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Abstract Restricted BoltzmannMachines (RBMs) andmodels derived from themhave been
successfully used as basic building blocks in deep artificial neural networks for automatic
features extraction, unsupervised weights initialization, but also as density estimators. Thus,
their generative and discriminative capabilities, but also their computational time are instru-
mental to a wide range of applications. Our main contribution is to look at RBMs from a
topological perspective, bringing insights from network science. Firstly, here we show that
RBMs and Gaussian RBMs (GRBMs) are bipartite graphs which naturally have a small-
world topology. Secondly, we demonstrate both on synthetic and real-world datasets that by
constraining RBMs and GRBMs to a scale-free topology (while still considering local neigh-
borhoods and data distribution), we reduce the number of weights that need to be computed
by a few orders of magnitude, at virtually no loss in generative performance. Thirdly, we
show that, for a fixed number of weights, our proposed sparse models (which by design have
a higher number of hidden neurons) achieve better generative capabilities than standard fully
connected RBMs and GRBMs (which by design have a smaller number of hidden neurons),
at no additional computational costs.
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1 Introduction

Since its conception, deep learning (Bengio 2009) is widely studied and applied, from
pure academic research to large-scale industrial applications, due to its success in differ-
ent real-world machine learning problems such as audio recognition (Lee et al. 2009),
reinforcement learning (Mnih et al. 2015), transfer learning (Ammar et al. 2013), and
activity recognition (Mocanu et al. 2015). Deep learning models are artificial neural net-
works with multiple layers of hidden neurons, which have connections only among neurons
belonging to consecutive layers, but have no connections within the same layers. In gen-
eral, these models are composed by basic building blocks, such as Restricted Boltzmann
Machines (RBMs) (Smolensky 1987). In turn, RBMs have proven to be successfully not just
providing good initialization weights in deep architectures (in both supervised and unsu-
pervised learning), but also as standalone models in other types of applications. Examples
are density estimation to model human choice (Osogami and Otsuka 2014), collaborative
filtering (Salakhutdinov et al. 2007), information retrieval (Gehler et al. 2006), or multi-
class classification (Larochelle and Bengio 2008). Thus, an important research direction is to
improve the performance of RBMs on any component (e.g. computational time, generative
and discriminative capabilities).

Themain contribution of this paper is to look at the deep learning basic building blocks, i.e.
RBMs and Gaussian RBMs (GRBMs) (Hinton and Salakhutdinov 2006), from a topological
perspective, bringing insights from network science, an extension of graph theory which
analyzes real world complex networks (Strogatz 2001). Firstly, we study the topological
characteristics ofRBMsandGRBMs, finding that these exhibit a small-world topology (Watts
and Strogatz 1998). We then hypothesize that by constraining the topology to be also scale-
free (Barabasi andAlbert 1999) it is possible to reduce the size of ordinaryRBMs andGRBMs
models, as it has been shownbyDelGenio et al. (2011) that scale-free networks are sparse.We
introduce a method to make small-world, scale-free topologies while still considering local
neighborhoods and data distribution. We dub the resulting models as compleX Boltzmann
Machine (XBM) and Gaussian compleX Boltzmann Machine (GXBM), respectively. An
interesting finding is that constraining such XBM and GXBM topologies at their inception
leads to intrinsically sparse networks, a considerable advantage to typical state-of-the-art
methods in which sparsity is enforced as an aftermath, that is during testing (exploitation)
phase (Swersky et al. 2012; Wan et al. 2015; Ranzato et al. 2008; Luo et al. 2011; Lee et al.
2008). In turn, XBM and GXBM have a considerably smaller number of weights, which
further on contributes to considerably faster computational times (proportional to the number
of weights in the model), both in the training and testing phases. What is more, we found
that the proposed topology imposes an inductive bias on XBMs and GXBMs, which leads to
better statistical performance than RBMs and GRBMs. Our comparative study is based on
both simulated and real-world data, including the Geographical origin of music dataset (Zhou
et al. 2014), the MNIST digits dataset, CalTech 101 Silhouettes dataset (Marlin et al. 2010),
and the 8 datasets from UCI evaluation suite (Larochelle and Murray 2011). We show that,
given the same number of hidden neurons, XBM and GXBM have similar or relatively close
capabilities to RBM and GRBM, but are considerably faster thanks to their reduced amount
of weights. For instance, in a network of 100 visible and 100 hidden neurons, the reduction
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in weights was by one order of magnitude. A network with 1000 visible and 1000 hidden
neurons led to a reduction in weights by two orders of magnitude. Additionally, we show that
given the same amount of weights, RBMs or GRBMs derived models with a higher number
of hidden neurons and sparse connectivity achieve better generative capabilities than fully
connected RBMs or GRBMs with a smaller amount of hidden neurons.

The remaining of this paper is organized as follows. Section 2 presents background knowl-
edge about Boltzmann machines and complex networks for the benefit of the non-specialist
reader andhighlights the keymotivations of ourwork. Section3discusses the relation between
deep leaning and network science and details themathematical models of our proposedmeth-
ods. Section 4 describes the experiments performed and analyzes the results. Finally, Sect. 5
concludes the paper and presents directions of future research.

2 Background and motivations

2.1 Boltzmann machines

Originally derived by Ackley et al. (1985), a Boltzmann machine is a network of symmet-
rically connected stochastic binary units (or neurons). To formalize a Boltzmann machine,
and its variants, three main ingredients are required, namely an energy function provid-
ing scalar values for a given configuration of the network, the probabilistic inference and
the learning rules required for fitting the free parameters. This bidirectional connected net-
work with stochastic nodes has no unit connected with itself. However, Boltzmann machines
with unconstrained connectivity are infeasible in practical problems due to the intractable
inference. A critical step in taming computational complexity is to add constraints to the
connectivity network, which is what makes Boltzmann machines applicable to real world
problems.

