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Abstract

Ongoing device miniaturization makes it possible to manufacture very small devices;

therefore more of them can be embedded in one space. Pervasive computing con-

cepts, envisioning computers distributed in a space and hidden from users’ sight,

presented by Weiser in 1991 are becoming more realistic and feasible to implement.

A technology supporting pervasive computing and Ambient Intelligence also needs

to follow miniaturization. The Ambient Intelligence domain was mainly focused

on supercomputers with large computation power and it is now moving towards

smaller devices, with limited computation power, and takes inspiration from dis-

tributed systems, ad-hoc networks and emergent computing. The ability to process

knowledge, understand network protocols, adapt and learn is becoming a required

capability from fairly small and energy-frugal devices. This research project con-

sists of two main parts. The first part of the project has created a context aware

generic knowledgebase interpretation engine that enables autonomous devices to

pervasively manage smart spaces using Communicating Sequential Processes as the

underlying design methodology. In the second part a knowledgebase containing all

the information that is needed for a device to cooperate, make decisions and react

was designed and constructed. The interpretation engine is designed to be suitable

for devices from different vendors, as it enables semantic interoperability based on

the use of ontologies. The knowledge, that the engine interprets, is drawn from an

ontology and the model of the chosen ontology is fixed in the engine. This project

has investigated, designed and built a prototype of the knowledge base interpreta-

tion engine. Functional testing was performed using a simulation implemented in

JCSP. The implementation simulates many autonomous devices running in parallel,

communicating using a broadcast-based protocol, self-organizing into sub-networks

and reacting to users’ requests. The main goal of the project was to design and inves-

tigate the knowledge interpretation engine, determine the number of functions that

the engine performs, to enable hardware realisation, and investigate the knowledge-

base represented with use of RDF triples and chosen ontology model. This project

was undertaken in collaboration with NXP Semiconductor Research Eindhoven, The

Netherlands.
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1 Introduction

The number of devices surrounding us increases every day. The devices that we use

have become more complicated and have more capabilities and functions. A mobile

phone is now used not only to make calls, but also to store and edit files, take photos

and videos, play music, browse the web and much more. Some of these functions are

repeated in many devices. Most of the devices we use are autonomous and making

them co-operate with other devices is often difficult and time consuming. A mecha-

nism to connect devices, make them co-operate and use each other’s functions in a

simple and transparent way would help to manage a network of every-day or com-

monly used devices. The method of making many computers physically available,

but effectively invisible to the user is called pervasive computing. The concept was

introduced by Weiser in 1991 and many researchers have been investigating it since.

Pervasive computing is associated with research areas like distributed systems and

mobile computing.

In pervasive computing the visibility of interaction between components is re-

duced to a minimum, with data and functionalities distributed. Pervasive computing

uses transparent methods for organizing networks of devices, negotiating connec-

tions and collaboration. A pervasive environment is dynamic and components can

be mobile. The ability to adapt to ever changing environment conditions and tasks

assigned by the user is very desirable. Adaptation also involves self-organization,

learning, reconfiguration and dealing with partial failures.

A pervasive adaptive system should be sensitive to the presence of people; it

should adapt to their preferences and habits. This adaptation would have to, in an

intelligent way, enable the system to react as users wish. The system would have

to make its own decision and choices based upon observation and by sensing the

environment. This kind of system will need many types of sensors and knowledge

about the environment to make an sensible decision.

A pervasive environment should work with various sets of devices, and enable

collaboration of the available devices. In the case of device failure, the system should

reconfigure itself and continue to work with resources that are available. A central

control workstation or remote control device is not the goal of the system. It is likely
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that a mixed control system will be required that is neither fully distributed nor fully

centralized but the particular mix of control function needs to be determined and

may vary with application environment.

The environment is a mix of fixed and mobile devices. Some devices can stay in

the environment for a long period of time, some can visit a specific space only briefly.

As a central control system is not present, devices in the network have to monitor the

network topology and be ready to establish new connections or destroy existing links.

Connecting devices is just the first step. The actual cooperation mechanisms and

enabling devices or components to understand each other are challenging problems

of pervasive computing. All components of the system have to understand a common

language to enable cooperation.

A network of devices, from the same space, can be more useful for a user than

a collection of autonomous devices. Enabling device collaboration by finding a

common language and ways of communicating to perform a task assigned by an

user is one of the main goals of this project.

1.1 Project Aim and Objectives

The project aim is to investigate the usability of Communicating Process Architec-

tures (CPA) to design and develop pervasive and adaptive environments. A CPA

uses CSP (Communicating Sequential Processes) [24] as its formal and theoretical

underpinning. The project objectives are as follows:

• Explore the usability of CSP models to build a pervasive and adaptive system.

• Design a generic knowledgebase interpretation engine for devices from a per-

vasive system.

• Implement such an engine using a CSP implementation language.

• Design an ontology model for knowledge representation.

• Design and implement a knowledgebase using the ontology model that repre-

sents knowledge that devices need to cooperate in the proposed architecture.

• Improve the protocol for the architecture presented in [62].
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• To undertake any experiments initially in a simulation environment (with a

view to a hardware implementation) where such pervasive capabilities are re-

quired.

• Implement mechanisms to enable learning, emergent behaviour, forward and

backward compatibility of devices using the presented interpretation engine.

The main goals are as follows:

• Integration of different platforms, components programmed using different lan-

guages and different hardware structures.

• Integration of small pieces of equipment into a large system to control lights

in many building spaces.

• Demonstrate flexibility over a variety of devices by using a generic knowledge-

base interpretation engine with a knowledgebase built on an ontology model.

• Use of sensors and actuators to adapt, in an intelligent and pervasive way, to

the dynamic environment.

This project was undertaken in collaboration with NXP Semiconductor Eind-

hoven, Netherlands. From January 2009 NXP participated in the EU Artemis

funded Sofia project (Smart Objects For Intelligent Applications) [1]. The project is

investigating the use of pervasive systems in the application areas of Personal Spaces,

Smart Indoor Spaces and Smart Cities. NXP’s primary involvement is in the area

of Architecture Development for Smart Indoor Spaces. This project is cooperating

with Sofia, while sustaining its focus on CSP usability for pervasive systems.

1.2 Research questions

There are three research questions that this project is answering.

• RQ1. Is it possible to create a generic interpretation engine that reasons

about knowledge presented in a machine readable form?
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• RQ2. Is it possible to create a knowledgebase that contains capabilities,

description and behaviour of a device in a simple, fixed, machine readable

format?

• RQ3. Is a CSP based model suitable to represent a pervasive and adaptive

environment?

The knowledgebase interpretation engine is intended to be developed in hardware, so

the number of functions that the engine will perform has to be determined. Research

questions referred to RQ1 are:

• RQ1.1. What is the set of functions that an interpretation engine requires?

• RQ1.2. For this type of systems can we identify a minimal set of functions

that the engine requires?

1.3 Motivation

The project was proposed by NXP Semiconductors. NXP is a leading semiconductor

company founded by Philips. NXP creates semiconductors, system solutions and

software for TVs, set-top boxes, identification applications, mobile phones, cars and

a wide range of other electronic devices [57]. One NXP research area is to improve

control over equipment in the home environment by creating an intelligent network of

devices. This project investigates the use of Communicating Process Architectures

to create and control such an environment.

1.4 Academic Collaboration

This project was supported by PerAda, Future and Emerging Technologies Proactive

Initiative on Pervasive Adaptation (www.perada.eu), which is a Seventh Framework

Programme (FP7) funded by European Commission CORDIS, Community Research

and Development Information Service (cordis.europa.eu). PerAda is a research net-

work which aims to bring researchers together to discuss and share ideas relevant

to Pervasive Adaptation. PerAda provided funding for collaborative research be-

tween Edinburgh Napier University and NXP Semiconductor that was crucial in the

co-operation involved in this project.
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1.5 Commercial Collaboration

This project is associated with the Sofia project [1] funded by ARTEMIS-IA, Ad-

vanced Research and Technology in Embedded Intelligence and Systems Industry

Association (www.artemisia-association.org). The findings from this project con-

tributed to deliverables for the Sofia project on domain-specific ontologies. Work on

lighting and sensor ontologies was done in cooperation with Technische Universiteit

Eindhoven (www.tue.nl). The work on representing rules in RDF format is being

considered to be used in Sofia’s semantic information brokers (SIB) for reasoning

purposes [1]. The Knowledgebase Interpretation Engine was submitted as a hard-

ware patent and it is being reviewed within the NXP Semiconductors Intellectual

Property Department.

1.6 Structure of thesis

The structure of this thesis consists of six main parts. Chapters 2, 3 and 4 present

the background to the project and outline the research area presented in this work.

Chapter 2 describes different domains that are relevant to the project, Chapter 3

presents the chosen concurrency model used to simulate an environment. The outline

of research is continued in Chapter 4 that presents various knowledge representation

techniques. The second part, consisting of Chapters 5 and 6 presents the chosen

architecture and outlines a scenario selected for the architecture.

The main part of this thesis are Chapters 7 and 8 that represent the main re-

search focus of this project. Chapter 7 introduces and describes the knowledge rep-

resentation chosen for the project and Chapter 8 describes the reasoning mechanism

interpreting this knowledge. Chapter 9 presents experiments with the architecture,

knowledge representation and reasoning component following the scenario and case

studies as presented in Chapter 6. Finally in Chapter 10 conclusions and ideas for

further work are presented.
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2 Theoretical Background

Chapter 2 describes the theoretical foundations of the research of the project. The

pervasive computing research area is based on distributed systems, mobile comput-

ing and adaptive systems. Mechanisms associated with adaptation, reconfiguration

and learning are closely associated with artificial intelligence and ambient intelli-

gence. This chapter provides a review of these domains to draw a bigger picture of

the research area of the project.

A smart home, office or warehouse space needs to be supported by a computing

infrastructure that needs to deal with many devices with different functionalities

and enable communication and co-operation. In existing systems processing power

and a storage space of a computer was sufficient for a control system and repository

to support a few devices. Nowadays the number of devices in a space grows rapidly

and device miniaturisation enables manufacturing very small devices that can be

deployed in a smart space. As people using smart spaces would like to control many

devices and get specific and accurate data from as many sensors as possible, the

central controller and data repository is under a stress of processing many connec-

tions and large amounts of data. The central unit creates a bottleneck in the system

and requires a powerful computer to process all the data gathered by a smart space.

A fully centralised architecture is not a good solution for large scale control sys-

tems. More distributed and clustered approaches can be used to take the load off

the central unit.

2.1 Distributed Systems

Distributed computing refers to programs that make calls to other, than its own,

space addresses on other machines [63]. Therefore hardware and software compo-

nents from computers on a network co-ordinate their actions by communication

[13]. A distributed system consists of many machines with different architectures

and locations connected by a network. The resources are distributed, so the system

may call other machines. The problems associated with distributed computing arise

from the fact that nothing, except support of a particular interface, is known about
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the receiver of the call. The client does not know the hardware architecture or the

language the recipient’s machine was implemented with [63]. Distributed systems

have to take into account latency, differences in models of memory access, issues of

concurrency and partial failure [63].

2.2 Interoperability

A well known problem in distributed systems is how to achieve interoperability be-

tween components in the system. There are three classic interoperability levels:

platform, programming language and service interoperability [61]. Service inter-

operability divides further in to signature, protocol and semantic levels [61]. The

signature interoperability problems are associated with the syntax of the interface of

the service and are successfully solved by popular languages interface specification

like CORBA’s IDL (Interface Definition Language) [47] or WSDL (Web Service Def-

inition Language) [11]. Many network interoperability problems (in protocol level

of interoperability) can be addressed by Internet protocols, however these do not

solve interoperability problems on a semantic level [19]. When considering many

multi-vendor devices and components, solutions for semantic interoperability based

only on standards do not scale [48], flexible and updatable standards are needed.

2.3 Mobile Computing

The appearance of mobile computers and wireless local area networks created prob-

lems with building distributed systems with mobile devices. Mobile computing needs

to consider the performance of computing tasks while a user is moving or in an en-

vironment that is other than its own [13]. Although the user is away from its own

local network it is still able to access resources using devices they took with them. In

the new location a mobile device can still use the Internet or access nearby devices

which are defined as context-aware and location-aware computing.

The idea with mobile computing is that although a user is moving and changing

their physical location with a mobile device, the network supporting co-operation

appears to be stable. The device needs to switch between connections, use avail-

able resources and guarantee that it can always provide the service that the user
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is requesting. This approach requires self-configuration, service discovery, decision

making capabilities and context and location awareness from the device. Other

problems that this area of research meets are differences such as network quality,

reliablilty of mobile elements, limitations of local resources caused by size and ca-

pabilities of devices and battery power consumption [55].

2.4 Pervasive Computing

The pervasive or ubiquitous computing concept was first described by Weiser in 1991.

The main concept of this approach is to make many computers physically available,

but effectively invisible to the user [67]. Devices, that the system consists of, are

in various sizes, have different capabilities and functions, each suited to a different

task. The term pervasive suggests that devices will finally become so pervasive in

everyday objects, that they are hardly noticed [13].

Devices in pervasive computing systems are enabled with communication capa-

bilities and are designed to be useful in a single environment such as home or a

hospital. The idea is to integrate all the devices that are connected to the network

to cooperate and use each other to achieve an expected performance and capability.

In this system computers are no longer tools but assist humans in their everyday ac-

tivities. All the computers in the environment will not be considered as autonomous

but parts of a bigger system that is targeted to users’ needs. Devices in pervasive

systems have to be aware of their location and surroundings. The computer knowing

of their position can adapt its behaviour to the environment [67].

Pervasive computing is based on distributed and mobile computing and defines

additional problems to be solved: effective use of smart spaces, invisibility and

localized scalability [55]. The decision making process is based on users preferences

and should be controlled to meet user’ expectations.

2.4.1 Effective use of Smart Spaces

A smart space is a well defined area, for example a room, corridor or courtyard with

all the devices available in it. The smart space is controlled by a computer structure

embedded in the building infrastructure [55] centred or distributed. The smart space
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has to be equipped with various sensors, so it can recognise changes appearing in the

defined environment. A simple example of smart space is an automatic adjustment

of cooling, heating and lights levels in the room depending on occupant’s preferences.

Not only residents of the smart space can manipulate it, but influence from other

directions is also possible. A smart space’s context can be applied to devices that

are visiting the space. Software on users’ devices can behave differently depending

on location. For example all mobile phones can be switched to silent mode when

entering a theatre. The device can also have more functions whether located in a

smart space or not. A capability of controlling various equipment in the space can

appear or disappear depending on a user’s location.

2.4.2 Invisibility

An ideal pervasive system described by Weiser disappears from user’s sight [67]. In

practice this will be achieved with minimal user distraction. If the system continu-

ously meets users expectations and rarely makes wrong decisions which surprise the

user, it can disappear from a user’s consciousness [55]. Therefore a pervasive system

has to make decisions without asking users. The knowledge should be based on a

user’s behaviour and preferences captured previously. The pervasive system should

maintain user profiles and use them to make its performance more invisible.

The other factor of making a computing system pervasive is the actual size

of devices. With device miniaturisation concepts like Smartdust and Unity Fog

becoming more realistic. Smartdust [31] is a concept of a network of autonomous

nodes that have capabilities of sensing, computing, communicating and posses a

power source in a square millimetre volume. The devices described in this concept

are so small, they can be spread in a space like a dust. Unity Fog [21] is a swarm

of nano-robots that can make shape of anything and quickly change into another

shape.

Intelligent miniature devices are desired to be components of pervasive systems.

In order to create Smartdust and Unity Fog, co-operating networks of devices have

to be equipped with very small chips/engines to enable computing, reasoning and

communicating. These networks of very small devices need capabilities of reconfig-
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uration and self-organisation because manual configuration is not possible due to

the number and the size of devices. The install and forget approach is the most

desirable when it comes to deployment and maintenance of a dust-like network of

devices.

2.4.3 Decision Making

It is crucial for the pervasive system to track user’s intent. Actions preformed by

a system should help rather than hinder the user [55]. Generic applications have

no idea what the user is attempting to do so can offer little support for adaptation.

On the other hand there are systems that annoy users with too many questions and

hints. To solve this problem, the user’s intent should be inferred from other sources.

This can be achieved by taking into consideration statically specified user profiles

and information obtained through dynamic interactions [55]. To decide what will

influence the decision the most, is a very difficult task. When considering office

spaces there are two factors that are important: the users’ satisfaction and policies

deployed by the building owner or a company. As the system should help a user to

feel comfortable, it should also respect rules set by the maintenance team. This could

include energy saving solutions, carbon footprint minimisation and other policies

that might effect office automations. The decision making components need to take

under consideration many facts and prioritise while making pervasive decisions that

satisfy many rules.

2.4.4 Localized Scalability

The number of devices in a smart space and users using the defined location should

not be limited. Therefore the number of interactions between a user and its sur-

rounding increases. As a result scalability is a problem for pervasive systems [55].

In ordinary networks a web server or a file server should handle as many operations

as it is possible, regardless of physical distance. While considering smart spaces the

priority should be given to the users that are in the environment, rather than remote

customers.

The scalability problems often appears when there is one device managing the
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decision making process and control devices in the network. Some systems are using

a distributed approach to extend scalability and get rid of the bottleneck of a single

controller, and grouping is applied to control a set of devices.

2.4.5 The Gathor Tech Smart House

An example of pervasive system developed and used in home environment was pre-

sented in [22]. The Gathor Tech Smart House is an environment specially designed

to improve everyday life of elderly people. The smart house provides an assistive

environment that can sense other devices and residents. The house is equipped with

many gadgets, for example: smart front doors recognising residents by Radio Fre-

quency Identification (RFID) tags; smart mirror displaying important information

or reminders; smart blinds controlled by a remote device; smart floor that senses

residents location, so information about their habits can be stored [22].

The system designed to support the Smart House has a layered architecture,

comprising physical, sensor platform, service, knowledge, context management and

application layers. Those layers are part of a generic reference architecture applicable

to any smart space [22].

One of the most interesting parts of the project is a smart plug. Most of the

devices on the market do not contain a controllable interface or use protocols that

are incompatible. Smart plugs provide an intelligent way to sense electrical devices

in the intelligent space [22]. Every socket in the house is equipped with RFID

(Radio-Frequency IDentification) reader and the devices’ plugs have an RFID tags

describing the device. This way, the system, at low cost, can recognise and install and

subsequently identify to the smart space every new piece of equipment. Therefore the

system has an ability to evolve as the new technologies emerge or as an application

domain changes [22]. The system supporting the Gathor Tech Smart House uses

simple solutions like low cost RFID tags to provide machine readable device profile

to enable interoperability between multi-vendor devices. As devices arrive in the

space, the tag can be red and if the computer infrastructure supporting the smart

space recognises the device it can be used and integrated into the Gathor Tech

Smart House. A problem with this approach appears when a device is so advanced
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and new that it is not recognised (without an update in the controller), therefore it

cannot be used and cooperation with other devices is not possible.

2.5 Adaptive Systems

The ability to adapt is an important requirement for a pervasive environment. New

services, functionalities, interaction mechanisms or devices can be added to the

pervasive system requiring them to be adapted to the specific characteristics of the

environment [51]. Mobility of devices makes system’s network topology even more

dynamic. Mobile devices have to be able to detect change of location and exploit

knowledge about their current situation, called location-awareness [33]. All mobile

devices have to detect and react to the environment and therefore adapt to a new

space to improve quality of communication [33]. On the other hand existing elements

from the system might be adapted to user’s requirements or changing conditions in

the environment [51]. This characteristic of pervasive systems is called context-

awareness.

An ability to react to a context change is important in interactive applications.

Context can be defined as implicit situational information [14]. In human-computer

interaction it is important that the computer understands context for better com-

munication between a machine and its user. In mobile computing a user can travel

with their device to different places, therefore context information such as location,

presence of other people and objects, environmental conditions, can be dynamic.

Devices need to adapt to changing context and offer services appropriate and pos-

sible in a particular environment and situation. The primary context types are:

location, identity, time, activity [14], computing environment (e.g. available devices

and services) and physical environment (e.g. light intensity, noise level, humidity)

[56]. Context-aware applications need to be sensitive to change of context over time

[14]. An interactive system needs to react to signals, a pervasive system needs to

make a conclusion from many signals to deduce context and react to it in a seamless

and invisible way.

Applying adaptation to a pervasive system is a challenging task, mostly because

it has to adapt to change in multiple elements like devices and services [51]. The
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system is required to function without central control so the adaptation has to be

applied to many devices and cannot be controlled just by one device.

Wireless systems have to be able to adapt to the different opportunities and

limits of different types of mobility. Low mobility will be appropriate mostly for

pedestrians or easily reconfigurable desktop equipment, where high mobility can be

suitable for moving vehicles [33]. It is important to distinguish these two types of

mobility. The pervasive system with wireless links is likely to be a hybrid with high

bandwidth in areas like buildings or airport and lower bandwidth in rooms or well

defined smart spaces.

2.6 Sensors

A sensor is a piece of hardware that measures analogue physical parameters such

as pressure, temperature and light level [65]. Sensors have always been an essential

part of computing. The keyboard is a simple example of set of pressure sensors

activated by keys. This way a user can communicate and send commands to an

operating system. Other examples are: mouse, microphone, camera or touch screen.

Now more complicated sets of sensors are being added to our computers. The

increasing number of sensors that computers use requires more processing power for

data manipulation and more memory space to store information from sensors. The

National Institute of Standard and Technology Smart Space Project designed and

built a context-aware smart meeting room that sense ongoing human activities and

respond to them [60]. The architecture consists of 280 microphones and 7 HD video

cameras, that produces 200 Gb per hour of data that support people recognition

[60]. Therefore a computer that can store a huge amount of data from sensors and

process them has to have sufficient processing power and memory space.

In the project presented in the following chapters the network consists of many

devices and many sensors of different kinds. One computer cannot be responsible

for processing all the signals from the system. A mixed control system is the aim of

this project. Therefore sensors can be grouped by location, sensor type or purpose.

Grouping sensors can help customizing space and making decisions for a particular

environment.
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Many environments, even if they are treated as separate spaces, can be influenced

by other environments. The controlling system responsible for a particular location

has to be aware of signals in its own space as well as other environments influencing

it. The whole picture of an environment can be the key to making accurate decisions.

Mobility of devices can often change their context of use. Automatic customiza-

tion is called context-aware operation [65]. For mobile devices it is important to

recognise the environment. Devices can use their own sensors to determine tilt an-

gle, whether is shaken or moved [65]. The location aware device can also use sensors,

or information obtained from them by a location control system, to customize itself

and adapt to the environment or users’ needs.

Sensors are very important part of an adaptive system. Most of the changes in an

observed environment should be noticed and adequate action should be performed.

A system that adapts to user needs and expectations has to rely on signals received

from sensors.

2.7 Ad-hoc Networks

The devices in pervasive system have to be enabled with communication. The set

of devices creates a network that may have various topologies and parts of it can be

mobile. Managing dynamic networks is a difficult task and many researchers have

been solving problems associated with it [12, 15, 39].

In wireless communication systems there is a need for creating nets of indepen-

dent mobile nodes. This kind of network will have various numbers of nodes and a

dynamic topology. The communication between nodes cannot rely on some central

control mechanism so any number of nodes needs to be able to create a network

and co-operate. These kinds of decentralised networks have to consist of nodes that

are able to recognise a network topology, other nodes’ availability and capabilities.

These kinds of networks are called ad-hoc networks and defined as a collection of

mobile and fixed devices communicating over wireless links [15]. A mobile ad-hoc

network should be a set of devices that recognise each other, decide about inner con-

nections, organise a virtual topology, exchange and use resources and capabilities.

The network should appear to be stable, and applications should be unaware that
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it is changing under them [15].

Designing network protocols for mobile ad-hoc networks is a very difficult, com-

plex and challenging issue. These kinds of networks require efficient algorithms to

determine network topology organization, connections and routing. The network

should be able to reconfigure itself and to determine if it’s able to continue to func-

tion. Some nodes can be disconnected or fail and also new nodes can be connected

to the network. The network mechanisms have to customise a topology to available

devices.

The constructed network can consist of many similar devices, with comparable

or identical capabilities. Devices can be also localized in one area: the same room

or floor of the building. Those kinds of devices can be grouped. Elliott and Heile

[15] present a model of an ad-hoc two level hierarchical network (Figure 1). Nodes

are divided into groups and organized into clusters. Every cluster has a cluster head

which is the chosen node of the group of nodes. The network diagram is shown in

Figure 1. The head node is one of the nodes from the group, and it is not physically

different.

Figure 1: A hierarchical ad-hoc network diagram [15].

This chosen node is created to represent the cluster and allocate tasks to the

nodes that are in the cluster if necessary. Every node has to be able to become a

head of the cluster, and this function can be switched between nodes. Cluster heads

from different groups are connected, and the knowledge about particular group

members is local, therefore only the head of the cluster knows its cluster’s topology.

A two level hierarchical network model helps to balance network capacity and

delays [15]. While searching for a particular node only clusters heads can be inves-

tigated, and if it matches, a local cluster can be searched.
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2.8 Ambient Intelligence

The network of devices in pervasive systems is required not to have a central control

system, therefore the devices have to make decisions, co-operate and adapt to new

situations. The pervasive adaptive environment for home, office or warehouse envi-

ronment is required to be aware of the people presence and adapt to their preferences

or needs.

Ambient Intelligence (AmI) refers to electronic environments that are sensitive

and responsive to the presence of people. The aim of ambient intelligence is to

create an environment that assists people in their everyday activities. AmI adapts

to people not the other way around, its design starts from studying person to word

interactions. The aim of AmI is to create secure, reliable and calm communication

between users and computers [4]. Where pervasive computing and ad-hoc networks

are about integrating devices, AmI adds to an environment people that the system

has to adapt to.

The main research domain of the project is pervasive computing, but there are

many domains associated with this subject. To create a support for a smart space

the software or hardware infrastructure needs to support mobility (Section 2.3),

resource and function distribution (Section 2.1), deal with self-configuration and

reconfiguration in a pervasive way (Section 2.4). Decision making process (Section

2.4.3), interoperability (Section 2.2) and scalability (Section 2.4.4) issues need to

be addressed and solved in a smart space. The pervasive system need to be aware

of context, location and the environment (Section 2.5), adapt to user needs while

obeying some high priority rules.
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3 Communicating Process Architectures

The presented network of devices with distributed functionalities and dynamic ar-

chitecture can be viewed from three different perspectives, as presented in Figure 2.

The view A (Figure 2) is called a top level and in this view the system consists of

many devices, running in parallel and performing some behaviours. The specialisa-

tion of the view A is view B, where only a set of devices grouped in a sub-network

is visible, this view is referred to a virtual-device and explained in detail in Section

5.3. The third view C (Figure 2) is a view restricted to a single device and called

the bottom level view.

Figure 2: Different views of the network of devices.

In the top level the system is an asynchronous, complex and distributed en-

vironment with non-deterministic behaviour. The operation of the system has to

be expressed with a parallel software infrastructure that does not rely on a global

synchronisation, therefore an asynchronous parallel programming language must be

used [64]. Languages used for high-level modelling of synchronous systems are of-

ten based on Communicating Sequential Processes (CSP [25]) [64]. The system

supporting a pervasive environment does not need any global synchronisation and

each element proceeds at its own speed, the only synchronisation that is needed is

on messages, therefore synchronous CSP channels are used. The project aim is to

investigate the usability of Communicating Process Architectures (CPA) in perva-

sive adaptive environments. CPA describes an approach to process-oriented system
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development. It is based on the theory of Communicating Sequential Processes [25].

This chapter describes fundamentals of CSP and parallel systems. CSP is based

on a mathematical model, therefore it is possible to prove correctness of a designed

system. In section 3.2 available verification tools are described. Different CSP

implementations are listed and described in section 3.3. Finally the topic of targeting

a hardware design using CSP is presented in Section 3.4.

3.1 Communicating Sequential Processes basics

Communicating Sequential Processes (CSP) is a formal language consisting of math-

ematical models and methods to construct component processes to interact with

each other by communication [54]. Communicating Sequential Processes were first

described by C.A.R Hoare in 1978 [24] and then explained in more details in his

book [25] representing a mathematical notation for concurrency theory.

3.1.1 CSP Fundamentals

A parallel style of programming enables the creation of a system with processes

working concurrently. In parallel architectures processes run simultaneously and

are connected with channels to enable communication. One of the main advantages

of CSP system design is that simple processes can be composed into larger networks

[25]. In computer science this approach is called separation of concepts. Where

concepts can represent features or functionalities of the system. In this design

approach functionalities are implemented separately and composed into a larger

architecture.

CSP applications are process-oriented. A system consists of processes that are

sequences of instructions. Process run separately and can communicate with other

processes using channels [25]. Therefore it is easy to compose processes into net-

works using channels to enable communication. Processes from one network can

work on different processors or even communicate across different devices. A chan-

nel is a point-to-point connection between two processes [25]. A simple version of a

CSP channel consists of an in-end and an out-end performing a one-way communi-

cation. One process writes to a channel and the other reads from it. To establish
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a connection it is necessary to have at least two processes, one process is connected

to an in-end of the channel and the other process is connected to out-end of the

channel as it is shown on Figure 3.

Figure 3: A simple example of a CSP network diagram.

On a diagram (Figure 3) a channel is represented by an arrow to show the direc-

tion of the communication. If bidirectional communication is needed an additional

channel in the opposite direction should be added. Channels are unbuffered, so pro-

cess A (Figure 3) writes to the channel C and waits in an idle state for process B

to be ready to read. In this way channels are unbuffered and communication occurs

only when both sides are ready. This simple channel is constructed in a way that

data sent over it cannot be lost. In CSP based systems buffer space is not required.

That makes a system design simpler, robust and easier to calculate memory needs.

3.1.2 Timers

Many systems rely on time. Timers are fundamental components of most of the

programming environments. Time is delivered from the processor’s clock. Processes

can be made to stay in the idle state for some defined period. Alarms on timers can

be set and detected so some actions can be scheduled. For example a process can

be designed to send a signal to other processes every minute to update its status.

3.1.3 Alternative

When processes have many channels and the order of an input communication is

random it is possible to distinguish from which channel a communication appeared.

The alternative (ALT) programming structure captures channels behaviour and per-

mits selection between one or more input communications. The alternative construct

is assigned with the word ALT and consists of guards that can be channel ends or

timers [2]. The structure of alternative is presented below:
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ALT (Guard 1,

(Guard 2,

. . .

Guard N)

As soon as one guard becomes ready then it is chosen from the list of guards

and instructions associated with it are carried out. Alternative can choose only one

guard from the list, if many guards are ready it chooses one of the ready guards

according to some selection criteria. If none of the guards from ALT is ready than

the alternative waits in an idle state till one of them becomes ready.

3.1.4 CSP design concepts

Most of the processes in parallel systems are designed to run without termination.

This way processes can wait for a communication from different processes or sched-

uled tasks. Some of the process can terminate after all their tasks are finished and

further communication with them is not possible.

