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ABSTRACT: This paper describes means to overcome some of the computational issues related to lattice models. The 
first is the use of a solution technique, different from a Newton-Raphson approach, called the Step-Size-Control (SSC) 
algorithm to handle strain-softening behaviour of individual elements and to account for the possible snap-back of the 
load-displacement path. The second is a method to circumvent the need to recalculate the global stiffness matrix in each 
load step, called the Method of Inelastic Forces (MIF). Thirdly, a significant reduction in the model’s degrees of 
freedom is achieved by using a hybrid system of lattice and solid elements, for which the lattice is only used in areas of 
high stress gradients. Details of these optimisations are given and their implementation is shown for a 3D example 
model. While the hybrid model and the MIF can be generally used and significantly reduce computational costs, the 
SSC routine is better suited for lattice models in which only a small number of links change to a plastic or strain-
softening state. 
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1 INTRODUCTION 1 2 
A relatively new approach to model timber’s material 
behaviour is the use of lattice models to predict 
nonlinear material behaviour. Recent publications in that 
field demonstrate the possibilities of this method [e.g.1-
4]. Elastic-plastic bar elements arranged in a 3D lattice 
that are able to provide softening are commonly used. 
One problem with these models is the large amount of 
degrees of freedom (DoF) due to the sheer size of a 
lattice structure; the density of the lattice depends on the 
incorporated material heterogeneity. The lattice model 
takes into account material variability of wood by 
adjusting properties such as the elastic modulus and 
yield and tensile strengths of the individual lattice 
elements at the scale of growth rings. Therefore, a large 
number of such elements and thus DoF are required. 
This paper presents several approaches that, combined, 
try to overcome the computational problems that arise by 
modelling large-scale timber specimens in three 
dimensions. 
 
2 LATTICE MODEL STRUCTURE 
The basic structural element in a lattice that is used in 
these models, is a 3D bar element.  
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In order to create a lattice with as few nodes as possible, 
the unit cells of a lattice have been arranged in a 
diagonal checked pattern. Thus, instead of constructing 
nodes at each potential junction of links only every 
second node is used (Figure 1). With this diagonal 
arrangement (in contrast to a rectangular one) it is 
possible to therefore reduce the degrees of freedom of 
the structure while still retaining the detailed variation in 
strength and stiffness parameters of individual links. 

dy

dz

dz

dx

X
Z

Y
 

Figure 1: Lattice cell structure, one unit cell consists of 
‘half’-links extending from the node towards all 9 possible 
directions 

Each bar element follows a bi-linear load-strain relation, 
as can be seen in Figure 2. For the case that plastic 
compressive behaviour is accounted for (which, for 
reasons of clarity, shall not be included in this paper) this 



would be extended to a tri-linear curve. Parameters that 
describe the material behaviour of one link l are the 
elastic stiffness Kl, tensile strength ST,l and post yield 
softening parameter γT,j, from which the remaining 
parameters can be calculated (strain at maximum load 
εT,p,l and strain at failure εT,f,l). 
During the nonlinear solution algorithm each link can 
take on one of 4 different states: 
 

 initial state, stiffness Kl 
 softening, stiffness KS,l 
 reloading, stiffness Kl

 

 
 broken, stiffness K = 0 
 temporary state after reloading 

 
This is depicted graphically in Figure 2. The solution 
algorithm is explained further in Section 3.1. 
 

 

Figure 2: Load-strain curve and parameters of single 
lattice element l 

After a link has reached its maximum tensile strain εf 
(status ), the element is removed from the global 
stiffness matrix. 
The bar elements in one unit cell are arranged in a 3D 
lattice as shown in Figure 1. Each unit cell consists of 6 
different types of elements that represent material 
behaviour in the longitudinal, lateral and diagonal 
(shear) direction.  
For the purpose of the study the anisotropic character of 
wood is accounted for by adjusting strength and stiffness 
parameters of individual link elements. In addition to 
generally applied random values with a defined mean 
and standard deviation as parameters, these are further 
adjusted according to the link’s position in a randomly 
generated growth ring structure with a density profile in 
between the rings. This virtual growth ring structure with 
its density profile is based on several input parameters 
which were measured on the timber samples used. The 
density is then translated into stiffness and strength 
variation of individual link elements. A more detailed 
explanation on how the heterogeneous character of 

timber is mapped onto the lattice structure can be found 
in [5]. 
 
