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Abstract 
This paper defines a methodology for the evaluation of a Rate-based Intrusion Prevention 

System (IPS) for a Distributed Denial of Service (DDoS) threat. This evaluation system uses 

realistic background traffic along with attacking traffic, with four different DDoS attacks. The 

evaluation metrics are defined using Snort for: rate of packet loss; time to respond; available 

bandwidth; latency; reliability; CPU loading; and memory usage. The results show that system 

is effective in handling a low-throughput DDoS attack, but when a rate of 6,000 pps of malicious 

traffic is reached, Snort starts to drop malicious and legitimate packets, in at the same rate of 

loss. It also shows that the IPS operates well up to traffic throughputs up to 1Mbps.  

1  Introduction 
Intrusion Detection Systems (IDSs) are tools which interpret network traffic and/or host activity, 

and are often used to protect the network and hosts from malicious activity which is not 

detected by other security systems. Often they are used to detect reconnaissance attempts on a 

network by detecting port scan, or for any other method of scanning on the network (Mell & 

Scarfone, 2007). With IDSs it is often not possible to mitigate threats in real-time, thus, the need 

for Intrusion Prevention Systems (IPSs). Instead of IDSs, which can only record alerts, IPSs can 

drop or rewrite a packet, so it does not affect the network. They are thus more powerful against 

DoS attack than IDSs (Rowan, 2007). The main types of IPS are: content-based, which focuses on 

the information inside the packets (Pasquinucci, 2007); protocol-based (Lemonnier, 2001), which 

focuses on packets that do not respect the protocol standard; and rate-based, which analyses the 

amount of traffic and responds when the threshold of a particular parameter is overcome 

(Rowan, 2007).  

One of the most difficult attacks to defend against is Denial of Service (DoS) which aims to 

disrupt legitimate activity by consuming computation and network resources. The success of 

this type of attack often corresponds to the time that the attacked is performed (Tanase, 2003), 

and when many machines are used to perform a DoS, there is a Distributed Denial of Service 

(DDoS) (Mirkovic, Dietrich, Dittrich, & Reiher, 2005) attack. The main aim of this paper is to 

produce a methodology that will permit the investigation of the performance of rate-based 

Intrusion Prevention System (IPS), for a range of network conditions. This will permit the 



evaluation and comparison of different rate-based IPS, as they can be tested under the same 

conditions. The IPS used in this paper is the open-source tool Snort Version 2.8.5 which 

possesses a rate-based capability since this version (Snort Team, 2009).  

2  Related Work 
There is an increasing usage of IPSs by organisation, but very few research papers exist on the 

testing infrastructures (Chen, Delis, & Wei, 2008) (Shafi, Akram, Hayat, & Sohail, 2010) 

(Strasburg, Stakhanova, Basu, & Wong, 2008) of such system, while IDSs are fairly well covered. 

Related IDS literature covers the definition of metrics (Fink, O'Donoghue, Chappell, & Turner, 

2002) (Ranum, 2001) (Sommers, Yegneswaran, & Barford, 2005) (Papadogiannakis, 

Polychronakis, & Markatos, 2010), automated evaluation (Lo, 2009), the analysis of their 

responses (Alessandri, 2004) (Càrdenas, Baras, & Seamon, 2006) (McHugh, 2000), and the 

analysis of the behaviour of such device used when used with load balancing (Le, Boutaba, & 

Al-Shaer, 2008) (Xu, Fu, Hu, Gao, & Su, 2008). IDS are often evaluated inside a test bed, where 

two different types of background traffic are used. The two types of traffic are: 

 Background traffic. This can be generated from traffic generation tools, or is generated 

taken from real environments, which has the advantage of evaluating the IDS in a real 

environment (Sommers, Yegneswaran, & Barford, Toward comprehensive traffic 

generation for online ids evaluation, 2005) (Sommers, 2004(b)) (Lippmann, et al., 2000).  

 Attacking traffic. This can be generated by tools or from captured traffic (Sommers, 

Yegneswaran, & Barford, 2004(a)).  