Concurrent systems might be more challenging to design and understand than

sequential. In sequential systems at one time just one line of code is executed, and

events happen one after another. In parallel systems there can be many processes

working at once and they can influence one another. It is necessary to understand

process states and design a system to avoid problems connected to the consequences

of process states and influences. Processes can influence each other and communi-

cate. There can be much more specific misbehaviors and designs have to take them

under consideration [54].

Another problem in concurrent systems is nondeterminism. A system is nonde-

terministic if two different copies of it can behave differently when exactly the same

input is given [54]. Concurrent systems can behave this way because of many as-

pects. One of the reasons can be the order of the communication between processes.

If a system’s performance depends on the order of the communication, its behaviour

can be different every time it is executed. In this manner a system’s performance

cannot be controlled or tested precisely, however individual process behaviour can
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be tested.

A system is deadlocked if any process cannot make progress because it is waiting

for a communication with other processes. The most popular example of a deadlock

is Five Dining Philosophers. Five philosophers are seated at a round table with a

single fork on a right-hand side [25].

Every philosopher needs two forks to eat, so they have to borrow a fork from

the philosopher from the let-hand site. If they start to eat simultaneously and pick

up their left fork then they deadlock and starve to death. None of the philosophers

will have a chance to pick up the right fork. Although the example is very simple it

shows one of the most important causes of deadlock: competition for resources [54].

Deadlock is one of the biggest problems in parallel systems.

Most programmers are familiar with programs that go into infinite loops, in

which state interaction with the environment is impossible. If a process performs

an unbroken infinite sequence of internal actions the system is livelocked. This

happens when a network of processes communicate internally without an external

communication [54]. Livelocked system can look similar to deadlocked, but both of

those states are very different.

Client-Server design pattern The deadlock and livelock can be avoided by

design a CSP based system. If the design fulfils the Client-Server design pattern

it is deadlock free. In the Client-Server design pattern the client sends a request

to the server. The Client having sent a request to a Server guarantees to read

any response immediately. The Server has to accept any request immediately and

respond in finite time. Additionally a server will never send a message to any of its

clients without a request from the client. Depending on a request the server may or

may not send a response to the client. The server can behave as a client to other

severs. Considering one communication link, there should be a server and a client

at each end of the link. Labelling a client and server ends of communication is a

way to determine architecture correctness by ensuring there are no cycles of clients

and servers within the network.
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3.2 System verification

Concurrent systems can cause many problems, so it is necessary to have a good un-

derstanding how they behave and how to accommodate nondeterminism and avoid,

livelock and deadlock during the design stage of the system [41]. A tool for software

verification would be useful for testing purpose and improve software reliability.

Failures-Divergences Refinement (FDR) is a model-checker for CSP designed to

asses correctness conditions including deadlock and livelock freedom and also general

safety and liveness properties. FDR is a product of Formal Systems (www.fsel.com).

Spin is another verification tool and is an open-source software tool that can

be used for formal verification of concurrent and distributed software systems [26].

Spin can be used both as a simulator and a verification tool. A Spin model is a

logic model checker, and accepts a specification language called Promela (Process

Meta-Language). Importantly, Spin incorporates a concept of mobility in its design

that makes its use more appropriate for the mobile distributed systems that can

occur in pervasive adaptive systems. The mobility is described with use of a process

calculus, called π-calculus [44]. Moreover a Spin model can verify a system as a

whole, including dynamic and static sections. This capability is useful when checking

if a system with a dynamic topology is deadlock and livelock free.

A pervasive adaptive environment can be built using components of a system

working concurrently. It is therefore reasonable to question whether a CSP model

can be used when building a pervasive adaptive system. As the deadlock and live-

lock can be avoided by design and software can be verified using a Spin model or

FDR checker, the advantages of the CSP model can be used when designing and

implementing a pervasive adaptive system. Every device from the system can run

processes communicating with processes on different devices. Processes on one de-

vice can be grouped in sets and cooperate. Every process can be responsible for

different device capabilities, communication or synchronisation with different de-

vices.
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3.3 CSP implementations

There are many languages that implement CSP model. This section describes JCSP,

CTC++, occam, occam−π and POOSL and justifies the choice of a language used

to simulate presented architecture.

3.3.1 occam and occam−π

occam is a programming language implementing the CSP algebra that was originally

used for programming Transputer microprocessors [49]. occam is the programming

language that is the most widely used when representing CSP models. The occam−π

is an extension of occam implemented for KRoC, the Kent Retargetable occam Com-

piler CSP kernel [69]. The occam−π implements the π-calculus, process calculus,

enabling expressing models of systems that change their architecture during runtime

[44].

3.3.2 Handel-C

The Handel language is a hardware description language that is a subset of occam

and used for hardware synthesis. A compiler was created to translate Handel to

hardware Xilinx FPGA’s [58]. The Handel language has evolved into Handel-C, a

subset of C extended with features of parallel composition and synchronous channels

[58]. Automatic translation of Handel-C to FPGA’s is done with use of DK Design

Suite developed by Mentor Graphics (www.mentor.com).

3.3.3 CTC++

CTC++ is a C++ library implementing CSP principles, created in University of

Twente [8]. A tool developed at the University of Twente gCSP uses a graphical

interface of CSP diagrams to generate CSPm (CSP algebra representation for FRD

checker), CTC++, Handel-C and occam code. The gCSP proved to be a very

valuable educational tool, but while still being under improvement is not suitable

for the development.
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3.3.4 JCSP

JCSP is an environment allowing the development of Java applications following

CSP principles. Use of a Java based language enables executing designed processes

on any device that can run the Java Virtual Machine (JVM), because of the cross-

platform nature of this language. The use of Java also gives the advantage of a very

popular and mature language with many libraries developed to help in a program-

ming process. The advantage of using a mature language is that Java programmers

can easily start programming with JCSP with the use of jcsp (current version 1.1rc4)

libraries [68].

3.4 Targeting hardware with CSP

There are many concurrency models, this research investigates usability of CSP for

building and simulating a pervasive environment. The CSP model was an inspi-

ration to build a Transputer in the 80’s. A Transputer was a high performance

microprocessor developed by Inmos Ltd. now taken over by STMicroelectronics (

www.st.com) that supports parallel processing through on-chip hardware [27]. The

Transputer was intended to be programmed with occam. CSP model have been used

to develop and design hardware with use of CSP‖B [43], Balsa [3], CTC++ trans-

lated into Handel-C with use of gCSP tool [7, 8, 29], JCSP [34]. An automatic tool

to translate CSP diagrams to generate gate-level synthesis have been implemented

[64, 58]. This project uses CSP concepts when designing all levels of the presented

system, as shown in Figure 2, and represent a reasoning component expected to be

built in hardware, as presented in Section 8, with the use of JCSP for simulation

purposes.
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4 Knowledge representation and ontology

With fast technology development it will soon be possible to deploy sensors and

actuators everywhere. Many every-day use devices will have sensing, processing and

wireless networking capabilities. To enable these devices to make decisions, knowl-

edge and reasoning capabilities are needed. This chapter and Chapter 7 presents

techniques used for knowledge representation and formulation, Chapter 8 presents

the reasoning component designed and developed in this project.

In Artificial Intelligence (AI) a key to building powerful and large systems is

capturing knowledge in a computer-readable form. Representing knowledge is a

complex and time-consuming task. Therefore knowledgebase construction remains

one of the biggest costs when constructing an AI system [46]. Most complicated

AI systems require building a knowledgebase from scratch. Ontologies can offer

a core structure for representing knowledge and enables reuse of knowledgebases

when designing systems in similar domains. This chapter describes the research

area of knowledge representation and knowledge engineering in Section 4.2. First

the concept of an ontology and its specification for particular domains is presented

in Section 4.1.

4.1 Ontology

An ontology is a representation of a set of concepts, functions and relations between

concepts [20]. Concepts are classes of entities existing in a domain, functions and

relations are respectively one-to-one and one-to-many properties existing in the en-

vironment. An ontology, together with syntax and semantics provides a language

that is necessary for proper communication. Building an ontology is a difficult task

because domains and language always evolve. It is impossible to state that the on-

tology describes all possible concepts and relations in a specific domain, but it can

present a very up-to-date picture of the domain.
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4.1.1 Ontology use for interoperability

Because an ontology can always evolve and adapt to an ever-changing domain,

it can be a very flexible and up-to-date description of the domain. Therefore an

ontology can play the role of a flexible standard and can be used to achieve semantic

interoperability.

It has been shown that interoperability can be achieved by using an ontology in

consumer electronics devices [62]. Another project, Sofia [1], is targeted to enable

and maintain cross-industry interoperability for smart spaces using a core ontology

based on DOLCE [42] and domain ontologies. The approach presented in this project

is an extension of both [62] and Sofia concepts to create a pervasive environment

with interoperability at the semantic level and re-usable knowledge representation

based on an ontology. The specific environment that this project is considering is

a network of very small, energy-frugal devices with limited processing capability.

Services that are offered by these devices are simple, therefore it is possible to

represent them using an uncomplicated knowledgebase drawn from an ontology.

4.1.2 Foundation ontology

A part of the knowledge in the system comes from understanding general concepts.

Therefore a description of general truths is needed. The foundation or upper on-

tology describes general concepts and relations that are applicable to all knowledge

domains. There are many upper ontologies, as there are many views of the world

and concepts existing in it. This project is following the Sofia approach by choos-

ing DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) as its

upper ontology.

DOLCE ontology The DOLCE, Descriptive Ontology for Linguistic and Cogni-

tive Engineering, is an upper ontology which is the first module of the WonderWeb

Foundational Ontologies Library (WFOL). DOLCE was defined as a part of the

OIL, Ontology Infrastructure for the Semantic Web [16], ontologies are applied to

the World Wide Web to create the Semantic Web. The Semantic Web is a concept

of a machine readable representation of the information on the World Wide Web
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[5].

Figure 4: Taxonomy of DOLCE basic categories [18]

The DOLCE ontology divides the world into endurants, pradurants and abstract

entities as presented in Figure 4. The difference between perdurants and endurants is

their behaviour in time. Endurants are fully present at any time of their appearance.

On the other hand perdurants are only present partially, therefore some of their

temporal parts, previous or future phase, may not be present. Therefore endurants

are entities that are present and perdurants are entities that happen in time. For

example a person, that is an endurant, can participate in a discussion, that is a

perdurant. The third main category of entities described by a DOLCE ontology are

abstract entities. Abstract entities have no spatial or temporal qualities and they

are not qualities themselves. An example of an abstract entity is a physical space,

like a room or a park.

The DOLCE ontology is used to structure a general knowledge, so domain and

application-specific ontologies can be attached to it, creating a graph of a knowledge.

4.1.3 Domain-specyfic ontology

Apart from understanding general concepts, a device needs also to have knowledge

about concepts and relationships in its own domain. Domain-specific ontologies are

designed by experts in the field and can change over time with advances in the

domain. An example of domain-specyfic ontology is a lighting ontology developed
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as a part of this project.

Lighting ontology The lighting ontology was inspired by the description of light-

ing domain in IFC (Industry Foundation Classes)[9]. The IFC is a data format for

describing, exchanging and sharing information in the building industry sector. The

IfcLightSource IFC class is presented in Figure 5.

The lighting ontology was developed with the use of concepts proposed by IFC

to represent knowledge about a light source. The lighting ontology is presented in

Figure 6.
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Figure 5: IFC light source description.
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The entities in the lighting ontology in Figure 6 are defined as follows:

• Lighting - Definition from IFC: The light source entity is determined by the

reflectance specified in the surface style rendering. Lighting is applied on a

surface by surface basis: no interactions between surfaces such as shadows or

reflections are defined.

– Name (type: Literal ) - Definition from IFC: The name given to the light

source in presentation.

– Age (type: Numeric ) - Number of hours (seconds) that a light has been

used.

– LightColor (type: RGB ) - Definition from IFC: The color field specifies

the spectral color properties of both the direct and ambient light emission

as an RGB value.

– AmbientIntensity (type: Real ) - Definition from IFC: The ambientInten-

sity specifies the intensity of the ambient emission from the light. Light

intensity may range from 0.0 (no light emission) to 1.0 (full intensity).

– Intensity (type: Real ) - Definition from IFC: The intensity field specifies

the brightness of the direct emission from the ligth. Light intensity may

range from 0.0 (no light emission) to 1.0 (full intensity).

– EnergyConsumption (type: Numeric )

– LightingFunction (type: Literal ) - How lighting is used, e.g. ambience,

environmental illumination etc.

• Light source ambient (Subclass of: Lighting ) - Definition from IFC: Light

source ambient lights a surface independent of the surface’s orientation and

position.

• Light source directional (Subclass of: Lighting ) - The class definies direction

of the lighting.

– Orientation (type: Direction ) - Definition from IFC: The direction of the

light source.
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• Light source geometric (Subclass of: Lighting ) - Definition from IFC: The class

defines a light source for which exact lighting data is available. It specifies

the type of a light emitter, defines the position and orientation of a light

distribution curve and the data concerning lamp and photometric information.

– Position - Definition from IFC: The position of the light source. It is used

to orientate the light distribution curves.

– ColourAppearance (type: RGB ) - Definition from IFC: Artificial light

sources are classified in terms of their color appearance. To the human eye

they all appear to be white; the difference can only be detected by direct

comparison. Visual performance is not directly affected by differences in

color appearance.

– ColourTemperature (type: Real ) - Definition from IFC: The color tem-

perature of any source of radiation is defined as the temperature (in

Kelvin) of a black-body or Planckian radiator whose radiation has the

same chromaticity as the source of radiation. Often the values are only

approximate color temperatures as the black-body radiator cannot emit

radiation of every chromaticity value. The color temperatures of the com-

monest artificial light sources range from less than 3000K (warm white)

to 4000K (intermediate) and over 5000K (daylight).

– LuminousFlux (type: Real ) - Definition from IFC: Luminous flux is a

photometric measure of radiant flux, i.e. the volume of light emitted from

a light source. Luminous flux is measured either for the interior as a whole

or for a part of the interior (partial luminous flux for a solid angle). All

other photometric parameters are derivatives of luminous flux. Luminous

flux is measured in lumens (lm). The luminous flux is given as a nominal

value for each lamp.

– LightEmissionSource (type: Literal ) - Definition from IFC: Identifies the

types of light emitter from which the type required may be set. Possible

values:

∗ COMPACTFLUORESCENT,
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∗ FLUORESCENT,

∗ HIGHPRESSUREMERCURY,

∗ HIGHPRESSURESODIUM,

∗ LIGHTEMITTINGDIODE,

∗ LOWPRESSURESODIUM,

∗ LOWVOLTAGEHALOGEN,

∗ MAINVOLTAGEHALOGEN,

∗ METALHALIDE,

∗ TUNGSTENFILAMENT,

∗ NOTDEFINED.

• Light source positional (Subclass of: Lighting ) - Definition from IFC: Desribes

lighting position and attenuation coefficients.

– Position (type: Cartesian Point ) - Definition from IFC: The Cartesian

point indicates the position of the light source.

– Radius (type: Numeric ) - Definition from IFC: The maximum distance

from the light source for a surface still to be illuminated.

– ConstantAttenuation (type: Real ) - Definition from IFC: This real indi-

cates the value of the attenuation in the lighting equation that is constant.

– DistanceAttenuation (type: Real ) - Definition from IFC: This real indi-

cates the value of the attenuation in the lighting equation that propor-

tional to the distance from the light source.

– QuadricAttenuation (type: Real ) - Definition from IFC: This real indi-

cates the value of the attenuation in the lighting equation that propor-

tional to the square value of the distance from the light source.

(type: )

• Communication (Subclass of: Lighting ) (type: ) - Description of communi-

cation tha lighting can have with other devices.
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– UpdateFrequency (type: Numeric ) - The frequency of comunication be-

tween light and other devices.

– TypeOfCommunication (type: Literal ) - Type of communication be-

tween lighting and other devices.

– DataType (type: Literal ) - Type of data sent by light to other devices.

• Light distribution data source (Subclass of: Light source geometric ) - Defini-

tion from IFC: The data source from which light distribution data is obtained.

• Light source spot (Subclass of: Light source positional ) - Describes light

source spot

– Orientation (type: Direction ) - Definition from IFC: The direction field

specifies the direction vector of the light’s central axis defined in the local

coordinate system.

– ConcentrationExponent (type: Real ) - Definition from IFC: This real is

the exponent on the cosine of the angle between the line that starts at the

position of the spot light source and is in the direction of the orientation

of the spot light source and a line that starts at the position of the spot

light source and goes through a point on the surface being shaded.

– SpreadAngle (type: Real ) - Definition from IFC: This planar angle mea-

sure is the angle between the line that starts at the position of the spot

light source and is in the direction of the spot light source and any line

on the boundary of the cone of influence.

– BeamWidthAngle (type: Real ) - Definition from IFC: The beamWidth

field specifies an inner solid angle in which the light source emits light

at uniform full intensity. The light source’s emission intensity drops off

from the inner solid angle (beamWidthAngle) to the outer solid angle

(spreadAngle).

• Light intensity distribution (Subclass of: Light distribution data source ) -

Definition from IFC: The class defines the the luminous intensity of a light

source that changes according to the direction of the ray.



4 KNOWLEDGE REPRESENTATION AND ONTOLOGY 46

– LightDistributionCurve (type: Literal ) - Possible values:

∗ TYPE A,

∗ TYPE B,

∗ TYPE C,

∗ NOTDEFINED

• Light distribution data (Subclass of: Light intensity distribution ) - Definition

from IFC: The class defines the luminous intensity of a light source given at a

particular main plane angle.

– LumniousIntensity (type: Real )

– MainPlaneAngle (type: Real )

– SecondaryPlaneAngle (type: Real )

The lighting ontology as presented in Figure 6 was used in both of Sofia [1]

and this project and is presented here to give and indication of the complexity of

description of something as common as lighting.

4.1.4 Application-specific ontology

An application-specific ontology is designed to represent concepts and relations be-

tween them in a particular application or architecture. This ontology is the source

of the knowledge for a device about a specific architecture or an application. This

ontology is described using protocols, message types and configurations needed to

enable cooperation between devices in a space. These ontologies enables the de-

vice to function in a particular architecture. This project is mainly focusing on

Application-specific ontologies and how to design them to enable a device to coop-

erate in a proposed architecture (see Chapter 5). An application-specific ontology

was designed for the needs of this project, see recipe ontology in Section 7.3.1.

4.2 Knowledge Representation

The knowledge representation presented in this project is inspired and influenced

by knowledge representation schemes in AI. There are many knowledge represen-
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tation schemes, the most popular are: logic, procedural, network and structured

representations.

4.2.1 Logic representations

Logic representations scheme uses expressions in formal logic to represent the knowl-

edge [17]. This representation uses propositions with predicates to express facts. An

example of rule expressed with its logic representation is as follows:

∀x∀y : father(x, y) ∨mother(x, y)→ parent(x, y)

The universal rule presented above states that for all values of x and y, if x is

the father of y or the mother of y then x is parent of y. This rule also contains

a fact parent(x, y) that can be used for further reasoning. This knowledge can

be implemented with use of the PROLOG programming language. The drawback

of representing knowledge with logic representations is that it operates under a

closed world assumption [52], therefore it assumes that all knowledge is expressed

in the knowledgebase, and only with this assumption can it reason. The logic

representation is declarative, it specifies what is known about the problem or domain,

not what actions to take to solve the problem or how to use the knowledge.

4.2.2 Procedural representations

A procedural representation represent a knowledge as a set of instructions for solving

a problem[17]. Procedural expressions use if-then statements to express procedure:

if a given condition is met then a series of actions are performed. The database

of the knowledge is called a working memory and it represent the whole knowledge

of the system at a given moment [17]. Following a similar example from [17], let’s

consider an example of the system gathering data about a user and determining if

it is an adult or under age. At a start the system’s working memory is as follows:

<user surname? is unknown>

<user forename? is unknown>

<user age? is unknown>

<user adult? is unknown>

<LEGALAGE is 18>
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Where user’s surname, forename, age and state of being an adult is unknown

and LEGALAGE is set to be 18. The rules to find out more about the user can be

as follows:

1. IF<user surname? is unknown>

THEN ask ”what is your surname?”

read SURNAME

remove <user surname? is unknown>

add <user surname? is SURNAME>

2. IF<user forename? is unknown>

THEN ask ”what is your forename?”

read FORENAME

remove <user forename? is unknown>

add <user forename? is FORENAME>

3. IF<user age? is unknown>

THEN ask ”what is your age?”

read AGE

remove <user age? is unknown>

add <user age? is AGE>

4. IF<user age? is AGE> and AGE≥LEGALAGE

THEN remove <user adult? is unknown>

add <user adult? is YES>

5. IF<user age? is AGE> and AGE<LEGALAGE

THEN remove <user adult? is unknown>

add <user adult? is NO>

Let’s assume that the user is Tom Brown age of 23. Given the contents of the

database, the following sequence of rules execution is expected to occur:

• Rule 1 is executed, the user types in Brown and the entry <user surname? is

Brown> is added to the database.

• Rule 2 is executed, the user types in Tom and the entry <user forename? is

Tom> is added to the database.

• Rule 3 is executed, the user types in 23 and the entry <user age? is 23> is
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added to the database.

• Rule 4 is executed since the user’s age, equal to 23, is larger than the predefined

value of LEGALAGE, equal to 18. This rule replaces entry <user adult? is

unknown> with entry <user adult? is YES>in the database.

The interpreter examines the rule set every time from the beginning [17]. In more

complicated systems some conflicts can occur. As rules triggers when the condition

is met it can also lead to infinite loops.

4.2.3 Network representations

Another knowledge representation schemes in AI is network, that capture knowledge

as a graph, where nodes are concepts and objects and arcs represent relationships

between them [17]. This scheme can use ontology to represent concepts and relation-

ships between them. Similar to ontology, network representations support property

inheritance. If a concept or an object is a member of a class it inherits all attribute

values from the parents, unless alternative values are overwritten [17].

The use of network representations and an ontology helps to structure and or-

ganise the knowledge. This representation is useful when the object or a concept

is associated with many attributes and when relations between concepts are impor-

tant [17]. The graph structure of the knowledge schema enables quick navigation

between concepts and more human-like understanding of concepts and because of

inheritance enables discovering similarities between concepts.

4.2.4 Structured representations

More complicated knowledge schemas, called structured representations use slots

to represent attributes in which values can be placed [17]. The values that can

be placed in slots is either an instance-specific information or a default, stereotyp-

ical value associated with a slot.There are two most common types of structured

representations: frames and scripts.

Frames are designed to represent stereotypical information about an object [45].

An example of an object described by frames can be an office. Most of office spaces
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have many desks, chairs, shelves, documents in folders and books, computers, print-

ers and phones. The information about an office can be stored in a network of

frames, where frames have slots with particular values. A slot can be for exam-

ple the number of desks in an office, that for a particular office can have value of

5. Scripts is next type of structured representations. Scripts are very similar to

frames, it represents stereotypical situation [17]. Frames describe objects, scripts

unlike frames represent situations. Scripts were first proposed to reason about con-

textual information to support natural language processing. As discussed in [17],

scripts consists a number of elements:

• entry conditions - conditions that need to be true in order to run the script,

• results - facts that are true when a script finishes,

• props - items involved in the event,

• roles - expected actions to be performed in the event described by the script,

• scenes - sequence of events,

• tracks - various themes of patterns of the script.

Scripts are used when common knowledge needs to be used to interpret a sen-

tence. Following an example from [17], let’s consider a sentence:

Alison and Brian received two toasters at their engagement party, so they took

one back to the shop.

To interpret this sentence the knowledge about presents, returning goods, en-

gagement parties and toasters is needed. The common knowledge is that under

normal circumstances people would’t need to have two toasters, that’s why its nat-

ural they want to return one. The situation would be totally different if the gift

was two books. Therefore the rule that people do not want two similar objects only

applies to some objects.

Scripts are useful when representing knowledge in a particular context and can

be limited to a domain. This scheme provides an explicit and efficient mechanism

to capture complex structured information within a context and a domain [17].
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4.2.5 Chosen representations

The chosen knowledge representation is a mix of the presented representations. The

inspiration and influence of AI theory is as follows:

1. Procedural representations - the structure of the system: working memory (see

short-term knowledgebase in Section 7.4), set of rules (see recipes in Section

7.3) in if-then form and interpreter (see KBIE in Section 8).

2. Network representations - use of ontologies (see Section 4.1.2, 4.1.3 and 4.1.4)

to structure the knowledge (see Sections 7.1, 7.3.1), use of inheritance when

describing similar objects.

3. Structured representations - use of script-like description of a behaviour with

entry conditions (recipe header see Section 7.3), scenes (recipe steps see Section

7.3, tracks (conditional choices see Section 7.3.2).

As presented by Finlay and Dix [17] the main knowledge representation schemes’

requirements are: expressiveness, effectiveness, efficiency and explanation. An ex-

pressive scheme can handle different types and levels of granularity of the knowledge.

It is able to represent specific and general knowledge. An effective scheme provides

a means of inferring new knowledge from old. The third measure of a good repre-

sentation scheme is efficiency. The scheme need not only support inference of new

knowledge from old but also do so efficiently so the new knowledge can be used.

Also the gathered knowledge must be usable and well represented. Finally a good

knowledge representation has to provide an explanation of its inferences and allow

it to justify its reasoning.

The chosen mix of presented schemes used in this project also follows the re-

quirements of a knowledge representation in AI.

• expressiveness - The inspiration from procedural representations brings an ad-

vantage of procedural knowledge in situations when knowledge changes over

time. This is useful when the initial and final state of the system differ between

users. The network representations scheme, by use of an ontology, brings the

ability to express knowledge with the use of facts and objects and relations
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between them. The hierarchy in a graph allows representing general and spe-

cific knowledge. The inspiration from structured representations, especially

Scripts, allows making a description of a behaviour expressive in a particular

context.

• effectiveness - The inspiration from procedural representations effects creation

of new information in the knowledgebase. It is created by use of operators

to change the contents of the working knowledge. Because of the use of the

network representations, the inference is supported through property inheri-

tance. With use of Scripts, the new knowledge can be deduced using context

information, therefore the situation can be interpreted differently in different

contexts.

• efficiency - The use of procedural representations make it transferable between

different domains. The use of network representations reduces the size of a

knowledgebase, because the properties can be inherited not explicitly attached

to every class or entity. Consistency is well maintained with the inheritance

between classes. The use of structured representations makes it possible to

capture complicated knowledge in an efficient way.

• explanation - In the procedural representation a decision making process can

be easily tracked by checking what rules have been run. In network represen-

tations the relationships and inference are explicit in the network links.

The hybrid created with use of AI theory of knowledge representation and new

ideas presented in this project follows the recommended requirements. Therefore its

feasible to create a knowledgebase based on this knowledge representation that can

be used for reasoning.



5 SMART LIGHTING PROJECT 53

5 Smart lighting project

Home automation systems are very popular nowadays. Although there are many

home automation systems, there are still many unsolved issues and unattained tar-

gets. The project’s goal is to create a system that customizes a lighting environment

in a house or commercial environment in an easy and intuitive way. The objective

is to make lighting systems more context-aware and able to adapt to changing en-

vironment and users’ needs.

Most existing lighting automations consist of a central unit that controls the sys-

tem and makes all the decisions. In this case light sources are only able to receive

information about the controller’s decisions. Therefore the controller is the main

decision making component and responsible for managing context and users’ needs.

The central unit also has to store or has instant access to light settings and decide

about configuration. Most of the controllers on the market have already been de-

ployed with fixed functions and customizing them is usually impossible. For example

The Living Colors lamp by Philips (www.lighting.philips.com) can produce any light

color with use of 4 LEDs, but remote can control only one lamp at a time and choice

of colors is fixed. A contemporary lighting system has to meet the requirements of

the user and be dynamic and flexible enough to give their customers the desired

performance. The technology is developing so fast that it is possible to put process-

ing engines or even processors in lights and sensors, so they become able to make

their own decisions and process data. With this extension in functionality, simple

components can become more sophisticated. On the other hand, the engine that is

deployed into lights or sensors should be as simple as possible and energy efficient,

so the whole cost of the system consisting of installation, use and maintenance can

be low.

5.1 Project specification

The smart lighting system is part of the Sofia (Smart Objects For Intelligent Ap-

plications) EU ARTEMIS funded project. Sofia is investigating the use of pervasive

systems in the application areas of Personal Spaces, Smart Indoor Spaces and Smart
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Cities (Figure 7). Integrative service components that cover User Interaction and

Interfaces, Architecture and Application Development are also being undertaken.

Figure 7: Sofia context.

One of the Sofia objectives is to create an interoperability platform to enable

collaboration between multi-vendor devices, using different communication links,

operating systems and software components. The interoperability is achieved us-

ing a common ontology and data format to exchange information about the smart

space in a pervasive system. The interoperability not only enables cooperation be-

tween different devices but also between systems based on different architectures.

The Sofia project uses open source platform Smart M3 [30] that enables informa-

tion sharing between software entities and devices. This project follows the Sofia

approach to use ontologies for interoperability and follows the Semantic Web of the

World Wide Web Consortium (W3C www.w3c.org) approach for representing se-

mantic knowledge with use of ontologies and a Resource Description Framework.

The W3C is proposing RDF for a Semantic Web standard for data interchange

[40]. The research reported in this thesis builds upon and improves an architecture

called Smarties [62]. The extensions will be explained in the next sections. The

research extends the Sofia approach by extending reasoning in devices by adding a

knowledgebase and dedicated interpretation engine.
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5.2 Basic architecture concepts

The architecture for a distributed system, called Smarties, is presented in [62]. In

Smarties devices are autonomous and can connect in ad-hoc manner. Devices can

organise themselves, execute some tasks without intervention of any central control

component. In the extension to the basic Smarties architecture, knowledge of the

system is distributed among devices that know what they have to do in a particular

situation and perform a certain function. Therefore the scope of interest of the

device is its co-operation with other devices. Every device is addressable, in this

architecture numbers were used to identify devices in a space. A mechanism to assign

an identification number to a device was out of scope of the presented architecture.

Its possible that the identification is assigned by the communication mechanism,

for example if devices communicate over TCP/IP, the identification can be an IP

address.

5.3 Virtual devices and interactions

In the Smarties architecture to perform some task in an environment devices have

to be selected and grouped into subnetworks. Therefore a subnetwork of devices in

an intelligent system is called a virtual device, because the subnetwork acts like a

distributed device to perform a task, see Figure 8.

Figure 8: Different virtual devices in one environment. Virtual Device 1 is composed
because user requested to change lights in a single area of the room. Virtual Device
2 was created to measure energy consumption used by lamps in this room.
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A virtual device can be formed as a result of a user’s request or some scheduled

task that is being performed by a device. Some devices can participate in many

virtual devices.

The device can be in any of four states (Figure 9): idle, execution and control,

configuration, destroy. In the idle state the device is in an initial state and can

accept requests for establishing new virtual devices. In the configuration state the

device is waiting for other device responses or scheduled tasks to appear, in this

state the device indicates that the configuration has a pending status.