3 COMPUTATIONAL OPTIMISATION 
Several approaches can be adopted to minimise the 
computational effort which arises from solving lattice 
models. The two first presented here are based on a 
paper by Jirasek and Bazant [6]. 
 
3.1 STEP SIZE CONTROL ALGORITHM (SSC)  
Since traditional solution algorithms, such as the 
Newton-Raphson method, cannot handle the jagged 
character of the load displacement curve (Figure 3) very 
well, a new approach was chosen in this study. 
 

Δ

F

 

Figure 3: Load-displacement plot of a small perfectly-
brittle lattice model (i.e. no softening behaviour of 
individual links is incorporated) 

Rather than iterating towards an admissible solution, the 
Step-Size-Control (SSC) algorithm treats the overall 
load-displacement curve as the sum of single linear 
steps. In each of these steps only one link changes its 
stiffness. Thus, it is possible to overcome the problems 
that result from the ‘snap-back’ phenomena where the 
load suddenly drops and the next admissible solution has 
to be found on the next lower stiffness gradient (dashed 
line in Figure 3). 
A drawback of this method is that, for large lattice 
systems, the number of load steps amounts to at least the 
number of broken/changed links. However, no additional 
iterations are needed. In contrast, iterative methods such 
as Newton-Raphson can require an indefinite number of 
iterations and might not, in certain circumstances, come 
to an admissible solution at all.  
The method shall be derived here in brief. In a general 
incremental solution method for a structural system with 
global stiffness matrix [Ki] and a vector of applied forces 
λi·{Fref} at load step i, the unknown global displacements 
{Δi} can be calculated as follows (Equation 1). 

[ ]{ } { }refiii FK λ=Δ . (1)



For the SSC algorithm, the necessary λi has to be chosen 
as the smallest value for which one link changes its 
status. That is from the initial stiffness  to softening  
and from softening to broken . Thus a list has to be 
created with all load factors λi,l for the respective link l to 
bring the link into the next state. These factors can be 
calculated by first solving the above equation with a 
temporary load factor λi = 1 and thus determining a 
reference displacement vector Δi,ref. With this the strain 
increment dεi,l for each link l can be extracted. The 
individual load factor λi,l can then be calculated from the 
previous strain and the critical strain for which a link 
would change its state (Equation 2). 

li

lilcr
li d ,

,1,
, ε

εε
λ −−

= . (2)

For the simplest case when only positive λi,l are present 
the lowest load factor of all links can be chosen. 
However, since the case also arises where links that are 
in a softening state  can start to reload when a further 
positive load Fref is applied (i.e. have a negative strain 
increment and thus also a negative load factor is 
calculated), these links must have the ability to 
experience a negative strain increment and change to 
status . 
Still, to which link this applies is not known in advance 
since in that case a new stiffness Kl  needs to be 
calculated and Equation (1) be solved again. Thus, an 
‘iteration of status’ has to be performed where links that 
have a negative strain increment temporarily obtain state 

 with the newly calculated stiffness. In this iteration 
the links could change their strain increment again and 
thus their state needs to be changed. It would be 
necessary to try every possible combination of softening 

 and reloading  links. This would clearly be not 
practical, therefore, the number of links (in states  and 

) for which their status is consistent with their strain 
increment are compared to those which are inconsistent. 
If there are more inconsistent ones the smallest negative 
load step is chosen and the status of links that are 
consistent is swapped (  to  and  to ). If there are 
more consistent ones, a positive load step is chosen and 
the status of the inconsistent ones is swapped. 