Unfortunately, the results produced cannot be compared as they all use different methodologies 

for their evaluation (Maxion, 1998) (Lippmann, Haines, Fried, Korba, & Das, 2000) (Sommers, 

Yegneswaran, & Barford, 2005), (Lo, 2009), (Fink, O'Donoghue, Chappell, & Turner, 2002).  

For DDoS, Mirkovic et al (2004), produced a taxonomy to classify it by the means used to 

prepare and perform the attack, along with the characteristics of the attack, and its effect on the 

target. This taxonomy offers a good understanding of the important methods of possible DDoS 

attacks. Many of these attacks use fairly simple attack tools, which are easy to defend against, 

but it is now possible that more complex attacks are possible (Mirkovic, Dietrich, Dittrich, & 

Reiher, 2005). Different protection mechanisms also exist to defend a network against DDoS, 

such has being oriented to application layer protection (Yu, Li, Chen, & Chen, 2007) (Yu, Fang, 

Lu, & Li, 2009) (Srivatsa, Iyengar, Yin, & Liu, 2006) or protocol-based protection (Schuba, Krsul, 

Kuhn, Spafford, Sundaram, & Zamb, 1997) (Mutaf, 2002). Keshariya and Foukia (2010) 

produced a toxonomy to classify the different defense mechanism which could be found.  

Different tools have been produced by researchers to generate typical types of malicious traffic 

flows, such as, Cleo (Mirkovic J. , 2003) or MACE (Sommers, Yegneswaran, & Barford, 2004(a)), 

although they are not publicly available because of the misuse which could be performed with 



them. Other tools are publically available which can perform DDoS such as the Packit tool 

(Bounds, 2003) or Hping3 (Sanfilippo, 2006).  

For IPS evaluation methodologies, Chen, Deli, and Wei (2008) have developed an evaluation 

methodology, but it is not design to evaluate the device against DDoS. It only uses one machine 

to generate the background traffic, the attacking traffic and to simulate the target. Unfortunately 

the network traces used for the background are not publically available, so this methodology 

could not be implemented to perform evaluation of other IPS. Even if IPSs are more used, and 

DDoS attacks are a common threat, we are not aware of any methodology that permits to 

evaluate IPSs against such threats.  

3  Design/Methodology 
The IPS will be tested with DDoS, which has a large number of different profiles. Thus, the 

evaluation of the IPS will be done by using only four different attack profiles. Using only 

particular attack would thus permit an evaluation of against other IPS, using the same 

methodology. Besides reproducing the same type of attack, it is also important to design a test 

bed that will support any IPS type. With this, the IPS system tested is defined as the Device-

Under-Test (DUT), and the methodology uses a black box testing approach, in an offline 

environment. Thus, a way to generate background traffic should be given, and, as the IPSs are 

working in-line, the background traffic should cross the device from both sides. Figure 1 thus 

shows a schematic of the test-bed, while Figure 2 is a schematic of the tested device.  

3.1  Attack and Background Component Design 

The tool Hping3 (Parker, 2003) can be used within a framework and has a scripting capacity 

over the TCP/IP stack, and allows the creation of nearly any kind of IP packet. This can be seen 

as a scriptable TCP/IP stack (Sanfilippo, 2006), and can be used to generate, in real time, crafted 

packets that will match the behaviour of a DDoS profile. Four different attacks will be used: 

TCP-based; UDP-based, ICMP-based; and a mixture of the three (Table 1). The TCP-based and 

UDP-based one will be against an FTP server, while the ICMP-based will be used against the 

host accessing an FTP server. By using three different protocols for the evaluation, it will be 

possible to view if the protocols have an impact on the capacity to handle attacks on the DUT.  