Smolensky (1987) presented restricted Boltzmann machine that could learn a probabil-
ity distribution over its set of inputs. The model architecture was restricted by not allowing
intra-layer connections between the units, as depicted in Fig. 2 (left). Since their concep-
tion, different types of Boltzmann machines have been developed and successfully applied.
Yet most of these variations preserve some fundamental characteristics. RBMs are gen-
erative stochastic neural networks which consists of two binary layers, the visible layer,
v = [v1, v2, . . . , vnv ], and the hidden layer, h = [h1, h2, . . . , hnh ], with nv being the num-
ber of visible neurons and nh the number of the hidden ones. Formally, the energy function
of RBMs for any state {v,h} is computed by summing over all possible interactions between
neurons, weights and biases, as follows:

E(v, h) = −
∑

i, j

vi h jWi j −
∑

i

vi ai −
∑

j

h j b j (1)

where Wi j denotes the connection between the visible neuron i and the hidden neuron j , ai
is the bias for visible neuron i and b j is the bias for hidden neuron j . The term

∑
i, j vi h jWi j

represents the total energy between neurons from different layers,
∑

i vi ai represents the
energy of the visible layer and

∑
j h j b j the energy of the hidden layer. The inference in

RBMs is stochastic. For anyhiddenneuron j the conditional probability is givenby p(h j |v) =
S(b j + ∑

i viWi j ), and for any visible unit i it is given by p(vi |h) = S(ai + ∑
j h jWi j ),

where S(·) is a sigmoid function.
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Later on, Hinton and Salakhutdinov (2006) have extended the RBMsmodels tomake them
suitable for a large number of applications with real-valued feature vectors. They used expo-
nential family harmoniums results from Welling et al. (2005) and developed the Gaussian
Restricted Boltzmann Machine (GRBM) model that, like RBMs, forms a symmetrical bipar-
tite graph. However, the binary units from the visible layer v are replaced by linear units
with Gaussian noise. The hidden units h remain binary. Therein, the total energy function
for a state {v,h} of GRBMs is calculated in a similar manner to RBMs, but includes a slight
change to take into consideration the Gaussian noise of the visible neurons, as defined in
Eq. 2.

E(v, h) = −
∑

i, j

vi

σi
h jWi j −

∑

i

(vi − ai )2

2σ 2
i

−
∑

j

h j b j (2)

where, the term
∑

i, j
vi
σi
h jWi j gives the total energy between neurons from different layers,

∑
i

(vi−ai )2

2σ 2
i

is the energy of the visible layer, and σi represents the standard deviation of the

visible neuron i . The stochastic inference for any hidden neuron j can be done as for RBMs,
while for any visible unit i is made by sampling from a Gaussian distribution, defined as
N (ai + ∑

j h jWi j , σ
2
i ).

Parameters of RBM and GRBMmodels are fitted by maximizing the likelihood function.
In order to maximize the likelihood of the model, the gradients of the energy function with
respect to the weights have to be calculated. Because of the difficulty in computing the
derivative of the log-likelihood gradients, Hinton (2002) proposed an approximation method
called Contrastive Divergence (CD). In maximum likelihood, the learning phase actually
minimizes the Kullback–Leiber (KL) measure between the input data distribution and the
model approximation. Thus, in CD, learning follows the gradient of:

CDn ∝ DKL(p0(x)||p∞(x)) − DKL (pn(x)||p∞(x)) (3)

where, pn(.) is the resulting distribution of a Markov chain running for n steps. Besides
that, other methods have been proposed to train RBMs (e.g. persistent contrastive diver-
gence (Tieleman 2008), fast persistent contrastive divergence (Tieleman and Hinton 2009),
parallel tempering (Desjardins et al. 2010)), or to replace the Gibbs sampling with a transi-
tion operator for a faster mixing rate and to improve the learning accuracy without affecting
computational costs (Brgge et al. 2013).

2.2 Sparsity in restricted Boltzmann machines

In general and for the purposes of machine learning, obtaining a sparse version of a given
model, leads to a reduction in parameters, which, in turns helps in addressing problems such
as overfitting and excessive computational complexity. The sparsity issue in RBMs is so
important that considerable attention is given to it in the literature. Hereafter we point to the
most relevant works but will not attempt to provide a comprehensive overview. It is worth
mentioning the work by Dieleman and Schrauwen (2012) and Yosinski and Lipson (2012)
who have shown how the histogram of the RBM weights changes shape during the training
process, going from a Gaussian shape (initially) to a shape that peaks around zero (which
provides a further motivation towards sparsity enforcement).

One of the most common methods to obtain sparse representations is by encouraging it
during the training phase using different variants of a sparsity penalty function, as done for
instance, in Lee et al. (2008) and Ranzato et al. (2008). However, performing this process
during the learning phase does not guarantee sparsity in the testing phase (Swersky et al.
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2012). To overcome this limitation, Cardinality-RBM (Ca-RBM) was proposed by Swersky
et al. (2012) to ensure sparsity in the hidden representation by introducing cardinality poten-
tials into the RBMs energy function. Moreover, Wan et al. (2015) have proposed Gaussian
Ca-RBM, in which they replace the universal threshold for hidden units activation from Ca-
RBM with adaptable thresholds. These thresholds are sampled from a certain distribution
which takes into consideration the input data. Recently, Han et al. (2015) introduced one of
the most efficient methods to obtain weights sparsity in deep neural network. They success-
fully obtained up to 10 times less weights in deep neural networks with no loss in accuracy.
Themethod assumes three simple steps: (1) the network is trained to learn the most important
connections; (2) the unimportant connections are pruned; (3) the network is retrained to fine
tune the weights of the remaining connections. To achieve the best performance the steps 2
and 3 have to be repeated iteratively making it a computationally expensive method.

Thus, to the best of our knowledge, all of the state-of-the-art methods impose a sparsity
regularization target during the learning process, which makes them impractical with large
datasets having millions (or even billions) of input features. This is because the training
process is excessively slow in such situations. Our solution to overcome this problem is to
ensure weight sparsity from the initial design of an RBM using relevant findings from the
field of network science. To this end, next section introduces these findings.

2.3 Complex networks

Complex networks (e.g. biological neural networks, actors and movies, power grids, trans-
portation networks) are everywhere, in different forms and different fields, fromneurobiology
to statistical physics (Strogatz 2001), and they are studied in network science. Formally, a
complex network is a graph with non trivial topological features, human or nature made. The
most two well-known and deeply studied types of topological features in complex networks
are the scale-free and the small-world concepts, due to the fact that a wide range of real-world
complex networks have these topologies. A network with a scale-free topology (Barabasi and
Albert 1999) is a sparse graph (Del Genio et al. 2011) that approximately has a power-law
degree distribution P(k) ∼ k−γ , where the fraction P(k) from the total nodes of the network
has k connections to other nodes, and the parameter γ ∈ (2, 3) usually.

