover and mutation. 

Table 5.3 shows the comparison between two point crossover and single 

point crossover. The comparison is made between two point crossover with 

producing two offspring for every evolution loop and single point 

crossover with producing one offspring for every evolution loop. It can be 

seen from the results of Table 5.3 for single point crossover with one 

offspring per loop need less number of evaluations to find optimal than two 

point crossover. 
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Table 5.3: Experimental results for the pdc Benchmark 

GA GA 
Single point Crossover and one Two point Crossover and two 
offspring for every evolution offspring for every evolution 

loop loop 
Evaluations Terms Evaluations Terms 

700 157 700 204 
500 162 500 241 
400 166 400 241 

5.5 GA for multi-output Boolean functions 

The GA is implemented to handle multi-output functions usmg two 

possible methods for implementing its fitness function. Either using 

Extended_Tabular techniques (Chapter 2) or Minterm/Maxterm separation 

techniques (Chapter 3). Both GAs are implemented with the same details as 

described in section 5.4. It is clear that each output in a multiple output 

function can be minimised either independently as described in section 5.4 

or using Extended_Tabular technique for multiple output as described in 

section 2.5.2, considering the savings of terms which can often be achieved 

through sharing of terms between outputs. 

5.5.1 GA using Extended_Tabular techniques 

In this section; GA is implemented with the fitness calculation based on 

Extended_Tabular technique (Chapter 2). This algorithm adopts two 

approaches, allowing outputs to have different polarities in one and the 

same polarity in the other. 

In the first approach, the population represents the polarity number for all 

outputs at the same time. Therefore, the number of genes within the 

chromosome will be equal to (number of inputs x number of outputs). For 

example, if the CSOP Boolean function has three inputs with four outputs 
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then the population will be 12 bits (3 bits for each output to represent its 

polarity) while in the second approach the chromosome represents one 

polarity for all the outputs. This means that the number of genes within 

each chromosome will equal the number of inputs. For example, if the 

standard Boolean function has three inputs with four outputs, then the 

chromosome contains three genes to hold one polarity which will represent 

the polarity for all the outputs at same time. 

This means, that the algorithm in the first approach will search for a good 

solution among 03
n 
polarities to produce a polarity with less number of 

terms, providing outputs with different polarities (where nand 0 are the 

number of inputs and outputs respectively). In the second approach the 

algorithm will search for the optimum polarity among 3n polarities resulting 

in outputs of the same polarity. All other operators of the GA are the same 

as GA described in section 5.2. 

The proposed algorithm was applied to several MCNC benchmark 

functions [70-72], implemented using C++, and tested using a PC with an 

INTEL CPU, 2.4 GHz clock and 2GB RAM. The results are given in 

columns four and five of Table 5.4. I/O denotes the number of 

inputs/outputs respectively for the benchmark. CSOP Terms denote the 

number of product terms for the specified benchmark. The number of 

MPRM terms which results using GA algorithm for the multi-output 

functions are given in Terms. Optimum gives the minimum number of 

terms for the optimum polarity running exhaustive search to calculate all 

the 3n polarities. This algorithm is implemented to test and compare the 

results obtained using GA with the real optimum polarity running 

exhaustive search. 
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Name 

Rd53 

Squar5 

ConI 

Rd73 

Inc 

5xp1 

Ex5p 

Rd84 

Sqli8 

Misex1 

Clip 

Sa02 

Ex1010 

Table3 

Alu4 

Misex3 

Table5 

Table 5.4: Benchmark results ofGA for multi-output 
Boolean functions 

I/O CSOP Terms /Time Terms /Time Optimum 
terms Terms/Time 

(different (same 
polarities) Polarities) (Exhaustive) 

5/3 32 20/ 20/ 20/0.015 sec. 
0.017 sec. 0.015 sec. 

5/8 29 21/ 26/ 26/0.016 sec. 
2.016 sec. 0.016 sec. 

7/2 118 13/ 14/ 14/0.125 sec. 
0.074 sec. 0.022 sec. 

7/3 127 63/ 63/ 63/0.125 sec. 
2.76 sec. 0.039 sec. 

7/9 104 34/ 34/ 34/0.140 sec. 
2.40 sec. 0.031 sec. 

7/10 128 48/8.76 sec. 611 6110.144 sec. 
0.033 sec. 

8/63 256 216/ 104/ 104/0.985 sec. 
12.087 sec .. 1.062 sec. 

8/4 255 107/ 107/ 107 /0.797 sec. 
2.75 sec. 0.094 sec. 

8/4 255 26/ 26/ 26/0.766 sec. 
0.922 sec. 0.094 sec. 

8/7 128 16/ 13/ 13/0.78 sec. 
2.143 sec. 0.078 sec. 

9/5 496 137 / 182/ 182/ 5.67 sec. 
22.56 sec. 0.110 sec. 

10/4 511 73/ 76/ 76/38.96 sec. 
1.36 sec. 0.328 sec. 

10/10 1024 948/ 810/ 810/43.95 sec. 
6.65 min. 0.172 sec. 

14114 3176 406/ 4011 4011 1 day & 2 h. 
35.83 min. 11.39 min. 

14/8 16384 1954/ 2438/ 2438/ 1 day & 2h. 
1.640 min. 16.013 min. 

14114 12281 1479/ 14211 142111 day &3 h. 
2.654 min. 13.875 min. 

17115 24572 833/42.43 55112.575 551114 days&8 h. 
mm. mm. 
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The results shown in Table 5.4, suggest that the algorithm running for the 

first approach is better than the second approach regarding the number of 

terms but it requires more time because of the wide range of polarities 

(solutions). It was noticed that for some benchmark examples, the 

algorithm can produce better results if given more time. The average 

savings in terms compared with CSOP terms are 64% and 60% depending 

on whether the outputs have different polarities or same polarity 

respectively. 

5.5.2 GA using MintermlMaxterm separation techniques 

In this section, GA's were implemented with a fitness function 

implemented using MintermlMaxterm separation techniques (Chapter 3). 

The GAs finds the optimum polarity among MPRM and MPDRM. The 

motivation behind the finding of the optimum MPDRM as well as MPRM 

is that for some functions, these dual forms can have fewer terms than any 

normal forms. 

These algorithms were also applied to several MCNC benchmark 

functions [70-72] to find optimum polarity among MPRM/ and MPDRM 

expanSIOns. The number of MPRM/and MPDRM terms which results 

using the GA based algorithm for the multi output functions are given in 

columns 4 & 5 of Table 5.5. Column 6 shows how many times the GA is 

required to evaluate number of terms for MPRM. All results from the 

proposed GA (columns four and five) are taken after running the algorithm 

ten times in order to find the Standard deviation and average of these 

results given in STD / A V column. 

Note that some of the benchmark examples in Table 5.5 don't have results 

for MPDRM as these benchmarks don't have CPOS terms. 
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Table 5.5 Benchmark results of GAs using Minterm/Maxterm separation 
techniques 

Name In/Out CSOP Terms Terms for GA 
Terms for Optimal evaluation STD/AV. 

Optimal MPDRM (MPRM) (MPRM) 
MPRM 

Dc1 417 10 10 2 100 0/10 

Rd53 5/3 32 20 - 200 0/20 

ConI 7/2 118 14 14 200 0/14 

Rd73 7/3 127 63 - 200. 7.074/ 66.6 

Rd84 8/4 256 107 108 200 13.94/113.6 

clip 9/5 496 182 174 300 1.34/182.6 

Misex1 817 128 13 5 200 0.42/13.2 

Sqrt8 8/4 255 26 11 200 1.54/27.2 

Sa02 10/4 511 76 - 200 1.62177 

Ex1010 10/10 1024 810 825 200 21.1/816.7 

Inc 7/9 104 34 34 200 1.475/34.8 

5xp1 7/10 128 61 - 200 0.51/61.5 

Apex4 9/19 512 444 407 400 1.032/444.8 

Dk17 10111 64 30 8 400 1.22/31.2 

Table3 14/14 3176 401 421 500 0/401 

Alu4 14/8 16384 2438 496 700 14.8/2451.5 

Misex3 14114 12281 1421 803 700 16.1/1426.1 

Table5 15/17 24572 551 554 600 1.54/552.2 

B12 15/9 32768 64 10 1000 0.843/64.4 

T481 1611 42016 13 - 550 liB 

The average CPU times for both GA's (sections 5.5.1 & 5.5.2) are 

compared in Figure 5.11. Both results are obtained from two algorithms 

which were running on the same PC and same operating systems. 
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The only difference between the two GAs is the method used to calculate 

number of terms for each mixed polarity in the fitness function. The 

comparison is made between the proposed GAs with two different methods 

used in its fitness function. The results show that GA using 

Minterm/Maxterm separation techniques required less time to produce 

optimal polarity. 
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Figure 5.11: Time Comparison between GAs 

Table 5.6 shows the time comparison which was made for the large 

benchmark examples. This time comparison is made between the 

exhaustive search using techniques explained previously in Chapters 2 & 3 

and the proposed GA for finding optimal polarity among 3n expansions. It 

is clear that the proposed GA requires less time than time required doing 

exhaustive search finding the optimum mixed polarity for all tested 

benchmark although can't guaranteed for other functions. Therefore the 
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GA can save time and effort to find the optimal mixed polarity without the 

need to find all the 3n polarities for the specified function. 

Table 5.6 Time Comparison for large Benchmarks 

Benchmark I/O CPU TIME CPU TIME CPU TIME 
Name (CH.2) (CR.3) (GA) 

Apex4 9/19 7.04 sec. 3.625 sec. 0.156 sec. 

Did 7 10/11 39.42 sec. 9.25 sec. 0.453 sec. 

Alu4 14/8 1 day & 2 h. 2 h. & 35 min. 16.013 sec. 

Misex3 14/14 1 day & 3 h. 4h. &20min. 13.875 sec. 

T481 16/1 14 days 15 h. & 12 min. 2.37 min. 

B12 15/9 10 days & 4 h. 15 h. & 32 min. 1.052 min. 

Table5 15/17 14 days & 8 h. 5 days & 4 h. 2.575 min. 

Table 5.7 shows a comparison for number of products lor sums between the 

proposed GA for finding optimal polarity among 3n expansions and RM_ 

Minimisation techniques explained previously in Chapters 4 for producing 

reduced MPRM/or MPDRM expansion. 

It was found from the results of Table 5.7, that the results produced using 

RM_Minimisation technique for 12 benchmarks from the total of 20 

benchmarks, are the same as or better than results produced by the 

proposed GA to design the circuits in RM domain. Further, in 8 

benchmarks from the total of 14 benchmark examples, RM _Minimisation 

technique produced same as or better than results of the proposed GA to 

design the circuits in DRM domain. 
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Table 5.7 Comparison between GAs andRM _Minimisation techniques 

Name In/Out GA RM Minimisation GA RM Minimisation 
Optimal Optimal 
MPRM MPRM MPDRM MPDRM 

Dc1 4/7 10 16 2 2 

Rd53 5/3 20 20 - -

ConI 712 14 11 14 12 

Rd73 7/3 63 63 - -

Rd84 8/4 107 107 108 108 

clip 9/5 182 155 174 186 

Misex1 8/7 13 37 5 4 

Sqli8 8/4 26 47 11 9 

Sao2 10/4 76 65 - -

Ex1010 10110 810 1007 825 1013 

Inc 7/9 34 69 34 40 

5xp1 7/10 61 60 - -

Apex4 9119 444 444 407 504 

Dk17 10111 30 808 8 8 

Table3 14/14 401 1067 421 168 

Alu4 14/8 2438 1790 496 391 

Misex3 14114 1421 1233 803 1523 

TableS 15/17 551 2956 554 835 

B12 15/9 64 54 10 -

T481 1611 13 13 - -

In Table 5.8, the proposed GA is tested for large MCNC benchmark [70-

72] and compared with results produced recently by [48]. Reference [48] 
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developed algorithm which combined annealing process with genetic 

operations to minimise MPRM to improve the performance of the GA and 

achieved better results than simulated annealing and genetic algorithm. The 

results of comparison show that the GA proposed here achieved better or 

same results for all benchmark tested except one benchmark in which [48] 

is better. Experimental results (column four) show that the proposed GA is 

also efficient for large functions with a total saving of 102 terms compared 

with [48]. 

