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Abstract

Topology optimization technique has been used as an efficient tool

that optimizes material layout within a given space to obtain the de-

sired functional performance. So far, topology optimization has been

mainly focused on linear problems and less attention has been paid

on nonliear design, although accounting for the material nonliearity

can significantly influence the optimized structure layout.

Research studies undertaken in this thesis considered material elasto-

plasity in combination with the SIMP based topology optimization

method, particularly for two-phase structure in which different plastic

material model is adopted for each phase. This expands the optimiza-

tion scope in nonliear design in further applications.

Since the structural nested framework that nonliear analysis is re-

peatedly solved for every updated topology, is very computationally

expensive. This research also proposed to apply the transient cou-

pled nonliear system to BESO method for nonliear structural design,

as a result, a stable topological evolution was achieved, and results

converged after a much smaller number of iterations.

In addition, this research originally proposed a topology optimization

method for plastic strain minimization design, to accommodate the

diverse design purpose. By means of several examples of equivalent

plastic strain minimization, in comparison with the results obtained

from the elastic stiffness-based design, elastoplastic stiffness-based de-

sign, it is revealed that materials are much more efficiently used, and

the plastic strain and von Mises stress are more evenly distributed

within the design domain.
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1

Introduction

1.1 Structural type

1.1.1 Composite structure

Composite structure has drawn a wide attention from both research and design

communities in various areas such as structural engineering and aerospace fields

due to the diverse design purpose and increasingly high demand on mechanical

characteristic and weight savings. In other words, materials constituting the com-

posites can be placed easily into a free-form combination to achieve a specific and

more desirable design, e.g. increase in strength, toughness, erosion resistance and

anti-fatigue ability compared to using single materials. Currently, a two-phase

composite in which one of the materials as a reinforcing part embedded into the

other material matrix in the form of strips, sheet, or grids, has become attractive

for many practical applications. The material candidates for both phases can be

steel, aluminium, polymer, wood or concrete, etc. Therefore, a concurrent need

of distributing materials of composites efficiently arises to maximize contribution

of each material.

1.1.2 Discontinued or disturbed structure

Structural concrete domain can be categorized into two regions: B (Bernoulli

or Beam) - regions where plane-section assumptions apply, and D (Disturbed or

1



1.2 Structural optimization technique

Discontinuity)-regions which are defined by parts of a structure with nonlinear

strain distribution due to sharp geometrical changes in structures. The approach

for B-region design is maturely established and can be easily achieved by beam or

Bernoulli theory and cross-sectional analysis. While in the structural design for

D-region, traditional approaches for slender beams are appropriate. The failure

mode in such structure is normally presented as shear failure rather than flexural

failure. Therefore, achieving a proper analysis and design for disturbed members

in concrete structures such as pile caps, deep beams, transfer thick plates, corbels,

structural members with opening holes, and beam-column joints has been a chal-

lenge for decades. A typical illustration of B-region and D-region in structures

are shown in Fig.1.1.

Figure 1.1: B and D-region in structural members

In this thesis, the optimized design of composite structure (e.g, reinforced

concrete structure) takes the material elastoplasticity of each candidate into ac-

count. Also, the design for deep beams, beam with openings or L-shape brackets

are used to produce optimization benchmarks.

1.2 Structural optimization technique

Structural optimization aims to achieve the best performance for a structure

under loading conditions, while satisfying various constraints such as geometrical

2



1.2 Structural optimization technique

or mechanical constraints. To describe the ”best”, weight, cost, stiffness, stress,

displacement or critical load, etc., can be set up as objective functions to be

minimized or maximized. Also, these measures can be formulated as constraints

within an optimization problem. The design parameters generally required in the

structural optimization problem statement are presented as follows [1]:

• Objective function (f): A function that is used to classify designs. For

every possible design, f returns a number which indicates the goodness

of the design. Usually, f measures mean compliance, material quantity,

displacement in a given direction, effective stress or cost of production.

• Design variable (x): A vector that describes the design, and which can

be updated during optimization procedure. It may represent geometry or

choice of material. When it describes geometry, it may relate to a sophis-

ticated interpolation of shape or it may simply be the area of a bar, or the

thickness of a sheet. For a density-based optimization, the design variable

is generally assigned with material density.

• State variable (y): A function or vector that represents the response of the

structure. For a mechanical structure, response means displacement, stress,

strain or force, etc.

As can be seen, there are two sets of variables: design variables x and state

variables y, which are coupled via a state equation, e.g., finite element equation

in an elastic condition: K(x)U = F, that for given values of the design variables

give values of the state variables.

The following shows an example of optimization problem statement where a

specified objective function f with respect the design variable x and the state

variable y is formulated and multiple constraints are considered, i.e. behaviour

constraints, design constraints, and equilibrium constraints (FE (finite element)

3



1.2 Structural optimization technique

state equation) as

min f(x,y)

s.t.

Nele∑
e=1

vexe ≤ v∗

gi(x,y) ≤ g∗i , (i = 1, 2, ...,M)

xmin ≤ xe ≤ xmax, (e = 1, 2, ..., Nele)

K(x)U = F

(1.1)

where xe depicts the design variable for every element; v∗ is the prescribed target

volume fraction of the design domain; gi illustrates the ith behaviour constraint

and M is the total number of constrains. K(x) represents the global stiffness

matrix with respect to design variable x; U is the global displacement vector

taking the role of the state variable y; and F denotes the external load vector

applied on the structure.

In terms of the geometrical optimization problem of mechanical structures,

there are mainly three categories of design variables: sizing variables, shape vari-

ables and topology variables. A brief introduction of the corresponding optimiza-

tion methods subject to various type of design variables is given in the following

subsections.

1.2.1 size optimization

Size optimization is the earliest method to improve the structural behaviour and

save the amount of material used by varying the size variable, i.e., cross sectional

area of the truss element or the thickness of the plate. A size optimization example

is shown in Fig.1.2.

Figure 1.2: Size optimization of a truss structure [1]

4



1.2 Structural optimization technique

1.2.2 shape optimization

In this optimization case, the design variable represents the form or contour of

the predefined geometrical boundaries, while the connectivity of the structure

is not changed through shape optimization. A shape optimization problem per-

formed on a continuous structure is presented in Fig.1.3. Good examples of size

Figure 1.3: Shape optimization of a continuous structure [1]

optimization and shape optimization can be found in Christensen et al.[1].

1.2.3 Topology optimization

Topology optimization has been used widely in mechanical components such as

wing designs and has become an extremely active research area in recent decades

and been applied to many other design fields such as structural engineering

[5]. For discrete structures such as trusses or frames, the topology optimization

method is applied to find the optimised connectivity of nodes. For continuous

structures, the topology optimization method is utilized to design the optimised

location and geometry of cavities in the design domain. Fig.1.4 shows a topology

optimization problem of a two-dimensional continuous structure. Other examples

of this type of optimization can be reviewed in previous summary works [1, 6].

The art of structural (topological) optimization is to determine where to locate

Figure 1.4: Topology optimization of a continuous structure [1]

structural cavities as referred by Robert Le Ricolai. In comparison with other

types of structural optimization approach, topology optimization technique pro-

vides more flexibility for designers to create a completely novel concept design,
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1.3 Overview of topology optimization approach

especially for a continuous structure. The only required quantities in the problem

are the applied loads, the possible support conditions, the volume of the struc-

ture to be constructed and possibly some additional design constraints such as

the location and size of prescribed cavities or solid areas. Using this method,

the detailed physical size and the shape and connectivity of the structure are not

required to be estimated before design [6].

1.3 Overview of topology optimization approach

As mentioned in Section 1.2.3, topology optimization methods are generally clas-

sified into discrete and the continuous, depending on the structural form. The

former one is mainly based on the ground structure approach [7]. And various

methods are developed to solve the ground structure problem using either direct

approaches (e.g. mathematical programming algorithms), or indirect approaches

(e.g. optimality criteria algorithms). Here, the present review of this research

focuses on topology optimization of continuous structures. Four approaches are

generally considered: homogenization method, continuous density-based opti-

mization method, evolutionary optimization technique (discrete density-based

optimization method), and level set approach. They are introduced in section

1.3.1, section 1.3.2, section 1.3.3 and section 1.3.4, respectively. In this research

thesis, the density-based topology optimization method and the evolutionary op-

timization technique are used as the basis of methodology.

1.3.1 Homogenization method

Numerical methods for topology optimization of continuous structures have un-

dergone an active development since the landmark paper [2]. They proposed

the homogenization method where the design domain can be divided into finite

cell, and each cell consists of an individual micro-structure. Thus, the method

of homogenization enables to compute the optimal distribution of such a com-

posite material in a given domain. An example of a structure with composite

microstructure is presented in Fig.1.5.
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Figure 1.5: A structure with composite microstructure [2]
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However, due to its relatively large amount of design variables, complicated

sensitivity analysis, and essential post-processing penalization phase transferring

the individual microstructure into a continuous solid layout, its use is limited in

practical engineering applications.

1.3.2 Density-based optimization method

Soon after the introduction of homogenization method, the so-called SIMP (Sim-

plified Isotropic Material with Penalization) was suggested by Bendsoe [8] and

others [9, 10]. Originally, it was introduced to minimize the complexity of the

homogenization approach and improve the convergence to solid-void solutions.

Later, a physical justification of SIMP was proposed in Bendsoe and Sigmund

et al [11]. In this approach, the solid isotropic design domain is discretized into

finite elements with density value from 0 (void) to 1 (solid). However, the void

material is generally treated as a very soft material, with design variable equal to

0.001, to reduce the singularity phenomenon. Thus, the continuous design vari-

ables are interpreted as material densities, and a power-law is used to penalize

the initial material properties, which is given as follows:

E(ρe) = ρpeE0 (1.2)

where E0 is the material initial Young’s modulus, ρe is the elemental material

density, and p represents the penalization parameter. When p = 1, the so-called

variable-thickness-sheet problem appears, in which the design domain covers the

whole range of material values from 0 to 1. Hence, in order to generate a solid-

and-void layout for continuous structure, the penalization value p is normally over

1 to penalize the intermediate density. The SIMP model also names penalized or

proportional fictitious material model. It is found that set up the value of p too

low or too high either causes too much grey scale or too fast convergence to local

minima. The value that guarantee a good convergence to almost 0-1 solutions is

p = 3 [12].
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1.3.3 Evolutionary optimization technique

Opposite to the homogenization and SIMP method having a mathematical ba-

sis, the evolutionary structural optimization (ESO) belongs to the heuristic-based

optimization methods. From an engineering point of view, this approach is attrac-

tive due to its simple concept of removing low efficient material from a structure.

It is relatively easier to integrate with finite element analysis.

In terms of the heuristic-based optimization method, it is initially based on

the fully stressed design principle that a small portion of the material within the

structural domain will be eliminated due to low stress value. ESO is firstly pro-

posed by Xie and Steven [13, 14], and later, Querin et al.[15] presented an additive

evolutionary structural optimization method (AESO) where the initial design do-

main is defined based on the minimum possible load transfering route. At the

beginning, the structure is overly stressed, then material is added to reduce the

localised high stresses. The deficiencies of the conventional ESO method is that

removed elements cannot be reintroduced in the subsequent iteration even if they

are considered rewarding. Therefore, the bi-directional evolutionary structural

optimization method (BESO) [16] is developed with the capability of allowing

elements to be removed and added simultaneously.

In the early BESO method, the number of elements to be removed and added

in each iteration is determined separately with a rejection ratio (RR) and an

inclusion ratio (IR) respectively. However, due to the fact that selecting values

of RR and IR is subjective, ranking elements for removing and reintroducing

separately is illogical, and the number of optimizing iterations is significantly

high, the BESO has undergone further development. Huang and Xie et al. [17]

utilize a standard adjoint gradient-based analysis and a filtering scheme to obtain

more reliable results and topologies, which is regarded as a similar strategy as that

is adopted in the SIMP density approach. In comparison with SIMP, the design

variables representing the corresponding material densities in the design domain

are discrete (0 or 1) rather than continuous (from 0 to 1). Therefore, the modified

BESO approach can also be considered as a discrete density-based optimization

method. The BESO method is further developed to address the issues of building
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up a proper statement of the optimization problem, checkerboard pattern, mesh-

dependency and convergence of solution [18]. Its advantage of achieving a discrete

”black and white” layout without existence of gray area is attractive, however, it

is difficult to solve the optimization design with multiple constraints due to lack

of mathematical theory support.

1.3.4 level set approach

Level set (LS) method, also regarded as an evolutionary approach, is developed

to track the motion of the structural boundaries under a speed function and in

the presence of potential topological changes. In the LS approach [3, 19, 20, 21],

the boundary of the design is defined by the zero level contour of the level set

function and the structure is defined by the domain where the level set function

takes positive values. Fig.1.6 shows a LS optimization design problem of a two-

bar structure, that starts from a full design domain (left) and from an initial

domain with a single hole (right).

Figure 1.6: Results of the iteration in the level set optimization for a two-bar

example [3]

Note that the LS method mainly focus on structural boundary design and ap-

ply to problems of structural optimization involving multi-physics and/or multi-

domains. Hence, its main advantage does not benefit the purpose of this research

of achieving an optimized material distribution in a given single or multiphase
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structure. Moreover, as discussed in Section 1.3.1, the homogenization method

usually produce not manufacturable structure. Therefore, based on the literature

review, most of the research works use density-based or evolutionary topology

optimization method for structural layout design.

1.4 Structural analysis

According to the description about structural optimization formulation provided

in section 1.2, the objective function is generally followed by inequality con-

straints. The response obtained from the structural analysis of the design domain

(assigned with any value of design variables) can be formulated as equality con-

straints, which are used in the optimization procedure. Therefore, the structural

optimization design algorithm can be regarded as a nested framework, in which

the structural analysis is nested in the optimization procedure and is repeatedly

solved for every updated topology.

The finite element analysis (FEM) is the most prominent numerical technique

to perform structural analysis of any given physical phenomenon. FEM method

is developed to solve complicated partial differential equations (PDEs) in approx-

imate sense, which is opposite to find exact solution that satisfy both governing

equations at all points of area of interest and boundary conditions, e.g. finite dif-

ference method (FDM). Nowadays, FEM method is widely used in the modelling

and analysis of many mechanical applications related to civil engineering field. It

is able to replace the single complicated shape with an approximately equivalent

network of simple elements, namely the finite element mesh. The type of ele-

ment can be one-dimensional rods, two-dimensional triangles or quadrilaterals,

or three-dimensional blocks. The accuracy of calculation is considerably influ-

enced by the mesh condition, which means that larger amount of elements and

smaller size of element to be used would result in more accurate results. However,

a computational cost may arise from finer mesh. The elemental stiffness matrix

is calculated based on the shape function and then combined into a global ma-

trix representing the stiffness of the whole system using a merging technique in

a reduction process. Afterwards, the equilibrium equations on nodal points and
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governing equations of stress-strain relationship is solved to obtain the structural

response. A typical FEA process is given as follows:

1. Define design domain and mesh condition.

2. Set up material properties.

3. Apply boundary conditions and loads.

4. Solve the boundary value problem.

5. Output results (e.g. displacement, stress, strain, natural frequency, etc.)

The structural analysis can be divided into three main categories: linear static

analysis, nonlinear static analysis and dynamic analysis. A brief introduction

of both linear and nonlinear system at a static state are given in the following

Section 1.4.1 and Section 1.4.2, respectively.

1.4.1 Linear structural analysis

With a given external load, the internal force is generated for resisting any de-

formation to achieve the equilibrium of the two forces. Generally, for elastic

structure, a force-displacement relationship is linear where the deformation is

proportional to the loading, and the structure return back to its initial position

on unloading. The algebraic set of equation to be solved in the finite element

analysis is expressed as

KU = F (1.3)

where K is the global stiffness matrix; U is the nodal displacement vector, and F

is the external load vector. Upon imposing the geometrical boundary condition,

Eq.(1.3) is solved for the unknown displacement vector. In linear FEM analysis,

for a 2D design problem with acceptable mesh condition, the computational cost

of solving this equation is generally rapid, especially by taking the advantage

of stiffness matrix which is symmetric, sparse and can be stored in a compact

manner. The force vector, as well as the unknown displacement vector, is stored

in one-dimensional array of length equal to the number of degrees of freedom.
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In linear elastic optimization design problem, Eq.(1.3) can be regarded as an

equality constraint, producing structural response that are used to evaluate the

objective and the constraint in the optimization procedure.

1.4.2 Nonlinear structural analysis

In the linear analysis, structures return to their original form, and there are no

changes in loading direction and magnitude and material properties remain the

same. However, nonlinear analysis is required when material deformation is par-

tially irreversible or geometry changes resulting in stiffness changes is assumed.

Generally, structural nonlinearity may be caused by nonlinear material, nonlin-

ear deformations on displacements, nonlinear boundary condition and nonlinear

loading condition. Since this thesis focus on topology optimization design of

structures considering more realistic material property, the structural analysis

procedure associated with material nonlinearity is mainly discussed herein.

1.4.2.1 Classical material elastoplasticity model

For one-dimensional (1D) structural elements, such as steel bars or trusses, the

stress-strain relation is easily obtained through the uniaxial tension test. While

for multidimensional elements, stress is a tensor with up to six components. Thus,

an equivalent stress/strain ratio is developed to present the multidimensional

stress/strain state.

In the year of 1864, due to most material fail by shear deformation, Tresca

proposed to use the maximum shear stress criterion as the material failure crite-

rion. As known that deformation consists of dilatation and distortion changes,

and plastic deformation is related to the distortion part of the total strain, which

is so called the deviatoric strain. For pure shear deformation, shear strain is the

only nonzero strain component that is equivalent to the deviatoric strain. While,

for those deviatoric strain having nonzero volumetric (normal) strain, it is dif-

ficult to use the deviatoric strain or stress as the yield criterion as it is not a

scalar. Thus, the distortion energy criterion is developed as its nature of scalar

quantity, and is defined by removing the volumetric part from the strain energy.
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The deviatoric stress is defined as

s = σ − σm1 = Idev : σ (1.4)

with

σm =
1

3
(σ11 + σ22 + σ33) (1.5)

1 = [δij]

Iijkl = (δikδjl + δilδjk)/2

Idev = I− 1

3
1⊗ 1

(1.6)

where σm is the mean stress; 1 is the second-order unit tensor and I is the fourth-

order unit symmetric tensor. The von Mises yield criterion is developed based

on the distortion energy theory to state that material yields when the equivalent

stress σe reaches the yield stress σy obtained from the uniaxial tensile test. The

equivalent stress can be expressed as follows:

σe =
√

3J2

J2 =
1

2
s : s =

1

6
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2] + τ 2

xy + τ 2
yz + τ 2

xz

(1.7)

where J2 is the second invariant of the deviatoric stress. The von Mises yield

criterion is given by

f = ||s|| −
√

2

3
σy (1.8)

with

||s|| = (s : s)
1
2 (1.9)

In this thesis, Drucker-Prager yielding criterion is also considered to perform

pressure dependent materials such as concrete or soil. It is achieved by adding a

hydrostatic term, and the details are presented in Chapter 4.

Eq.(1.8) presents the material with constant yielding stress, which is called

elastic perfectly plastic, while for some materials, the yielding stress itself varies

following the evolution of plastic deformation. A simplified plot describing the

post yielding behaviors is presented in Fig.1.7, and two types of hardening model

are given in Fig.1.8.
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Figure 1.7: Post-yielding behaviors of material [4]

Figure 1.8: Hardening rules in two dimension [4]

In the isotropic hardening, the yield surface continuously develop based on

the plastic deformation, while it remains constant but moves parallel with the

hardening line for the kinematic hardening. Moreover, many materials show a

combined behavior of isotropic and kinematic hardening, i.e., the yield stress

grows and the yield surface moves simultaneously following the plastic response.

For a material associated with a combined hardening rule, the yield surface is

further defined as

f = ||η|| −
√

2

3
[σ0
y + (1− φ)Hep] = 0 (1.10)

with

η = s− a

a =

√
2

3
φHep

η

||η||
(1.11)

where η is the shifted stress; a is the back stress; σ0
y is the initial yield stress; φ

is a parameter stating the combined effect (so called the Bauschinger effect) in
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the range between 0 and 1. When φ equals to 0, the material corresponds to the

isotropic hardening and 1 for the kinematic hardening.

Small deformation elastoplasticity is assumed that the total strain and strain

rate can be decomposed into elastic and plastic parts as

ε = εe + εp

ε̇ = ε̇e + ε̇p
(1.12)

The stress is associated with the elastic strain by a forth-order constitutive tensor

D, thus the rate form can be formulated as

σ̇ = D : ε̇e

= (λ+
2

3
µ)(tr(ε̇)− tr(ε̇p))1 + 2µIdev : (ε̇− ε̇p)

= (3λ+ 2µ) ˙εm + 2µ(ė− ėp)

(1.13)

with

D = (λ+
2

3
µ)1⊗ 1 + 2µIdev

1 : ε̇ = tr(ε̇) = 3 ˙εm

tr(ε̇p) = 0

(1.14)

where λ and µ are the lame’s constant, e and ep are the deviatoric strain and

deviatoric plastic strain tensor. More specifically, the volumetric and deviatoric

part of the stress can be further expressed as

˙σm = (3λ+ 2µ) ˙εm

ṡ = 2µ(ė− ėp)
(1.15)

It can be found that the volumetric stress is independent of plastic deformation,

which is consistent with the fact that the yield function is defined using the

deviatoric stress alone. In order to obtain the elastic strain, plastic strain is

determined by

ε̇p = γ
∂g

∂σ
(1.16)

where g is the flow potential, which is associated with the yield function in this

thesis. And the parameter γ is known as plastic consistency multiplier. The
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Kuhn-Tucker condition as stated in Eq.(1.17) should be satisfied.

λ̇ ≥ 0

f ≤ 0

λ̇f = 0

(1.17)

When the material stay at the elastic state, the corresponding yield function

f < 0 and there is no plastic deformation (γ = 0). While in the plastic state

where the value of γ is positive, the stress on the yield surface f = 0. When the

state varies, four possible situations may occur

1. Elastic loading γ̇ = 0, f < 0, and ḟ < 0

2. Elastic unloading just after yielding γ̇ = 0, f = 0, and ḟ < 0

3. Neutral loading γ̇ = 0, f = 0, and ḟ = 0

4. Plastic loading γ̇ > 0, f = 0, and ḟ = 0

1.4.2.2 Numerical integration

The FEM analysis for elastoplastic material is performed within an iteratively

incremental scheme that include the increment part and the iteration part. The

full loading force or displacement is divided into finite incremental steps, and in

static problem, the time increment can be regarded being consistent with the

load increment. In the displacement-controlled analysis, the displacement at a

certain time is prescribed, while in the force-controlled method, force is known

and the corresponding displacement is obtained by an assumption of elastic force-

displacement relationship at the initial stage. And then, the strain increment on a

local level is computed. The stress, internal plastic variables at every integration

point are calculated and corrected until the internal force is infinitely approaching

to the external force.

Assuming the state variables, i.e. stress, plastic variables, are known at time

tn, the updated value at time tn+1 is an internal procedure based on the given

strain increments. Here, the return-mapping algorithm is introduced, which con-

sists of two steps. Firstly, a trial stress is calculated by assuming the incremental
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strain from time tn to time tn+1 is purely elastic. According to the Kuhn-Tucker

condition, when the trial value of yield function f trial < 0, the plastic multiplier

γ̇ = 0. This means the trial stress is within the elastic domain, and other state

variables are updated equal to the predicted trial values. However, when the trial

value of yield function f trial > 0, plastic deformation occurs (γ̇ > 0) and the

yield function at time tn+1 must equal to 0 (fn+1 = 0). This is the second step

of projecting the trial stress onto the yield surface. The detailed return-mapping

algorithm is given in Chapter 4 based on the specified material elastoplasticity.

1.4.2.3 Solution to nonlinear equilibrium

Once the internal structural response, i.e., stress, strain or plastic variables, are

determined, they can be used to solve the nonlinear equilibrium equation. The

internal energy can be expressed as

W =

∫ ∫
Ω

ε(u)TσdΩ = uT
∫ ∫

Ω

BTσdΩ = uT
N∑
i=1

(BTσJ)iwi = uT fint (1.18)

where i represents the integration point, N is the total number of integration

points, J is the Jacobian between the physical and reference elements, w is in-

tegration weight, u is the nodal displacement vector, and f int is the internal

force vector. The residual representing the equilibrium btween the external and

internal force can be written as

R = fext − fint(u) = 0 (1.19)

The external load applied to the structure is assumed to be independent of de-

formation, whereas the internal force depends on the displacement in a nonlinear

form. Generally, an iterative method of Newton-Raphson method is used to solve

nonlinear equilibrium.

K∆u = R (1.20)

The evaluation of displacement increment is updated iteratively until the residual

is less than a tolerance value. When the tangent stiffness matrix K obtained in

the first iteration is repeatedly used in the following iteration, this is so called

as Modified Newton-Raphson method, which less effort made on factorizing K
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iteratively, but may converge slowly to the solution. When K is evaluated at

every iteration, the procedure is known as Fully Newton-Raphson Method. It

may result in more computational cost but converged in less iterations.

Here, two most common types of incremental approach: force control and

displacement control have been described.