 

 

 

 

 

Figure 1: Schematic Implementation 
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Figure 2: Schematic Implementation of the DUT 

Generating realistic background traffic is fairly complex, as the tool must have the capacity to 

replay the same traffic previously generated, so each evaluation of the DUT has the same test 

environment. The utilisation of Harpoon is not possible because, although it generates realistic 

traffic it cannot guarantee that it will generate the same traffic again. Furthermore, Corsini 

(2009) has shown that Harpoon does not generate realistic enough traffic. This is why Tcpreplay 

(Turner, 2003) has been in this framework, as it offers the possibility to repeat data set with 

different options (such as for network speed).  

 

Table 1: DDoS used overview 

Distributed Denial of Service Description 

TCP-based TCP packets with the port 21 for destination and the 

SYN flag on. The IP source will be randomly 

spoofed. 

UDP-based UDP packets with the port 21 for destination. The IP 

source will be randomly spoofed. 

ICMP-based ICMP echo request packets. The IP source will be 

randomly spoofed. 

Mixed traffic A mix of the three previous DDoS 

 



 

Within the IPS evaluation system, it would be best to use the same traffic that will actually be 

used in real-life, thus, one solution is to create an environment to generate traffic and capture it. 

The other solution is to use already existing data set, such as for: 

 DARPA data-set (McHugh, 2000). These data sets have been widely used. 

 Bro. This is an enterprise trace that can be found on the Bro web site (Allman et al, 2004). 

Bro (Paxson, 2003) is an open-source IDS which aims to handle high-speeds traffic (Gbps).  

Using public available data sets permits the comparison of the results of an IPS evaluation using 

the same data set. The data set from Bro’s website has been discarded as very little work has 

been done on it within a research context. These data sets also have many drawbacks (Mahoney 

& Chan, 2003) Even if the testing methodology depends of these data sets; however, the 

methodology is opened to accept other data set that proves to be better than DARPA’s data sets.  

3.2  Evaluation Metrics Design 

The metrics used for the evaluation of an IPS should be similar to the metrics used in evaluation 

of IDS, as they have common points with IPS. These metrics include CPU loading and memory 

utilization (Sommers, Yegneswaran, & Barford, 2005), along with the available bandwidth, 

latency, and the time to respond to a threat. The rate of packets loss should also be monitored 

(NSS Labs, 2006). These metrics could be classified in three different categories: 

 Response Metrics. This contains the packets lost by source and packets lost by destination. 

The destination mode for the rate filter tells the IPS to keep in-memory the each destination 

IP address for a rate alert that is watched by a filter. Snort does not have the capacity to 

discern the malicious traffic from the legitimate traffic when the filter is triggered. All 

packets that are detection to the watched destination will be dropped. The obvious problem 

is that legitimate user will not have access to this particular destination. The other mode for 

the rate filter is source mode, where Snort keeps in-memory each source IP address for a 

rate alert, which are watched by a filter. When the rate is reach, the filter is triggered. This 

will permit the protection of the network while still accepting legitimate users access the 

network. The main drawback of this mode is that if a large number of machines source the 

attacking traffic, the filter might never be triggered. 

 Input Metrics. This contains available bandwidth, latency, time to respond metrics, and 

reliability.  

 Resources Metrics. This includes the CPU and memory usage, and Table 2 summarises 

these metrics. The two packet lost metrics permit the determination of the capacity of the 

DUT to not block legitimate traffic (false positives) and to not miss malicious packets (false 

negatives). The monitoring of the CPU and memory utilisation with the number of packet 

lost permits the analysis of whether there is a relationship between the two. Latency and 

available bandwidth permits an evaluation of the capacity of the IPS to cope with different 

amounts of traffic. 



Table 2: Evaluation Metrics 

Response Metrics Description 

Packets lost by source Rate legitimate packets lost 

Packets lost by destination Overall packets lost 

Impact Metrics  

Available Bandwidth Rate of maximum traffic that could pass through the DUT 

Latency Time spent for a packet to cross the DUT 

Data Throughput Since Intervention 

(DTSI) 

Number of packets before the DUT responds to the threat 

Reliability Time without a system error 

Resources Metrics  

CPU Load Percentage of CPU load 

Memory Load Percentage of memory load 

4  Implementation/Experimentation 
The test bed is composed of an FTP server, which is inside the network while the attacking 

machines are outside the network. Table 3 contains the description of the operating systems 

used, and the resources of the different devices. TippingPoint (2008) have demonstrated that it 

is important to be able to send traffic which covers 80% of the maximum throughput of the IPS. 