At the same time, a network model with the small-world topological feature (Watts and
Strogatz 1998) is defined to be a graph inwhich the typical distance (L) between two randomly
chosen nodes (the number of hops required to reach one node from the other) is very small,
approximately on the logarithmic scale with respect to the total number of nodes (N ) in the
network, while at the same time it is characterized by a clustering coefficient which is signifi-
cantly higher thanmay appear by random chance.More formally, a graph sequence (GN )N≥1

has a small-world topology, if there is a constant 0 < K < ∞ such that limN→∞ p(LN ≤
KlogN ) = 1, where LN is the typical shortest path of GN (van der Hofstad 2016). As
an example, Fig. 1 roughly illustrates a small-world topology, and a scale-free one, in two
small randomly generated graphs. Both types of topologies are studied below in the context of
restrictedBoltzmannmachines, leading to our proposal of sparseBoltzmannmachinemodels.

3 Complex networks and Boltzmann machines

In this section, we firstly discuss the relation between complex networks on one side and
restricted Boltzmannmachines andGaussian restricted Boltzmannmachine on the other side.
Secondly, we introduce an algorithm to generate sparse topologies for bipartite graphs which
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Fig. 1 Examples of complex
networks topologies: (left)
small-world; (right) scale-free

have both properties (i.e. scale-free and small-world) that also considers the distribution
of the training data. Finally, we make use of the previous mentioned topology generator
algorithm and present the mathematical details of two novel types of Boltzmann machines,
dubbed compleXBoltzmannMachines (XBMs) andGaussian compleXBoltzmannMachines
(GXBMs).

3.1 Topological insight into RBMs and GRBMs

Lately, the neural networks of the human brain have started to be studied using tools from
network science (Pessoa 2014). It has been found that these exhibit both a small-world
topology (i.e. the shortest path between any two nodes or neurons is very small, approximately
equal to the logarithm of the total number of nodes) and a scale-free topology (i.e their degree
distribution follows a power law).At the same time, bymaking small steps towardsmimicking
the architecture and the functionality of the brain, deep learning methods have emerged as a
promising solution in computer science to develop automated learning systems (Jones 2014;
Mnih et al. 2015). Here we argue that there is a clear relation between network science and
deep learning. In the scope of these arguments, we introduce the following proposition:

Proposition 1 Both restricted Boltzmann machines and Gaussian restricted Boltzmann
machines are bipartite graphs which have a small-world topology.

Proof The diameter (i.e. the longest shortest path between any two neurons) of RBMs or
GRBMs is 2, independently on the number of hidden or visible neurons, due to the fact that
both models have all the possible interlayer connections, but no intralayer connections. This
yields that L is bounded up by 2 for any RBM or GRBM. By replacing L in the small-world
definition from Sect. 2.3, we obtain limN→∞ p(2 ≤ KlogN ) = 1, which is true for any
constant K , 0 < K < ∞.1 Similarly as RBMs and GRBMs are complete bipartite graphs,
their clustering coefficient (Latapy et al. 2008) is 1, being higher than any other possible
cluster coefficient.2 Thus, it is clear that any RBMs or GRBMs have a small-world topology.

	

Following the same line, our intuition is that by preserving the small-world property of RBMs
or GRBMs, while introducing also the scale-free property in their topology, we can obtain
new sparse Boltzmann machines derived models which may have similar performance to
RBMs or GRBMs, but with fewer free parameters (i.e. the weights between the visible and
the hidden neurons). Thus, further on, we introduce the complex Boltzmann machine and the
Gaussian complexBoltzmannmachine (i.e. the derivatives of RBMandGRBM, respectively)
which exhibit both scale-free and small-world topological properties.

1 Please note that according to the definitions from van der Hofstad (2016), this reflects even a particular
subset of small-worlds, namely ultra small-worlds.
2 Please note that the clustering coefficient takes values between 0 and 1.
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3.2 Topology generation algorithm for XBM and GXBM

To generate a sparse topology in XBM and GXBM, we have devised a three stages heuristic
method, detailed in Algorithm 1. In the first stage, a scale-free bipartite graph is generated;
in the second one, the graph is adjusted to be also small-world; and in the third stage, the
graph topology is fitted to the data distribution. Below, this method is thoroughly discussed.

First we generate a power-law degree sequence with nv +nh elements, using P(k) = k−γ ,
∀k ∈ N, 1 ≤ k ≤ nv + nh , with minimum degree equal to four to favor the small-world
topology, and we sort it in descending order (i.e. Algorithm 1, lines 8–9). Each element
from the sequence represents a node in the network and the actual value of that element (i.e.
the degree) represents the number of connections for that specific node. After that, we split
the degree sequence in two, by alternatively picking the nodes starting from those with the
highest degree and proceeding until the smallest degree nodes are reached. In this way we
populate two separate lists, for the hidden layer and for the visible layer, respectively (i.e.
Algorithm 1, lines 10–16). Once the list having the smallest number of elements is completed,
we add all the remaining elements of the original sequence to the bigger list (i.e. Algorithm 1,
lines 17–22). In an undirected bipartite graph both layers need to have an equal number of
connections. Due to the fact that the sum of the elements from one list might not be equal
with the sum of the elements from the other list, we add somemore degrees to the elements of
the list with less degrees (proportionally to its initial degree distribution) to equalize the two
lists (i.e. Algorithm 1, lines 23–28). Next, starting from these two lists, we create a bipartite
graph G using a Havel-Hakimi procedure (Hakimi 1962) (i.e. Algorithm 1, line 29). Further
on, we add few more connections to each node in G with the aim to achieve the optimal
clustering coefficient as required in small-world topologies (i.e. Algorithm 1, lines 30–49).
This ensures also a dense local connectivity useful, by example, for images. To clarify how
this is done, note that in Algorithm 1 (line 33), when parameter σ neigh is increased the nodes
local neighborhoods gradually turn into larger neighborhoods (or even the graph as a whole).
In turn, when parameter φ is increased, the neighborhoods tend to become denser. The whole
algorithm proceeds iteratively until the bipartite graph meets the criteria of small-worldness
(i.e. Algorithm 1, line 51). We should mention, though, that during our whole study we
observed that this property was usually achieved after just one iteration. To take the data
distribution into consideration, as a final stage, the algorithm re-arranges the order of the
visible nodes in G such that the nodes having more connections end up corresponding to
the training data features with a higher standard deviation (i.e. Algorithm 1, line 53). The
resulting bipartite graph G can then be used as the topology of our XBM or GXBM models
(i.e. Algorithm 1, line 55–57), as detailed next.