Force incremental method

In the force incremental method, the prescribed external force can be divided

into several loading steps. More specifically, fext starts from one increment and

increases incrementally till reaches the prescribed value of external load. At the

time increment n and the current iteration i, the deformation and tangent stiff-

ness at the former step i − 1 are known, then the iterative equilibrium can be

formulated as
nKi−1∆u = fext − nf i−1

int (1.21)

A FEM procedure for a single increment problem can be outlined in the following

steps:

1. Define initial nodal displacement u0.

2. Determine the incremental force at the specified pth degree of freedom ∆fp.

3. Set force vector ∆fext with value at pth degree of freedom equals to ∆fp.

4. Solve K0∆u1 = ∆fext where K0 relates to u0.

5. Set u1 = u0 + ∆u1.

6. Compute internal forces f iint and residual R = ∆fext − f iint.

7. If the convergence is satisfied, then stop otherwise continue.

8. Compute the tangent stiffness matrix Ki.

9. Solve equilibrium Ki∆u2 = R.

10. Set ui+1 = ui + ∆u2.

11. Set i = i+ 1 and return back to step 6.
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Displacement incremental method

In case of displacement incremental method, the external force can be regarded as

a reference force f̂ext that equal to 1 on the degree of freedom with prescribed dis-

placement applied and 0 on others. Hence, the expression of iterative equilibrium

corresponding to displacement control method is given as

nKi−1∆u = nϕf̂ext − nf i−1
int (1.22)

where ϕ is the load factor to be calculated at every iteration. The procedure for

single increment of loading following Batoz and Dhatt [22] can be described as

1. Define initial nodal displacement u0, fixed external force vector f̂ext and

initial load factor ϕ0.

2. Determine the incremental displacement at the specified pth degree of free-

dom ∆up.

3. Solve K0∆u1 = f̂ext where K0 relates to u0.

4. Calculate ∆ϕ = ∆up
∆u1p

.

5. Set u1 = u0 + ∆ϕ∆u1, ϕ1 = ϕ0 + ∆ϕ.

6. Compute internal forces f iint and residual R = ϕif̂ext − f iint.

7. If the convergence is satisfied, then stop otherwise continue.

8. Compute the tangent stiffness matrix Ki.

9. Solve equilibriums Ki∆u1 = f̂ext and Ki∆u2 = R simultaneously.

10. Compute ∆ϕ = −∆u2p
∆u1p

.

11. Set ui+1 = ui + ∆u2 + ∆ϕ∆u1, ϕi+1 = ϕi + ∆ϕ.

12. Set i = i+ 1 and return back to step 6.

20



2

Research Outline

2.1 Research motivation

In recent decades, topology optimization technique as an efficient tool has at-

tracted much attention from both academic and industrial engineering commu-

nity.

To design discontinued structure, such as deep beam or transfer plate, etc., a

solution of creating strut-and-tie model (STM) is proposed and recorded in the

associated design codes (e.g., BS EN 1992-1-1:2004 [23]). However, for purpose of

achieving the most optimal design layout or solving the cases under complex load-

ing and boundary conditions, nowadays, extensive studies emerge with applying

optimization technique to structural design.

Also, some commercial package of FEM modelling and analysis include topol-

ogy optimization solver to meet the structural requirements of a part assembly

while saving material and reducing costs. For example, Abaqus Topology Opti-

mization Module (ATOM) helps engineers to refine designs and produce compo-

nents that are lightweight, rigid and durable. It starts with an initial model and

be governed by a set of objectives and constraints. An optimum design is pro-

duced by modifying the properties of the material in selected elements, effectively

removing elements from the analysis.

However, the optimization solver is limited to particular cases and further

research is required on unsolved or more complicated problems, especially for
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nonlinear optimization design. Firstly, the topology optimization module is re-

stricted to only single part or structural member, where the removal elements in

the design domain is assigned with mass and stiffness that is small enough to en-

sure they no longer participate in the overall structural response. To some extent,

this consists with the concept of achieving a STM model and in the post design

process, different material may be adopted for struts and ties respectively, but it

is far from realistic design. Some structures consist of multiple materials having

distinguished properties, such as reinforced concrete assembly is made by concrete

and steel. Therefore, topology optimization design of structure while taking ma-

terial realistic nonlinearity for each phase into account remain a challenge with

limited research works. Secondly, in Abaqus, the objectives applied to a topology

optimization process is limited to those that have been maturely investigated,

i.e., strain energy (a measure of structural stiffness), frequencies, internal and re-

action forces, weight and volume. However, more internal variables in structural

response are necessarily considered as an objective or constrain in the optimiza-

tion design problem when looking into from a different point of view for various

functional design purpose. Therefore, in this thesis, both FEM structural analysis

and optimization iterative algorithm are programmed and performed in Matlab.

This enables to embed the sensitivity analysis into the incremental FEM analysis

and solve them simultaneously to save the computational cost, rather than break-

down into separate parts by storing extensive information of structural response

that used in sensitivity analysis for all increments in structural analysis stage.

Regarding to topology optimization, two methods are generally undertaken:

the heuristic evolutionary method (BESO method) and mathematical SIMP based

optimization method. They are also regarded as discrete density based method

in which the design variable coupled with element equal to either 0 or 1, and con-

tinuous density based method where the density of elements is assumed to vary

continuously from 0 to 1. BESO method mainly benefit from easily implement-

ing researchers’ novel idea into algorithms but less support from mathematical

theory of achieving the optimal solution. While the SIMP-based optimization

method may have difficulty in achieving a discrete ”black and white” layout due

to the existence of elements with intermediate density. In this thesis, these two
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methods are both involved in separate research aspects to achieve the optimized

layout due to their particular advantage and drawbacks.

This thesis focus on application of topology optimization in structural mechan-

ics from two perspectives: the feasibility of optimization method to be applied

and capacity of incorporating with elastoplastic structural mechanics for single or

composite structures. The main contribution is related to the framework of opti-

mizing multi-phase material with distinct elastoplasticity at each phase, since the

investigation regarding to elastoplastic structural optimization is rare and only

reached a preliminary stage. Also, equivalent plastic strain-based optimization

method is proposed, which is firstly discussed to authors’ best knowledge.

A summary of the research aspect is described in Section 2.2.

2.2 Summary of research

The main motives of each research aspects are hereby presented.

Aspect 1: Optimized design of steel layout in RC Structure struc-

ture (Chapter 3 of the thesis)

Reinforced Concrete (RC) is the most well known composite structure and used

worldwide. Research studies about how to design structure with D-region prop-

erly can be recited as follows: STM method is initially proposed based on stress

trajectories and engineers’ empirical practice, which is an effective approach but

usually uncertain. Afterwards, truss topology optimization method is applied

to seek the best truss (steel reinforcement) layout in the design domain based

on ground structure theory where the initial truss layout is predefined and has

significant influence on the resulting truss topology. Continuous topology opti-

mization method is also applied due to its advantage of achieving a novel layout

without restriction from original design domain. The continuum optimization

of single material structure can be regarded as an alternative to achieve STM

design. Gradually, incorporating different mechanical properties of concrete and

steel into topology optimization has emerged, e.g., add yield constraint on mate-

rial phase. Furthermore, RC structure is not only a two-material but a two-scale

design problem, in order to consider the realistic volumetric ratio of steel used
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into the continuum concrete, a hybrid truss-continuum model is developed. More

specifically, the truss ground structure and continuum finite elements are com-

bined onto a mesh of shared nodes where tension members are presented by truss

elements resulting in reinforcing steel design while continuum elements are im-

plemented as concrete to carry compression. Although, it solves the two-scale

problem and simultaneously taking two separate material phase (steel and con-

crete) into account, the steel is assumed to be unable to work in compression,

which is consistent with the STM mechanism but oppose to the realistic material

property.

Therefore, this paper proposed a truss-embedded-continuum model and in-

corporated with the evolutionary optimization technique. Firstly, it succeeds in

considering two distinct material scales by modelling reinforcing bar as truss and

concrete as continuum elements. Secondly, both tension and compression are

acceptable in steel, also, a modified variable updating scheme is developed to

consider the contribution of concrete in tension. Thirdly, opposite to the con-

ventional truss or truss-continuum topology optimization method that bothered

with the impact from the predefined ground structure, a heuristic orientation

finding scheme is proposed and added into the BESO algorithm to enable the

truss adjust itself orientally in a continuum element. Two numerical examples

are used to present the effectiveness of the proposed algorithms. The result shows

an optimized reinforcement layout in both topology and orientation.

However, there are still some limitations encountered in this study. Although

the asymmetric property of concrete is taken into account by setting the ap-

proximate allowable value of strain in tension and compression as index to effect

the design variable update scheme, the behaviour of both steel and concrete are

assumed to be linear and elastic in structural analysis. This is still far from in-

corporating more precise material feature, e.g. elastoplasitcity, into optimization

algorithms. In order to nest the structural analysis into every optimization it-

eration and consider the nonliearity and post yielding behaviour for both steel

and concrete, the distinct scale problem is neglected in the next research study.

This is due to some obstacles encountered, e.g., it is difficult to determine a con-

sistent constitutive tensor at any material point for an embedded model as its

discrete nature. Therefore, to simplify the problem, both concrete and steel are

24



2.2 Summary of research

modelled as continuous elements and the continuous density-based SIMP opti-

mization method is used, which means the element is either concrete or steel or

a kind of smeared concrete-steel material.

Aspect 2: Using continuous density-based optimization method for

nonlinear composite structure (Chapter 4 of the thesis)

In this research study, the proposed framework is applicable for not only the

reinforced concrete model but any composite structure having same or distinct

elastoplasticity. Research studies about using topology optimization for continu-

ous structure design are briefly recited here and a detail review is given in Chapter

4.

Initial studies focused on implementing topology optimization on single or

multiphase elastic material design, however, linear elastic material model is not

appropriate when there are material points exceeding the elastic range. There-

fore, research emerged to optimize structure taking their material nonlinearity

into account. However, few studies consider material nonlinearity for a multi-

phase optimization problem. Especially, when the yield criteria and the post

yielding performance (e.g. hardening model) applied to each material phase is

different. Also, the von Mises plastic material model is adopted in majority stud-

ies and all works employ the isotropic hardening rule. While some materials,

e.g., polycrystalline metals, present a mixed property of isotropic and kinematic

hardening.

Therefore, due to the increasing demanding of topology optimization tech-

nique in efficiently distributing material phases for composite structure, it is nec-

essary to consider more types of hardening rules following multiple yield criteria

and incorporate with topology optimization method to achieve a more realistic

and reliable design. The proposed method and framework are implemented and

illustrated by three numerical examples. In-depth analysis to the numerical re-

sults have revealed the significant impact of selection of plasticity and hardening

model on the results of topology.

Aspect 3: Using Discrete Density-based Optimization Method for Non-

linear Structure (Chapter 5 of the thesis)
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As can be concluded from the former research study (Aspect 2), it is successful

to optimize two-phase structure taking their individual yielding and post yielding

behaviour into account, however, there are several problems arise when the SIMP

density optimization method is used for multiphase nonlinear structural design.

Firstly, although a gradually reduced filtering scheme is proposed and em-

ployed to eliminate the gray scale areas in the topology, this optimization still

failed to achieve a distinct convergence of ”0-1” layout. In the design domain,

for the elements that develop large plastic deformation or little deformation, it is

easy to determine which material phase is effective, while for elements that show

in-between level of strain, not very large or very small, presenting in gray scale.

This is an unsolved issue that has also been observed in previous research studies

[24, 25]. Secondly, due to a nested framework is performed by embedding partial

sensitivity analysis into structural analysis, and nesting the structural analysis

into the optimization procedure. The number of structural analyses to be solved

is equal to the number of optimization iterations. Moreover, in a path-dependent

nonlinear analysis, several increments are needed to converge at every certain

displacement level. Therefore, the computational cost relates to the number of

time increments defined and the total number of optimization iterations. In the

former study, most problems require at least 300 design iterations to reach a dis-

tinct layout, and after that, no significant changes in the topology and objective

value. Hence, computational burden is non-negligible during design.

BESO method seems to be an alternative effective tool due to their advantage

of obtaining a distinct ”0-1” layout in a certain number of design iterations, which

solves the problems discussed above.

In the evolutionary optimization field, calculation of sensitivity numbers that

determine the removal and addition of every element is considerably important.

And it straightforwardly influence the stabilization of evolutionary procedure and

convergence of topology. Limited research studies consider to use BESO method

for nonlinear structural design and the sensitivity analysis applied is always sim-

plified or approximated, e.g. only take the global constitutive equation into ac-

count. Afterwards, additional approaches are applied, e.g., damping scheme on

sensitivity numbers, admission volume ratio of limiting the number of recovered

elements at each iteration, filtering scheme of gradually decreasing the filtering
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radius, to smooth the sensitivity number. Reference works are reviewed in Chap-

ter 5. Therefore, an accurate calculation of sensitivity number is particularly

vital for using BESO method for nonlinear design.

This research aspect contributes to apply a transit coupled nonlinear system

that consider the elastic and plastic transit state when calculate the sensitivity

numbers in the BESO algorithms. The stable evolutionary process is observed

and convergent topology is achieved without applying any additional scheme men-

tioned above. Two design problems show the reliability and effectiveness of the

proposed method. Also, in the nonlinear analysis, the tangent stiffness between

the stress and strain rate is further modified to be consistent with the time inte-

gration algorithm, based on the fact that a finite size of time increment is used

in the time integration algorithm. This enables to achieve quadratic convergence

during the Newton-Raphson iteration to further save computational cost.

Aspect 4: Plastic Strain-based Topology Optimization for Nonlinear

Structure (Chapter 6 of the thesis)

As can be observed from previous researches[24, 26, 27, 28, 29] relating to use

optimization method for nonlinear structural design. Majority of studies take

maximizing the energy absorption capacity as their purpose, which is theoreti-

cally similar to maximizing the stiffness (minimize the compliance) for an elastic

structure. It can be achieved by maximizing the total strain energy, minimiz-

ing the complementary elastic work, maximizing the absorbed plastic work or

maximizing the end-compliance under prescribed displacement loading condition.

Apart from compliance or energy based optimization problem, stress based topol-

ogy optimization design emerged as another attractive and challenging area to

minimize the maximum stress or restrict stress to an allowable value.

However, from research studies focus on nonlinear analysis of elastoplastic

structure, I realized that plastic strain is obviously an important internal tensor.

For instance, for an elastic-perfectly-plastic structure, the yield stress remain

constant while the plastic deformation grows under further loading of force or

displacement. Also, for elastoplastic structure with strain-hardening model, the

yield surface moves or expands along the plastic deformation. Furthermore, the

non-reversible deformation in response to the applied force would deteriorate the
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material strength. Thus, in the optimization design procedure for a nonlinear

structure, plastic deformation is essentially taken account as an optimization

objective or constraint. To authors’ best knowledge, there yet no studies about

plastic strain based optimization problems.

This possibly due to the challenges encountered: (i) local nature of strain.

They exist on every material integration point rather than can be expressed in

a global form. (ii) structure may partially enter the plastic state. Plastic strain

equals to 0 for material staying at the elastic state. (iii) ’singularity’ problem.

Elements with low density may present high equivalent plastic strain, which resists

the optimization algorithm from removing them.

This study solved the first difficulty mentioned above by using a global quan-

tity, that accumulate all equivalent plastic strain on every Gauss points, to ap-

proximate local plastic strain. And the nature of BESO evolutionary method

prevents the ’singularity’ phenomenon raised from elements with intermediate

density. Also, for a material point, its sensitivity may vary by several orders

of magnitude due to the uncertain state (plastic or elastic). Hence, a damping

scheme is proposed to stabilize the topology evolution.

This study successfully deals with a formulation for topology optimization of

elastoplastic structures that aims at minimizing the maximum equivalent plas-

tic strain subject to material usage constraint. Two numerical examples are

presented to discuss the features of the achieved optimized designs along with

performances of the adopted procedure. Comparison with the compliance based

optimization results points out the difference in the resulting topology, equivalent

stress and equivalent plastic strain distribution.
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3

Optimized Design of Steel Layout

in RC Structure

3.1 Introduction

In structural concrete design, disturbed regions, so called as ‘D-regions’, have

been a challenge for decades. Opposed to ‘B-regions’ (Bernoulli or Beam regions)

where design procedure is maturely established according to beam theory and

cross-sectional analysis, D-region is defined by a structural part with nonlinear

strain distribution, for which traditional approaches for slender beams are not ap-

propriate for design. Current practice towards design and analysis of such regions

of the structure is using strut-and-tie model (STM) [30] which is well known as a

generalization of truss analogy model [31]. The concrete struts represent elements

in compression while the tensile ties are carried by steel reinforcements.

However, the selection of STM is usually uncertain, especially for an irregu-

lar RC structural member under complicated loading and boundary conditions,

because it is mainly based on stress trajectories, load path methods or empirical

observations. The optimization technique has been regarded by researchers as an

efficient tool to distribute reinforcements within the concrete structure.

Initially, the discrete topology optimization based on the truss ground struc-

ture approach, that allows the truss topology design problem to be viewed as

a generalized sizing problem, has been used to search for the optimal STMs in
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reinforced concrete structures [32, 33]. The continuous reinforced concrete do-

main is discretized by a predefined layout where the fixed truss ties correspond

to the actual reinforcements and the ties with cross-sectional areas equal to zero

or nearly zero are removed through the topology optimization process. In both

works of Biondini [34] and Ali and White [35], an automatic search technique for

truss models consistent with the elastic stress trajectories in reinforced concrete

members were proposed based on ground structure approach and linear mathe-

matical programming technique. Also, genetic algorithms have been applied to

truss topology optimization to seek the best layout of the location of reinforcing

ties and compressive struts within the reinforced concrete beam [36]. More re-

cently, Amir and Sigmund [37] developed a truss topology optimization method

by embedding a truss ground structure into a concrete continuum damage model,

so that the distribution of embedded steel reinforcement is optimized. However,

the predefined ground structure has dominant influence on the resulting topology,

which mainly depend on the intuition and experience of designers.

As opposed to truss topology optimization that require designers to define

node locations and element connections a priori, using continuum topology op-

timization to achieve a novel layout design of reinforced concrete structures has

attracted a large amount of researchers in recent years [38, 39, 40, 41, 42, 43, 44].

However, these studies all proposed to use a truss-like structure obtained from

single-material topology optimization so as to predict a strut-and-tie model. As

the name suggests, the reinforced concrete structure is composed of two materi-

als: concrete and steel. Hence, incorporating different mechanical properties of

concrete and steel into topology optimization has emerged to gain a more effec-

tive design [45, 46, 47]. Luo and Kang [48] developed a two-material topology

optimization with volume constraint on steel and strength constraint on concrete.

The resulting topology is much like a steel-concrete composite structure. Instead

of imposing stress constraints, the complete non-linear elasto-plastic response for

both concrete and steel were modelled in Bogomolny and Amir et al. [25]. Also,

Luo et al. [49] proposed an effective continuum topology optimization method,

aiming to minimize the cost of steel reinforcements, subjected to a shrinkage

volume constraint and yield constraint for concrete phases.
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Reviewing these works, RC structure is generally regarded as two-phase con-

tinuum, however, in real application, the volumetric ratio of steel used into the

continuous concrete is rarely over 1% [37], which cannot be achieved properly

by modelling steel reinforcements as continuous elements in topology optimiza-

tion design. Also, from a construction perspective, the required postprocessing

of continuous members in tension regions to discrete bars is less practical.

In order to benefit from both continuum and truss topology optimization, the

truss ground structure and continuous finite elements are combined onto a mesh

of shared nodes where tension members are presented by truss elements resulting

in reinforcing steel design while continuum elements are implemented as concrete

to carry compression. This idea was initially proposed in Moen and Guest et al.

[50] and then topology optimization of using a hybrid truss-continuum model was

further developed in Gaynor et al. [51] to prevent the strut-only solution from

missing transverse tensile stresses caused by load spreading. Also, it has been

extended to 3D design models by Yang, Moen and Guest [52] and developed to

generate a structural system performing practically in construction by considering

a tradeoff between material and construction cost [53].

However, the stiffness of truss steel element modeled in the hybrid approach

is high in tension but negligible in compression, just as in most previous studies

with the goal of achieving a strut-and-tie model. It is important to point out

that although it opposes to the STM mechanism, both tension and compression

are acceptable in steel in the real application.

As a result of this, the current work develops a truss-continuum embedded

model that reinforcing bars are modeled as truss elements embedded onto the

continuum concrete. Furthermore, it focus on obtaining an optimized steel re-

inforcement layout accepting both tension and compression within a constant

concrete domain. The optimization variables are only applicable to steel rein-

forcements. The main contribution of this study is that a heuristic orientation

finding scheme is proposed to be employed into a 2D BESO algorithm. This en-

ables the reinforcing bar can adjust itself to an efficient orientation based on the

principal strain direction in each iterative design, which get rid of the drawback

of conventional truss topology optimization that the layout for reinforcing bars

is dominantly influenced by the predefined truss layout.
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BESO method is an improvement of evolutionary structural optimization

(ESO), which removes the unnecessary material from a structure while the ef-

ficient ones to be added. Apart from the gradient based method, e.g. the Solid

Isotropic Material with Penalization method (SIMP), the heuristic BESO method

is another promising choice. More recently, the solution to problems of checker-

board pattern, mesh-dependence and non-convergence, and a material interpo-

lation scheme with penalization was employed in the BESO technique [54]. Its

simple concept and easy implementation has gained widespread popularity among

researchers and designers and has been used for a wide range of applications in

engineering field [55]. For these reasons, the author decides to achieve the goal

by using the BESO approach in this paper. Moreover, due to the property of

concrete that is strong in compression but weak in tension, a modified design

variable updating scheme is developed, based on the allowable strain for concrete

in tension and compression.

3.2 Modelling of reinforcing bars

The reinforcing bar placed in the concrete is used to strengthen structure by

minimizing deformation, crack or high stress of concrete. There are generally

two methods to model reinforcements: smeared model and embedded model. In

the smeared model, the overall constitutive relationship is simply evaluated by

adding the material matrix for concrete and steel together as

D = ρcDc + ρsDs (3.1)

where ρc and ρs are the volume ratio for concrete and steel in one element,

respectively. To solve the distinct scale problem, the embedded model is adopted

in this study by modelling the reinforcing bar as truss that contribute to its

resistance only in the longitudinal direction. The material matrix of steel and

concrete for the plane stress case can be expressed as

Ds =

Es 0 0
0 0 0
0 0 0

 (3.2)

32



3.2 Modelling of reinforcing bars

Dc =
Ec

1− v2

1 v 0
v 1 0
0 0 1−v

2

 (3.3)

The discrete modeling of steel reinforcements was initially proposed by Kwak and

Filippou et al. [56]. Perfect bond between steel and concrete is assumed, so that

the displacement of truss (steel) elements are consistent with those of the sur-

rounding continuum (concrete) elements. Also, the location and orientation of the

steel bar superimposed on a concrete element is arbitrary, not necessarily shar-

ing the same nodes, hence the orientation of the truss element is ideally flexible

during the optimization process. The elemental stiffness of each individual steel

bar can be added to nodes of concrete elements, in other words, the strain energy

of the embedded steel bar can be evaluated through the nodal displacements and

its elemental stiffness at a global coordinate system.

Here, I derived the stiffness assembly of truss element and continuum element

for a particular embedded model where the reinforcing bar presented in red is

embedded arbitrarily into a 4-node quadrilateral element shown in black (Fig.3.1).

Based on the assumption that the reinforcing bar only has stiffness along the

longitudinal axial direction with a constant cross-sectional area, the elemental

stiffness matrix for a 1D steel bar is given by,

Ksl =
AsEs
Le

[
1 −1
−1 1

]
. (3.4)

Where As, Es and Le represent the cross-sectional area, the elastic Young’s mod-

ulus and the length of an individual bar, respectively.