 

After that, all links with status  are transferred to , 
the link that corresponds to the smallest positive or 
respectively negative λi,l changes its state and the new 
displacement Δi+1 and load Fi+1 is calculated with the 
chosen λi. This procedure is repeated until the applied 
load F reaches zero. 
The computation time is not really reduced with this 
procedure if, for each load step, the entire global 
stiffness matrix needs to be decomposed again. The 
following method uses a trick to get around this problem. 
 
3.2 METHOD OF INELASTIC FORCES (MIF) 
Instead of assembling and decomposing the entire global 
stiffness matrix for each load step i, the Method of 
Inelastic Forces can be used.  
In each step of the SSC algorithm only one link will 
change its stiffness. The idea is to calculate the force that 

is required to be applied at the link’s nodes in order to 
deform the link in the same way as it would deform 
when the stiffness of this link changes. Thus, only these 
forces need to be applied instead of an actual change in 
the stiffness matrix. 
The initial global stiffness matrix with geometric linear 
link elements can be expressed as: 

[ ] [ ] [ ][ ]BDBK T
11 =  (3)

where [B] is the geometric matrix with each link element 
in one row and the global DoF in each column. This 
geometric vector for one link element can be derived 
from {e}=[B]·{Δ}, where {e} is a vector with all the 
extensions of the respective links and {Δ} the global 
displacement vector. The square matrix [D1] consists of 
the initial stiffness values of the respective links on the 
diagonal. Similarly for the current step i it can be written 
that: 

[ ] [ ] [ ][ ]BDBK i
T

i = . (4)

Note that since only geometric linear elements are used 
only the [D] matrix will change while [B] remains the 
same throughout the solution procedure. 
The general aim of the method is to solve a system of 
equations as stated in Equation (1) without assembling 
and decomposing the global tangent stiffness matrix [Ki]. 
Instead, the once-only decomposed initial stiffness 
matrix [K1] shall be used. The derivation of this method 
is be presented below. 
By adding and subtracting the initial stiffness matrix to 
Equation (1) it can be rewritten as: 

[ ] [ ] [ ]( ){ } { }refiii FKKK λ=−+ Δ11  (5)

which rearranged gives  

[ ]{ } { } [ ] [ ]( ) iirefii KKFK ΔΔ 11 −−= λ { }. (6)

Substituting [Ki] and [K1] on the right hand side with the 
definition in Equation (4) and Equation (3) the former 
Equation (6) can be further expressed as: 

[ ]{ } { } [ ] [ ] [ ]( )[ ]{ }ii
T

refii BDDBFK ΔΔ 11 ] −−= λ . (7)

It is important to note that ([Di]-[D1]) is a diagonal 
matrix with non-zeros (on the diagonal) only for links 
where stiffness changes occur. Thus, it is possible to 
write much smaller matrices [ ] und [B̂ D̂ ] by leaving out 
all the rows in [B] that correspond to zero columns in 
([Di]-[D1]), thus: 

[ ] [ ] [ ][ ] [ ] [ ][ ]BDBBDDB
T

i
T ˆˆˆ

1 =− . (8)

Equation (7) can be rewritten as: 

[ ]{ } { } [ ] [ ][ ]( ){ }i
T

refii BDBFK ΔΔ ˆˆˆ
1 −= λ . (9)

Since {e}=[B]{Δi} is the vector of all axial link 
extensions in step i, {ê}={ B }{Δi} is the axial extension 
of only the changed links. Thus, multiplied with the 
stiffness [

ˆ

D̂ ], the term: 



Thus, not the actual displacement vector is calculated, 
but the reference displacement Δi,ref = Δi with λi = 1 for 
load step i. 

{ } [ ][ ]{ }iBDs Δˆˆˆ =  (10) 

can be interpreted as the actual inelastic force vector of 
the changed links. 