3.3 Complex Boltzmann machines

Just like restricted Boltzmann machines, complex Boltzmann machines are made up, by two
layers of neurons,with connections only in betweendifferent layers andno connectionswithin
the same layer. The bottom layer (i.e. the visible one) is denoted further with a binary vector
v = [v1, v2, . . . , vnv ], in which each unit vi is a binary unit, and where nv is the size of v (i.e.
the number of neurons of the visible layer). The top layer (i.e. the hidden one) is represented
further by the binary vector h = [h1, h2, . . . , hnh ], in which each element h j is binary, and
where nh is the size of h. Furthermore, each neuron from the visible layer has associated

3 In this paper, we have varied σ neigh and φ between 4 and 6 to favor the emergence of local medium
connected neighborhoods.
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%% define nv , nh (number of visible and hidden neurons, respectively);1
%% assumptions: nv > 4 and nh > 4 (we consider non trivial cases);2
%% define σneigh , φ (parameters to control the nodes local connectivity);3
%% initialization;4
set Lth = log(nv + nh );%% set a threshold for the small-world topology;5
%% topology generation;6
repeat7

generate randomly SPL , a power law degree sequence of size nv + nh with the minimum degree of 4;8
sort SPL in descending order;9
set Sv=[] and Sh=[];%% sequences to store the degree of the visible and hidden nodes,respectively;10
i=1;11
while i ≤ 2×min(nv, nh ) do12

Sv .append(SPL [i]);13
Sh .append(SPL [i + 1]);14
i=i+2;15

end16
if (nv > nh ) then17

Sv .append(SPL [2 × nh : end]);18
end19
else20

Sh .append(SPL [2 × nv : end]);21
end22
if sum(Sv) < sum(Sh ) then23

add sum(Sh ) − sum(Sv) degrees equally distributed among the visible nodes;24
end25
else26

add sum(Sv) − sum(Sh ) degrees equally distributed among the hidden nodes;27
end28
G =createBipartiteGraphUsingHavelHakimiProcedure(Sv , Sh ) (Hakimi 1962);29
for o=1:φ do30

for i=1:nv do31
while a finite number of trials do32

j = �N ((i × nh )/nv, σneigh );%% sampled from a Gaussian distribution;33
if 0 ≤ j ≤ nh then34

addEdge (i, j) to G;35
break;36

end37
end38

end39
for j=1:nh do40

while a finite number of trials do41
i = �N (( j × nv)/nh , σneigh );%% sampled from a Gaussian distribution;42
if 0 ≤ i ≤ nv then43

addEdge (i, j) to G;44
break;45

end46
end47

end48
end49
L =computeAverageShorthestPath(G);50

until L ≤ Lth ;51
%% fit the topology to the data;52
re-arrange the visible nodes in G s.t. the ones with higher degree correspond to data features with higher std. dev.;53
%% topology utilization;54
use the visible nodes from G as the visible layer in XBM (or GXBM);55
use the hidden nodes from G as the hidden layer in XBM (or GXBM);56
use the edges from G as the weights in XBM (or GXBM);57

Algorithm 1: Pseudo-code of the algorithm used to generate the topology of the XBM and
GXBM models.
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Fig. 2 Schematic architecture of: RBM (left) and XBM (right)

one bias. The biases of the visible neurons are collected in a vector a = [a1, a2, . . . , anv ].
Similarly, hidden layer neurons have biases, collected in vector b = [b1, b2, . . . , bnh ].

The difference between RBM and XBM consists in how the neurons from the differ-
ent layers are connected between them. RBMs form a full undirected mesh between all
the neurons on the hidden layer and all the neurons on the visible layer. By contrast, in
XBMs the connections between the two layers are still undirected but sparse, as generated
by Algorithm 1. Thus, XBMs have both scale-free and small-world topological properties.
These connections are defined in a sparse adjacency weights matrix W = [[w11, w12, . . . ,

w1nh ], . . . , [wnv1, wnv2, . . . , wnvnh ]] in which the elements are either null (wi j = 0) when
there is no connection between the visible neuron i and the hidden neuron j or have a
connection weight (wi j �= 0) when the connection between i and j exists. The high level
architectures of RBMs and XBMs are depicted in Fig. 2. The sparse topology of XBMs leads
to a much smaller number of connections, which further on leads to faster computational
times than RBMs.

3.3.1 The XBM energy function

The energy function of an XBM is defined as:

E(v, h) = −
nv∑

i=1

∑

j∈�h
i

vi h jwi j −
nv∑

i=1

vi ai −
nh∑

j=1

h jb j (4)

where, �h
i is the set of all hidden neurons connected to the visible neuron i (i.e. �h

i = { j |1 ≤
j ≤ nh,∀ j ∈ N ∧ wi j �= 0}).

3.3.2 XBM inference

Due to the fact that there are no links between the neurons on the same layer, inference can
still be performed in parallel for any visible neuron i or any hidden neuron j , as below:

p(h j = 1|v,�) = S
(
b j +

∑

i∈�v
j

viwi j

)
(5)

p(vi = 1|h,�) = S
(
ai +

∑

j∈�h
i

h jwi j

)
(6)

where, �v
j is the set of all visible neurons connected to the hidden neuron j (i.e. �v

j =
{i |1 ≤ i ≤ nv,∀i ∈ N ∧ wi j �= 0}), S(·) is the sigmoid function, and � represents the free
parameters of the model (i.e.W, a, b).
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3.3.3 XBM learning

The general update rule for the free parameters � of the GXBM model is given by:

��τ+1 = ρ��τ + α(∇�τ+1 − ξ�τ ) (7)

where τ , ρ, α, and ξ represent the update number, momentum, learning rate, and weights
decay, respectively. For a thorough discussion on the optimal choice of these parameters
the interested reader is referred to Hinton (2012). Furthermore, ∇�τ+1 for each of the free
parameters can be computed by using contrastive divergence (Hinton 2002) and deriving the
energy function from Eq. 4 with respect to that parameter, yielding:

∇wi j ∝ 〈vi h j 〉0 − 〈vi h j 〉n; ∀i ∈ N, 1 ≤ i ≤ nv, ∀ j ∈ �h
i ; (8)

∇ai ∝ 〈vi 〉0 − 〈vi 〉n; ∀i ∈ N, 1 ≤ i ≤ nv; (9)

∇b j ∝ 〈h j 〉0 − 〈h j 〉n; ∀ j ∈ N, 1 ≤ j ≤ nh; (10)

with 〈·〉n being the distribution of the model obtained after n steps of Gibbs sampling in
a Markov Chain which starts from the original data distribution 〈·〉0. We must note that
in this paper we have chosen to train our proposed models using the original contrastive
divergence method (Hinton 2002), which is widely used and allows for a direct comparison
to the results reported in the literature. It may well be that other training methods would
offer better performance; yet, overall, we do not expect that a particular training method to
significantly affect our findings.

3.4 Gaussian complex Boltzmann machines

Just like in GRBMs and RBMs, the only differences between GXBMs and XBMs is that in
the case of GXBMs the visible layer v = [v1, v2, . . . , vnv ] has real values and each vi is
a linear unit with Gaussian noise (Hinton and Salakhutdinov 2006). Thus, the total energy
equation of GXBMs is slightly changed to reflect the real visible layer, as follows:

E(v, h) = −
nv∑

i=1

∑

j∈�h
i

vi

σi
h jwi j −

nv∑

i=1

(vi − ai )2

2σ 2
i

−
nh∑

j=1

h jb j (11)

where, σi represents the standard deviation of the visible neuron i . We note that in the
remainder we adopt the same notations used in XBM modeling, unless specified otherwise.

Furthermore, the inference in GXBMs can still be performed in parallel for any visible
neuron i or any hidden neuron j , as below:

p(h j = 1|v,�) = S
(
b j +

∑

i∈�v
j

vi

σi
wi j

)
(12)

p(vi = x |h,�) = N
(
ai +

∑

j∈�h
i

h jwi j , σ
2
i

)
(13)

where,N (·, ·) represents a Gaussian distribution. Finally, the learning in GXBM can be done
using the same procedure as for XBM (Sect. 3.3.3).
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4 Experimental results

To assess the performance of XBM and GXBM we have conducted three sets of experi-
ments in a step-wise fashion. In the first one, we study the behavior of XBM, GXBM and
their topology generation algorithm. In the second one, we analyze the reconstruction error
obtained by GXBM on random generated data and on a real world dataset, more exactly on
the Geographical Origin ofMusic dataset (Zhou et al. 2014). Thirdly, we assess the statistical
performance of XBM on the MNIST digits dataset, CalTech 101 Silhouettes dataset (Marlin
et al. 2010), and the 8 datasets from UCI evaluation suite (Larochelle and Murray 2011)
using Annealed Importance Sampling (AIS) (Salakhutdinov and Murray 2008).

Furthermore, in the last two sets of experiments, we compare GXBM/XBM against
three other methods, as follows: (1) the standard fully connected GRBM/RBM; (2) sparse
GRBM/RBM models, denoted further GRBMFixProb (Fixed Probability)/RBMFixProb, in which
the probability for any possible connection to exist is set to the number of weights of the
counterpart GXBM/XBMmodel divided by the total number of possible connection for that
specific configuration of hidden and visible neurons;4 and (3) sparse GRBM/RBM models,
denoted further GRBMTrPrTr (Train Prune Train)/RBMTrPrTr, in which the sparsity is obtained
using the algorithm introduced in Han et al. (2015) with L2 regularization, and in which
the weights sparsity target is set to the number of weights of the counterpart GXBM/XBM
model. Please note that in all experiments if the weights sparsity target was not reached
after 50 pruning iterations, we stopped the training algorithm and we used the obtained
GRBMTrPrTr/RBMTrPrTr model. For each evaluated case, we analyze two scenarios when:
(1) the number of connections is the same for the sparse and the full connected models, while
the number of hidden neurons is different; (2) the number of hidden neurons is the same for
the sparse and the full connected models, while the number of connections is different.

4.1 Scrutinizing XBM and GXBM topologies

In this set of experiments, we analyze the characteristics of the XBM sparse topology. For
the sake of brevity, we refer just to the XBM–RBM relation, since the GXBM–GRBM
is identical from the topological point of view. To perform the various operations on the
bipartite graph we have used the NetworkX library (Hagberg et al. 2008), setting the power
law coefficient γ to 2, a typical value in various real-world networks (Clauset et al. 2009).
Firstly, we verified the output of the topology-generation algorithm (i.e. Algorithm 1). Being
one of the algorithm constraints, the small-world property is preserved in XBM. At the same
time, due to the fact that the neurons from different layers are connected starting from a
power law degree sequence, the scale-free property is also preserved. As example, Fig. 3a
depicts the weights distribution for an XBM having 784 visible and 1000 hidden neurons,
while Fig. 3b shows the degree distribution of an XBM with 100 visible and 1000 hidden
neurons on the loglog scale. Figure 3b exhibits evidently a scale-free degree distribution. All
other experiments exhibited the required scale-free distribution. Furthermore, we analyzed
the number of connections in XBM in comparison with the number of connections in RBMs,
given the same number of hidden (nh) and visible (nv) neurons. Figure 3c depicts how many
times the number of connections in RBM is bigger than the number of connections in XBM
for various configurations (the number of hidden and visible neurons varies from 10 to 1000).
The actual values in the heat map are computed using the following formula nRBMw /nXBMw ,

4 Please note that this procedure yields approximately the same number of connections in
GRBMFixProb/RBMFixProb as in GXBM/XBM to ensure a fair comparison.
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Fig. 3 a Example of weight distribution for an XBMwith 784 visible and 1000 hidden neurons. b The degree
distribution of an XBM with 1000 hidden neurons and 100 visible ones (loglog scale). c Studying the relation
between the number of weights in RBM and XBM (the heatmap values are given by nRBMw /nXBMw ). d Training
behavior on random data for an GXBM with 1000 hidden neurons and 100 visible ones

where nXBMw is obtained after counting the links given by the topology generation algorithm
for XBM, and nRBMw = nvnh . It can be observed that as the number of hidden and visible
neurons increases, the number of weights in XBM becomes smaller and smaller than the one
in RBM. For instance, we achieve around 14 times less weights in XBM for 100 visible and
100 hidden neurons, and approximatively 95 times less weights in XBM for 1000 visible and
1000 hidden neurons.