Table 5.8: Comparison between the proposed GA and Reference [48] 

Name In/Out Optimal MPRM Optimal MPRM 
[48] GA 

Ryy6 16/1 48 48 
T481 16/1 13 13 

b9 16/5 105 105 
b2 16/17 333 333 

alcorn 16/38 68 25 
spla 16/46 687 628 

tableS 17/15 559 551 
in2 19/10 262 262 

shift 19/16 100 108 

t1 21123 209 209 
ts10 22/16 136 136 

duke2 22/29 209 209 
cordie 23/22 1980 1980 

Total Terms 4709 4607 

5.6 GA for Incompletely specified functions 

An incompletely specified Boolean function is a function with one or more 

minterms with undefined values as in equation (1.7). These unspecified 
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minterms are known as "don't care" terms and sometimes can help the 

process of minimisation. 

When incompletely specified Boolean functions are transformed to the RM 

domain, "don't care" terms are transformed along with the specified terms 

and their effect is distributed over several terms of the new representation. 

Therefore, it is necessary to find an optimum selection of these terms to 

minimise the number of terms in the expressions. 

For incompletely specified functions, the coefficients will be {O, 1, or 

"don't care"} terms. However, when the coefficient is undefined, it may 

take the value ° or 1 without effecting any change to the output of the 

function. These undefined products are unspecified and called "don't care" 

terms for the given function. Then the RM expansion may be denoted an 

incompletely specified RM expansion. 

5.6.1 Single stage GA for Incompletely specified functions 

A Genetic Algorithm based approach is presented to minimise the number 

of terms ofMPRM single and multi-output incompletely specified Boolean 

functions. The algorithm determines the allocation of "don't care" terms 

for the given function resulting in optimal MPRM expansions. 

The proposed algorithm uses two populations each with their own 

representation. The first population is represented using ternary numbers to 

hold the polarity number of the RM expansion. The size of the polarity 

population equals n-bits for n-variable functions. The second population is 

represented using binary numbers to indicate the presence or absence of 

"don't care" terms. The size of the second popUlation equates the total 

number of "don't care" terms for all outputs of the given functions. 
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Example 5.1: Consider multi-output functions as shown below: 

f1 (xz, Xv xo) = L m(7,3,1) + dci (S,4,6) 

fz(xz, Xv xo) = L m(7,2,O) + dci (3,l) 

f3(XZ, Xv xo) = L m(6,S,4) + dci (3,2,l,O) 

It is clear that the given functions for three variables have different set of 

terms and different number of don't care terms. The individuals for both 

populations will be as shown in Figure 5.12. 

Gene (0-2) in Polarity individual within the 1 st population are represented 

by ternary number to indicate polarity number (121)3= (16)10 

Gene (0-8) in "don't care" individual within the 2nd population are 

represented by binary number to indicate the existence of "don't care" 

terms. 

Gene 0 Gene 2 

(a) Polarity individual 

Gene 0 Gene8 
1 st output 2nd output 3rd output 

1 1 0 1 0 1 0 0 0 

(b) "don't care" individual 

Figure 5.12: Details of individuals for Example 5.1 
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This individual indicates the existence of two "don't care" terms for the 

first output, one "don't care" terms for the 2nd output, and one "don't care" 

term for the 3rd one. 

Therefore; for these combinations of don't care, the functions will be as 

follows: 

11 (Xz, Xv Xo) = L m(7,5A,3,1) 

Iz (xz, Xl, Xo) = L m(7,3,2,O) 

13(XZ,XlI Xo) = L m(6,5,3A) 

The fitness function computes the number of terms for each individual. 

Initially it computes the fitness of all the chromosomes and then it 

computes the fitness for the new offspring of each evaluation. The fitness 

function is implemented to produce the number of terms for the polarity 

number determined in the 1st population including the selected "don't care" 

terms determined in the 2nd population. 

5.6.2 Scheme for Single stage GA 

The scheme of the single stage GA for completely and incompletely 

specified Boolean function is as follows: 

1 - Input the parameters of the GA and store them. These parameters are 

text file name (which contains the Boolean function), population size, 

tournament size (T) and number of evaluations. 

2 - Open and read the text file to store the number of variables, number of 

terms, number of "don't care" terms (if any) and all the telms and 

"don't care" terms. The terms are stored in the binary array as ones or 
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zeros which indicate the existence or not of the terms respectively and 

the value of the term will be specified by the rows' locations of the 

array. 

3 - Convert the function from Boolean expansion to zero polarity FPRM 

expansion using Tabular technique without considering the "don't 

care" minterms. 

4 - Initialise randomly the two populations, the 1 st with a random ternary 

number, and the 2nd (if there are "don't care" terms for the specified 

function) with binary number to indicate existence of the "don't care" 

terms. 

5 - Save number of evaluations which is determined by the user. 

6 - Evaluate the number of terms for all individuals of the current 

population which contain polarity number in ternary code. The 

function here checks the 2nd population (if "don't care" exists) to 

convert "don't care" terms from the Boolean domain to RM domain 

and add them to the list of the terms. Then continue to find the number 

of terms for the polarity determined in the first population. 

7 - Select two parents from each population by using tournament 

selection method. 

8 - Perform single point crossover twice (if "don't care" exist). Once for 

each population. 

9 - Mutate the two populations by changing one bit randomly in each one. 

10 - Evaluate the fitness of the child. 
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11 - Choose randomly T parents and determine the worst one which has 

higher number of terms. 

12 - Replace the new child with the worse one selected in step 10. Check if 

another individual in the current population has the same fitness as the 

new child then skip this step without replacement. This step is carried 

out to avoid premature convergence. 

13 - Evaluations = Evaluations - 1 

14 - If Evaluations < > 0 then go to Step 7. 

15 - Else stop and print the optimal polarity. 

5.6.3 Multi stage GA for Incompletely specified functions 

The single stage GA based approach was tested with different benchmarks 

examples and it was found that the algorithm can produce good result for 

small functions with small number of don't care terms. For functions with 

large number of variables and" don't care" terms, the problem become 

more complex due to the large search space which is equal (3n x 2~). 

To overcome this problem, a two stage GA is proposed. The proposed GA 

has two search spaces depending on two different variables (n & ~). The 1 st 

search space is 3n while the other is 2~. The GA splits into two stages to 

cope with large functions. The first stage is to produce the best polarities 

among MPRM expansions without including "don't care" terms. The 

number of individuals resulting from the first stage equals to the population 

size which is one of theGA parameters entered by the user to run the 

algorithm. The aim of this stage is to minimise the search space saving 

computation time. The second stage will use the resulting best individuals 

from the first stage with different collections of "don't care" terms to 
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further simplify the expressions. The pseudo code of the proposed GA is 

shown in Figure 5.13. 

The fitness function is implemented to convert the specified Boolean 

function to the RM domain and computes the number of terms for the 

polarity specified in the polarity population including the selected "don't 

care" terms in the 2nd population. 

As outlined above, the proposed GA has two stages. Therefore, it has two 

fitness functions; the 1 st fitness function compute the number of terms for 

the polarity represented by the polarity population without considering the 

"don't care" terms. The 2nd fitness function calculates the number of terms 

for the individuals being evaluated including the don't care terms specified 

in the 2nd population. Each new member of the population is based upon 

individuals selected from the first stage population being combined with 

the second stage population. 
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GEN_NO II Number of evaluations 
Pop_size II size of the populations 
tnsize II Tournament size 
GA_INCOMPLETELY( ) 
{ 

} 

Input EA-parameters 
Read the given function in Boolean domain 
Randomly initialise the population for the polarity 
Randomly initialise the population for the don't care 
First_stage_evaluation=GEN_NO/3 
Second_stage_evaluation=2* GEN_NO/3 
Loop for (First_stage_evaluation) 
{ 
Tournament Select (Pl) II select two parents from the 

II polarity population 
Crossover ( ) II single point crossover to produce 

II Childl 
Mutation( ) 
Fitnessl( Childl ) 

II change one bit randomly in the Childl 
II find fitness (No. Of terms) without 

II including the don't care terms 
If (Childl_ Fitness != any existing Fitness) 

II != indicates not equal 
Replacement( ) 

First_stage_evaluation= First_stage_evaluation-l 
} 
If (don't care terms !=0) Ilif there are don't care terms 
{ 
Loop for (Second_stage_evaluation) 

} 

{ 
Tournament Select (P2) Ilselect two parents from the don't 

Ilcare population 
Crossover () Ilsingle point crossover to produce Child2 
Mutation() II change one bit randomly in the Child2 
Tournament Select (Pl) Ilselect one parent from the 

II polarity population 
Mutation(Pl) II change one bit randomly to produce Childl 
Fitness2(Childl,Child2) II find fitness (No. Of terms) 

II including the don't care terms 
If (Child2_Fitness != any existing Fitness) 

Replacement for the Childl. 
Replacement for the Child2. 

} 

} End of GA_INCOMPLETELY 

Figure 5,13: Pseudo code of multi stage GA 

140 



Genetic Algorithms for Optimisation of Combinational Circuits 

Example 5.2: Consider the incompletely specified Boolean function with 

three inputs and two outputs as shown in Table 5.9. 

Table 5.9: Truth table for Example 5.2 

Inputs Outputs 
X3 X2Xl YI Y2 

000 0 1 

001 1 "don't care" 

010 0 1 

011 "don't care" 0 

100 1 1 

101 "don't care" 0 

110 1 "don't care" 

111 "don't care" 1 

This function can be represented using polarity population with three bits 

and "don't care" population with five bits. The two populations are used to 

represent mixed polarity/"don't care" terms using ternary/binary code, 

respectively. 

1) Assuming that the user specifies population size= 7. Then, 7 individuals 

to represent polarity are initialized randomly using ternary code as 

detailed in Table 5.10. 

Table 5.10: Initialisation of the polarity population 
for Example 5.2 

Polarity Population Polarity number 
Bit 2 Bit 1 Bit 0 iDecimaQ 

2 1 1 22 

0 1 1 4 

1 2 0 15 

1 2 2 17 

1 0 2 11 

2 1 0 21 

1 2 1 16 
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2) Another 7 individuals to represent "dont care" selection are initialized 

randomly using binary numbers as shown in Table 5 .11. Consequently, 

there are 3 3 possible polarities and for each one of these polarities there 

are 25 possible collections of "don't care" terms. Hence, there are (33 
x 

25 = 864) possible solutions. Tables 5.11 and 5.12 shows different truth 

vector for each output for the different solutions. 