Figure 9: State diagram of the device [62].

In the execution and control state the virtual device has been established and

devices work now as a distributed system that can receive control messages. In the

destroy state the virtual device is destroyed and configuration data is deleted from

device’s memory. Devices that can participate in many virtual devices can be in

many states at one time, therefore depending on a request the device is ready to

behave according to any of the states.

5.4 Message format

Devices communicate only using messages. All messages sent in the system are

broadcast messages, every device receives the message and decides if it should accept

or discard it. In the original architecture [62] there are 4 types of messages, namely:
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search, control, destroy and acknowledgement (Figure 10).

Figure 10: Message format from [62].

Messages in the improved architecture consist of header and payload. The header

is always the same and consist of fields: Issuing Device ID, this field holds the

device’s unique identification number; Virtual Device ID, that is informing to what

virtual device the message is issued or states the identification number of the virtual

device that is about to be established; Message ID, that holds information about

the message identification number. The header contains basic information about

the message and also helps filtering out the messages that are not intended for a

device. The payload part of the message is specific to each message. The first field

of the payload is stating the type of the message.

The search message is used to search for a service when a new virtual device is

needed. In this architecture its is only possible to search for a sub-function, that

can be a service or a functionality offered by a device. To answer any request, an

acknowledge message is used. The payload of the acknowledge message contains

the Original Message ID that contains information about the message that the

device is acknowledging, the Response Data field contains any information that the

device is required to answer on a request. The destroy message is very simple and

only indicates which virtual device needs to be destroyed. In order to influence the

virtual device after it was established, the control message is used. The payload

of this message contains a set of pairs of control modalities and values assigned to

them. For example if the dim level needs to be changed to 50%, a pair (dim, 50) will
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appear in the control message. In this the size of the set of pairs can be unlimited,

in practice this could be constrained with the size of the message allowed to be sent

over the communication link.

The message format proposed in [62] was extended with new message types

and modification of message fields to improve existing capabilities and enable new

functions of the system. In the proposed architecture there are ten message types

as presented in Figure 11. All messages in the presented architecture consist of

Figure 11: Message format.

header and payload sections. The proposed header is similar to the original one,

extended only with the Message Type field. Fields in the header were rearranged, so

the Message Type is the first field in the header. This was done because the size of

the message changes depending on the type, to enable automated message parsing,
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the interpretation component only reads the first field of the message and matches

it with message structures understood by the device. The exact mechanism of

parsing messages is presented in Chapter 8, the protocol regulating a communication

mechanism is presented in Section 5.5.

5.4.1 Search message

The search message is used to establish virtual devices. Fields Request Type,Context,

Person and Service describe a type and purpose of the request. The Priority field

indicates the importance of the message. A request to create a virtual device with

a higher priority can overrule the existing virtual device configuration.

5.4.2 Accept message

The accept message is sent to inform any device that it is being accepted as a part

of a virtual device. The field RecipientId contains an identification number of a

specific device.

5.4.3 Acknowledge message

The acknowledge message is used to answer requests issued by devices. The Original

Message Id field indicates what acknowledge message this message is responding to

and the Ack Response field contains any information that the device is required to

answer on a request. The acknowledge message is only accepted by a device that is

expecting this kind of message, otherwise the message is dropped.

5.4.4 Shout message

The shout message is used to asses if the device can participate in a virtual device

with requested capabilities. This message is very similar to the search message,

but triggers a response from a device, rather than actions to participate in a vir-

tual device. The shout message is used to asses a situation in the smart space,

wherever there are devices participating in a virtual device and to determine their

configuration state.
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5.4.5 Destroy message

The destroy message uses the field Virtual Device ID to destroy a configuration asso-

ciated with the requested virtual device. This message is needed while reconfiguring

and to enable simple destruction of selected virtual devices.

5.4.6 Control message

Similar to the original Smarties architecture, in order to influence the virtual device

after it was established, a control message is used. The payload of this message

contains sets of pairs of control modalities and values assigned to them. There can

be one to three sets of modalities in the control message, the number of sets is

expressed using the Modality Count field. Modalities are commands that a device

understands, these modalities are next mapped in the device to commands that are

used to influence device functionality.

5.4.7 Data message

The data message is used to propagate data in the system. The information car-

ried by this message consist of pairs of (Type, V alue) represented in message fields

DataType and DataValue. The number of pairs can vary and and is contained in

a field DataSize. The data message is issued only for one virtual device, and the

device itself needs to know how to interpret the data.

5.4.8 Internal message

The internal message is used to trigger internal actions in the reasoning component.

This message is used to find an appropriate action within a device and run a set of

instructions from the knowledgebase.

5.4.9 Update message

The update message is usually sent by a new device in a space and is used to assets

whether other devices provide a specific Service and understand its Context. The

update message is used if the receiving device needs an update, if so an updating

mechanism is triggered.
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5.4.10 Transmit message

The transmit message is used to transmit triples of data: subject, Object and Pred-

icate, explained later in Section 7.1.1. This message is a part of a transmission

mechanism, the number of messages to be sent (size of data to be transmitted) is

indicated by the field TransmissionSize. The field TripleNumber contains the se-

quence number of the data being sent. If one or many of messages have been lost,

messages with a particular triple number can be retransmitted.

5.5 Protocol

The protocol to establish a virtual device is a four-way handshake protocol, similar

to three-way handshake used in the TCP protocol [10]. To start the mechanism a

request is needed, it can be issued by a user, other device or the device itself. An

example of the use of the protocol is presented in Figure 12. To establish a virtual

Figure 12: Four-way handshake protocol.

device a search message needs to be sent (Figure 12, phase 1). This message is sent

to all the devices in order to asses which devices posses the requested capabilities
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and information. If the device is ready to establish a new virtual device it sends

an acknowledgement message to the virtual device members (Figure 12, phase 2).

Lamps now start a new configuration and remember data associated with the virtual

device. This configuration is still in the pending state and if a lamp does not get

the expected messages on time, the configuration will be deleted. In phase 2 only

the Switch accepts the acknowledging messages and decides which devices can be

accepted into the new virtual device. In phase 3 accept messages are being sent

only to selected devices, in this case lamp 2 was not accepted, therefore it deletes

the configuration and it does not participate in the virtual device. Lamps 1 and

3 continue the protocol in phase 3 by sending acknowledge messages and change

the configuration state to engaged. From this moment devices lamp 1, lamp 3 and

switch belong to one virtual device. To influence devices a control message can be

sent (Figure 12, phase 5). To destroy an established virtual device a destroy message

can be sent (Figure 12, phase 6), in this case all devices associated with the virtual

device delete their internal configuration and wait for further requests.

In the original architecture in Smarties the protocol to establish a virtual device

was a two way handshake, therefore the requesting device needed to accept all the

devices that answered the request. The presented protocol is designed as a four-way

handshake to ensure that both parts agree to participate in the virtual device and to

enable the issuing device to choose participants, the decision can be based on their

location, capabilities or any other information that is sent in the acknowledging

message. The four-way handshake is a more reliable protocol, therefore both sides

of participants are sure that the virtual device has been established.

5.6 System components

The system consists on many autonomous devices. All device make decisions among

themselves, so the intelligence is embedded in every device, as it is a specialist in

its own domain, therefore no central control or repository is needed. The decision

to distribute the decision-making process influences the processing and reasoning

capabilities in devices. Therefore devices need knowledge and reasoning capabilities

on top of device functionality that is already in the device. This project investi-
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gates the design of a generic interpretation engine for reasoning and representing

knowledge in a machine readable form.

Figure 13: Device architecture.

In order to communicate between the decision making mechanism and device

functionality, a device interface is needed; it is also necessary for a device to co-

operate with other devices, therefore a communication component is needed. The

separation of concerns is visible in Figure 13, the device can stay unchanged, the

additional component enabling reasoning needs only an interface to the device and

knowledge about a device’s capabilities and offered services. The reasoning compo-

nent is able to make decisions and use the communication link to send messages and

use the device interface to change the device’s behaviour. The reasoning component

is further discussed in Chapter 8.

5.7 Knowledgebase outline structure

The knowledgebase represents a set of information the device needs to know and

can be divided into four main parts: information about the device (type, domain),

functions and services offered by the device, information about the environment,

actions and behaviour the device can perform.

All this information is needed for the device to make a decision how to behave

in a particular situation. Messages and the protocol need to be described in the

knowledgebase in order to know what rules to communicate in a specific architec-

ture like Smarties configuration protocol. The knowledgebase construction and its

interpretation is the key to enable the whole system to behave in a particular way

and are discussed in Chapter 7. The capabilities of the architecture and the pre-

sented system with case studies based on a simple home automation example are
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presented in Chapter 6.
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6 Case Studies

When considering home, office or warehouse spaces there are many types of systems

supporting them, for example: security, heating, ventilation and air conditioning,

lighting and audio-video capability. Contemporary building automation systems are

targeted to reduce energy use and meeting users’ preferences.

Lighting systems at home or in the office environment consist of many light

sources, switches and dimmers in many rooms. The control system has to take into

consideration the variety of lighting equipment, location in the space, mobility of

light sources, dynamic number of devices, changing space configuration, users’ pref-

erences and environmental influences. Contemporary lighting systems need to be

intelligent, flexible and adapt to users’ needs and offer energy consumption man-

agement capabilities. The idea is to use concurrent programming techniques to

implement the infrastructure of a lighting system consisting of many devices with

different capabilities.

Figure 14: Proposed environment.

The environment chosen to describe the system is presented on Figure 14. Figure

14 shows a model of a room which is used as an office. The space is equipped with

a light switch with a user interface (UI), ceiling lamps, lamp on a desk, automatic

blinds on the window,a mirror used to reflect daylight to illuminate the room, light
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and motion sensors. The user is the center of attention and can set his/her pref-

erences manually in the UI. When the user indicates the need for more light, the

switch performs a search for devices that provide the service lighting for this user.

All the lamps, blinds and mirror respond to this request, because all of them are

able to provide more light for the space.

The other task that the set-up can perform is to keep the light at the same level

in whole room. This configuration is using communication between light and sensors

to use as much natural light as it is possible, while attaining a stable light level.

6.1 Context

There are many definitions of context, in this project we consider a context to be a

user intent or wish, or environmental conditions (see Section 2.5). Therefore context

can be associated with environment conditions, presence of particular devices or

people, users’ intent, or periods and events associated with a calendar. Devices in

the architecture react differently to different contexts, all the devices usually react

in an autonomous way and perform actions that are associated with a particular

context. For example the context SunnyDay would trigger different behaviours in a

lamp and a radiator.

6.2 Proposed Scenarios

In this section three scenarios are described that exploit different capabilities of the

case study environment. The proposed architecture (see Section 5.3) enables devices

to organise into virtual devices, and the protocol (see Section 5.5) enables sending

control messages and data.

6.2.1 Scenario One

The first scenario is organising devices that perform one service, lighting, in one

virtual device and control color and dimming level. When a user enters the room

he/she chooses the context Reading on a panel on the wall. The switch initiates

a new virtual device by sending a message to all the devices. Lamps and other

light sources that understand the context Reading join the virtual device, every
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light source has settings associated with a particular context, for example one lamp

changes color to red and dims to 80%. When the user wishes to change light source

settings, he/she simply chooses the desired light level or color and a control message

is sent to all devices participating in a virtual device. A user can change context by

pressing a button on a switch panel, the previous virtual device will be destroyed,

and a new configuration will be set with all the devices that understand the new

context.

6.2.2 Scenario Two

The second scenario is using a context from the environment and scheduled tasks

saved in a device. In this example when a user initiates the context Reading ; lamps

join the virtual device and also search for an indoor light sensor to adjust the light

level according to its value. A mirror present in the space searches for indoor sensors

to adjust dimming level and also an outdoor sensor to asses how much light it can

offer the space. Therefore the mirror establishes two virtual devices with sensors

in order to participate in the virtual device for context Reading. The desired light

level is set by the user and associated with the context. In this scenario the light

adjusting can be regulated by an algorithm embedded in devices in order to achieve

emergent behaviour. The algorithm, presented in Chapter 9, helps to save energy

while keeping the light in a space at a desired level.

6.2.3 Scenario Three

The third scenario demonstrates the learning capabilities of the system. In this

scenario we describe how the system deals with forward-compatibility, therefore

how to introduce devices and contexts that are not known in a space. If a projector

enters the space with a new context Projecting, devices present in the space cannot

participate in this context, therefore the projector has to asses if there are devices

that can cooperate with it, check if the context is present in the space, and if

necessary teach selected devices about the context Projecting. The next time the

projector enters the same space, the initial configuration will not be needed. In

this scenario, the projector carries a list of actions for all possible devices providing
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lighting services. The learning mechanism is very simple and relies on copying

required actions and distributing them to selected devices. These action sequences

are described in Section 7.3.

6.2.4 Tasks performed by the system

The scenarios were carefully selected to show the different possibilities of the de-

scribed system.

The first scenario is showing the system can be used as a replacement for the

existing lighting systems, all the basic capabilities are kept, the underlying archi-

tecture is changed from centralised to distributed. The self-configuration capability

is shown here by establishing virtual devices for a particular situation performed

automatically.

The second scenario shows how the system deals with context information. It

also shows how the system can co-operate with sensors or deal with data from other

devices. An algorithm triggering an emergent behaviour will be demonstrated to

show an example of a complex adaptive behaviour that can be implemented in the

proposed architecture.

The third scenario, a simple learning technique is presented to show how the sys-

tem deals with re-programming, forward-compatibility and learning. This scenario

shows the ease of installation and maintenance of the proposed system.
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7 Knowledgebase Development

A knowledgebase is a database of any kind containing a knowledge represented in

a machine readable format. A knowledgebase for small devices with simple func-

tionalities is presented in this chapter. First in Section 7.1 a layered structure and

a specific data format of the knowledgebase are described and explained. Next in

Section 7.2 the knowledgebase content is presented and discussed on the example

of a lamp. Section 7.3 presents a chosen format of representing devices behaviour

in this specific knowledgebase format. Finally in Section 7.4 division of the knowl-

edgebase is explained. The knowledgebase and the reasoning mechanisms are the

centre of intelligence in an AI system, the knowledge needs to be well structured

and represented according to rules so that if the knowledge is modified or updated,

reasoning mechanisms can still make valid decisions.

7.1 Knowledgebase structure

The structure of the presented knowledgebase is based on an ontology. The ontology

can offer a flexible model to structure and reuse data, it also enables semantic inter-

operability when exchanging knowledge between components. Neches [46] points out

that knowledgebase should be constructed from many levels of knowledge. These

layers are increasingly specialized, therefore layer division begins with very gen-

eral concepts, based on an ontology model and finishes with very specialized and

less reusable knowledge [46]. A branch of ontology that is used for constructing

knowledgebase should consist of a general core or foundation ontology together with

domain-specific and device-specific concepts and relations. The knowledgebase in

a device or component should consist only of necessary concepts, depending on a

component’s functions and domain as described in [62]. The knowledgebase can

be extended if new functionalities or services appear. The most specialized part of

a knowledgebase are instances and the data associated with a particular device or

component.

A knowledgebase consists of layers of knowledge (Figure 15). Layers are divided

into T-Box and A-Box. T-Box consists of ontology models, like DOLCE [42] or



7 KNOWLEDGEBASE DEVELOPMENT 70

any other upper level ontology, A-Box contains instances corresponding classes and

properties from T-Box.

Figure 15: Layered structure of a knowledgebase.

The top level of the knowledgebase is a meta model of the core ontology. The

meta model of the ontology has to be fixed, this project is following the Sofia [1]

approach by choosing Dolce as its core ontology. Dolce is an upper ontology that

addresses very general domains [42]. The next layer in Figure 15 shows a domain

ontology that is created for a specific area. For example if the device is a sensor,

its domain ontology describes classes and properties that are associated with the

sensor domain. In this way the knowledge of the surrounding world is narrowed to

the domain the device or component belongs to. The next layer, Application specific

ontology model, is a model for instances that describe devices’ behaviour, capabilities

and services that the devices can provide and also rules of the architecture that

the device belongs to. The last layer of the knowledgebase, categorized as an A-

Box, contains instances describing a particular device according to rules provided

by the T-Box ontology models. Similar devices will have a similar T-Box part of

the knowledgebase, but different instances in A-Box. T-Box can be automatically

generated and used when building the A-Box for a particular device.

7.1.1 Resource Description Framework

The models and the knowledge need to be represented in a machine readable form.

As the knowledgebase follows an ontology model, it is also expressed using a data

model recommended for describing ontologies. The structure of the data representa-
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tion needs to be kept simple to enable ease of reading, modification and interpreta-

tion. The ontology concepts are widely used for interpreting semantic data and web

resources in the World Wide Web Consortium (W3C) Semantic Web. The W3C

approach uses languages based on Resource Description Framework (RDF) [40] like

DAML+OIL [28], that is combination of DARPA Agent Markup Language founded

by US Defence Advanced Research Projects - DARPA and OIL, that is Ontology

Interchange Language; or its successor OWL (Web Ontology language) [59]. The

RDF is designed to represent information in a simple but flexible way [40]. The RDF

is used in the W3C Semantic Web project to represent data for applications that

use open information models. The RDF also offers a structure for machine readable

information for applications that process data that have not been created in the

same environment as the application, therefore enabling semantic interoperability

of the transported data [40].

This project uses the RDF standard to construct a knowledgebase.The RDF has

an abstract structure representing a simple graph-based data model [40]. An RDF

triple consists of subject, predicate and object, where subject and object are a class

or an RDF URL reference to a class and predicate is a relationship between classes

or a RDF URL reference to a relationship.

(Subject, Predicate, Object)

For example:

(apple tree, is− a, tree)

This triple uses predicate is-a to associate subject apple tree with object tree. On-

tologies are designed by domain experts and represent universal and domain-specific

truths.

For the purpose of the World Wide Web ontologies are represented by the use

of markup scheme like XML, for example when using OWL [59]. Unfortunately

XML adds complexity to the database format by introducing tags that need to be

interpreted. XML is not designed for data storage or efficient retrieval of data [36]

the additional time to process data exists due to parsing and text conversion [6].
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For devices with a limited processing capability it is important to keep the database

structure as simple as possible. Therefore the knowledgebase format is kept to a

simple three field RDF structure.

RDF for the World Wide Web can use many external files of different ontologies,

therefore it is not essential to define all concepts in one RDF file. Devices from a

pervasive system usually have a well defined functionality and often do not need to

connect to the Internet. In many cases referencing by means of a URL to external

ontology files is not possible. Therefore entries in the knowledgebase need only

reference other entries in it.

7.2 Knowledgebase content

The knowledgebase consists of data necessary for the system to make decisions,

process requests, interpret messages, learn and react to commands.

7.2.1 Smart Lamp

A lamp can be an example of a small device that can be part of the example system.

The smart lamp consists of two parts (Figure 16). The first part is designed by a

lamp manufacturer and consists of hardware, software and capabilities to turn on,

off and dim. The second part is responsible for making a simple lamp a smart lamp.

This part is processing context information and consists of a knowledgebase (KB)

and a reasoning component connected to a smart lamp by the device interface.

Figure 16: Smart lamp.
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The knowledgebase is designed especially for this type of lamp, so it already

has information provided by the manufacturer about the lamp capabilities. The

reasoning component has access to the lamp’s capabilities and can control it. The

knowledgebase helps the device interpret situations in the environment or external

commands from controllers and perform appropriate actions.

Following Neches approach [46], the lamp’s knowledgebase is divided into in-

creasingly specialised layers of knowledge(Figure 17).

Figure 17: Lamp’s knowledge pyramid.

The lamp needs to have only some general knowledge about the world, this

knowledge comes from a foundational ontology like DOLCE [42] and helps the device

understanding general concepts. The next layer is a knowledge about the lighting

domain, this information needs to be more detailed, as a device needs to be special-

ized in its own domain. The last layer in T-Box is an application ontology model,

where the device holds models of how it interacts in a given architecture. This layer

covers information about protocol, architecture details, message format and general

information associated with architectures in which the device can participate. Mod-

els from all of these layers help the device to understand the environment, its own

domain and architecture in which it is participating. The next three layers from

Figure 17 contain device descriptions and behaviour, these layers are specific for a

particular lamp. The top layer of A-Box describes lamp’s details, its type, location,

name and other information from the lighting ontology (Figure 6 in Section 4.1.3).
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The next layer of knowledge describes services offered by this lamp, for example

lighting, and capabilities that the physical part of the lamp can offer, for example

on, off or dim. This description is only valid for a particular lamp and it is usually

provided by the lamp manufacturer. The last layer and the biggest in size describes

the lamp’s behaviour that is associated with architecture, protocols, context and

environmental conditions.

The knowledgebase for any device consists of seven parts: device description,

capabilities,context and users, recipes (see Section 7.3), configuration and state,

and ontology models.

Device description. Description of the device using ontology. This part of a

knowledgebase consists of two parts: a core ontology necessary to characterize the

device universally, and a domain specific ontology describing entities and relations

that are restricted to one type of device (for example: lighting, sensors, multimedia

devices).

Device capabilities. This part of the knowledgebase contains descriptions of

device capabilities that are provided by the device manufacturer. For example,

capabilities are simple tasks that a device can physically perform. A simple lamp

can only turn on, turn off and dim to some level. It is impossible for lamp to play

music or accept coins because these tasks are beyond a lamp’s physical capabilities.

Context and users. The context describes the actual situation of the whole

system, or part of it. Every device can understand contexts that are described in its

own knowledgebase. Contexts might be for example: night, lunch time, reading or

watching tv and are associated with environmental conditions or actions performed

by users. Understanding context and acting upon it is one of the most important

tasks of the proposed system. Context is a very broad concept and customization

for different users is important. For example watching tv for Anna means that

their personal phone should be off, window blinds shut and light dimmed. The

same context can mean something different to Tomas, he wants his phone in loud

mode, lights turned off, blinds shut. Devices participating in one context can be

the same but settings might be different. Reasons for this are different preferences

and priorities for particular users. Therefore the context watching tv for Anna in a
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lamp or in a TV specify totally different actions.

Configuration and state. The information about the state and configuration

of a device is very important and should be accessible by the device. For example

devices to work as a group need to be formed into a virtual device [62]. The config-

uration holds information in which virtual devices the device participates and the

current state of the configuration. A device that is a part of a virtual device should

keep on functioning without any breaks, if a new request arrives a device has to be

able to determine if it should drop its current task and respond to the request, by

checking its current configuration settings. The state of a device is also included in

the knowledgebase. For example a lamp can store information about its dim level

or color in the knowledgebase where it can be easily accessed.

Recipes. Recipes are used to describe a procedure for the behavior of every

device. Recipes are very detailed and specify the procedure that a device has to

follow for a given context. The idea is to describe all important steps in a recipe, so

the device only has to read the recipe and act upon it. Recipes are associated with

context, people and request types.

Ontology models. This part of the knowledgebase consist of all models that a

device needs to navigate in the ontology tree and state all relations between entities

that are relevant for a particular device. Ontology models keep the knowledgebase

structure and enables the reasoning mechanism to find data necessary to perform

actions.

The knowledgebase is the centre of the intelligence of the system, all necessary

information and behaviours are contained in this database. A knowledgebase is

designed for particular devices, parts of T-Box can be similar for similar devices.

The main part of the knowledgebase are recipes describing a device’s behaviour.

7.3 Recipes

Recipes in a knowledgebase are sequential and represent steps that a device should

follow in a particular situation. Every recipe has a header to describe the recipe’s

type, context and other conditions that are guarding access to this recipe.

The recipe shown in Figure 18 consists of n steps. Steps contain actions that
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Figure 18: Recipe structure.

need to be performed in this particular step. Every step points to the step that needs

to be executed next. The last step points to a special step, called stepStop,indicating

the end of the recipe. If the device fails to finish a step, the recipe is dropped and

the configuration data is erased. When a step requires some time constrains, the

timer is started and the recipe is suspended, so kept in the same step, until the

alarm is triggered. Once the time is up the recipe continues to the next step. In

case the recipe reaches step stepStop the configuration status is set to engaged.

7.3.1 Recipes construction

Recipes are described using ontology terms, so the concept of a recipe has to be

present in the ontology model. Classes and properties associated with the structure

of a recipe are described in the T-box part of the knowledgebase in the Application

specific ontology model layers described in Section 7.1 in Figure 15.

A simple example of an ontological model to represent recipes combined with

DOLCE and Sofia models is presented in Figure 19. This model represents recipes

and steps as a subclass of Dolce processes. Property hasStart associates the recipe

with a first step for this recipe, and property hasNext creates a sequence of steps in

a recipe.

Consider a lamp and a switch that can co-operate when grouped in one virtual

device; the mechanism to group and configure these devices requires one device

to start a configuration by sending a search message. When a device receives a

search message it checks if it can participate in a virtual device that the message

propagates and if it has a recipe that it can use in this particular configuration. If

so, the recipe is executed, information about the configuration is saved; the device

sends an acknowledgement massage back and acts upon the instructions provided by

this recipe. If a switch initiates a virtual device with a lamp, the lamp has to have
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Figure 19: An ontological view of the concept of a recipe in T-box.

a recipe that describes, in detail, how to act upon a particular request. A recipe

consists of header, that describes a recipe and steps the device has to perform. The

header consists of recipe type, service and context of the recipe. A recipe can be

associated with a person and customized for this person.

An example of a recipe for a lamp expressed in RDF format is shown in Figure

20. The recipe1 consists of a header and four steps. Steps in a recipe represent a

sequence of actions that the device has to perform. If a device reaches the end of a

recipe, the task is finished.

A recipe represented in Figure 20 is described using RDF tripples. The same

recipe can be illustrated with a tree (Figure 21). This tree shows relations between

instances in the ontology and the corresponding model from T-box of the knowl-

edgebase in Figure 19. Recipes are interpreted by a device with the use of a model

from T-box (Figure 19) when searching for instances in A-Box (Figure 21). More

complicated recipes are presented in Appendix A.
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Figure 20: Example of a recipe in knowledgebase, expressed in RDF triples.

Figure 21: An ontological view of the concept of recipe1 from Figure 20.

7.3.2 Conditional choices

Recipes are used to inform a device the exact steps it should undertake in a particular

context or when receiving data from different devices. Since devices may have many

recipes , a choice on which recipe to run is made by the device using the content of

the received message. If there is more than one recipe that are usable in a certain
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situation, then the message content is used to further refine a recipe choice. This

is done by matching RDF triples of the recipe to fields of the message. This makes

it possible to make conditional choices on which recipe to run and thereby achieve

different device behaviour. A Skip mechanism was defined to enable if and else

choices inside of the recipe. An example of a recipe flow is presented in Figure 22.

Figure 22: Skipping steps in recipe.

The step 2 is constructed to evaluate a boolean value, prepared by step 1 ; if the

value is true it directs the reasoning mechanism to step 3 otherwise it skips step 3

and continues to step 4. Both step 3 and step 7 point to step 8, so the recipe can be

finished once step 9 is performed. This way it is possible to alternate a behaviour

inside of the recipe depending on a situation. More examples of recipes to analyse

data using the skip mechanism are shown in Appendix B.

7.3.3 Self-configuration

A new configuration is usually triggered by an external request. It is also possible

that the device recognises a need to start a new configuration with other devices.

Therefore establishing one virtual device can trigger establishment of more virtual

devices. For example, in Scenario Two in Section 6.2.2, mirror is requested to

participate in a virtual device that regulates light intensity in a room. When reacting

to a request, the mirror recognises that it needs an outside sensor to asses the light

level in the external environment. The mirror needs to start a new virtual device

with a light sensor and only then is it ready to participate in the virtual device

regulating light intensity. The need to trigger a request for a new virtual device can

be undertaken in parallel with other virtual devices. The mirror sends a special type

of message, an internal message (described in Section 5.4.8). This message triggers

running another recipe that configures a new virtual device.
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The recipe that runs another recipe can wait for results from the other recipe

or continue without acknowledgement. The mechanism to trigger running recipes

internally, which is enabling self-configuration, is further described in Section 8.4.

7.3.4 Complex predicates

The predicates used in knowledgebase are very specific, to represent a relationship

between two classes, a predicate with appropriate name is needed, for example to

associate classes to class Person, predicate hasPerson is needed, these predicates are

referred to as complex predicates. Complex predicates used in in the knowledgebase

include, non-exhaustively:

acceptsMsgType canConnect hasAckResponse

hasAckResponse hasAttribute hasCapability

hasCommand hasContext hasData

hasDataSize hasDataType hasDataValue

hasField hasFunction hasId

hasMessageId hasMessageType hasModality

hasModalityCount hasModalityValue hasMsgIndex

hasNext hasOperant hasOrderId

hasOriginalMessageId hasPerson hasRecipe

hasRecipeType hasResult hasRule

hasSenderId hasService hasStart

hasTimer hasValue hasVirtualDeviceId

is-a usesCapability

The number of predicates grows when a new class or a new relationship type

is added. The main advantage of complex predicates, from the point of view of

constructing the ontology, is that it is possible to create different relations between

the same classes. Unfortunately this poses problems when interpreting predicates by

the reasoning mechanism, because the mechanism can interpret only a fixed number

of predicates. If the predicate list is being extended, the reasoning mechanism might

not understand new predicates. Let’s consider an example where the knowledgebase

contains triples:
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(Person, is-mother-of, Person)

(Person, is-sister-of, Person)

(Teresa, is-a, Person)

(Anna, is-a, Person)

(Ela, is-a, Person)

(Teresa, is-mother-of, Anna)

(Teresa, is-sister-of, Ela)

To find a daughter of Teresa, the knowledge of a predicate is needed (is-mother-

of or reflection of this relation is-daughter-of ). It is impossible to find a predicate,

possessing only information that this predicate is a relation between two people and

even knowing that the mother’s name is Teresa. If the search for a predicate is

processed, there are two results: is-mother-of and is-sister-of and the reasoning

mechanism cannot make a valid decision which predicate to choose, therefore pred-

icates need to be known to the reasoning mechanism in advance. In this example

the list of predicates cannot be extended without informing the reasoning mecha-

nism, adding a triple (Person, is-grandmother-of, Person) to a knowledgebase is

simply not enough. This poses a big problem when updating knowledge in a device.

The main idea is that the knowledgebase would change over time, but the reason-

ing mechanism stays in the same form, only interpreting all information from the

knowledgebase according to fixed rules. If the reasoning mechanism is fixed, the set

of predicates needs to be constant.

For simple devices the reasoning mechanism is planned to be implemented in

hardware, to minimise costs and engine size, this implementation is therefore fixed.

Changes can only be made in the knowledgebase file and the reasoning component

need to process the changed knowledgebase if it follows the same ontology model

and data formulation scheme.