As presented in Fig.3.2, the nodal axial force (Fs1, Fs2) of an elastic reinforcing

bar can be formulated as [
Fs1
Fs2

]
= Ksl

[
us1
us2

]
(3.5)

Fig.3.3 presents the nodal axial force and displacement in a global coordinate,

then Eq.(3.5) can be further formulated as
Fsx1

Fsy1

Fsx2

Fsy2

 = Ksg


usx1

usy1

usx2

usy2

 (3.6)
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3.2 Modelling of reinforcing bars

Figure 3.1: Reinforcement embedded model

Figure 3.2: 1D truss element in local coordinate

Figure 3.3: 1D truss element in global coordinate
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with

Ksg = N1
TKslN1 (3.7)

N1 =

[
cos θ sin θ 0 0

0 0 cos θ sin θ

]
. (3.8)

where θ expresses the angle between the axis of the reinforcing bar and the x-axial

direction. Therefore, the local elemental stiffness matrix Ksl can be transformed

to Ksg in a global coordinates through a transformation matrix N1. The transfor-

mation matrix N1 relates the local truss elements to a global coordinate system

by applying a rotation θ. As the location of the truss element embedded in the

continuum element is arbitrary that the truss nodes may not coincide with the

continuum nodes, another transformation matrix N2 is needed to map Ksg to

a stiffness matrix Ks in terms of the degree of freedoms (DOFs) of continuum

nodes. Based on the principle of energy conservation, N2 can be derived as

UT
sgKsgUsg = UT

e KsUe (3.9)

where Ue represents a nodal displacement vector associated with continuum

nodes. Due to the assumption that the displacement of the embedded reinforc-

ing bar is compatible with those of the continuum concrete elements, the global

displacement vector Usg at the end nodes for a truss element can be expressed in

terms of Ue through shape functions N2 as

Usg = N2Ue (3.10)

In this particular example as presented in Fig.3.1, it can be described more specif-

ically as


usx1

usy1

usx2

usy2

 = N2



ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(3.11)

with

p =
l1

l
q =

l2

l
(3.12)
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N2 =


1− p 0 0 0 0 0 p 0

0 1− p 0 0 0 0 0 p
0 0 1− q 0 q 0 0 0
0 0 0 1− q 0 q 0 0

 (3.13)

Note that matrix N2 varies subject to the rotation of reinforcing bar from axis x

within the continuum element. By substituting Eq.(3.11) into Eq.(3.6), the nodal

force vector of the bar in a global coordinate can be further obtained as


Fsx1

Fsy1

Fsx2

Fsy2

 = KsgN2



ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(3.14)

And the nodal force of the bar in terms of the continuum nodes can also be

achieved through the transposed form of N2 as

Fx1

Fy1

Fx2

Fy2

Fx3

Fy3

Fx4

Fy4


= NT

2


fsx1

fsy1

fsx2

fsy2

 (3.15)

By substituting Eq.(3.15) into Eq.(3.14),

Fx1

Fy1

Fx2

Fy2

Fx3

Fy3

Fx4

Fy4


= NT

2 KsgN2



ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(3.16)

Therefore, a fully description of stiffness matrix Ks can be summarized as

Ks = NT
2 KsgN2 = N2

TN1
TKslN1N2 (3.17)
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As a result, the assembled stiffness Ke can be obtained by adding Ks to the

elemental concrete stiffness matrix Kc to model the reinforced concrete element

in a finite element method, which is given by

Ke = Ks + Kc (3.18)

Regarding the orientation of reinforcing bar, it is simplified to consider only four

types of rotation allowed from axis x within the continuum element in this study.

As shown in Fig.3.4, the grey area denotes the continuum concrete element while

reinforcing bar is represented by black bold line.

Figure 3.4: Four different types of reinforcing bar embedded in a continuum

element

3.3 Topology optimization algorithm

The optimization algorithm applied in this work is explored dominantly based on

the BESO optimization approach [30]. Although the hosting concrete is taken

into account in the finite element analysis, the optimization design domain is

only applicable to the steel reinforcement layout. As mentioned that topology

optimization technique is nowadays widely used to design RC structures to gain a

truss-like layout. However, the achieved topology cannot be applied straightfor-

wardly to the real design problem due to the requirement for structural integrity

and the minimum reinforcing ratio in some specific regions. Therefore, here steel

distribution is the only target of optimizing within a constant amount of concrete

domain.
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3.3.1 Problem statement and design parametrization

The problem is formulated with the objective of maximizing the stiffness of rein-

forcement layout in a RC design domain and a constraint on the amount of steel

to be used

min c(x) =
1

2
UTKU

s.t.

Nele∑
e=1

vexe = V ∗s

xe = 0 or 1, (e = 1, 2, ..., Nele)

(3.19)

where c denotes the mean compliance; U is the vector of nodal displacement

obtained from FEA of the reinforced concrete model; K is the global stiffness

matrix of the structure; V ∗s is the prescribed target volume fraction of the design

domain which corresponds to the realistic reinforcement volume ratio into the

concrete domain; ve is the volume of each truss element; xe is the design variable

that are restricted to be either lower-bound xmin (0.001) or 1 throughout this

study.

As elements are defined without intermediate density, only one type of steel

bar is considered. The evolutionary optimization starts from a full design domain,

which means that the continuum concrete is initially over-reinforced by steel, and

the amount of reinforcement decreases gradually by applying an evolutionary ratio

(Rer) till the target volume V ∗s is achieved. In order to avoid the results being

influenced by Rer, a constant value of 2% that has been widely tested in previous

studies is adopted herein. Furthermore, a convergence criterion is required to

terminate the optimization algorithm. In this research, the optimization stops

when a change of 0.01% is satisfied in the mean compliance over the last 10

iterations.

3.3.2 Reinforcing bar orientation

Amir and Sigmund et al. [37] states the outcome of optimization is obviously

influenced by the selection of the ground structure. Therefore, it is vital to

consider the efficient orientation of steel without establishing a very dense ground
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structure. As a heuristic approach, BESO provides researchers a promising basis

of extending to various design problems and implementing ideas into its algorithm.

This research focus on the optimization of both orientation and topology of

steel layout in concrete structure. The reinforcing bars are modeled as discrete

truss elements and accept both tension and compression. At the initial design

domain, two reinforcing bars are embedded into each concrete continuum element

along the longitudinal axis x and y respectively, as presented in Fig.3.7(a). After

the first iteration, their orientation will be adjusted according to the maximum

and minimum principal strain direction, respectively. Although the angle of ro-

tation from x axis can also be obtained by the direction of principal stresses,

achieving the principal stress is not as easy as strain based on this finite element

embedded model that consists of both discrete and continuum elements. Four

different 2D principal strain states are shown in Fig.3.5.

Figure 3.5: 2D principal strain states

As the purpose of the initial research is to verify the proposed heuristic orienta-

tion finding system rather than generate a very complicated reinforcement layout,

only two types of embedded model are considered in which reinforcing bars are

located horizontally and vertically or in a diagonal form. Hence, the maximum

principal strain orientation is defined approximately equal to: 0◦ (180◦), 45◦, 90◦

or 135◦, in terms of rotating anticlockwise from x axis (see Fig.3.6). For exam-

ple, when the direction of maximum principle strain at the centroid of element

is 50◦ from the positive x axis, which appears in the range between 22.5◦ and

67.5◦, then it assumbed equal to 45◦ to simplify the problem. Fig.3.7 shows the

reinforcing bar in black following these four possible orientations, while the bar

in blue which is perpendicular to the black, is parallel to the minimum principal

strain direction.

39



3.3 Topology optimization algorithm

Figure 3.6: Four simplified maximum principal strain orientation rotating anti-

clockwise from x axis

Figure 3.7: Presentation of embedded model
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For the problems encountered in topology optimization design, e.g., checker-

board pattern or mesh-dependency, Huang and Xie et al. [18] proposed filtering

scheme for sensitivity numbers to address the numerical instabilities. Since the

orientation of reinforcing bar is considered based the strain states, the strain

obtained from structural analysis of the current structure is modified by a fil-

tering scheme before being used to define the orientation. The influence from

neighboring elements within the filtering circle are taken into account as

εe =

N∑
i=1

weiεi

N∑
i=1

wei

(3.20)

with

wei = max(0, rmin − dis(e, i)) (3.21)

where εe and εi are the vectors representing the strian components at the centroid

of element e and element i, respectively. wei is the weight factor, rmin is the filter

radius and the item dis(e, i) represents the distance between of centers of element

e and element i. A Pseudocode for the bar orientation finding scheme is depicted

as follows:

For each truss-continuum element do

Calculate the centroid strain components εx, εy, γxy

Apply filtering to εx, εy, γxy

Calculate principal strain ε1, ε2

Apply filtering to ε1, ε2

Calculate angle θ between maximum principal strain direction and x axis in

terms of anticlockwise rotation

If θ ≤ 22.5◦ or 157.5◦ ≤ θ ≤ 180◦ then

θ = 0◦

Else if 22.5◦ < θ ≤ 67.5◦ then

θ = 45◦

Else if 67.5◦ < θ ≤ 112.5◦ then

θ = 90◦
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Else if 112.5◦ < θ ≤ 157.5◦ then

θ = 135◦

End if

Rotate reinforcing bar in black by θ

Locate reinforcing bar in blue perpendicular to the one in black

End for

However, from numerical studies, I observed that results may fail to converge

after satisfying the volume constraint in optimization, which is possibly due to

the oscillation of rotation angle θ. This leads to a non-convergence results and

non-optimal bar orientation. At this point, a possible solution to this problem

is proposed to stabilize the orientation. The rotation angle is defined by weight-

ing the current orientation θ and the orientation obtained in last iteration θold

to a threshold θth (that possibly equal to 22.5◦, 67.5◦, 112.5◦ or 157.5◦ as in-

troduced above). The following pseudocode describes one situation which may

occur. Although, it cannot guarantee an optimal solution but play a positive role

in converging material orientation for all examples in this paper.

Do while θ ≤ θth and θold > θth

If θth−|θ|
θth
≤ |θold|−θth

θth
then

θ = θold

Else if

θ = θ

End if

End do

3.3.3 Update Scheme

As the optimized topology is achieved by the relative ranking of sensitivity num-

bers in BESO method, no matter an individual truss element acting in tension

or compression, its corresponding sensitivity is involved in the optimization algo-

rithm. However, the resulting topology based on the contribution of steel rein-

forcement to the objective function may not reflect the real design problem. Some
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steel reinforcements may be remained in regions where concrete itself can with-

stand the compression. This is due to its higher sensitivity than that of those in

tension areas. Opposed to steel having constant and high strength in all direction,

concrete is strong in compression but very weak in tension due to its quasi-brittle

nature. Therefore, a proposed scheme updating the design variables while taking

the host concrete into consideration is applied into the BESO algorithm in this

study. Homogenized average strain is derived from a truss-continuum combined

element model. When the maximum principal strain or the minimum principal

strain of an element exceeds the threshold value of the allowable tensile or com-

pressive strain that measured from uniaxial tension and compression tests, it is

considered prior in the sensitivity analysis, and ranked over elements with strain

less than the allowable value. Here, the threshold values for concrete in tension

and compression are set to be 1 × 10−4 and −3 × 10−3 respectively throughout

the paper. The sensitivity modification formulation is constructed as

si = sh − 0.001× (sh − si) (i = 1, 2) (3.22)

where si is the sensitivity number with respect to the reinforcing bar being placed

based on the maximum (i = 1) or minimum (i = 2) principal strain direction.

And sh is the highest sensitivity value among those of all the candidate truss

elements. Note that the sensitivities of elements having allowable strain do not

need undergo this artificial modification. The examples given in the next sec-

tion show different topologies obtained from the optimization algorithm with and

without adding this heuristic update scheme and prove its capacity in achieving

a reasonable reinforcement layout.

As a result, the proposed evolutionary optimization procedure based on BESO

algorithm is summarised as follows:

1. Define mesh condition and initial truss layout.

2. Assign design variable for each truss element.

3. Set up BESO parameters (target volume V ∗s , evolutionary removal ratio

Rer, filtering radius rmin, convergent tolerance τ and maximum optimization

iterations).
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4. Perform FE analysis of current truss-embedded-continuum structure to ob-

tain the nodal displacements U.

5. Calculate sensitivity number of every truss element.

6. Filter sensitivity numbers and average them based on evolutionary history.

7. Define desired volume of next iteration.

8. Update design variables of truss elements based on the modified updating

system using Eq.(3.22).

9. Check the target volume are reached and the convergence criterion or de-

termined total iterations are satisfied.

10. If not, calculate the magnitude and direction of principle strain based on

the output U, and construct a new truss layout.

11. Return to step 4 until step 9 is satisfied.

3.4 Examples

Two 2D cases were tested in this section to present the implementation of the

proposed optimization algorithm in obtaining steel reinforcement layout for con-

crete structure design. The Young’s modulus for steel and concrete Es = 210Gpa,

Ec = 25Gpa and the poisson ratio for both concrete and steel v = 0.3 are constant

throughout all examples. Four-node quadrilateral plane-stress elements are used

to model the 2D continuum concrete element. The filter radius applied in the

filtering scheme is equal to 3 times of the element size. Since reinforcing bars are

embedded into individual continuum element, using smaller element size leading

to a denser reinforcement layout while reinforcements are placed with larger space

based on a coarser FE mesh. In all simulations, the thickness of a 2D structure

is 0.001m and the volumetric ratio of steel used in a continuum element is set to

2%. Although the cross-sectional area of the reinforcing bar cannot subject to

more than one type, there would not be a significant influence on determining

the regions where to be reinforced by compressive or tensile bars. In the resulting
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topologies, black solid line represents reinforcing bar in tension while the one in

compression is described by blue solid line.

3.4.1 A 2D cantilever beam

A cantilever short beam with length-to-height ratio equal to 8/4 is shown in

Fig.3.8. It is fully clamped along the left edge and a downward concentrated

load F=300N is applied at the centroid of the right edge. Using an element

size of 20mm, the whole domain is discretized into 800 (40×20) continuum finite

elements. It is aiming to achieve a practical volumetric ratio of 0.48% from

an initial over-reinforced reinforcing ratio (2%), in other words, only 24% of

the total amount of reinforcing bars remain in the continuum concrete through

optimization. Firstly, the influence of the implementation of the proposed update

Figure 3.8: A 2D cantilever beam design domain

scheme in the optimization algorithm on the resulting topology is studied. As

shown in Fig.3.9 (a), a symmetric layout of reinforcing bars located in tension

and compression regions is achieved for this particular case. Same amount of

steel bars are distributed in the upper and lower parts of the cantilever beam

when the asymmetric property of concrete is not considered. While in Fig.3.9 (b),

taking the allowable tensile and compressive strain for concrete into account in the

variable updating system, more reinforcing bars are distributed in tension regions

which is due to concrete has a strong strength in compression. Also, it should

be pointed out that a small amount of bars perpendicular to the compressive
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reinforcing bars exist in the left lower area of the domain to reduce the concrete

potential crack widths due to tensile stresses. Furthermore, the cantilever beam

with various length-to-height ratio of 9/4 and 10/4 are tested respectively, under

the same loading and boundary conditions. The resulting topologies are plotted

in Fig.3.9 (c) and (d). Through comparison with the result shown in Fig.3.9

(a), an increasing amount of vertical tensile steel bars are distributed to reinforce

concrete in compression-dominant regions. Moreover, the length of the horizontal

bar acting in both tension and compression are extended along the geometrical

increase in length of the domain. And rows of compressive horizontal bar located

at the bottom area increase from four (Fig.3.9 (b)) to five (Fig.3.9 (d)). However,

the limitation of the target volume of steel used and high demanding in other

critical bar positions reduce the amount of diagonal reinforcements.

3.4.2 A 2D deep beam

This example considers the layout design of steel reinforcing bars in a deep beam

as shown in Fig.3.10. It has fixed support at left and roller at right that allow to

move along the positive x axial direction. And a downwards point load of 1500N

is applied on top central surface. Also, the effect of the mesh size of continuum

elements on the resulting optimized reinforcement layout is investigated. The

target volumetric ratio of 0.4% for steel embedded into the continuum concrete

are constant in all cases. Initially, the concrete domain is discretized by 2100

continuum elements where the element size equal to 20mm. From the results

presented in Fig.3.11 (a), it can be observed that large amount of tensile rein-

forcing bars are located at the bottom of the concrete domain where flexural

failure easily exist. While the top middle zone in which the downwards pressure

is applied, a group of steel bars are remained to strengthen concrete and act in

compression. Also, double reinforcements are placed in the boundary support

regions due to their high concentrated stress. As expected, there is an obvious

distribution of diagonal reinforcing bars in tension appears to reinforce the shear

part of the deep beam. Since the reinforcing bars are embedded in continuum

elements, a denser mesh for a continuum domain leads to a denser truss layout.

The cross-sectional area of a bar decreases with the reduction of element size to
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Figure 3.9: Comparison of resulting topologies. (a) Optimized layout without

applying the novel update scheme into BESO algorithm. (b) Optimized layout

with applying the novel update scheme into BESO algorithm: 2D structure with

length-to-height ratio of 8/4. (c) 2D structure with length-to-height ratio of 9/4.

(d) 2D structure with length-to-height ratio of 10/4.
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Figure 3.10: A 2D deep beam design domain

ensure the reinforcing ratio in an individual concrete element is constant. It can

be observed from Fig.3.11 (a-d) that using a finer finite element mesh, more dis-

crete tension-reinforced bars are distributed to prevent from missing any tensile

strain developed in a compression-dominated phase that exceeds the allowable

tensile strain for concrete. Simultaneously, for some areas where concrete itself

can suffer from the pressure, the volume of steel bar resisting to compression de-

creases. Particularly in Fig.3.11 (d), tensile-load carrying reinforcing bars exist

around the top central region, where the point load applied, which does not exist

in other obtained topologies. As mentioned above, although the cross-sectional

area of the reinforcing bar may be unrealistic in this paper, it provides a rational

reinforcement layout under a limited amount of steel used for designers.
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Figure 3.11: Reinforcement layout obtained with various mesh dense discretiza-

tion for the continuum domain. (a) 2100 (60×35) finite elements. (b) 3024 (72×42)

finite elements. (c) 6804 (108×63) finite elements
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3.5 Conclusions and discussions

This work proposed an optimization procedure on the basis of BESO approach

to design reinforcement layout within a constant concrete domain. Two reinforc-

ing bars modeled as 1D truss elements are embedded in each continuum element

along the maximum principal strain and minimum principal strain direction, re-

spectively. A heuristic orientation scheme is designed for rotating the bar into

its most efficient orientation so that the resulting reinforcement topology is not

limited by the initial truss layout. To just corroborate the implementation of the

proposed orientation finding system, only two types of embedded model in which

reinforcing bars are located horizontally and vertically or in a diagonal form are

considered. Furthermore, a novel scheme of updating design variables apart from

the relative ranking of sensitivity numbers is applied to the BESO algorithms

to avoid reinforcing regions where concrete can withstand itself, especially for

regions suffering from compression.

The optimization algorithms that incorporates volume constraint on steel are

implemented in two 2D examples. From the results, it can be observed that

reinforcing bars in tension are mainly distributed due to high tensile strains, while

in order to strength some critical area with high compressive strain, reinforcement

bars in compression are also distributed. Also, the homogenized average strain

of each element in a finer mesh condition is more accurate, hence, more truss-

continuum elements are detected to have the maximum tensile strain exceeding

the allowable tensile strain of concrete. And reinforcing bar appears in more

compression-dominant area acting in tension.

Although the cross-sectional area of steel bar that restricted to one type is pos-

sibly not practical, the total volumetric ratio of steel amount into the continuum

concrete is realistic and the orientation of steel bar is determined. Nevertheless,

the current study succeeds in achieving both location and orientation of rein-

forcing bars playing roles in tension or compression, which provides a valuable

suggestion for the regions in a concrete structure to be reinforced by steel.

50



4

Using Continuous Density-based

Optimization Method for

Nonlinear Composite Structure

4.1 Introduction

Composite structure has drawn a wide attention from both research and design

communities in various areas such as structural engineering and aerospace fields

due to the diverse design purpose and increasingly high demand on mechanical

characteristic and weight savings. In other words, materials constituting the

composites can be placed easily into a free-form combination to achieve a specific

and more desirable design, e.g. increase in strength, toughness, erosion resistance

and anti-fatigue ability compared to using single material. Currently, a two-phase

composite in which one of the materials as a reinforcing part embedded into the

other material matrix in the form of strips, sheet, or grids, has become attractive

for many practical applications. The material candidates for both phases can be

steel, aluminium, polymer, wood or concrete, etc. Therefore, a concurrent need

of distributing materials of composites efficiently arises in order to maximize

contribution of each material.

The topology optimization technique as an effective tool has been used to

design a conceptual structural layout especially with a complex boundary and

loading conditions. Initially, extensive research works on implementing topology
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optimization on single material with linear elastic property [42, 43, 57]. The re-

sulting truss-like topology can be regarded as a strut-and-tie model based on the

compression and tension regions. Also, multiphase linear elastic material opti-

mization has been developed by interpolating the lower bond of design variable

to a second material candidate [11, 17]. However, linear-elastic material model-

ing is inadequate for the realistic design problem when the structural behaviour

exceeds the elastic range. Realizing the problem, especially for those material

such concrete or soil having unequal strength in compression and tension, studies

emerged incorporating different mechanical properties of composite materials into

topology optimization[45, 46, 47, 48, 49]. Also, in recent decades, the nonlinear

material behaviour has been considered in order to achieve a more reliable design

by topology optimization. Initial studies considering topology optimization with

material nonlinearity focus on single material problem [27, 58, 59, 60]. In the most

recent research, Wallin et al. [61] succeed in combing the finite strain isotropic

hardening plasticity with topology optimization. Zhang and Lei [62] take into

account the plastic anisotropy when in conjunction with topology optimization.

The BESO optimization method is also applied in layout design considering the

von Mises isotropic hardening plasticity in [29]. Li et al. [63] proposed a topol-

ogy optimization procedure incorporated with the von Mises criteria employing

various hardening rules to maximize the energy dissipation under cyclic loading.

In the two-phase elastoplastic material optimization, the obtained toplogy sig-

nificantly depends on the loading condition where is elastic or plastic dominated

[24]. However there are few studies considering material nonlinearity for a mul-

tiphase optimization problem. For example, Swan and Kosaka [26] presented a

framework of continuous structural topology optimization for elasoplastic appli-

cations based on the Voigt and Reuss mixing formulation. An approach presented

in Bogomolny and Amir’s work [25] applied topology optimization method in con-

crete and steel layout design taking into account both the yield criteria and the

post yielding performance. Nakshatrala and Tortorelli [64] stated a framework of

distributing the two elastoplastic material phases to optimize energy dissipation

under impact loading. Kato et al.[24] developed an analytical sensitivity ap-

proach for nonlinear composites topology optimization. However, the von Mises

plastic material modeling is adopted in majority aforementioned studies and all
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works employ the isotropic hardening rule in which the radius of the yield surface

increases based on the accumulated effective plastic strain. While in the kine-

matic hardening, it remains constant but the centre subsequent yield surface are

moved by a shift stress. Particularly, many practical materials such as polycrys-

talline metals exhibit a combined property of isotropic and kinematic hardenings.

In addition, except for the common used yielding criterion of von Mises that is

widely applied to model the metal materials, the Drucker-Prager yield criterion

is usually used to describe the pressure-dependent material such as concrete or

soil [25, 48].

Therefore, due to the increasing demanding of topology optimization tech-

nique in efficiently distributing material phases for composite structure, it is nec-

essary to consider more types of hardening rules following multiple yield criteria

and incorporate with topology optimization method to achieve a more realistic

and reliable design. This study proposed a topology optimization procedure for

multiphase material distribution problem when the material candidates are as-

sociated with kinematic hardening or mixed isotropic and kinematic hardening

with the flexibility of accommodating with different plasticity models. Moreover,

the proposed framework also offers the flexibility of assigning different hardening

rule to each single material phase by using the design variables to interpolate the

permissible yielding stress surface into the topology optimization. For example,

the von Mises or the Drucker-Prager plasticity model are applied to both phases

but one following the isotropic hardening rule while the kinematic hardening is

assigned to the other. To illustrate the advantage of the proposed framework and

method, three design examples are tested and the results are presented in this

paper. In the first two examples, several material models created in this paper

include: 1) the von Mises and the Drucker-Prager yield criterion applied to each

phase respectively; 2) the von Mises yield criterion applied to both phases; 3) the

Drucker-Prager yield criterion applied to both phases, and particularly, all cases

in example 1 employ the kinematic hardening, while in example 2, they employ

the combined isotropic/kinematic hardening rule, which enables to investigate

the influence of plasticity model on the resulting topology. In the third exam-

ple, several material models using the same plasticity model for the composite

structure but following with various hardening rules, i.e., isotropic, kinematic or
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mixed isotropic and kinematic hardening are performed to study whether the post

yielding behaviour would affect the optimization results of multiphase material

distribution. This work succesfully achieved the above initiatives of incorporating

structural analysis with specific multiphase plasticity into topology optimization.

The residual equilibriums on an integration point level is defined based on vari-

ous plastic material modeling. And the corresponding path-dependent sensitivity

analysis expression is derived in this paper, by using a path-dependent adjoint

method that following the framework described by Michaleris et al. [65]. The

method of moving asymptotes (MMA) [66] is utilized to update design variables.

Through a comparative study, it points out the importance of considering mate-

rial properties precisely for multiphase optimization design.

4.2 Material Elastoplasticity

The behavior of some material is initially elastic and become plastic with existence

of the irreversible strain when the applied force exceeds the elastic limit, which

is known as the elastoplasticity.

4.2.1 Yield Criteria

To describe the material elastoplasticity in this study, two types of yield crite-

rion are considered: the von Mises yield criterion and the Drucker-Prager yield

criterion.

The von Mises yielding criterion is widely used to predict the yielding of

metals that having equal strength in compression and tension. Whereas for those

materials, e.g. rock or soil, the Drucker-Prager yielding criterion is generally

employed to consider the hydrostatic pressure dependence. It is obtained by

adding a mean stress term on the von Mises yielding based formulation as

f =
√

3J2 + αI1 − k, (4.1)

where the material constant α is equal to zero when it corresponds to the von

Mises yield function. And k represents the permissible yielding stress surface,

which will be discussed in the next subsection. The first invariant of the stress
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tensor I1 and the second invariant of the deviatoric stress tensor J2 are written

as

J2 =
1

6
[(σx − σy)2 + (σy − σz)2 + (σx − σz)2] + τ 2

xy + τ 2
yz + τ 2

xz, (4.2)

and

I1 = σx + σy + σz. (4.3)

4.2.2 Hardening Rules

When the plastic loading progresses, the yield stress may increase rather than

remain constant according to the plastic deformation, which is called strain

hardening. For some applications, the ideal assumption of material with elastic-

perfectly-plasticity may not be adequate to simulate the problem, therefore the

strain-hardening is essentially to be considered in a two-material topology opti-

mization. Here, three types of hardening models are applied: isotropic, kinematic

and combined hardening. In the isotropic hardening model, the yield surface with

a fixed central location grows uniformly according to the effective plastic strain.