To summarise the MIF method: a link that changes its 
stiffness in one load step is listed in the rows of the [ B ] 
matrix. Furthermore a new column calculated with 
Equation (13) is added to matrix [

ˆ

R̂ ] which has as many 
rows as there are DoF. Then Equation (16) is solved for 
inelastic forces { } and the global reference 
displacement vector can be obtained. Thus, in each step 
only a brief forward calculation in Equation (13) needs 
to be performed for a single column. If the initial global 
stiffness matrix [K1] is already transformed with a 
Cholesky decomposition this reduces to a simple 
forward and backward substitution. After that, Equation 
(16) requires little computation time. 

ŝ

With Equation (10), the previous Equation (9) can be 
rewritten as: 

[ ]{ } { } [ ] { }sBFK
T

refii ˆˆ
1 −= λΔ . (11) 

Since the reference displacement {Δ1,ref}(for the initial 
load step i = 1 and λi = 1) is calculated by: 

[ ]{ } { refrefi FK =,1Δ } (12) 

and it can be stated that: 

[ ][ ] [ ]TBRK ˆˆ
1 −= . (13) The MIF method is generally applicable to all nonlinear 

solution algorithms where nonlinearity arises from 
change of stiffness values. For structural systems with a 
large number of DoF this process is less computational 
expensive than decomposing the entire current stiffness 
matrix. In the case that the computation of the inelastic 
forces due to a large number of changed link elements 
becomes more time consuming than decomposing the 
entire global stiffness matrix, a new tangent stiffness 
matrix based on the current changed links can be 
calculated and replaces the old one in the MIF algorithm. 
Thus, this routine will always be computational more 
effective than the decomposition of the stiffness matrix 
in every single load step. 

It follows by inserting Equation (12) and Equation (13) 
into Equation (11) that: 

[ ]{ } [ ] { } [ ][ ]{ }sRKKK refiii ˆˆ
1,11 −= ΔΔ λ . (14) 

Dividing by [K1] leads to: 

{ } { } [ ][ ]{ }sRKrefiii ˆˆ
1, −= ΔΔ λ . (15) 

Now, the fundamental equation of this method can be 
obtained by substituting Equation (15) into Equation 
(10) and after rearranging this becomes: 

[ ] [ ][ ][ ]( ){ } [ ][ ]{ } irefiBDsRBDI λ,
ˆˆˆˆˆˆ Δ=− . (16)  

3.3 HYBRID MODEL OF LATTICE AND SOLID 
ELEMENTS With this Equation (16) the inelastic forces { } can be 

solved for. By substitution into Equation (15) the 
displacements {Δi} are obtained. Since for this step the 
actual load factor λi is not known in advance it is 
preliminarily set to 1.  

ŝ
A further significant saving of computation time can be 
accomplished by using the denser lattice structure only 
in areas of the model where large strains are expected, 
and using ordinary linear solid elements elsewhere. This 
requires some knowledge of the fracture path before 
setting up the arrangement of elements in the model. 

The factor will be determined only after the SSC 
algorithm delivers the required factor to change a link 
from one status to another.  
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Figure 4:  Hybrid model of lattice and solid elements. Connection of node 9 to the solid elements requires virtual slave 
nodes to be created (9.1 to 9.5) that are linked to the master nodes (1 to 4). 



The basic principle to connect the two types of elements 
is a master-slave relation of the participating nodes. Note 
that the slave nodes on the surface of the lattice structure 
represent a denser mesh than the connecting master 
surface. 
Since one node with its connecting links represents the 
material surrounding it in a volume with the dimensions 
of 2dx × 2dy × 2dz the whole lattice has to be shifted half 
of these lengths away from the connecting surface. 
The nodes at the connecting side of the lattice structure 
are linked to the nodes of the solid elements with the 
penalty element method. A constraint equation can be 
formulated that connects these nodes. As an intermediate 
step virtual slave nodes are created which lie on the 
surface of the solid element (nodes 9.1 to 9.5 in Figure 
4). 
After formulating the constraint equations between 
nodes 9.1 to 9.5 and 1 to 4, these can be described as 
well directly connecting slave node 9 with master nodes 
1 to 4 including the required stiffness of a half link in 
between the two connecting blocks (green area). This 
spares the effort to create additional nodes on the master 
surface (9.1 to 9.5). 
 