Sol .. 
No. 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

Table 5.11: Initialisation of the "don't care" population 

for Example 5.2 

"don't care" po pulation Information 
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
1 0 1 0 1 The 1st and 3rd don't care 

for the first output exist and 
the 2nd don't care for the 
second out~ut exists. 

0 1 1 1 0 The 2nd and 3rd don't care 
for the first output exist and 
the 1st don't care for the 
second output exists. 

0 1 1 0 1 The 2nd and 3rd don't care 
for the first output exist and 
the 2nd don't care for the 
second output exists 

1 0 0 1 0 The 1st don't care for the 
first output exists and the 1 st 
don't care for the second 
output exists. 

1 1 1 0 1 All the don't care for the 
first output exist and the 2nd 

don't care for the second 
output exists. 

1 1 0 1 1 The 1st and 2nd don't care 
for the first output exist and 
all the don't care terms for 
the second output exist. 

0 0 0 1 0 Only the 1 st don't care term 
for the second output exists. 
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3) The GA splits into two stages to improve its performance. The GA 

selects two parents from the populations using tournament selection. 

Crossover is then applied to produce child which has a mutation 

applied. Finally, it replaces one of the individuals in the population with 

the child if the number of terms for the child is less than the number of 

terms for the parents. 

Table 5.12: Truth vector for outputs of Example 5.2 

Solution Truth vector of the Truth vector of the 
No. t st output for the 2nd output for the 

(as in Table 5.11) given function given function 
1) 01011011 10101011 

2) 01001111 11101001 

3) 01001111 10101011 

4) 01011010 11101001 

5) 01011111 10101011 

6) 01011110 11101011 

7) 01001010 11101001 

4) In the first stage, the algorithm will run for one third of the number of 

evaluations determined by the user. It will find the number of terms for 

each individual from the polarity population without considering the 

"don't care" terms. The GA will produce the optimal individuals with 

less number of terms as specified. The fitness function is implemented 

for converting the function from the Boolean domain to RM domain. 

When GA is running, the best seven individuals (7 as determined by 

user for population size) are produced as shown in Table 5.13. 

5) In the second stage, the algorithm will run for two third of the number 

of evaluations determined by the user. It will add the selected "don't 
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care" terms to the truth table for the given function as explained in 

Table 5.10 according to the individuals from the "don't care" population 

in Table 5.11. Then convert the function from the Boolean domain to 

RM domain and calculate the number of terms for the incompletely 

specified Boolean function for each output considering the sharing 

between these outputs. 

Table 5.13: Best individuals produced from the first stage of the 
proposed GA for Example 5.2 

Polarity number in ternary code Number 
of terms 

0 1 2 6 

1 0 1 5 

2 1 2 6 

1 2 0 7 

1 2 1 6 

0 1 0 7 

0 0 1 7 

5.6.4 Experimental Results for single & multi stage GA 

The program was applied to several MCNC benchmark [70-72] functions. 

The algorithm was executed on a personal computer with an Intel CPU 

running at 2.4 GHz and 2 GB RAM under Window XP, Professional. The 

algorithms are implemented using C++. The results of multi stage GA are 

given in column six of Table 5.14. Each result from GA is taken after 

running the GA algorithm ten times. Terms denotes to the number of 

canonical sum of products terms for the given benchmark. Number of 

"don't care "terms are given in NDC Minimal number of terms is given in 
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M terms. Saving in column 7 denotes percentage saving in terms when 

"don't-care" terms are included. 

Table 5.14 Benchmark results for the multi stage GA 

CSOP M. Terms M. Terms I Saving AVI 
Name 110 Terms N. I Time Time 0/0 STD 

DC without DC (with DC) 

Xor5 5/1 16 16 6/0.037 1 /0.037 83 1/0 
sec. sec. 

Rd53 5/3 31 54 20/0.046 6/1 min. 70 10.11 
sec. 1.3 

Rd73 7/3 127 63 63 /0.891 63/2 sec. 0 63/0 
sec. 

Squar5 5/8 29 32 26/0.073 23/1 sec. 11 24 
sec. /1.1 

Sym10 10/1 837 187 306/1.32 64/1min. 92 86/ 
sec. 16.7 

9sym 9/1 420 92 173/1.87 34/40.65 72 52 
sec. sec. /8.9 

life 10/1 140 372 84/1.54 40/2.86 52 44/8 
sec. sec. .2 

clip 9/5 496 80 182/8.54 182/8.78 0 182/ 
sec. sec. 0 

newtag 8/1 234 22 6/1.65 sec. 1/16.53 66 2/ 
sec. 0.5 

AV. /STD denotes to average number of terms for the ten runs of the 

proposed GA / Standard deviation. STD tells how closely a set of results is 

clustered around the average of the results. If all the results during 10 runs 

of the GA are the same, STD equals O. 
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The average saving in the number of terms for multi stage GA is 49 % 

for MPRM using "don't care" compared with MPRM without using "don't 

care" terms. Although some authors [16,24, 33, and 36] have implemented 

algorithms for minimisation of MPRM for incompletely specified Boolean 

function, no benchmark results have been published that could be 

compared to the result presented within this Chapter. 

By testing a number of examples using single and multi stage GA, it was 

found that both algorithms have similar results but the time required for the 

GA with two stages is much less as compared with one stage GA as shown 

in Table 5.15. For example, the multi stage GA took 2 seconds to find the 

optimal polarity for the benchmark example life compared to 16 hours 

using single stage GA. The other difference between the results of these 

two algorithms is the standard deviation. The standard deviation and 

average for the result of the single stage GA are much higher than multi 

stage GA especially when the function has large number of "don't care" 

terms. 

In reality, most functions have a significant number of "don't care" terms 

(reach 1000 or more). Therefore, it is recommended using the multi stage 

GA to reduce the time taken and to produce good results no matter how 

large the number of "don't care" terms. The multi stage GA algorithm for 

incompletely specified functions was tested with benchmark functions and 

the tests show better results (average saving 49%) are achieved when 

"don't care" terms are taken into account in the attempted examples. 
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Table 5.15: Comparison between single and multi stage GA 

Multi Stage GA Single stage GA 

Name N.De M. Time AV/ M. Time AV/ 
terms STD terms STD 

Xor5 16 1 1 sec. 110 1 1 sec. 1/0 

Rd53 54 6 1 min. 10.11 6 12.30 11.8/2.4 

1 .3 mm. 

Rd73 63 63 2 sec. 63/0 63 5 min. 72.8/7.1 

Squar5 32 23 1 sec. 24 23 2 sec. 24.3/1.3 
/1.1 6 

Syml0 187 64 1 min. 86/ 64 ~22 91.5/ 
16.7 hours 28.6 

9sym 92 34 40 sec. 52 36 ~ 12 56.6/18. 
/8.9 hours 2 

life 372 40 2 sec .. 44/ 48 ~ 16 62/11.6 

8 .2 hours 

clip 80 182 8 sec. 182/ 188 ~6 209/12.8 
0 hours 

Newtag 22 1 16 sec. 2/0.5 1 3 min. 4/1.2 

5.7 Summary 

New and efficient GA based approaches are presented to optimise the 

number of terms of MPRMlor MPDRM single and multi output completely 

and incompletely specified Boolean functions. The algorithm determines 

the allocation of don't care terms for the given function resulting in optimal 

RM expansions. These algorithms are implemented in C++ and fully tested 

using standard benchmarks. The fitness functions for the proposed GAs are 

implemented using the two different methods explained in the previous 

Chapters (2 & 3). The comparison is made between the proposed GAs with 

two different methods used in its fitness function. The results show that GA 
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using Minterm/Maxterm separation techniques required less time to 

produce optimal polarity. The two algorithms were running on the same 

hardware and same operating system configuration. 

F or completely specified functions, the overall results show that the GA 

finds good solutions in a short time compared with the long CPU time 

required for running exhaustive search especially for large functions. 

Therefore, the GA can save time and effort to find the optimal mixed 

polarity without the need to find all the 3n polarities for the specified 

function. 

F or incompletely specified multi-output functions, the process of 

optimisation of the RM is computationally hard problem, because of the 

large search space (3n X 21-l) which increases with number of variables and 

"don't care" terms. The problem is fuliher complicated when different 

outputs have different "don't care" terms. Firstly, single stage GA was 

implemented to find the optimal polarity with minimal term for 

incompletely specified function. It was found that for functions with large 

number of variables and "don't care" terms, the number of possible 

solutions is vast and requiring long time although can't always guarantee 

good result. 

Therefore, the proposed GA splits into two stages. The first stage produces 

best individuals without including "don't care" terms. The second stage 

deduces the optimal selection for the "don't care" terms which minimize 

the number of terms for the individuals produced in the first stage. Then it 

was found that multi stage GA is more efficient in terms of time and 

average of results especially for large numbers of variables and don't cares. 
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Chapter Six 

Optimal State assignment Using Multi­
Objective Genetic Algorithm 

6.1 Introduction 

One of the very important roles in the design of the sequential circuits is 

the optimisation of the Finite State Machine (FSM). The FSM optimisation 

has considerable effects on performance of the designed circuit such as 

power dissipation, area, delay and testabilities of the sequential circuits. 

This Chapter describes a Genetic Algorithm (GA) that utilises a Pareto 

Ranking scheme [78] to find state assignments that minimise both the 

hardware and power dissipation of the state machine. The Multi Objective 

Genetic Algorithm (MOGA) [67] is employed to find assignments that 

reduce both the hardware and power dissipation due to switching activity 

and leaves it to the designer to give the priority to either power dissipation 

or logic complexity or select a compromise solution that reduces both but 

not guarantee absolute minimum in either. 

The remainder of this Chapter is structured as follows; section 6.2 defines 

the state assignment for the sequential circuits. Section 6.3 explains the 

multi-objective GA. The proposed algorithm is described in section 6.4. 

Experimental results are given in sections 6.5. 

6.2 State Assignments for Sequential Circuits 

As previously explained in Chapter 1, sequential circuits are combinational 

circuits in conjunction with memory storage devices and feedback as in 

Figure 1.1. The outputs of sequential circuits depend on both present and 
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past inputs. A FSM represents the transitions between states within the 

circuits which determine the behaviour of the sequential circuit. The 

designing of a synchronous sequential circuit can be established by 

representing the states using binary code for state variables. Synthesis tools 

are required to give each state a specific binary code. The state assignment 

refers to the allocations of the binary codes to the present and next states of 

the sequential circuits. The resulting combinational logic depends on the 

codes assigned to the states. The inputs with the present states represent the 

input of the combinational part, while the next states and the outputs 

represent the outputs of the combinational part of the specified sequential 

circuits [30, 79]. The total number of different possible assignments for k 

number of states and s state variables can be calculated by equation (1.29), 

while equation (1.30) represents the total number of unique state 

assignments. Table 6.1 shows total and unique number of possible state 

assignments for a different number of states. It is clear that the size of the 

solution space increases factorially with the number of states. 

Table 6.1: Total and unique number of possible state assignments 
k s L A 

(no. of rows in (state variable) (as in eq. (1.29)) (as in eq. (1.30)) 

STT) 

4 2 24 12 

5 3 6720 140 

6 3 20160 420 

8 3 40320 840 

9 4 451,347,200 10,810,800 

10 4 29059430400 75,675,600 

14 4 10,461,394,944,000 27,243,216,000 

16 4 20,922,789,888,000 54,486,432,000 
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Furthermore; the optimal encoding for a FSM with 14 states or more can't 

be found using exhaustive search due to the excessive time required 

because of the large number of possible state assignments. 