However, the kinematic hardening rule enables the elastic domain stays constant

while the subsequent yield surface moves following the strain hardening. More-

over, some materials are generally described by a combination of these two models

as follows:

k = σY + (1− φ)Hpep, (4.4)

where σY denotes the initial yield stress, ep is the effective plastic strain and the

plastic modulus Hp is a constant, as all hardening rules are assumed to be linear

in this paper. φ is a parameter representing the combined effect for a mixed

isotropic/kinematic hardening model. For the isotropic hardening, φ equals 0

and 1 for the kinematic hardening.

4.2.3 Elastoplasticity Model

According to the assumption in the small deformation elastoplasticity, the rate

of the total strain ε̇ can be decomposed into the rate of the elastic strain ε̇e and

the plastic strain ε̇p as

ε̇ = ε̇e + ε̇p. (4.5)

55



4.3 Structural Analysis

The elastic strain relates to the stress by using the fourth-order constitutive tensor

D. And the plastic strain evolves in the direction normal to the flow potential

that is associated to the yield function f in this study, which is given by

ε̇p = γ
∂f

∂σ
, (4.6)

where γ is the non-negative plastic consistency parameter. It is governed by the

Kuhn-Tucker conditions, i.e.

γf = 0; γ ≥ 0; f ≤ 0. (4.7)

4.3 Structural Analysis

4.3.1 Global and Local Residuals

The global equilibrium for the complete structure should be satisfied in the finite

element analysis, it can be expressed as

Rn = Rn
ext −Rn

int (4.8)

with

Rn
int =

nele∑
e=1

(

∫
Ve

BTσndVe)

Rn
ext =

nele∑
e=1

(

∫
Ve

fnBdVe +

∫
Se

fnSdSe) + P n

(4.9)

where Rn represents the residual on the global level in loading step n, which

equals to the difference of the external applied force Rn
ext and the internal force

Rn
int in the same step. B is the strain-displacement matrix. fB, fS and P de-

note the internal body force, surface traction and the external concentrated load

respectively.

Also, the local residuals on each integration point are constructed and required

to be sufficiently small throughout the analysis. In this study, four-node quadri-

lateral plane-stress element with four integration points is utilized. Thus, the
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expression of residual H on the loading increment n for a full structure is formed

by embedding the local residuals on each integration point of each element into

a global matrix.

Hn = [Hn
1 ,H

n
2 , ...,H

n
nele]

T

Hn
e = [Hn

e1,H
n
e2,H

n
e3,H

n
e4]T

Hn
ei =

[
Hn
ei1,H

n
ei2, ...,H

n
eij

]T (4.10)

where e is the number of elements, i represents the number of integration points,

and j corresponds to the number of local residual required on an integration point

level based on the specified plastic model and hardening rule.

In the elastic incremental stage, for the material candidate modeled with

either the von Mises or the Drucker-Prager yielding criterion, the local residuals

Hn
eij are defined in the same formulations. When the elastoplastic material model

follows the kinematic or combined hardening rule,

Hn
eij =


Hn
ei1

Hn
ei2

Hn
ei3

Hn
ei4

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) = 0

anei − an−1
ei = 0

ep
n
ei − ep

n−1
ei = 0

∆γnei = 0

 . (4.11)

When the elastoplastic material model follows the isotropic hardening rule,

Hn
eij =

Hn
ei1

Hn
ei2

Hn
ei3

 =

σnei − σn−1
ei −D0

e : (BeU
n
e −BeU

n−1
e ) = 0

ep
n
ei − ep

n−1
ei = 0

∆γnei = 0

 . (4.12)

where Ue is the elemental nodal displacement vector; σei, aei, epei represent the

stress, back stress and the equivalent plastic strain obtained on each integration

point, respectively.

However, in the plastic stage, the local residuals for both materials using the

von Mises model with kinematic or combined hardening rule are given by

Hn
eij =


Hn
ei1

Hn
ei2

Hn
ei3

Hn
ei4

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + 2µe∆γ

n
ei(

∂f
∂η

)nei = 0

anei − an−1
ei − 2

3
φHpe∆γ

n
ei(

∂f
∂η

)nei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||η||nei −
√

2
3
[σY e + (1− φ)Hpeep

n
ei] = 0


(4.13)
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the local residuals for both materials using the von Mises model with isotropic

hardening rule are given by

Hn
eij =

Hn
ei1

Hn
ei2

Hn
ei3

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + 2µe∆γ

n
ei(

∂f
∂s

)nei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||s||nei −
√

2
3
[σY e +Hpeep

n
ei] = 0


(4.14)

the local residuals for both materials using the Drucker-Prager model with kine-

matic or combined hardening rule are given by

Hn
eij =


Hn
ei1

Hn
ei2

Hn
ei3

Hn
ei4

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + D0

e∆γ
n
ei(

∂f
∂σ

)nei = 0

anei − an−1
ei − 2

3
φHpe∆γ

n
ei(

∂f
∂σ

)nei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||η||nei +
√

2
3
αI1

n
ei −

√
2
3
[σY e + (1− φ)Hpeep

n
ei] = 0


(4.15)

the local residuals for both materials using the Drucker-Prager model with isotropic

hardening rule are given by

Hn
eij =

Hn
ei1

Hn
ei2

Hn
ei3

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + D0

e∆γ
n
ei(

∂f
∂σ

)nei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||s||nei +
√

2
3
αI1

n
ei −

√
2
3
[σY e +Hpeep

n
ei] = 0


(4.16)

where η is the shifted stress deviator defined as the difference between the stress

deviator s and the back stress deviator a, i.e. η = s− a. When the two material

phase are associated with various plastic model(one with Drucker-Prager model

and the other with von Mises model), and accompanied with various hardening

rule (one with kinematic or combined hardening and the other with isotropic

hardening), the corresponding residuals are presented as follows:

Hn
eij =


Hn
ei1

Hn
ei2

Hn
ei3

Hn
ei4

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + D0

e∆γ
n
ei(

∂f
∂σ

)nei = 0

anei − an−1
ei − 2

3
φeHpe∆γ

n
ei(

∂f
∂σ

)nei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||η||nei +
√

2
3
αeI1

n
ei −

√
2
3
[σY e + (1− φe)Hpeep

n
ei] = 0


(4.17)
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4.3 Structural Analysis

where the material constant αe and the hardening combined effect parameter φe

corresponding to a specified element e are related to the density design variables.

Also, as the nature of the hydrostatic pressure is considered in the Drucker-Prager

model, the direction of the plastic strain normal to the flow potential is described

as

∂f

∂σ
=
∂f

∂η

∂η

∂σ
+
∂f

∂I1

∂I1

∂σ

=
η

||η||
Idev +

√
2

3
α
∂I1

∂σ

(4.18)

while in the previous case presented in Eq.(5.10), based on the von Mises yield

criterion, the yield function is defined in a deviatoric space only as the volumetric

stress is independent of plastic deformation. Thus the plastic strain evolves in

the direction:

for those with kinematic or combined isotropic-kinematic hardening:

∂f

∂η
=

η

||η||
(4.19)

or for those with isotropic hardening:

∂f

∂s
=

s

||s||
(4.20)

In the case of isotropic hardening applied to both materials, the centre of the

yielding surface is fixed on a certain point means that the back stress a does

not exist so as the related residual equation in both elastic and plastic stage is

eliminated. Correspondingly, only three variables on each integration point are

considered, i.e. vn = [σnei ep
n
ei ∆γnei]. However, in the kinematic/combined

hardening model, the yielding surface moves following the plastic deformation,

therefore the required variables would be defined as vn = [σnei anei ep
n
ei ∆γnei].

4.3.2 Stress Return-Mapping Algorithm

As the flow potential is associated with the yield function here, the plastic strain

is then expressed as

ε̇p = γ
∂f(σ, a, ep)

∂σ
(4.21)
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4.3 Structural Analysis

When the value of yield function with trial stress is over 0, the structure enter

the plastic loading state. Based on the Kuhn-Tucker condition,

ḟ(σ, a, ep) = 0, γ > 0 (4.22)

which means the yield function remains constant during the plastic loading stage.

As required that the yield surface remains 0, the following expression can be

achieved:

ḟ(σ, a, ep) =
∂f

∂σ
: σ̇ +

∂f

∂a
: ȧ +

∂f

∂ep
ėp = 0 (4.23)

Therefore, the plastic consistency parameter γ can be calculated from the rate

form of the yield function by writing the function in terms of γ

σ̇ = D : (ε̇− ε̇p) = D : (ε̇− γ ∂f
∂σ

)

ȧ =
2

3
φHγ

∂f

∂σ

ep =

√
2

3
γ

(4.24)

By substituting Eq.(4.24) into Eq.(4.23),

∂f

∂σ
: D : ε̇− ∂f

∂σ
: D : γ

∂f

∂σ
+
∂f

∂a
:

2

3
φHγ

∂f

∂σ
+
∂f

∂ep

√
2

3
γ = 0 (4.25)

The plastic consistency parameter can be obtained by solving the above equation

as

γ =
∂f
∂σ

: D : ε̇

∂f
∂σ

: D : ∂f
∂σ
− ∂f

∂a
: 2

3
φH ∂f

∂σ
−
√

2
3
∂f
∂ep

(4.26)

where the derivative of the yield function with respect to the stress components
∂f
∂σ

is defined based on the type of plastic model adopted. The derivative of the

yield function with respect to the back stress components ∂f
∂a

and the equivalent

plastic strain ep can be derived as follows:

∂f

∂a
=
∂f

∂η

∂η

∂a
= − η

||η||
∂f

∂ep
= −

√
2

3
(1− φ)H

(4.27)
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4.3 Structural Analysis

Hence, by substituting Eq.(4.27), Eq.(4.26) can be further modified as

γ =
∂f
∂σ

: D : ε̇
∂f
∂σ

: D : ∂f
∂σ

+ η
||η|| : 2

3
φH ∂f

∂σ
+ 2

3
(1− φ)H

(4.28)

In the return-mapping scheme, the first step is to predict the trial magnitude

of stress and plastic variables at time step n+ 1 according to the known variables

at the former time step n and the incremental strain calculated from the known

incremental displacement at time step n+ 1.

σtrial = σn + D : ∆ε

atrial = an

etrialp = epn

ηtrial = Idev : σtrial − atrial

(4.29)

If the trial yield function f trial ≤ 0, the stress and plastic variables are updated

equal to the trial values as

σn+1 = σtrial

an+1 = atrial

epn+1 = etrialp

(4.30)

If the trial yield function f trial ≥ 0, then the status of material become plas-

tic, and the stress and plastic variables are corrected by considering the plastic

deformation as

σn+1 = σn + D : (∆ε−∆γ
∂f

∂σ
)

an+1 = an +
2

3
φH∆γ

∂f

∂σ

epn+1 = epn +

√
2

3
∆γ

ηn+1 = Idev : σn+1 − an+1

(4.31)

Therefore, the yield function at the updated state of the return-mapped point is

fn+1 = ||ηn+1|| −
√

2

3
[σ0
y + (1− φ)Hepn+1] = 0 (4.32)
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4.4 Topology Optimization Procedure

4.3.3 Elastoplastic Tangent Stiffness

Due to the plastic state, the elastic stiffness in a multidimensional system must be

modified to represent the relation between the rates of stress and strain. Following

the constitutive relation in a rate form:

σ̇ = D : ε̇−D : ε̇p (4.33)

By substituting Eq.(4.28) into Eq.(4.33),

σ̇ = D : ε̇−D :
∂f

∂σ

∂f
∂σ

: D : ε̇
∂f
∂σ

: D : ∂f
∂σ

+ η
||η|| : 2

3
φH ∂f

∂σ
+ 2

3
(1− φ)H

= [D−
D : ∂f

∂σ
⊗ ∂f

∂σ
: D

∂f
∂σ

: D : ∂f
∂σ

+ η
||η|| : 2

3
φH ∂f

∂σ
+ 2

3
(1− φ)H

] : ε̇

(4.34)

where D is the elastic stiffness and reduced by the plastic consistency parameter.

Therefore, the elastoplastic tangent stiffness can be obtained as

Dep = [D−
D : ∂f

∂σ
⊗ ∂f

∂σ
: D

∂f
∂σ

: D : ∂f
∂σ

+ η
||η|| : 2

3
φH ∂f

∂σ
+ 2

3
(1− φ)H

] (4.35)

Note the expression of the plastic consistency parameter γ and the elastoplastic

tangent stiffness Dep can be determined explicitly by the specified plastic model

and hardening.

4.4 Topology Optimization Procedure

4.4.1 Problem statement

For the linear elastic material topology optimization, minimizing the mean com-

pliance is often used as the objective function. While for elastoplastic materials,

minimizing the end-compliance or maximizing the total plastic energy is com-

monly used as the objective function in topology optimization. In this study,

the displacement loading method is applied throughout the nonlinear analysis

due to its relative stability. And the end-compliance related objective function is

achieved by maximizing the final equivalent external load corresponding to the
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4.4 Topology Optimization Procedure

prescribed displacement. Also, based on the consideration of the material nonlin-

earity, the optimization statement should be coupled with the global equilibrium

and the local residual conditions that satisfied at each step as shown below:

min c(x) = −ϕNPrefu
N

s.t.

nele∑
e=1

vexe ≤ V ∗

xmin ≤ xe ≤ 1, (e = 1, 2, ..., nele)

Rn(un,un−1,vn,vn−1,x) = 0

Hn(un,un−1,vn,vn−1,x) = 0

n = 1, 2, ..., N,

(4.36)

where xe depicts the elemental design variable updated in each iteration and V ∗

is the prescribed target volume fraction of the design domain. Pref is a constant

external load vector in which each element corresponding to a degree of freedom.

When there is a prescribed displacement applied on a degree of freedom, the

corresponding element equals to 1 otherwise will be 0. ϕN denotes the load

factor at the final loading step calculated from the global equilibrium, and it is a

scalar. The objective function stated in Eq.(6.12) only valid under certain load

conditions, and will lead to a complicated sensitivity analysis. Thus, Amir et

al. [25] proposed a simplified hybrid approach using the load-controlled concept

to generate a more applicable objective function as following: c(x) = PNuN ,

but the actual nonlinear analysis is performed through a displacement-controlled

method.

4.4.2 Material Interpolation

In this paper, the elastoplastic behaviour of a two-material-phase problem will

be interpolated into topology optimization by utilizing the design variable. The

elastic constitutive tensor can be written as

D = λ1⊗ 1 + 2µI (4.37)
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4.4 Topology Optimization Procedure

with

λ =
Ev

(1 + v)(1− 2v)

µ =
E

2(1 + v)

1 = [δij]

I = [Iijkl] = [
1

2
(δikδjl + δilδjk)]

(4.38)

where 1 is the second-order unit tensor and I is the symmetric fourth-order unit

tensor. v is the poisson ratio, and from the relationship presented above, it can

be observed that the Lame’s constants λ and µ are proportional to the Young’s

modulus E. The following shows the interpolating functions:

λe = λmin + (λmax − λmin)xp
λ

e

µe = µmin + (µmax − µmin)xp
µ

e

σY e = σY min + (σY max − σY min)xp
σY

e

Hpe = Hpmin + (Hpmax −Hpmin)xp
Hp

e ,

(4.39)

Particularly, when different plasticity model and hardening rules are adopted

by each material phase, e.g., the von Mises model with kinematic hardening is

applied to the first material and the second material employs the Drucker-Prager

model with isotropic hardening, two more interpolation functions need to be

considered as:

αe = αmax − (αmax − αmin)xp
α

e

φe = φmin + (φmax − φmin)xp
φ

e ,
(4.40)

where the penalization value pλ = pµ = pσY = pHp = pα = pφ = 3 is assumed

throughout this study. Eq.(6.14) is one of the important interpolations proposed

in this paper which develops a straightforward approach for adopting different

plasticity model and hardening rules for each material phase. In particular, a

specific yielding criterion or strain hardening model can be derived as a special

case of Eq.(6.14), i.e.when xe = 1 yields a material phase with von Mises yielding

criterion (αe = αmin = 0) and kinematic hardening (φe = φmax = 1).
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4.5 Sensitivity analysis

4.5 Sensitivity analysis

4.5.1 Adjoint sensitivity analysis

The path-dependent adjoint method is applied to compute the sensitivity of the

objective with respect to the design variables. The augmented objective function

can be built by adding the global and the local residuals that are infinitely ap-

proaching to zero. Also, the objective function c and the global residual R only

depend on the nodal displacement u and the variable v respectively.

ĉ = c(x,u) +
N∑
n=1

ξnTRn(un,un−1,vn,vn−1,x) +
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x)

= c(u) +
N∑
n=1

ξnTRn(vn) +
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x),

(4.41)

where ξn and θn are the adjoint vectors calculated during the sensitivity analysis.

The differentiation of the objective function c is equivalent to the derivative of the

augmented function ĉ with respect to design variables, and it can be decomposed

into an explicit term and an implicit term

∂c

∂x
=
∂ĉ

∂x
=
∂ĉexp
∂x

+
∂ĉimp
∂x

. (4.42)

In order to eliminate the unknown term of derivatives ∂un

∂x
and ∂vn

∂x
, the backward

incremental calculation approach is applied to obtain the Lagrange multipliers

θn, ξn for all increments n = 1, ..., N

∂ĉimp
∂x

=
∂ĉNimp
∂x

+
N−1∑
n=1

∂ĉnimp
∂x

∂ĉNimp
∂x

=(
∂c

∂uN
+ θN

T ∂HN

∂uN
)
∂uN

∂x
+

(ξN
T ∂RN

∂vN
+ θN

T ∂HN

∂vN
)
∂vN

∂x
∂ĉnimp
∂x

=(
∂c

∂un
+ θnT

∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
)
∂un

∂x
+

(ξnT
∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
)
∂vn

∂x

(4.43)
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For the final step N : 
∂c

∂uN
+ θN

T ∂HN

∂uN
= 0

ξN
T ∂RN

∂vN
+ θN

T ∂HN

∂vN
= 0

(4.44)

For steps from n = 1 to N − 1:
∂c

∂un
+ θnT

∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
= 0

ξnT
∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
= 0

(4.45)

Therefore, based on the obtained adjoint vector and the derivative of the explicit

term, the design sensitivity with respect to the design variables can be written

as follows:
∂c

∂x
=
∂ĉexp
∂x

=
N∑
n=1

θnT
∂Hn

∂x
(4.46)

Furthermore, the derivatives ∂c
∂uN

, ∂Hn

∂un
, ∂Hn+1

∂un
, ∂Hn

∂vn
, ∂Hn+1

∂vn
and ∂Rn

∂vn
are required

to solve the above equilibriums presented in Eq. (6.23) and Eq. (6.24). This will

be discussed in the next subsection.

4.5.2 Derivatives calculation

When the elastoplastic material employing kinematic or combined hardening rule,

the variables vn on integration-point level consist of stresses σn, back stresses an,

equivalent plastic strain enp and the plastic multiplier ∆γn, whereas the back stress

an is neglected when the isotropic hardening is applied. Corresponding to the

material with elasoplastic kinematic or combined hardening, the derivatives in

matrix form are given as follows

∂Hn
ei

∂vnei
=


∂Hn

ei1

∂σnei

∂Hn
ei1

∂anei

∂Hn
ei1

∂epnei

∂Hn
ei1

∆γnei
∂Hn

ei2

∂σnei

∂Hn
ei2

∂anei

∂Hn
ei2

∂epnei

∂Hn
ei2

∆γnei
∂Hn

ei3

∂σnei

∂Hn
ei3

∂anei

∂Hn
ei3

∂epnei

∂Hn
ei3

∆γnei
∂Hn

ei4

∂σnei

∂Hn
ei4

∂anei

∂Hn
ei4

∂epnei

∂Hn
ei4

∆γnei

 (4.47)

∂Hn
ei

∂une
=
[
∂Hn

ei1

∂une

∂Hn
ei2

∂une

∂Hn
ei3

∂une

∂Hn
ei4

∂une

]T
(4.48)
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∂Hn
ei

∂xe
=
[
∂Hn

ei1

∂xe

∂Hn
ei2

∂xe

∂Hn
ei3

∂xe

∂Hn
ei4

∂xe

]T
(4.49)

∂Rn
e

∂vnei
=
[
∂Rn

e

∂σnei

∂Rn
e

∂anei

∂Rn
e

∂epnei

∂Rn
e

∆γnei

]
(4.50)

When the material response stays in the elastic stage:

∂Hn
ei

∂vnei
=


I 0 0 0
0 I 0 0
0 0 1 0
0 0 0 1

 (4.51)

∂Hn
ei

∂xe
=
[
−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) 0 0 0

]T
(4.52)

Corresponding to the material with elasoplastic isotropic hardening, the deriva-

tives in matrix form are given as follows

∂Hn
ei

∂vnei
=


∂Hn

ei1

∂σnei

∂Hn
ei1

∂epnei

∂Hn
ei1

∆γnei
∂Hn

ei3

∂σnei

∂Hn
ei3

∂epnei

∂Hn
ei3

∆γnei
∂Hn

ei4

∂σnei

∂Hn
ei4

∂epnei

∂Hn
ei4

∆γnei

 (4.53)

∂Hn
ei

∂une
=
[
∂Hn

ei1

∂une

∂Hn
ei2

∂une

∂Hn
ei3

∂une

]T
(4.54)

∂Hn
ei

∂xe
=
[
∂Hn

ei1

∂xe

∂Hn
ei2

∂xe

∂Hn
ei3

∂xe

]T
(4.55)

∂Rn
e

∂vnei
=
[
∂Rn

e

∂σnei

∂Rn
e

∂epnei

∂Rn
e

∆γnei

]
(4.56)

When the material response stays in the elastic stage:

∂Hn
ei

∂vnei
=

I 0 0
0 1 0
0 0 1

 (4.57)

∂Hn
ei

∂xe
=
[
−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) 0 0

]T
(4.58)

In the plastic stage, for both material modelled with von Mises yield criterion

employing kinematic or combined hardening, the derivatives of the local residual
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with respect to the variable v and the design variable x can be derived as follows

∂Hn
ei

∂vnei
=


I + 2µe∆γ

n
ei(

∂f
∂η∂σ

)nei 2µe∆γ
n
ei(

∂f
∂η∂a

)nei 0 2µe(
∂f
∂η

)nei
−2

3
φHpe∆γ

n
ei(

∂f
∂η∂σ

)nei I− 2
3
φHpe∆γ

n
ei(

∂f
∂η∂a

)nei 0 −2
3
φHpe(

∂f
∂η

)nei

0 0 1 −
√

2
3

( ∂f
∂η

)nei −( ∂f
∂η

)nei −
√

2
3
(1− φ)Hpe 0


(4.59)

∂Hn
ei

∂xe
=


−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) + 2∆γnei(

∂f
∂η

)nei
∂µe
∂xe

−2
3
φ
∂Hpe
∂xe

∆γnei(
∂f
∂η

)nei
0

−
√

2
3

∂σye
∂xe
−
√

2
3
(1− φ)

∂Hpe
∂xe

ep
n
ei

 (4.60)

For both material modelled with von Mises yield criterion employing isotropic

hardening, the corresponding derivatives become

∂Hn
ei

∂vnei
=


I + 2µe∆γ

n
ei(

∂f
∂s∂σ

)nei 0 2µe(
∂f
∂s

)nei

0 1 −
√

2
3

(∂f
∂s

)nei −
√

2
3
Hpe 0

 (4.61)

∂Hn
ei

∂xe
=

−
∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) + 2∆γnei(

∂f
∂s

)nei
∂µe
∂xe

0

−
√

2
3

∂σye
∂xe
−
√

2
3

∂Hpe
∂xe

ep
n
ei

 (4.62)

For both material modelled with von Mises yield criterion employing isotropic

hardening for one phase and kinematic hardening for the other, the corresponding

derivatives become

∂Hn
ei

∂vnei
=


I + 2µe∆γ

n
ei(

∂f
∂η∂σ

)nei 2µe∆γ
n
ei(

∂f
∂η∂a

)nei 0 2µe(
∂f
∂η

)nei
−2

3
φeHpe∆γ

n
ei(

∂f
∂η∂σ

)nei I− 2
3
φeHpe∆γ

n
ei(

∂f
∂η∂a

)nei 0 −2
3
φeHpe(

∂f
∂η

)nei

0 0 1 −
√

2
3

( ∂f
∂η

)nei −( ∂f
∂η

)nei −
√

2
3
(1− φe)Hpe 0


(4.63)

∂Hn
ei

∂xe
=


−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) + 2∆γnei(

∂f
∂η

)nei
∂µe
∂xe

−2
3
φe

∂Hpe
∂xe

∆γnei(
∂f
∂η

)nei − 2
3
∂φe
∂xe
Hpe∆γ

n
ei(

∂f
∂η

)nei
0

−
√

2
3

∂σye
∂xe
−
√

2
3
(1− φe)∂Hpe∂xe

ep
n
ei +

√
2
3
∂φe
∂xe
Hpeep

n
ei

 (4.64)
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According to Eq.(4.19) and Eq.(4.20), the derivatives shown below can be derived

as

(
∂f

∂η∂σ
)nei =

1

||η||nei
[Idev − (

η

||η||
)nei ⊗ (

η

||η||
)nei]

(
∂f

∂η∂a
)nei = − 1

||η||nei
[I− (

η

||η||
)nei ⊗ (

η

||η||
)nei]

(
∂f

∂s∂σ
)nei =

1

||s||nei
[Idev − (

s

||s||
)nei ⊗ (

s

||s||
)nei]

(4.65)

where Idev = I− 1
3
1⊗ 1 is the unit deviatoric tensor of the fourth-order.