7.3.5 Simple predicates

The number of predicates is reduced to three simple predicates: is-a to represent

hierarchy of classes, has-a to represent an other relation between classes and is to
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associate values to instances of classes. The example from Section 7.3.4 can be

translated to the simple predicates:

(Mother, has-a, Daughter)

(Sister, has-a, Sister)

(Mother, is-a, Person)

(Sister, is-a, Person)

(Daughter, is-a, Person)

(Teresa, is-a, Mother)

(Teresa, is-a, Sister)

(Anna, is-a, Daughter)

(Ela, is-a, Sister)

(Teresa, has-a, Anna)

(Teresa, has-a, Ela)

In this case when looking for a daughter of Teresa, the predicate is known (has-a)

and the class Daughter is known, therefore the result of this search is Anna. The

reasoning mechanism need to find triples that associate Teresa with any person from

the Daughter class. The predicate has-a only points to the type of the relation.

A similar translation can be done using complex predicates:

(Mother, is-mother-of, Daughter)

(Sister, is-sister-of, Sister)

(Mother, is-a, Person)

(Sister, is-a, Person)

(Daughter, is-a, Person)

(Teresa, is-a, Mother)

(Teresa, is-a, Sister)

(Anna, is-a, Daughter)

(Ela, is-a, Sister)

(Teresa, is-mother-of, Anna)

(Teresa, is-sister-of, Ela)

This representation only adds complexity to knowledgebase, by repeating infor-
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mation in predicates and classes. As presenting the same information can be done

with less predicates, the reasoning mechanism can be simpler. This is the main rea-

son for choosing simple predicates for implementing the reasoning mechanism. In the

case of simple predicates the reasoning mechanism does not need to be changed with

new relations being added to the knowledgebase, therefore it can be implemented

in hardware.

7.4 Knowledgebase division

The knowledgebase is divided into three parts: long-term knowledgebase (LTKB),

short-term knowledgebase (STKB) and updating knowledgebase (UKB). The LTKB

contains all the information about the device and its behaviour. If we associate

knowledgebase division with description of knowledgebase content from Section 7.2,

the content of differen knowledgabses is presented in Figure 23.

Figure 23: knowledgebase division.

The STKB in the presented architecture is equivalent of Working Memory from

the Artificial Intelligence domain (see Section 4.2.2). The data stored in STKB

is temporary and used to store configuration data associated with virtual devices

in which the device participates, current state information that is used to adjust

a device’s behaviour. An example of a configuration data format is presented in

Figure 24. Mandatory fields in a configuration are:

• confName - configuration name used to associate data,

• virtualDeviceId - configuration is associated only with one virtual device,
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• step - indicates step in currently processed recipe,

• service - describes service offered by the virtual device.

Most of fields in configuration are flexible and any data that is somehow associated

with configuration can be saved. Examples of this data are as follows:

• person - a particular person that is associated with the virtual device,

• oryginalMessageId - a message indemnification that needs to be saved under

a particular configuration,

• messageAggregate - a structure that holds received messages.

Figure 24: Configuration data.

The STKB also contains all the variables and data aggregates needed for config-

uration and calculations. The data in STKB can be local, intended for one configu-

ration or global and accessible by any mechanism in the device. The UKB contains

all recipes that are not intended for the device. This is a database of recipes that

should be sent to other devices to enable cooperation.

The division of the knowledgebase was done to separate different types of data.

The LTKB contains the main data of the device, that are not changed very often,

in the Initial state of the system the STKB is empty and data is added when the

device starts cooperating with others and deleted when configurations are finished,

therefore STKB contains temporary data. The UKB contains recipes that are not

meant to be used by the device, so separating them is the easiest way to avoid

misinterpretation.
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The presented knowledgebase is using an ontology for data structure and to en-

able semantic interoperability. An ontology offers flexible and very powerful frame-

work for knowledgebase representation that can be easily updated and adjusted to

ever-changing domains. The knowledgebase consists of ontology models, detailed

device description and device behaviours customized to a particular situation. The

knowledgebase presented in this chapter needs to be interpreted with the use of a

reasoning mechanism called Knowledgebase Interpretation Engine (KBIE). Because

the knowledge is well structured, in a simple machine readable form of RDF triples

and contains all the information to make a decision, the KBIE is a simple and

generic engine only following guidance from a knowledgebase. The KBIE design,

development and implementation is presented in detail in the next chapter.
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8 Knowledgebase interpretation engine

With technology miniaturization development, soon everyday objects will have sens-

ing, processing and wireless networking capabilities. This will bring many objects

into the computing world and enable visions like Internet of Things [66] and Smart

Dust [31] to be implemented. It is inevitable that devices in a pervasive system have

to process data : to make decisions, establish and manage connections, cooperate

with other devices and adapt to the environment or an existing situation. The en-

gine that enables computation for very small devices needs to be energy-efficient,

cheap to produce, easy to install and make the device independent enough to work

without much maintenance, following the install and forget approach. In this ap-

proach, after the installation process, devices need little or no maintenance in order

to properly function in the system. The sensors, actuators and everyday objects

that can be part of a pervasive system, might not have sufficient computing power

to process additional functions, the everyday objects like light bulb might not have

any processing capabilities, therefore the engine enabling cooperation needs to be

self-contained, autonomous and easily attachable to a device, to control its func-

tions. This chapter presents a context-aware generic Knowledgebase Interpretation

Engine targeted for small, energy-frugal devices to enable semantic interoperabil-

ity and cooperation in a pervasive environment. The Knowledgebase Interpretation

Engine (KBIE) is used to reason about information represented in a knowledgebase.

This chapter is divided into seven sections. Section 8.1 describes how the engine

can be used with contemporary and future devices. Section 8.2 describes the engine

functionality and Section 8.3 focuses on different parts of the KBIE. Section 8.4

describes algorithms used to process a recipe and describes all capabilities of the

engine used in recipes. Section 8.5 is focusing on hardware implementation of the

engine and Section 8.6 describes how the KBIE was implemented with use of a

CSP model. Finally Section 8.7 evaluates engines suited for complex and simple

predicates.
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8.1 Separation of concerns

The KBIE is designed to process entries from a knowledgebase following an ontology

model. The knowledgebase is the centre of intelligence of the system, the KBIE only

interprets the knowledge and navigates though the ontology tree.

Figure 25: Separation of concerns when considering device manufacturing.

From the point of view of manufacturers the separation of concerns is very impor-

tant when producing a device (Figure 25) for a pervasive system. The manufacturers

of sensors and actuators are usually not computer experts and their expertise lies

in the products they are making. Therefore the designed engine is an addition to

existing or future devices, connected with use of a device interface. This way man-

ufactures can produce devices and products, only providing a device interface with

port specification and device description. The KBIE can use this information to

influence device functionality.

8.2 Engine Functionality

The most important function of the KBIE is dealing with external signal such as

messages. The action that a message triggers can be sending a message, influencing

device functionality or other actions internal to the KBIE (Figure 26).

Figure 26: KBIE inputs and outputs.

Figure 27 illustrates the KBIE state diagram. When the message first arrives
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it has to be parsed. The messages can vary in size and field types. The KBIE is

designed to interpret any message type, as long as it is informed about its structure

before it gets the message and the first field indicates the message type. All message

structures the device needs to know are represented in the knowledgebase. Modify-

ing or extending knowledgebase information about the message format enables the

engine to parse any type of message.

Figure 27: Detailed state diagram.

The first field in the message is a messageType, the first step of parsing interprets

only message type to match it with message types that are represented in LTKB.

If a match is found the message is parsed, so written in a format understandable
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by the engine and easily accessible within one configuration. Once the message is

parsed it needs to be interpreted. The message interpreting mechanism depends

on message type. Once a message is interpreted actions associated with a message

type and content needs to be executed. Most messages either run a new recipe

or continue the recipe associated with a particular configuration that includes for

example sending a new message, configuring device functionality or other actions

associated with a recipe. If the message is not parsed or interpreted properly, or is

not designed for the device, the KBIE drops the message.

8.3 Device Architecture

The overall device architecture consist of a knowledgebase, KBIE, device interface,

communication interface and device functionality as presented in Figure 28. The

device functionality is built by the device manufacturer, a device interface must be

specified in order to influence the function of a device, for example how to turn off

a light bulb. The communication interface is receiving and sending bits of informa-

tion trough any medium, the communication mechanism is required to be broadcast

based. The communication interface can be part of the KBIE or the device func-

tionality. The KBIE is designed to receive and send signals, interpret knowledge

from knowledgebase and influence device’s functionality. The knowledgebase was

described in Chapter 7, in this chapter the KBIE is presented and its functions for

navigating and interpreting the knowledgebase.

Figure 28: Smart device architecture.

The detailed device architecture for a pervasive system is presented on Figure

29. The KBIE is divided into three parts: Control Unit, Poke and Knowledgebase
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Fetch.

Figure 29: Device with KBIE.

8.3.1 Control Unit

The Control Unit is the main part of the KBIE, it receives all inputs from Communi-

cation Interface, Device Functionality and internal timers associated with scheduled

tasks. The Control Unit reacts on input and first interprets the request with use of

entities in the knowledgebase and makes decisions to act upon a request.

The Control Unit (CU) is always ready for input signals from five KBIE entities:

device input, timer for single scheduled tasks, timer for constant scheduled tasks,

device functionality and Poke mechanism. On device input, the CU is ready to

receive messages. The CU first checks if the signal is a message, if so message is

parsed. The message types and fields are represented in the knowledgebase, therefore

the parsing mechanism is automatic. The message is saved in STKB to be used

later on. The description of a search message from the knowledgebase is presented

in Table 1.

When the message is parsed, the CU continues to interpret the message. Depend-

ing on the message type the CU performs different actions. For a Search message

(see Section 5.4.1) the CU first checks if the device provides requested service and

understands the context for any person specified in the message fields. If so the

configuration data is saved to STKB and an appropriate recipe is searched and ex-

ecuted. When the recipe finishes, the configuration is set to status engaged that
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(searchMessage,is-a,Message) Defining message type.
(messageField,is-a,smartDataField)
(HeaderF0,is-a,messageField) Defining message field.
(searchMessage,has-a,HeaderF0) Associating message and field.
(HeaderF0,has-a,idF0) Defining field ID.
(idF0,is-a,id)
(idF0,is,0)
(HeaderF0,has-a,nameF0) Defining field Name.
(nameF0,is-a,name)
(nameF0,is,MessageType)
(HeaderF1,is-a,messageField) Defining another message field.
(searchMessage,has-a,HeaderF1) Associating another message field with message.
...

Table 1: Search message representation in knowledgebase.

indicates that the virtual device has been established.

To answer the search message, an acknowledge message is issued (see Section

5.4.3). When the CU receives the acknowledge message, first it checks if the message

is for a virtual device in which this device participates. In order to do this, the

CU searches for a configuration in STKB that is associated with the requested

virtual device. If the configuration is found, the CU checks if this configuration is

awaiting for a search message, it therefore searches for the Original Message Id data

in configuration and checks it against the field from the acknowledgement message.

If all checks are successful, the message is saved in a message aggregate in the

appropriate configuration.

According to the protocol presented in Section 5.5 next an acceptance message

is issued. The CU from a device that is receiving the acceptance message (see

Section 5.4.2) first checks if the message corresponds to any configuration saved in

STKB, therefore checking the virtual device ID. If the information about a particular

configuration is found, the message is saved in an aggregate associated with this

configuration.

The CU can also receive a control message (see Section 5.4.6). As the control

message is only associated with one virtual device, the CU checks if this device

participates in the given virtual device and if the configuration status is engaged,

implying the virtual device has been established. When the message is accepted,

the CU checks if commands from the message are understood by the device. Next

the CU searches for a recipe that interprets data contained in the control message.

While participating in a virtual device, a device can receive a data message (see
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Section 5.4.7). The data can be of any type, therefore the CU needs to asses if the

type is recognised by the device and if there is a recipe that deals with the data.

A destroy message (see Section 5.4.5) can be issued, when a virtual device needs

to be destroyed. The CU first checks if the destroy message is intended for this

device, if so all configuration data is deleted from STKB.

To run a recipe internally, therefore without any input signal, an internal message

is used (see Section 5.4.8). This message is forwarded to a device and treated by

the CU as an input request. The CU is treating this message as a search message

and searches for the appropriate recipe to run. The issuing recipe can either wait

or continue without notification from the executed recipe.

The CU can also receive a shout message (see Section 5.4.4) that is a request

to all the devices that posses the required service and context to report to the

issuing device, in response to this message an acknowledgement message is sent.

This mechanism enables what sort of devices there are in the system and the virtual

devices in which they are involved.

The update and transmit mechanisms are hard-coded in the engine, in future

implementation it is planned to use appropriate recipes to enable an updating mech-

anism and recipe exchange.

Messages are the most important signals that are received by the CU, another

type of signal is a timer signal. Timers are used to control interval between events.

Timers are set from values in the knowledgebase and are associated with single or

multiple scheduled tasks. A single scheduled task can set a timer to send some signal

at some time in the future and the alarm will ring only once. An example of single

signal is waiting for acknowledgement while configuring a virtual device. A multiple

scheduled task is a task that is executed constantly and its started and stopped by

recipes. An example of multiple task is the functionality of a sensor, that is sending

data to other devices at some predefined interval.

The CU can also receive signal from Poke, the signal is numeric and represents a

configuration to be reactivated. The Poke mechanism is described in Section 8.3.3.
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8.3.2 Knowledgebase Fetch

The Knowledgebase Fetch blocks are responsible for managing different parts of the

knowledgebase, namely long-term, short-term and update knowledgebase (Section

7.4). All Knowledgebase Fetch mechanisms can query different knowledgebase file.

The query method is similar to RQL (RDF Query Language [32]) and SPARQL [50]

and uses simple matching to find the requested RDF triples. The basic Knowledge-

base Fetch requests: add, remove and search are presented in Table 2.

Operation Function Translation to SQL statement

Add a triple
to LTKB

kbQuery(0,rdf(’Anna’,’is-a’,’Person’));
INSERT INTO ltkb
(subject, predicate, object)
VALUES (’Anna’,’is-a’,’Person’)

Remove a
single triple
from LTKB

kbQuery(1,rdf(’Tom’,’is-a’,’Dog’));

DELETE FROM ltkb
WHERE
subject=’Tom’,
predicate=’is-a’,
object=’Dog’

Remove
many triples
from LTKB

kbQuery(1,rdf(’Tom’,’has-a’,”));

DELETE FROM ltkb
WHERE
subject=’Tom’,
predicate=’has-a’,

Search for
a tripple in
LTKB

kbQuery(2,rdf(’Anna’,’is-a’,’Person’));

SELECT
subject, predicate, object
FROM ltkb WHERE
subject=’Anna’,
predicate=’is-a’,
object=’Person’

Search for
a sublect in
LTKB

kbQuery(2,rdf(’Anna’,”,”));

SELECT
subject, predicate, object
FROM ltkb WHERE
subject=’Anna’

Table 2: Examples of basic knowledgebase operations.

With the use of simple queries its possible to execute more complicated requests

on the knowledgebase. If a search triple needs to have subject and object of some

type, two types of queries are used: MatchSubjectInModel(modelRdf,subject), when

the subject of a triple is known or MatchObjectInModel(modelRdf,object), when the

object of a triple is known. Consider a knowledgebase representing information

about family members consisting of triples:
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(Mother, has-a, Daughter)

(Mother, is-a, Person)

(Daughter, is-a, Person)

(Teresa, is-a, Mother)

(Anna, is-a, Daughter)

(Margaret, is-a, Daughter)

(Teresa, has-a, Anna)

(Teresa, has-a, Margaret)

When searching for all daughters of Teresa, the association needs to be ex-

pressed in triple form model (Mother, has-a, Daughter) and the search criteria is

subject=’Teresa’. Therefore a request for subject is expressed as follows: MatchSub-

jectInModel(rdf(’Mother’, ’has-a’, ’Daughter’),’Teresa’). The steps in this requests

are shown in Table 3. Similarly, the MatchObjectInModel mechanism can, for ex-

Query Explanation
kbQuery(2,rdf(’Teresa’,’is-a’,’Mother’)) Checking if the query is correct, so if Teresa is

a mother.
kbQuery(2,rdf(’Mother’,’has-a’,’Daughter’)) Checking if the model triple is correct.
kbQuery(2,rdf(’Teresa’,’has-a’,”)) Searching for for all Teresa’s associations, this

operation returns Anna and Margaret.
kbQuery(2,rdf(’Anna’,’is-a’,’Daughter’)) Checks if returned entity is of type Daughter.
kbQuery(2,rdf(’Margaret’,’is-a’,’Daughter’)) Checks if returned entity is of type Daughter.

Table 3: Steps of MatchSubjectInModel mechanism.

ample, find Anna’s mother. This mechanism allows narrowing the search to some

model entry. Thus the required operations are very simple and easily implemented.

8.3.3 Poke

The Poke block is used to reactivate recipes that have been suspended due to running

new recipes. The Wait-Poke mechanism is shown in Figure 30. The first case occurs

when results from Recipe 2 are important to be able to finish Recipe 1, for example

if the virtual device established by Recipe 2 is necessary to establish a virtual device

with use of Recipe 1.

In Case 1 Recipe 1 needs to wait wait for a signal (called poke) from Recipe 2.

Recipe 1 cannot proceed without the signal. In Case 2 Recipe 1 runs Recipe 2, but

the function hat is required is optional and not important for Recipe 1, therefore

Recipe 1 can be finished even if Recipe 2 has been dropped. The poke signal is
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Figure 30: Two cases of running recipe within a recipe: Case 1 with use of Wait-Poke
mechanism; Case 2 without waiting.

numeric and contains a virtual device identification number of the configuration

that has been finished. The activated configuration (associated with Recipe 1 ) has

this number saved, therefore it is the only configuration that is reactivated.

8.4 Processing recipes in KBIE

A recipe is processed step by step. A function to process one step in the KBIE is

called a processStep. The function input is the configuration name and output a

Booleand value that indicates if the step was successfully finished. If the value is

true the engine keeps on processing the recipe, if false the recipe is suspended. The

flowchart of the processStep implementation is presented in Figure 31.

Every step is able to run one capability, capabilities determine what primary

action the step is performing. The details of actions are specified in the step. For

example a step that is sending an acknowledgement message is presented in Table

4 (for the whole lamp recipe see Appendix A).

The considered step is called Recipe1S1 (Table 4 line 31) and it is associated

with the action called RespondConfigRequest (line 32). The action is an aggregate for

capability and specific data, in case of action RespondConfigRequest, it is information

about a message that should be send message1 (line 35) in this step. The message1

is an acknowledgement message (line 36). The action posses information about one

of the message (line 38) with id equals ’5’ (line 41) and name equals ’ackResponse’.

The action can have information about any number of fields in the message, all
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Figure 31: Flowchart representing a processStep function.

other fields are filled by the message building mechanism and are taken from the

configuration and global data.

In the final version of the engine thirteen capabilities were implemented. This

enables all devices running on the KBIE to: receive and send messages (messageOut,

messageIn); save local for configuration and global for device data (saveConfigura-

tionData, saveGlobalData); analyse messages using rules (decide);send commands to

a device (deviceFunction); perform calculations and comparison (calculate); trigger

running another recipe and reactivate recipes (poke, wait); skip steps with a boolean

condition as an implementation of if-then-else statement(skip); simple streaming
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31 . ( Recipe1S1 , is-a , step )
32 . ( Recipe1S1 , has-a , RespondConfigRequest )
33 . ( RespondConfigRequest , is-a , action )
34 . ( RespondConfigRequest , has-a , massageOut )
35 . ( RespondConfigRequest , has-a , message1 )
36 . ( message1 , is-a , ackMessage )
37 . ( message1 , has-a , field1 )
38 . ( field1 , is-a , messageField )
39 . ( field1 , has-a , id2 )
40 . ( id2 , is-a , id )
41 . ( id2 , is , 5 )
42 . ( field1 , has-a , value2 )
43 . ( value2 , is-a , value )
44 . ( value2 , is , 0 )
45 . ( field1 , has-a , name2 )
46 . ( name2 , is-a , name )
47 . ( name2 , is , ackResponse )

Table 4: Step Recipe1S1 from Recipe1 in lamp’s knowledgebase (Appendix A).

recipes triple-by-triple between devices (transmitRecipe, receiveTransmission); con-

figure a regular task to trigger at a certain rate (configureRegularTask).

8.4.1 messageOut

The capability messageOut is responsible for sending a message. The message that

is being sent first needs to be built. To build a message first the message type is

needed, therefore the step needs to provide this information. The step can also

suggest field values, other values are taken from configuration data and global data

for the device. When the message is successfully constructed and sent, the engine

saves data needed for processing the next step and the block is finished with a true

value.

8.4.2 messageIn

The second capability managing messages is massageIn. This capability is respon-

sible for receiving messages. According to the architecture presented in Section 5 a

device needs to wait some time to receive a message within the configuration mech-

anism. The time to wait depends on a recipe and it has an assigned value in the

step. The massageIn sets the timer to retrieve a value only once as there can be

only one timer for a virtual device. After the initial phase of setting the timer, the

configuration needs to say in the step associated with capability massageIn because

the device waits for messages to be delivered. Only the timer can finish this phase
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of receiving a message. When a new message arrives, the configuration is still in a

step associated with the massageIn capability, as the timer has already been set, the

device saves the incoming message within a message aggregate in this configuration.

This block always returns a false value, that is stopping the engine from processing

another step. When the set timer triggers, the engine starts processing the next

step in the recipe.

8.4.3 decide

Decisions in the KBIE are associated with messages received by the device. There

are two types of decisions, based on a rule or acceptance. If the decide capability has

a rule associated with it, the step analyses only the field specified by the rule. Only

when the field is accepted, the message is remembered within a message aggregate

associated with a current configuration. After checking all messages, the KBIE

checks if there are any messages saved, if so the engine continues to the next step

and returns true. The second type of decide capability only check if there are any

messages received by the device associated with this configuration. If there is one

or more messages the block initiates the nest step and reruns true.

8.4.4 deviceFunction

To influence device functionality a step needs to be associated with the deviceFunc-

tion capability. This block is looking for commands and values to send to the Device

Functionality component (Figure 29). First the engine checks if the commands are

understood by the engine, therefore looking for triples (”,’is-a’,’command’) (for an

example see Appendix A, listing 15-18). When a command is found, the block

searches for a specyfic command that is understood by the device (for an example

see Appendix A, listing 20-24) and sends a pair (command,value) to the Device

Functionality.

8.4.5 calculate

The calculate capability is responsible for comparing, calculating or finding a value

in a pre-defined function. The engine only supports two attribute operations. The
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calculate capability uses a structure called calculationData to represent information

that needs to be calculated.

Figure 32: Calculation Structure.

The calculationData structure is presented in Figure 32, where fields are as fol-

lows:

• calculationType field is one of values compare, arithmetic or function,

• attributeType is either Integer or String,

• attributeX and attributeY are attributes of the function or calculation,

• operator indicates the operator or function used in this calculation,

• outcome is a name of a variable to save the calculation result.

An example of use the calculate capability is a step Recipe3S0 in Recipe1 (see

Appendix A listing 261-320).

8.4.6 saveConfigurationData and saveGlobalData

The saveConfigurationData capability saves a value with the name in the STKB

under the current configuration. The capability saveGlobalData is very similar and

saves a variable and specified value in STKB as global data. For example to save data

of type NewData with value of ’5’ under a configuration name ’config40’ following

triples needs to be added to STKB:
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configuration has-a NewData

data1 is-a NewData

config40 has-a data1

data1 is 5

The first triple (configuration, has-a, NewData) is extending the ontology model

allowing associate configuration with new data type. Next triples associate new

variable ’data1’ with the requested data type, configuration and value.

8.4.7 skip

The skip mechanism is presented in Section 7.3.2, the capability skip directs the

engine to the required step in the recipe.

Figure 33: Skip Structure.

Figure 33 presents the data that is associated with the capability. The engine

needs a variable to decide which step it should go to, values: value1, value2, ...,

valueN direct the engine to steps: stepName1,stepName2, ..., stepNameN. In the

example presented in Appendix A (listing 261-320) if the variable teporaryData2

equals ’TRUE’ next step is Recipe3S5, if it is equal to ’FALSE’ the engine proceeds

to step Recipe3S13.

8.4.8 configureRegularTask

A step using capability configureRegularTask is responsible for setting a timer for a

regular task. When the timer triggers all recipes that are responsible for a regular
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task are run. An example of use of this step is setting a sensor to send a value of a

reading every 2 seconds.

8.4.9 poke

The Poke mechanism was described in Section 8.3.3. The step using capability poke

sends a signal to Poke block to reactivate a recipe that is waiting for an input form

the current virual device.

8.4.10 wait

The wait capability simply stops the engine to process another step. This behaviour

is part of Poke behaviour described in Section 8.3.3.

8.4.11 transmitRecipe

A step using capability transmitRecipe is designed to find an appropriate recipe

and send triple-by-triple to all devices that requested an update. This capability

is forming and sending transmit messages (see Section 5.4.10) from triples found in

the UKB.

8.4.12 receiveTransmission

The capability receiveTransmission enables a device to receive triples for update,

this capability changes the configuration state to transmission. When a transmit

message arrives the data is next saved in LTKB. The end of transmission is detected

when TransmissionSize = TripleNumber + 1.

The described set of capabilities is sufficient to perform all planned scenarios

only by changing recipes that are run on devices, without modification of KBIE.

The engine relies on the knowledgebase providing data, therefore if a triple that is

expected is not found, the engine drops processing a step. Every box represented in

Figure 31 actually have conditions itself as presented in Figure 34. The engine does

not proceed when there are mistakes in the knowledgebase, as the knowledgebase

is the only source of information for a device. If a recipe is corrupted, it is not

executed.
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Figure 34: Process step conditions when triple not found.

8.5 Targeting hardware

A device that is a part of the developed system is considered to be very small and

have limited computation power. One of the project objectives is to determine if

it is possible to create a simple engine to interpret and maintain information from

a knowledgebase without using a general purpose processor. The knowledgebase

interpretation engine is intended to be developed in hardware, so the number of

functions that the engine will perform has to be determined. Research questions

referred to this issue are: Is it possible to produce a way of combining operands and

functions to a small number? For this type of system can we identify the required

functions and reduce them to a small number?

If the number of functions in the engine would be equal to functions performed

by a processor, there is no need to design an engine that will support knowledgebase

interpretation. If the number of functions can be reduced, a targeted engine can be

built at low cost and can be attached to a device to form a pervasive system. The

idea is to put all intelligence in a knowledgebase, so its content informs the device

how to behave in different situations. The engine will only be used to interpret this

knowledge and help a device act upon instructions contained in the knowledgebase.

Therefore the engine would only perform limited functions to enable device collabo-

ration, devices existing in a pervasive system can have their own engines/processors

to perform tasks specific for them. The basic functions and their use in the engine

are presented in Table 5.

String operations are included in the engine because of the content of the knowl-
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Basic Function Example in KBIE
String compare (==) Comparing entities in knowledgebase,
String concatenation (|) Used when creating unique names for entities in knowledgebase,
Integer compare (==, <,≤) Analysing data input and messages,
Integer arithmetic Analysing data input.

Table 5: Basic functions identyfied in KBIE.

edgebase. A translation can be applied to convert String content of the knowledge-

base to Integer or any other numeric type. After knowledgebase translation, the

engine only needs to deal with two sets of instructions: Integer compare and Inte-

ger arithmetic. Some complicated calculations can be presented as tables of values

in the knowledgebase. For example functions to regulate emergent behaviour of a

lamp in Scenario 6.2.2 are written using selected points (x, y) in the knowledgebase

presented in Appendix A (lines 1182-1895). The presented engine performs a subset

of functions of a general purpose processor and additionally the integer arithmetic

can be substituted with use of functions described in knowledgebase.

8.6 Engine implementation

The engine was designed and implemented using CSP as an underlying model. The

use of CSP models for this architecture is justified by its parallel execution capabil-

ities that can reflect the parallelism of hardware. The CSP model was previously

successfully used to verify protocols [53], scenarios from the case studies are simu-

lated with use of CSP implementation for Java.

The idea is to use concurrent programming techniques to implement the infras-

tructure of a lighting system consisting of many devices with different capabilities.

We can consider the system from two points of view. First is the view of a system

as a whole, therefore all devices that are present in a smart space. Second view is

of a device itself, therefore the engine that can process requests sent to a device and

influences the devices functionality, and knowledgebase management.

From the first view we can observe how devices react to different environ-

ment conditions and user needs and also how devices are grouped for cooperation.

This view is presented by a simulation developed in this project (Figure 35). De-

vices in the system are represented in Figure 35 as a set of processes labelled as

D1, D2, ..., Dn, B represents a broadcast mechanism explained in Figure 36, a SGI
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component (Simulation Graphical Interface) is a process responsible for gathering

and displaying data generated by the system.

Figure 35: Simulation top level.

The smart lighting system chosen to illustrate a context-aware distributed system

consists of light switch, different kinds of light sources and sensors (Figure 14, see

Chapter 6). The system as a whole is implemented using a simulation, but work on

transferring the implementation to hardware (microcontroller board for every device)

is in progress. The present simulation was implemented in JCSP (Communicating

Sequential Processes for Java) [3]. This language supports concurrent programming;

it is useful when simulating devices running simultaneously. Devices are presented

as CSP processes and communication links are implemented using CSP channels.

Use of JCSP enables simulating a network of many devices running in parallel and

communicating by sending messages.

The simulated system is using broadcast to propagate messages. A broadcast

mechanism do not exist in CSP, the Broadcast component is added to transmit

messages in the system. Channels between devices and Broadcast component need

to be buffered, so the locking mechanism does not deadlock the whole system, for this

purpose one2one buffered channels were used from JCSP library jcsp-1.1-rc4 [68].

As shown in Figure 36, the message output from the Device 1 is sent to Broadcast

component. The Broadcast component is next propagating the message to all the

devices, including the sending device.

The second level of the project is the device itself and all mechanisms in this

device (Figure 37). A device is designed to understand protocols to enable collabo-

ration in the network but also to interpret the knowledge structures enabling it to

make intelligent decisions. As the designed engine is generic, devices react according
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Figure 36: Broadcast mechanism implementation in CSP.

to knowledge stored in a knowledgebase, which is specific for a device. In Figure 37

CSP diagrams of CU, Knowledgebase Fetch (LTKB,STKB and RKB)and Poke are

presented.

Figure 37: CSP implementation of the KBIE.

For the purpose of the simulation, the Communication Interface and the Device

Functionality were also implemented as shown in Figure 37. The Communication

Interface receives and sends messages in the system. The Device Functionality is

simply designed to receive a pair (command, value) from the CU and, on a request,

send information about changing behaviour to the Simulation Graphical Interface.
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8.7 KBIE with complex and simple predicates

The change of knowledgebase format from complex to simple predicates has an

influence on the KBIE. The CU deals with the actual content of triples, therefore

only this part of the KBIE changes when translating the knowledgebase. As the

simple predicates are less descriptive, the size of the knowledgebase decreases when

translating from complicated predicates, as more triples are needed to describe a

relationship between entities.