As a test, Wireshark (Wireshark Fundation, 2006) is used to monitor the incoming and outgoing 

packet that crossed the device, and the results have shown that Snort starts to drop packets 

when the throughput is over 1Mbps. Therefore, to respect the ratio of 80% of legitimate traffic, 

the background traffic should cross the device at a speed of 819kbps. 

Table 3: Specifications of Machines 

Machine Operating System CPU Memory 

IPS Ubuntu 9.10 P4, 3.20 GHz 512 Mbytes  

Tcpreplay Machine Ubuntu 9.10 P4, 3.20 GHz 512 Mbytes 

Attacking machines Ubuntu 9.10 P4, 3.20 GHz 512 Mbytes 

Client machines Ubuntu 9.10 P4, 3.20 GHz 512 Mbytes 

Server machines Ubuntu 9.10 P4, 3.20 GHz 512 Mbytes 

4.1  Snort Implementation 

Snort is commonly used as an IDS, and in-line mode it is built with the flag --enable-inline, which 

will analyse packets stored in the queue of iptables. All IP packets which cross the devices are 

analysed using: 

iptables –A OUTPUT –j QUEUE; iptables –A FORWARD –j QUEUE 

These are the only rules for iptables, where the flag -Q has to be added to tell Snort to read 

packets from the queue. The set of rules used are from the Vulnerability Research Team (VRT 

Team, 2009) and the attacks that are being carried out to evaluate the IPS use packets, which are 

not malicious. For the ICMP-based attack, Rule 469 of the rule set match is used, and for TCP-

based and UDP-based ones, the crafted rules are: 



# TCP rule that detect TCP packet with the SYN flag on in  

# destination of an FTP server. 

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (flags: S; msg:"FTP - TCP SYN 

FLAG"; classtype:attempted-dos; sid:100001; rev:1;) 

 

# UDP rule that detect UDP packet in destination of an FTP  

# server. 

alert udp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP - UDP"; 

classtype:attempted-dos; sid:100002; rev:1;) 

 

These rules will generate a lot of noise, which could have an impact on the final results. Since 

Version 2.8.5, rate-based filtering has been implemented in Snort, and the filter is defined with 

the rate_filter parameter. The following are then used to set the rate filter for ICMP-based, TCP-

based and UDP-based attacks: 

rate_filter \ 

gen_id 1, sig_id 469, \ 

   track by_dst, \ 

   count 15, seconds 2, \ 

   new_action drop, timeout 30 

rate_filter \ 

  gen_id 1, sig_id 100001, \ 

  track by_dst, \ 

  count 30, seconds 5, \ 

  new_action drop, timeout 30 

rate_filter \ 

  gen_id 1, sig_id 100002, \ 

  track by_dst, \ 

  count 10, seconds 2, \ 

  new_action drop, timeout 30 

4.2  Background and Attacking Traffic Generation 

When using Hping3 the IP destination, protocol used, and interval between each packet is 

specified (where the interval is measured in microseconds). The generation commands then 

become: 

ICMP-based: This attack sends ICMP echo-request (ping) to the target. The flag “-1” specifies 

that the protocol is ICMP. By default, Hping3 will send ICMP echo-request packets:  

# hping3 -1 10.0.3.10 --rand-source –i u1000 

 

TCP-based: This attack sends TCP SYN packets to the target, using the flag “-S”, and the TCP 

port is specified using the “-p” flag. The source port is chosen randomly by the program (and 

will be above 1024) and will be incremented of one for each packet.  