The power consumption [64] of a sequential circuit is proportional to its 

switching activity which can be represented by equation (6.1) 

(6.1) 

where C L is the physical capacitance of the output for the node, Vdd is the 

supply voltage, Esw is the expected switching activity, and !elk is the clock 

frequency. Since the register capacitance is fixed and cannot be affected, 

therefore; we consider the switching activity Esw as cost function C which 

is one of the proposed objectives [64]. 

C = L tp(i~ j) H Di,j 

i,j E S 

(6.2) 

where H Di,j represents the Hamming Distance between the coding of the 

two states si and Sj' and tp( i~j) = tPij + tpji and tPij is defined as the 

total state transition probability from states si to states Sj. 

The Hamming Distance (HD) [80] between two Boolean vectors ail bi is 

defined by the number of bits in same position ail biwith different phases 

as in equation (6.3). 

i=k-l 

HDa,b = L ai tBbi (6.3) 
i=o 

Therefore; the number of state bits that are altered in every FSM transition 

is known as switching cost C (equation (6.2)). State assignments that result 

in a lower C value and a lower number of terms to structure the 

combinational circuit are considered to be optimal assignments. The 

switching activity and logic complexity of sequential circuits heavily 
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depend on the code assigned to the states which is influenced by the HD 

between states. 

The total state transition probability [64] tPij between two states si & Sj , is 

defined as the probability that the transition from si to Sj' occurs III an 

arbitrary sequence and can be calculated using equation (6.4). 

(6.4) 

Steady state probability [64] Pi of state Si is defined as the probability that 

the state is visited within an arbitrary random sequence. 

N-­
Pij = Prob (Next = Sj Ipresent = sa = L LJ 

hNih 
(6.5) 

where Pij represents the conditional state transition probability, Nij is 

the number of transitions from si to Sj' i,j E {O,1,2,3, ... , k - 1} , 

where k is the number of states and Lh Nih are all transitions that begin 

with state si' 

A finite state Markov process is defined as "a system that can be in one of 

several (numbered) states, and can pass from one state to another each time 

step according to fixed probabilities [81]". The Markov system can be 

represented by State Transition Graph (STG) where all the states and 

transitions probabilities are shown. The transition matrix associated with 

this system is the matrix whose ijth entry is the conditional state transition 

probability Pij [81]. 

i=k-l 

L Pi = 1 
i=o 

j=k-l 

L 
j=O 

P-P-­] F 
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The steady state probabilities Pi can be calculated by solving the set of 

linear equations (6.6) and (6.7) using Gaussian elimination methods. 

The calculations in details of these probabilities are shown in Example 6.1. 

Example 6.1: Consider the benchmark Lion [72] which has two inputs, one 

output and four states. State Transition Graph (STG) for this example is 

shown in Figure 6.1. 

01/-

0-/1 

01/1 00/1 

Figure 6.1: State Transition Graph of Lion Benchmark 

The State Transition Table (STT) for this example shown in Table 6.2 

consists of four symbolically encoded states STO, ST1, ST2, and ST3. These 

states can be assigned unique codes using two state variables Yl and Yz. 

The inputs can be represented by Xl and Xz and the single output IS 

represented by Z. The next states are represented by yi and yt. 
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Note that, if the next states and/or outputs are not specified for any state, 

the resulting circuit is known as an incompletely specified sequential 

circuit. These undefined transitions can be denoted by" - " . 

Table 6.2: FSM - SIT representation of Lion benchmark 

Present Next states (yi,yi) I Output Z 
states 

(yi,yi) I Z (yi,yi) I Z (yi,yi) I Z (yi,yi) I Z 
YvYz 

Xj X2 X1X2 X1X2 XIX2 

00 01 11 10 
STO STO/O STlI- STOIO STOIO 
STI STIll STlII STOIO ST2/1 
ST2 STIll ST3/1 ST211 ST211 
ST3 ST3 / 1 ST3/1 ST2/1 -/-

The conditional state transition probability Pij is calculated by dividing the 

number of inputs causing this transition by the total number of valid inputs 

at state si as in equation (6.5). The details of these calculations are shown 

below. 

N11 
P11 = Prob (Next = Sl IPresent = Sl) = 

N11 + N12 + N10 
2 

P = = 05 11 2+ 1+ 1 . 

N12 
P12 = Prob (Next = s21Present = Sl) = -----­

N11 + N12 + N10 

1 
P12 = = 0.25 

2+ 1+ 1 

N13 
P13 = Prob (Next = S3 I Present = Sl) = N N 

11 + 12 + N10 

1 
P12 = = 0.25 

2+ 1+ 1 
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Then all other conditional probabilities can be calculated using the same 

equations and the values of these probabilities are shown in Figure 6.2. 

Poo=3/4 

P33 =2/3 

P11 =112 

1/4 1/4 

P22 = 112 

Figure 6.2: Conditional State Probabilities of Lion Benchmark 

These conditional state probabilities which represent the ifh entry of 4x4 

transition matrix for this example are shown below: 

3 1 
- 0 0 

4 4 
1 1 1 Po Po 0 
4 2 4 P1 P1 

1 1 1 Pz Pz 
0 

4 2 4 P3 P3 

1 2 
0 0 

3 3 
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From equations (6.6) and (6.7), steady state probabilities Pi can be 

calculated as follows: 

3 1 
Po = 4 Po + 4 Pi 

111 
Pi = 4 Po + 2 Pi + 4 Pz 

111 
Pz = 4 Pi + 2 Pz + 4 P3 

1 2 
P3 = 3 Pz + 3" P3 

Po + Pi + Pz + P3 = 1 

Using Gaussian elimination method to solve these five equations and find 

the steady state probabilities Pi ,results in the following: 

Po 0.266667 
P1 0.266667 
P2 0.266667 
P3 0.2 

The Cost C as function of switching activity for this example can be 

calculated as follows: 

Two different random assignments are displayed in Table 6.3. 

Table 6.3: Random assignments for Example 6.1 

States 1 st assignment 2110 assignment 
STO 00 10 
STI 01 01 
ST2 11 11 
ST3 10 00 

For the first assignment, the Cost C as function of switching activity is: 
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C = HDso,Sl(tPOl + tPl0) + HDs1,S2(tP12 + tp21) + HDs2,S3(tP23 + tp32) 

= HDso,Sl(POPOl + P1Pl0) + HDs1,S2(P1P12 + P2P21) + HDs2,S3(P2P23 + P3P32) 

= 1 (0.06667 + 0.06667) + 1(0.06667 + 0.06667) + 1(0.06667 + 0.0666) 

= 0.4 

The Lion benchmark in Kiss2 format is shown in Table 6.4. 

Table 6.4: Kiss2 format of Lion Benchmark 

.i 2 

.0 1 
.p 11 
.S 4 

-0 STO STO 0 

11 STO STO 0 

01 STO ST1 -

0- ST1 ST1 1 

11 ST1 STO 0 

10 ST1 ST2 1 

1- ST2 ST2 1 

00 ST2 ST1 1 

01 ST2 ST3 1 

0- ST3 ST3 1 

11 ST3 ST2 1 

The following file (PLA format) is produced by giving the present and next 

state the code shown in the first random assignment (Table 6.3) to be ready 

for minimisation using Espresso [73]. 
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. i 4 II Primary inputs and present states 

.0 3 II Primary outputs and next states 

.p 11 II Number of product terms 
-000 000 1-11 111 
1100 000 0011 011 
0100 01- 0111 101 
0-01 011 0-10 101 
1101 000 1110 111 
1001 111 .e 

After minimisation using Espresso, 15t assignment results in the following: 
.i 4 
.0 3 
.p 6 
10-1 100 -0-1 011 
111- 010 -11- 101 
0-10 101 .e 
010- 011 

Considering the sharing of terms, this implementation requires 6 terms. The 

equations for this circuit after minimisation are as follows: 

yi = Xl XzYz + X1Y1Y z + XZYl 

yt = Xl XZYl + Xl XzY 1 + XzYz 

Z = X1Y1Y z + Xl XzY 1 + XzYz + XZYl 

For the second assignment, the Cost C as function of switching activity is: 

= 2 (0.06667 + 0.06667) + 1 (0.06667 + 0.06667) + 2 (0.06667 + 0.0666) 

= 0.666 

The following file (PLA format) is produced by giving the present and next 

state the code of the second random assignment (Table 6.3) to be ready for 

minimisation using Espresso [73] 
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.i 4 II 

.0 3 II 

.p 11 II 
-010 100 
1110 100 
0110 01-
0-01 011 
1101 100 
1001 111 

Primary inputs and present states 
Primary outputs and next states 
Number of product terms 

1-11 111 
0011 011 
0111 001 
0-00 001 
1100 111 
.e 

After minimisation using Espresso, 2nd assignment results in the following: 

. i 4 

.0 3 

.p 10 
0110 010 1--1 100 
-010 100 1-11 011 
1100 111 0--1 001 
0-01 010 -0-1 011 
1-1- 100 
0-0- 001 

The equations for this circuit after minimisation are as follows: 

yi = XZYIYZ + XIXzY1YZ + XIYl + XIYZ 

yt = XlxzYlYz + XIXzY1YZ + X1Y 1YZ + X1YIYZ + xzYz 

Z= XI XZY1 YZ + XIY1 + XIYIYz + XIYz + xzYz 

Considering the sharing of terms, this implementation requires 10 terms. 

Therefore; the first assignment is better in both objectives for this example. 

It is clear that the number of terms and switching activity of synthesised 

circuits has been affected by the FSM state assignment. The assignments 

used in this example were randomly selected. Furthermore, finding optimal 

state assignments for circuits with a large number of states becomes 

computationally complex as well as crucial for larger FSMs. Therefore; GA 
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will be used to find good assignment that reduces the logic and power in 

reasonable time without the need to do an exhaustive search. 

6.3 Multi-Objective Genetic Algorithm 

Single objective optimisation seeks to find the optimal (highest or lowest) 

value of the defined objective. For many problems, there is a need for 

simultaneous optimisation of several, possibly conflicting objectives. 

Therefore, if there are two objectives to be optimised, it may be possible to 

find two solutions; one of these solutions being optimal in terms of the first 

objective while the other is the optimal for the second objective [82, 83]. 

Multi-objective GA's may be applied to many complex engineering 

optimisation problems. A number of different evolutionary algorithms were 

suggested to solve multi-objective optimisation problems [84, 85]. 

In this research, there are two objectives to be optimised. Using a Pareto 

scheme [77, 82], it is convenient to classify all the potential solutions into 

dominated and non-dominated (Pareto optimal set) solutions. "The solution 

11 is dominated if there is a feasible solution v not worse than 11 for all 

objectives tOJ (m = 1, ..... , r), where r is the total number of objectives 

[83]". This could be expressed in mathematical form by equation (6.8) 

(6.8) 

"If a solution is not dominated by any other feasible solution in at least one 

objective, we call them non-dominated (or Pareto optimal set) solutions 

[82]" . 

Therefore, Pareto dominance normally requires that a solution 11 dominates 

a solution v if 11 is better than v in at least one objective and 11 is as same 

as v in all other objectives. 
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There is another approach for multi objective optimisation using objective 

weighting (aggregating function) [82, 83], which combines the multiple 

objectives into a single composite function using the weighted sum method. 