Comparison criteria Complex Predicates Simple Predicates
Size of KB in triples after one-to-one
translation

276 322

Size of KB in triples after moving mes-
sage description and functions to KB

1830

Size of the KBIE in SLOC ∼ 2800 ∼ 1900
Knowledgebase accesses for one recipe ∼ 900 ∼ 21000

Table 6: Two styles of knowledgebase construction comparison.

As presented in Table 6 the translation from complex to simple predicates and

moving some functionalities and calculations to the knowledgebase decreases the

size of the knowledgebase while increasing the Source Lines Of Code (SLOC) in the

CU from the engine.

The fact of moving message format and some notations for calculations to the

engine makes the KBIE design more flexible by use of any message format and

combination of simple calculations. This translation influences the knowledgebase

accesses, because the engine has to ask the knowledgebase for much more information

than it was before improvement. The Figure 38 shows the output of jconsole (Java

Monitoring and Management Console) for the engine processing complex predicates

and fixed messages and functions. The CPU usage is mainly stable around 10-20% ,

cahnging to around 60% when a recipe is executed. In Figure 39, presenting system

with improvements, the CPU usage is almost constant around 80%. This shows

that the knowledgebase access increased noticeably and the PC has problems with

running all 22 devices with KBIE supporting RDF triples simple predicates.

The increase in knowledgebase accesses noticeably slows down the simulation.

The target implementation in hardware, the knowledgebase search speed can be

increased by parallel database access. The work on optimising the speed of Knowl-
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Figure 38: Test1.

Figure 39: Test2.
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edgebase Fetch component is being undertaken at Technische Universiteit Eindhoven

(www.tue.nl), see Section 10.2.

The Knowledgebase Interpretation Engine is designed to run any recipe that

is designed according to the recipe ontology and follows fixed rules, therefore it is

possible to install the same KBIE in different devices only alternating the content

of the knowledgebase. Examples of different recipes triggering a specific devices

behaviour are presented in the following chapter.
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9 Experiments

The implementation developed for the purpose of this thesis was tested in order to

give information about the quality of the produced code for the future implemen-

tation of KBIE and to check if the system performs as expected. Case studies were

designed to present different possibilities of the lighting systems presented in this

chapter. Experiments and functional tests of the claimed behaviours are presented

in this chapter.

Experiments were performed during different stages of the project. The initial

experiment described in Section 9.1 took place in early stage of the project at Edin-

burgh Napier University and revealed some problems with the interoperability and

usability of the solution for low computational power devices. Experiments with the

new KBIE architecture on the example lighting system are presented in Sections

9.3, 9.4 and 9.6 and were performed at NXP Semiconductors.

9.1 Initial Experiments

The initial experiment was performed with a network of autonomous Personal Digital

Assistant (PDA) devices connected in an ad-hoc manner over a TCP/IP network

described in [35]. All devices are addressable, in this case it is an IPv4 address.

Devices spontaneously appear and disappear from the space. Every device offers

services that need to be discovered by other devices in order to co-operate. There is

no central repository of services available in the space. The repository of device IP

addresses is available only for the purpose of establishing connections. The dynamic

connection capability in net2 package of JCSP library [68] requires an actual IP

address of the existing device on the network. Therefore all devices entering the

space are required to report to the IP address repository.

The expected behaviour of the system is that after a configuration stage all

devices are informed about services available on other devices and they posses an

up-to-date list of available devices. This task needs to be done without using much

of the network bandwidth.

When a new device enters a space it needs to register in the IP address repository
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server. The list from the server is sent to the new device in order to discover devices

in the existing network. After the initialization phase, the device manages the list

of available devices with a device discovery mechanism described in detail in [35].

The device uses the list to inform all the devices in the network about its existence

and to gather information about the existing network. Therefore a new device sends

a mobile agent for a trip described using a devices list to update information about

the network. The agent is defined and created in a device process, sent to the other

device, connected to it and run in parallel with other processes on the device. The

agent connected to the device communicates with, exchanges data and informs the

device its next destination. The final destination of the agent is the device that sent

it. Data about devices from the network is updated in this way.

The system is behaving as expected and a single request is used to perform

two-way discovery while keeping data about other devices private.

The system uses mobile processes to enable moving an object of a mobile process

with all data that belongs to it to another device, connect it to the network of existing

processes and run in parallel on a device. In order to use this capability a piece of

code: the mobile process needs to be written in Java, the receiving device needs

to connect the process in the predefined way, the process needs to be an object of

a predefined class known to the device and the device needs to run a Java Virtual

Machine (JVM) to be able to run Java code.

The constraints posed by this solution are significant. In the next experiment the

idea of sending executable code between devices is preserved, but some constrains

have been removed. The language was changed to a simple language based on an

ontology and written using RDF, processes are called recipes. The recipe exchanged

between devices is only constrained by the ontology model (that can be sent with the

recipe) and capabilities that the engine can run. The recipe is simply appended to

the knowledgebase of the device and can be run immediately. The need to run a JVM

on every device was removed, as no Java is used, and replaced with a Knowledgebase

Interpretation Engine targeted to be implemented in hardware, therefore suitable

for small and constrained devices.. The experiment presenting knowledgebase code

mobility is presented in Section 9.6 describing Experiment Three.
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9.2 Experiments with the smart lighting system

Experiments with the smart lighting system were planned to realise scenarios pre-

sented in Section 6.2 and embedded in the environment as presented in Figure 14

(Chapter 6).

The primary functional testing described in this chapter is a system testing,

therefore the complete system was tested in order to determine if requirements of

particular scenarios are met. The secondary functional tests were limited to the

KBIE and testing the engine function with respect to the complexity of: the envi-

ronment (number of devices), the network (size of the virtual device) and the device

function. The scalability of the developed solution was also tested by performing

scenarios of different complexity using the same engine implementation. The system

was also tested to trigger errors and exceptions. Tested errors were associated with

receiving data and checking knowledgebase entries.

9.3 Experiment One

Experiment one is based on Scenario One (Section 6.2.1). In this scenario a switch is

cooperating with lamps to provide user-defined lighting settings. The switch is able

to initialise and control a virtual device of sixteen lamps. User’s specific context

are displayed in switch graphical user interface (GUI). The GUI used for tests is

presented in Figure 40, which shows the available buttons on the GUI.

Figure 40: Graphical User Interface in Experiment One.

The switch welcomes the user and presents available contexts. In this case con-

text is a predefined lighting setting, Reading sets all lights to light-yellow color and

different dim level, depending on pre-defined settings. The context Meeting sets the

for lights in the middle of the room to 100% and turns off rest of the lights. The
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GUI enables the user to set color and dim level, in case he/she is not happy about

the default settings. The GUI displays some proposed values for light level and color

modification, but the light is able to understand a dim level d, where d ∈ [0, 100]

and colour in RGB format.

The expected behaviour of the system, after choosing a Reading context is that

all lamps are turned on, dimmed to different level and set to color yellow. The

underlying effect, not directly visible in the simulation, is organising devices in one

virtual device. The effect of that organisation is visible, as lights apply settings

predefined for a particular context.

A recipe responsible for setting a new context by the Switch is Recipe 1 and a

recipe responsible for setting a light is Recipe 2 (shown in Figure 41). Recipe 1 is

responsible for setting a new virtual device, Recipe 2 is managing the configuration

for a lamp, both are designed to cooperate for context Reading. The user’s request

triggers Recipe 1, the first step of this recipe is displaying a message on GUI that a

new context is being configured.

Figure 41: Devices interactions using actions from recipes.

The second step is sending a search message (Table 7) to all devices in a space

to configure context Reading. All devices receive a search message and search their

knowledgebase for context Reading for user Anna. In this example a lamp found
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an appropriate recipe for this context, therefore Recipe 2 is started. The first step

in Recipe 2 is responsible for sending an acknowledgement message back to the

Switch. In the mean time the Switch is ready to receive messages. When a switch

receives a message and a timer triggers that the time to wait for the input is finished,

the Switch proceeds to step 4 and checks received messages. The switch checks all

messages and determines what devices are being accepted.

MessageType 0
SenderId 18
VirtualDeviceId 100
MessageId 1
RequestType configureVD
Service Lighting
Context Reading
Person Anna
Priority 0

Table 7: Search message for context Reading.

In the mean time the Lamp waits for an input and if any message arrives, step 1

is executed. The Switch continues to step 5 and sends all acceptances. The next step

in the Switch is to wait for an acknowledgement from accepted devices. The Lamp

receives acceptance, sends an acknowledgement and continues to step 4, next steps

in Recipe 2 turns on the light, change its color and dim level. After completing

step 9 in Recipe 2 the Lamp is finishing the recipe and setting the configuration

state to engaged. After receiving an acknowledgement message, the Switch is again

deciding if the configuration should be continued in step 7, if so it proceeds to step

8 and displays information about the current context on a screen and finishes the

recipe. Both devices are designed to proceed with steps in the recipe if it is possible,

aborting a step is a sign that establishing of a virtual device was not successful.

Devices process recipes independently, rarely waiting for some time, specified by the

recipe, and proceeding to a new step.

The initial state of the system in this experiment is presented in Figure 42A The

event of pressing a button in the Switch GUI triggers running recipes in devices

in a space, the result is establishing a new virtual device and setting lamps to a

predefined dim level and color. The result of this event is visualised by the simulation

and presented in Figure 42B.

The simulation grid consist of 16 lamps represented by circles and they are
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Figure 42: Simulation of the space lightening in Experiment One, initial state.

illuminating the floor represented by 16 squares. In context Reading lamps are

advised by their recipes to set dim level to a different value. The values are predefined

and determined by the location of the desk in a space, as depicted in the experiment

scenario in Figure 14 (see Section 6).

As the context Reading was successfully set in the space, the lamps are con-

trollable, by listening for commands for their virtual device. The event of pressing

button Green in GUI (Figure 40) is expected to trigger a behaviour in lamps: change

of color from yellow to green, with dim level saved from the previous setting.

The control message can be issued at any time from any device in the virtual

device. Once a device finishes a configuration, with state saved to engaged any

control message can be accepted. The recipe responsible for processing control

messages in a lamp is called Recipe 3 and is presented in Figure 43.

Figure 43: Simplified Recipe3 for Lamp.

Recipe 3 is first saves the message from the input in step 1 and continues to step

2 to influence the device functionality. After this step the recipe is finished.
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Figure 44: Simulation of the space lightening in Experiment One, control state.

The effect of running the Recipe 3 in all lamps is shown in Figure 44A. It results

in changing only the color of lamps, as only commands influencing color were used

in the control message. Similarly the event of pressing button representing dim level

with value 90 sets only the dim level of lights participating in the virtual device

(Figure 44B).

The functional tests in the Experiment one finished with results that are expected

from the set-up. The simulation runs the same implementation of the engine for

all devices. The behaviour of devices is determined by the knowledgebase not by

the engine implementation. The engine is flexible enough to interpret behaviour of

different devices: switch and lamps. This experiment also shows that the engine can

be scaled to serve different devices and interpret knowledgebases of different devices.

The proposed scenario is using only some capabilities from the engine (MessageIn,

MessageOut, decide and DeviceFunction), therefore the this subset of the engine’s

capabilities is sufficient to perform applying predefined settings and simple control

of lights in a space. The engine allows devices to perform service discovery, self

configuration and simple context-awareness mechanisms.
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9.4 Experiment Two

Scenario two is designed to react to an environmental context of the space as well as

user requirements. The space consists of 16 lamps, switch with a GUI, outdoor and

indoor light sensors, and a mirror that reflect the light from outside into the room.

The set-up functionality is to keep light in a level defined by context Reading and

adapt to environmental conditions. In this scenario a mirror is added to compete

with lights to provide illumination for the space (Figure 14, see Section 6).

The expected behaviour of the system, after choosing a Reading context is that

all lamps are turned on, set to color yellow and try to maintain a level of 500 lux. The

underlying effect, not directly observable in the simulation, is organising the devices

into virtual devices. There are nineteen virtual devices in this scenario, as presented

in Figure45. The main virtual device is VD1 that is setting context Reading and

also triggering creation of all other virtual devices. The mirror is participating in

two additional virtual devices (VD2 and VD19) to properly serve in VD1, therefore

running and responding to three virtual devices at once. The expected behaviour

is therefore establishing all virtual devices that are visible by lights and mirror

changing their behaviour according to the environmental conditions.

Figure 45: Virtual devices in Experiment Two.
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In this experiment there are three types of interactions. First is the establishing

virtual devices, the second is triggering new virtual devices depending on a situation,

the third is processing data distributed in a virtual device. There are two types of

distributed data: control data that propagates commands using command messages

(see Section 5.4.6) and raw data equipped with data type, taken from the ontology,

and a value that is numeric. The ontology is expected to define data, so the types

can be distinguished. The device just uses the ontology from its own domain to

interpret data. If the data is not understood by the device, the message is dropped.

If the data is not of a common type, e.g. temperature, the recipe interpreting it for

a particular context is responsible for properly interpreting the data.

Virtual devices in this scenario are divided into three categories depending on

the virtual device purpose. The virtual device between the switch, lamps and the

mirror is established to be able to send a new context for lighting, in this example

the context is Reading. An example of a virtual device of this type is VD1 (Figure

45). The next type of a virtual device is data focused, lights and the mirror organise

in a sub-networks with light sensors to gather light intensity data inside of the space.

All devices providing light need this information in order to keep the light level in

the space in the expected range. Therefore all lights and the mirror need to start a

virtual device with light sensors located in their own space. Virtual devices VD3-

VD19 (Figure 45) are this type of virtual devices. The last virtual device type VD2

is designed to gather light intensity data from outside of the room, therefore the light

intensity that can be used by the mirror to illuminate the room.This information

is crucial for for the mirror to determine how much light it can offer to a smart

space. The mirror cannot work properly without this virtual device, therefore the

VD2 uses the Poke-wait mechanism explained in Section 8.3.3.

First the virtual device targeted to establishing a new context for lighting in

the space, namely VD1 in Figure 45, is explained further with an example of an

interaction between the switch, lamp1 and the mirror. As VD1 triggers VD3-VD19

and VD2 (Figure 45)to gather data about light intensity indoors and outdoors re-

spectively, this section describes the interactions and shows recipes run in VD3 and

VD2 (Figure 45).
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9.4.1 Triggering internal behaviour

In Scenario One only one recipe was used to configure a virtual device and set a

new context. Scenario Two is more complicated, therefore the recipe running in the

mirror was divided into four parts (Figure 46).

Figure 46: Mirror’s recipes for VD1, VD2 and VD19 in Experiment Two.

As presented in Figure 46, Recipe 1 is responsible for managing VD1 presented

in Figure 45 and running Recipe 2, Recipe 3 and Rrecipe 4. Recipe 2 is responsible

for starting a new virtual device with the indoor light sensors (VD19 in Figure

45). The Recipe 3 manages creation of a new virtual device with an outdoor light

intensity sensor (VD2 in Figure 45). Recipes 1,2 and 3 are very general and have

to be run a priori of setting the context, to ensure that devices work properly and

have all resources that they need. After running Recipes 1,2 and 3 Mirror is ready

participate in a new context therefore Recipe 4 can be run. Recipe 4 is specially

designed for context Reading and is only run when all configuration is successful in

Recipe 1. Recipe 1 triggers Recipe 4 and Recipe 4 usually sets some values in the

STKB or influences the device functionality.

The detailed recipes for the mirror are presented in Figure 47. Recipe 1 is run

when the mirror gets a signal to configure a new context. In Recipe 1, step1 is

designed to send an acknowledgement message to the device starting the virtual

device, next in step2 the device issues an internal message to start a virtual device

with an indoor sensor, which triggers Recipe 2, from this moment Recipe 2 runs in

parallel with Recipe 1. In Recipe 1 in step3 another internal action is triggered,

starting a virtual device with outdoor sensor, therefore Recipe 3 is run in parallel

with Recipe 1 and Recipe 2. When Recipe 1 reaches step6 it is forced to wait for
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Figure 47: Detailed Mirror’s recipes for VD1, VD2 and VD19 in Experiment Two.

a signal from another recipe, in this case Recipe 3. As use of the outdoor sensor is

mandatory for the mirror, the main configuration recipe Recipe 1 cannot continue

without acknowledgement (called here poke) that this configuration was successful.

When Recipe 3 reaches step 7 it sends a signal to Poke mechanism, that reactivate

Recipe 1. When Recipe 1 reaches step8 it activates Recipe 4 that sets the context

for the space. Recipe 2 creates a bond between the mirror and the indoor sensors

and is not necessary for the mirror to function, therefore Recipe 1 does not wait for

the outcome of this recipe.

In this scenario the process of establishing the new virtual devices was divided

into two parts: initial configuration independent of the context but dependent of the

service (Recipe 1,2 and 3 in Figure 47), and specific configuration that is context

dependent (Recipe 4 in Figure 47).

9.4.2 Data processing

Once virtual devices VD2-VD19 (Figure 45) are established sensors start sending

data, therefore all lighting elements need recipes to process data. In the case of
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the mirror knowledgebase two different recipes to process indoor and outdoor light

intensity data are needed, although data from sensors is of the same type, virtual

devices VD2 and VD19 are different and depending on the destination of the data,

it is processed differently. The data for the outdoor sensor is used determine how

much light the mirror can offer to the indoor space. This value is saved in STKB to

be used when interpreting data from the indoor light intensity sensor. The recipe to

process indoor light intensity data is labelled as Recipe 5 and presented in Figure

48.

Figure 48: Recipe interpreting indoor light intensity values for the mirror.

The recipe is triggered when new data for context outdoorSensing arrives and

if the data is of type lightIntensity (Figure 48). Step1 takes the sensor value and

divides it by 10, this is an operation that calculates the maximum dim level the

mirror can provide. Next in step2 the value of maximum dim is saved for future

reference. Step3 is used to determine if the dim level of the device is greater than

the maximum dim calculated in the previous step. Next step4 is designed to make

a conditional choice based on the result from the previous calculation in step3, in

case of true the recipe is continued to step5, in case of false the recipe is finished

and step5 is skipped. In step5 the value of dim for the device is overwritten with

the maximum dim. Recipe 5, in five easy steps, is dealing with incoming data, this

includes saving data and checking if the device needs to be updated.

The recipe to interpret indoor light intensity data is much more complicated and

presented in Appendix B in Figure 55. This recipe uses 24 steps to interpret light

intensity and follow an algorithm developed as a part of this experiment to enable
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emergent behaviour for energy saving presented in Section 9.5.

The presented recipes have been designed for this specific scenario, but it is easy

to deduce how to implement recipes that are requesting other resources than light

intensity. Scenario Two shows an example of interactions between devices and also

internal interactions enabling a device to trigger behaviours internally.

Experiment Two was performed to measure the levels of complexity that can

be applied to the system. In comparison to Experiment One, the device is able

to run internal actions, interpret data differently depending on the device and the

virtual devices in which it is participating, calculate data, make choices depending on

calculation result (skip mechanism presented in Sections 7.3.2 and 8.4.7), implement

emergent behaviour with use of the same KBIE as in Experiment One.

The experiment also shows the further scalability of the system, as the same

implementation can also serve mirror and sensors by interpreting especially built

knowledgebases.

9.5 Emergent Behaviour of Components Providing Light in

Experiment Two

In Scenario Two light and other light sources are programmed to react on a sensor

value and adapt its illumination level. The ideal light intensity in a space is provided

by a recipe in a device knowledgebase. The ideal value is provided with a margin, set

around this value, to avoid infinite light change in a margin very close to the ideal

value. In this section an emergent behaviour algorithm is presented and evaluated.

9.5.1 The Used Dimming Scheme

For the purpose of Experiment Two a dimming scheme is used with the emergent

behaviour algorithm. In Scenario Two all the light sources are programmed to react

on a sensor value and adapt its illumination level. The ideal light intensity in a

space is provided by the user and is programmed into individual devices. The ideal

value is provided with a margin, that determines a range around this value where

the light changes are not noticeable by the user. Therefore the lights do not try

to compensate any more while light is in the margin. This is done to avoid lights
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changing continuously when the value received from a sensor is in a margin very

close to the ideal value.

The light intensity in an environment is divided into three groups: above agreed

range, inside of the range and below it. If we let v be an ideal light intensity value in

an environment, v > 0, m be a margin and i be actual intensity of the environment,

then the value of i is in the agreed range if i ∈ (v −m, v +m) provided m < v and

m > 0, the margin around ideal intensity level can be depicted in Figure 49. If we

let t be time and i be intensity of the environment, then function f : t → i is a

function of intensity at a given time.

Figure 49: Ideal environment intensity value and actual sensor value over time.

The scheme that regulates light intensity i in a space takes a value from a sensor

at a particular time and if the value is above the specified range, therefore i > v+m,

the light is decreased, if the value is below the range, therefore i < v −m, the light

is increased. If the value i is inside of the range, there is no action taken.

Functions to decrease or increase the dim level of light produced by the device

are independent of actual value of intensity in a space. The value of the sensor might

not be very reliable, therefore the factor of light increase or decrease is not a function

of light intensity i, but of the range. The dimming scheme only checks if the value

belongs to any of three ranges and uses functions not based on absolute value of i,

but dependent on the range, to calculate the increase or decrease factor. Therefore

the device that adapts to the environment only need to know if the value is outside
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of the set (v−m, v+m) and react depending on the situation. Let d be a dim level

of a light source, where d ∈ [0, 100] and let ∆d be a factor of increase or decrease of

d, where ∆d ∈ [0, 100]. Let function g : (d,∆d)→ d′ be a function to calculate the

increase of the light level and function h : (d,∆d)→ d′ be a function to decrease a

dim level in a device providing lighting. Then a general algorithm to regulate light

intensity in a space is as follows:

if (i < v −m) then

d′ = g(d,∆d);

change dim level to d’;

else

if (i > v +m) then

d′ = h(d,∆d);

change dim level to d’;

else

drop the request;

end if

end if

Functions g and h can be adjusted to regulate device behaviour. In a simple

scenario functions g and h can be as follows:

g(d,∆d) = d+ ∆d, where d ≤ 100−∆d,

h(d,∆d) = d−∆d, where d ≥ ∆d.

In this scheme to adjust the dim level of the light source is decreased/increased

by a constant value ∆d every time i /∈ (v−m, v+m). By changing the value of ∆d

it is possible to alternate behavior of light sources. To achieve emergent behaviour

from lamps and adapt to changing lighting conditions an algorithm is needed.

9.5.2 Lazy and Enthusiastic Employee Algorithm

Let’s consider an example of a brick making company. The company can make

bricks that have different cost price. One is made form local materials, therefore it

has a lower production cost, but the number of bricks that can be made in certain

time is limited, due to limited resources. The second type of brick is more expensive
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to produce, because it is made from imported materials, but the number of bricks

that can be made, during a certain period of time, is not limited. The company has

a pool of employees,they are divided into lazy and enthusiastic employees. A lazy

worker is not very conducive to work, on the other hand the enthusiastic employee is

always happy to respond to manager’s request. However both lazy and enthusiastic

employees make bricks at the same rate once they start working at full capacity. A

manager shouts a request to produce more or less bricks and all free employees try

to fulfil the request. The manager has no control over choosing what type of bricks

are used.

For optimal functioning of the factory the issues that need to be addressed are:

• Is it possible to make this brick making company reliable, as long as there are

employees to work?

• How to minimize the production cost by using available employees and mate-

rial?

Because the manager has no control over choosing a brick type that is being

made, the algorithm to minimize production cost has to be deployed by the employ-

ees.

Let’s assign all lazy employees to production of expensive bricks and very enthu-

siastic employees to cheap bricks production. When the request to increase bricks

production arrives all available employees will respond, but enthusiastic employees

will start working immediately and try to increase brick production rapidly. Lazy

employees, on the other hand, will try to avoid working, therefore they will wait for

a while and then will increase bricks production by a small factor. If the production

of cheap bricks is enough to fulfil a request, expensive bricks are not produced or

only small number of those bricks is produced. If the inexpensive production is not

enough, then the lazy worker will eventually boost production of expensive bricks

and take over the remaining percentage of the delivery.

When a request to decrease the production comes, the lazy workers quickly

recognize opportunity to work less and are very happy to decrease the production.

Enthusiastic employees, on the other hand, are very happy to work, so are not that
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inclined to decrease their workload. Enthusiastic employees will wait for a while for

the situation to stabilize and, if it is necessary, they will decrease production only

slightly.

The first reaction of both lazy and enthusiastic employees is significant for mini-

mizing cost of production. Because the brick company has to be reliable, eventually

lazy workers will have to work hard if the production of cheap bricks is not enough

to fulfil the request. Similarly, the enthusiastic employees will have to work less if

the production exceeds the required amount.

Another issue for emergent systems is a feedback loop problem. If, on a request,

all employees are equally vigorous in changing their behaviour, the behaviour of

the system alters very quickly and is proportional to the number of the employees

answering a request. Therefore if employees are happy to answer a request to increase

the production all at the same time, this behaviour will be escalated and trigger

another request to decrease the production, that can lead to an infinite feedback

loop. Introducing the Lazy and Enthusiastic Employee algorithm slows down the

reaction of some parts of the factory, which reduces the rapid increase or decrease of

production. The feedback loop can also appear, but it will truncate,as the reaction to

decreasing and increasing production is not the same, the employees will eventually

adapt to the situation and the loop will be broken.

Figure 50: Factory scheme.

As shown in Figure 50 the factory is designed to supply a stable flow of bricks

and react to request to increase and decrease production without any central control.

The Lazy and Enthusiastic Employee algorithm can be used to sustain a stable

light level in a room with many autonomous light sources, while saving electricity.

If we assume that light bulbs are lazy employees, as they need electricity to work,

which is ”expensive”, then the emergent behaviour is to decrease light bulb use.
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Whereas, the Mirror using sunlight is ”cheap”, is assigned to be an enthusiastic

employee and it is expected to give as much light as is needed and possible. This

way it is possible to use the algorithm to save energy and ensure stable light level

in the space as long as all light sources can function properly.

9.5.3 Adjusting the algorithm

The main goal of the system developed for the Scenario Two is to sustain user defined

light intensity in a space while maintaining low energy use, using as much natural

light as possible. There are several factors that can be adjusted to achieve better

results when using the lazy and enthusiastic employee algorithm: dimming function,

margin’s range size and skipping. An experiment was performed to determine what

set of dimming, margin size and skipping parameters allows the system to adapt

correctly and quickly that is measured by energy use in the space. The experiment

also shows how changing parameters of the algorithm influences the behaviour of the

system. The chosen parameters were tested in a controlled environment of Scenario

Two, the experiment presented in this section is called Experiment 2.1.

Dimming. The first parameter of the algorithm is a dimming function. The dim-

ming function helps varying light and mirror behaviour. As mentioned in the al-

gorithm description lights perform a different behaviour when there is not enough

light and react differently when there is to much light in space, therefore functions

for dimming up and down are different. The three dimming functions tested in the

Experiment 2.1 for both light and mirror are fa,fb and fc, where:

fx1 is used for dimming up the light,

fx2 is used for dimming down the light,

fx3 is used for dimming up the mirror,

fx4 is used for dimming down the mirror.

Function fa uses constant value of ∆d:



9 EXPERIMENTS 127

fa1(∆d) = 1,

fa2(∆d) = 3,

fa3(∆d) = 3,

fa4(∆d) = 1.

In this experiment ∆d is constant, but values for dimming up and dimming down

are different for light and mirror.

Function fb uses a linear function to calculate percentage of ∆d being added or sub-

tracted. Step is a value that is auto incremented every time the function is executed,

step ∈ [0, 10], in this experiment step in incremented with value 0.2:

fb1(∆d) = ∆d · (10 · step)/100,

fb2(∆d) = ∆d · (−10 · step+ 100)/100,

fb3(∆d) = ∆d · (−10 · step+ 100)/100,

fb4(∆d) = ∆d · (10 · step)/100.

Function fc uses a curve based on x4 and x3 to calculate percentage of ∆d being

added or subtracted, in this experiment step in incremented with value 0.2:

fc1(∆d) = ∆d · (step4/100)/100,

fc2(∆d) = ∆d · ((step− 10)4/100)/100,

fc3(∆d) = ∆d · ((step− 10)3/10 + 100)/100,

fc4(∆d) = ∆d · (100− (step)3/10)/100.

Representive curves used in functions fb and fc are presented in Figure 51.

Figure 51: Dimming functions used in Experiment 2.1.

The Experiment 2.1 measures the influence of the dimming function f on energy

usage in a space.
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Margin size and location. The second factor that we focus on is size and location

of margins that define the range of reaction in the system. The ideal intensity,

defined by user, is 500 lux. There are three margins used to test the algorithm in

Experiment 2.1 margin ra, rb and rc.

Figure 52: Regions used in Experiment 2.1.

Margin ra is described by the set r. Both light and mirror define the same margin

m = 50, therefore light and mirror both react on the sensor value in the same range

(Figure 52). Therefore the range for both light sources is r = [450, 550].

Margin rb is described by the sets r1 and r2. Light and mirror uses different

lower and upper margins, therefore the region is not symmetric with respect to the

ideal intensity value. Lights use region r1 and the mirror uses r2 (Figure 52). Where

r1 and r2 are:

r1 = [480, 580],

r2 = [420, 520].

Margin rc is described by the sets r3 and r4. In this experiment margins are further

adjusted to alternate behaviour of light and mirror, in this case light and mirror

have excluding regions.

r3 = [400, 500],

r4 = (500, 600].

Skipping. The last experiment is designed to alternate behaviour of a lamp by

ignoring part of requests from a sensor to slow down its reaction. In the Experiment
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2.1 a solution without skipping sa and with skipping sb are presented for comparison.

Skipping sa: the lamp accepts and analyse all the data received from sensors.

Skipping sb: the lamp is designed to accept only 2/3 of requests, while mirror accepts

all requests from sensors.

9.5.4 Results and Analysis

The experiment was run in the simulation with the same environmental conditions

input. Every combination of parameters of the algorithm generates an energy usage

output. The energy usage is influenced by speed of adapting to the environmental

conditions.

The simulation was run for 60 seconds with identical input for all experiments.

The external light intensity of the environment was changed over time according to

Figure 53.

Figure 53: Input data for light intensity outside in the Experiment 2.1.

The results of the Experiment 2.1 are presented in Table 8. The best performance

in achieving a goal of saving energy was for parameters Dimming fc, Margin rc and

Skipping sb.

This experiment shows how with use of different parameters the behaviour of the

system can be adjusted. The parameters of the algorithm that helped the system

use the least energy are not optimal for the algorithm, just the best from the selected

set of parameters. As parameters of the algorithm can be directly changed in the

knowledgebase it is easy to adjust the behaviour of lamps and mirror in the system.