4.2 GXBM evaluation

In the second set of experiments, we assess the performance of GXBM against GRBM,
GRBMFixProb, and GRBMTrPrTr on randomly generated as well as on the real-world dataset
Geographical Origin of Music (Zhou et al. 2014).

Settings and implementations For all experiments performed in this set we have used
Python implementations of the four models under scrutiny. In all models, the momentum
was set to 0.5, the learning rate to 0.001, and the number of Gibbs sampling in contrastive
divergence to 1, as discussed by Hinton (2012). The weights decay was 0.0002 for GXBM,
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GRBM, andGRBMFixProb, while for GRBMTrPrTr we used the L2 regularization. The number
of neurons in the visible layer was set to the dimension of the input data, while the number
of hidden neurons was varied for a better comparison. In the learning phase, we stopped
the models after 100 training epochs to ensure full convergence. In fact, convergence was
much faster, as exemplified in Fig. 3d which shows the case of GXBM with 100 visible and
1000 hidden neurons trained on random generated data. In the case of GRBMTrPrTr, we have
repeated the training procedure for a maximum of 50 pruning iterations trying to reach the
same amount of weights as in GXBM, but this target was impossible to reach in all situations.

Performance metrics To quantify the performance of the models, we used a variety of
standardmetrics.We have used: the RootMean Square Error (RMSE) to estimate the distance
between the reconstructed inputs and the ground truth; the Pearson Correlation Coefficient
(PCC) to reflect the correlations between the estimated inputs and the ground truth; and the
P-value to arrive at a statistically significant reconstruction level during the learning phase.

4.2.1 GXBM performance on random generated data

Firstly, we analyze how well GXBM is capable to reconstruct random generated data. To
this end, we have generated 1000 data points, each one having 100 dimensions, and each
dimension being sampled from a Gaussian distribution with 0 mean and standard deviation
equal to 1, i.e. N (0, 1). Due to the fact that these are random generated data, there was no
reason to use cross validation. Thus, we have used 70% of data to train the models, and
the remaining 30% to test the models. Firstly, we analyzed the reconstruction capabilities
of GXBM, GRBMFixProb, GRBMTrPrTr, and GRBM, given the the same number of weights.
Figure 4 (left) depicts this situation, while the number of weights were varied from 700 up to
approximately 7000. Clearly, GXBM outperforms GRBM in both, RMSE and PCC, while
its internal topology permits it to have a higher number of hidden neurons. Remarkably, with
approximately 1000 weights, the mean RMSE for GXBM is already very low, around 0.3,
while the mean PCC is almost perfect, over 0.95. By contrast, GRBM with 1000 weights
performed poorly. Furthermore, it is clear that the GRBM performance increases with the
number of weights, yet it can be observed that even at approximately 7000 weights GRBM is
not capable to reach the same level of performance of the GXBMwith 1000 weights. Besides
that, GXBM outperforms also the other sparse models, GRBMFixProb and GRBMTrPrTr, but
not so drastically. In fact, GRBMFixProb has very close performance to GXBM. GRBMTrPrTr

is not so close, while having also a very high computational cost as depicted in the fourth
row of Fig. 4.

To better understand these differences, we proceed to the next scenario, analyzing GRBM,
GRBMFixProb, GRBMTrPrTr, and GXBM having the same number of hidden neurons. This
is reflected in Fig. 4 (right) in which the number of hidden neurons is varied from 100 to
1000. Surprising, even though the number of free parameters (i.e. weights) was smaller by at
least one order of magnitude in GXBM (as it can be seen in the bottom-right plot of Fig. 4),
GXBM performs similarly to GRBM in terms of PCC and RMSE, while GRBMFixProb and
GRBMTrPrTr reach almost a similar performance. Still, GRBMTrPrTr has the downside of not
being capable to reach the same number of weights as GXBM or GRBMFiXProb even after
50 prunning iterations, as reflected on the fourth and fifth rows of Fig. 4. Interestingly, for
this specific dataset, all models seem to reach their maximum learning capacity when they
have approximately 400 hidden neurons, showing no further improvement after this point.
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Fig. 4 Reconstruction capability on random generated data of GRBM, GRBMFixProb, GRBMTrPrTr and
GXBMwith: (left) the same number of weights; (right) the same number of hidden neurons. The straight line
represents the mean; the shadowed area shows the standard deviation. The number of learned parameters for
GRBMTrPrTr is given in green after the last pruning iteration, while above the green color the alternating gray
and purple colors represent the number of learned parameters at each pruning iteration starting with the first
one from the top

4.2.2 GXBM performance on geographical ethnomusicology data

We have then assessed the reconstruction capabilities of GXBM on a real world dataset.
We have used theGeographicalOrigin ofMusic dataset (Zhou et al. 2014). This contains 1059
tracks from different countries, each track having 70 dimensions (i.e. the first 68 represent
audio features, while the last ones are latitude and longitude of each specific song), already
normalized to have mean 0 and standard deviation equal to 1. We performed a 10-fold cross
validation. The averaged results depicted in Fig. 5 confirm the same findings obtained on
the random generated dataset (Sect. 4.2.1). Given the same number of weights, GXBM
outperforms clearly GRBM, and outperforms slightly GRBMFixProb and GRBMTrPrTr, while
the four perform similarly when the number of hidden neurons is comparable. By analyzing
the reconstruction performance metrics (i.e. RMSE and PCC) reported in Figs. 5 and 4 it is
interesting to observe that GXBM and GRBMFixProb are more stable, independently if the
data are random or non-random. By contrast, GRBM and GRBMTrPrTr performance depend
more on the data type.
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Fig. 5 Reconstruction capabilities on the geographical ethnomusicology dataset of GRBM, GRBMFixProb,
GRBMTrPrTr, andGXBMwith: (left) the same number of weights; (right) the same number of hidden neurons.
The straight line represents the mean; the shadowed area shows the standard deviation. The number of learned
parameters for GRBMTrPrTr is given in green after the last pruning iteration, while above the green color the
alternating gray and purple colors represent the number of learned parameters at each pruning iteration starting
with the first one from the top