# hping3 -S 10.0.3.10 -p 21 --rand-source –i u1000 

 

UDP-based: This attack sends UDP packet, using the “-2” flag. As for the previous attack the 

UDP port is specified with “-p”, and the same procedure will be applied to define the source 

port: 

# hping3 -2 10.0.3.10 -p 21 --rand-source –i u1000 

 



Mix-based: This is a blend of the three previous attacks. The repartition between the attacking 

devices should be one third for each protocol so none of them are privileged.  

4.3  Metrics Implementation 

The following defines the implementation of the metrics: 

 Packets lost by destination: A sniffer records the traffic that passes through the IPS from 

each side, which is then compared with the attack-free results. This permits the extract of 

the percentages of legitimate traffic that have been dropped for each rate of attacking traffic. 

It is expected that when the throughput of the attacking traffic increases, the number of 

packets lost increases too. 

 Packets lost by source: For this metrics, a modification should be done on the rate filter, 

where the by_dst attribute is changed by_src. When the rate of malicious traffic fires the rate 

filter, it starts to drop all packets destined for the target. The filter will not recognise 

legitimate traffic from malicious traffic, as the IPS does not have the capacity to do it. In this 

case, measuring effectiveness is pointless. The by_src attribute tells Snort to keep a trace of 

each source IP address that passes through it. When the filter is fired, it starts to drop 

packets regardless from the destination. This filter could be used to prevent an attacker from 

attacking from multiple sources from inside the network, in order to try stress an edge 

router. This experiment will be the only one using this filter. The --rand-source flag should 

not be used with Hping3 for this experiment, as the source IP address is random, and the 

rate filters might never trigger, so the results will not be relevant. To evaluate the rate of 

dropped packets Hping3 will be used to send 60 packets (with the flag -c) using the same 

pattern than the attacking traffic with an interval of one second between each packet. The 

metric used will be the percentage of packets lost displayed by Hping3. 

 Available Bandwidth: The tool Netperf 2.4.5 (Jones, 2000) was used to calculate the 

available bandwidth that the DUT could offer under attack. A server was set-up inside the 

network while the client was set-up outside the network (where inside represents the 

network which is protected by the IPS and outside represent the network where the 

attacking are set-up) .This metric permits the determination of the capacity of the DUT to 

keep a good throughput while handling malicious traffic. The hypothesis is that the 

available bandwidth will reduce, as the rate of malicious traffic will increase. To calculate 

the throughput with Netperf the TCP_STREAM test was used. This test involves the 

transfer of data between the client and the server [the Netperf client and Netperf server as 

describe earlier]; the time of transfer will be used to calculate the current throughput (Jones, 

2007). The following line is the template used to launch Netperf client: 

# netperf -H <IP address of the Netperf server> 

 

 Latency: The experiment measure the RTT (Round Trip Time), which gives a measure of 

latency. The tool used to calculate the latency is Ping (Muuss, 1983), which sends 60 packets 

across the IPS and determines the average time to come back for each packet. It is expected 



that the latency will increase when the rate of attacking traffic is increased. The following 

example shows how Ping is used: 

# ping 192.168.1.100 -c 60 

 

 Data Throughput since Intervention (DTsI): The different rate filters have attributes which 

specify the number of events that should pass in a particular time, before firing up the filter. 

The aim of this evaluation is to evaluate if the rate of malicious traffic has an impact on the 

number of packets that match an attack to fire up the rate filter. The number of packets that 

pass the IPS before the filter takes action is monitored with Wireshark (Combs, 2006). When 

the number of malicious traffic increases, it is expected that more packets will pass through 

the device before the rate filter is triggered.  

 Reliability: This metric is evaluated by running the system over a long time period. The 

time chosen for the initial set of experiments is seven hours. During this time, the 

background traffic will be replayed with malicious traffic at a reasonable rate. This will 

permit the evaluation if DUT can handle DDoS over a relatively long time period.  

 CPU Load: This represents the percentage of CPU used by the machine hosting the IPS. This 

metric will evaluate the impact of attacking traffic on the physical resources of the system. 

The percentage of CPU load is calculated using the uptime UNIX tool. 

 Memory Utilization: This is the same experiment as the CPU load, using the free UNIX tool. 