The complexity of the presented system can be increased by implementing more

complicated algorithms than the Lazy and Enthusiastic Employee Algorithm. The
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X X and Skipping sa X and Skipping sb
Dimming fa and Margin ra 29945.04 27648.51
Dimming fa and Margin rb 28295.07 27391.13
Dimming fa and Margin rc 18425.26 18053.12
Dimming fb and Margin ra 25323.55 25003.84
Dimming fb and Margin rb 23475.96 23221.00
Dimming fb and Margin rc 17901.66 17051.45
Dimming fc and Margin ra 22517.36 21987.27
Dimming fc and Margin rb 21994.54 20826.87
Dimming fc and Margin rc 16145.03 16019.46

Table 8: The comparison of the Experiment 2.1 with different sets of parameters for
the Lazy and Enthusiastic Employee Algorithm.

set of capabilities in the KBIE is capable of triggering simple to complicated be-

haviours within the domain of designed devices.

9.6 Experiment Three

Experiment Three is based on Scenario Three (Section 6.2.3) that demonstrates

learning capability of a distributed system by use of recipe mobility. As presented

in the Initial Experiment described in Section 9.1 bringing a new device into the

space affects some existing devices. In this scenario a new device, a projector, is

introduced to the system. This device also brings a new context Projecting for the

lighting system. If the existing devices can be used in the new context, the pro-

jector need to inform devices how they are to be used. The projector knows the

behaviour expected from light sources, therefore it can produce a recipe intended for

light sources. With this mechanism it is possible to introduce forward compatibility

in the system, therefore the existing system can learn how to co-operate with new

devices. A new device can co-operate with the existing system as the underlying

interpretation engine stays the same (KBIE), ensuring backward compatibility. This

enables ease of integrating new components with the system and ease of reconfig-

uration and maintenance. The integration is done automatically and without any

manual maintenance mechanisms.

When a new device, the projector, enters the space it is responsible for finding

out if there are any devices that support a context that it wants to start in a space.

To find out if there is any devices that can participate in the new context, but are

not aware of it, the projector sends an update message (see Section 5.4.9) to group
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all devices that need to find out about a new context and can support the requested

service. An example of an update message for context Projecting is presented in

Table 9.

MessageType 8
SenderId 21
VirtualDeviceId 150
MessageId 5
Context Projecting
Service Lighting

Table 9: Update message for context Projecting.

Any device that gets the message is checking if it supports the requested service

lighting and does it understand context Projecting. If the device supports the service

but is not aware of the context, it is grouped in a virtual device, so an appropriate

recipe can be sent. This virtual device is established by use of RecipeR4 present

in the lamp knowledgebase (see Appendix A, listing 730-771), this recipe type is

getUpgraded. The first step RecipeR4S1 of this recipe is sending an acknowledgement

message if the device does not know the context, but is able to provide the service.

In the next step RecipeR4S2 the device uses the receiveTransmission capability (see

Section 8.4.12) that changes the configuration state to transmission that enables

the device to receive transmit messages (see Section 5.4.10). Once the transmission

mode is set a device is ready to receive recipes and save them in the LTKB. In

the simulation implementation a simple streaming mechanism is applied to send

and receive data triple by triple. An example of a transmit message sent by the

projector to lamp is presented in Table 10.

MessageType 9
SenderId 21
VirtualDeviceId 150
MessageId 39
TransmissionSize 53
TripleNumber 23
Subject Recipe100S8
Predicate is-a
Object step

Table 10: Transmit message for learning new context Projecting.

Every triple is retrieved from the message and saved to the LTKB. When the

transmission is complete, so TransmissionSize = TripleNumber + 1, the recipe

is continiued RecipeR4 to step RecipeR4S3 (Appendix A, listing 758-771) where
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acknowledgement is sent that the transmission was successful. There is no more

interactions in this virtual device so it can be destroyed. After the transmission the

lamp has a new recipe called Recipe100 as presented in Table 11.

Line no. Subject Predicate Object

1901 Recipe100 is-a recipe
1902 Recipe100 has-a person100
1903 person100 is-a person
1904 person100 is Anna
1905 Recipe100 has-a context100
1906 context100 is-a context
1907 context100 is presentation
1908 Recipe100 has-a service100
1909 service100 is-a service
1910 service100 is lighting
1911 Recipe100 has-a recipeType100
1912 recipeType100 is-a recipeType
1913 recipeType100 is SetContextVD
1914 Recipe100 has-a Recipe100S5
1915 Recipe100S5 is-a step
1916 Recipe100S5 has-a TurnOff100
1917 TurnOff100 is-a action
1918 TurnOff100 has-a deviceFunction
1919 TurnOff100 has-a Off100
1920 Off100 is-a on-off
1921 Off100 is 0
1922 Recipe100S5 has-a Recipe100S8
1923 Recipe100S8 is-a step
1924 Recipe100S8 has-a saveData100
1925 saveData100 is-a action
1926 saveData100 has-a saveGlobalData
1927 saveData100 has-a data100
1928 data100 is-a SimpleData
1929 data100 has-a SimpleDataField100
1930 SimpleDataField100 is-a SimpleDataField
1931 SimpleDataField100 has-a nameA100
1932 nameA100 is-a name
1933 nameA100 is idealIntensity
1934 SimpleDataField100 has-a valueA100
1935 valueA100 is-a value
1936 valueA100 is 300
1937 data100 has-a SimpleDataField200
1938 SimpleDataField200 is-a SimpleDataField
1939 SimpleDataField200 has-a nameA200
1940 nameA200 is-a name
1941 nameA200 is margin
1942 SimpleDataField200 has-a valueA200
1943 valueA200 is-a value
1944 valueA200 is 40
1945 data100 has-a SimpleDataField300
1946 SimpleDataField300 is-a SimpleDataField
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Line no. Subject Predicate Object

1947 SimpleDataField300 has-a nameA300
1948 nameA300 is-a name
1949 nameA300 is dimDelta
1950 SimpleDataField300 has-a valueA300
1951 valueA300 is-a value
1952 valueA300 is 6
1953 Recipe100S8 has-a stepStop

Table 11: Light 1 from Appendix A is appended and updated
with a new recipe Recipe100.

With the Recipe100 appended to the knowledgebase the device can immediately

get involved with context Preojecting and participate in it exactly how the projector

requires.

In the Experiment Three two system tests are performed. Both functional tests

are run in the environment with the projector, lamps, mirror and light sensors

present.

The first system test is run when the projector is activated in the space. The

projector sends a request for a new context Projecting. All devices in the space

receives the request and act upon it. The expected behaviour of the system is that

lighting devices do not react to the new context, theretofore no virtual device is

established and light sources are not engaged in the context.

The second system test is run with the projector entering the space. The projec-

tor first starts an update mechanism that involves sending an update message. After

the update stage is finished, the projector sends a request for context Projecting. All

devices in the space receives the request and act upon it. The expected behaviour

of the system is that devices adjust their behaviour to new context. Also an ex-

pected outcome of the updating mechanism is that only devices providing lighting

service are updated with new recipe. The behaviour that is not observable in the

simulation is that lighting devices form a virtual device with a projector and with

available sensors.

The first test in this experiment is run without an updating mechanism and all

devices simply discard the search message. In this test the system is behaving as

expected as devices find no recipe to be run and do not have an entry informing them

of the context Projecting. The second test is run with the updating mechanism. As a
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result of this experiment all lights and the mirror change their behaviour and adjust

their ideal light intensity value to 300 units. The underlying virtual devices are

established which results in devices behaving as expected for this functional system

test.

This simple learning technique implemented in this experiment with use of

recipes is enabling the system to achieve the forward and backward compatibil-

ity. A new context can be introduced to the space and enable a different set-up and

co-operation.

9.7 Results

Three experiments, following chosen scenarios were performed and their behaviours

were verified with functional tests presented in this chapter. Experiment One is

presenting functionality of a light controlling system enabling the setting of a sim-

ple context and manually control lights. Experiment Two extended the concept of

context by adding an environmental context, enabling devices to adapt to the en-

vironment to achieve an overall goal that is using as little energy as they can and

sustain the ideal intensity level set by the user. Experiment Three added a learning

capability with use of recipe mobility.

All three experiments were designed to measure the levels of complexity that

can be applied to the system. The same KBIE is capable of dealing with simple

to fairly complicated scenarios involving adapting and learning. Three experiments

were performed only by changing recipes in devices existing in the space. The

experiments behaved as expected from the designed scenarios, the functional tests

were successfully performed in all three experiments.

Error handling was implemented in the KBIE and different errors were tested

with use of unit testing. The separate lines of code or functions were tested for the

error occurrence. Types of tested errors are:

1. received data errors:

• unknown message type,

• unknown data type;
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2. knowledgebase entries errors:

• missing entries (e.g. no indication of the next step in a recipe),

• inconsistency with a model.

In the case of errors with received data and messages the KBIE is expected to

drop these requests and continue to the ide state as indicated in Figure 27 (see

Section 8.2). In case of errors with the knowledgebase content the KBIE drops a

task for example not proceeding with a configuration when one of entries in a recipe

is missing or not consistent with the model.

The KBIE developed in this research is suitable to run all scenarios presented in

Chapter 6 and interpret knowledgebases of five different devices: light sensor, lamp,

mirror, switch and projector. Following the knowledgebase design pattern expressed

as an application-specific ontology model, it is possible to implement other small

devices from any domain. As the description of the device and the behaviour is

expressed in the knowledgebase, the KBIE can be simple, generic and flexible in the

domain of small and limited devices with simple functionalities.
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10 Conclusions and further work

The research presented in this thesis has created a context aware generic Knowl-

edgebase Interpretation Engine (see Chapter 8) that enables autonomous sensors

and devices to pervasively manage smart spaces using CSP as the underlying design

methodology. A knowledgebase drawn from an ontology model was designed and

implemented (see Chapter 7) in an easy RDF triple format (see Section 7.1.1). The

expected behaviour of device in the presented scenario from Figure 14 (Chapter 6),

was presented and verified by three experiments in Chapter 9.

The theoretical background of the research area was presented in Chapters 2, 3

and 4. Describing respectively different domains that are relevant to the project, a

chosen concurrency model used to simulate the environment and the outline of the

various knowledge representation techniques.

The Communicating Sequential Processes (Section 3.1) model was chosen to

represent the pervasive environment and the interpretation engine. The system

is an asynchronous, complex and distributed environment with non-deterministic

behaviour, therefore an asynchronous concurrent model was chosen to represent the

environment that does not rely on a global synchronisation. The engine supporting

every device consists of three main parts: KBIE, communication interface and device

functionality that in the final implementation are meant to be separate pieces of

hardware. In practice the KBIE is also separated into two parts: interpretation

component (CU and Poke) and knowledgebase fetch, where knowledgebase fetch

is likely to be implemented in parallel hardware to speed up the mechanism of

retrieving data from the knowledgebase. Therefore the infrastructure supporting

the device consists of four independent hardware parts that does not rely on global

synchronisation, but co-operate by message passing. This is the reason the CSP

model was chosen to represent both the top and bottom levels of the system as

presented in Figure 2 in Chapter 3. The simulation of the system was implemented

in JCSP (see Section 3.3.4 and 8.6).

The developed infrastructure for autonomous devices consisting of knowledge-

base and the KBIE can be classified as a software or a middleware infrastructure.

The knowledgebase can be interpreted as a software program with a set of classes
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(recipes), functions (steps), instructions (capabilities) and variables (instances of

classes in the ontology), the KBIE can be called a compiler for this very restricted

language. Once the code from the knowledgebase is interpreted it can be executed

instruction by instruction in the KBIE. The presented framework is comparable to

a software infrastructure and can be evaluated for its usability for pervasive com-

puting.

10.1 Software requirements

Software requirements for pervasive computing were described in [23]. The soft-

ware environment appropriate to support pervasive system must sustain application

requirements such as: mobility and distribution, adaptation, interoperability, com-

ponent discovery, development and deployment, scalability and context awareness.

10.1.1 Mobility and distribution

In a pervasive system mobility and distribution are natural requirements. Devices

can change their location, enter or leave the space at any time. Mechanisms asso-

ciated with this requirement should be deployed in software and transparently for

component developers [23]. Mobility should be achieved without thinking about

synchronization or data migration[23]. The services and data should be distributed

and easily accessed by other devices.

In the presented architecture data, functionalities and services are distributed.

The data is usually private to a device and can be sent to other devices locally, within

a virtual device or to a specific device. The topology of the network is flexible and

devices can come and go and if there is another device willing to take over, the

virtual device can continue to work.

10.1.2 Context awareness

The pervasiveness of a computer infrastructure can be achieved by replacing input

from a user with interpreting context information. The context information like

activities in which the user is engaged, environmental conditions, presence of other

devices can be used for adaptation and self-configuration.
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In the presented architecture devices react differently in different contexts. The

context can be associated with environmental conditions, presence of particular de-

vices or people, users’ intent, or periods and events associated with a calendar.

Every device has its own, individual interpretation of a context, therefore all de-

vices individually know how to behave in a particular situation and the behaviour

of the system emerges from the actions of a specific component. The presented in-

frastructure supports context-awareness by gathering information from sensors and

interpreting the data differently depending on the context.

10.1.3 Adaptation

In a highly mobile and distributed environment is dictating a dynamic nature of a

pervasive environment. The infrastructure supporting such a system needs to have

the ability to reconfigure and adapt to ever-changing requirements and environmen-

tal conditions.

The ability to adapt to requirements is facilitated by a simple learning mech-

anism, that is transferring recipes between devices. This enables device to learn

behaviours from different devices in order to support novel tasks. Adaptation to

changing environment is solved by individual and autonomous reaction to the event

by every device. Recipes with conditional choices can dictate different behaviour

depending on sensor values, the virtual devices in which a component is participat-

ing, a context or a person. The overall adaptation of the system emerges from the

individual behaviour of its components (see Section 9.5).

10.1.4 Interoperability

A pervasive infrastructure is required to integrate diversity of components pro-

grammed using different languages into an infrastructure that can successfully in-

teract and cooperate [23].

The interoperability on the semantic level can be achieved by using a flexible and

updatable standard, an ontology, to provide devices with understanding concepts

and relations between these concepts. The cooperation between devices on the

protocol level is achieved by defining message format and exchange protocols in an
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unpalatable ontology. The generic KBIE can run any recipe that is constructed

according to the application-specificity ontology model (see Section 7.3.1) and is

represented in a simplified RDF format. The RDF formatted data can be easily

translated to XML and understood by any XML parser, therefore a recipe from

a device with simple hardware KBIE can be parsed to XML and understood in

any device running any software variation of the interpretation component based on

the same ontology. The communication component is separate from the KBIE and

has to incorporate interoperability, for example by using common communication

protocols.

10.1.5 Component discovery

In pervasive systems network topology can change rapidly. As a resource or service

discovery is not present, devices need to individually deal with discovery.

In the presented infrastructure service discovery is performed by use of a broad-

cast protocol. Whenever a service is needed, a device sends a request to form a

virtual device (see search message, Section 5.4.1) in order to fulfil the requirement.

Once the virtual device is formed a task is treated locally. For example a sensor

is sending it’s reading data only when it is participating in a virtual device and

the data is only received by other participants of this virtual device. A device can

participate in many virtual devices and there are messages that the device needs to

respond to, independently of engagement in other tasks (see shout message, Section

5.4.4).

10.1.6 Development and deployment

Components in pervasive systems are required to adapt to changing environmental

conditions that requires the ability to redeploy and adapt at a runtime, without

restarting devices or installing new versions of components [23]. This ability is very

useful for maintenance of a large scale systems, when access to separate components

is not very easy, for example sensor networks monitoring the sea bottom.

In the presented infrastructure the KBIE behaviour is dictated by the knowl-

edgebase, therefore its possible to change or alternate a device’s behaviour only by
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modifying its knowledgebase at a runtime. The learning capability can be executed

locally, so devices to be updated can be easily chosen and modified. The generic

KBIE can run a new recipe in the next cycle of the engine, without restarting.

10.1.7 Scalability

The number of devices and users in a pervasive environment is not limited. Therefore

the number of interactions increases and also the number of devices increases. As a

result scalability is a problem for pervasive systems [15].

In the presented system devices are autonomous, the services are distributed and

cooperation between devices occurs on the service level. Devices can be grouped

into virtual devices, cooperate and then finish a configuration and engage in differ-

ent activities. The number of devices in this environment is not limited, and the

architecture can support any number of devices. The number of virtual devices that

the device can participate is also not limited. The grouping or clustering capabil-

ity helps controlling devices locally. The only scalability problem can occur with

connection with a broadcast nature of messages sent between devices, when many

requests are issued a device needs time to process requests in the KBIE.

The software requirements for pervasive computing presented in [23] can be ful-

filled by the developed infrastructure by supporting mobility and distribution, adap-

tation, interoperability, component discovery, development and deployment, scala-

bility and context awareness. Therefore the presented architecture can be used as

an underlining infrastructure for a pervasive environment.

10.2 Further work

The presented project is part of a bigger research programme, called the Medusas

project, that is still continued at NXP Semiconductors. There are two main stems

of the future focus of the Medusas project. The first is implementing a device

from the system developed in this research in the C programming language, done

by translating the KBIE Java code to C with as few modifications as possible and

using the same knowledgebases as in the simulation. The second stream of the

project is trying to improve data retrieval from a knowledgebase. Work on a parallel
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Knowledgebase Fetch mechanism (see Section 8.3) is being undertaken at Technische

Universiteit Eindhoven (www.tue.nl). The parallel version of the Knowledgebase

Fetch component is being designed and implemented using a FPGA device.

10.2.1 Learning by assessing

The learning mechanism presented in Experiment Three (see Section 9.6) is fairly

simple and based on the KBIE being generic and able to run any recipe built ac-

cording to the model. A new device in a space can group devices and next send a

recipe that enables cooperation. The mechanism to retrieve a recipe is also described

in the knowledgebase. Once a new recipe is received by the device its consistency

with rest of the LTKB need to be checked. First of all it needs to be constructed

according to the ontology model present in the knowledgebase. There can be new

data types, message formats and other data that is not represented in the engine,

this data and its format can be transferred to a device together with a recipe. The

learning presented in Experiment Three (Section 9.6) is not changing recipes, but

adding new ones to react in a new situation and context. The next step for adapt-

ing to a new situation, not implemented in project, is learning by assessing. This

mechanism enables modifying already existing recipes to adjust a device’s behaviour

without any external intervention. In the presented project the only self-adjustment

of a behaviour of a recipe is modification of variables in STKB that are used in a

recipe and together with skipping mechanism (see Section 7.3.2) one recipe can be

run differently depending on input data. This mechanism is only applicable to situ-

ations that have been predicted, but is not dealing with unexpected circumstances.

The learning mechanism needs to be improved in the future implementations.

10.2.2 Replacement parts

The recipe transferring mechanism (see Section 8.4.11 and 9.6) can be used in a

back-up process. If a device recognises it is about to fail, it can send the content

of its knowledgebase to other device in order to create a back-up of its behaviour.

When a replacement devices is installed the knowledgebase can be transferred into

the new device for a pervasive configuration. If the replacement device is identical
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with the device that has failed, the knowledgebase can be entirely overwritten. In

the other case the new device needs to check what information is needed and what

recipes can be discarded. The latter case needs another mechanism that checks a

new knowledgebase and decides what is useful.

10.2.3 Knowledgebase Maintenance Engine

In time the knowledgebase can grow to a big size, therefore garbage collection and

maintenance mechanisms are needed. A simple garbage collection mechanism was

implemented in the KBIE, ensuring that when a configuration is deleted, all data

associated with this configuration is also erased. As the modification of STKB is

not restricted, and can be done by a recipe (see Section 8.4.6), it is possible that

some data can be added and never used. The garbage collecting mechanism should

delete data that is not used, for example, data that have loose ends in the ontology

tree, therefore impossible to track from higher structures like configuration entries

or aggregates. of add recipes adding ontology models to the LTKB can cause in-

consistencies. Possible errors can be as follows: duplicated entries or whole recipes,

inconsistency with the ontology model, entry name duplication, mistakes in recipes

links between steps and many more. Therefore a Knowledgebase Maintenance En-

gine (KBME) can be implemented as a part of the new versions of the reasoning

component. The KBME can be a part of KBIE or an independent unit that is rea-

soning about the information being added to the knowledgebase and dealing with

the garbage collection.

10.2.4 GUI for creating recipes

A recipe is built according to a recipe ontology model presented in Figure 19 (see

Section 7.3.1). It is possible to implement a Graphical User Interface to create new

recipes. Creating recipes from scratch can be a time-consuming task, especially

because of the RDF format of all the entries in the knowledgebase. An automatic

recipe creation GUI enables a fast and correct way of creating recipes and can be

used by device manufactures or users to create a new behaviour. A new recipe can

be transported to a device using the updating mechanism explained in details in
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Section 8.4.11.
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Bakkers, editor, Proceedings of WoTUG-20: Parallel Programming and Java,

pages 326–338, mar 1997.

[42] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessandro

Oltramari. WonderWeb deliverable d18, 2001.

[43] A.A. McEwan and S. Schneider. A verified development of hardware using

csp/spl par/b. Formal Methods and Models for Co-Design, ACM/IEEE Inter-

national Conference on, 0:81–82, 2006.

[44] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-

bridge University Press, 1999.

[45] M. Minsky. The society of mind. A Touchstone book. Simon & Schuster, 1988.

[46] Robert Neches, Richard Fikes, Tim Finin, Thomas Gruber, Ramesh Patil, Ted

Senator, and William Swartout. Enabling Technology for Knowledge Sharing.

AI Magazine, 12(3):36–56, August 1991.

[47] Robert Orfali, Dan Harkey, and Jeri Edwards. The essential distributed objects

survival guide. John Wiley and Sons, Inc., 1995.

[48] Declan O’Sullivan and David Lewis. Semantically driven service interoperability

for pervasive computing. In Proceedings of the 3rd ACM international workshop

on Data engineering for wireless and mobile access, pages 17–24, San Diego,

CA, USA, 2003. ACM.

[49] Dick Pountain and David May. A tutorial introduction to Occam programming.

McGraw-Hill, Inc., New York, NY, USA, 1987.

[50] Eric Prud’hommeaux and Andy Seaborne. (sparql query language for rdf),

2008.

[51] Awais Rashid and Gerd Kortuem. Adaptation as an aspect in pervasive com-

puting. In OOPSLA 2004 Workshop on Building Software for Pervasive Com-

puting, Vancouver, British Columbia, Canada, 2004.



REFERENCES 149

[52] R. Reiter. On closed world data bases, pages 300–310. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1987.

[53] A. W. Roscoe. Modelling and verifying key-exchange protocols using csp and

fdr. In In 8th IEEE Computer Security Foundations Workshop, pages 98–107.

Press, 1995.

[54] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of

Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[55] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal

Communications, IEEE, 8(4):10–17, 2001.

[56] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing

applications. In IN PROCEEDINGS OF THE WORKSHOP ON MOBILE

COMPUTING SYSTEMS AND APPLICATIONS, pages 85–90. IEEE Com-

puter Society, 1994.

[57] NXP Semiconductors. www.nxp.com, 2009.

[58] Richard Sharp and Robinson College. Higher-level hardware synthesis, 2002.

[59] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology

language guide, w3c recommendation, 2004.

[60] V Stanford, J Garofolo, O Galibert, M Michel, and C Laprun. The nist smart

space and meeting room projects: signals, acquisition annotation, and metrics.

IEEE International Conference on Acoustics, Speech, and Signal Processing

2003. Proceedings. (ICASSP ’03), 2003.

[61] Thomas Strang and Claudia Linnhoff-Popien. Service interoperability on con-

text level in ubiquitous computing environments, 2003.

[62] Aly A. Syed, Johan Lukkien, and Roxana Frunza. An ad hoc networking archi-

tecture for pervasive systems based on distributed knowledge. In Proceedings

of Date2010, Dresden, 2010.



REFERENCES 150

[63] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. Mobile Object Sys-

tems Towards the Programmable Internet: A Note on Distributed Computing,

volume Volume 1222/1997. Springer Berlin / Heidelberg, 1994.

[64] X. Wang, M. Kwiatkowska, G. Theodoropoulos, and Q. Zhang. Towards a

unifying csp approach to hierarchical verification of asynchronous hardware.

Electron. Notes Theor. Comput. Sci., 128:231–246, May 2005.

[65] Roy Want. Sensor-driven computing comes of age. Pervasive Computing, IEEE,

pages 4–6, 2007.

[66] Rolf H. Weber and Romana Weber. Internet of Things. Springer, 2010.

[67] Mark Weiser. The computer for the 21st century. Scientific American, Septem-

ber 1991.

[68] P. H. Welch and P. D. Austin. The jcsp home page.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 1999.

[69] David C. Wood and Peter H. Welch. The kent retargetable occam compiler.

In Proceedings of the 19th world occam and transputer user group technical

meeting on Parallel processing developments, pages 143–166, Amsterdam, The

Netherlands, The Netherlands, 1996. IOS Press.



A APPENDIX A: KNOWLEDGEBASE EXAMPLE 151

A Appendix A: Knowledgebase Example

An Example of a long-term knowledgebase of a lamp is presented in the following
table.