The weight w for each objective is (0 < Wm < 1), Li wm = 1, and 

different weight vectors lead to different solutions. The problem becomes 

one of finding the solution which minimizes Li W mim . The advantages of 

this method are, its simplicity, systematic structure of objectives, and it 

may work properly with few objective functions. Normally, this method 

produces one single solution. The drawback being the difficulty in setting 

the weights that can scale the objectives for the problem to suit the 

requirements which could be different from one problem to other [82]. The 

designer will need to have prior knowledge of the weight value for each 

objective and to run the algorithm many times to find one of the different 

solutions each time. For instance, not all people involved in decision 

making, agree on relative importance of parameters. Therefore, multiple 

run of aggregating function will be required to offer the designer different 

solutions although can't guarantee that the produced solutions will cover all 

Pareto- optimal solutions. 

The proposed algorithm produces a set of optimal solutions (known as 

Pareto-optimal solutions), instead of a single optimal solution. Each one of 

these Pareto-optimal solutions has different diversity. Without knowing 

what the user requirements are, it cannot be said that anyone of these 

solutions is better than the other. Therefore, the proposed algorithm has the 

ability to find multiple Pareto-optimal solutions in one single simulation 

run. The proposed technique is one of the most popular evolutionary multi 

objective optimisation techniques. The main advantages are its simplicity 
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to implement and the overall good performance. The weakness of this 

technique is the controlling of the diversity of population [82]. 

The proposed MOGA in this Chapter has two objectives, the first being to 

reduce the number of components required to design the combinational part 

of the sequential circuit. The second is to reduce the switching activities. 

6.4 Proposed Algorithm 

The MOGA is proposed to optimise the state assignment for completely 

and incompletely specified sequential circuits without doing an exhaustive 

search. The aim is to identify the good state assignments which can be used 

to design the circuit with fewer components and reduced switching activity 

simultaneously. The MOGA algorithm is implemented in C++, and tested 

with 15 benchmark examples [72] of up to 48 states. The search space of 

the proposed algorithm is defined by equation (1.29). 

The proposed algorithm for finding the optimal state assignment represents 

a candidate solution using a chromosome containing the code for each state 

of the sequential circuit. Decimal numbers are used to represent each 

chromosome. The length of each chromosome is equal to 2s , where s is 

number of state variables. Each gene in the chromosome holds the decimal 

code for the states used including the "don't care" states. 

In MOGA, non-dominated individuals are assigned rank 1. Therefore, in 

every population, there is at least one individual with rank 1 and the 

maximum rank assigned to the individuals within population will be equal 

or less than population size. 
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Example 6.2: a circuit with 6 states; requires 3 flip flops. Therefore; this 

circuit has two don't care (DC) states. The length of the chromosomes = 

23=8 bits. If the chromosome is 1 3 4 2 1 0 6 5 7 I, then the state 

assignment is shown in Table 6.5. 

Table 6.5: One possible state assignment for Example 6.2 

States Chromosome assignment 
STO 3 011 
ST1 4 100 
ST2 2 010 
ST3 1 001 
ST4 0 000 
ST5 6 110 
(DC) ST6 5 101 
(DC) ST7 7 111 

The MOGA with the two objectives has two fitness functions. The first 

fitness function "Fitness_term (cJ" calls the Espresso tool [73] to minimise 

the combinational part of the circuit and to produce the terms for the 

minimised circuit. The second fitness function "Fitness_switching (ci)" 

calculates the switching activity as given by equation (6.2). 

The Pareto ranking is integrated into the proposed algorithm by replacing 

the chromosome fitness by the Pareto ranks. This scheme is based on 

several layers of classifications [82]. All non dominated solutions are given 

rank one. Figure 6.3 gives the pseudo code of the proposed algorithm. 

The GA uses a tournament selection method where the main parameter of 

selection is the tOUlnament size (T) which can be changed by the operator. 
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Procedure MOGA ( ) 
{ 
Input Parameters of GA (benchmark file, population size, 

Tournament size, & number of Evaluations) 
Read_Terms (benchmark) 
Randomely_Initialise_population( ) 
Fitness_terms(all population) 
Fitness_Switching(all population) 
Set_Rank (all population) 

Loop until (Number of Evaluations = 0) 
{ 

} 

Tournament Select (T) Ilselect two parents 
Crossover (Child) IIUniform crossover to produce the Child 
Mutation(Child) IISwap two gene randomly in the new Child 
Fitness_terms (Child) II Calculate Number of terms 
Fitness_Switching (Child) II Calculate Switching Activity 
If (Child Fitness!=any existing Fitness) 

{ 
Tournament Replacement ( ) 

} 
Set_Rank( )j 

II!= denotes not equal 

Number of Evaluations = Number of Evaluations - 1 

output Results ( ) 
} End MOGA 

Current_Rank=lj 
AII=pop_sizej 
Loop For (i =0 to i=pop_size) 

{ 
If (NonDominated (i, All» 

{ 
Rank[i] =Current_Rankj 

} 
Remove (i)j 

All = All-lj 
Current_Rank = Current_Rank+lj 

} 
}End Set_Rank 

Figure 6.3: Pseudo code for the Proposed MOGA 
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A number of individuals ( T) are selected from the population randomly 

and the one with the smaller rank (i.e. best rank) is then used as the selected 

individual. Crossover is the principle genetic operator. Uniform crossover 

shown in Figure 6.4 is adopted. A string of binary bits is initialized by the 

proposed algorithm randomly. The length of the binary string is equal to 

the length of the chromosome which determines whether the genes are 

copied from the first parent or from the second parent. 

String of 
binary bits 
initialized 
randomly 

Parent 1 

Parent 2 

Child 

1 

o 

6 8 7 5 3 4 2 

7 

Note: Genes 4 & 6 inherited from Parent 1 instead of Parent 2 to avoid 
duplication. 

Figure 6.4: Uniform crossover used in the proposed algorithm 

The child inherits the gene from the first parent if the corresponding bit in 

the binary string is zero while the child inherits the gene from the second 

parent if the corresponding bit in the binary string is one. A continuous 

check is required before the inheritance for each gene avoiding the 

repetition of the same coding for different states which is not allowed. The 

mutation operator swaps the positions of two randomly chosen genes as 

shown in Figure 6.5. 
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Child 

Child after 
Mutation 

2 genes selected randomly 

Figure 6.5: Mutation used in the proposed algorithm 

A replacement strategy controls the composition of the new generation for 

each evolution loop. The proposed algorithm uses a tournament 

replacement method, which randomly, chooses T individuals 

(independently of their ranks) from the population and replaces the 

chromosome which has the worst rank with the new child. 

The successful application of GA depends on the diversity of the whole 

population in the search space. It may be difficult for a GA to find the 

global optimum solution, if it can't hold its diversity well; this may result 

in the premature convergence to a localised optimal solution. 

Premature Convergence is one of the major problems associated with GAs. 

Losing of genetic variation could results in Premature Convergence which 

may happen after a number of evaluations, when all chromosomes within 

the population have the same number of terms and same switching activity. 

In this case, the algorithm will not be able to generate child with the aid of 

genetic operators from the selected parental solutions due to this problem. 

To avoid this problem, which is one of the biggest problems of GA, criteria 
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is used by defining a condition for the replacement. Which is in case that 

anyone of the current chromosomes has the same rank as that of the new 

child, the new child will not be replaced. 

F or the halting criteria, a usual strategy is to stop evolution after a fixed 

number of evaluations, which is determined by the user. 

Example 6.3: Consider the FSM-STT for the benchmark bbtas [72] which 

has six states as shown in Table 6.6. 

Table 6.6: FSM - STT representation of bbtas Benchmark 

Present Next states (yi, yi)l Outputs Z1ZZ 

states 
(yi,yi)l Z1Z Z (yi,yi)l ZlZZ (yi,yi)l Z1ZZ (yi,yi)l ZlZZ 

YvYz 
XIX2 XIX2 XIX2 XIX2 

00 01 11 10 

STO STOIOO STl/OO STlIOO STlIOO 
ST1 STOIOO ST2/00 ST2/00 ST2/00 
ST2 STlIOO ST3/00 ST3/00 ST3/00 
ST3 ST4/00 ST3/01 ST3/11 ST3110 
ST4 STS/OO ST4/00 ST4/00 ST4/00 
STS STOIOO STS/OO STS/OO STS/OO 

Figure 6.6 shows numbers of terms and switching activities for 17 different 

assignments randomly initialised. It is clear that some assignments produce 

the same number of terms with different switching activity, such as 

assignments 4, 5, 7 and 12. 
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Figure 6.6: Terms and Switching activities for different assignments 
of Example 6.3. 

Table 6.7 shows the codes and ranks for these different assignments shown 

in Figure 6.6. 
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Table 6.7 Codes and ranks for different state assignments for Example 6.3 

Solution Codes for different Terms Switching Ranks 
Number state assignments Activity 
as in Fig. st7 sto 

(6.6) 

1 
053 1 4 2 6 7 10 0.56 1 

2 
145 6 0 2 3 7 12 0.56 3 

3 
106 4 3 2 7 5 12 0.717 5 

4 
420 3 6 7 1 5 11 0.717 3 

5 
317 4 5 0 2 6 11 0.56 2 

6 
570 1 3 2 4 6 12 0.6 4 

7 
053 1 6 4 2 7 11 0.769 4 

8 
645 1 7 0 3 2 14 0.834 10 

9 
425 6 7 1 3 0 13 0.73 7 

10 
270 3 4 1 5 6 15 0.847 11 

11 
476 1 0 3 5 2 13 0.939 9 

12 
024 5 1 3 7 6 11 0.44 1 

13 
102 4 7 5 6 3 14 0.76 9 

14 
407 2 5 6 1 3 13 0.873 8 

15 
063 2 1 4 7 5 13 0.717 6 

16 
420 5 6 1 3 7 12 0.79 6 

17 
476 5 1 2 3 0 14 0.7304 8 
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The first five ranks are shown in Figure 6.7. Solutions which are the 

optimal either in number of terms, switching activity or both have rank of 

one. 

0.9 

0.8 

0.7 
> 0.6 .... 
'S 
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.... 
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o 5 10 15 

Number Of Terms 

Figure 6.7: Different ranks for Example 6.3 

It is obvious from Figure 6.7, that each rank has different number of 

solution depending on values of switching activity and number of terms for 

each solution of this running, such as rankl, 3, and 4 has two solutions 

while rank 2 and 5 has one solution only. This Figure shows that one 

solution having rank 1 is better than the solution of rank 2 in term of 

number of term while the other solution of rank 1 is better than the solution 

of rank 2 in term of switching activity. The solution having rank 2 is better 

than both solutions of rank 3 in term of switching activity and number of 

terms. The values of number of terms and switching activity for these 5 

ran1es are all shown in Table 6.7. 
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After running the proposed algorithm, it produces three results with rank of 

one as below. 

o 5 
6 1 
o 2 

3 1 
5 4 
4 5 

4 2 6 7 
o 3 2 7 
1 376 

terms = 10 
terms = 9 
terms = 11 

switching activities =0.56 
switching activities =0.613 
switching activities =0.44 

The user has the choice to select one of these results depending on 

requirements. The time required to produce these solutions is one minute 

only. The results are obtained using population size=30, tournament size=3 

and 300 for the number of evaluations. These parameters are determined 

after testing various population sizes and different tournament sizes. 

6.S Experimental Results 

The proposed algorithm is applied to 15 MCNC benchmark [72] functions. 