For both material modelled with Drucker-Prager yield criterion employing

kinematic or combined hardening, the corresponding derivatives become
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For both material modelled with Drucker-Prager yield criterion employing isotropic

hardening, the corresponding derivatives become
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For both material modelled with Drucker-Prager yield criterion employing isotropic

hardening for one phase and kinematic hardening for the other, the corresponding
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derivatives become
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Since the volumetric parts of stress (first invariant of stress tensor) I1 is a first-

order differential equation in terms of σ, the following expression ∂f
∂σ∂σ

and ∂f
∂σ∂a

are equivalent to ∂f
∂η∂σ

and ∂f
∂η∂a

as stated in Eq.(6.35).

When each material phase adopts a different plastic model (e.g. the von Mises

model for one phase while the Drucker-Prager model for the other) and both

phases employ kinematic or combined hardening, the corresponding derivatives

become
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When each material phase adopts a different plastic model and both phases em-

ploy isotropic hardening, the corresponding derivatives become
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When each material phase adopts a different plastic model and coupled with

various hardening rules (e.g. isotropic hardening for one phase and the other

with kinematic or combined hardening), the corresponding derivatives become
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Opposite to the derivatives of Hn with respect to the internal variable vn

and the design variable x are different for materials incorporating with various

yielding function in the elastic and plastic step, the following derivatives (i.e.
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) do not depend on the finite element analysis response.

When the structure is associated with kinematic or combined hardening, the

derivatives mentioned above are described as follows:
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When the structure is associated with isotropic hardening, the corresponding

derivatives become:
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Therefore the matrix of the differentiation of Hn need to be adjusted according

to the trial elastic condition, which keep consistency with the analysis at each

increment. Also, for the yield criterion incorporating with isotropic hardening,

the derivatives of the global residual Rn and the local residual Hn are matrices

of smaller size due to the elimination of one variable (back stress an).

4.6 Examples

Three numerical examples, a simply supported beam, a cantilever beam with a

circular opening and a L-shaped bracket, are examined to evaluate the impacts of

different yielding criterion and hardening rules on the resulting topologies through

the proposed optimization framework for structure with two elastoplastic material

phases. All examples are assumed to be in plane stress condition. Due to the

design variable for continuous density-based optimization method can vary from

0 to 1, ”gray” regions of intermediate density may exist in the resulting topology.

Also, this may cause difficulty in achieving a convergent results. A filtering

scheme of gradually reducing the filter radius is implemented in this study to

remove ”gray” areas. The optimization procedure is either stopped by the limiting

convergence tolerance (10−4 in our case) or a stable topology achieved after an

adequate number of iterations (300 to 500 in our case).
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4.6.1 Simply supported beam

A simply supported beam, length-to-height ratio equals to 4, is shown in Fig.4.1.

A downward distributed prescribed displacement is applied to the central portion

of the top edge. The whole design domain is discretized into 3600 (120 x 30)

elements. And the desired volume fraction to the whole design domain is 30%.

The prescribed displacement U∗ = 0.5mm is assumed throughout this example

to achieve a plastic design.

Figure 4.1: Design domain of the simply supported beam

In this example, each material phase has the flexibility of adopting different

elastic and plastic material model accompany with various hardening rules. The

cases examined in this example include: 1) both material with elastic model;

2) both material phases with the von Mises plasticity model and the kinematic

hardening; 3) both material phases with the Drucker-Prager plasticity model and

the kinematic hardening; 4) one material phase with the von Mises plasticity

model while the other with the Drucker-Prager plasticity model and the post

yielding behaviour, both following the kinematic hardening, as detailed in Table

4.1. The purpose of this example is to investigate the influence of the plasticity

model on the results of the optimization design. The mechanical properties of

the two material candidates are detailed as follows:

E1 = 206GPa; Hp1 = 2060MPa; σ0
Y 1 = 250MPa;

E2 = 30GPa; Hp2 = 300MPa; σ0
Y 2 = 7MPa.
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Table 4.1: Summary of test set up in Example 1

plasticity model plasticity model Strain-hardening

for material phase 1 for material phase 2 for both material phases

Case A Elastic Elastic -

Case B von Mises von Mises Kinematic (φ = 1)

Case C Drucker-Prager Drucker-Prager Kinematic (φ = 1)

Case D von Mises Drucker-Prager Kinematic (φ = 1)

Poisson ratio v = 0.3 is adopted for both material candidates. If the Drucker-

Prager model is adopted, the material parameter α is required and assumed to

be equal to 0.8 in this example. To maintain the comparability, the values of the

material properties remain constant for all cases.

The resulting distribution of two material phases are shown in black and white

in Fig.4.2. The first material is presented in black while the second material is

presented in white. Using the resulting topology as the final design, the contour

plots of the second principal stress for case A-D are shown in Fig.4.3, which are

able to highlight the micro-structure of the final design. For clarity, only the

stresses of material 2 is plotted, and that of material 1 is plotted as void.

Figure 4.2: Optimized layouts of case A-D

Several important findings are summarised below:

1) Adopting different plasticity models for material 2 result in different final
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Figure 4.3: The corresponding contour plots of the second principal stress for

Case A-D

Figure 4.4: Comparison of the arch components of case B to case C and D
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Figure 4.5: Comparison of the punching stiffeners of case B to case C and D

Figure 4.6: Summary of micro-structures in the resulting topology for Case A-D
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topologies. When von Mises plasticity model is used, the mechanical proper-

ties are symmetrical in tension and compression, and both of them are much

weaker than phase material 1. This leads to a arch-shape of topology as shown in

Fig.4.6(b) in which the structural skeleton, no matter in compression (the arch)

and tension (the tie), are all made of material 1 as material 2 is not able to take

the loading. As shown in Fig.4.3(b), it is noticeable that around the top-middle

area of the beam where the prescribed loading applied, there is a chuck of mate-

rial 1 allocated due to the high compressive stress concentration in this area.

2) In case C and D, while using Drucker-Prager plasticity model for the second

material, empowered with the ability of modelling the relatively higher compres-

sive and lower tensile yielding strength, different resulting topologies are obtained

as shown in Fig.4.2(c) and (d). In comparison with Fig.4.2(b), there are two

main differences that can be observed from the contour plots, i) some parts of

the structural members, as shown in Fig.4.4(a), filled with material 1 suffering

from compression are replaced by a block of material 2, as shown in Fig.4.4(b-c),

acting as struts; ii) The resulting topologies developed in different cases demon-

strate different ways to address the compressive stress concentration around the

loading area. A pad-shape structure as shown in Fig.4.5(a) is formed by stiff

material 1 supported by soft material 2 under. While in Fig.4.5(c) and (d), show-

ing the results of case C and D respectively, the material 2 are modelled with

the Drucker-Prager yielding criterion, which allows material 2 to sustain a much

higher compression, a pile-shape structure is evolved taking the advantage of the

end support underpinned by the Drucker-Prager model.

3) Although adopting different plasticity model for material phase 2 leads to

noticeable different topologies as shown in Fig.4.2, the fundamental principle of

loading transfer through the structure and optimized topology constituted are

quite similar. As shown in Fig.4.6, the components of the beam can be easily

identified in three common parts: the arch, the tie and the punching stiffener.

The arch is spanning between the two supports demonstrating the arch effect.

In Fig.4.6(b), case B, when material 2 is modelled by von Mises plasticity model

with a relatively lower compressive strength, the arch is formed by material 1

only. While in case C and D, as shown in Fig.4.6(c) and (d), the parts of arch

between the structural support and the upper chord of the arch are replaced by
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material 2. Same situation can be observed in case A as shown in Fig.4.6(a),

in which both material are simulated with linear elastic model. In this model

without considering the yielding behaviour, the compressive stress in material 2

can become infinitely large, which allows material 2 to replace material 1 in some

regions of the arch. Although the models used in case A, C and D are different,

the reason for material 2 distributing in these regions is the same: compressive

strength. In all the four cases, the bottom ties are all made of material 1, and

the plasticity model of material 2 has strong impact on the shape of tie in the

resulting topology. Apart from the arch and tie, the punching stiffener is another

important component in this structure. Their shapes are similar in case A, C and

D, all are pile-shape structures. For case B, it is a pad-shape structure instead.

It can be concluded that although the obtained topologies look different, the

optimized micro-architecture of the internal mechanical system will not change

fundamentally.

4.6.2 optimization of a cantilever beam with circular open-

ing

In this example, the design of the two-phase material layout for a cantilever

beam with a circular opening is considered, as shown in Fig.4.7. The radius of

the hole R=60 mm and the distance from the centre of the opening to the left

and the top edge are 400 mm and 150 mm, respectively. The beam is subjected

to a prescribed distributed displacement of 2 mm applied at 50 mm long central

region of the right side edge. The left side edge is fully clamped. The FE mesh

with element size of 10mm is shown in Fig.4.8. The design variables for the

elements within the circular opening are equal to zero and not updated during the

optimization procedure. The percentage of material 1 used in the whole domain

is limited to 50%. The mechanical properties of the two material candidates are

same as those presented in the previous example. The poisson ratio and the

material parameter α for the Drucker-Prager model remain unchanged. All the

plasticity model adopt a combined isotropic and kinematic hardening rule with

the combined effect parameter φ = 0.5. The cases examined in this example are

detailed in Table 4.2.
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Figure 4.7: Design domain of the cantilever beam with a circular opening

Figure 4.8: Mesh condition of the cantilever beam with a circular opening

Table 4.2: Summary of test set up in Example 2

plasticity model plasticity model Strain-hardening

for material phase 1 for material phase 2 for both material phases

Case A Elastic Elastic -

Case B von Mises von Mises Combined isotropic/kinematic hardening (φ = 0.5)

Case C Drucker-Prager Drucker-Prager Combined isotropic/kinematic hardening (φ = 0.5)

Case D von Mises Drucker-Prager Combined isotropic/kinematic hardening (φ = 0.5)
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The resulting topologies of different cases are shown in Fig.4.9 and the corre-

sponding contour of the second principle stress are shown in Fig.4.10. For sake of

clarity of the following discussion, all the areas filled with material 1 are removed,

and only the stress distribution of material 2 is plotted. Several important

Figure 4.9: Optimized layouts of case A-D

findings are presented as follows:

1) When material elastoplasticity is considered, i.e. case B, C and D, similar to

previous example, the type of plasticity model adopted for material 2 has great

impact on the design results. As indicated in Fig.4.10(b) (case B), when von

Mises plasticity model is applied to material 2, a truss-shaped skeleton of mate-

rial 1 is generated to contribute more in resisting the structural response, due to

its stiffer material property and equivalent strength in compression and tension.

While in Case C and D, when using the Drucker-Prager model for material 2, their

resulting topologies are remarkably different from the case B results, though the

two topologies themselves are quite similar to each other. One noticeable minor

difference between case C and D is the shape and pitch of the diagonal bar made

of material 1 located at the middle of the beam, which hints that the plasticity

model of material 1 do have some level of influence on the final topology, but less

intensive than the choice of model for material 2.

2) As shown in Fig.4.10, when using Drucker-Prager model to simulate the mate-

rial 2 with a higher compressive strength but lower tensile strength, a leg of the

truss member in compression made of material 1, as shown in Fig.4.10(b) (case

B), is replaced by material 2 to take the advantage of its compressive strength that
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Figure 4.10: The corresponding contour plots of the second principal stress for

Case A-D
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come with Drucker-Prager model. This similar situation is noticed in example

1. Results of both examples revealed the impact of the type of plasticity models

on the material distribution for a nonlinear multi-material-phase optimization

design.

Also, the influence of filtering scheme on the resulting topology for two-phase

material nonlinear optimization design is investigated here. As mentioned that by

gradually reducing the filter radius during the optimization procedure, a distinct

layout can be achieved within 300 iterations, which means that afterwards, there

is no significant change in topology. To demonstrate its effectiveness of the pro-

posed scheme, optimized design of using a constant filter radius throughout 300

iterations is also produced. The comparison of topology designs for different filter

radius adopted is presented in Fig.4.11. It can be observed that for optimization

design of two-phase structure taking into account the material elastoplasticity,

the filtering scheme considerably effects the resulting topology. When a grad-

ual refinement is used, the optimization benefits from obtaining a distinct layout

as well as saving computational cost by quickly escaping from the emergence of

’gray’ areas.

Figure 4.11: Comparison of Optimized layouts of two-phase nonliear design for

different filter radius adopted within 300 design iterations

Also, optimized design of using constant filter radius equal to 2 and 3 respec-

tively for a single-phase nonlinear structure is conducted to evaluate whether same

phenomenon can be observed. The resulting topologies are shown in Fig.4.12. It
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can be seen that though the design with r=3mm does not show a layout as dis-

tinct as that of using r=2mm, it can be concluded that, in this particular case,

nonlinear single-phase optimization problem is filter-independent.

Figure 4.12: Comparison of Optimized layouts of single-phase nonliear design for

different filter radius adopted within 300 design iterations

4.6.3 optimization of a L-shape bracket

The purpose of this example is to investigate the impact of the post-yielding

behaviour on the resulting topology. As there are few previous studies on the

impact of the post-yielding hardening model on the resulting topologies even for

single material nonliear optimization design, it is the intention to evaluate the

significance of its impact on the optimized layout for both single and two-material

phase optimization.

As shown in Fig.4.13, a L-shape bracket with 600mm equal length of legs is

subjected to a prescribed 1mm uniform displacement applied to the 3.75mm long

centre region of the right-end surface of the horizontal leg. The top surface of

the vertical leg is fully clamped. The FE mesh is shown in Fig.4.14. The volume

fraction of the first material to the whole composite domain is limited to 40%.

For single material design problem, the von Mises plasticity model is adopted

in all three cases, while each case is coupled with isotropic, kinematic, and com-

bined isotropic/kinematic hardening (φ = 0.5) respectively. The initial stiffness

E = 30GPa and yield stress σ0
Y = 7MPa are set up the same as for the sec-

ond material in the next step. For two materials design problem, both materials

phases adopt the von Mises plasticity model to eliminate the influence of the

plasticity model so that the impact of the hardening rule can be insulated. In the

three cases considered, the first material phase employs the isotropic hardening

while the second phase is associated with various hardening models: 1) elastic-

perfectly-plastic(without strain hardening); 2) isotropic hardening; 3) kinematic
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Figure 4.13: Design Domain of the L-shaped bracket

Figure 4.14: Mesh condition of the L-shaped bracket
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Table 4.3: Summary of test set up in Example 3

Hardening model for material phase 1 Hardening model for material phase 2

Case A - Isotropic

Case B - Kinematic

Case C - Combined Isotropic/Kinematic (φ = 0.5)

Case D Isotropic Elastic-perfectly-plastic

Case E Isotropic Isotropic

Case F Isotropic Kinematic

hardening. The plastic modulus Hp is equal to 2060MPa for both materials and

not modified by the design variables, while all the value of the other plastic ma-

terial parameters are exactly the same as the previous examples. A summary of

hardening rule employed is presented in Table 4.3.

Several important findings are concluded as follows:

1) The results obtained from the single material design case A, B and C are

presented in Fig.4.15(a), (b) and (c), respectively. It can be easily found that the

resulting topologies are similar. Hence, in single material design cases, where the

design material is associated with the same plasticity model but follow different

strain-hardening rule, the impact of the post-yielding hardening on the resulting

topology is not significant.

2) Contrary to the single material cases, different post yielding hardening model

do produce obvious differences among the resulting topologies in the case D,

E and F examined in this example for two material phase optimization. The

optimized layout and the corresponding contour of the first principle stress for

part of the lower horizontal structure marked in red rectangular box are presented

in Fig.4.16. The contour plot of the first principal stress can clearly reveal the

tensile zone in the part of the structure. It can be observed from Fig.4.16(a-c) that

the two vertical branches in the left upper structure end up with similar material

distributions, and for the inclined branch in between, its position and the amount

of material used show a remarkable difference in Fig.4.16(a) in comparison with

the other two designs where the strain-hardening is considered for the second

material. Also, the optimised layouts of the lower structure of the bracket are
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obviously different in these three cases. Fig.4.16(a) shows the result of case

D in which the second material is described as elastic-perfectly-plastic, i.e. no

hardening after yielding, the tensile tie at the top of the horizontal leg and the

compressive strut at the bottom are made of material 1, as material 2 is limited

by its weaker yielding strength. While for case E and F, as shown in Fig.4.16(b)

and (c), in which isotropic and kinematic hardening are applied to material 2

respectively, a noticeable change can be observed in the final topologies. The

top ties is replaced by a smeared-strut-and-tie micro-structure as illustrated in

Fig.4.17.

Figure 4.15: Optimized layouts of case A-C

Figure 4.16: Optimized layouts and the corresponding contour plots of the first

principal stress for Case D-F
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Figure 4.17: Strut-and-tie, smeared-strut-and-tie analogy for Case D-F
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4.7 Conclusion and discussion

In this research study, a framework for multiphase material nonlinear topology

optimization is developed, implemented and validated. This new framework of-

fers the flexibility that highly desired in complex composite structural optimiza-

tion when each material has different nonlinear characteristics and hardening

behaviours. As in this type of multiphase material nonlinear optimization, each

material phase will not only associate with different plasticity model but also

following different hardening rule so that each material elastoplastic properties

can be closely characterized during the optimization process. In some practical

design optimization, having the flexibility of modeling the different actual ma-

terial elastoplasticity, for example, von Mises plasticity with isotropic hardening

for one material, while Drucker-Prager plasticity with kinematic hardening for

the other will lead to a better approximation of the real optimum design. Few

studies focused on this area, even fewer studies achieved this level of flexibilities

that come with the proposed framework.

In supporting the proposed framework, a modified path-dependent adjoint

sensitivity analysis is developed for calculating the design sensitivities when the

two-phase elastoplastic materials are associated with various hardening rules.

As demonstrated in the examples, the proposed framework is effective, versa-

tile and highly adaptive to the different elastoplastic and hardening models. The

results of the example presented in this paper have also revealed the impact on the

resulting topology when adopting different plasticity models and hardening rules

in a composite structural optimization which has also demonstrated the flexibility

of adapting to different material combinations for modern composite structures.

Some of the topologies produced by the proposed method are novel yet fulfil the

engineering common sense when looking into the details of micro-structures.
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5

Using Discrete Density-based

Optimization Method for

Nonlinear Structure

5.1 Introduction

Topology optimization has been widely used in mechanical designs and has be-

come an extremely active research area in recent decades and been applied to

many other design fields [5]. It is mainly classified into three approaches: con-

tinuously density-based method [8, 10, 67], evolutionary optimization technique

[14, 17] and level-set method [3, 21].

Initial works implement topology optimization method into the linear elastic

design and the optimized layout are then post-processed [42, 43, 57]. However,

it is far from the practical design where the material cannot be assumed purely

linear elastic. To achieve a more reliable optimized design, topology optimization

considering material nonlinearity has received more attention in recent decades,

e.g. hyperelasticity [68, 69, 70], path-dependent elastoplasticity [24, 25, 27, 59,

61, 63].

However, there are still limited research studies incorporating material non-

linearity with topology optimization due to the high computational cost and

difficulty in convergence. And most of the aforementioned works use the contin-

uous density-based optimization method for the plastic structural design. The
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evolutionary structural optimization (ESO) method seems to be an effective al-

ternative, which is developed from the concept of gradually removing the ineffi-

cient materials in the design domain. A further improved evolutionary method

bi-directional evolutionary structural optimization (BESO) method is developed

with the capability of allowing elements to be removed and added simultaneously.

Its nature of achieving a discrete layout avoids the grey-scale problem caused by

the material with intermediate density, especially for a nonlinear optimization

design. Also, opposite to linear elastic optimization design, computational bur-

den emerges due to the nonlinear finite element analysis ahead the optimization

algorithm, which highly depend on the mesh generation size. ESO/BESO is rel-

atively advantageous in reducing the computational cost by achieving a distinct

layout in a certain number of optimization iterations.

The capacity of using BESO method for structural nonlinear design has been

evaluated in optimization of monoscale structures considering both material and

geometrical nonlinearity[71], multiscale nonlinear structures[72, 73], and elasto-

plastic structures[29]. In order to stabilize the topology optimization process

for nonlinear design, apart from the mesh-independency filter scheme and con-

sideration of sensitivity history of each element [18], additional approaches are

developed to smooth the sensitivity number and improve the topology conver-

gence, e.g., an admission volume ratio is introduced to control the number of

elements recovered in each iteration [29, 71, 72], a damping scheme on sensitivity

numbers and a modified filtering scheme of gradually decreasing filtering radius

are proposed [29]. Also, due to the fact that using BESO method for nonlin-

ear structure design may not lead to a convergent solution, a maximum number

of iterations is considered to terminate the optimization process rather than by

satisfying the convergence criterion with an allowable convergent tolerance [71].

Hence, using BESO evolutionary method in particular for plastic design is still a

field of on-going research due to the difficulties arising from uncertain stabilization

and convergence.

In the BESO optimization process, sensitivity numbers are used to determine

the removal and addition of each element through a ranking system. Hence, sensi-

tivity analysis is particularly important as it straightforwardly affect the accuracy

and stabilization of the optimization procedure. The recipes for path-dependent
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sensitivity analyses of inelastic structures can be traced back to 1990s, which has

also been implemented into the elastoplastic mathematical-based topology opti-

mization in recent works. However, refer to the previous works of using BESO

method for nonlinear structural design, the sensitivity analysis were simplified

and approximated during the optimization process where the calculation of sen-

sitivity the objective function with respect to the design variables only take the

global constitutive equation into account. This equation represents the difference

between the internal force and the external force, which is normally achieved in

an iterative manner using the Newton-Raphson method. However, the discrete

mechanical balance laws on a local material level is also necessarily considered

in the elastoplastic material optimization design. An inaccurate approximated

sensitivities may lead to incorrect topologies and unstable optimization process.

Therefore, In this paper, the sensitivity number used in the BESO algorithm is

calculated based on the transient nonlinear coupled systems proposed in Micha-

leris et al [65]. The global residual force as well as the local residual on integration

point level are simultaneously satisfied and both are defined as functions of time.

The objective of this study is using evolutionary optimization method to de-

sign elastoplastic structure where the material path-dependency is directly taken

into account through an adjoint sensitivity analysis based on a transient coupled

nonlinear system.

The elastoplastic material model adopted in this paper is using von Mises

material model with linear isotropic hardening rule. Three examples are con-

ducted to verify the efficiency and effectiveness of the proposed BESO procedure

for elstoplastic structural design. In the optimization procedure, only a general

filtering scheme that consider the factor from the neighbouring elements within a

constant filtering radius is applied. The results are successfully converged which

denotes the accuracy and robustness of the sensitivity analysis that implemented

in the BESO algorithm. Also, a prescribed displacement governed analysis shows

the impact of prescribed displacement on the history evolutionary topology and

the final topology for the plastic optimization design.
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5.2 Nonlinear Finite Element Analysis

5.2.1 Elastoplastic Material Model

In this study, the von Mises plastic model with isotropic hardening is adopted to

exhibit the elastoplastic behaviour for some ductile material, e.g. metal, which is

given by

f = ||s|| −
√

2

3
(σY +Hpep) (5.1)

where ||s|| =
√

s : s is the norm of the deviatoric stress. And

√
s : s =

√
2J2 (5.2)

where J2 represents the second invariant of the deviatoric stress tensor, σY denotes

the initial yield stress, ep is the effective plastic strain and Hp is the constant

plastic modulus which means the hardening model is assumed to be linear here.

According to the assumption of small deformation elastoplasticity, the rate of

the total strain ε̇ can be decomposed into the rate of the elastic strain ε̇e and the

plastic strain ε̇p as

ε̇ = ε̇e + ε̇p. (5.3)

The elastic strain relates to the stress by using the fourth-order constitutive tensor

D. And the plastic strain evolves in the direction normal to the associated flow

potential (yield function f) in this study, which is given by

ε̇p = γ
∂f(s, ep)

∂s
= γ

s

||s||
= γN (5.4)

where N is a unit deviatoric tensor normal to the yield surface. γ is the non-

negative plastic consistency parameter and it is governed by the Kuhn-Tucker

conditions, i.e.