Line no. Subject Predicate Object
1 lightSource is-a smart-object
2 LS1 is-a lightSource
3 LS1 has-a location1
4 location1 is-a location
5 location1 is 1
6 LS1 has-a id1
7 id1 is-a id
8 id1 is 1
9 LS1 has-a ec1
10 ec1 is-a energyConsumption
11 ec1 is 20
12 LS1 has-a service1
13 service1 is-a service
14 service1 is lighting
15 on-off is-a command
16 color-blue is-a command
17 color-red is-a command
18 color-green is-a command
19 dim is-a command
20 on-off is ON-OFF
21 color-blue is BLUE
22 color-red is RED
23 color-green is GREEN
24 dim is DIM
25 Recipe1 is-a recipe
26 Recipe1 has-a service1
27 Recipe1 has-a recipeType1
28 recipeType1 is-a recipeType
29 recipeType1 is configureVD
30 Recipe1 has-a Recipe1S1
31 Recipe1S1 is-a step
32 Recipe1S1 has-a RespondConfigRequest
33 RespondConfigRequest is-a action
34 RespondConfigRequest has-a massageOut
35 RespondConfigRequest has-a message1
36 message1 is-a ackMessage
37 message1 has-a field1
38 field1 is-a messageField
39 field1 has-a id2
40 id2 is-a id
41 id2 is 5
42 field1 has-a value2
43 value2 is-a value
44 value2 is 0
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Line no. Subject Predicate Object
45 field1 has-a name2
46 name2 is-a name
47 name2 is ackResponse
48 Recipe1S1 has-a Recipe1S2
49 Recipe1S2 is-a step
50 Recipe1S2 has-a FindSensor
51 FindSensor is-a action
52 FindSensor has-a massageOut
53 FindSensor has-a message2
54 message2 is-a internalMessage
55 message2 has-a fieldB2
56 fieldB2 is-a messageField
57 fieldB2 has-a idB2
58 idB2 is-a id
59 idB2 is 7
60 fieldB2 has-a valueB2
61 valueB2 is-a value
62 valueB2 is indoorSensing
63 fieldB2 has-a nameB2
64 nameB2 is-a name
65 nameB2 is Context
66 message2 has-a fieldB1
67 fieldB1 is-a messageField
68 fieldB1 has-a idB1
69 idB1 is-a id
70 idB1 is 4
71 fieldB1 has-a valueB1
72 valueB1 is-a value
73 valueB1 is startVD
74 fieldB1 has-a nameB1
75 nameB1 is-a name
76 nameB1 is RequestType
77 message2 has-a fieldB3
78 fieldB3 is-a messageField
79 fieldB3 has-a idB3
80 idB3 is-a id
81 idB3 is 5
82 fieldB3 has-a valueB3
83 valueB3 is-a value
84 valueB3 is lightIntensity
85 fieldB3 has-a nameB3
86 nameB3 is-a name
87 nameB3 is Service
88 Recipe1S2 has-a Recipe1S3
89 Recipe1S3 is-a step
90 Recipe1S3 has-a ReceiveAcceptance
91 ReceiveAcceptance is-a action
92 ReceiveAcceptance has-a messageIn
93 ReceiveAcceptance has-a requestingDevice
94 requestingDevice is-a messageAggregate
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Line no. Subject Predicate Object
95 ReceiveAcceptance has-a messageA1
96 messageA1 is-a acceptMessage
97 timer1 is-a timer
98 timer1 is 1000
99 ReceiveAcceptance has-a timer1
100 Recipe1S3 has-a Recipe1S4
101 Recipe1S4 is-a step
102 Recipe1S4 has-a checkAcceptance
103 checkAcceptance is-a action
104 checkAcceptance has-a decide
105 checkAcceptance has-a requestingDevice
106 Recipe1S4 has-a Recipe1S6
107 Recipe1S5 is-a step
108 Recipe1S5 has-a CheckInternalStatus
109 CheckInternalStatus is-a action
110 CheckInternalStatus has-a wait
111 Recipe1S5 has-a Recipe1S6
112 Recipe1S6 is-a step
113 Recipe1S6 has-a RespondAcceptance
114 RespondAcceptance is-a action
115 RespondAcceptance has-a massageOut
116 RespondAcceptance has-a requestingDevice
117 RespondAcceptance has-a message4
118 message4 is-a ackMessage
119 message4 has-a field4
120 field4 is-a messageField
121 field4 has-a id4
122 id4 is-a id
123 id4 is 5
124 field4 has-a value4
125 value4 is-a value
126 value4 is 0
127 Recipe1S6 has-a Recipe1S7
128 Recipe1S7 is-a step
129 Recipe1S7 has-a FindContextVDR1
130 FindContextVDR1 is-a action
131 FindContextVDR1 has-a massageOut
132 FindContextVDR1 has-a messageR1
133 messageR1 is-a internalMessage
134 messageR1 has-a fieldR11
135 messageR1 has-a fieldR12
136 fieldR12 is-a messageField
137 fieldR12 has-a idR12
138 idR12 is-a id
139 idR12 is 4
140 fieldR12 has-a valueR12
141 valueR12 is-a value
142 valueR12 is SetContextVD
143 fieldR12 has-a nameR12
144 nameR12 is-a name
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Line no. Subject Predicate Object
145 nameR12 is RequestType
146 Recipe1S7 has-a stepStop
147 RecipeR1 is-a recipe
148 RecipeR1 has-a person1
149 person1 is-a person
150 person1 is Anna
151 RecipeR1 has-a context1
152 context1 is-a context
153 context1 is reading
154 RecipeR1 has-a service1
155 RecipeR1 has-a recipeType6
156 recipeType6 is-a recipeType
157 recipeType6 is SetContextVD
158 RecipeR1 has-a RecipeR1S3
159 RecipeR1S3 is-a step
160 RecipeR1S3 has-a TurnOn
161 TurnOn is-a action
162 TurnOn has-a deviceFunction
163 TurnOn has-a turnOn1
164 turnOn1 is-a on-off
165 turnOn1 is 1
166 RecipeR1S3 has-a RecipeR1S4
167 RecipeR1S4 is-a step
168 RecipeR1S4 has-a SetRedColor255
169 SetRedColor255 is-a action
170 SetRedColor255 has-a deviceFunction
171 SetRedColor255 has-a RedColor255
172 RedColor255 is-a color-red
173 RedColor255 is 255
174 RecipeR1S4 has-a RecipeR1S5
175 RecipeR1S5 is-a step
176 RecipeR1S5 has-a SetGreenColor255
177 SetGreenColor255 is-a action
178 SetGreenColor255 has-a deviceFunction
179 SetGreenColor255 has-a GreenColor255
180 GreenColor255 is-a color-green
181 GreenColor255 is 255
182 RecipeR1S5 has-a RecipeR1S6
183 RecipeR1S6 is-a step
184 RecipeR1S6 has-a SetBlueColor0
185 SetBlueColor0 is-a action
186 SetBlueColor0 has-a deviceFunction
187 SetBlueColor0 has-a BlueColor175
188 BlueColor175 is-a color-blue
189 BlueColor175 is 175
190 RecipeR1S6 has-a RecipeR1S7
191 RecipeR1S7 is-a step
192 RecipeR1S7 has-a SetDim80
193 SetDim80 is-a action
194 SetDim80 has-a deviceFunction
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Line no. Subject Predicate Object
195 SetDim80 has-a dim80
196 dim80 is 100
197 dim80 is-a dim
198 RecipeR1S7 has-a RecipeR1S8
199 RecipeR1S8 is-a step
200 RecipeR1S8 has-a saveData1
201 saveData1 is-a action
202 saveData1 has-a saveGlobalData
203 saveData1 has-a data1
204 data1 is-a SimpleData
205 data1 has-a SimpleDataField1
206 SimpleDataField1 is-a SimpleDataField
207 SimpleDataField1 has-a nameA1
208 nameA1 is-a name
209 nameA1 is idealIntensity
210 SimpleDataField1 has-a valueA1
211 valueA1 is-a value
212 valueA1 is 500
213 data1 has-a SimpleDataField2
214 SimpleDataField2 is-a SimpleDataField
215 SimpleDataField2 has-a nameA2
216 nameA2 is-a name
217 nameA2 is margin
218 SimpleDataField2 has-a valueA2
219 valueA2 is-a value
220 valueA2 is 40
221 data1 has-a SimpleDataField3
222 SimpleDataField3 is-a SimpleDataField
223 SimpleDataField3 has-a nameA3
224 nameA3 is-a name
225 nameA3 is dimDelta
226 SimpleDataField3 has-a valueA3
227 valueA3 is-a value
228 valueA3 is 6
229 RecipeR1S8 has-a stepStop
230 recipe7 is-a recipe
231 Recipe7 has-a person1
232 Recipe7 has-a service1
233 Recipe7 has-a recipeType4
234 recipeType4 is-a recipeType
235 recipeType4 is controlVD
236 Recipe7 has-a Recipe7S1
237 Recipe7S1 is-a step
238 Recipe7S1 has-a ReceiveMessage
239 ReceiveMessage is-a action
240 ReceiveMessage has-a messageIn
241 ReceiveMessage has-a InputData
242 InputData is-a messageAggregate
243 Recipe7S1 has-a Recipe7S2
244 Recipe7S2 is-a step
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Line no. Subject Predicate Object
245 Recipe7S2 has-a SetDevice
246 SetDevice is-a action
247 SetDevice has-a deviceFunction
248 SetDevice has-a InputData
249 Recipe7S2 has-a stepStop
250 recipe3 is-a recipe
251 Recipe3 has-a person1
252 Recipe3 has-a context3
253 Recipe3 has-a service2
254 service2 is-a service
255 service2 is lightIntensity
256 Recipe3 has-a recipeType3
257 recipeType3 is-a recipeType
258 recipeType3 is processData
259 Recipe3 has-a Recipe3S0
260 Recipe3S0 is-a step
261 Recipe3S0 has-a ReceiveDataMessage
262 ReceiveDataMessage is-a action
263 ReceiveDataMessage has-a messageIn
264 ReceiveDataMessage has-a InputData1
265 InputData1 is-a messageAggregate
266 Recipe3S0 has-a Recipe3S2
267 Recipe3S2 is-a step
268 Recipe3S2 has-a calculateData
269 calculateData is-a action
270 calculateData has-a calculate
271 calculateData has-a calculationData1
272 calculationData1 is-a calculationData
273 calculationData1 has-a calculationData1F1
274 calculationData1F1 is-a calculationDataField
275 calculationData1F1 has-a name5
276 name5 is-a name
277 name5 is calculationType
278 calculationData1F1 has-a value5
279 value5 is-a value
280 value5 is arytmetic
281 calculationData1 has-a calculationData1F2
282 calculationData1F2 is-a calculationDataField
283 calculationData1F2 has-a name6
284 name6 is-a name
285 name6 is attributeType
286 calculationData1F2 has-a value6
287 value6 is-a value
288 value6 is integer
289 calculationData1 has-a calculationData1F3
290 calculationData1F3 is-a calculationDataField
291 calculationData1F3 has-a name7
292 name7 is-a name
293 name7 is attributeX
294 calculationData1F3 has-a value7
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Line no. Subject Predicate Object
295 value7 is-a value
296 value7 is idealIntensity
297 calculationData1 has-a calculationData1F4
298 calculationData1F4 is-a calculationDataField
299 calculationData1F4 has-a name8
300 name8 is-a name
301 name8 is attributeY
302 calculationData1F4 has-a value8
303 value8 is-a value
304 value8 is margin
305 calculationData1 has-a calculationData1F5
306 calculationData1F5 is-a calculationDataField
307 calculationData1F5 has-a name9
308 name9 is-a name
309 name9 is operator
310 calculationData1F5 has-a value9
311 value9 is-a value
312 value9 is -
313 calculationData1 has-a calculationData1F6
314 calculationData1F6 is-a calculationDataField
315 calculationData1F6 has-a name10
316 name10 is-a name
317 name10 is outcome
318 calculationData1F6 has-a value10
319 value10 is-a value
320 value10 is teporaryData1
321 Recipe3S2 has-a Recipe3S3
322 Recipe3S3 is-a step
323 Recipe3S3 has-a calculateData2
324 calculateData2 is-a action
325 calculateData2 has-a calculate
326 calculateData2 has-a InputData1
327 teporaryData1 is-a SimpleData
328 calculateData2 has-a teporaryData1
329 calculateData2 has-a calculationData2
330 calculationData2 is-a calculationData
331 calculationData2 has-a calculationData2F1
332 calculationData2F1 is-a calculationDataField
333 calculationData2F1 has-a name5
334 calculationData2F1 has-a value13
335 value13 is-a value
336 value13 is compare
337 calculationData2 has-a calculationData2F2
338 calculationData2F2 is-a calculationDataField
339 calculationData2F2 has-a name6
340 calculationData2F2 has-a value6
341 calculationData2 has-a calculationData2F3
342 calculationData2F3 is-a calculationDataField
343 calculationData2F3 has-a name7
344 calculationData2F3 has-a value14
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Line no. Subject Predicate Object
345 value14 is-a value
346 value14 is lightIntensityValue
347 calculationData2 has-a calculationData2F4
348 calculationData2F4 is-a calculationDataField
349 calculationData2F4 has-a name8
350 calculationData2F4 has-a value15
351 value15 is-a value
352 value15 is teporaryData1
353 calculationData2 has-a calculationData2F5
354 calculationData2F5 is-a calculationDataField
355 calculationData2F5 has-a name9
356 calculationData2F5 has-a value16
357 value16 is-a value
358 value16 is ¡
359 calculationData2 has-a calculationData2F6
360 calculationData2F6 is-a calculationDataField
361 calculationData2F6 has-a name10
362 calculationData2F6 has-a valueA10
363 valueA10 is-a value
364 valueA10 is teporaryData2
365 teporaryData2 is-a SimpleData
366 Recipe3S3 has-a Recipe3S4
367 Recipe3S4 is-a step
368 Recipe3S4 has-a skipSteps1
369 skipSteps1 is-a action
370 skipSteps1 has-a skip
371 skipSteps1 has-a teporaryData2
372 skipSteps1 has-a SkipData1
373 SkipData1 is-a SkipData
374 SkipData1 has-a SkipDataField1
375 SkipDataField1 is-a SkipDataField
376 SkipDataField1 has-a name11
377 name11 is-a name
378 name11 is TRUE
379 SkipDataField1 has-a value11
380 value11 is-a value
381 value11 is Recipe3S5
382 SkipData1 has-a SkipDataField2
383 SkipDataField2 is-a SkipDataField
384 SkipDataField2 has-a name12
385 name12 is-a name
386 name12 is FALSE
387 SkipDataField2 has-a value12
388 value12 is-a value
389 value12 is Recipe3S13
390 Recipe3S4 has-a Recipe3S5
391 Recipe3S5 is-a step
392 Recipe3S5 has-a calculateData3
393 calculateData3 is-a action
394 calculateData3 has-a calculate
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Line no. Subject Predicate Object
395 calculateData3 has-a calculationData3
396 calculationData3 is-a calculationData
397 calculationData3 has-a calculationData3F1
398 calculationData3F1 is-a calculationDataField
399 calculationData3F1 has-a name5
400 calculationData3F1 has-a value17
401 value17 is-a value
402 value17 is function
403 calculationData3 has-a calculationData3F3
404 calculationData3F3 is-a calculationDataField
405 calculationData3F3 has-a name7
406 calculationData3F3 has-a value18
407 value18 is-a value
408 value18 is functionStepData
409 calculationData3 has-a calculationData3F5
410 calculationData3F5 is-a calculationDataField
411 calculationData3F5 has-a name9
412 calculationData3F5 has-a value19
413 value19 is-a value
414 value19 is function1
415 calculationData3 has-a calculationData3F6
416 calculationData3F6 is-a calculationDataField
417 calculationData3F6 has-a name10
418 calculationData3F6 has-a value10
419 Recipe3S5 has-a Recipe3S6
420 Recipe3S6 is-a step
421 Recipe3S6 has-a calculateData4
422 calculateData4 is-a action
423 calculateData4 has-a calculate
424 calculateData4 has-a calculationData4
425 calculationData4 is-a calculationData
426 calculationData4 has-a calculationData4F1
427 calculationData4F1 is-a calculationDataField
428 calculationData4F1 has-a name5
429 calculationData4F1 has-a value20
430 value20 is-a value
431 value20 is arytmetic
432 calculationData4 has-a calculationData4F2
433 calculationData4F2 is-a calculationDataField
434 calculationData4F2 has-a name6
435 calculationData4F2 has-a value6
436 calculationData4 has-a calculationData4F3
437 calculationData4F3 is-a calculationDataField
438 calculationData4F3 has-a name7
439 calculationData4F3 has-a value21
440 value21 is-a value
441 value21 is teporaryData1
442 calculationData4 has-a calculationData4F4
443 calculationData4F4 is-a calculationDataField
444 calculationData4F4 has-a name8
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Line no. Subject Predicate Object
445 calculationData4F4 has-a value22
446 value22 is-a value
447 value22 is dimDelta
448 calculationData4 has-a calculationData4F5
449 calculationData4F5 is-a calculationDataField
450 calculationData4F5 has-a name9
451 calculationData4F5 has-a value23
452 value23 is-a value
453 value23 is *
454 calculationData4 has-a calculationData4F6
455 calculationData4F6 is-a calculationDataField
456 calculationData4F6 has-a name10
457 calculationData4F6 has-a value10
458 Recipe3S6 has-a Recipe3S7
459 Recipe3S7 is-a step
460 Recipe3S7 has-a calculateData5
461 calculateData5 is-a action
462 calculateData5 has-a calculate
463 calculateData5 has-a calculationData5
464 calculationData5 is-a calculationData
465 calculationData5 has-a calculationData5F1
466 calculationData5F1 is-a calculationDataField
467 calculationData5F1 has-a name5
468 calculationData5F1 has-a value24
469 value24 is-a value
470 value24 is arytmetic
471 calculationData5 has-a calculationData5F2
472 calculationData5F2 is-a calculationDataField
473 calculationData5F2 has-a name6
474 calculationData5F2 has-a value6
475 calculationData5 has-a calculationData5F3
476 calculationData5F3 is-a calculationDataField
477 calculationData5F3 has-a name7
478 calculationData5F3 has-a value25
479 value25 is-a value
480 value25 is teporaryData1
481 calculationData5 has-a calculationData5F4
482 calculationData5F4 is-a calculationDataField
483 calculationData5F4 has-a name8
484 calculationData5F4 has-a value26
485 value26 is-a value
486 value26 is 100
487 calculationData5 has-a calculationData5F5
488 calculationData5F5 is-a calculationDataField
489 calculationData5F5 has-a name9
490 calculationData5F5 has-a value27
491 value27 is-a value
492 value27 is /
493 calculationData5 has-a calculationData5F6
494 calculationData5F6 is-a calculationDataField
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Line no. Subject Predicate Object
495 calculationData5F6 has-a name10
496 calculationData5F6 has-a value10
497 Recipe3S7 has-a Recipe3S11
498 Recipe3S8 is-a step
499 Recipe3S8 has-a calculateData6
500 calculateData6 is-a action
501 calculateData6 has-a calculate
502 calculateData6 has-a calculationData6
503 calculationData6 is-a calculationData
504 calculationData6 has-a calculationData6F1
505 calculationData6F1 is-a calculationDataField
506 calculationData6F1 has-a name5
507 calculationData6F1 has-a value28
508 value28 is-a value
509 value28 is arytmetic
510 calculationData6 has-a calculationData6F2
511 calculationData6F2 is-a calculationDataField
512 calculationData6F2 has-a name6
513 calculationData6F2 has-a value6
514 calculationData6 has-a calculationData6F3
515 calculationData6F3 is-a calculationDataField
516 calculationData6F3 has-a name7
517 calculationData6F3 has-a value29
518 value29 is-a value
519 value29 is teporaryData1
520 calculationData6 has-a calculationData6F4
521 calculationData6F4 is-a calculationDataField
522 calculationData6F4 has-a name8
523 calculationData6F4 has-a value30
524 value30 is-a value
525 value30 is dimValue
526 calculationData6 has-a calculationData6F5
527 calculationData6F5 is-a calculationDataField
528 calculationData6F5 has-a name9
529 calculationData6F5 has-a value31
530 value31 is-a value
531 value31 is +
532 calculationData6 has-a calculationData6F6
533 calculationData6F6 is-a calculationDataField
534 calculationData6F6 has-a name10
535 calculationData6F6 has-a value10
536 Recipe3S8 has-a Recipe3S9
537 Recipe3S10 has-a calculateData7
538 calculateData7 is-a action
539 calculateData7 has-a calculate
540 calculateData7 has-a calculationData7
541 calculationData7 is-a calculationData
542 calculationData7 has-a calculationData7F1
543 calculationData7F1 is-a calculationDataField
544 calculationData7F1 has-a name5
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Line no. Subject Predicate Object
545 calculationData7F1 has-a value34
546 value34 is-a value
547 value34 is function
548 calculationData7 has-a calculationData7F3
549 calculationData7F3 is-a calculationDataField
550 calculationData7F3 has-a name7
551 calculationData7F3 has-a value35
552 value35 is-a value
553 value35 is functionStepData
554 calculationData7 has-a calculationData7F5
555 calculationData7F5 is-a calculationDataField
556 calculationData7F5 has-a name9
557 calculationData7F5 has-a value36
558 value36 is-a value
559 value36 is function2
560 calculationData7 has-a calculationData7F6
561 calculationData7F6 is-a calculationDataField
562 calculationData7F6 has-a name10
563 calculationData7F6 has-a value10
564 Recipe3S10 has-a Recipe3S6
565 Recipe3S11 is-a step
566 Recipe3S11 has-a skipSteps2
567 skipSteps2 is-a action
568 skipSteps2 has-a skip
569 skipSteps2 has-a teporaryData2
570 skipSteps2 has-a SkipData2
571 SkipData2 is-a SkipData
572 SkipData2 has-a SkipDataField3
573 SkipDataField3 is-a SkipDataField
574 SkipDataField3 has-a name11
575 SkipDataField3 has-a value32
576 value32 is-a value
577 value32 is Recipe3S8
578 SkipData2 has-a SkipDataField4
579 SkipDataField4 is-a SkipDataField
580 SkipDataField4 has-a name12
581 SkipDataField4 has-a value33
582 value33 is-a value
583 value33 is Recipe3S12
584 Recipe3S11 has-a Recipe3S8
585 Recipe3S12 is-a step
586 Recipe3S12 has-a calculateData8
587 calculateData8 is-a action
588 calculateData8 has-a calculate
589 calculateData8 has-a calculationData8
590 calculationData8 is-a calculationData
591 calculationData8 has-a calculationData8F1
592 calculationData8F1 is-a calculationDataField
593 calculationData8F1 has-a name5
594 calculationData8F1 has-a value37
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Line no. Subject Predicate Object
595 value37 is-a value
596 value37 is arytmetic
597 calculationData8 has-a calculationData8F2
598 calculationData8F2 is-a calculationDataField
599 calculationData8F2 has-a name6
600 calculationData8F2 has-a value6
601 calculationData8 has-a calculationData8F3
602 calculationData8F3 is-a calculationDataField
603 calculationData8F3 has-a name7
604 calculationData8F3 has-a value38
605 value38 is-a value
606 value38 is dimValue
607 calculationData8 has-a calculationData8F4
608 calculationData8F4 is-a calculationDataField
609 calculationData8F4 has-a name8
610 calculationData8F4 has-a value39
611 value39 is-a value
612 value39 is teporaryData1
613 calculationData8 has-a calculationData8F5
614 calculationData8F5 is-a calculationDataField
615 calculationData8F5 has-a name9
616 calculationData8F5 has-a value40
617 value40 is-a value
618 value40 is -
619 calculationData8 has-a calculationData8F6
620 calculationData8F6 is-a calculationDataField
621 calculationData8F6 has-a name10
622 calculationData8F6 has-a value10
623 Recipe3S12 has-a Recipe3S9
624 Recipe3S13 is-a step
625 Recipe3S13 has-a calculateData9
626 calculateData9 is-a action
627 calculateData9 has-a calculate
628 calculateData9 has-a calculationData9
629 calculationData9 is-a calculationData
630 calculationData9 has-a calculationData9F1
631 calculationData9F1 is-a calculationDataField
632 calculationData9F1 has-a name5
633 calculationData9F1 has-a value41
634 value41 is-a value
635 value41 is arytmetic
636 calculationData9 has-a calculationData9F2
637 calculationData9F2 is-a calculationDataField
638 calculationData9F2 has-a name6
639 calculationData9F2 has-a value6
640 calculationData9 has-a calculationData9F3
641 calculationData9F3 is-a calculationDataField
642 calculationData9F3 has-a name7
643 calculationData9F3 has-a value42
644 value42 is-a value
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645 value42 is idealIntensity
646 calculationData9 has-a calculationData9F4
647 calculationData9F4 is-a calculationDataField
648 calculationData9F4 has-a name8
649 calculationData9F4 has-a value43
650 value43 is-a value
651 value43 is 0
652 calculationData9 has-a calculationData9F5
653 calculationData9F5 is-a calculationDataField
654 calculationData9F5 has-a name9
655 calculationData9F5 has-a value44
656 value44 is-a value
657 value44 is +
658 calculationData9 has-a calculationData9F6
659 calculationData9F6 is-a calculationDataField
660 calculationData9F6 has-a name10
661 calculationData9F6 has-a value10
662 Recipe3S13 has-a Recipe3S14
663 Recipe3S14 is-a step
664 Recipe3S14 has-a calculateData10
665 calculateData10 is-a action
666 calculateData10 has-a calculate
667 calculateData10 has-a calculationData10
668 calculationData10 is-a calculationData
669 calculationData10 has-a calculationData10F1
670 calculationData10F1 is-a calculationDataField
671 calculationData10F1 has-a name5
672 calculationData10F1 has-a value45
673 value45 is-a value
674 value45 is compare
675 calculationData10 has-a calculationData10F2
676 calculationData10F2 is-a calculationDataField
677 calculationData10F2 has-a name6
678 calculationData10F2 has-a value6
679 calculationData10 has-a calculationData10F3
680 calculationData10F3 is-a calculationDataField
681 calculationData10F3 has-a name7
682 calculationData10F3 has-a value46
683 value46 is-a value
684 value46 is lightIntensityValue
685 calculationData10 has-a calculationData10F4
686 calculationData10F4 is-a calculationDataField
687 calculationData10F4 has-a name8
688 calculationData10F4 has-a value47
689 value47 is-a value
690 value47 is teporaryData1
691 calculationData10 has-a calculationData10F5
692 calculationData10F5 is-a calculationDataField
693 calculationData10F5 has-a name9
694 calculationData10F5 has-a value48
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695 value48 is-a value
696 value48 is ¿
697 calculationData10 has-a calculationData10F6
698 calculationData10F6 is-a calculationDataField
699 calculationData10F6 has-a name10
700 calculationData10F6 has-a value10
701 Recipe3S14 has-a Recipe3S15
702 Recipe3S15 is-a step
703 Recipe3S15 has-a skipSteps3
704 skipSteps3 is-a action
705 skipSteps3 has-a skip
706 skipSteps3 has-a teporaryData1
707 skipSteps3 has-a SkipData3
708 SkipData3 is-a SkipData
709 SkipData3 has-a SkipDataField5
710 SkipDataField5 is-a SkipDataField
711 SkipDataField5 has-a name11
712 SkipDataField5 has-a value49
713 value49 is-a value
714 value49 is Recipe3S10
715 SkipData3 has-a SkipDataField6
716 SkipDataField6 is-a SkipDataField
717 SkipDataField6 has-a name12
718 SkipDataField6 has-a value50
719 value50 is-a value
720 value50 is stepStop
721 Recipe3S15 has-a Recipe3S10
722 Recipe3S9 is-a step
723 Recipe3S9 has-a SetDevice1
724 SetDevice1 is-a action
725 SetDevice1 has-a deviceFunction
726 SetDevice1 has-a dimX
727 dimX is-a dim
728 dimX is teporaryData1
729 Recipe3S9 has-a stepStop
730 RecipeR4 is-a recipe
731 RecipeR4 has-a recipeType5
732 recipeType5 is-a recipeType
733 recipeType5 is getUpgrated
734 RecipeR4 has-a RecipeR4S1
735 RecipeR4S1 is-a step
736 RecipeR4S1 has-a RespondUpgradeRequestR4
737 RespondUpgradeRequestR4 is-a action
738 RespondUpgradeRequestR4 has-a massageOut
739 RespondUpgradeRequestR4 has-a messageR41
740 messageR41 is-a ackMessage
741 messageR41 has-a fieldR41
742 fieldR41 is-a messageField
743 fieldR41 has-a idR41
744 idR41 is-a id
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745 idR41 is 5
746 fieldR41 has-a valueR41
747 valueR41 is-a value
748 valueR41 is 0
749 fieldR41 has-a nameR41
750 nameR41 is-a name
751 nameR41 is ackResponse
752 RecipeR4S1 has-a RecipeR4S2
753 RecipeR4S2 is-a step
754 RecipeR4S2 has-a ReceiveTransmissionR4
755 ReceiveTransmissionR4 is-a action
756 ReceiveTransmissionR4 has-a receiveTransmission
757 RecipeR4S2 has-a RecipeR4S3
758 RecipeR4S3 is-a step
759 RecipeR4S3 has-a RespondTransmissionR4
760 RespondTransmissionR4 is-a action
761 RespondTransmissionR4 has-a massageOut
762 RespondTransmissionR4 has-a messageR42
763 messageR42 is-a ackMessage
764 messageR42 has-a fieldR42
765 fieldR42 is-a messageField
766 fieldR42 has-a idR41
767 fieldR42 has-a valueR42
768 valueR42 is-a value
769 valueR42 is 0
770 fieldR42 has-a nameR41
771 RecipeR4S3 has-a stepStop
772 Recipe2 is-a recipe
773 Recipe2 has-a service3
774 service3 is-a service
775 service3 is lightIntensity
776 Recipe2 has-a context3
777 context3 is-a context
778 context3 is indoorSensing
779 Recipe2 has-a recipeType2
780 recipeType2 is-a recipeType
781 recipeType2 is startVD
782 Recipe2 has-a person1
783 Recipe2 has-a recipe2S1
784 recipe2S1 is-a step
785 recipe2S1 has-a sendRequest
786 sendRequest is-a action
787 sendRequest has-a massageOut
788 sendRequest has-a message5
789 message5 is-a searchMessage
790 message5 has-a fieldR25
791 fieldR25 is-a messageField
792 fieldR25 has idR25
793 idR25 is-a id
794 idR25 is 4
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795 fieldR25 has-a valueR25
796 valueR25 is-a value
797 valueR25 is configureVD
798 fieldR25 has-a nameR25
799 nameR25 is-a name
800 nameR25 is RequestType
801 recipe2S1 has-a recipe2S2
802 recipe2S2 is-a step
803 recipe2S2 has-a receiveVDParticipants
804 receiveVDParticipants has-a messageIn
805 receiveVDParticipants has-a participant
806 receiveVDParticipants is-a action
807 participant is-a messageAggregate
808 receiveVDParticipants has-a messageA2
809 messageA2 is-a ackMessage
810 timer2 is-a timer
811 timer2 is 1000
812 receiveVDParticipants has-a timer2
813 recipe2S2 has-a recipe2S3
814 recipe2S3 is-a step
815 recipe2S3 has-a decideAboutConnection
816 decideAboutConnection is-a action
817 decideAboutConnection has-a decide
818 decideAboutConnection has-a participant
819 decideAboutConnection has-a rule1
820 rule1 is-a rule
821 rule1 is ackResponse == 1
822 recipe2S3 has-a recipe2S4
823 recipe2S4 is-a step
824 recipe2S4 has-a sendAcceptance
825 sendAcceptance is-a action
826 sendAcceptance has-a massageOut
827 sendAcceptance has-a participant
828 sendAcceptance has-a message6
829 message6 is-a acceptMessage
830 Recipe2S4 has-a Recipe2S5
831 Recipe2S5 is-a step
832 Recipe2S5 has-a receiveAck
833 receiveAck has-a messageIn
834 receiveAck has-a participant
835 receiveAck is-a action
836 receiveAck has-a messageA2
837 timer3 is-a timer
838 timer3 is 2000
839 receiveAck has-a timer3
840 recipe2S5 has-a recipe2S6
841 recipe2S6 is-a step
842 recipe2S6 has-a finishConfiguration
843 finishConfiguration is-a action
844 finishConfiguration has-a decide
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845 finishConfiguration has-a participant
846 recipe2S6 has-a stepStop
847 Recipe2S7 is-a step
848 Recipe2S7 has-a ActivateRecipe
849 ActivateRecipe is-a action
850 ActivateRecipe has-a poke
851 recipe2S7 has-a stepStop
852 smart-object has-a capability
853 smart-object has-a recipe
854 smart-object has-a id
855 smart-object has-a location
856 wait is-a capability
857 poke is-a capability
858 messageIn is-a capability
859 massageOut is-a capability
860 deviceFunction is-a capability
861 decide is-a capability
862 receiveTransmission is-a capability
863 calculate is-a capability
864 skip is-a capability
865 saveConfigurationData is-a capability
866 saveGlobalData is-a capability
867 ConfigureRegularTask is-a capability
868 CheckService is-a capability
869 capability has-a command
870 message has-a recipeType
871 recipe has-a context
872 recipe has-a person
873 recipe has-a service
874 recipe has-a recipeType
875 recipe has-a step
876 step has-a step
877 stepStop is-a step
878 step has-a action
879 action is-a event
880 action has-a capability
881 action has-a message
882 action has-a timer
883 action has-a SmartData
884 action has-a rule
885 action hs-a service
886 smartDataField has-a name
887 smartDataField has-a id
888 smartDataField has-a value
889 messageAggregate is-a smartData
890 messageAggregate has-a message
891 configuration has-a messageAggregate
892 function has-a point
893 point has-a x
894 point has-a y
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895 calculationData is-a SmartData
896 calculationData has-a calculationDataField
897 samartData has-a field
898 calculationDataField has-a name
899 calculationDataField has-a value
900 calculationDataField is-a field
901 SkipData is-a SmartData
902 SkipData has-a SkipDataField
903 SkipDataField has-a name
904 SkipDataField has-a value
905 SimpleData is-a SmartData
906 SimpleDataField has-a name
907 SimpleDataField has-a value
908 SimpleDataField is-a field
909 value is-a smartData
910 message is-a smartData
911 message has-a messageField
912 messageField is-a smartDataField
913 messageField has-a id
914 messageField has-a name
915 messageField has-a value
916 message has-a messageType
917 searchMessage is-a message
918 shoutMessage is-a message
919 controlMessage is-a message
920 acceptMessage is-a message
921 destroyMessage is-a message
922 dataMessage is-a message
923 ackMessage is-a message
924 internalMessage is-a message
925 searchMessage has-a messageType0
926 messageType0 is-a messageType
927 messageType0 is 0
928 searchMessage has-a HeaderF0
929 HeaderF0 is-a messageField
930 HeaderF0 has-a idF0
931 idF0 is-a id
932 idF0 is 0
933 HeaderF0 has-a nameF0
934 nameF0 is-a name
935 nameF0 is MessageType
936 searchMessage has-a HeaderF1
937 HeaderF1 is-a messageField
938 HeaderF1 has-a idF1
939 idF1 is-a id
940 idF1 is 1
941 HeaderF1 has-a nameF1
942 nameF1 is-a name
943 nameF1 is SenderId
944 searchMessage has-a HeaderF2
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945 HeaderF2 is-a messageField
946 HeaderF2 has-a idF2
947 idF2 is-a id
948 idF2 is 2
949 HeaderF2 has-a nameF2
950 nameF2 is-a name
951 nameF2 is VirtualDeviceId
952 searchMessage has-a HeaderF3
953 HeaderF3 is-a messageField
954 HeaderF3 has-a idF3
955 idF3 is-a id
956 idF3 is 3
957 HeaderF3 has-a nameF3
958 nameF3 is-a name
959 nameF3 is MessageId
960 searchMessage has-a HeaderF4
961 HeaderF4 is-a messageField
962 HeaderF4 has-a idF4
963 idF4 is-a id
964 idF4 is 4
965 HeaderF4 has-a nameF4
966 nameF4 is-a name
967 nameF4 is RequestType
968 searchMessage has-a HeaderF5
969 HeaderF5 is-a messageField
970 HeaderF5 has-a idF5
971 idF5 is-a id
972 idF5 is 5
973 HeaderF5 has-a nameF5
974 nameF5 is-a name
975 nameF5 is Service
976 searchMessage has-a HeaderF6
977 HeaderF6 is-a messageField
978 HeaderF6 has-a idF6
979 idF6 is-a id
980 idF6 is 6
981 HeaderF6 has-a nameF6
982 nameF6 is-a name
983 nameF6 is Context
984 searchMessage has-a HeaderF7
985 HeaderF7 is-a messageField
986 HeaderF7 has-a idF7
987 idF7 is-a id
988 idF7 is 7
989 HeaderF7 has-a nameF7
990 nameF7 is-a name
991 nameF7 is Person
992 searchMessage has-a HeaderF8
993 HeaderF8 is-a messageField
994 HeaderF8 has-a idF8
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995 idF8 is-a id
996 idF8 is 8
997 HeaderF8 has-a nameF8
998 nameF8 is-a name
999 nameF8 is Priority
1000 acceptMessage has-a messageType1
1001 messageType1 is-a messageType
1002 messageType1 is 1
1003 acceptMessage has-a HeaderF0
1004 acceptMessage has-a HeaderF1
1005 acceptMessage has-a HeaderF2
1006 acceptMessage has-a HeaderF3
1007 acceptMessage has-a HeaderF9
1008 HeaderF9 is-a messageField
1009 HeaderF9 has-a idF4
1010 HeaderF9 has-a nameF9
1011 nameF9 is-a name
1012 nameF9 is RecipientId
1013 ackMessage has-a messageType2
1014 messageType2 is-a messageType
1015 messageType2 is 2
1016 ackMessage has-a HeaderF0
1017 ackMessage has-a HeaderF1
1018 ackMessage has-a HeaderF2
1019 ackMessage has-a HeaderF3
1020 ackMessage has-a HeaderF10
1021 HeaderF10 is-a messageField
1022 HeaderF10 has-a idF4
1023 HeaderF10 has-a nameF10
1024 nameF10 is-a name
1025 nameF10 is OryginalMessageId
1026 ackMessage has-a HeaderF11
1027 HeaderF11 is-a messageField
1028 HeaderF11 has-a idF5
1029 HeaderF11 has-a nameF11
1030 nameF11 is-a name
1031 nameF11 is AckResponse
1032 shoutMessage has-a messageType3
1033 messageType3 is-a messageType
1034 messageType3 is 3
1035 shoutMessage has-a HeaderF0
1036 shoutMessage has-a HeaderF1
1037 shoutMessage has-a HeaderF2
1038 shoutMessage has-a HeaderF3
1039 shoutMessage has-a HeaderF4
1040 shoutMessage has-a HeaderF5
1041 shoutMessage has-a HeaderF6
1042 shoutMessage has-a HeaderF7
1043 shoutMessage has-a HeaderF8
1044 destroyMessage has-a messageType4
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1045 messageType4 is-a messageType
1046 messageType4 is 4
1047 destroyMessage has-a HeaderF0
1048 destroyMessage has-a HeaderF1
1049 destroyMessage has-a HeaderF2
1050 destroyMessage has-a HeaderF3
1051 dataMessage has-a messageType6
1052 messageType6 is-a messageType
1053 messageType6 is 6
1054 dataMessage has-a HeaderF0
1055 dataMessage has-a HeaderF1
1056 dataMessage has-a HeaderF2
1057 dataMessage has-a HeaderF3
1058 dataMessage has-a HeaderF12
1059 HeaderF12 is-a messageField
1060 HeaderF12 has-a idF4
1061 HeaderF12 has-a nameF12
1062 nameF12 is-a name
1063 nameF12 is DataSize
1064 dataMessage has-a HeaderF13
1065 HeaderF13 is-a messageField
1066 HeaderF13 has-a idF5
1067 HeaderF13 has-a nameF13
1068 nameF13 is-a name
1069 nameF13 is DataType
1070 dataMessage has-a HeaderF14
1071 HeaderF14 is-a messageField
1072 HeaderF14 has-a idF6
1073 HeaderF14 has-a nameF14
1074 nameF14 is-a name
1075 nameF14 is DataValue
1076 controlMessage has-a messageType5
1077 messageType5 is-a messageType
1078 messageType5 is 5
1079 controlMessage has-a HeaderF0
1080 controlMessage has-a HeaderF1
1081 controlMessage has-a HeaderF2
1082 controlMessage has-a HeaderF3
1083 controlMessage has-a HeaderF12
1084 controlMessage has-a HeaderF15
1085 HeaderF15 is-a messageField
1086 HeaderF15 has-a idF5
1087 HeaderF15 has-a nameF15
1088 nameF15 is-a name
1089 nameF15 is ControlType
1090 controlMessage has-a HeaderF16
1091 HeaderF16 is-a messageField
1092 HeaderF16 has-a idF6
1093 HeaderF16 has-a nameF16
1094 nameF16 is-a name
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1095 nameF16 is ControlSize
1096 controlMessage has-a HeaderF17
1097 HeaderF17 is-a messageField
1098 HeaderF17 has-a idF7
1099 HeaderF17 has-a nameF15
1100 controlMessage has-a HeaderF18
1101 HeaderF18 is-a messageField
1102 HeaderF18 has-a idF8
1103 HeaderF18 has-a nameF16
1104 controlMessage has-a HeaderF19
1105 HeaderF19 is-a messageField
1106 HeaderF19 has-a idF9
1107 idF9 is-a id
1108 idF9 is 9
1109 HeaderF19 has-a nameF15
1110 controlMessage has-a HeaderF20
1111 HeaderF20 is-a messageField
1112 HeaderF20 has-a idF10
1113 idF10 is-a id
1114 idF10 is 10
1115 HeaderF20 has-a nameF16
1116 internalMessage has-a messageType7
1117 messageType7 is-a messageType
1118 messageType7 is 7
1119 internalMessage has-a HeaderF0
1120 internalMessage has-a HeaderF1
1121 internalMessage has-a HeaderF2
1122 internalMessage has-a HeaderF3
1123 internalMessage has-a HeaderF4
1124 internalMessage has-a HeaderF5
1125 internalMessage has-a HeaderF6
1126 internalMessage has-a HeaderF7
1127 internalMessage has-a HeaderF8
1128 upgrateMessage has-a messageType8
1129 messageType8 is-a messageType
1130 messageType8 is 8
1131 upgrateMessage has-a HeaderF0
1132 upgrateMessage has-a HeaderF1
1133 upgrateMessage has-a HeaderF2
1134 upgrateMessage has-a HeaderF3
1135 upgrateMessage has-a HeaderF21
1136 HeaderF21 is-a messageField
1137 HeaderF21 has-a idF4
1138 HeaderF21 has-a nameF6
1139 upgrateMessage has-a HeaderF5
1140 upgrateMessage is-a message
1141 transmitMessage has-a messageType9
1142 messageType9 is-a messageType
1143 messageType9 is 9
1144 transmitMessage has-a HeaderF0
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1145 transmitMessage has-a HeaderF1
1146 transmitMessage has-a HeaderF2
1147 transmitMessage has-a HeaderF3
1148 transmitMessage has-a HeaderF22
1149 HeaderF22 is-a messageField
1150 HeaderF22 has-a idF4
1151 HeaderF22 has-a nameF22
1152 nameF22 is-a name
1153 nameF22 is TransmissionSize
1154 transmitMessage has-a HeaderF23
1155 HeaderF23 is-a messageField
1156 HeaderF23 has-a idF5
1157 HeaderF23 has-a nameF23
1158 nameF23 is-a name
1159 nameF23 is TripleNumber
1160 transmitMessage has-a HeaderF24
1161 HeaderF24 is-a messageField
1162 HeaderF24 has-a idF6
1163 HeaderF24 has-a nameF24
1164 nameF24 is-a name
1165 nameF24 is Subject
1166 transmitMessage has-a HeaderF25
1167 HeaderF25 is-a messageField
1168 HeaderF25 has-a idF7
1169 HeaderF25 has-a nameF25
1170 nameF25 is-a name
1171 nameF25 is Predicate
1172 transmitMessage has-a HeaderF26
1173 HeaderF26 is-a messageField
1174 HeaderF26 has-a idF8
1175 HeaderF26 has-a nameF26
1176 nameF26 is-a name
1177 nameF26 is Object
1178 transmitMessage is-a message
1179 LS1 has-a lightIntensity
1180 LS1 has-a energyConsumption
1181 LS1 has-a service
1182 p0 is-a point
1183 p1 is-a point
1184 p2 is-a point
1185 p3 is-a point
1186 p4 is-a point
1187 p5 is-a point
1188 p6 is-a point
1189 p7 is-a point
1190 p8 is-a point
1191 p9 is-a point
1192 p10 is-a point
1193 p11 is-a point
1194 p12 is-a point
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1195 p13 is-a point
1196 p14 is-a point
1197 p15 is-a point
1198 p16 is-a point
1199 p17 is-a point
1200 p18 is-a point
1201 p19 is-a point
1202 p20 is-a point
1203 p21 is-a point
1204 p22 is-a point
1205 p23 is-a point
1206 p24 is-a point
1207 p25 is-a point
1208 p26 is-a point
1209 p27 is-a point
1210 p28 is-a point
1211 p29 is-a point
1212 p30 is-a point
1213 p31 is-a point
1214 p32 is-a point
1215 p33 is-a point
1216 p34 is-a point
1217 p35 is-a point
1218 p36 is-a point
1219 p37 is-a point
1220 p38 is-a point
1221 p39 is-a point
1222 p40 is-a point
1223 p41 is-a point
1224 p42 is-a point
1225 p43 is-a point
1226 p44 is-a point
1227 p45 is-a point
1228 p46 is-a point
1229 p47 is-a point
1230 p48 is-a point
1231 p49 is-a point
1232 p50 is-a point
1233 p51 is-a point
1234 p52 is-a point
1235 p53 is-a point
1236 p54 is-a point
1237 p55 is-a point
1238 p56 is-a point
1239 p57 is-a point
1240 p58 is-a point
1241 p59 is-a point
1242 p60 is-a point
1243 p61 is-a point
1244 p62 is-a point