3.4 EXAMPLE MODEL 
A cleavage specimen shall be used here to demonstrate 
the different elements of a lattice model. 
These fracture tests were conducted with small clear 
Sitka spruce specimens that contained a notch with a 4 
mm hole drilled at the root of the notch. The test set-up 
can be seen in Figure 5. Two brackets fix the specimen 
in place. The load (under displacement control) is 
applied to the upper bracket while the lower one is kept 
fixed to the testing machine. One displacement 
transducer, which is mounted on the notch side, 
measures the crack mouth opening displacement. 
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Figure 5: Test setup for cleavage test 

Figure 6 shows the arrangement of areas with lattice and 
solid elements. The red arrows represent the applied 
load, while green triangles depict the boundary 
conditions. 
As an input to the model, the elastic parameters for the 
link elements where calibrated to values from literature. 
For this, stiffness parameters Kl were directly inferred 
from the elastic moduli and Poisson ratios. 
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Figure 6: Schematic of the cleavage model  

Strength S and post yield parameters γ were determined 
by an iterative calibration routine. Load displacement 
curves of tested timber specimens under different 
loading conditions (parallel and perpendicular to the 
grain compression and tension and parallel to the grain 
shear) were compared to FE model results. The 
parameters were then iteratively adjusted by several FE 
model runs. For a more detailed explanation of the 
calibration routine the reader is referred to [5, 7] 
 

 

Figure 7: Rendered output of the cleavage model, 
broken links and link’s strength ratio is depicted as purple 
and light-to-dark blue coloured lines respectively 

Figure 7 shows the model output with broken links as 
purple lines. The fracture path can be seen running from 
the root of the notch towards the other side. It can be 
seen that material heterogeneity influences the fracture 



path. This is depicted in Figure 8, where the broken 
lattice elements (purple) follow the growth ring structure 
along the black dotted line. 

 

 

Figure 8: Detail of fractured lattice area 

 

Figure 9: Tested cleavage specimen 

A broken specimen is pictured in Figure 9. The influence 
of the growth ring structure on the fracture path can be 
seen. 
 

 

Figure 10: Comparison of load-displacement plots 
between tested fracture specimen and FE model 

The load-displacement plots from the tested specimens 
can be compared with the plots from several FE model 
runs. The respective median and standard deviations of 
a) maximum load Smax and b) specimen stiffness K are 
plotted on the right hand side of Figure 10. While good 

agreement can be found for the comparison of maximum 
loads, this is less the case for the specimen’s stiffness, 
which is due to the limitations imposed by the lattice 
structure (for a more in-depth explanation of numerical 
results the reader is referred to [5, 7]). 
 
4 CONCLUSIONS 
Three different methods to reduce computational cost 
related to the modelling of lattice structures have been 
presented. The MIF method can be applied to practically 
any solution algorithm that solves lattice structures and 
reduces significantly the number of computations due to 
the fact that it usually requires to decompose the global 
stiffness matrix only once at the beginning of the FE 
analysis. 
The SSC algorithm can be used easily for lattice models 
with links that are capable of strain softening. However, 
when plastic compressibility is included, which is not 
described in this paper, the solution algorithm becomes 
more complex and less effective.  
The linking of lattice blocks with linear elastic elements 
is another simple way of reducing the overall number of 
DoF. The fracture path has to be known in advance. One 
drawback is that heterogeneity can be incorporated only 
with difficulty into the areas with elastic solid elements 
and has not been done in this study. 
In conclusion, while lattice models represent a challenge 
regarding the high demand in computational power, the 
issues can be overcome by a) relative simple means such 
as rearranging lattice nodes and using hybrid models and 
b) developing more sophisticated solution algorithms. 
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