γf = 0; γ ≥ 0; f ≤ 0. (5.5)

5.2.2 Global and local residuals

The global equilibrium for the complete structure should be satisfied in the finite

element analysis, can be expressed as

Rn = Rn
ext −Rn

int (5.6)
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where Rn represents the residual on the global level at the loading step n, which

equals to the difference of the external applied force Rn
ext and the internal force

Rn
int at the loading step n. In the force-incremental analysis, the external force

vector is known, while in the displacement-incremental analysis, the unknown

load factor need to be solved through the coupled equation system for each incre-

ment and then multiply with the reference load vector only with non-zero entries

at the loaded degrees of freedom. The internal force can be expressed as

Rn
int =

nele∑
e=1

(

∫
Ve

BTσndVe) (5.7)

where B is the strain-displacement matrix. Additionally, the local residuals on

the integration point level are required to be sufficiently small throughout the

nonliear analysis. Here, four-node quadrilateral plane-stress element with four

integration points is utilized for design problems. Thus, the residual H at the

loading increment n is formed by embedding the local residuals on each integra-

tion point of each element into a global matrix as

Hn = [Hn
1 ,H

n
2 , ...,H

n
nele]

T

Hn
e = [Hn

e1,H
n
e2,H

n
e3,H

n
e4]T

Hn
ei =

[
Hn
ei1,H

n
ei2, ...,H

n
eij

]T (5.8)

where e is the number of elements, i represents the number of integration points,

and j corresponds to the number of local residual required on an integration

point level based on the specified plastic model and hardening rule. In the elastic

incremental stage, the local residuals Hn
eij are defined as

Hn
eij =

Hn
ei1

Hn
ei2

Hn
ei3

 =

σnei − σn−1
ei −D0

e : (BeU
n
e −BeU

n−1
e ) = 0

ep
n
ei − ep

n−1
ei = 0

∆γnei = 0

 (5.9)

where Ue is the nodal displacement vector of element e; σei and epei represent

the stress and the equivalent plastic strain obtained at each integration point of

element e respectively.
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However, in the plastic stage, the local residuals Hn
eij are given by

Hn
eij =

Hn
ei1

Hn
ei2

Hn
ei3

 =


σnei − σn−1

ei −D0
e : (BeU

n
e −BeU

n−1
e ) + 2µe∆γ

n
eiN

n
ei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||s||nei −
√

2
3
[σY e +Hpeep

n
ei] = 0


(5.10)

It can be observed that three variables on each integration point are considered,

i.e. vn = [σnei ep
n
ei ∆γnei].

5.2.3 Consistent tangent stiffness

Although a general description of stress return-mapping algorithm and calcula-

tion of plastic variables and tangent stiffness for elstoplastic material is given in

Chapter 4 Section 4.3.2 and Section 4.3.3, here, a more straightforward descrip-

tion of calculation for the specified material modelled by von Mises yield criterion

and isotropic hardening is given. As known that the stress rate can be written as

σ̇ = D : (ε̇− ε̇p) = D : ε̇− γ̇D : N (5.11)

In the von Mises plastic model, the hydrostatic pressure (volumetric stress) is

independent of plastic deformation, therefore, the yield function is defined using

the deviatoric stress alone. Since N is a unit deviatoric tensor, and based on

Eq.(1.14), the following derivation can be obtained as

D : N = 2µN (5.12)

Therefore, Eq.(5.11) can be further written as

σ̇ = D : ε̇− 2µγ̇N (5.13)

The rate of change of yield function is given by

ḟ =
∂f

∂s
: ṡ +

∂f

∂ep
ėp = 0 (5.14)
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with

∂f

∂s
=

1

2

1√
s : s

2s =
s√
s : s

=
s

||s||
= N

∂f

∂ep
= −

√
2

3
Hp

ṡ = 2µ(ė− ėp) = 2µė− 2µγN

ėp =

√
2

3
γ

(5.15)

Hence, the rate of yield function can be written into a function in terms of the

plastic consistency parameter as

ḟ = 2µN : ε̇− 2µγN : N− 2

3
Hpγ = 0 (5.16)

The plastic consistency parameter γ is obtained as

γ =
2µN : ε̇

2µ+ 2
3
Hp

(5.17)

By substituting Eq.(5.17) into Eq.(5.13), the tangent stiffness can be derived as

σ̇ = D : ε̇− 2µγ̇N

= D : ε̇− 2µN
2µN : ε̇

2µ+ 2
3
Hp

= [D− 4µ2

2µ+ 2
3
Hp

N⊗N] : ε̇

(5.18)

Thus, the elastoplastic tangent stiffness Dep can be achieved by

Dep = D− 4µ2

2µ+ 2
3
Hp

N⊗N (5.19)

The computational cost for nonlinear analysis is dominantly determined by the

convergence during Newton-Raphson iteration. And when the structure partially

enter the plastic state, the tangent stiffness representing the relation between

the stress rate and strain rate straightforwardly effect the speed of convergence.

When use the elastoplastic tangent stiffness Dep, Newton-Raphson iteration does

not show a quadratic convergence. According to Simo and Taylor [74], this is due

to Dep is not consistent with the time itegration algorithm. And the consistent
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tangent stiffness can be achieved by differentiating the incremental stress with

respect to the incremental strain, which provides a consistent constitutive relation

with the return-mapping algorithm as

Dcs =
∂∆σ

∂∆ε
=
∂(D : ∆ε− 2µ∆γN)

∂∆ε

= D− 2µN⊗ ∂∆γ

∂∆ε
− 2µ∆γ

∂N

∂∆ε

(5.20)

where Dcs represents the consistent tangent stiffness. As known that during the

return-mapping algorithm, the deviatoric stress, and the equivalent plastic strain

at time tn+1 can be calculated as

sn+1 = strial − 2µ∆γN

epn+1 = epn +

√
2

3
∆γ

(5.21)

where the deviatoric unit tensor N = sn+1

||sn+1|| = strial

||strial|| means that the final up-

dated deviatoric stress sn+1 moves in the same direction of the trial deviatoric

stress strial which is parallel to N. Hence, the following yielding function for a

certain material point at time tn+1 must be satisfied

fn+1 = ||sn+1|| −
√

2

3
(σY +Hpepn+1)

= ||strial|| − 2µ∆γ −
√

2

3
(σY +Hpepn+1) = 0

(5.22)

Thus, in order to solve Eq.(5.20) to achieve the consistent tangent stiffness, the

unknown derivative ∂N
∂∆ε

can be obtained as follows:

N

∆ε
=

∂N

∂strial
:
∂strial

∆ε

=
∂ strial

||strial||

∂strial
:
∂(σtrial : Idev)

∂∆ε

= [
I

||strial||
− strial ⊗ strial

||strial||3
] : 2µIdev

=
2µ

||strial||
[Idev −N⊗N]

(5.23)
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And the unknown derivative ∂∆γ
∂∆ε

can be calculated through differentiating the

yield function in Eq.(5.22) with respect to the incremental strain

f

∆ε
=
∂||strial||
∂∆ε

− 2µ
∂∆γ

∂∆ε
−
√

2

3
Hp

∂epn+1

∂∆γ

∂∆γ

∂∆ε
= 0 (5.24)

with

∂||strial||
∂∆ε

=
∂ strial

N

∂∆ε
=

∂strial

∂∆ε
N− strial ∂N

∂∆ε

N2

=
2µIdevN− strial 2µ

||strial|| [Idev −N⊗N]

N2

= 2µN

(5.25)

Hence, Eq.(5.24) can be further modified as

f

∆ε
= 2µN− 2µ

∂∆γ

∂∆ε
− 2

3
Hp

∂∆γ

∂∆ε
= 0 (5.26)

Thus, the derivative of the plastic consistency parameter with respect to the

incremental strain ∂∆γ
∂∆ε

is then obtained as

∂∆γ

∂∆ε
=

2µN

2µ+ 2
3
Hp

(5.27)

By substituting Eq.(5.23) and Eq.(5.27) into Eq.(5.20), the consistent tangent

stiffness is achieved as

Dcs = D− 4µ2

2µ+ 2
3
Hp

N⊗N− 4µ2∆γ

||strial||
[Idev −N⊗N] (5.28)

In comparison with Eq.(5.19), it can be observed that an additional term is added

in Eq.(5.28) where the change in direction for the strain increment is also taken

into account. When the strain increment is large, the direction of deviatoric stress

may change. Note that when the material stay in elastic state where the trial

value of yield function is less than 0, either elastoplastic tangent stiffness Dep or

consistent tangent stiffness Dcs become identical and equal to the elastic tangent

stiffness D.
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5.3 BESO optimization procedure

5.3.1 Problem statement

In this study, BESO optimization method is used to maximize the external force

at the final incremental loading step with material volume constraint for elasto-

plastic structure. And the displacement-incremental method is applied through-

out the nonlinear analysis. The optimization objective function, volume con-

straint and coupled mechanical equilibrium in both global and local level are

presented as follows:

min f(x) = −ϕNPrefu
N

s.t.
nele∑
e=1

vexe = V ∗

xe = 0 or 1, (e = 1, 2, ..., nele)

Rn(un,un−1,vn,vn−1,x) = 0

Hn(un,un−1,vn,vn−1,x) = 0

n = 1, 2, ..., N,

(5.29)

where xe depicts the elemental design variable updated in each iteration and V ∗

is the prescribed target volume fraction of the design domain. Pref is a constant

external load vector with non-zero entries only at loaded degrees of freedom. ϕN

denotes the unknown load factor at the final loading step N. The objective func-

tion stated in Eq.(6.12) only valid under certain load conditions, and will lead to a

complicated sensitivity analysis. Therefore, Amir et al. [75] proposed a simplified

hybrid approach using the load-controlled concept to generate a more applicable

objective function as following: f(x) = PNuN , but the actual nonlinear analysis

is performed through a displacement-controlled method.

5.3.2 Sensitivity analysis

5.3.2.1 Adjoint method

The path-dependent adjoint method is applied to compute the elemental sensi-

tivity numbers. The objective function is augmented by adding the global and
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the local residuals due to their infinitesimal value. In this study, the only vari-

able associated with the objective function f is nodal displacement u and the

global residual R only depend on the variable v. Hence the simplified augmented

objective function is written as:

ĉ = c(x,u) +
N∑
n=1

ξnTRn(un,un−1,vn,vn−1,x) +
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x)

= c(u) +
N∑
n=1

ξnTRn(vn) +
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x),

(5.30)

where ξn and θn are two adjoint vectors to be calculated through the sensitivity

analysis. The differentiation of the objective function c with respect to design

variables x is equivalent to the derivative of the augmented function ĉ, and it can

be decomposed into an explicit term and an implicit term

∂c

∂x
=
∂ĉ

∂x
=
∂ĉexp
∂x

+
∂ĉimp
∂x

. (5.31)

In order to eliminate the unknown term of derivatives ∂un

∂x
and ∂vn

∂x
, the backward

incremental calculation approach is applied to obtain the Lagrange multipliers

θn, ξn for all increments n = 1, ..., N

∂ĉimp
∂x

=
∂ĉNimp
∂x

+
N−1∑
n=1

∂ĉnimp
∂x

∂ĉNimp
∂x

= (
∂c

∂uN
+ θN

T ∂HN

∂uN
)
∂uN

∂x
+ (ξN

T ∂RN

∂vN
+ θN

T ∂HN

∂vN
)
∂vN

∂x
∂ĉnimp
∂x

= (
∂c

∂un
+ θnT

∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
)
∂un

∂x

+ (ξnT
∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
)
∂vn

∂x

(5.32)

For the final step N : 
∂c

∂uN
+ θN

T ∂HN

∂uN
= 0

ξN
T ∂RN

∂vN
+ θN

T ∂HN

∂vN
= 0

(5.33)
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For steps from n = 1 to N − 1:
∂c

∂un
+ θnT

∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
= 0

ξnT
∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
= 0

(5.34)

Therefore based on the obtained adjoint vector and the derivative of the explicit

term, the design sensitivity with respect to the design variables can be written as

∂c

∂x
=
∂ĉexp
∂x

=
N∑
n=1

θnT
∂Hn

∂x
(5.35)

Furthermore, the derivatives ∂c
∂uN

, ∂Hn

∂un
, ∂Hn+1

∂un
, ∂Hn

∂vn
, ∂Hn+1

∂vn
and ∂Rn

∂vn
are required

to solve the above equilibriums presented in Eq. (6.23) and Eq. (6.24). This will

be discussed in the next subsection. Note that since xe equals to either 1 or 0, the

sensitivities are actually only evaluated for solid elements wheras zero for void

elements.

5.3.2.2 Derivatives calculation

The variables vn on integration-point level consist of stress σn, equivalent plastic

strain enp and the plastic multiplier ∆γn. The required derivatives in matrix form

are given as follows

∂Hn
ei

∂vnei
=


∂Hn

ei1

∂σnei

∂Hn
ei1

∂epnei

∂Hn
ei1

∆γnei
∂Hn

ei3

∂σnei

∂Hn
ei3

∂epnei

∂Hn
ei3

∆γnei
∂Hn

ei4

∂σnei

∂Hn
ei4

∂epnei

∂Hn
ei4

∆γnei

 (5.36)

∂Hn
ei

∂une
=
[
∂Hn

ei1

∂une

∂Hn
ei2

∂une

∂Hn
ei3

∂une

]T
(5.37)

∂Hn
ei

∂xe
=
[
∂Hn

ei1

∂xe

∂Hn
ei2

∂xe

∂Hn
ei3

∂xe

]T
(5.38)

∂Rn
e

∂vnei
=
[
∂Rn

e

∂σnei

∂Rn
e

∂epnei

∂Rn
e

∆γnei

]
(5.39)

When the material response stays in the elastic stage:

∂Hn
ei

∂vnei
=

I 0 0
0 1 0
0 0 1

 (5.40)
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∂Hn
ei

∂xe
=
[
−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) 0 0

]T
(5.41)

In the plastic stage, the derivatives of the local residual with respect to the

variable v and the design variable x can be derived as follows

∂Hn
ei

∂vnei
=


I + 2µe∆γ

n
ei(

∂N
∂σ

)nei 0 2µeN
n
ei

0 1 −
√

2
3

Nn
ei −

√
2
3
Hpe 0

 (5.42)
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e ) + 2∆γneiN

n
ei
∂µe
∂xe

0

−
√

2
3

∂σye
∂xe
−
√

2
3

∂Hpe
∂xe

ep
n
ei

 (5.43)

with

(
∂N

∂σ
)nei =

1

||s||nei
[Idev −Nn

ei ⊗Nn
ei] (5.44)

where Idev = I− 1
3
1⊗1 is the unit deviatoric tensor of the fourth-order. Opposite

to the derivatives of Hn with respect to the internal variable vn and the design

variable x are different in the elastic and plastic step, the following derivatives

do not depend on the finite element analysis response

∂Hn+1
ei

∂vnei
=

−I 0 0
0 −1 0
0 0 0

 (5.45)

∂Hn
ei

∂une
=
[
−D0

eBei 0 0
]T

(5.46)

∂Hn+1
ei

∂une
=
[
D0
eBei 0 0

]T
(5.47)

∂Rn
e

∂vnei
=
[
BT
eiwei 0 0

]
(5.48)

Therefore the matrix of the differentiation of Hn need to be adjusted according

to the trial elastic condition, which keep consistency with the analysis at each

increment.
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5.3 BESO optimization procedure

5.3.3 Update of design variables

BESO design starts from the full structural domain and its volume gradually

decreases until the target volume is reached. The evolutionary function is given

by

V l = V l−1(1−Rer), l = 1, 2, 3... (5.49)

where Rer is the evolutionary ratio, l represents the current optimization iteration.

The elemental sensitivity number derived in Eq.(6.25) cannot be applied di-

rectly to the BESO updating scheme. To address the mesh-dependent and con-

vergence problem, a filtering scheme [76] is utilized to smooth the sensitivity

numbers by taking the surrounding sensitivities into account.

ae =

N∑
i=1

weiai

N∑
i=1

wei

(5.50)

with

wei = max(0, rmin − dis(e, i)) (5.51)

where ae and ai denote the design sensitivity of element e and element i, respec-

tively. wei is the weight factor, rmin is the filter radius and the item dis(e, i)

represents the distance between of centres of element e and element i. More-

over, a scheme of averaging the sensitivity numbers in the current iteration with

that in the previous iteration is normally implemented to further improve the

optimization stability [18].

ale =
ale + al−1

e

2
(5.52)

In most previous studies on BESO plastic design, a threshold parameter athadd is

also considered in order to control the recovered number of elements from voids

[29, 71, 72]. This is mainly due to extensive elements readded to the structure may

deteriorate the optimization design and result in difficulty in solution convergence.

Here, in this paper, only one threshold parameter ath is set up iteratively, which

is to some extent simplify the algorithm of updating design variables. The value

of the parameter ath is determined based on the prescribed volume required in

the current iteration. When the sensitivity number of an element is higher than
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ath, as shown in Eq.(6.42), the corresponding design variable remains equal to 1

for solid element or change from 0 to 1 for the void.

ae > ath (5.53)

While for those elements with the sensitivity numbers lower than ath, as shown

in Eq.(6.43), they are removed from the current design domain.

ae ≤ ath (5.54)

Once the prescribed volume is satisfied, the optimization procedure repeats with

a constant volume and stopped by the following convergence criterion:

|
N∑
j=1

(Ci−j+1 − Ci−N−j+1)|

N∑
j=1

Ci−j+1

≤ τ (5.55)

where N is an integral number defined as 5 in this study. And τ is the allow-

able convergence tolerance relating to the change in objective function. It is set

up equal to 10e − 4 for all examples examined here. In summary, a flowchart

describing the BESO optimization procedure is presented in Fig.5.1.

5.4 Examples

5.4.1 Design of a cantilever beam

A benchmark design of a cantilever beam, as presented in the previous study [29],

is examined here to verify the proposed BESO optimization framework. Fig.5.2

shows the design domain where the left edge is fully clamped and a downward

prescribed displacement is distributed along the distance of 200mm at the cen-

ter of the right side. The whole design domain is discretized into 5000 (100

x 50) elements. The mechanical property of the material candidate employing

an isotropic hardening von Mises plastic model is detailed as follows: Young’s

modulus E = 75GPa; initial yielding stress σy = 100MPa; plastic modulus

Hp = 1000MPa and poisson ratio v = 0.3. The target volume fraction to the
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Figure 5.1: Flowchart of BESO optimization procedure
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whole design domain is assumed to be 60%. The filtering radius (rmin) is set up as

4 size of the element length and remain constant in the optimization procedure.

The evolutionary ratio (Rer) is defined equal to 2%.

Figure 5.2: Design domain of the cantilever beam

In this example, four cases with the prescribed displacement assumed to be

1mm, 5mm, 7mm and 10mm, respectively, are examined. Five loading time steps

are considered, which means the incremental displacement is equal to 20% of the

total displacement. Fig.5.3 presents the resulting topologies. It can be observed

that the remaining elements serving in tension and compression are symmetrically

distributed at the top and the bottom of the beam for all cases. Apart from the

design layout shown in Fig.5.3 (c) where an extra cross branches appears, same

number of structural branches are developed through the optimization design as

presented in Fig.5.3 (a), (b) and (d). Note that with the increase in the applied

prescribed displacement, the whole internal skeleton resisting to the plastic re-

sponse moves approaching to the left boundary to strength the beam. Fig.5.4

highlights that all the cases succeed in achieving a convergent solution that satisfy

the tolerance error of 10e − 4. Particularly, for the case applied with the pre-

scribed displacement of 10mm fails to converge in the previous study [29], while it

converges successfully in 32 steps here, which demonstrates the robustness of the

proposed BESO framework for the plastic design. The evolutionary histories of

topology are also recorded in some typical iterations and presented in Fig.5.4. It

can be seen that during the approximate initial 20 iterations, the objective func-

tion decreases monotonically in a stable pace. The topology at iterations 7 and 15
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Figure 5.3: Resulting topologies for the cantilever beam optimization design when

subjected to the prescribed displacement (a) 1mm; (b) 5mm; (c) 7mm; (d) 10mm

are plotted for all cases to compare the evolutionary difference at the beginning

stage. When u∗ = 1mm is applied, the optimization problem is nearly belong to

a linear elastic design, low efficient elements are removed simultaneously at the

right front and the left back of the structure. However, following the growth of

the displacement, less elements are removed at the back and the main evolution

occurs at the front void areas. Furthermore, with the volume reduction, extensive

holes are formed due to the existing of small structural branches. And after the

target volume is reached, the redundant branches are eliminated and then added

in essential places to adjust the topology and enhance the most needed branches.

In this example, based on the evolutionary ratio of 0.02, the desired volume frac-

tion of 60% to the complete design domain is satisfied at iteration 26. Obvious

fluctuations can be observed in the objective function when existing branches

are removed from the structure, as shown in Fig.5.4 (a) (iteration 26-27), Fig.5.4

(b) (iteration 37-38) and Fig.5.4 (d) (iteration 27). Whereas in Fig.5.4 (c), after

the volume usage is reached, there is no oscillation occurring in the plot due to

rare alteration in the topology is developed afterwards. The solution of cases

applied with prescribed displacement of 1mm, 5mm, 7mm and 10mm converge

at the optimization iteration 60, 59, 42, and 32, respectively. Hence, it can be

concluded that the design topology convergence is independent of the prescribed
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displacement (elastic or plastic dominated design).

Figure 5.4: Evolutionary histories of objective function and topology for the

cantilever beam subjected to various prescribed displacement in four cases

Then, for the purpose of evaluating the reasonability and reliability of the

resulting topologies, the design layouts obtained in Fig.5.3 (a-d) are reanalysed

when they are subjected to the same loading condition (i.e. prescribed displace-

ment of 10mm). Fig.5.5 (a-d) shows the equivalent stress distribution, and Fig.5.6

presents the maximum equivalent stress and plastic strain achieved in these four

cases. It can be observed in Fig.5.5 (a) that high stress mainly concentrate around

the boundary edge, while in Fig.5.5 (d), all the structural branches, especially for

those placed at the middle and right front zones, are sufficiently involved in taking

the von Mises stress. Apparently, using the design topology obtained in the case of

u∗ = 10mm produces the most effective stress distribution. Also, as expected that

the lowest efficient structure obtained from the case of u∗ = 1mm, resulting in the

highest maximum equivalent stress (172.34MPa) and plastic strain (0.0097mm),

while the design of the case undertaking the plastic loading (u∗ = 10mm) attains

the lowest value of equivalent stress (143.10MPa) and plastic strain (0.0047mm).

This may mitigate the stress concentration problem to some extent, in comparison

with the other three designs in this case.
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Figure 5.5: Equivalent stress distribution of different design layouts obtained in

Fig.5.3 (a-d) subjected to displacement loading u∗ = 10mm

Figure 5.6: Maximum equivalent stress (left) and maximum equivalent plastic

strain (right) of different design layouts obtained in Fig.5.3 (a-d) subjected to

displacement loading u∗ = 10mm
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Additionally, a plot of force against displacement is presented in Fig.5.7. A

prescribed displacement of u∗=20mm is applied to the four designs respectively

to compare thier loading capacity at each stage. Firstly, when the displacement

u=10mm, the corresponding force of the optimized design model achieved under

the plastic design of u∗=10mm is the highest, followed by that of the optimized

model with u∗=7mm, 5mm, and 1mm, and this trend become more obviously

afterwards. Also, I compared the external force of each design when the displace-

ment loading reach 1mm, 5mm, and 7mm respectively. To achieve a distinct

comparison, the results of four designs on those specified points are presented in

zoom in views (the red dot rectangular box). It shows when subjected to a small

deformation (elastic loading condition), a pure elastic design is more efficient than

a fully plastic or a plastic dominated design model. However, when the structure

get into the plastic phase, its loading capacity decrease, which is possibly due to

the high plastic strain or von Mises stress concentrate on some structural elements

rather than that are more evenly distributed in the whole structure. Hence, it

can be found that the loading capacity of each design model become the most

effective when their deformation reach equivalent to the prescribed loading value,

which also further demonstrate the reliability and accuracy of the proposed BESO

method when taking the material elasoplasticity into account.

5.4.2 Design of a beam

An optimization design of a beam with length-to-height equal to three is con-

sidered here. As presented in Fig.5.8, both sides of the beam is fully clamped

and a distributed prescribed displacement is applied at the central top surface

along a distance of 50mm. The beam is discretized using 120× 40 quadrilateral

bilinear elements where the elemental length equals to 20mm. The associated

material property is described as follows: Young’s modulus E = 200GPa; initial

yielding stress σy = 250MPa; plastic modulus Hp = 200MPa and poisson ratio

v = 0.3. The proposed BESO method starts from a complete design domain with

an evolutionary removal ratio of 0.02 until the desired volume of 60% is achieved

and then the convergent tolerance of 10e−4 is satisfied. Also, the filtering radius
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Figure 5.7: Comparison of external force against displacement of different design

layouts obtained in Fig.5.3 (a-d) subjected to displacement loading u∗ = 20mm

set up the same as that in the former example (4 times of the elemental length).

Figure 5.8: Design domain of the harf MMB beam

Four cases applied with the prescribed displacement of 1mm, 2mm, 3mm

and 4mm respectively are conducted to validate the effectiveness of the proposed

BESO framework for either nearly elastic design or a fully plastic design. The

resulting topologies are presented in Fig.5.9. It can be observed that the design
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layouts are remarkably different in the material distribution around the top cen-

tral area of the beam where the prescribed loading is applied. With the increase of

the displacement, larger amount of material are placed for compressive resistance.