A APPENDIX A: KNOWLEDGEBASE EXAMPLE 176

Line no. Subject Predicate Object
1245 p63 is-a point
1246 p64 is-a point
1247 p65 is-a point
1248 p66 is-a point
1249 p67 is-a point
1250 p68 is-a point
1251 p69 is-a point
1252 p70 is-a point
1253 p71 is-a point
1254 p72 is-a point
1255 p73 is-a point
1256 p74 is-a point
1257 p75 is-a point
1258 p76 is-a point
1259 p77 is-a point
1260 p78 is-a point
1261 p79 is-a point
1262 p80 is-a point
1263 p81 is-a point
1264 p82 is-a point
1265 p83 is-a point
1266 p84 is-a point
1267 p85 is-a point
1268 p86 is-a point
1269 p87 is-a point
1270 p88 is-a point
1271 p89 is-a point
1272 p90 is-a point
1273 p91 is-a point
1274 p92 is-a point
1275 p93 is-a point
1276 p94 is-a point
1277 p95 is-a point
1278 p96 is-a point
1279 p97 is-a point
1280 p98 is-a point
1281 p99 is-a point
1282 p100 is-a point
1283 p101 is-a point
1284 p0 has-a x0
1285 p1 has-a x1
1286 p2 has-a x2
1287 p3 has-a x3
1288 p4 has-a x4
1289 p5 has-a x5
1290 p6 has-a x6
1291 p7 has-a x7
1292 p8 has-a x8
1293 p9 has-a x9
1294 p10 has-a x10
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1295 p11 has-a x11
1296 p12 has-a x12
1297 p13 has-a x13
1298 p14 has-a x14
1299 p15 has-a x15
1300 p16 has-a x16
1301 p17 has-a x17
1302 p18 has-a x18
1303 p19 has-a x19
1304 p20 has-a x20
1305 p21 has-a x21
1306 p22 has-a x22
1307 p23 has-a x23
1308 p24 has-a x24
1309 p25 has-a x25
1310 p26 has-a x26
1311 p27 has-a x27
1312 p28 has-a x28
1313 p29 has-a x29
1314 p30 has-a x30
1315 p31 has-a x31
1316 p32 has-a x32
1317 p33 has-a x33
1318 p34 has-a x34
1319 p35 has-a x35
1320 p36 has-a x36
1321 p37 has-a x37
1322 p38 has-a x38
1323 p39 has-a x39
1324 p40 has-a x40
1325 p41 has-a x41
1326 p42 has-a x42
1327 p43 has-a x43
1328 p44 has-a x44
1329 p45 has-a x45
1330 p46 has-a x46
1331 p47 has-a x47
1332 p48 has-a x48
1333 p49 has-a x49
1334 p50 has-a x50
1335 p51 has-a x0
1336 p52 has-a x1
1337 p53 has-a x2
1338 p54 has-a x3
1339 p55 has-a x4
1340 p56 has-a x5
1341 p57 has-a x6
1342 p58 has-a x7
1343 p59 has-a x8
1344 p60 has-a x9
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1345 p61 has-a x10
1346 p62 has-a x11
1347 p63 has-a x12
1348 p64 has-a x13
1349 p65 has-a x14
1350 p66 has-a x15
1351 p67 has-a x16
1352 p68 has-a x17
1353 p69 has-a x18
1354 p70 has-a x19
1355 p71 has-a x20
1356 p72 has-a x21
1357 p73 has-a x22
1358 p74 has-a x23
1359 p75 has-a x24
1360 p76 has-a x25
1361 p77 has-a x26
1362 p78 has-a x27
1363 p79 has-a x28
1364 p80 has-a x29
1365 p81 has-a x30
1366 p82 has-a x31
1367 p83 has-a x32
1368 p84 has-a x33
1369 p85 has-a x34
1370 p86 has-a x35
1371 p87 has-a x36
1372 p88 has-a x37
1373 p89 has-a x38
1374 p90 has-a x39
1375 p91 has-a x40
1376 p92 has-a x41
1377 p93 has-a x42
1378 p94 has-a x43
1379 p95 has-a x44
1380 p96 has-a x45
1381 p97 has-a x46
1382 p98 has-a x47
1383 p99 has-a x48
1384 p100 has-a x49
1385 p101 has-a x50
1386 p0 has-a y0
1387 p1 has-a y1
1388 p2 has-a y2
1389 p3 has-a y3
1390 p4 has-a y4
1391 p5 has-a y5
1392 p6 has-a y6
1393 p7 has-a y7
1394 p8 has-a y8
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Line no. Subject Predicate Object
1395 p9 has-a y9
1396 p10 has-a y10
1397 p11 has-a y11
1398 p12 has-a y12
1399 p13 has-a y13
1400 p14 has-a y14
1401 p15 has-a y15
1402 p16 has-a y16
1403 p17 has-a y17
1404 p18 has-a y18
1405 p19 has-a y19
1406 p20 has-a y20
1407 p21 has-a y21
1408 p22 has-a y22
1409 p23 has-a y23
1410 p24 has-a y24
1411 p25 has-a y25
1412 p26 has-a y26
1413 p27 has-a y27
1414 p28 has-a y28
1415 p29 has-a y29
1416 p30 has-a y30
1417 p31 has-a y31
1418 p32 has-a y32
1419 p33 has-a y33
1420 p34 has-a y34
1421 p35 has-a y35
1422 p36 has-a y36
1423 p37 has-a y37
1424 p38 has-a y38
1425 p39 has-a y39
1426 p40 has-a y40
1427 p41 has-a y41
1428 p42 has-a y42
1429 p43 has-a y43
1430 p44 has-a y44
1431 p45 has-a y45
1432 p46 has-a y46
1433 p47 has-a y47
1434 p48 has-a y48
1435 p49 has-a y49
1436 p50 has-a y50
1437 p51 has-a y51
1438 p52 has-a y52
1439 p53 has-a y53
1440 p54 has-a y54
1441 p55 has-a y55
1442 p56 has-a y56
1443 p57 has-a y57
1444 p58 has-a y58
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Line no. Subject Predicate Object
1445 p59 has-a y59
1446 p60 has-a y60
1447 p61 has-a y61
1448 p62 has-a y62
1449 p63 has-a y63
1450 p64 has-a y64
1451 p65 has-a y65
1452 p66 has-a y66
1453 p67 has-a y67
1454 p68 has-a y68
1455 p69 has-a y69
1456 p70 has-a y70
1457 p71 has-a y71
1458 p72 has-a y72
1459 p73 has-a y73
1460 p74 has-a y74
1461 p75 has-a y75
1462 p76 has-a y76
1463 p77 has-a y77
1464 p78 has-a y78
1465 p79 has-a y79
1466 p80 has-a y80
1467 p81 has-a y81
1468 p82 has-a y82
1469 p83 has-a y83
1470 p84 has-a y84
1471 p85 has-a y85
1472 p86 has-a y86
1473 p87 has-a y87
1474 p88 has-a y88
1475 p89 has-a y89
1476 p90 has-a y90
1477 p91 has-a y91
1478 p92 has-a y92
1479 p93 has-a y93
1480 p94 has-a y94
1481 p95 has-a y95
1482 p96 has-a y96
1483 p97 has-a y97
1484 p98 has-a y98
1485 p99 has-a y99
1486 p100 has-a y100
1487 p101 has-a y101
1488 x0 is-a x
1489 x1 is-a x
1490 x2 is-a x
1491 x3 is-a x
1492 x4 is-a x
1493 x5 is-a x
1494 x6 is-a x
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Line no. Subject Predicate Object
1495 x7 is-a x
1496 x8 is-a x
1497 x9 is-a x
1498 x10 is-a x
1499 x11 is-a x
1500 x12 is-a x
1501 x13 is-a x
1502 x14 is-a x
1503 x15 is-a x
1504 x16 is-a x
1505 x17 is-a x
1506 x18 is-a x
1507 x19 is-a x
1508 x20 is-a x
1509 x21 is-a x
1510 x22 is-a x
1511 x23 is-a x
1512 x24 is-a x
1513 x25 is-a x
1514 x26 is-a x
1515 x27 is-a x
1516 x28 is-a x
1517 x29 is-a x
1518 x30 is-a x
1519 x31 is-a x
1520 x32 is-a x
1521 x33 is-a x
1522 x34 is-a x
1523 x35 is-a x
1524 x36 is-a x
1525 x37 is-a x
1526 x38 is-a x
1527 x39 is-a x
1528 x40 is-a x
1529 x41 is-a x
1530 x42 is-a x
1531 x43 is-a x
1532 x44 is-a x
1533 x45 is-a x
1534 x46 is-a x
1535 x47 is-a x
1536 x48 is-a x
1537 x49 is-a x
1538 x50 is-a x
1539 y0 is-a y
1540 y1 is-a y
1541 y2 is-a y
1542 y3 is-a y
1543 y4 is-a y
1544 y5 is-a y
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Line no. Subject Predicate Object
1545 y6 is-a y
1546 y7 is-a y
1547 y8 is-a y
1548 y9 is-a y
1549 y10 is-a y
1550 y11 is-a y
1551 y12 is-a y
1552 y13 is-a y
1553 y14 is-a y
1554 y15 is-a y
1555 y16 is-a y
1556 y17 is-a y
1557 y18 is-a y
1558 y19 is-a y
1559 y20 is-a y
1560 y21 is-a y
1561 y22 is-a y
1562 y23 is-a y
1563 y24 is-a y
1564 y25 is-a y
1565 y26 is-a y
1566 y27 is-a y
1567 y28 is-a y
1568 y29 is-a y
1569 y30 is-a y
1570 y31 is-a y
1571 y32 is-a y
1572 y33 is-a y
1573 y34 is-a y
1574 y35 is-a y
1575 y36 is-a y
1576 y37 is-a y
1577 y38 is-a y
1578 y39 is-a y
1579 y40 is-a y
1580 y41 is-a y
1581 y42 is-a y
1582 y43 is-a y
1583 y44 is-a y
1584 y45 is-a y
1585 y46 is-a y
1586 y47 is-a y
1587 y48 is-a y
1588 y49 is-a y
1589 y50 is-a y
1590 y51 is-a y
1591 y52 is-a y
1592 y53 is-a y
1593 y54 is-a y
1594 y55 is-a y
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Line no. Subject Predicate Object
1595 y56 is-a y
1596 y57 is-a y
1597 y58 is-a y
1598 y59 is-a y
1599 y60 is-a y
1600 y61 is-a y
1601 y62 is-a y
1602 y63 is-a y
1603 y64 is-a y
1604 y65 is-a y
1605 y66 is-a y
1606 y67 is-a y
1607 y68 is-a y
1608 y69 is-a y
1609 y70 is-a y
1610 y71 is-a y
1611 y72 is-a y
1612 y73 is-a y
1613 y74 is-a y
1614 y75 is-a y
1615 y76 is-a y
1616 y77 is-a y
1617 y78 is-a y
1618 y79 is-a y
1619 y80 is-a y
1620 y81 is-a y
1621 y82 is-a y
1622 y83 is-a y
1623 y84 is-a y
1624 y85 is-a y
1625 y86 is-a y
1626 y87 is-a y
1627 y88 is-a y
1628 y89 is-a y
1629 y90 is-a y
1630 y91 is-a y
1631 y92 is-a y
1632 y93 is-a y
1633 y94 is-a y
1634 y95 is-a y
1635 y96 is-a y
1636 y97 is-a y
1637 y98 is-a y
1638 y99 is-a y
1639 y100 is-a y
1640 y101 is-a y
1641 x0 is 0
1642 x1 is 1
1643 x2 is 2
1644 x3 is 3
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Line no. Subject Predicate Object
1645 x4 is 4
1646 x5 is 5
1647 x6 is 6
1648 x7 is 7
1649 x8 is 8
1650 x9 is 9
1651 x10 is 10
1652 x11 is 11
1653 x12 is 12
1654 x13 is 13
1655 x14 is 14
1656 x15 is 15
1657 x16 is 16
1658 x17 is 17
1659 x18 is 18
1660 x19 is 19
1661 x20 is 20
1662 x21 is 21
1663 x22 is 22
1664 x23 is 23
1665 x24 is 24
1666 x25 is 25
1667 x26 is 26
1668 x27 is 27
1669 x28 is 28
1670 x29 is 29
1671 x30 is 30
1672 x31 is 31
1673 x32 is 32
1674 x33 is 33
1675 x34 is 34
1676 x35 is 35
1677 x36 is 36
1678 x37 is 37
1679 x38 is 38
1680 x39 is 39
1681 x40 is 40
1682 x41 is 41
1683 x42 is 42
1684 x43 is 43
1685 x44 is 44
1686 x45 is 45
1687 x46 is 46
1688 x47 is 47
1689 x48 is 48
1690 x49 is 49
1691 x50 is 50
1692 y0 is 0
1693 y1 is 2
1694 y2 is 4
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Line no. Subject Predicate Object
1695 y3 is 6
1696 y4 is 8
1697 y5 is 10
1698 y6 is 12
1699 y7 is 14
1700 y8 is 16
1701 y9 is 18
1702 y10 is 20
1703 y11 is 22
1704 y12 is 24
1705 y13 is 26
1706 y14 is 28
1707 y15 is 30
1708 y16 is 32
1709 y17 is 34
1710 y18 is 36
1711 y19 is 38
1712 y20 is 40
1713 y21 is 42
1714 y22 is 44
1715 y23 is 46
1716 y24 is 48
1717 y25 is 50
1718 y26 is 52
1719 y27 is 54
1720 y28 is 56
1721 y29 is 58
1722 y30 is 60
1723 y31 is 62
1724 y32 is 64
1725 y33 is 66
1726 y34 is 68
1727 y35 is 70
1728 y36 is 72
1729 y37 is 74
1730 y38 is 76
1731 y39 is 78
1732 y40 is 80
1733 y41 is 82
1734 y42 is 84
1735 y43 is 86
1736 y44 is 88
1737 y45 is 90
1738 y46 is 92
1739 y47 is 94
1740 y48 is 96
1741 y49 is 98
1742 y50 is 100
1743 y51 is 100
1744 y52 is 98
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Line no. Subject Predicate Object
1745 y53 is 96
1746 y54 is 94
1747 y55 is 92
1748 y56 is 90
1749 y57 is 88
1750 y58 is 86
1751 y59 is 84
1752 y60 is 82
1753 y61 is 80
1754 y62 is 78
1755 y63 is 76
1756 y64 is 74
1757 y65 is 72
1758 y66 is 70
1759 y67 is 68
1760 y68 is 66
1761 y69 is 64
1762 y70 is 62
1763 y71 is 60
1764 y72 is 58
1765 y73 is 56
1766 y74 is 54
1767 y75 is 52
1768 y76 is 50
1769 y77 is 48
1770 y78 is 46
1771 y79 is 44
1772 y80 is 42
1773 y81 is 40
1774 y82 is 38
1775 y83 is 36
1776 y84 is 34
1777 y85 is 32
1778 y86 is 30
1779 y87 is 28
1780 y88 is 26
1781 y89 is 24
1782 y90 is 22
1783 y91 is 20
1784 y92 is 18
1785 y93 is 16
1786 y94 is 14
1787 y95 is 12
1788 y96 is 10
1789 y97 is 8
1790 y98 is 6
1791 y99 is 4
1792 y100 is 2
1793 y101 is 0
1794 function1 is-a function
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Line no. Subject Predicate Object
1795 function1 has-a p0
1796 function1 has-a p1
1797 function1 has-a p2
1798 function1 has-a p3
1799 function1 has-a p4
1800 function1 has-a p5
1801 function1 has-a p6
1802 function1 has-a p7
1803 function1 has-a p8
1804 function1 has-a p9
1805 function1 has-a p10
1806 function1 has-a p11
1807 function1 has-a p12
1808 function1 has-a p13
1809 function1 has-a p14
1810 function1 has-a p15
1811 function1 has-a p16
1812 function1 has-a p17
1813 function1 has-a p18
1814 function1 has-a p19
1815 function1 has-a p20
1816 function1 has-a p21
1817 function1 has-a p22
1818 function1 has-a p23
1819 function1 has-a p24
1820 function1 has-a p25
1821 function1 has-a p26
1822 function1 has-a p27
1823 function1 has-a p28
1824 function1 has-a p29
1825 function1 has-a p30
1826 function1 has-a p31
1827 function1 has-a p32
1828 function1 has-a p33
1829 function1 has-a p34
1830 function1 has-a p35
1831 function1 has-a p36
1832 function1 has-a p37
1833 function1 has-a p38
1834 function1 has-a p39
1835 function1 has-a p40
1836 function1 has-a p41
1837 function1 has-a p42
1838 function1 has-a p43
1839 function1 has-a p44
1840 function1 has-a p45
1841 function1 has-a p46
1842 function1 has-a p47
1843 function1 has-a p48
1844 function1 has-a p49
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Line no. Subject Predicate Object
1845 function1 has-a p50
1846 function2 is-a function
1847 function2 has-a p51
1848 function2 has-a p52
1849 function2 has-a p53
1850 function2 has-a p54
1851 function2 has-a p55
1852 function2 has-a p56
1853 function2 has-a p57
1854 function2 has-a p58
1855 function2 has-a p59
1856 function2 has-a p60
1857 function2 has-a p61
1858 function2 has-a p62
1859 function2 has-a p63
1860 function2 has-a p64
1861 function2 has-a p65
1862 function2 has-a p66
1863 function2 has-a p67
1864 function2 has-a p68
1865 function2 has-a p69
1866 function2 has-a p70
1867 function2 has-a p71
1868 function2 has-a p72
1869 function2 has-a p73
1870 function2 has-a p74
1871 function2 has-a p75
1872 function2 has-a p76
1873 function2 has-a p77
1874 function2 has-a p78
1875 function2 has-a p79
1876 function2 has-a p80
1877 function2 has-a p81
1878 function2 has-a p82
1879 function2 has-a p83
1880 function2 has-a p84
1881 function2 has-a p85
1882 function2 has-a p86
1883 function2 has-a p87
1884 function2 has-a p88
1885 function2 has-a p89
1886 function2 has-a p90
1887 function2 has-a p91
1888 function2 has-a p92
1889 function2 has-a p93
1890 function2 has-a p94
1891 function2 has-a p95
1892 function2 has-a p96
1893 function2 has-a p97
1894 function2 has-a p98
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Line no. Subject Predicate Object
1895 function2 has-a p99
1896 LS1 has-a energyConsumption
1897 LS1 has-a service
1898 LS1 has-a lightIntensity
1899 LS1 has-a margin
1900 LS1 has-a dimdelta
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B Appendix B: Recipe Conditional Choices Dia-

grams

A diagram in Figure 54 presents a recipe from a lamp (see also Appendix A, Listing
250-729). A diagram in Figure 55 presents an example of a recipie with conditional
choices in the Mirror’s knowledgebase.
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C Appendix C: List of Publications

• Modelling a Multi-Core Media Processor Using JCSP by Jon M. Ker-
ridge, Anna Kosek, and Aly Syed. Published in proceedings of Communicating
Process Architectures in 2008 (CPA’08) [34].

Abstract. Manufacturers are creating multi-core processors to solve special-
ized problems. This kind of processor can process tasks faster by running them
in parallel. This paper explores the usability of the Communicating Sequen-
tial Processes model to create a simulation of a multi-core processor aimed at
media processing in hand-held mobile devices. Every core in such systems can
have different capabilities and can generate different amounts of heat depend-
ing on the task being performed. Heat generated reduces the performance of
the core. We have used mobile processes in JCSP to implement the allocation
of tasks to cores based upon the work the core has done previously.

• JCSP agents-based service discovery for pervasive computing by Jon
M. Kerridge, Anna Kosek, and Aly Syed. Published in proceedings of Com-
municating Process Architectures in 2009 (CPA’09) [35].

Abstract. Device and service discovery is a very important topic when con-
sidering pervasive environments. The discovery mechanism is required to work
in networks with dynamic topology and on limited software, and be able to
accept different device descriptions. This paper presents a service and de-
vice discovery mechanism using JCSP agents and the JCSP network package
jcsp.net2.

• A dynamic connection capability for pervasive adaptive environ-
ments using JCSP by Anna Kosek, Aly Syed, Jon Kerridge, and Alistair
Armitage. Published in proceedings of The Thirty Fifth Annual Convention of
the Society for the Study of Artificial Intelligence and Simulation of Behaviour
in 2009 (AISB’09).[37]

Abstract. The house, office or warehouse environment is full of devices that
make users’ life and work easier. People nowadays use personal computers, lap-
tops, Personal Digital Assistants, mobile phones and many more devices with
ease. The mechanism to connect, enable co-operation and exchange data be-
tween devices will help to use devices’ full capabilities. This paper investigates
the usability of Communicating Sequential Processes for Java in pervasive sys-
tems and the adaptation possibilities offered by this environment. It focuses on
dynamic connection capabilities. The paper also describes an experiment that
organizes an adapting pervasive environment which uses dynamic connections
for data flow.

• RDF Recipes for Context-Aware Interoperability in Pervasive Sys-
tems by Anna M. Kosek, Aly A. Syed, and Jon M. Kerridge. Published in
proceedings of IEEE Symposium on Computers and Communications in 2010
(ISCC’10).[38]

Abstract. Nowadays home automation systems integrate many devices from
security system, heating, ventilation and air conditioning system, lighting sys-
tem or audio-video systems. Every time a new device is installed, problems
with connecting it to other devices and synchronization may appear. The
technology trends are to build more powerful and functional new autonomous
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devices, rather than improve device synchronization, data and functional dis-
tribution and adaptation to changing environment. This paper highlights in-
teroperability problems in pervasive computing and presents a solution for
devices with limited processing capabilities by use of an ontology for knowl-
edge formulation and semantic interoperability.