The algorithm is implemented using C++ and is tested using a PC with 

INTEL CPU, 2.4 GHz clock and 2GB RAM. Test results are given in 

column three of Table 6.8. Espresso is used to minimise the circuit for each 

state assignment. The second column in Table 6.8 denotes the number of 

inputs, number of output and number of states for the benchmark given in 

the first column. The set of results produced by the MOGA is given in 

column 3. PT denotes to number of product terms and C refers to the cost 

as function of switching activity. It is obvious that the number of solutions 

produced is different from one example to another and depends on how 

many non dominated solutions having rank one are produced by the 

proposed algorithm. 

171 



Table 6.8: Experimental results for the proposed MOGA 

Benchmar In/out/ Results of Result of Results of Results Saving Saving Saving Time 
ks No. of MOGA NOVA[87] Ref. [53] of compared to compared to compared 

states Ref. [54] Ref. [87] Ref[53] to 
Ref[54] 

PT C PT C PT C PT PT C PT C 

bbtas 212/6 9 0.613 8 0.815 --- --- 9 -11% 25% --- --- 0% 1 min. 
10 0.56 
11 0.44 -27% 46% 

bbara 412/10 22 0.49 24 0.459 22 0.317 23 8% -6% 0% - 4% 8 min. 
27 0.39 -11% 15% -18% 24% 

-20% 
opus 5/6/10 15 0.49 16 0.809 15 0.556 12 6% 40% 0% 12% -20% 40 min. 

17 0.49 
16 0.488 0% 40% -25% 12% 

Lion9 2/1/9 10 0.34 - -- --- --- 11 -- -- --- --- 9% 8 min. 

Dk16 1/2127 57 2.1 - -- --- --- 68 -- -- --- --- 16% 6 hours : I 

68 1.64 &3 
59 1.7 mIll. 

I 

keyb 7/2/19 46 0.98 48 1.469 46 0.674 46 4% 33% 0% -31% 0% 3 hours 
47 0.75 &32 
55 0.54 -12% 63% -16% 20% mIll. 

Cse 7/7/16 43 0.39 46 0.602 43 0.355 45 7% 35% 0% -9% 4% 3 hours 
49 0.32 &9 
54 0.30 -15% 50% -20% 15% mIll. 

----- ~---
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Table 6.8: Continued 
Benchmar In/out! Results of Result of Results of Results Saving Saving Saving Time 

ks No. of MOGA NOVA[87] Ref. [53] of compared to compared to compar 
states Ref. [54] Ref. [87] Ref[53] ed to 

Ref[54] 
PT C PT C PT C PT PT C PT C 

donfile 2/1124 22 1.375 28 1.75 36 1.6 31 21% 21% 39% 14% 29% 6 hours & 
26 1.29 7% 26% 27% 19% 4 min. 

Ex1 9/19120 48 0.78 44 1.338 52 0.842 47 -8% 42% 8% 7% -2% 6 hours & 
49 0.63 7 min. 
51 0.621 -14% 54% 2% 26% I 

Ex4 6/9/14 13 0.568 19 1.310 14 0.421 15 32% 57% 7% -25% 13% 6 hours 
14 0.468 26% 64% 0% -10% &1 min. 

Modulo 111/12 10 0.75 12 1.00 12 0.583 10 16% 25% 8% -22% 0% 5 hours & 
12 11 0.58 8% 42% 8% 0% 56 min. 
Sl 8/6120 43 1.37 80 1.698 66 1.48 68 46% 19% 35% -7% 37% 6 hours 

53 1.19 
60 1.04 25% 39% 9% 30% 

Sla 8/6/20 29 1.21 -- -- --- --- 66 -- -- --- --- 56% 5 hours 
30 1.174 &19 min 

stry 9110/30 78 1.1 94 1.278 88 0.943 78 17% 14% 11% -14% 0% 6 hours & 
79 0.93 5 min. 
88 0.674 6% 47% 0% 29% 

Planet 7119/48 81 2.49 87 2.833 86 2.24 84 7% 12% 6% -10% 4% 25 hours 
82 2.09 &23 min. 
87 1.69 0% 40% -1% 33% 
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In Table 6.8, the comparison is made between the results produced by the 

proposed algorithm and the results published by other references as shown 

in columns 4, 5 & 6. 

The results are compared with NOVA tool [86] results, which were 

published in [87]. It is obvious that MOGA results for 9 out of 12 

benchmark examples tested are better than NOV A results in terms of 

hardware components and switching activity. While for the other 

benchmark examples, MOGA results are better than NOV A in either 

number of terms or switching activity but not both. From Table 6.8, first set 

of MOGA results for all benchmarks tested, it can be seen that on average 

MOGA produces results requiring 21 % fewer product terms and 15% less 

switching activity compared to NOV A. 

The GA in [53] was developed for finding good assignment to minimise 

area and power for the FSM. The author combined the two objectives into a 

single composite function using the weighted sum method. Table 6.8 shows 

that the proposed algorithm compared to [53] can achieve more saving in 

terms of hardware components and switching activity for 6 out of 11 

benchmark examples tested. While for the other 5 out of 11 benchmark 

examples tested, the MOGA results achieve more saving in either number 

of terms of switching activity but not both. 

Reference [54] presented a GA for finding good assignment to reduce the 

area requirement. Comparing MOGA results and results obtained from this 

reference, it is found that the MOGA results could save terms in 8 out of 15 

benchmark examples tested with reduction in the switching activities. It is 

also obvious that saving in terms becomes larger for the large functions, 

(56% in one case). 
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The time required to produce the good assignment is different for each 

example and depends on the complexity of the circuit. The time required by 

the proposed algorithm is large due to the fact that MOGA has to 

communicate with Espresso to minimize the logical expressions. For each 

evaluation of the GA, the proposed algorithm calls the Espresso to 

minimise the circuit for each assignment. Even allowing for this overhead, 

the time required to produce a good assignment is still acceptable. It is in 

the range of 1 minute for the circuit with 6 states to 25 hours for the circuit 

with 48 states. 

Figure 6.8 shows the number of Evaluations for every benchmark tested in 

Table 6.8. Evaluations number denotes to how many evaluation required 

within the MOGA to produce the optimal state assignments. This Figure 

shows the efficiency of the proposed algorithm which is clear from the big 

difference of number of evaluations compared with total number of 

assignments. For example, considering Cse Benchmark which has 16 

states, doing exhaustive search, the total number of unique state assignment 

is 54,486,432,000, while the proposed MOGA needs 60000 evaluations to 

produce good assignment. The number of evaluations actually used 

compared to the total number of unique state assignments gives an 

indication of the efficiency of the proposed MOGA. 
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Figure 6.8: Number of MOGA Evaluations for different Benchmarks 

6.6 Summary 

In this Chapter, a new approach using a Multi Objective Genetic Algorithm 

is proposed to determine the optimal state assignment with less area and 

power dissipations for completely and incompletely specified sequential 

circuits. The goal is to find the assignments which reduce the component 

count and switching activity. The proposed MOGA employs a Pareto 

ranking scheme and produces a set of state assignments, which are optimal 

in both objectives. The Espresso tool is used to optimise the combinational 

parts of the sequential circuits. 

Experimental results are given using a personal computer with an Intel 

CPU of 2.4 GHz and 2 GB RAM. The algorithm is implemented using C++ 

and fully tested with benchmark examples. The experimental results show 

that saving in components and switching activity are achieved in most of 

the benchmarks tested compared with recent publications. 
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Chapter 7 

Conclusions and Future Work 

The aim of this research is to develop various techniques and algorithms 

for logic synthesis and optimisation of combinational and sequential logic 

circuits. These algorithms could become part of new commercial ECAD 

package for future VLSI digital designs. All algorithms are implemented 

in C++ and fully tested using standard benchmark examples on a personal 

computer with an Intel CPU of 2.4 GHz and 2 GB RAM under Window XP 

professional compiled by using Bloodshed DevC++ platform. 

7.1 Review of Algorithms and Techniques 

The main contributions of this thesis are as follows: 

In Chapter 2, new and simple techniques and algorithms called 

Extended_Tabular techniques are presented for bidirectional conversions 

between FPRMlFPDRM logic functions and MPRMlMPDRM respectively 

and to derive any mixed polarity from another MPRM for any number of 

variables. Therefore, two mixed polarities can be derived from each other 

without the need to go back to the original Boolean function in the CSOP 

form, thus saving memory and computer time. These techniques are based 

on a Tabular technique which has been developed to calculate the 

coefficients of FPRM expansions from CSOP expansion. These new 

techniques could be used for both single and multi-output Boolean 

functions. The implemented algorithms for these new techniques are tested 

with benchmark examples of up to 16 inputs and up to 310utputs using 

exhaustive search. Time required to do exhaustive search reached up to 14 

days for benchmark with 16 inputs and one output. The advantage of these 

techniques is its simplicity and there is no restriction of number of 
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variables. The experimental results for running exhaustive search (Tables 

2.16 and 2.17) show that the optimum polarity among 3n MPRMlor 

MPDRM is always same or better than the optimum polarity among 2n 

FPRMIFPDRM expansions resulting in saving of components and power 

consumptions. The experimental results demonstrate that, in some cases, 

the circuit can be better minimised in DRM expansion using ORlExNOR 

forms whereas for other circuits, the reverse is the case. Further, in other 

cases, the circuit can be better simplified in the standard CSOP Boolean 

function using Espresso tools. The average saving in components for the 

tested benchmarks compared with Espresso terms are 17% for MPRM and 

27% for MPDRM. Moreover, the average saving in components for the 

tested benchmark compared with PPRMIPPDRM terms is 49% for MPRM 

and 41 % for MPDRM. 

Chapter 2 also shows a new technique developed for computing the 

coefficients of 3Zn
- 1 PKRO_RM expansions starting from PPRM 

expansion based on Extended_Tabular techniques. This technique could 

also be used to generate any polarity among PKRO-RM class from the 

CSOP Boolean function saving time and the effort required for conveliing 

from CSOP to FPRM. This technique can be used manually for small 

examples or programmed on a computer. This technique is tested manually 

with small examples. 

In Chapter 3, fast and simple techniques called Minterm/Maxterm 

separation techniques are developed to generate MPRMlMPDRM starting 

directly from the truth vector of standard form CSOP/CPOS Boolean 

functions. These new techniques could also be used to compute the 

coefficients of MPRM/MPDRM stmiing from FPRM/FPDRM forms, 
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respectively. The advantages of these techniques are being able to process 

functions with any number of variables, their simplicity, and their 

efficiency in terms of CPU time. The other advantage of these techniques is 

being able to convert the standard form of Boolean functions directly to 

any MPRMlor MPDRM expansion without the need to convert it to 

FPRM/or FPDRM form. The experimental results (Tables 3.3 and 3.4 ) 

show that the time required running an exhaustive search to find optimum 

polarity among 3ll MPRMlMPDRM using the Minterm/MaxtelID separation 

is less than the time required using the Extended_Tabular technique 

especially for large functions. For example benchmark with 15 input and 

17 outputs required 14 days and 8 hours to run exhaustive search using 

Extended_Tabular technique while it required 5 days and 4 hours using 

Minterm/Maxterm separation technique. 