And the two inclined struts connecting the top stiffener and the bottom curve

shaped tie become thicker. Fig.5.10 plots the change of the value of objective

Figure 5.9: Resulting topologies for the cantilever beam optimization design when

subjected to the prescribed displacement (a) 1mm; (b) 2mm; (c) 3mm; (d) 4mm

function throughout the optimization iterations. It should be pointed out that all

designs successfully converged at iteration 39, 37, 40 and 61, respectively. Also,

For sake of comparing the topology evolutionary history, the topologies obtained

at iterations 8, 15, 20 and 30 are presented. In this example, opposite to the

phenomenon observed from the first example in which obvious small branches

are developed initially and gradually eliminated in the subsequent optimization

iterations, there is no apparent new branches exist before or after reaching the

target volume, especially for the first three cases (See Fig.5.10(a-c)). As shown in

Fig.5.10(d), when the prescribed displacement u∗=4mm is applied, two tiny struts

are developed beside the middle inner struts at iteration 15 and then removed

afterwards. Hence, the elimination of redundant elements during optimization

process may due to volume reduction or the structural self-adjustment before

satisfying the convergence criterion.

To further validate the design models obtained in Fig.5.9 under different mag-

nitude of deformation loading, I compared the von Mises stress distribution of

the four designs when being applied with the same prescribed displacement of

4mm. The comparison is given in Fig.5.11, where total number of 66 elements
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Figure 5.10: Evolutionary histories of objective function and topology for the

cantilever beam subjected to various prescribed displacement in four cases

surrounding the loading area with high concentration stress are removed from

the stress plot for the purpose of description. Also, Fig.5.12 demonstrates the

the maximum equivalent stress (left) and plastic strain (right) of each design. It

can be observed when the applied displacement load is 4mm for all the optimized

models presented in Fig.5.9, the lowest σmax=311.08MPa and epmax=0.0027mm

is achieved by using Fig.5.9(d) design as the objective structure, whereas the

highest σmax=326.84MPa and epmax=0.0042mm is achieved based on Fig.5.9(a)

model. Moreover, through comparing the stress plots in Fig.5.11 (d) with that in

Fig.5.11 (a-c), it can seen that the von Mises stress is more equally distributed in

more areas surrounding the loading points, and, the structural struts and ties con-

tribute more in withstanding compression and tension. This implies that a small

adjust in topology can reduce stress concentration and improve the involvement

of structural elements in taking the stress and resistance to structural response.

The force-displacement relation of the four designs are plotted in Fig.5.13,

where the prescribed displacement applied to the four optimized models equal to
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Figure 5.11: Equivalent stress distribution of different design layouts obtained in

Fig.5.9 (a-d) subjected to displacement loading u∗=4mm

Figure 5.12: Maximum equivalent stress (left) and maximum equivalent plastic

strain (right) of different design layouts obtained in Fig.5.9 (a-d) subjected to

displacement loading u∗=4mm
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8mm. Also, I zoomed up the external force corresponding to the tip deformation

at 1mm, 2mm and 3mm for the four designs respectively to compare their loading

capacity. As can be observed, the nearly elastic design (u∗=1mm) has the best

performance at the initial deformation (up to approx. 1mm) and following the in-

crease in tip deformation, it is surpassed by the plastic design with u∗=2mm that

is subsequently transcended by the plastic design with u∗=3mm. As expected,

the plastic design (u∗=4mm) starts to perform exceeds the other three designs at

3.5mm deflection and remain this tendency up to 8mm. This agrees well with the

observation achieved in Example 1 (Fig.5.7) that the elastic or plastic governed

design have significant impact on the resulting topology.

Figure 5.13: Comparison of external force against displacement of different design

layouts obtained in Fig.5.9 (a-d) subjected to displacement loading u∗=8mm
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5.5 Conclusion and discussion

In this study, an elastoplastic BESO method is proposed where the transition

between the elastic and plastic state is considered in the sensitivity analysis. sen-

sitivity numbers are calculated by considering both satisfaction of the equilibrium

between the external and internal force, and the local residual on each integration

point. In the BESO procedure, only an evolutionary removal ratio without setting

up a recovered ratio is applied in the elemental sensitivity ranking system. Also,

a simple linear filtering scheme for smoothing sensitivity numbers is considered

where taking the weight factor of the neighbouring sensitivities within a con-

stant radius. The robustness and effectiveness of the proposed BESO method for

elastoplastic material optimization problem are presented through two numerical

examples.

The displacement governed analysis is conducted to compare different topolo-

gies obtained from linear elastic design, elastic dominated, plastic dominated or

fully plastic design. They all successfully converged demonstrate the sensitivity

stabilization when implementing the transit coupled nonlinear system in BESO

sensitivity analysis. And the number of interactions for achieving a convergent

result is found independent on the material property. From the evolutionary

histories of topology, it can be observed that some small branches emerge ini-

tially and gradually removed following the volume reduction or move to the area

surrounding the most requisite branch to strength the structure. To further in-

vestigate the reliability of the proposed method, the von Mises stress distribution

of designs achieved in different cases when subjected to the same loading condi-

tion is plotted and discussed. It is found that the stress of nearly elastic design

mainly concentrate at some areas, e.g., loading applied points. This may result

in only parts of the structure enter the plastic design leading to an early failure

whereas others remain in the elastic state. However, the plastic design enables

to distribute the stress more evenly in the whole structure, which alleviate the

stress concentration at some point. Also, the load-displacement curve presents

the significant influence of the prescribed displacement on the results.
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6

Plastic Strain-based Topology

Optimization for Nonliear

Structure

6.1 Introduction

Topology optimization technique has been widely used to provide a preliminary

conceptual design in the engineering field [12]. Initially, extensive research studies

implement topology optimization method into linear elastic structural design with

the purpose of minimizing the compliance as well as restricting to the material

usage. And the resulting truss-like topology is possibly regarded as a strut-and-

tie model based on the regions suffering from tension or compression. However,

the linear elastic optimization design is generally far from valid design, contin-

uous studies have emerged to consider more realistic material performance for

topology optimization design problem, such as material nonlinearity, geometrical

nonlinearity or both material and geometrical nonlinearity.

The energy absorption capacity for a nonlinear structure is generally taken

into account. As opposite to linear elastic material quantity complimentary en-

ergy is equal to that of strain energy, the purpose of maximizing energy absorp-

tion capacity for nonlinear structure can be achieved by either maximizing the

total strain energy [24, 26, 27, 28, 29], or minimizing complementary elastic work

[54, 77], with a given amount of material. Alternatively, for energy absorbing
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elastoplastic structures design, the optimization problem can be formulated by

maximizing the absorbed plastic work in the design domain under the prescribed

loading condition [62, 63]. Furthermore, the objective can also be set up as the

maximization of the end-compliance with a prescribed displacement or minimiza-

tion of the end-compliance with a prescribed force [25].

Apart from the extensive studies on the compliance topology optimization

problem, the stress-based topology optimization problem is another attractive

topic. Three main challenges concluded from literature [78, 79] are summarized

as follows: (i) the ”singularity” phenomenon; (ii) the local nature of stress con-

straint, and (iii) nonlinear dependence of stress behavior on design topology.

Many efforts have been conducted to deal with these technical and computational

difficulties regarding to stress-constrained design [80, 81, 82] or stress-minimized

design [79, 83].

Opposite to linear or non-linear elastic material that the type of deformation

is reversible, most materials, such as metals, soils and concrete, etc., undergo non-

reversible deformation in response to the applied force. Once the loading exceeds

the yielding point of the material, the extension of material increases more rapidly

than that in the elastic region. And the remaining extension after load removal

is so called as permanent or plastic deformation. For a given total strain, stress

in the material relates to the elastic strain while is independent of the plastic

strain. For example, for material with elastic-perfectly-plastic property, the stress

is always brought back to the fixed yielding surface through the return-mapping

algorithm in the plastic phase, whereas the corresponding plastic strain keep

increasing under further loading and deformation. Additionally, for elastoplastic

material followed by a strain hardening model, the plastic strain also affect its

yield stress. In one-dimensional case, plastic strain is easily to be defined by the

permanent part of the strain. However, for arbitrary stress state rather than uni-

axial stress state, the equivalent plastic strain is considered by calculated from

the components of the plastic strain, as it is a scalar. In a stress-strain curve, the

plastic part of the curve can be described by a function of equivalent plastic strain,

presenting the behaviour of material against further loading. Hence, for most

engineering materials, particularly in a nonlinear design phase, equivalent plastic

strain is among the most important internal state variables. However, to authors’
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best knowledge, there is lack of studies considering plastic strain associated design

objective or constraint in the elastoplastic topology optimization design problem.

This is possibly due to the challenges may be encountered in the optimization

procedure. Firstly, the local nature of strain enables the equivalent plastic strain

to be considered on every material point in a continuum structure. And it only

exist on material entering plastic stage and equals to 0 for material staying in

elastic stage. Therefore, unlike the computational burden from stress-based op-

timization that depends on the number of material points considered alone, it is

highly associated with the material response to the applied loading. The second

challenge is that the element with low density may present high equivalent plas-

tic strain, leading to the ’singularity’ phenomenon and resisting the optimization

procedure from removing them. This paper proposed an optimization method

with the purpose of minimizing the maximum equivalent plastic strain of elasto-

plastic continuum structure within a given amount of material volume. Also,

effective schemes are introduced to remedy the aforementioned difficulties.

Noticed that the continuous density-based topology optimization method is

utilized in most previous works for plastic structural design. However, the evo-

lutionary structural optimization (ESO) method seems to be an effective alter-

native, which is developed from the concept of gradually removing the inefficient

materials in the design domain and further improved by allowing elements to be

removed and recovered simultaneously, so called the bi-directional evolutionary

structural optimization (BESO) method. Particularly, its nature of achieving

a discrete black-and-white layout avoids the ’singularity’ problem raised from

material with intermediate density. An global quantity of accumulating all the

equivalent plastic strain on every finite element of the descretized structure is used

to approximate local plastic strain. In other words, the optimization problem is

formulated with the objective of minimizing the total equivalent plastic strain at

the final loading step and a constraint on material usage. This global function

may be difficult to consider all the plastic strain on a local level, however, the in-

fluence on the local peak values of plastic strain of the design can be investigated

by comparing the results with that achieved from compliance-based optimization

without plastic strain minimization. Also, as the challenges mentioned above,

the sensitivity numbers may vary by several orders of magnitude due to high
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dependence on structural analysis and be delicate to change of design topology.

A damping scheme is proposed in this paper to smooth sensitivity numbers and

stabilize the evolutionary process. The effectiveness and robustness of the pro-

posed method for plastic strain minimization design is validated through three

examples in this paper.

The work is organized as follows: Section 6.2 presents the elasto-plastic model

adopted and the nonlinear finite element analysis. Section 6.3 gives the optimiza-

tion formulations for end-compliance minimization problem and equivalent plastic

strain minimization problem, respectively. The detailed sensitivity analysis for

the global function of equivalent plastic strain minimization is derived in Section

6.4. Section 6.5 describes the modified BESO method and the proposed damping

system embedded in the optimization algorithms. Three examples are conducted

in Section 6.6 and conclusion are discussed in Section 6.7.

6.2 Nonlinear Finite Element Analysis

This section presents the elasto-plastic model used and the corresponding non-

linear finite element problem to be solved. The von Mises plastic model with

isotropic hardening that commonly used to model ductile metal material is adopted

here and is given by

f = ||s|| −
√

2

3
(σY +Hpep) (6.1)

where s is the deviatoric stress tensor; σY is the initial yield stress; ep is the

effective plastic strain and Hp denotes the plastic modulus of a linear isotropic

hardening which is constant in this paper. Assuming small deformation elasto-

plasticity, the rate of the total strain ε̇ is decomposed into the rate of the elastic

strain ε̇e and the plastic strain ε̇p as

ε̇ = ε̇e + ε̇p (6.2)

The stress relates to the elastic strain by the fourth-order constitutive tensor D

σ̇ = D : ε̇e (6.3)
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And the flow potential is associated with the yielding function f here, and the

plastic strain evolves in the direction normal to the associated flow rule

ε̇p = γ
∂f

∂σ
= γ

s

||s||
= γN (6.4)

where N is a unit deviatoric tensor and denotes the flow direction of plastic

strain. γ is the non-negative plastic consistency parameter, which is governed by

the Kuhn-Tucker conditions

γf = 0; γ ≥ 0; f ≤ 0 (6.5)

The finite element analysis for a complete structure should be satisfied on both

global equilibrium and local residuals.

Rn = Rn
ext −Rn

int (6.6)

Rn
int =

nele∑
e=1

(

∫
Ve

BTσndVe) (6.7)

where Rn represents the equilibrium between the external force Rn
ext and the

internal force Rn
int at loading step n. B is the strain-displacement matrix. In this

study, four-node quadrilateral plane-stress element with four integration points

is adopted. Residuals on every integration point is infinitely approaching to zero

during the nonlinear analysis at each loading step, which is given by,

for elastic step

Hn
eij =

σnei − σn−1
ei −D0

e : (Beu
n
e −Beu

n−1
e ) = 0

ep
n
ei − ep

n−1
ei = 0

∆γnei = 0

 (6.8)

and for plastic step

Hn
eij =


σnei − σn−1

ei −D0
e : (Beu

n
e −Beu

n−1
e ) + 2µe∆γ

n
eiN

n
ei = 0

ep
n
ei − ep

n−1
ei −

√
2
3
∆γnei = 0

||s||nei −
√

2
3
[σY e +Hpeep

n
ei] = 0

 (6.9)

where ue is the elemental nodal displacement vector; σei and epei represent the

stress and the equivalent plastic strain obtained on each integration point re-

spectively. e is the number of elements, i represents the number of integration
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6.3 Optimization Formulations

points, and j corresponds to the number of local residuals required according to

the plastic model adopted. The variables vnei within one integration point are

defined as

vnei = [σnei ep
n
ei ∆γnei] (6.10)

The expression of residual H at the loading increment n for a complete structure

is formed by embedding the local residuals on each integration point of each

element into a global matrix, as follows:

Hn = [Hn
1 ,H

n
2 , ...,H

n
nele]

T

Hn
e = [Hn

e1,H
n
e2,H

n
e3,H

n
e4]T

Hn
ei =

[
Hn
ei1,H

n
ei2, ...,H

n
eij

]T (6.11)

6.3 Optimization Formulations

In this study, the elastoplastic structure is subjected to a prescribed displace-

ment loading condition, and the optimization problem for minimizing the plastic

deformation is formulated with a constraint on material usage. The objective

is achieved by minimizing the total equivalent plastic strain at the final step of

prescribed loading history (see Section 6.3.2). Additionally, for the purpose of

comparison, the end-compliance based objective function (see Section 6.3.1) is

created and applied to the same design optimization problem. The BESO opti-

mization formulation is presented as follows

min c(x)

s.t.
nele∑
e=1

vexe = v∗

xe = 0 or 1, (e = 1, 2, ..., nele)

Rn(un,un−1,vn,vn−1,x) = 0

Hn(un,un−1,vn,vn−1,x) = 0

n = 1, 2, ..., N,

(6.12)

where xe is the discrete density variable that is updated in each iteration; c(x) is

the corresponding objective function to be solved, and v∗ is the prescribed target

volume fraction of the design domain.
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6.3 Optimization Formulations

The BESO method can also be regarded as discrete density based optimiza-

tion approach, using element as the design variable assigned with material density

to show absence or presence. Generally, in linear elastic optimization design, only

the elastic Young’s modulus of material is interpolated by design variables, while

for nonlinear design, more associated elastoplastic behaviour are taken into ac-

count in the material interpolation scheme. The fourth-order constitutive tensor

is given by

D = λ1⊗ 1 + 2µI (6.13)

where λ and µ, so called Lame’s constants, are functions of Young’s modulus and

possion ratio; 1 is the second-order unit tensor, and I is the symmetric fourth-

order unit tensor. And the following shows the interpolating functions:

λe = λmin + (λmax − λmin)xp
λ

e

µe = µmin + (µmax − µmin)xp
µ

e

σY e = σY min + (σY max − σY min)xp
σY

e

Hpe = Hpmin + (Hpmax −Hpmin)xp
Hp

e ,

(6.14)

where the penalization values (pλ, pµ, pσY , pHp) are assumed equal to 3 throughout

this study.

6.3.1 End-compliance Minimization Problem (ECM)

An optimization problem for maximizing stiffness is the most common in the lit-

erature. Here, the compliance based objective is achieved by maximizing the force

applied on the specified degree of freedom for a nonlinear structure, subjected to

prescribed displacement loading, which is expressed as

c(x) = −ϕNPrefu
N (6.15)

where Pref , a constant external load vector, equals to 1 only on the degree of

freedom where prescribed displacement is applied, otherwise equals to 0; ϕN is

a scalar and denotes the load factor at the final step. Note that the objective

function stated in Eq.(6.15) only valid under certain loading circumstances. Thus,

Amir et al. [25] proposed to modify the function as: f(x) = PNuN , in which

seems to use a load-controlled analysis while the actual nonlinear analysis is

performed by displacement governed method.
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6.4 Sensitivity analysis for EPSM problem

6.3.2 Equivalent Plastic Strain Minimization Prolem (EPSM)

A global function of accumulating all the equivalent plastic strain on every in-

tegrated point entering plastic state within the design domain is constructed to

approximate the local strain problem, which is expressed as

c(x) =
nele∑
e=1

(
4∑
i=1

(ep
N
e,i) (6.16)

where ep
N
e,i is the equivalent plastic strain at i-th integration point of e-th element

at the final loading step N . In terms of rate, the equivalent plastic strain can be

defined as

ėp =

√
2

3
ε̇p : ε̇p (6.17)

by substituting Eq.(6.4) into Eq.(6.17), the equivalent plastic strain rate can be

formulated as a function of plastic consistency parameter γ as

ėp =

√
2

3
γ2N : N =

√
2

3
γ (6.18)

where the contraction of unit tensor (N : N) equals to 1.

6.4 Sensitivity analysis for EPSM problem

In this section, a detailed sensitivity analysis of calculating sensitivity numbers

for EPSM problem is expressed and derived using the adjoint method. The sen-

sitivity analysis for ECM problem has been given in Chapter 5. Also, due to the

elastoplasticity that is path-dependent, the entire path from n = 1 to N is consid-

ered in the analysis. Firstly, following the framework [65] for transient, nonlinear

coupled problems, the original objective function is extended by adding two ad-

joint items defined by the product of the adjoint variables and the mechanical

balance law on both global and local level

ĉ =c(x,u,v) +
N∑
n=1

ξnTRn(un,un−1,vn,vn−1,x)

+
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x)

(6.19)
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6.4 Sensitivity analysis for EPSM problem

where ξ and θ are two adjoint vectors. And as described in Eq.(6.6-6.9) and

Eq.(6.17), it can be concluded that the global equilibrium R only depend on

the internal variable v of the current loading step, while the local residuals H

associated with variables u, v of current and former step and design variables x

ĉ = c(x,v) +
N∑
n=1

ξnTRn(vn) +
N∑
n=1

θnTHn(un,un−1,vn,vn−1,x) (6.20)

Hence, if the design variables are assumed to vary continuously from 1 to 0, the

sensitivity of the objective function with respect to a change in design variable

can be derived as

∂ĉ

∂x
=
∂c

∂x
+

N∑
n=1

(
∂c

∂vn
∂vn

∂x
) +

N∑
n=1

ξnT (
∂Rn

∂vn
∂vn

∂x
)

+
N∑
n=1

θnT (
∂Hn

∂un
∂un

∂x
+

∂Hn

∂un−1

∂un−1

∂x
+
∂Hn

∂vn
∂vn

∂x
+

∂Hn

∂vn−1

∂vn−1

∂x
+
∂Hn

∂x
)

(6.21)

The initial response u0 and v0 are equal to 0. To eliminate the unknown term of

derivatives ∂un

∂x
, ∂un−1

∂x
, ∂vn

∂x
, ∂vn−1

∂x
, Eq. (6.21) is rewritten as

∂ĉ

∂x
=(

∂c

∂vN
+ ξN

T ∂RN

∂vN
+ θN

T ∂HN

∂vN
)
∂vN

∂x
+ (θN

T ∂HN

∂uN
)
∂uN

∂x

+
N−1∑
n=1

(
∂c

∂vn
+ ξnT

∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
)
∂vn

∂x

+
N−1∑
n=1

(θnT
∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
)
∂un

∂x
+

N∑
n=1

θnT
∂Hn

∂x

(6.22)

To achieve the Lagrange multipliers θn, ξn for all steps, backward incremental

calculation method is applied through the following equations

N th step: 
θN

T ∂HN

∂uN
= 0

∂c

∂vN
+ ξN

T ∂RN

∂vN
+ θN

T ∂HN

∂vN
= 0

(6.23)
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6.4 Sensitivity analysis for EPSM problem

nth step (n = N − 1, ..., 1):
θnT

∂Hn

∂un
+ θn+1T ∂Hn+1

∂un
= 0

ξnT
∂Rn

∂vn
+ θnT

∂Hn

∂vn
+ θn+1T ∂Hn+1

∂vn
= 0

(6.24)

Once these arbitrary Lagrange multipliers are determined, the final design sensi-

tivity with respect to the design variables can be further expressed with only the

explicit terms of derivatives displayed as

∂c

∂x
=

N∑
n=1

θnT
∂Hn

∂x
(6.25)

Furthermore, the derivatives ∂c
∂vN

, ∂Rn

∂vn
, ∂Hn

∂un
, ∂Hn+1

∂un
, ∂Hn

∂vn
, ∂Hn+1

∂vn
need to be calcu-

lated to solve the adjoint equations presented in Eq. (6.23) and Eq. (6.24), which

are given as follows:

∂c

∂vNei
=
[

∂c
∂σNei

∂c
∂epNei

∂c
∆γNei

]
=
[
0 1 0

]
(6.26)

∂Rn
e

∂vnei
=
[
∂Rn

e

∂σnei

∂Rn
e

∂epnei

∂Rn
e

∆γnei

]
=
[
BT
eiwei 0 0

]
(6.27)

∂Hn
ei

∂une
=
[
∂Hn

ei1

∂une

∂Hn
ei2

∂une

∂Hn
ei3

∂une

]T
=
[
−D0

eBei 0 0
]T

(6.28)

∂Hn+1
ei

∂une
=
[
∂Hn+1

ei1

∂une

∂Hn+1
ei2

∂une

∂Hn+1
ei3

∂une

]T
=
[
D0
eBei 0 0

]T
(6.29)

∂Hn+1
ei

∂vnei
=


∂Hn+1

ei1

∂σnei

∂Hn+1
ei1

∂epnei

∂Hn+1
ei1

∆γnei
∂Hn+1

ei3

∂σnei

∂Hn+1
ei3

∂epnei

∂Hn+1
ei3

∆γnei
∂Hn+1

ei4

∂σnei

∂Hn+1
ei4

∂epnei

∂Hn+1
ei4

∆γnei

 =

−I 0 0
0 −1 0
0 0 0

 (6.30)

The above derivatives are independent to the finite element analysis response,

whereas the derivatives of Hn with respect to the internal variable vn and the

design variable x are produced variously when the point of material stays in the

elastic and plastic phase.

Elastic phase:

∂Hn
ei

∂vnei
=


∂Hn

ei1

∂σnei

∂Hn
ei1

∂epnei

∂Hn
ei1

∆γnei
∂Hn

ei3

∂σnei

∂Hn
ei3

∂epnei

∂Hn
ei3

∆γnei
∂Hn

ei4

∂σnei

∂Hn
ei4

∂epnei

∂Hn
ei4

∆γnei

 =

I 0 0
0 1 0
0 0 1

 (6.31)
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∂Hn
ei

∂xe
=
[
∂Hn

ei1

∂xe

∂Hn
ei2

∂xe

∂Hn
ei3

∂xe

]T
=
[
−∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) 0 0

]T
(6.32)

Plastic phase:

∂Hn
ei

∂vnei
=


I + 2µe∆γ

n
ei(

∂N
∂σ

)nei 0 2µeN
n
ei

0 1 −
√

2
3

Nn
ei −

√
2
3
Hpe 0

 (6.33)

∂Hn
ei

∂xe
=

−
∂D0

e

∂xe
: (Beiu

n
e −Beiu

n−1
e ) + 2∆γneiN

n
ei
∂µe
∂xe

0

−
√

2
3

∂σye
∂xe
−
√

2
3

∂Hpe
∂xe

ep
n
ei

 (6.34)

with

(
∂N

∂σ
)nei =

1

||s||nei
[Idev −Nn

ei ⊗Nn
ei] (6.35)

where Idev = I− 1
3
1⊗1 is the unit deviatoric tensor of the fourth-order. Therefore

differentiation of Hn with respect to variables vn and x need to be consistent with

the analysis at every loading step.

6.5 Modified BESO update of design variables

Due to the instability in the topology evolutionary procedure for plastic strain

minimization design of elastoplastic materials, the basic BESO method proposed

in [18] is modified by adding a damping scheme on the resulting sensitivity num-

bers to improve its effectiveness and robustness.

BESO design starts from the full structural domain and its volume gradually

decreases until the target volume is reached. The evolutionary function is given

by

vl = vl−1(1−Rer), l = 1, 2, 3... (6.36)

where Rer is the evolutionary ratio, l represents the current optimization iteration.