For this experiment and the CPU load experiment, it is expected that the resources will 

increase as the rate of malicious traffic increases. 

5  Results 
Each experiment has been carried out as described in Section 3, including the part where the 

background traffic and attacking traffic are sent. After each experiment, the IPS was stopped 

and all data recorded for further analyse later on. In addition, the machine hosting the IPS was 

rebooted between each experiment to ensure that the environment is the same between each of 

them. Figure 3 is the representation of CPU load in relation with different attacking speed 

traffic, and Figure 4 is the results of memory load. Data for this experiment have been taken at 

the same time that the CPU load results. Figure 5 shows available bandwidth results of the 

experiment and latency results are represented in Figure 6. Figures 7 and Figure 8 represent 

respectively the rate filter by destination experiment and the rate filter by source experiment. 

Results where the attacking traffic is 0pps represent results with only the background traffic 

crossing the IPS. 

5.1  CPU and Memory Load 

As expected the CPU load depends of the traffic rate that the DUT should process. The ICMP 

protocol is the one who need less resources because it stayed at 40-39% of CPU usage while 

UDP consume until 66% of CPU resources. ICMP echo-packets sent are small; therefore, less 

processing time is needed for the IPS to take decisions about these packets. For this protocol 



when the rate of 6 000pps is reached the CPU load stay stable (around 40%). For the TCP 

protocol the CPU load decrease when the rate of attacking traffic is 6 000 pps from 58% CPU 

load to 48%. In another end the UDP protocol, never stop its need of CPU load. The TCP and 

ICMP results highlight that an optimisation might be done by Snort during the processing of 

these packets. The mix protocols experiment follow the UDP experiment that comfort the idea 

as the UDP protocol need more resources than the others do. 

Even if the results show an augmentation of memory load as expected, the results are not 

significant enough because of the augmentation is in the order of 20Mbytes for each protocols. 

Moreover, the results for the UDP protocol are strange. This might be because the experiment is 

run under a Linux machine and it is not possible to know how the system will handle its 

memory.  

5.2  Available Bandwidth 

This experiment has been carried out when the DUT was not in the system and without 

background traffic to measure the impact of the test-bed on the results. When the IPS is not set-

up in the network the available bandwidth is 8.05Mbps. When the IPS is set-up in the test-bed 

the available bandwidth is 7.86Mbps. We could conclude that the test-ted does not bias the 

results for this experiment because results are about the same. When only background traffic is 

crossing the DUT, the available bandwidth is 2.47 Mbps. 

The results obtained after the experiments with attacking traffic correspond to the expected 

results. All protocols have the same results with slight differences. The UDP protocol has the 

poorest result of the experiment. When attacking traffic reach a rate of 15 000 pps the available 

bandwidth is near zero and at zero when the number of packets per second is of 25 000pps. 

Then rate of malicious traffic reach 6 000 pps the available bandwidth drop of half is capacity 

when only background traffic was crossing the IPS.  

 

Figure 3: CPU Load Results 
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Figure 4: Memory Load Results 

 

Figure 5: Available Bandwidth Results 

5.3  Latency 

The results for this experiment are in correlation of the hypothesis results. The latency grows as 

background traffic is growing. As for the available bandwidth, the experiment has been 
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on the results. Without the IPS, the latency is of 0.4105 ms and with the IPS the results is 0.7435 

ms. We can conclude that the test-bed does not bias the results because of the small impact of it 
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optimisation when the latency is too important. The DUT might stop to use some feature to 

concentrate on all its resources on the routing of packets.  
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5.4  Rate Filter by Destination 

The results of this experiment are in correlation with the expected results. The number of 

dropped packets grows, as the number of malicious packets is more important. The number of 

dropped packets are quickly increasing when the ratio of 5,000 attacking packets per second is 

reached. After 15,000 pps, the number of dropped traffic represent 50% of the traffic. For this 

experiment, the TCP protocols have the poorest results. This might be explained by the time 

required to analyse a TCP packets, because Snort shall analyse these packets along with the 

other packets of the same TCP session.  