To assess GXBM from a different perspective, we performed a small regression experi-
ment on the geographical ethnomusicology dataset, even though the regression task does not
constitute one of the goals of this paper. Thus, we compared the ability of GRBM andGXBM
in predicting the latitude and the longitude corresponding to the 68 audio features across all
the tracks. We can see from Fig. 5 that the dataset is well represented with just about 400
hidden neurons; thus we have used this value in both models. In addition, in GXBMwe have
set the visible neurons corresponding to latitude and longitude to the first two visible neurons
having the largest number of connections. We then performed a 10-fold cross validation to
obtain the average distance error between the predicted latitude and longitude and their true
value counterparts. The resulting predictions were 3258± 175 km (GRBM) and 3252± 176
km (GXBM) which are comparable to the top performers found in Zhou et al. (2014), even if
it is well known that GRBMs and RBMs are not best performers on classification and regres-
sion tasks, when used as standalone models—best performance would pursued by stacking
these models in deep architectures (Bengio 2009).
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From the third row of Figs. 4 and 5, it is very interesting to observe that, even if it was
not a target, the random generated connections of GRBMFixProb exhibit a very small average
shortest path. This observation may explain the good performance of GRBMFixProb close
to the one of GXBM in this set of experiments, while having a similar computational time
(i.e. the same number of weights to be computed). Even more, the GRBMTrPrTr models end
up still having a small-world topology after the iterative pruning process. Still, the better
performance obtained by GXBM is given by, all-together, its scale-free topology, the local
neighborhoods connections, and the consideration of data distribution in the topology.

4.3 XBM evaluation

In the third set of experiments, we have assessed the performance of XBM on the MNIST
digits dataset,5 CalTech 101 Silhouettes dataset (Marlin et al. 2010), and the 8 datasets from
the UCI evaluation suite (Larochelle and Murray 2011).

Settings, implementations, and performance metrics To allow for a direct comparison, we
have adopted the same settings for all datasets. This time, all the models were implemented
and the experiments were performed using the MATLAB� environment, partially to facil-
itate the comparisons with the results reported on the MNIST dataset in Salakhutdinov and
Murray (2008). For each RBM model, we have trained two XBM, two RBMFixProb, and two
RBMTrPrTr models, as follows: (1) one having the same number of hidden neurons, but with
much fewer weights; (2) the other with approximatively the same number of weights but with
a higher number of hidden neurons. Just as in Salakhutdinov and Murray (2008), we have
used a fixed learning rate (i.e. 0.05) for all datasets, with the exception of the MNIST dataset
when a decreasing learning rate was used for the situation in which the number of contrastive
divergence steps was gradually increased from 1 up to 25, as suggested in Carreira-Perpinan
and Hinton (2005). In all cases, the number of training epochs was set to 259 and the training
and testing data were split in mini-batches of 100 samples. Finally, to assess the performance
of XBM, RBMFixProb, and RBMTrPrTr, we have used AIS (adopting the very same settings as
in Salakhutdinov and Murray 2008) to estimate the average log-probabilities on the training
and testing data of the datasets.

4.3.1 XBM performance on the MNIST digits dataset

TheMNIST digits dataset is widely used to assess the performance of novel machine learning
algorithms. The dataset contains 60000 images for training and 10000 images for testing,
each image being a variant of a digit represented by a 28x28 binary matrix.

The results depicted in Table 16 confirm the findings from the previous set of experiments
(i.e. GXBM–GRBM case). We see that: (1) given the same number of hidden neurons an
XBM model has a generative performance close to an RBM, yet having the significant
benefit of much fewer weights (i.e. this offers much smaller computational time); (2) given
approximatively the same number of weights (i.e. at comparable computational time) an
XBM model has a better generative performance than an RBM model. The results suggest
that XBMmodels can achieve good generative performance already with one step contrastive
divergence and afix learning rate. This is because the performance gain obtained by increasing
the number of contrastive divergence steps is smaller than in the case of RBMs. This may

5 http://yann.lecun.com/exdb/mnist/, Last visit on October 18th 2015.
6 The average cluster coefficient was computed using the method proposed for bipartite graphs in Latapy et al.
(2008).
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be considered also an advantage for XBMs as it is a common practice to use just one step
contrastive divergence to decrease the learning time. It is worth highlighting, that an XBM
with 15702weights reaches 36.02 nats better than anRBMwith 15680weights and 20 hidden
neurons. Similarly to the GXBM behaviour, as the models increase in size, we observe that
the difference between XBMs and RBMs gets smaller. For instance, an XBM with 387,955
weights is 10.89 nats better than an RBM with 392,000 weights, which, further on, is just
6.99 nats better than an XBM having the same number of hidden neurons (i.e. 500) but
with approximately 40 times fewer weights (i.e. 10,790). Also worth noting that when the
CD learning steps were gradually increased from 1 to 25 the XBM model with 387,955
weights slightly outperformed (i.e. 1.13 nats) the RBM model having 500 hidden neurons
and 392,000 weights trained in Salakhutdinov and Murray (2008). We should note that the
latter is considered to be one of the best generative RBM models reported in the literature,
to the best of our knowledge.

Finally,wewould like to highlight that in 5 out of the 6 cases considered,XBMsoutperform
all the other models including the sparse ones, while in the remaining case, the best performer
is not the fully connected RBM as expected, but still a sparse model,i.e. RBMTrPrTr. Yet, the
latter one, same as in Sect. 4.2, shows some robustness issues as it performs very badly for
a large number of hidden neurons (i.e. 27,000), while its computational time is much higher
than for all the other models considered. Remarkably, RBMFixProb obtains very good results
in all cases, being behind XBM just from few up to a maximum of approximately 25 nats in
the worst case.