New techniques and algorithms in Chapter 4 called RM _Minimisation 

techniques are presented to generate reduced RM expansions starting from 

PPRMIPPDRM for any number of variables for completely specified single 

and multi-output Boolean functions. The aim for developing these 

techniques is to minimise the number of terms/or sums. The proposed 

technique provides expressions with minimal terms/or sums among 3tll 

ESOP/ENPOS expressions in which each term/or sum has its own polarity. 

This is achieved by deriving the polarity for each term/or sum instead of 

deriving polarity for each variable as in Tabular technique. These 

techniques are tested with different benchmark examples with inputs up to 

16 and outputs up to 31 as shown in Tables (4.8) and (4.16). 

The experimental results show that RM _Minimisation techniques produced 

good results within very short time searching a field of 3tll ESOP/ENPOS 

expressions, although not all functions can minimise well using this 

technique depending on nature and complexity of the function. The results 
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show that in the RM domain, for 12 out of 18 tested benchmarks, the 

results produced are better or same as results doing an exhaustive search 

among 3n MPRM expressions. Furthermore; results in DRM domain show 

that in 7 out of 14 tested benchmarks, the results produced are better or 

same as results obtained using exhaustive search among 3n MPDRM 

expressions. For all tested benchmarks, these techniques achieved CPU 

time within one second or less even for large functions to provide these 

results. 

The average saving in components for the tested benchmark compared with 

PPRM/PPDRM terms is 37.7% for both RMlDRM. 

Genetic Algorithms (GAs) are presented in Chapter 5 to produce the 

optimal polarity with a minimal number of terms/or sums among 3n 

MPRM/or MPDRM expansions for single and multi-output completely 

specified Boolean functions. The GA can save time and effort when finding 

the optimal mixed polarity, thus avoiding the exhaustive search. The GAs 

for multi output functions are implemented in two different ways. The first 

is by assuming that the outputs can have different polarities while in the 

second all the outputs have the same polarity. The proposed GAs are tested 

with different benchmark examples with up to 16 inputs and up to 19 

outputs (Tables 5.2, 5.4 and 5.5). The experimental results show that the 

GA results are the same as the optimum polarity running exhaustive search 

among 3n MPRMlor MPDRM expansions, though this can't be guaranteed 

for other examples. Further, the GA time required to produce results is 

much less than CPU time required for running exhaustive search, especially 

for large functions. 

For example, finding the optimal MPRM expansion for benchmark with 16 

inputs and one output took 14 days using the Extended_Tabular technique, 

5 hours & 12 minute using the Minterm separation technique, and 2.37 
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minute only using the proposed GA. More compansons between other 

examples are shown in Table 5.6 

The proposed GA is also tested with large functions for inputs up 23 and 

outputs up to 46. The Experimental results (Table 5.8) for large functions 

are compared with results of reference [48] which used GA combined with 

simulated annealing. The results show that the proposed GA produces same 

or better results with 102 terms saving in total. 

Testing GA for multi-output Boolean functions (Table 5.4), show that 

assigning different polarity to each output of the benchmark could achieve 

better result at the expense of longer CPU time. 

Comparison of number of products was made between the proposed GA 

for MPRM and RM_Minimisation techniques (Table 5.7). It was found 

that in 12 out of 20 benchmark examples tested, same or less number of 

products are required to design the circuits in RM domain using 

RM _Minimisation technique. Further, comparison between the proposed 

GA for MPDRM and RM_Minimisation technique in the same table found 

in 8 out of 14 benchmark examples tested, RM _Minimisation technique 

produced same or less number of sums to design the circuits in DRM 

domain. 

A multi stage GA is proposed also in Chapter 5 to produce the optimal 

polarity with minimal number of terms for incompletely specified Boolean 

functions. The proposed GA found the best choice of the "don't-care" 

terms resulting in minimal MPRM expansions. For incompletely specified 

multi-output functions, the search space equals (3 ll
x 2~) which is vast and 

increases with the ~l number of "don't care" terms for the specified 
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function. Therefore; the process of optimisation of the RM for incompletely 

specified Boolean function is computationally hard problem. The problem 

is further complicated when different outputs have different "don't care" 

terms. The reasons for splitting GA into two different stages are to improve 

the performance and to reduce the computation time. The first stage 

conducts a polarity search to find the best MPRM expansions with fewer 

terms without considering the "don't care" terms. In the second stage, 

different collections of "don't care" telms are allocated to fuliher minimise 

the circuits. 

The proposed GA was tested with different benchmark examples up to 10 

inputs and up to 8 outputs having different number of "don't care" terms of 

up to 372 telms as shown in Table 5.15. The experimental results show 

better results (average saving 49%) are achieved when "don't care" terms 

are taken into account in the attempted examples. 

In Chapter 6, a Multi Objective Genetic algorithm (MOGA) approach to 

the state assignment problem is presented with the aim of minimising gate 

count and power dissipation for completely and incompletely specified 

sequential circuits. The target for this algorithm is to find the best 

assignments which reqUIre less number of components to design the 

combinational part of the sequential circuit, with reduced switching 

activity. The aim is therefore to minimise the power dissipation and the 

area, simultaneously. The Pareto ranking scheme has been integrated with 

the MOGA by creating a set of integral ranks for all chromosomes in the 

population which are used by the GA as fitness. The main advantage of 

using Pareto ranking scheme is , the proposed algorithm produces a set of 

Pareto-optimal solutions, instead of a single optimal solution. Therefore, 

the user has the ability to decide which one of these solutions is better to 
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use depending on the requirements. The proposed algorithm has the ability 

to find multiple Pareto-optimal solutions in one single simulation run. The 

other advantages are its simplicity to implement and the overall good 

performance. 

The MOGA has been tested with different benchmarks for up to 9 inputs, 

19 outputs and 48 states. The results are compared with NOVA tool [87] 

results, and the results published by other [53, 54]. The average percentage 

savings are 21 % for number of terms and 150/0 for switching activity 

compared with NOV A [87]. The experimental results show that the 

proposed algorithm, compared to [53], can achieve more saving in terms of 

hardware components and switching activity for 6 out of 11 benchmark 

examples tested. While comparing MOGA results (Table 6.8) and results 

obtained from [54], it is found that MOGA results could save more cubes 

in 8 out of 15 benchmark examples tested. 

The time required to produce the good assignment is different for each 

example and depends on the complexity of the circuit. The time required by 

the proposed algorithm is large due to the fact that MOGA has to 

communicate with Espresso to minimise the logical expressions. For each 

evaluation of the MOGA, the proposed algorithm calls the Espresso to 

minimise the circuit for each assignment. Even allowing for this overhead, 

the time required to produce a good assignment is still acceptable. It is in 

the range of 1 minute for the circuit with 6 states to 25 hours for the circuit 

with 48 states. 

7.2 Future Works 

The work which has been undertaken within this research may be 

continued along the following lines: 
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~ The techniques presented In Chapter 2 for bidirectional converSIOn 

between MPRMlMPDRM and FPRMlFPDRM respectively can be 

further generalised for incompletely specified Boolean functions. 

~ Implement and test the technique presented in Chapter 2 for calculating 

the coefficients of PKRO _ RM expansions. 

~ The Minterm/MaxtelID separation techniques presented in Chapter 3 for 

calculating the coefficients of MPRMlor MPDRM expansions starting 

from the standard form of CSOP/or CPOS completely specified Boolean 

functions, respectively can be extended to incompletely specified 

Boolean functions. They can also be extended to multi output Boolean 

functions. 

~ Genetic Algorithm based approach is developed and implemented to 

find optimal polarity among 3n MPRMlor MPDRM expansions for 

single and multi-output completely and incompletely specified Boolean 

functions. Another GA can be developed to find optimal polarity among 

3Zn
- 1 PKRO _RM expansions. 

~ Develop technique for calculating the coefficients of 3 tn polarities 

related to ESOP/ENPOS class which is the most general class ofRM. 

~ All algorithms developed in this research can be collected together in a 

package for Computer Aided Synthesis and Optimisation of Electronic 

Logic circuits. 
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Disk Containing the Programs 

The following programs are developed in this thesis and written in C++ 

language. The attached disk contains the following programs and electronic 

version of the thesis. 

1. Bidirectional Conversion between FPRM and MPRM for single and 

multi-output completely specified Boolean functions (ALLMPRM): 

this program read the benchmark file in PLA format. Initially, this 

program converts the CSOP coefficients into PPRM (FPRM_Polarity 0) 

coffiecints using Tabular technique and stores the coefficients of PPRM 

in memory. Then, it converts the PPRM coefficients to all 3n polarities 

related to MPRM class. This program performs exhaustive search and 

produces the optimum polarity among 3n MPRM polarities. More 

details can be found in Chapter 2. 

2. Bidirectional Conversion between FPDRM and MPDRM 

(ALLMPDRM) for single and multi-output specified Boolean 

functions: This program read the benchmark file in PLA format. 

Initially, this program converts the CPOS coefficients into PPDRM 

(FPDRM _Polarity 0) coefficients using Tabular technique and stores the 

coefficients of PPDRM in memory. Then, it converts the PPDRM 

coefficients to all 3n polarities related to MPDRM class. This program 

performs exhaustive search and produces the optimum polarity among 

3n MPDRM polarities. More details can be found in Chapter 2. 

3. Polarity Conversion between CSOP and MPRM for single and multi­

output specified Boolean function (Minterm_Separation): This 

program reads the PLA format of Benchmark examples and stores it in 
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memory. Then, it converts the CSOP expanSIOns into all MPRM 

expansions. This program runs exhaustive search among 3n MPRM to 

produce the optimum polarity with less number of terms. More details 

can be found in Chapter 3. 

4. Polarity Conversion between CPOS and MPDRM for single and multi­

output completely specified Boolean function (Maxterm_Separation): 

This program reads the PLA format of Benchmark examples and stores 

it in memory. Then, it converts the CPOS expansions into all MPDRM 

expansions. This program runs exhaustive search among 3n MPDRM to 

produce the optimum polarity with less number of terms. More details 

can be found in Chapter 3. 

5. Minimisation technique for RM form (RM_Minimisation): this 

program reads the benchmark file (in PLA format). Initially, this 

program converts the CSOP coefficients into PPRM (FPRM~Polarity 0) 

coffiecints using Tabular technique and stores the coefficients of 

RMPPRM in memory. Then it minimises it using RM_Minimisation 

technique (Chapter 4) to generate expansions with minimal number of 

terms. 

6. Minimisation technique for DRM form (DRM_Minimisation): this 

program reads the benchmark file (in PLA format). Initially, this 

program convelis the CPOS coefficients into PPDRM 

(FPDRM _Polarity 0) coffiecints using Tabular technique and stores the 

coefficients of PPDRM in memory. Then it minimises it using 

DRM_Minimisation technique (Chapter 4) to generate expansions with 

minimal number of sums. 

7. GA for single and muti-output completely specified Boolean functions 

(GA_samePol): this program is implemented to produce optimal 
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polarity among MPRM for single and multi output usmg 

Extended_Tabular (Chapter 2) technique in its fitness function. It 

produces an expansion which is optimal among MPRM with all outputs 

having same polarity considering the sharing between terms. More 

details can be found in Chapter 5. 

8. GA for single and muti.:.output specified Boolean functions 

(GA_diffPol): this program is implemented to produce optimal polarity 

among MPRM for single and multi output using Extended_Tabular 

(Chapter 2) technique in its fitness function. It produces an expansion 

which is optimal among MPRM with all outputs having different 

polarities trying to achieve better results. More details can be found in 

Chapter 5. 