 

Figure 6: Latency Results 

 

Figure 7: Rate Filter by Destination Results 
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5.5  Rate Filter by Source 

The results of this experiment are confirming the expected results. The number of legitimate 

packets dropped is in correlation with the number of attacking packets. For all protocols, first 

packets are drop when the rate of malicious traffic is of 5000 pps. When this rate is multiply by 

three, more than 50% of legitimate traffic is dropped. For each protocol the rate of dropped 

traffic is low until 6,000 pps (around 5%) and percentage of dropped traffic is multiply by five 

with the rate of attacking traffic is 7 500pps. As for the previous experiment, the three protocols 

have slightly the same results. UDP and TCP have the poorest results as previously. The best 

results are for ICMP, this might be explain by the size of such packets, the system need less 

resources to process them. 

 

Figure 8: Rate Filter by Source Results 
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running as an IDS it starts to drop packets when 40% of the CPU is used and when 70% is 

reached a high number of packets are lost (Lo, 2009). We could conclude that the reason of why 

Snort start to drop packets is not because of the lack of resources but because of the design of 

Snort. 

Regarding the two rate filters (by source and by destination) experiments they report that Snort 

begins to drop packets when attacking traffic reach 6 000 pps. When the rate filter is in 

destination mode 8% of packets are drop if the attack is using the ICMP protocol, 5% for TCP 

protocol, 3% for the UDP protocol and 5% when the three protocols are used. However, when 

the attacking traffic reach the rate of 30 000 pps 78% of packets lost for the ICMP protocol, 85% 

for the TCP protocol, 81% for the UDP protocol and 73% for the mix of the three protocols. If the 

rate filter is watching source IP addresses, results are the same with some slight differences. 

When the rate of malicious packet is of 6 000 pps, the rates for ICMP, TCP and UDP protocols 

are respectively of 4%, 5%, 7%. For the rate of 30 000 pps the results are respectively of 77%, 

84%, 82%. It is possible to conclude that the break point of Snort happened with an attacking 

traffic of 6 000 pps while 80% of the maximum throughput of Snort is composed of legitimate 

traffic. Salah and Kahtani show that Snort (Version 2.8.1) running as an IDS has got a breaking 

point when the malicious traffic reach a rate of 40 Kpps.  

7  Conclusion 
The produced results show that Snort possesses effective mechanism to handle Distributed 

Denial of Service. It also highlighted the main weakness of Snort, which is the rate of packet 

lost. When the system reaches 16%, 58% or 54% of CPU load depending of the protocols used 

for the DDoS Snort starts dropping more and more packets. These loads are in correlation 

which the attacking traffic speed of 6 000 pps which is the breaking point of the IPS. When this 

rate is reached Snort could not ensure anymore that the legitimate user will still have access to 

the services of the trusted network neither that no malicious packets will reach its target. The 

system also offers a good reliability, and can handle an attack of seven hours without problems. 

It is important to note that during this experiment no other information has been taken so it 

might be possible that the number of packets dropped increase with the time of use.  

After the analysis of these results it is possible to conclude that Snort could be use to protect a 

network where the traffic will never be grater that 1Mbps. However, this network should also 

not be a possible target to DDoS that will use attacking rates upper than 6 000pps. When this 

reached is overcome legitimates users might have to endure a denial of service, which was the 

aim of the attackers.  

These results prove that the methodology could be used to evaluate IPS. However, different 

drawback should be pointed out of this methodology. The first is that the DARPA data set is 

used even if it has been demonstrated that is was not realistic enough traffic. Nevertheless, the 

methodology is open to receive any other data set, which could offer better results. The other 



main drawback is the few numbers of DDoS that the device is test against, DDoS that are more 

complex have to be design and implemented. Finally, the methodology has strength like the use 

of metrics, which could be taken on any IPS. Furthermore, the methodology has been developed 

in a way that it could accept easily new metrics or even new type of threats. 
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