4.3.2 XBM performance on the CalTech 101 Silhouettes dataset

To confirm the previous results on a different (more complicated) dataset, further onwe assess
XBMs generative performance on the CalTech 101 Silhouettes dataset (Marlin et al. 2010).
This dataset contains silhouettes of objects extracted from the CalTech 101 image dataset.
In total it has 101 classes and two datasets. One with binary images of 28x28 pixels split in a
training set of 4100 samples and a testing set of 2307 samples, and one with binary images of
16x16 pixels split in a training set of 4082 samples and a testing set of 2302 samples. As our
goal was not to fine tune the four models, but to have a clear direct comparison between them,
for each dataset we have used 1 CD step and we considered two evaluation cases, a small
RBM (i.e. 25 hidden neurons) and a large one (i.e. 500 hidden neurons). Table 2 confirms our
previous findings and shows that XBMs are still the best performers outperforming clearly
all the other models, with a striking difference of 118.48 nats against fully connected RBMs
(which are subject to over-fitting) on the dataset of 28x28 image size. On both datasets, it is
interesting to see that the best XBMs performers are not the largest models (i.e. 27,000 and
10,000 hidden neurons, respectively), but the average size ones (i.e. 1500 and 500 hidden
neurons, respectively).

4.3.3 XBM performance on the UCI evaluation suite

Up to now all the datasets used to evaluate theXBMswere binarized images. In this last subset
of experiments, we use the UCI evaluation suite, which contains 8 binary datasets coming
from various domains. These datasets are carefully selected by Larochelle andMurray (2011)
to assess the performance of generative and density estimation models. Their characteristics
are well described in Germain et al. (2015) and are summarized in Table 3. As before, to have
a clear direct comparisons of all sparse models we have compared them with baseline fully
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Table 3 The characteristics of the UCI evaluation suite datasets

Dataset No. of
inputs

Training set size Testing set size

Adult 123 5000 26,147

Connect4 126 16,000 47,557

DNA 180 1400 1186

Mushrooms 112 2000 5624

NIPS-0-12 500 400 1240

OCR-letters 128 32152 10,000

RCV1 150 40,000 150,000

Web 300 14000 32,561

connected RBMs with 100 hidden neurons using standard 1 CD step. Table 4 summarizes
the results. XBMs outperform all the other models, including the fully connected RBMs,
on 7 out of the 8 datasets. As usual, RBMFixProb shows a good performance overall, being
even the best performer on one dataset, i.e. Connect4. By contrast, RBMTrPrTr has robustness
issues, sometimes showing good generative capabilities and sometimes not. Even if it was
not in our goal to outperform the best results from the literature and, as a consequence, we
did not fine tune any parameter and we did not try other training algorithms, XBMs reach on
all datasets very good performances close to the ones of the best generative models carefully
optimized in Germain et al. (2015).

To summarize this set of experiments performed on 10 binary datasets (i.e. MNIST digits,
CalTech 101 Silhouettes, and UCI evaluation suite), we report that XBMs outperform all
the other models in 16 out of 18 cases considered. In the other two cases, the winner is
once RBMFixProb, and once RBMTrPrTr. Besides that, a very interesting finding is that in all
cases RBMTrPrTr models end up having a small-world topology, as reflected by their average
shortest path and cluster coefficient. Similarly, RBMFixProb models reach a very small average
shortest path (suitable to be qualified as small-worlds), but we can not consider them pure
small-worlds as their average cluster coefficient represents the one obtained by random
chance. Still, the better overall performance obtained by XBMs may be explain by the fact
that its small-world topology is supplemented by its other designed topological features,
i.e. scale-free property, the consideration of local neighborhoods and data distribution. As
reflected by experiments (including the oneswith real-valued data for GXBMs) these features
complements each other, while helping XBMs to model well very different data types.

5 Conclusion

In this paper we look at the deep learning basic building blocks from a topological perspec-
tive, bringing insights from network science. Firstly, we point out that RBMs and GRBMs
are small-world bipartite networks. Secondly, by introducing scale-free constraints in RBMs
and GRBMs, while still considering some local neighborhoods of visible neurons, and fit-
ting the most connected visible neurons to the most important data features, we propose
two novel types of Boltzmann machine models, dubbed complex Boltzmann machine and
Gaussian complex Boltzmann machine. Looking at both artificial and real-world datasets
(i.e. Geographical Origin of Music, MNIST digits, CalTech 101 Silhouettes, and UCI evalu-
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ation suite) we show that XBM and GXBM obtain better performance than other two sparse
models (i.e. RBMFixProb/GRBMFixProb and RBMTrPrTr/GRBMTrPrTr) and we illustrate how
they outperform even the fully connected RBM and GRBM, respectively:

1. Given the same number of hidden neurons, our proposed models exhibit much faster
computational time thanks to a smaller number of parameters which have to be computed
(up to a few orders of magnitude smaller than in RBM and GRBM) and comparable
reconstruction capabilities.

2. Given the same number ofweights, or implicitly amuch higher number of hidden neurons
for XBM and GXBM, they significantly outperform RBM and GRBM, respectively.

It is worth noting that as the number of neurons increases the order of magnitude between
the number of weights in XBM/GXBM and in RBM/GRBM also increases (e.g. one order of
magnitude fewer weights in a XBM/GXBM with 100 visible and 100 hidden neurons, and
two orders reduction in a XBM/GXBM with 1000 visible and 1000 hidden neurons). This
relation will help increasing the typical number of neurons in deep artificial neural networks
from the few hundred thousands of today (Krizhevsky et al. 2012; Ba and Caruana 2014) to
even billions in the near-future. In turn this will lead to the ability to tackle problems hav-
ing much higher dimensional data—something that is today unfeasible without performing
dimensionality reduction. For instance, when working on ordinary images7 today is still a
common practice to first extract features using standard image processing techniques, and
just those features can be served as inputs to deep models—an example can be found in Sri-
vastava and Salakhutdinov (2012). We speculate that another significant benefit of using
sparse topologies, as in XBM/GXBM, would be the ability to better disentangle the features
extracted automatically by the hidden layer.

To conclude, in this article, we have shown empirically on 12 datasets that our proposed
models, i.e. XBMs and GXBMs, achieve a very good performance as generative models.
We mention that more research has to be done in order to understand why their proposed
topology (e.g. the scale-free constraints) makes them to perform so well. Further on, we
intend to investigate all these directions and to study analytically how the various parameters
of the topology-generation algorithm (implicitly the bipartite graph properties) may increase
or decrease the generative and discriminative capabilities ofXBMs andGXBMs, respectively.
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