9. GA for single and muti-output specified Boolean functions 

(GA_MINSEP): this program is implemented to produce optimal 

polarity among MPRM for single and multi output using MintelID 

separation (Chapter 3) technique in its fitness function. It produces an 

expansion which is optimal among MPRM. More details can be found 

in Chapter 5. 

lO.GA for single and muti-output completely specified Boolean functions 

(GA_MAXSEP): this program is implemented to produce optimal 

polarity among MPDRM for single and multi output using Maxterm 

separation (Chapter 3) technique in its fitness function. It produces an 

expansion which is optimal among MPDRM. More details can be found 

in Chapter 5. 
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I1.GA for multi-output completely and incompletely specified Boolean 

functions (GA_RM): this program is implemented to produce optimal 

polarity among MPRM for single and multi output completely and 

incompletely specified Boolean functions using Minterm separation 

(Chapter 3) technique in its fitness function. This GA is split into two 

stages to improve its performance and to achieve better results. More 

details can be found in Chapter 5. 

12. Muti Objective GA for completely and incompletely specified 

sequential logic circuits (SEQ_ GA): this program reads the FSM 

benchmark (KISS format) and stores it in memory. This program is 

implemented using Pareto ranking scheme to produce solutions which 

are the best in terms of number of terms and switching activity. More 

details can be found in Chapter 6. 
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APPENDEX 
An Example of Running of Each 
Program 

1. The following run for ALLMPRM program is to find optimal MPRM 

polarity for benchmark sqrt8.pla. The program found that con1.pla 

benchmark has optimum polarity number is (11211111)3 = (2523)10 

which has 26 terms only. The time required for finding this result is 

0.766 milli seconds. One parameter is needed to run this program which 

is the name of the benchmark file. The program produces the number of 

minterms for the benchmark, number of FPRM terms, optimum polarity 

in ternary number, and number of terms for the optimum polarity, CPU 

time in milliseconds which is counted as difference in CPU time before 

and after producing these results, time and date before and after 

producing results. 
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2. The following run for ALLMPDRM program IS to find optimal 

MPDRM polarity for benchmark conl.pla. The program found that 

sqrt8.pla benchmark has optimum polarity number is (00000000)3 = 

(0)10 which has 11 terms only. The time required for finding this result 

is 0.734 milliseconds. This program is the same as ALLMPRM program 

in terms of parameter needed to run this program and the results 

produced after running this program. 

3. The following run for Minterm _Separation program is to find optimal 

MPRM polarity for benchmark sqrt8.pla. The program found that 

optimum polarity for this benchmark has 26 terms only. The time 

required for finding this result is 0.141 milliseconds. 
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4. The following run for Maxterm _Separation program is to find optimal 

MPDRM polarity for benchmark sqrt8.pla. The program found that 

optimum polarity for this benchmark also has 11 terms only. The time 

required for finding this result is 0.172 milliseconds. 

5. The following run for RM _ Minimsation program is to generate 

expansion with minimal number of terms in RM domain for the 
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Benchmark conl.pla. This program produces number of terms for the 

optimal expression. It also produces the resulted terms after 

minimisation process for all outputs and polarities for each inputs to be 

able to derive the minimal expansion as detailed in Chapter 4. The 

program found that this Benchmark can be designed using 11 terms 

only. The time required for finding this result is 0.016 milliseconds. 

6. The following run for DRM _Minimsation program is to generate 

expansion with minimal number of terms in DRM domain for the 

Benchmark conl.pla. This program produces number of terms for the 

optimal expression. It also produces the resulted sums after 

minimisation process for all outputs and polarity for each input to be 

able to derive the minimal expansion as detailed in Chapter 4. The 
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program found that this Benchmark can be designed using 12 terms 

only. The time required for finding this result is 0.015 milliseconds. 

7. The following run for GA_samePol program is to optimise multi-output 

completely specified Boolean function. This program produces optimal 

expansion with minimal number of terms in MPRM domain with all 

outputs having same polarity. It is tested bellow using Benchmark 

clip.pla. This program produces number of terms for the optimal 

expression. Four parameters are needed to run this program which are 

the name of the benchmark file, population size, tournament size, and 

number of evaluations. It produces the optimal polarity number in 

ternary code, number of terms for this optimal polarity and time 

required to produce this results. The program found that conl.pla 

benchmark has optimum polarity number for all outputs is (021222022)3 
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= (5813 )10 which has 182 terms only. The time required for finding this 

result is 0.11 milli seconds. 

8. The following run for GA _ diffPol program is to optimise multi-output 

completely specified Boolean function. This program produces optimal 

expansion with minimal number of terms in MPRM domain with 

outputs having different polarity. It is tested bellow using Benchmark 

clip.pla. This program produces number of terms for the optimal 

expression. Four parameters are needed to run this program which are 

the name of the benchmark file, population size, tournament size, and 

number of evaluations. It produces the optimal polarity number in 

ternary codefor each output, total number of terms for for all outputs 

considering the sharing between terms, and time required to produce 

this results. The program found that conl.pla benchmark can be 

designed using 151 terms only. The time required for finding this result 

is 3.687 milliseconds. 
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The following run for GA _ MINSEP program is to find optimal polarity 

among 3n MPRM for single and multi-output completely specified Boolean 

function. The fitness function of this program is implemented using 

Minterm separation technique explained in Chapter 3. It is tested bellow 

using Benchmark clip.pla. Four parameters are needed to run this program 

which are the name of the benchmark file, population size, tournament size, 

and number of evaluations. It produces the optimal polarity number in 

ternary code, number of terms for this optimal polarity and time required to 

produce this results. The program found that conl.pla benchmark has 

optimum polarity number for all outputs is (002000102)3 = (1469)10 which 

has 182 terms only. The time required for finding this results is 0.062 

milliseconds 
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9. The following run for GA _ MAXSEP program IS to find optimal 

polarity among 3ll MPDRM for single and multi-output completely 

specified Boolean function. The fitness function of this program is 

implemented using Maxterm separation technique explained in Chapter 

3. It is tested bellow using Benchmark clip.pla. Four parameters are 

needed to run this program which are the name of the benchmark file, 

population size, tournament size, and number of evaluations. It 

produces the optimal polarity number in telnary code, number of terms 

for this optimal polarity and time required to produce this results. The 

program found that con1.pla benchmark has optimum polarity number 

for all outputs is (202212102)3 = (15212)10 which has 174 terms only. 

The time required for finding this results is 0.078 milliseconds 
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10.The following run for multi stage GA_RM program is to find optimal 

polarity among 3n MPRM for single and multi-output completely and 

incompletely specified Boolean function. The fitness function of this 

program is implemented using Minterm separation technique explained 

in Chapter 3. It is tested bellow using Benchmark rd53.pla. Four 

parameters are needed to run this program which are the name of the 

benchmark file, population size, tournament size, and number of 

evaluations. It produces the optimal polarity number in ternary code, 

number of terms for this optimal polarity, time required to produce this 

results, and selected don't care terms to produce this results. The 

program found that rd53.pla benchmark has optimum polarity number 

(11111)3 = (121)10 which has 10 terms only. The time required for 

finding the results is 0.062 milliseconds. 
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l1.The following run for Multi-Objective GA for sequential circuits 

SEQ_ RM program is to find optimal state assignment for single and 

multi-output completely and incompletely sequential circuits.. It is 

tested bellow using Benchmark bbtas. Kiss2. Four parameters are 

needed to run this program which are the name of the benchmark file, 

population size, tournament size, and number of evaluations. It 

produces the Number of flip flop required to design this circuit, Best 

state assignments with its switching activity and number of terms, and 

time required to produce the results. 
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The Format of Input Benchmark Files 

~ In order to run all programs for synthesis and optimisation of 

combinational circuits, the input file in PLA format has to be 

as shown below. The first line gives number of inputs, the 

second line gives number of outputs, and the 3rd line gives the 

number of terms for this benchmark. 

5 

1 
16 
11111 1 
01110 1 
10110 1 
00111 1 
11010 1 
01011 1 
10011 1 
00010 1 
11100 1 
01101 1 
10101 1 
00100 1 
11001 1 
01000 1 
10000 1 
00001 1 

II Number of inputs 
II Number of outputs 
II Number of terms 

~ In order to run the last programs for optimisation of sequential 

circuits, the input file in KISS2 format has to be as shown 

below. The first line gives number of inputs, the second line 

gives number of outputs, the 3 rd line gives number of 

transitions for all combinations of inputs, and the 4th line gives 

number of states used starting from stO. 

214 



Appendix an Example of Running of Each Program 

2 II Number of inputs 
2 II Number of outputs 
24 II Number of transitions 
6 II Number of states 
00 stO stO 00 
01 stO st1 00 
10 stO st1 00 
11 stO st1 00 
00 st1 sto 00 
01 st1 st2 00 
10 st1 st2 00 
11 st1 st2 00 
00 st2 st1 00 
01 st2 st3 00 
10 st2 st3 00 
11 st2 st3 00 
00 st3 st4 00 
01 st3 st3 01 
10 st3 st3 10 
11 st3 st3 11 
00 st4 st5 00 
01 st4 st4 00 
10 st4 st4 00 
11 st4 st4 00 
00 st5 stO 00 
01 st5 st5 00 
10 st5 st5 00 
11 st5 st5 00 
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	555244_0001
	555244_0002
	555244_0003
	555244_0004
	555244_0005
	555244_0006
	555244_0007
	555244_0008
	555244_0009
	555244_0010
	555244_0011
	555244_0012
	555244_0013
	555244_0014
	555244_0015
	555244_0016
	555244_0017
	555244_0018
	555244_0019
	555244_0020
	555244_0021
	555244_0022
	555244_0023
	555244_0024
	555244_0025
	555244_0026
	555244_0027
	555244_0028
	555244_0029
	555244_0030
	555244_0031
	555244_0032
	555244_0033
	555244_0034
	555244_0035
	555244_0036
	555244_0037
	555244_0038
	555244_0039
	555244_0040
	555244_0041
	555244_0042
	555244_0043
	555244_0044
	555244_0045
	555244_0046
	555244_0047
	555244_0048
	555244_0049
	555244_0050
	555244_0051
	555244_0052
	555244_0053
	555244_0054
	555244_0055
	555244_0056
	555244_0057
	555244_0058
	555244_0059
	555244_0060
	555244_0061
	555244_0062
	555244_0063
	555244_0064
	555244_0065
	555244_0066
	555244_0067
	555244_0068
	555244_0069
	555244_0070
	555244_0071
	555244_0072
	555244_0073
	555244_0074
	555244_0075
	555244_0076
	555244_0077
	555244_0078
	555244_0079
	555244_0080
	555244_0081
	555244_0082
	555244_0083
	555244_0084
	555244_0085
	555244_0086
	555244_0087
	555244_0088
	555244_0089
	555244_0090
	555244_0091
	555244_0092
	555244_0093
	555244_0094
	555244_0095
	555244_0096
	555244_0097
	555244_0098
	555244_0099
	555244_0100
	555244_0101
	555244_0102
	555244_0103
	555244_0104
	555244_0105
	555244_0106
	555244_0107
	555244_0108
	555244_0109
	555244_0110
	555244_0111
	555244_0112
	555244_0113
	555244_0114
	555244_0115
	555244_0116
	555244_0117
	555244_0118
	555244_0119
	555244_0120
	555244_0121
	555244_0122
	555244_0123
	555244_0124
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