To ensure only elements with density design variable x = 1 taken into the update

scheme at the current iteration, the sensitivities obtained directly from Eq. (6.25)

are further evaluated as

a = x
N∑
n=1

θnT
∂Hn

∂x
(6.37)
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6.5 Modified BESO update of design variables

where x play the role of avoiding void elements participating in the rank sys-

tem of deciding element’s removal and addition. Moreover, a damping scheme

is proposed for all sensitivity numbers to improve the evolutionary topological

stability. This is due to, firstly, the plastic strain in a total strain is uncertain on

a local level, which highly rely on the material elastoplasticity and loading con-

dition. Elements with material exceeding yielding point is developed with plastic

strain while those staying in elastic stage with plastic strain equal to 0. Also, the

void elements assigned with extremely small material properties (e.g., Young’s

modulus, hardening modulus and initial yielding stress) may present high plas-

tic strain. As a result, the sensitivity numbers may vary with large difference

in quantity orders during the evolutionary process. To solve this, Eq. (6.37) is

continued to be modified as

a = (x
N∑
n=1

θnT
∂Hn

∂x
)φ (6.38)

where φ is the damping parameter. Additionally, to address the mesh-dependent

and convergence problem, a filtering scheme [76] is utilized to smooth the sensi-

tivity numbers by taking the surrounding sensitivities into account.

ae =

N∑
i=1

weiai

N∑
i=1

wei

(6.39)

with

wei = max(0, rmin − dis(e, i)) (6.40)

where ae and ai denote the design sensitivity of element e and element i, respec-

tively. wei is the weight factor, rmin is the filter radius and the item dis(e, i)

represents the distance between of centres of element e and element i. And, a

scheme of averaging the sensitivity numbers in the current iteration with that in

the previous iteration is normally implemented to futher improve the optimization

stability [18].

ale =
ale + al−1

e

2
(6.41)
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Then, all elements are sorted based on their magnitude of design sensitivity from

the highest to the lowest, and a threshold parameter ath is set up according to

the prescribed volume desired at the current iteration. Specifically, elements with

sensitivity value higher than ath, as shown in Eq. (6.42), are regarded as the solid

where the corresponding design variable equals to 1, while those with that lower

than ath, as given in Eq. (6.43), represent the void and are removed from the

current design domain.

ae > ath (6.42)

ae ≤ ath (6.43)

Once the prescribed volume for material usage is reached, design variables are

only updated for satisfying the convergence criterion as

|
m∑
j=1

(ci−j+1 − ci−N−j+1)|

m∑
j=1

ci−j+1

≤ τ (6.44)

where m is an integral number equals to 5 in this study, and τ is the allowable

convergence tolerance relating to the change in objective function. In this paper,

the optimization procedure is either stopped by achieving a convergent result or

an adequate number of iteration in which a stable topology raised. In summary,

the BESO optimization procedure is described as follows:

1. Define geometrical dimension, FE mesh, loading and boundary conditions

for design domain.

2. Assign all elements with design variable equal to 1.

3. Set up BESO parameters (target volume v∗, evolutionary removal ratio Rer,

filtering radius rmin, damping parameter φ, convergent tolerance τ).

4. Calculate derivatives presented in Eq. (6.26)-(6.30), that are independent

to the finite element analysis response.

5. Perform nonlinear finite element analysis of the current structure, and com-

pute the derivatives presented in Eq. (6.31)-(6.34), that are consistent with

respect to the analysis for all loading steps.
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6. Calculate the Lagrange multipliers θn, ξn for all steps using Eq. (6.23)-

(6.24).

7. Obtain design sensitivity numbers by Eq. (6.25).

8. Further evaluate, damp, filter and average the sensitivity number using

Eq. (6.37), Eq. (6.38), Eq. (6.39), Eq. (6.41), respectively, and save the

sensitivity number as history information for next iteration.

9. Define desired volume of next iteration using Eq. (6.36).

10. Update design variables and material properties for solid and void elements

using Eq. (6.42) and (6.43).

11. Construct a new design domain with solid elements and repeat steps 5-

10 until the target volume are reached and the convergence criterion or

determined total iterations are satisfied.

6.6 Examples

Two numerical examples are conducted to present the effectiveness of the pro-

posed optimization algorithm. A cantilever beam with 2m in length and 1m

in height is applied under two loading cases. In all cases, the Young’s moduli,

poisson’s ratios, initial yielding stress, plastic moduli are given as E0 = 80GPa,

v = 0.3, σ0
Y = 120MPa, H0

p = 1000MPa. BESO parameters set up in all cases

are Rer = 2%, v∗ = 60%, rmin = 4 and τ = 1× 10−4. Additionally, the damping

parameter φ is defined equal to 0.1 for EPSM design and 0.4 for ECM design,

considering more uncertainty may be encountered in EPSM design as not all

elements are developed with sensitivities (plastic deformation). The full design

domain is discretized into 200× 100 elements and the uniform size of element is

10mm.
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6.6.1 Case 1

Fig.6.1 shows the design domain, boundary and loading condition for the first

case. The cantilever beam is fully clamped at the left edge, and a downwards

prescribed displacement of 20mm is applied over 21 nodes (20 elements) along

the central right edge to eliminate stress concentration.

Figure 6.1: Design domain of Case 1

The results in terms of resulting topology, equivalent plastic strain and von

Mises distribution obtained from stiffness design, ECM design and EPSM design

are presented in Fig.6.2. Also, a modified design domain without considering ele-

ments at the structural support and load applied regions is used in order to avoid

the effect of stress/strain concentration. ẽp and σ̃ demonstrate the equivalent

plastic strain and von Mises stress for the modified design domain respectively.

As can be observed, three distinct topologies are obtained through various design

purposes. For stiffness design, the structure is assumed to be linear elastic by

defining the yield stress of material is infinitely large. Thus, no plastic defor-

mation occurs and the maximum stress in the full design domain grows without

restriction up to 774.22MPa. The maximum stress reduced to 249.22MPa and

the von Mises stresses are more evenly diffused in the whole structure in the ECM

design, which demonstrates the advantages of considering nonlinear performance.

In the EPSM design where the maximum equivalent plastic strain is aiming to

be minimized, either the maximum von Mises stress or equivalent plastic strain
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is lower than that of the ECM design. This is possibly due to more structural

elements are involved in sharing the plastic deformation.

Figure 6.2: Comparison of results achieved from stiffness design, ECM design

and EPSM design of Case 1

The evolutionary history regarding to the equivalent plastic strain and von

Mises stress fields for ECM design and EPSM design are shown in Fig.(6.3-6.6)

and Fig.(6.7-6.10), respectively.

It can be observed from the Fig.6.3 that along the topological evolution, the

maximum equivalent plastic strain emaxp decreases from 0.034mm to 0.0229mm.

However, at iteration 25, emaxp reaches to 0.0576mm existing at the thin branches
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Figure 6.3: The topological evolution with equivalent plastic strain distribution

plot of full domain of ECM design
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Figure 6.4: The topological evolution with von Mises stress distribution plot of

full domain of ECM design
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in the central area of domain and then drop to 0.0269mm at iteration 26 where

those branches are removed from the structure. Regarding to the von Mises stress

plots (Fig.6.4) at iteration 24 to 26, the maximum von Mises stress σmax reduces

from 240.71MPa to 226.19MPa, which is not consistent with the plastic strain

distribution.

Figure 6.5: The topological evolution with equivalent plastic strain distribution

plot of the modified domain of ECM design

Fig.6.5 and Fig.6.6 show the equivalent plastic strain and von Mises distribu-

tion at the modified domain where elements at boundary and loading regions are

neglected, receptively. This helps to observe the change of stress of remaining
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Figure 6.6: The topological evolution with von Mises stress distribution plot of

the modified domain of ECM design
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elements with the topology evolutionary. For example, topologies at iteration

12 and 13 are nearly the same, while ẽp
max decreases from 0.0151 to 0.0082 and

σ̃max drops around 25%, when two thin branches are eliminated at iteration 13.

Also, it is interesting to find that the inefficient materials to be removed in the

subsequent iteration can be predicted from the stress distribution of the current

topology. For instance, elements with lowest von Mises stress at the design of

iteration 14 disappear in the later iteration.

Figure 6.7: The topological evolution with equivalent plastic strain distribution

plot of full domain of EPSM design

In the EPSM design, as can be observed from Fig.6.2 that the results of emaxp ,

σmax, ẽp
max, σ̃max are obviously less than those obtained through ECM design.

This demonstrates that the proposed optimization algorithm achieves the goal

of minimizing the plastic deformation. Furthermore, the maximum von Mises

stress and plastic strain generally decrease along the volume reduction to the

lowest while may increase a bit at the converged design (see iterations 39 and
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Figure 6.8: The topological evolution with von Mises stress distribution plot of

full domain of EPSM design
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53 in Fig.6.7 and Fig.6.8). This is possible caused by the stress concentration at

’singular’ areas or a compromise from the converged results, though the increase

can be negligible.

Figure 6.9: The topological evolution with equivalent plastic strain distribution

plot of the modified domain of EPSM design

For this particular case, as can be seen from Fig.6.9 and Fig.6.10 where ’sin-

gular’ areas are removed, that the maximum plastic strain and stress are the

lowest at iteration 52 when the results converged. Most importantly, more evenly

distribution has been developed to disperse the high stress through structural

self-adjustment till a converged topology is achieved.

Relation between the objective functions and iterations of EPSM design is

plotted in Fig.6.12 where a stable evolutionary history is observed and the topol-

ogy converges within 52 iterations, which state the effectiveness and feasibility of

the proposed algorithms.
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Figure 6.10: The topological evolution with von Mises stress distribution plot of

the modified domain of EPSM design

Figure 6.11: Plot of objective functions and iterations of ECM design of Case 1
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Figure 6.12: Plot of objective functions and iterations of EPSM design of Case 1

6.6.2 Case 2

In the second case, a cantilever beam with same dimension and boundary con-

dition as presented in case 1 is adopted but applied with distributed prescribed

displacements over 21 nodes at the right end of the top surface (see Fig.6.13).

Figure 6.13: Design domain of Case 2

To show the difference between the elastoplastic design and linear design, the

problem is solved first using linear FEA and the results are shown in Fig.6.14(a).
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Figure 6.14: Comparison of results achieved from stiffness design, ECM design

and EPSM design of Case 2
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When the problem is solved using nonlinear FEA, the optimized design has dif-

ferent topology presented in Fig.6.14(b). Comparing the topology obtained from

linear design, the nonlinear design has one segment near the loading points along

the top surface is void. And, more material is moved to the clamped end, avoid-

ing the von Mises stress only concentrate in specific areas. However, both these

linear and nonlinear design are associated with compliance-based optimization

design. Plastic strain-based optimization design is conducted and the results are

shown in Fig.6.14(c). Though both Fig.6.14(b) and Fig.6.14(c) design taking the

material elastoplasticity into account, the optimized layouts are different due to

various objective of optimization. From the equivalent plastic strain and von

Mises stress plots, as can be observed that values of emaxp and σmax of EPSM

design (0.0203mm and 235.24MPa) are less than that of ECM design (0.0259mm

and 259.84MPa). And material is moved even further towards the left edge to

enable the plastic strains and stresses are more equally dispersed over the full

structure.

The detailed evolution of the topology together with the equivalent plastic

stain and the von Mises stress distribution for the case of design Fig.6.14 (b) and

(c) are given in Fig.(6.15-6.18) and Fig.(6.19-6.22), respectively.

For the ECM design, similar to previous cases, the maximum equivalent plastic

strain gradually decreases with the topological evolution from 0.034mm (iteration

0) to 0.0177mm (iteration 24), but jump to 0.0457mm at iteration 27 due to the

appearing extremely thin branch that is removed in the subsequent iteration and

emaxp drops down to 0.020mm (See Fig.6.15). This demonstrates that within the

volume reduction process, plastic strain is dramatically influenced by the material

removal and addition.

Fig.6.17 and Fig.6.18 display the results within a modified domain where

elements around the left boundary corners are neglected to better present the

equivalent plastic strain and von Mises stress distribution. As discussed in the

first case that emaxp and σmax of a converged optimized design may not be the

lowest. Rather than the fact of arising from the problem of singularity that is

found through the distribution of ẽp
max and σ̃max in the former case, this case has

the same trend in both results obtained from unmodified and modified domain,

see plots at iteration 45 and 61 in Fig.(6.17-6.18). Thus, it can be concluded that
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Figure 6.15: The topological evolution with equivalent plastic strain distribution

plot of full domain of ECM design
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Figure 6.16: The topological evolution with von Mises stress distribution plot of

full domain of ECM design
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Figure 6.17: The topological evolution with equivalent plastic strain distribution

plot of the modified domain of ECM design
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Figure 6.18: The topological evolution with von Mises stress distribution plot of

the modified domain of ECM design
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the optimal design viewed from a mechanical perspective may be not consistent

with that from a manufacturable point of view. A design with some tiny voids

may achieve a more desirable structural response but cannot converge due to the

fluctuation of elements surrounding the marginal holes, which is also less practical

in realistic manufacturing and application.

Figure 6.19: The topological evolution with equivalent plastic strain distribution

plot of full domain of EPSM design

Regarding to the EPSM design of this case, whose topology at the initial state

(iteration 0) is same to the ECM design, however, the void grows mainly from

the right bottom, which is unlike the ECM design whose internal void appears
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Figure 6.20: The topological evolution with von Mises stress distribution plot of

full domain of EPSM design
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and is developed from the right top. Also, it can be observed that the topology

after the volume constraint has been satisfied (iteration 29) is similar and it took

around 30 iterations to obtain a converged result.

Figure 6.21: The topological evolution with equivalent plastic strain distribution

plot of the modified domain of EPSM design

From Fig.6.21 and Fig.6.22, it can be seen that along the result converging

procedure, ẽp
max and σ̃max reduce from 0.0093mm and 164.38MPa (iteration 29)

to 0.0056mm and 152.76MPa (iteration 53), and they both rebound slightly at

the converged phase (iteration 64) to 0.0062mm and 154.24MPa, respectively.

149



6.6 Examples

Figure 6.22: The topological evolution with von Mises stress distribution plot of

the modified domain of EPSM design
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Figure 6.23: Plot of objective functions and iterations of ECM design of Case 2

Figure 6.24: Plot of objective functions and iterations of EPSM design of Case 2
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6.7 Conclusion and discussion

This study developed a topology optimization method taking into account the

material elastoplasticity. And minimizing plastic deformation of a structure is

set up as the optimization objective by a global function of accumulating all

the equivalent plastic strain of every material (Guass) points. Also, the detailed

sensitivity analysis with respect to design variables of the objective function has

been presented and derived. A damping system is proposed for all sensitivity

numbers, due to plastic strain only appears at partial regions of structure and

high sensitivity of local plastic strain to topology changes. This helps to stabilize

the evolutionary optimization procedure. Benchmark tests on a cantilever beam

design under two cases of loading condition are conducted and compared to the

results obtained from elastic stiffness design and elastoplastic stiffness (EPSM)

design, have validated the robustness and effectiveness of the proposed plastic

strain-based optimization method.

It can be concluded that there are distinct differences in the resulting topolo-

gies of three designs, which start to exhibit from the initial topological evolution.

Comparing to the results from ECM design, EPSM design has more material

moving to the clamped end and their maximum von Mises stress and equivalent

plastic strain are the lowest. Also, EPSM design efficiently distribute more ma-

terial surrounding the highly plastified regions during the optimization process

and resulting in a smoother and more evenly distributed stress and plastic strain

field.

From the plots of von Mises and equivalent plastic strain distribution at some

specified iteration, it can be observed that emaxp , σmax, ẽp
max and σ̃max reduce

gradually along the topological evolution process but are significantly effected by

the appearance of thin branches or redundant elements. Furthermore, after the

target volume is satisfied, the structure would adjust itself to have the best me-

chanical response. Without considering the interference from singular area, their

maximum equivalent plastic and stress (ẽp
max and σ̃max) develop to the lowest,

while they may rebound slightly at the converged phase. This presents that the

design may be deteriorated from a mechanical point of view when satisfying the

convergence criterion. However, the converged topology is much smoother and
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more practical in the real-world design so that the small rebound can be negligi-

ble.
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Conclusion

This chapter summarizes the results obtained from each research aspect and

remarks the contribution to applying topology optimization method to nonlinear

structural design. Also, future works related to this thesis are discussed in Section

7.2.

7.1 Summary of results

The aim of this research thesis Topology optimization of Elastoplastic Structures

is to develop the application of optimization technique to the design of composite

structure or structure with D-regions, while considering their material elasto-

plasticity. Topology optimization technique has been successfully used to elastic

structure to obtain a strut-and-tie model (STM), but to date limited further

applications applied to nonlinear structural design. For this reason, the author

decided to explore further applications, with the aim of describing the suitability

of topology optimization approach for further development.

This thesis first uses an evolutionary optimization technique (BESO) to op-

timize the reinforcement layout within concrete. Though the concrete is still

modelled elastic, its asymmetric property in tension and compression has been

considered by developing a modified design variable update scheme. In the sec-

ond stage, the applications to composite structure with various yielding and post

yielding behaviours are undertaken, which highlights the importance of consid-

ering material ealstoplasticity of each phase in the optimization design. Further-
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more, the research study at the third stage presents that evolutionary optimiza-

tion technique is well suited to optimizing elastoplastic structures after solving

its difficulty in convergence and topological instability by applying a transient

coupled nonliear system. Finally, the topology optimization method is developed

with the objective of minimizing plastic strain for elastoplastic structure. In

comparison with results obtained from elastic design and stiffness-based nonliear

design, the resulting topology successfully distribute material more efficiently to

produce more evenly plastic strain and stress distribution.

The main aim of the thesis has been reached through four aspects of research.

The main results and key contribution of each aspect are hereby presented.

Aspect 1: Optimized design of steel layout in RC structure (Chapter 3

of the thesis)

This study modified the conventional BESO approach to optimize both loca-

tion and orientation of discrete steel bars within the concrete domain. The steel

are modelled by truss elements, while the concrete are modelled by continuum

elements. Also, the reinforcing bar can be formed freely in any arbitrary orienta-

tion. Although the direction of vertical, horizontal and diagonal are considered

in this study, the proposed scheme can be extended for a wide range of orienta-

tion. Moreover, the nearly equal capacity in tension and compression for steel

and the asymmetric property for concrete are both taken into account. As can

be concluded from results of two numerical examples, the proposed method can

successfully provide designers a valuable suggestion for steel distribution in terms

of both orientation and topology, as well as under a realistic amount of steel can

be used, which is more approachable to practical design.

The main contributions of this approach can be summarized as follows:

1. In comparison with continuum optimization method, it solves the two dis-

tinct scale problem.

2. In comparison with truss optimization method or truss-continuum opti-

mization method, it gets rid of the ground structure theory by distributing

truss without being influenced by the initial predefined layout.
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Limitations:

1. The type of reinforcing bar is restricted by the nature of evolutionary op-

timization method (BESO) with design variable of either equalling to ”0”

or ”1”. For example, in some high stress concentrating areas, this method

would produce two layers of reinforcing bar with same cross-sectional area,

however, one layer of reinforcement with larger bar diameter may be pre-

ferred to be adopted in the practical design.

Aspect 2: Using continuous density-based optimization method for

nonlinear composite structure (Chapter 4 of the thesis)

This study proposed an optimization framework for multiphase elastoplastic struc-

ture where each phase can be associated with various yield criterion and hard-

ening model. The investigation of the influence of plastic model on the resulting

topology is conducted, which greatly agree with the predicted results from an

engineering perspective. And the influence of hardening model on the resulting

topology is firstly studied. In single-phase optimization design case, when mate-

rial employs different hardening rule, the obtained topologies are similar, which

presents the effect of post yielding behaviour can be negligible. While it is inter-

esting to observe that there is an obvious distinction in the results for multiphase

optimization design case.

The main contributions of this study can be highlighted as follows:

1. Interpolation functions are created to interpolate different plasticity model

and hardening rules that are adopted by each material phase into the opti-

mization algorithm.

2. The path-dependent adjoint sensitivity analysis based on the proposed op-

timization framework is expressed and derived.

3. In-depth analysis to the numerical results emphasizes the importance of

considering material nonliearity precisely during the optimization design,

especially for multi-phase composite structure.

Limitations:
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1. This method is limited to apply to multi-phase (more than two) material

optimization. However, it can be extended to solve multi-phase optimiza-

tion problem by setting up more design variables.

2. In this method, for two-phase structure with different elastoplastic be-

haviour, a common parameter involved in the function representing the

material plasticity of each phase is required to set up the material interpo-

lation function. When there is nothing in common in those functions, the

material interpolation function cannot be obtained straightaway.

Aspect 3: Using discrete density-based optimization method for non-

linear structure (Chapter 5 of the thesis)

In this BESO design for elastoplastic structure, I applied the transit coupled non-

linear system for sensitivity analysis rather than the simplified approach where

the non-differentiability arising from the elastic-plastic state transition is not con-

sidered. The goal is to investigate the performance of the suggested method of

sensitivity analysis applied into evolutionary framework. it is shown that the

converged results can be obtained within 30 to 60 iterations. Also, the proposed

BESO framework is tested under various prescribed displacement loading cases:

elastic, elastic-dominated, plastic-dominated and full plastic design. It is inter-

esting to find that the total iterations needed for convergence is independent on

the design state, which was expected to have more iterations for plastic design.

Additionally, it can be observed that each state level of design may not neces-

sarily have remarkable difference in topology. The structural behaviour could be

improved by adjusting the material distribution slightly.

The main contributions of this study can be summarized as follows:

1. When using BESO method for elastoplastic material design, the transit cou-

pled nonlinear system is initially applied to calculate sensitivity numbers.

2. In comparison with the results obtained from previous works of using con-

ventional approximated sensitivity analysis in BESO design, stable evo-

lutionary procedure and converged results are achieved without applying

additional stabilizing scheme.
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Limitations:

1. More complicated cases such as under multiple loading condition need to

be carried out to check the convergence of results and topological stability

of applying the transient coupled nonliear scheme to calculate sensitivity

numbers.

Aspect 4: Plastic strain-based topology optimization for nonlinear

structure (Chapter 6 of the thesis)

Among the limited works concentrating on nonlinear optimization design, this is

the first study aiming to minimize plastic deformation as the optimization ob-

jective. The encountered challenges, e.g., local nature of plastic strain, ’singular’

phenomenon and highly sensitivity to design state during the incremental loading

analysis, are naturally avoided and solved by using discrete topology optimiza-

tion method (BESO), setting up an equivalent global function and proposing a

damping scheme for sensitivity analysis.

The proposed approach is validated through two benchmark tests. I compared

the results (topology, equivalent plastic strain, von Mises stress distribution)

obtained from three types of design: elastic stiffness-based design, elastoplastic

stiffness-based design, and elastoplastic plastic strain-based design. Numerical

results show that the maximum plastic deformation is always lower and the von

Mises stresses are more evenly distributed for elastoplastic structure optimized

using plastic strain-based design rather than that using nonlinear stiffness based

design.

The main contributions can be listed as follows:

1. A topology optimization method is proposed for plastic deformation mini-

mization design.

2. Previous works stated the difference in results obtained from nonlinear

optimization design and linear optimization design. This study demon-

strates the significant influence of considering various structural variables

(e.g. plastic strain, stress, compliance, etc.) as optimization purpose on the

resulting topology for nonlinear optimization design.
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Limitations:

1. Due to the limitation of BESO method that is restricted to have multi-

ple constraints, other plastic variables or structural responses cannot be

considered by defining as constraints in the optimization design.

7.2 Future works

Several ideas of potential study based on the outcomes achieved from this thesis

are hereby presented.

Filtering study of using SIMP based optimization method for multi-

phase elastoplastic structural design

In the study presented in Chapter.4, an interesting phenomenon has been ob-

served that the optimization design of multiphase nonlinear structure is difficult

or may take hundreds of iterations to converge. This is mainly due to that

some gray scale areas appear at the elements where it is not clear which material

contributes more to the improvement of the objective function. Early studies pro-

posed the filtering scheme to solve checkerboard pattern and mesh-dependency

problem, and it is usually set up as 3 times of the size of the element. However,

this is developed based on elastic material design. This constant filtering scheme

also valid for plastic design of single material, which has been evaluated in this

thesis, but do not work for two-phase composite structure. Although a gradual

refinement method used in this study helps to achieve a distinct layout, more

analytical work is needed in order to discover the initial filter radius, iterations

of every refinement and their relation with the structural response.

A comparative study regarding to various sensitivity analysis method

when using BESO method for elastoplastic structure optimization de-

sign

As known that the sensitivity analysis, as an important section in optimization

procedure, significantly influence the accuracy of results and efficiency of conver-

gence. In majority of previous studies, the variational adjoint method with some
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simplifications assumed is implemented, while this study (Chapter 5) use an ap-

proach considering the consistency of the formulation with the path-dependent

behaviour. And converged results are obtained within a limited number of iter-

ations. However, it would be interesting to conduct a comparative study where

different approaches for sensitivity analysis are applied to the same design prob-

lem to investigate the difference in resulting topology and computational cost.

Compliance and plastic strain-based topology optimization for elasto-

plastic tructure

Study presented in Chapter.6 proposes a topology optimization method for plas-

tic strain minimization design. However, due to the fact that evolutionary op-

timization method (e.g., BESO) are restricted to have multiple constraints, the

end-compliance or the total energy absorption cannot be taken into account.

Therefore, applying fraction ratio separately for the term of minimizing plastic

deformation and the negative of the energy absorption capacity in the objective

function can be developed. The ratio accounting the weight of each term can

vary based on the design purpose. Then the results can be compared with the

fully compliance-based design and fully plastic strain-based design.
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